WorldWideScience

Sample records for carbon mitigation projects

  1. Linking Mitigation and Adaptation in Carbon Forestry Projects: Evidence from Belize

    DEFF Research Database (Denmark)

    Kongsager, Rico; Corbera, Esteve

    2015-01-01

    Committed action to deal with climate change requires reducing greenhouse gas emissions, i.e., mitigation, as well as dealing with its ensuing consequences, i.e., adaptation. To date, most policies and projects have promoted mitigation and adaptation separately, and they have very rarely considered...... and lack of rigorous enforcement. We then conclude that the integration of mitigation and adaptation in Belize’s carbon forestry projects remains a laudable but elusive goal. Consequently, we request climate change donors to refrain from providing support to narrowly designed projects and we urge them...

  2. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.;

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... study reveals that the system expansion scenario and the efficiency at reducing carbon emissions of the carbon mitigation project are critical factors having significant impact on results. Also, framework proves to be useful at treating land-use change emission as they are considered through...

  3. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program....

  4. Special Issue On Estimation Of Baselines And Leakage In CarbonMitigation Forestry Projects

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Andrasko, Kenneth

    2006-06-01

    There is a growing acceptance that the environmentalbenefits of forests extend beyond traditional ecological benefits andinclude the mitigation of climate change. Interest in forestry mitigationactivities has led to the inclusion of forestry practices at the projectlevel in international agreements. Climate change activities place newdemands on participating institutions to set baselines, establishadditionality, determine leakage, ensure permanence, and monitor andverify a project's greenhouse gas benefits. These issues are common toboth forestry and other types of mitigation projects. They demandempirical evidence to establish conditions under which such projects canprovide sustained long term global benefits. This Special Issue reportson papers that experiment with a range of approaches based on empiricalevidence for the setting of baselines and estimation of leakage inprojects in developing Asia and Latin America.

  5. Mitigating for nature in Danish infrastructure projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Christensen, Per

    2015-01-01

    his paper presents results of a Danish study of mitigation efforts directed at nature protection in EIA of Danish infrastructure projects. The projects included in the study comprise road, rail, bridges, tunnels cables and oil- and gas-pipes. The study is based on a document analysis of EIA reports...... mitigation measures are suggested and implemented. Based on this the paper concludes with a discussion of how practice of mitigating impacts on nature can be developed leading to better nature protection....

  6. Surface System Dust Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will perform a detailed examination of dust mitigation and tolerance strategies for connections and mechanisms to be employed on the lunar...

  7. Methodological Issues In Forestry Mitigation Projects: A Case Study Of Kolar District

    OpenAIRE

    Ravindranath, N.H.; Murthy, I.K.; P Sudha; Ramprasad, V.; Nagendra, M.D.V.; Sahana, C.A.; Srivathsa, K.G.; Khan, H

    2008-01-01

    There is a need to assess climate change mitigation opportunities in forest sector in India in the context of methodological issues such as additionality, permanence, leakage, measurement and baseline development in formulating forestry mitigation projects. A case study of forestry mitigation project in semi-arid community grazing lands and farmlands in Kolar district of Karnataka, was undertaken with regard to baseline and project scenariodevelopment, estimation of carbon stock change i...

  8. Climate change mitigation by carbon stocking

    DEFF Research Database (Denmark)

    Lykke, Anne Mette; Barfod, Anders S.; Svendsen, Gert Tinggaard;

    2009-01-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) ...

  9. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  10. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives.  Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites.  Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  11. Carbon Sequestration to Mitigate Climate Change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  12. Allowable carbon emissions for medium-to-high mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Tachiiri, Kaoru; Hargreaves, Julia C.; Annan, James D.; Kawamiya, Michio [Research Inst. for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, (Japan)], e-mail: tachiiri@jamstec.go.jp; Huntingford, Chris [Centre for Ecology and Hydrology, Wallingford (United Kingdom)

    2013-11-15

    Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic framework, we estimate future ranges of carbon dioxide (CO{sub 2}) emissions in order to follow three medium-high mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then constrained by comparison against contemporary measurements. For both constrained and unconstrained projections, our calculated allowable emissions are close to the standard (harmonised) emission scenarios associated with these pathways. For RCP4.5, which is the most moderate scenario considered in terms of required emission abatement, then after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO{sub 2} concentrations. As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset any minimum emissions for society to function (the 'emissions floor'). Despite large uncertainties in the physical and biogeochemical processes, constraints from model-observational comparisons support a high degree of confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for RCP2.6, the land will turn into a carbon source within the twenty first century, but the ocean will remain as a carbon sink. For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and the Amazon basin even after atmospheric CO{sub 2} is stabilised, while for ocean carbon uptake, the tropical ocean regions will be a

  13. Nanotube Electrodes for Dust Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Dust mitigation is critical to the survivability of vehicle and infrastructure components and systems and to the safety of astronauts during EVAs and planetary...

  14. NIR LIDAR for Hazard Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have investigated the feasibility of employing a hazard detection and mitigation system based upon a polarization discriminating range-gated Lidar system. This...

  15. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  16. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  17. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  18. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  19. Blue Creek Winter Range: Wildlife Mitigation Project

    International Nuclear Information System (INIS)

    This preliminary Environmental Assessment examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities are analyzed: Habitat protection; Habitat enhancement; Operation and maintenance; and Monitoring and evaluation. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  20. Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Murthy, I.K.; Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.; Sahana, C.A.; Srivathsa, K.G.; Khan, H.

    2007-06-01

    There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the area haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.

  1. A Novel Electromotance Noise Mitigation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Electromotance energy has historically produced problems for electrical systems. This project will innovatively employ high electron density fields that have the...

  2. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2008-01-01

    The mitigation of global warming requires new efficient systems and methods. The paper presents a new proposal called personal carbon allowances with caps on the CO2 emission from household heating and electricity and on emission from transport in private cars and in personal air flights. Results...

  3. Hydrological restoration of Indonesian peatlands to mitigate carbon dioxide emissions

    NARCIS (Netherlands)

    Wösten, H.; Jaenicke, J.; Budiman, A.; Siegert, F.

    2010-01-01

    Delta Session DS 9: The lowland deltas of Indonesia. Hydrological restoration of Indonesian peatlands to mitigate carbon dioxide emissions, Henk Wösten (2010). Presented at the international conference Deltas in Times of Climate Change, 29 September - 1 October, Rotterdam, the Netherlands.

  4. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Science.gov (United States)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  5. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  6. Wildlife Protection, Mitigation, and Enhancement Plan, Palisades Project: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Meuleman, G. Allyn

    1986-11-01

    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho and Wyoming to mitigate the losses of wildlife habitat and annual production due to the development and operation of the Palisades Project. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the preferred mitigation plan to wildlife. The interagency work group used the target species Habitat Units (HU's) lost with inundation of the reservoir area as a guideline during the mitigation planning process, while considering needs of wildlife in eastern Idaho and western Wyoming. A total of 37,068 HU's were estimated to be lost as a result of the inundation of the Palisades Reservoir area. Through a series of protection/enhancement projects, the preferred mitigation plan will provide benefits of an estimated 37,066 HU's. Target species to be benefited by this mitigation plan include bald eagle, mule deer, elk, mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, and peregrine falcon.

  7. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  8. Albeni Falls Wildlife Mitigation Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Terra-Burns, Mary (Idaho Department of Fish and Game, Albeni Falls Interagency Work Group, Boise, ID)

    2002-02-11

    The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres ({approx}4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002.

  9. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  10. Earthquake risk mitigation projects in central asia and india

    Science.gov (United States)

    Hausler, E.; Petal, M.; Tobin, T.; Tucker, B.; Gupta, M.; Sharma, A.; Shaw, R.

    2003-04-01

    In the fall of 2002, GeoHazards International (GHI), a California-based nonprofit organization, launched two 3-year projects, each funded by the U.S. Agency for International Development, to improve the earthquake risk management of 23 cities in Central Asia and India. The objectives of these projects are to: * Assess the earthquake risk of each city, * Identify the most effective risk mitigation options for each city, * Raise awareness of that risk and those mitigation options, and * Initiate mitigation activities in some of these cities. A critical characteristic of these projects is that leaders of each local community will be deeply involved in realizing all four objectives. GHI will work with, in addition to local authorities, national government, academic and non-governmental organizations. In India, GHI’s partners are the Disaster Management Planning Hyogo Office, United Nations Centre for Regional Development (UNCRD) of Kobe, Japan, and the Sustainable Environment and Ecological Development Society (SEEDS), of Delhi, India. In India, we will work in 20 cities that were chosen, in a February 1, 2002 workshop (sponsored by Munich Reinsurance Company) in Delhi; the cities were selected by Indian earthquake professionals on the basis of the cities’ population, hazard, and economic, cultural and political significance. In Central Asia, we will focus on Tashkent, Uzbekistan; Dushanbe, Tadzhikistan; and Almaty, Kazakstan. GHI and its partners are looking for other organizations that would like to collaborate on these projects.

  11. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Soults, Scott [Kootenai Tribe of Idaho

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  12. Project management best practices: forging win-win partnerships and mitigating power project risk

    Energy Technology Data Exchange (ETDEWEB)

    Trowsdale, R. [EPCOR Power Development Corp. (Canada)

    2006-07-01

    This paper discusses aspects of project management to mitigate power project risk. end-to-end project development involves development phase, permitting phase, implementation phase, and operational phase. Each phase involves a number of different elements. In renewable energy project good management requires maintaining project discipline and schedule throughout all phases. Project success requires commercial competitiveness, fuel availability, power sales contracts, stake holder support, permitting, effective execution, construction and good technical performance.

  13. Mitigating wildfire carbon loss in managed northern peatlands through restoration

    Science.gov (United States)

    Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.

    2016-06-01

    Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha-1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.

  14. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  15. Mitigating wildfire carbon loss in managed northern peatlands through restoration

    Science.gov (United States)

    Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.

    2016-01-01

    Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha−1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change. PMID:27346604

  16. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-05-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as a major sink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied under different plantation forest ecosystems comprising of eight different tree species: Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnusnitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57±48.99tha-1 and below ground (42.47±10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera(118.37±1.49 tha-1 and minimum (36.50±9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86±10.34 tha-1 in Alnus nitida, and minimum (170.83±20.60 tha-1 in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79±2.0 tha-1. Carbon sequestration (7.91±3.4 tha-1 and CO2 mitigation potential (29.09±12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions for sustainable management of fragile hilly ecosystem.

  17. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-07-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as amajorsink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied underdifferent plantation forest ecosystems comprising of eight different tree species viz. Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnus nitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57 ą 48.99 tha-1 and below ground (42.47 ą 10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera (118.37 ą 1.49 tha-1 and minimum (36.50 ą 9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86ą 10.34 tha-1 in Alnus nitida, and minimum (170.83ą 20.60 tha-1in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79 ą 2.0 tha-1. Carbon sequestration (7.91ą 3.4 tha-1 and CO2 mitigation potential (29.09 ą 12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions forsustainable management of fragile hilly ecosystem. 

  18. Hellsgate Winter Range: Wildlife Mitigation Project. Final Environmental Assessment

    International Nuclear Information System (INIS)

    BPA proposes to fund the Hellsgate Winter Range: Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The Project is intended to mitigate for wildlife and wildlife habitat adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs. The Project would allow the sponsors to secure land and conduct wildlife habitat improvement and long-term management activities within the boundaries of the Colville Indian Reservation. BPA has prepared an Environmental Assessment (EA) (DOE/EA-0940) evaluating the potential environmental effects of the proposed Project (Alternative B) and No Action (Alternative A). Protection and re-establishment of riparian and upland habitat on the Colville Indian Reservation, under Alternative B, would not have a significant adverse environmental impact because: (1) there would be only limited, mostly short-term adverse impacts on soils, water quality, air quality, vegetation, and wildlife (including no effect on endangered species); and (2) there would be no adverse effect on water quantity, cultural resources, or land use. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI

  19. Hellsgate Winter Range: Wildlife mitigation project. Final environmental assessment

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs

  20. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  1. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  2. Policy Considerations for Using Forests to Mitigate Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2001-01-01

    Full Text Available A recent article in Nature, “Soil Fertility Limits Carbon Sequestration by Forest Ecosystems in a CO2-Enriched Atmosphere” by Oren and colleagues[1], has been widely reported on, and often misinterpreted, by the press. The article dampens enthusiasm for accelerated forest growth due to CO2 fertilization and puts in question the fringe theory that the world’s forests can provide an automatic mitigation feedback. We agree that these results increase our understanding of the global carbon cycle. At the same time, their relevance in the context of the international climate change negotiations is much more complicated than portrayed by newspapers such as the New York Times (“Role of Trees in Curbing Greenhouse Gases is Challenged”, May 24, 2001 and the Christian Science Monitor (“Trees No Savior for Global Warming”, May 25, 2001.

  3. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  4. Blue Creek Winter Range: Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  5. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  6. Pend Oreille Wetlands Wildlife Mitigation Projects, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray D. (Kalispel Tribe of Indians, Usk, WA)

    2001-12-05

    The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie.

  7. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  8. The monitoring evaluation, reporting and verification of climate change mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1998-05-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues involved in MERV activities. They identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  9. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  10. Barriers to Mitigate Carbon Footprint in a Selected Academic Institution in Bacoor City, Cavite, Philippines

    Science.gov (United States)

    Adanza, Jonathan R.

    2016-01-01

    Carbon footprint is an environmental menace that needs to be addressed at once. Various mitigating measures were proposed and yet manifestations of its proliferation are very much observable. This study seeks to determine primarily the barriers of non-adherence to identified measures to mitigate carbon footprint in the environment. Using the mixed…

  11. Determining the Success of Carbon Capture and Storage Projects

    OpenAIRE

    Thronicker, Dominique; Ian A. Lange

    2015-01-01

    Carbon Capture and Storage (CCS) is regarded as one of the most important technologies to mitigate climate change while providing fossil-fuel based energy security. During the past decade, projects in support of the development and deployment of the technology have been initiated across the globe. However, a considerable number of these projects have later been put on hold or cancelled. Currently, there is little understanding of what characteristics may have led to these undesirable outcomes...

  12. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  13. Willow Creek Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    Today's notice announces BPA's proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA's obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council's 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI

  14. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  15. China’s wind electricity and cost of carbon mitigation are more expensive than anticipated

    Science.gov (United States)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês M. L.

    2016-08-01

    The success of China’s transition to a low-carbon energy system will be key to achieve the global level of emissions reductions needed to avoid large negative consequences from climate change. China is undergoing an impressive build up of renewable capacity, in particular wind. Using data from the Clean Mechanism Development project database between 2004 and 2012, this study shows that while China made progress in bringing down the levelized cost of wind electricity and cost of carbon mitigation (CCM), serious grid-connection issues and high wind curtailment rates resulted in a levelized cost of wind electricity that is one-half to two times higher than expected, and a CCM that is four to six times higher. Sharp drop in electricity demand, utilization rate, and coal prices in recent years may lead to even higher results.

  16. Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Su, Meirong

    2015-10-01

    The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.

  17. Geothermal engineering integrating mitigation of induced seismicity in reservoirs - The European GEISER project

    NARCIS (Netherlands)

    Bruhn, D.; Huenges, E.; Áǵustsson, K.; Zang, A.; Kwiatek, G.; Rachez, X.; Wiemer, S.; Wees, J.D.A.M. van; Calcagno, P.; Kohl, T.; Dorbath, C.; Natale, G. de; Oye, V.

    2011-01-01

    The GEISER (Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs) project is co-funded by the European Commission to address the mitigation and understanding of induced seismicity (IS) in geothermal engineering. The aim of the project is to contribute to the improvement

  18. Albeni Falls wildlife mitigation project: annual report of mitigation activities/ annual report; ANNUAL

    International Nuclear Information System (INIS)

    The Albeni Falls Interagency Work Group was actively involved in implementing wildlife mitigation activities in 2000. The Work Group met each quarter to discuss management and budget issues affecting Albeni Falls wildlife mitigation. Members of the Work Group protected a total of 1,242 acres of wetland habitat in 2000. The total amount of wildlife habitat protected for Albeni Falls mitigation is approximately 4,190 acres (4,630 Habitat Units). Approximately 16% of the total wildlife habitat lost has been mitigated. Land management activities were limited in 2000 as protection opportunities took up most staff time. Administrative activities increased in 2000 as funding was more evenly distributed among Work Group members. As a result, implementation is expected to continue to increase in the coming year. Land management and monitoring and evaluation activities will increase in 2001 as site-specific management plans are completed and implemented

  19. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  20. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  1. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  2. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... concentration development scenario. The potential mitigation value depends on the timing of sequestration and re-emission of CO2. The suggested CTP approach enables inclusion of the potential benefit from temporary carbon storage in the environmental profile of biomaterials. This should be seen as supplement...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  3. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  4. Site Productivity and Forest Carbon Stocks in the United States: Analysis and Implications for Forest Offset Project Planning

    OpenAIRE

    Smith, James E.; Coeli M. Hoover

    2012-01-01

    The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide guidance to managers planning land acquisition for forest-based greenhouse gas mitigation projects. Specifically, we summariz...

  5. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    OpenAIRE

    Eugene L. Chia; Kalame Fobissie; Markku Kanninen

    2016-01-01

    There is growing interest in designing and implementing climate change mitigation and adaptation (M + A) in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It ex...

  6. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Makundi, W.; Andrasko, K.; Boer, R.; Ravindranath, N.; Sudha, P.; Rao, S.; Lasco, R.; Pulhin, F.; Masera, O.; Ceron, A.; Ordonez, J.; Deying, X.; Zhang, X.; Zuomin, S.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.

  7. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  8. Northeast Oregon Wildlife Mitigation Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Nez Perce Tribe

    1996-08-01

    Development of the hydropower system in the Columbia River Basin has had far-reaching effects on many species of wildlife. The Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the Federal portion of this system, as allocated to the purpose of power production. BPA needs to mitigate for loss of wildlife habitat in the Snake River Subbasin.

  9. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  10. Wildlife Loss Estimates and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume Three, Hungry Horse Project.

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Daniel

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlife species incurring positive impacts attributable to the project were identified.

  11. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    Science.gov (United States)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  12. Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures

    International Nuclear Information System (INIS)

    Climate change and CO2 mitigation have become increasingly important environmental issues. Recently Thailand has proposed policies on GHG mitigation such as Thailand’s Nationally Appropriate Mitigation Action (NAMA), which aims at GHG mitigation in the energy sector. This study used the computable general equilibrium (CGE) model, called “AIM/CGE” model, to analyse GHG mitigation measures under emission trading and carbon capture and storage (CCS) technology in Thailand. Results show that the international free emission trading policy can drive more GHG reduction by decreasing energy supply and demand, and increasing prices of emissions. The CCS technologies would balance emission reduction but they would reduce energy efficiency improvement and renewable energy utilization. In the energy security aspect, the policy options in this study would improve energy security, energy import dependency, and co-benefits of GHG mitigation in forms of improving local air quality. Results are also helpful to GHG mitigation policy in developing countries. -- Highlights: •A Computable General Equilibrium (CGE) model was used to analyze GHG mitigation policies in Thailand. •The CCS and emission trading will increase GHG mitigation in Thailand. •The 30% GHG mitigation target with 50% emission trading will give the best result in GDP. •The share of biomass resource and energy efficiency will decrease with CCS. •The emission trading will play an important role in decreasing fossil consumption and increasing renewable energy utilization

  13. Stakeholders of Voluntary Forest Carbon Offset Projects in China: An Empirical Analysis

    OpenAIRE

    Derong Lin; Yingzhi Lin

    2015-01-01

    Climate change is one of the defining challenges facing the planet. Voluntary forest carbon offset project which has the potential to boost forest carbon storage and mitigate global warming has aroused the global concern. The objective of this paper is to model the game situation and analyze the game behaviors of stakeholders of voluntary forest carbon offset projects in China. A stakeholder model and a Power-Benefit Matrix are constructed to analyze the roles, behaviors, and conflicts of sta...

  14. Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province

    Directory of Open Access Journals (Sweden)

    Changjian Wang

    2014-11-01

    Full Text Available Provincial carbon emissions research is necessary for China to realize emissions reduction targets. Two-level decomposition model based on the Kaya identity was applied to uncover the main driving forces for the energy related carbon emissions in Shandong province from 1995 to 2011, an important energy base in China. Coal consumption is still the biggest contributor to the increased carbon emissions in Shandong. Decomposition results show that the affluence effect is the most important contributors to the carbon emissions increments. The energy intensity effect is the dominant factor in curbing carbon emissions. The emission coefficient effect plays an important negative but relatively minor effect on carbon emissions. Based on the local realities, a series of environment-friendly mitigation policies are raised by fully considering all of these influencing factors. Sustainable mitigation policies will pay more attention to the low-carbon economic development along with the significant energy intensity reduction in Shangdong province.

  15. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  16. The Conditional Sink: Counterfactual Display in the Valuation of a Carbon Offsetting Reforestation Project

    OpenAIRE

    Véra Ehrenstein; Fabian Muniesa

    2013-01-01

    This paper examines counterfactual display in the valuation of carbon offsetting projects. Considered a legitimate way to encourage climate change mitigation, such projects rely on the establishment of procedures for the prospective assessment of their capacity to become carbon sinks. This requires imagining possible worlds and assessing their plausibility. The world inhabited by the project is articulated through conditional formulation and subjected to what we call "counterfactual display":...

  17. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  18. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  19. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  20. OBLIQUE PROJECTION BEAMFORMING FOR RFI MITIGATION IN RADIO ASTRONOMY

    OpenAIRE

    Hellbourg, Gregory; Weber, Rodolphe; Capdessus, Cécile; Boonstra, Albert-Jan

    2012-01-01

    Radio astronomical observations are increasingly corrupted by radio frequency interference (RFI). Phased antenna array radio telescopes allow the recovering of spatial information of RFI and cosmic sources. Using this information, spatial signal processing techniques can limit the impact of the incoming interferences. In this article, we present an RFI mitigation technique, based on an oblique projector.

  1. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Katherine [Idaho Department of Fsh and Game

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  2. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    DEFF Research Database (Denmark)

    The paper discusses a novel approach to address the carbon challenge by making it personal. Just as commodities like food and petrol are rationed at times of scarcity, carbon, in principle, can also be rationed, say, on a per capita basis. This, of course, raises serious equity issues since...... presently consumers in different parts of the world have widely different carbon footprints. But the idea that consumers are ultimately responsible for an economy’s overall carbon emissions and must be empowered to ration their environmental impact is gaining support in some circles....

  3. Carbon Fiber Reinforced, Zero CME Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technical Abstract: This project proposes to develop moisture insensitive, high performance, carbon fiber laminates for future missions. Current space-qualified...

  4. Can carbon in bioenergy crops mitigate global climate change?

    Science.gov (United States)

    Different forms of carbon cycle continuously through several pools in natural and managed ecosystems and spheres. Carbon’s recent "commodification," as a negative environmental externality, rendered it a "scarce" and "tradable" element. Although the carbon supply in nature is not limited, energy is ...

  5. Essays on the economics of forestry-based carbon mitigation

    NARCIS (Netherlands)

    Benítez-Ponce, P.C.

    2005-01-01

    Keywords:climate change, carbon costs, afforestation, risk, secondary forests, conservation payments, ecosystem services

    This thesis is a collection of articles that deal with the economics of carbon sequestration in forests. It pays

  6. NAMAs and the carbon market. Nationally appropriate mitigation actions of developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Holm Olsen, K.; Fenhann, J.; Hinostroza, M.

    2009-07-01

    The role of carbon markets in scaling up mitigation actions in developing countries in the post-2012 climate regime is the topic of Perspectives 2009: NAMAs and the Carbon Market - Nationally Appropriate Mitigation Actions of Developing Countries. The eight papers presented explore how mitigation actions in developing countries, in the context of sustainable development, may be supported by technology, finance and capacity development in a measurable, reportable and verifiable manner. Key issues discussed are the pros and cons of market and non-market mechanisms in raising private and public finance, and the appropriate governance structures at the international and national levels. The aim of this publication is to present possible answers to these questions, with a specific focus on the role of existing and emerging carbon markets to finance NAMAs. (LN)

  7. Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia

    International Nuclear Information System (INIS)

    To compare electricity-generation fuel mixes in two countries with multiple energy policy goals and unique circumstances, we look at three scenarios reflecting the carbon emissions mitigation targets, differences in energy security levels, and electricity-generating costs of each nation. Korea and Mongolia show clear differences in electricity-generation structure related to import dependency, the potential of renewable energy, and threats to energy security. These variations lead to different decisions on the power-generation fuel mix plan. Use of fossil fuel resources in Korea results in carbon dioxide emissions and energy insecurity, while in Mongolia carbon emissions, also from fossil fuels, and energy insecurity are separate concerns as Mongolia domestically operates coal-fired power plants and imports electricity. Policies targeting two objectives, carbon emissions mitigation and energy security improvement, show complementarity in Korea as fossil fuels are replaced by renewables or nuclear power, but represent trade-offs in Mongolia as emissions mitigation and improved energy security cannot be achieved with one strategy. In conclusion, national plans to achieve two goals differ by country: In Korea, the appropriate portion of nuclear energy is the determining policy factor. In Mongolia, carbon capture and storage is the clear alternative for mitigating carbon emissions despite large renewables potential. - Highlights: • Electricity-generation fuel mixes in Korea and Mongolia are compared with multiple energy policy goals. • The relationship between two policy objectives differs by country. • Strategies on fuel mixes to achieve goals differ by country

  8. Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050

    OpenAIRE

    Zheng Guo; Pei Liu; Linwei Ma; Zheng Li

    2015-01-01

    Greenhouse gas emissions in China have been increasing in line with its energy consumption and economic growth. Major means for energy-related greenhouse gases mitigation in the foreseeable future are transition to less carbon intensive energy supplies and structural changes in energy consumption. In this paper, a bottom-up model is built to examine typical projected scenarios for energy supply and demand, with which trends of energy-related carbon dioxide emissions by 2050 can be analyzed. R...

  9. Methodological issues in developing a community forestry greenhouse gas emissions mitigation project in Mancherial forest division of Andhra Pradesh, India

    International Nuclear Information System (INIS)

    There are several contentious issues related to forestry mitigation projects. The special report of the IPCC and literature published so far have shown that permanence, leakage, baseline establishment, measurement, monitoring, etc., could be addressed satisfactorily using existing scientific methods and accounting rules. To understand the methodological issues of developing community forestry projects, a case study was conducted in Mancherial forest division of Adilabad district in Andhra Pradesh, India. This paper addresses: the setting of project boundaries, baseline selection, establishment of additionality and the calculation of carbon sequestration as a result of the project, prior to project implementation. The steps involved in development of the project and the different methods used for establishing baseline, estimating leakage and transaction cost of developing a community forestry project are presented. The stock is projected to increase by 1480 x 103 t C during 2000-2012 over the baseline scenario under the modeling approach and the cost of establishing a baseline and project formulation for a project extending over 32,956 ha is estimated to be US$ 1.25 ha-1 and US$ 4 t C-1

  10. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    CO2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  11. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

    1994-01-01

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  12. Involving end users to mitigate risk in IS development projects

    NARCIS (Netherlands)

    Amrit, C.; Hillegersberg, van J.; Diest, van B.

    2013-01-01

    In this paper the authors aim to gain insight into the relationship between user participation modes and project risk factors, and then they constructed a model that can be used to determine how user participation can be successfully applied in ISD projects with a given set of risk factors. The auth

  13. Potentials and costs of carbon dioxide mitigation in the world's buildings

    International Nuclear Information System (INIS)

    Buildings are responsible for over a third of global energy-related carbon dioxide (CO2) emissions. A significant share of these emissions can be avoided cost effectively through improved energy efficiency, while providing the same or higher level of energy services. How large is this emission reduction potential globally and how much will it cost for society to unlock it? This paper provides answers to these questions, presenting the results of bottom-up research conducted for the Intergovernmental Panel on Climate Change (IPCC), based on the assessment of 80 country- or regional-level mitigation studies throughout the world. First, the paper analyses the findings of these studies in a common framework. Then, it aggregates their results into a global estimate of CO2 mitigation potential. The paper concludes that by 2020 it is possible to cut cost effectively approximately 29% of buildings-related global CO2 emissions, the largest among all sectors reported by the IPCC, representing a 3.2 GtCO2eq. reduction. Developing countries house the largest cost-effective potential with up to 52% of building-level emissions, whereas transition economies and industrialised countries have cost-effective potentials of up to 37% and 25%, respectively. Energy-efficient lighting was identified as the most attractive measure worldwide, in terms of both reduction potential and cost effectiveness. If this potential is realised, the building-related CO2 emissions would stay constant over 2004-2030. These stabilisation levels (if achieved by all other sectors) would cancel about 3oC temperature increase over the projected period of time

  14. The effects of alternative carbon mitigation policies on Japanese industries

    International Nuclear Information System (INIS)

    To address the climate change issue, developed nations have considered introducing carbon pricing mechanisms in the form of a carbon tax or an emissions trading scheme (ETS). Despite the small number of programmes actually in operation, these mechanisms remain under active discussion in a number of countries, including Japan. Using an input–output model of the Japanese economy, this article analyses the effects of carbon pricing on Japan′s industrial sector. We also examine the impact of a rebate programme of the type proposed for energy-intensive trade-exposed (EITE) industries in U.S. legislation, the Waxman–Markey Bill (H.R. 2454), and in the European Union′s ETS. We find that a carbon pricing scheme would impose a disproportionate burden on a limited number of sectors – namely, pig iron, crude steel (converters), cement and other EITE industries. Out of 401 industries, 23 would be eligible for rebates according to the Waxman–Markey-type programme, whereas 122 industries would be eligible for rebates according to the E.U.-type programme, if adopted in Japan. Overall, despite the differences in coverage, we find that the Waxman–Markey and E.U. rebate programmes have roughly similar impacts in reducing the average burden on EITE industries. - Highlights: • Energy-intensive trade-exposed (EITE) industries suffer the most due to carbon pricing policies. • Twenty-three industries will be eligible under a Waxman–Markey (WM)-type rebate programme. • The E.U. emissions trading scheme (ETS)-type programme identifies 122 industries. • Both WM- and E.U.-type programmes will lower the cost of production to similar levels. • Industries eligible for rebates must be determined carefully

  15. Mitigation choices impact carbon budget size compatible with low temperature goals

    OpenAIRE

    Rogelj, J.; Reisinger, A.; McCollum, D.L.; Knutti, R.; Riahi, K.; Meinshausen, M.

    2015-01-01

    Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature obj...

  16. Renewable and low-carbon energies as mitigation options of climate change for China

    OpenAIRE

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to China's present-day economy and power sector. We then developed different scenarios based on story lines for possible future developments in China. We simulated China's carbon-based electricity produc...

  17. Crucial Component Damage Detection, Monitoring and Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers an on-board structural health-monitoring (SHM) system with embedded sensors that sense mechanical impedance deviations to flag incipient...

  18. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a sensor to measure blowing soil during a lunar landing and also provide a low-mass, low-cost, low-complexity alternative for...

  19. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to Chi

  20. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    plants can be economically substituted by low carbon based technologies. Furthermore, the integrated annual load management notably contributes to innovative process integration becoming economic in an energy system affected by low efficiency and flexibility. Further limiting flexibility, the geographic location of this innovative low carbon energy production technology strictly depends on geological boundary conditions, namely the presence of exploitable coal resources, and availability of energy transport networks to supply potential end users with the product. Hereby, feeding upgraded synthesis gas directly into the Bulgarian gas pipeline network avoiding its conversion into electricity is an alternative approach with relevant economic potentials. For that purpose, the proximity and availability of these transport networks as well as the demand of end users are validated by the integrated energy system model. Coupling our techno-economic process model to an energy system-modelling framework allows the determination of the future economical potentials and the limitations for the implementation of a low carbon energy production technology into the Bulgarian energy system. The obtained results show that the Bulgarian energy system can significantly benefit from the integration of underground coal gasification considering carbon dioxide mitigation technologies potentially initiating a continuous substitution of imported fuels by domestic coal resources.

  1. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  2. Measuring, Reporting and Verifying Nationally Appropriate Mitigation Actions. Reflecting experiences under the Mitigation Momentum Project. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    De Vit, C.; Roeser, F.; Fekete, H.; Hoehne, N.; Wartmann, S.; Van Tilburg, X.; Larkin, J.; Escalante, D.; Haensel, G.; Veum, K.; Cameron, L.; Halcomb, J.

    2013-06-15

    The Mitigation Momentum project aims to support the development of Nationally Appropriate Mitigation Actions (NAMAs). It contributes to the concrete design of NAMA proposals in five countries (Peru, Chile, Indonesia, Tunisia and Kenya). A further aim is to foster cooperation and knowledge exchange within the NAMA community while advancing the international climate policy debate on mitigation and related issues, including approaches for the Measurement, Reporting and Verification (MRV) of NAMAs. MRV enables the assessment of the effectiveness of both internationally supported NAMAs (supported NAMAs) and domestically supported NAMAs (unilateral NAMAs) by tracking NAMA impacts including greenhouse gas (GHG) emission reductions and non-GHG related impacts such as sustainable development benefits. MRV also supports improved policy design and decision making through systematic progress reporting and is a key tool to ensure accountability of NAMA stakeholders. Both host countries and funders share the common interest of having strong, implementable MRV systems in place. From both perspectives, this raises a number of questions, as well as potential challenges, on how to adapt the MRV approach to the specific circumstances of each NAMA. The objective of this paper is to identify open issues for the MRV of impacts of NAMAs, understood here as implementable actions, i.e. a project, a policy, a programme or a strategy. It pays particular attention to NAMAs with a supported component and reflects relevant initial experiences with developing NAMA proposals in the five Mitigation Momentum countries (i.e. using country examples where appropriate). As MRV systems for these NAMAs are still under development or at their preliminary stage, we hope to share further lessons learned in a subsequent discussion paper. Key challenges analysed in this paper include: How to design a MRV system that satisfies both the host country's and funder's expectations while complying with

  3. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  4. Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA

    International Nuclear Information System (INIS)

    The costs and potential for several carbon mitigation options were analyzed for Tompkins County, NY, within several categories: terrestrial carbon sequestration, local power generation, transportation, and energy end-use efficiency. The total county emissions are about 340 Gg C/year, with current biomass sequestration rates of about 121 Gg C/year. The potential for mitigation with the options examined, assuming full market penetration, amounts to at least 234 Gg C/year (69%), with 100 Gg C/year (29%) at no net cost to the consumer. Effective carbon mitigation strategies for this county based on costs per mg carbon and maximum potential include reforestation of abandoned agricultural lands for terrestrial carbon sequestration, biomass production for residential heating and co-firing in coal power plants, changes in personal behavior related to transportation (e.g., carpooling or using public transportation), installation of numerous residential energy-efficient products and development of local wind power. The principal barriers to the implementation of these approaches are discussed and policies for overcoming these barriers are analyzed

  5. Mitigation of socio-economic impacts due to the construction of energy projects in rural communities: an evaluation of the Hartsville nuclear power plant transportation-mitigation program

    International Nuclear Information System (INIS)

    This study analyzes the effects of a commuter ride-sharing program in mitigating the harmful socio-economic impacts of a short-term, labor-intensive nuclear-power-plant construction project. The major hypothesis is that transportation-mitigation programs are more cost-effective in reducing the undesirable socio-economic impacts of large-scale construction projects than programs designed to mitigate impacts through the provision of public services for migrating workers. The dissertation begins by delineating the socio-economic effects of large-scale construction projects in rural areas. It proceeds to show how some of the deleterious impacts were mitigated using a commuter ride-sharing program. After the range of potential socio-economic impacts was established, a framework was developed to evaluate the effects of the transportation-mitigation program in mediating the harmful impacts. The framework involved the integration of the cost-benefit technique with social-impact assessment. The evaluation was grounded in a comparative framework whereby the Hartsville project community was compared with a similar community undergoing the construction of a nuclear power plant but without a commuter ride-sharing program, and a community not experiencing a major construction project. The research findings indicated that the transportation-mitigation program substantially reduced the in-migration of construction workers into the Hartsville-Trousdale County area. Further, the program was cost effective, with a benefit-cost ratio of 2.5 and net benefits totalling 28 million dollars

  6. Analysis of carbon mitigation policies. Feed-in tariffs, energy and carbon price interactions and competitive distortions on carbon markets

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, Johanna

    2011-07-19

    I study several policy instruments for carbon mitigation with a focus on subsidies for renewable energies, emission taxes and emission allowances. In Chapter 1, I analyze the optimal design and the welfare implications of two policies consisting of an emission tax for conventional fossil-fuel utilities combined with a subsidy for the producers of renewable energy equipment and an emission tax combined with a feed-in tariff for renewable electricity. In Chapter 2 I study the empirical interrelationships between European emission allowance prices and prices for electricity, hard coal and natural gas with an application to portfolio allocation. In Chapters 3 and 4, I discuss several policy-related issues of emissions trading, in particular the potential for market manipulations by firms holding a dominant position in the emission market, the output market or both, and competitive distortions and leakage due to unequal emission regulations across industries, sectors, regions, or countries. (orig.)

  7. Embodied carbon mitigation and reduction in the built environment - What does the evidence say?

    Science.gov (United States)

    Pomponi, Francesco; Moncaster, Alice

    2016-10-01

    Of all industrial sectors, the built environment puts the most pressure on the natural environment, and in spite of significant efforts the International Energy Agency suggests that buildings-related emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive significant attention by researchers, a less well-researched area is the assessment of embodied carbon in the built environment in order to understand where the greatest opportunities for its mitigation and reduction lie. This article approaches the body of academic knowledge on strategies to tackle embodied carbon (EC) and uses a systematic review of the available evidence to answer the following research question: how should we mitigate and reduce EC in the built environment? 102 journal articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, and life cycle assessment. In total, 17 mitigation strategies have been identified from within the existing literature which have been discussed through a meta-analysis on available data. Results reveal that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, often completely overlooking impacts occurring during the occupancy stage and at the end of life of the building. The LCA research community have the responsibility to address such shortcomings and work towards more complete and meaningful assessments. PMID:27558830

  8. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    Science.gov (United States)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  9. Mitigation of carbon dioxide from the Indonesia energy system

    Energy Technology Data Exchange (ETDEWEB)

    Adi, A.C.; Nurrohim, A.; Hidajat, M.N. [and others

    1996-12-31

    Energy consumption in Indonesia is growing fast in line with the development of national economy. During (1990 - 1993) the emission of CO{sub 2} gas coming from energy sector increased from 150 million tones to 200 million tones in 1993. Whereas, the total methane emission from the oil, gas and coal sub-sector reached 550 kilo tones in 1991 and increased to 670 kilo tones in 1994. This amount of CO{sub 2} and Methane from energy sector was 26% and 10 % respectively of the total emission of Indonesia. Based on the last two decades of Indonesia`s economic growth experience, as a developing country this high economic growth rate of Indonesia in the future will be kept until reaching the newly industrialized country level, which is more than 6% annually in the next decade. This high growth rate economic projection will also added the level of GHG emission in the future. As a developing country Indonesia is one of the fast growing countries. The GDP growth in the year 1995 was more than 7 percent, therefore growth rate of energy consumption in this country also rose following the economic growth.

  10. Fire risks in forest carbon projects in Indonesia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is well known that forest carbon or sink projects have not been included in the Clean Development Mechanism (CDM), one of the flexible mechanismscreated under the Kyoto Protocol. The main concern for postponing sink projectsis related to issues of methodology and integrity. Project eligibility needs tobe judged in a transparent manner if they are real, measurable, provide long-term benefits to mitigate climate change, and provide additional benefits to thosethat would occur in the absence of a certified project.One of the biggest challenges in implementing sink projects is fire risks and the associated biophysical and socio-economic underlying causes. This study attempts to assess fire probability and use it as a tool to estimate fire risk in carbon sink projects. Fire risks may not only threaten ongoing projects but may also cause leakage of carbon stocks in other areas, especially in protected areas. This exercise was carried out in the Berbak National Park located in Jambi Province, Sumatra, Indonesia and the surrounding areas. Fire probability is associated with (i) the means by which access to a given area is possible, and (ii) vegetation type or fuel load. Although most fires were intentionally ignited, fire escape is common and is enhanced by long spell of dryweather. When this occurs, secondary road was the most frequently used means, and it was certainly the case during 1997/1998 big fires when damage to natural vegetation (natural and secondary forests) was substantial. Burnt natural vegetation was 120000 ha or 95% of the total burnt areas, and released more than 7 Mt of carbon into the atmosphere.

  11. L-325 Sagebrush Habitat Mitigation Project: Final Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Becker, James M.

    2013-09-26

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed at a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.

  12. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  13. Sharp-tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project

    International Nuclear Information System (INIS)

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation

  14. Carbon disclosure project report 2009 : Canada 200

    International Nuclear Information System (INIS)

    The carbon disclosure project conducts an annual survey to determine the strategies and actions of major cap companies in relation to climate change. This report discussed initiatives implemented by Canada's largest companies to prepare for a carbon-constrained future. The report documented results from 97 companies. The aim of the report was to help companies make use of the disclosures as reference points for future carbon markets and regulations relating to reporting requirements. Results of the survey demonstrated that Canada's low-carbon and high-carbon impact sectors have implemented several significant initiatives and best practices for operations. However, widespread engagement in a comprehensive manner has yet to be achieved. Many respondents were in the process of developing a more balanced risk-opportunity agenda in relation to climate change, and nearly half of all respondents have implemented governance arrangements or personal incentives in both both the high-carbon and low-carbon impact sectors. 5 tabs., 26 figs.

  15. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  16. Conforth Ranch (Wanaket) Wildlife Mitigation Project : Draft Management Plan and Draft Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Confederated Tribes of the Umatilla Reservation, Oregon.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to mitigate for loss of wildlife habitat caused by the development of Columbia River Basin hydroelectric projects, including McNary dam. The proposed wildlife mitigation project involves wildlife conservation on 1140 hectares (ha)(2817 acres) of land (including water rights) in Umatilla County, Oregon. BPA has prepared an Environmental Assessment (EA)(DOE/EA- 1016) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  17. The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation

    OpenAIRE

    Chen, Yujuan

    2013-01-01

    Global urbanization has resulted in rapidly increased urban land. Soils are the foundation that supports plant growth and human activities in urban areas. Furthermore, urban soils have potential to provide a carbon sink to mitigate greenhouse gas emission and climate change. However, typical urban land development practices including vegetation clearing, topsoil removal, stockpiling, compaction, grading and building result in degraded soils. In this work, we evaluated an urban soil rehabilita...

  18. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    Science.gov (United States)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  19. Washington wildlife mitigation projects. Final programmatic environmental assessment and finding of no significant impact

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities

  20. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  1. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies.

    Science.gov (United States)

    DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-10-01

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. PMID:27280379

  2. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  3. Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Tupas, C.T.

    1996-12-31

    The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energy requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.

  4. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes.

    Science.gov (United States)

    Ren, Jiawen; Licht, Stuart

    2016-01-01

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance (12)CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier (13)CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure (13)C multiwalled carbon nanofiber. PMID:27279594

  5. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes

    Science.gov (United States)

    Ren, Jiawen; Licht, Stuart

    2016-06-01

    Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance 12CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier 13CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure 13C multiwalled carbon nanofiber.

  6. The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling

    International Nuclear Information System (INIS)

    In this paper MARKAL-MACRO, an integrated energy-environment-economy model, is used to generate China's reference scenario for future energy development and carbon emission through the year 2050. The results show that with great efforts on structure adjustment, energy efficiency improvement and energy substitution, China's primary energy consumption is expected to be 4818 Mtce and carbon emission 2394 MtC by 2050 with annual decrease rate of 3% for the carbon intensity per GDP during the period 2000-2050. On the basis of this reference scenario, China's marginal abatement cost curves of carbon for the year 2010, 2020 and 2030 are derived from the model, and the impacts of carbon emission abatement on GDP are also simulated. The results are compared with those from other sources. The research shows that the marginal abatement costs vary from 12US$/tC to 216US$/tC and the rates of GDP losses relative to reference range from 0.1% to 2.54% for the reduction rates between 5% and 45%. Both the marginal abatement costs and the rates of GDP losses further enlarge on condition that the maximum capacity of nuclear power is constrained to 240 GW or 160 GW by 2050. The paper concludes that China's costs of carbon abatement is rather high in case of carbon emissions are further cut beyond the reference scenario, and China's carbon abatement room is limited due to her coal-dominant energy resource characteristic. As economic development still remains the priority and per capita income as well as per capita carbon emission are far below the world average, it will be more realistic for China to make continuous contributions to combating global climate change by implementing sustainable development strategy domestically and playing an active role in the international carbon mitigation cooperation mechanisms rather than accepting a carbon emission ceiling

  7. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.

    2011-04-01

    Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future

  8. Shallow Carbon Sequestration Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  9. Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Daniel; Malta, Patrick

    1990-12-01

    Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scale losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.

  10. Current public health perspective of fluorosis mitigation project in Pavagada taluk, Karnataka

    Directory of Open Access Journals (Sweden)

    Halappa Mythri

    2012-01-01

    Full Text Available Background: Fluoride has become a recurring theme in discussing water issues in India. In Karnataka, where groundwater sources are concentrated with fluorides the impact is devastating. Dental and spine-related ailments are showing up in many cities and villages. Several villages in Pavagada taluk in Tumkur district have fluoride concentration 5 times more than the permissible level. The different aspects to the problem are many defluoridation interventions were failure. Objective: To determine and compare fluoride level in water samples from Fluorosis mitigation project area. Materials and Methods: Samples of municipal water were collected in sterile containers in an unannounced visit. All the samples of water were assigned a code so that those undertaking analysis would be blind to the source. Fluoride levels were determined by an ion-selective electrode (Orion 94-09 method. Results: Mean fluoride level in the water samples collected in the project was 0.8 which was within the normal range. Conclusion: Even though the fluoride level was within the normal limits after implementation of flourosis mitigation project, ground reality was numbers of beneficiaries were less. Hence, proper planning and monitoring always becomes essential for any project to be successful.

  11. Investigating the Feasibility of Utilizing Carbon Nanotube Fibers for Spacesuit Dust Mitigation

    Science.gov (United States)

    Manyapu, Kavya K.; de Leon, Pablo; Peltz, Leora; Tsentalovich, Dmitri; Gaier, James R.; Calle, Carlos; Mackey, Paul

    2016-01-01

    Historical data from the Apollo missions has compelled NASA to identify dust mitigation of spacesuits and other components as a critical path prior to sending humans on potential future lunar exploration missions. Several studies thus far have proposed passive and active countermeasures to address this challenge. However, these technologies have been primarily developed and proven for rigid surfaces such as solar cells and thermal radiators. Integration of these technologies for spacesuit dust mitigation has remained an open challenge due to the complexity of suit design. Current research investigates novel methods to enhance integration of the Electrodynamic Dust Shield (EDS) concept for spacesuits. We leverage previously proven EDS concept developed by NASA for rigid surfaces and apply new techniques to integrate the technology into spacesuits to mitigate dust contamination. The study specifically examines the feasibility of utilizing Carbon Nanotube (CNT) yarns manufactured by Rice University as electrodes in spacesuit material. Proof of concept testing was conducted at NASA Kennedy Space Center using lunar regolith simulant to understand the feasibility of the proposed techniques for spacesuit application. Results from the experiments are detailed in this paper. Potential challenges of applying this technology for spacesuits are also identified.

  12. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  13. Fish passage mitigation of impacts from hydroelectric power projects in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1996-10-01

    Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.

  14. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  15. Analysis and Optimization of Carbon Dioxide Emission Mitigation Options in the Cement Industry

    Directory of Open Access Journals (Sweden)

    Mohammed B. Shammakh

    2008-01-01

    Full Text Available The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO2 for every 1000 kg of cement produced. Effective control strategies to mitigate these emissions are discussed and a mathematical programming model able to suggest the best cost effective strategy is outlined. Control costs consisting of operating and investment costs along with the efficiency of control options are taken into account in the model. A representative case study from the cement industry was considered in order to illustrate the use of the model in giving optimal control strategies. Efficiency improvement measures were found to be effective options for reduction targets up to 10 %. The model suggested that fuel switching and carbon capture must be considered at reduction targets higher than 10%. The cost of cement production was shown to increase dramatically with an increase in reduction target.

  16. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  17. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    Directory of Open Access Journals (Sweden)

    D. N. Bird

    2008-04-01

    Full Text Available Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal.

    In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada.

    In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure.

    We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as

  18. The Megacities Carbon Project: measuring urban carbon emissions

    Science.gov (United States)

    Duren, R. M.; Kort, E. A.; Miller, C. E.

    2012-12-01

    Carbon emissions from cities represent the single largest human contribution to climate change. Robust verification of emission changes due to growth or stabilization policies requires that we establish measurement baselines today and begin monitoring representative megacities immediately. An observing system designed to monitor the localized enhancements ("urban domes") of carbon dioxide and methane associated with cities must include a tiered set of surface, airborne, and satellite sensors and a framework for integrating top-down (atmospheric) and bottom-up (activity) data. We present a vision, strategy, requirements, and roadmap for an international effort to assess directly the carbon emission trends of the world's megacities. We describe a new coordinated pilot project for the megacities of Los Angeles and Paris that leverages and extends established measurement infrastructure in those cities and techniques being developed in methodological studies of smaller cities.

  19. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  20. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  1. Analysis on the Influencing Factors of Low-carbon Economy and Its Mitigation Countermeasures in Sichuan Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At ...

  2. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    OpenAIRE

    Haugan, Peter Mosby; Joos, Fortunat

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the first ~50 years, in the range of 15 to 30% over the next millennium for de...

  3. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  4. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  5. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    Science.gov (United States)

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-01

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources. PMID:23738892

  6. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  7. Mining-related environmental impacts of carbon mitigation; Coal-based carbon capture and sequestration and wind-enabling transmission expansion

    Energy Technology Data Exchange (ETDEWEB)

    Grubert, Emily

    2010-09-15

    Carbon mitigation can occur by preventing generation of greenhouse gases or by preventing emissions from entering the atmosphere. Accordingly, increasing the use of wind energy or carbon capture and storage (CCS) at coal-fired power plants could reduce carbon emissions. This work compares the direct mining impacts of increased coal demand associated with CCS with those of increased aluminum demand for expanding transmission systems to enable wind power incorporation. Aluminum needs for expanded transmission probably represent a one-time need for about 1.5% of Jamaica's annual bauxite production, while CCS coal needs for the same mitigation could almost double US coal demand.

  8. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    NARCIS (Netherlands)

    Warnecke, C.; Wartmann, S.; Hoehne, N.E.; Blok, K.

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country¿s national gr

  9. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    NARCIS (Netherlands)

    Warnecke, C.; Wartmann, S.; Hohne, N.; Blok, Kornelis

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country׳s national gr

  10. 2001 annual report for the Pend Oreille wetlands wildlife mitigation projects; ANNUAL

    International Nuclear Information System (INIS)

    The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie

  11. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  12. Pipeline and Regional Carbon Capture Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris; Wortman, David; Brown, Chris; Hassan, Syed; Humphreys, Ken; Willford, Mark

    2016-03-31

    efforts are also documented in this report. All permit applications had been submitted to all agencies for those permits or approvals required prior to the start of project construction. Most of the requisite permits were received during Phase II. This report includes information on each permitting effort. Successes and lessons learned are included in this report that will add value to the next generation of carbon storage efforts.

  13. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-09-30

    This report summarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  14. Study of Biodiesel Emissions and Carbon Mitigation in Gas Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Mohamed Alalim Altaher

    2014-11-01

    Full Text Available The energy security and reduction of carbon emissions have accelerated the R&D of the alternative fuels in the transport, heating and power generation sectors in last decade. The heating and power generation sectors are two of the major contributors to carbon dioxide emissions, which are due to the combustion of petroleum fuels. A gas turbine combustor test rig was used to study the combustion and emission characteristics of waste cooking oil methyl ester (WME biodiesel. A 140mm diameter atmospheric pressure premixed combustion test rig was used at 600K inlet air temperature and Mach number 0.017. The tests were conducted using pure WME and blend with kerosene. The central fuel injection was used for liquid fuels and wall injection was used for NG (Natural Gas. The exhaust samples for smoke and gaseous emissions (NOx, UHC, CO and CO₂ have been analysed on dry basis and corrected to 15% O₂ over range of different fuel rate. The results showed that the biodiesel had lower CO, UHC emissions and higher NOx emissions than the kerosene. The blend B20 had lowest NOx emissions comparing with pure biodiesel (B100 and B50. The optimum conditions for WME with lowest emissions were identified. The carbon dioxide emissions per 100 megawatts of heat generated for each fuel were calculated. The relative carbon emissions and mitigations by biodiesel were compared. The results can be used to estimate pollutant emissions and carbon reductions by biodiesel in power generation industry and other sectors where gas turbine engines are used.

  15. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    Science.gov (United States)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  16. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    Science.gov (United States)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("Mt

  17. Etude Climat no. 31 'Carbon offset projects in the agricultural sector'

    International Nuclear Information System (INIS)

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The agricultural sector accounts for 14% of global anthropogenic greenhouse gas emissions. If we also take into account carbon emissions and sequestration from upstream - production of fertilisers, deforestation, etc. - and downstream - bio-energies, etc. - the share rises to 30%. Many practices and technologies enable agriculture's impact on climate change to be reduced. According to a number of estimates that are summarised in this research, the agricultural sector's mitigation potential is of the same order of magnitude as its emissions over a period of 30 years. However, changing agricultural practices comes at a cost, and in most cases such changes are not made without economic incentives. Carbon offsetting projects are one of the economic tools available to reduce agricultural emissions by paying for metric tons of avoided CO2e emissions. A summary of the emission reductions enabled by agricultural projects to date is provided in this report. It covers most projects certified by quality assurance standards, including those set up by the Kyoto Protocol (Clean Development Mechanism and Joint Implementation) and those in the voluntary market (Verified Carbon Standard, Climate Action Reserve, Gold Standard, Chicago Climate Exchange, and American Carbon Registry). The assessment drawn up on this basis shows that emission reductions enabled through carbon offsetting are thousand times lower than actual emissions and their potential mitigation. Agricultural projects have reduced emissions by 14 MtCO2e in 2010, i.e. 7% of the reductions generated by all carbon offset projects across all sectors for this year. Initiatives focus on three technologies: - bio-energies (crop residues), - methanation of livestock waste, - and soil carbon sequestration using no-till practices. This is very little compared with the large

  18. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Energy Technology Data Exchange (ETDEWEB)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F., E-mail: ylu2@unl.edu [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); Jiang, L. [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Silvain, J.-F. [Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex (France)

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  19. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    Science.gov (United States)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  20. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-01

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  1. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  2. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

  3. Perverse effects of carbon markets on HFC-23 and SF6 abatement projects in Russia

    Science.gov (United States)

    Schneider, Lambert; Kollmuss, Anja

    2015-12-01

    Carbon markets are considered a key policy tool to achieve cost-effective climate mitigation. Project-based carbon market mechanisms allow private sector entities to earn tradable emissions reduction credits from mitigation projects. The environmental integrity of project-based mechanisms has been subject to controversial debate and extensive research, in particular for projects abating industrial waste gases with a high global warming potential (GWP). For such projects, revenues from credits can significantly exceed abatement costs, creating perverse incentives to increase production or generation of waste gases as a means to increase credit revenues from waste gas abatement. Here we show that all projects abating HFC-23 and SF6 under the Kyoto Protocol’s Joint Implementation mechanism in Russia increased waste gas generation to unprecedented levels once they could generate credits from producing more waste gas. Our results suggest that perverse incentives can substantially undermine the environmental integrity of project-based mechanisms and that adequate regulatory oversight is crucial. Our findings are critical for mechanisms in both national jurisdictions and under international agreements.

  4. Derived crop management data for the LandCarbon Project

    Science.gov (United States)

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  5. The VUELCO project consortium: new interdisciplinary research for improved risk mitigation and management during volcanic unrest

    Science.gov (United States)

    Gottsmann, J.

    2012-04-01

    Volcanic unrest is a complex multi-hazard phenomenon of volcanism. The fact that unrest may, but not necessarily must lead to an imminent eruption contributes significant uncertainty to short-term hazard assessment of volcanic activity world-wide. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, inadequate to deal effectively with crises of volcanic unrest. This results predominantly from the uncertainties in identifying the causative processes of unrest and as a consequence in forecasting its short-term evolution. However, key for effective risk mitigation and management during unrest is the early and reliable identification of changes in the subsurface dynamics of a volcano and their assessment as precursors to an impending eruption. The VUELCO project consortium has come together for a multi-disciplinary attack on the origin, nature and significance of volcanic unrest from the scientific contributions generated by collaboration of ten partners in Europe and Latin America. Dissecting the science of monitoring data from unrest periods at six type volcanoes in Italy, Spain, the West Indies, Mexico and Ecuador the consortium will create global strategies for 1) enhanced monitoring capacity and value, 2) mechanistic data interpretation and 3) identification of reliable eruption precursors; all from the geophysical, geochemical and geodetic fingerprints of unrest episodes. Experiments will establish a mechanistic understanding of subsurface processes capable of inducing unrest and aid in identifying key volcano monitoring parameters indicative of the nature of unrest processes. Numerical models will help establish a link between the processes and volcano monitoring data to inform on the causes of unrest and its short-term evolution. Using uncertainty assessment and new short

  6. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe

    OpenAIRE

    Mujuru, L.

    2014-01-01

    Climate change adversely affects human livelihoods and the environment through alteration of temperatures, rainfall patterns, sea level rise and ecosystem productivity. Developing countries are more vulnerable to climate change because they directly depend on agriculture and natural ecosystem products for their livelihoods. Mitigation of climate change impacts includes practices that can store carbon (C) in soil and biomass thus, reducing concentrations of atmospheric carbon dioxide (CO2) and...

  7. PRESS40: a project for involving students in active seismic risk mitigation

    Science.gov (United States)

    Barnaba, Carla; Contessi, Elisa; Rosa Girardi, Maria

    2016-04-01

    To memorialize the anniversary of the 1976 Friuli earthquake, the Istituto Statale di Istruzione Superiore "Magrini Marchetti" in Gemona del Friuli (NE Italy), with the collaboration of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), has promoted the PRESS40 Project (Prevenzione Sismica nella Scuola a 40 anni dal terremoto del Friuli, that in English sounds like "Seismic Prevention at School 40 years later the Friuli earthquake"). The project has developed in the 2015-2016 school year, starting from the 40th anniversary of the Friuli earthquake, and it aims to disseminate historical memory, seismic culture and awareness of seismic safety in the young generations, too often unconscious of past experiences, as recent seismic hazard perception tests have demonstrated. The basic idea of the PRESS40 Project is to involve the students in experimental activities to be active part of the seismic mitigation process. The Project is divided into two main parts, the first one in which students learn-receive knowledge from researchers, and the second one in which they teach-bring knowledge to younger students. In the first part of the project, 75 students of the "Magrini Marchetti" school acquired new geophysical data, covering the 23 municipalities from which they come from. These municipalities represent a wide area affected by the 1976 Friuli earthquake. In each locality a significant site was examined, represented by a school area. At least, 127 measurements of ambient noise have been acquired. Data processing and interpretation of all the results are still going on, under the supervision of OGS researchers.The second part of the project is planned for the early spring, when the students will present the results of geophysical survey to the younger ones of the monitored schools and to the citizens in occasion of events to commemorate the 40th anniversary of the Friuli earthquake.

  8. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled. PMID:18799199

  9. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  10. Parametric studies of carbon erosion mitigation dynamics in beryllium seeded deuterium plasmas

    International Nuclear Information System (INIS)

    The characteristic time of protective beryllium layer formation on a graphite target, τBe/C, has been investigated as a function of surface temperature, Ts, ion energy, Ei, ion flux, Γi, and beryllium ion concentration, cBe, in beryllium seeded deuterium plasma. τBe/C is found to be strongly decreased with increasing Ts in the range of 550-970K. This is thought to be associated with the more efficient formation of beryllium carbide (Be2C). By scanning the parameters, a scaling expression for τBe/C has been derived as τBe/C[s]=1.0x10-7cBe-1.9+/-0.1Ei0.9+/-0.3Γi-0.6+/-0.3exp ((4.8+/-0.5)x103/Ts) where cBe is dimensionless, Ei in eV, Γi in 1022m-2s-1 and Ts in K. Should this scaling extend to an ITER scenario, carbon erosion of the divertor strike point region may be reduced with characteristic time of ∼6ms. This is much shorter than the time between predicted ITER type I ELMs (∼1s), and suggests that protective beryllium layers can be formed in between ELMs, and mitigate carbon erosion.

  11. Theoretical Assessment of Algal Biomass Potential for Carbon Mitigation and Biofuel Production

    Directory of Open Access Journals (Sweden)

    K. Sudhakar

    2012-01-01

    Full Text Available In view of ever increasing global demand for energy, there has been substantial interest in developing renewable biologically produced fuel. Microalgae are one such emerging resource considered as an alternative for biodiesel production. However its realistic potential is often either over estimated or underestimated. In view of this, a rigorous assessment is carried out to evaluate the realistic potential of micro algal biodiesel based on photosynthesis, thermodynamics and physical assumptions. This paper identifies six best regions in each continent for algal biomass cultivation considering both sunlight and local climatic conditions. The mean hourly meteorological data, sunlight, ambient temperature and rainfall information for the identified potential site is combined to estimate annual biomass production, lipid production and carbon mitigation potential. Maximum possible algal biomass yield and oil productivity have been estimated for six global sites at three different scenarios of photosynthetic efficiency 11.42, 6 and 3%. The upper optimistic biomass, oil yield and carbon fixation potential was calculated to be 533 T/ha/yr, 1, 25, 333 L/ha/yr. and 95 Tons CO2/ha/yr. This study provides a baseline data for theoretical maximum, minimum and best estimates of open pond microalgae production systems.

  12. Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives

    International Nuclear Information System (INIS)

    This paper surveys studies applied to Europe that analyse carbon emission mitigation alternatives involving the use of land. We analyse a variety of alternatives that include land-use changes, forest management and bioenergy production. Our aim is to approximate the aggregate amount of carbon offsets that can be achieved through these alternatives and to show to what extent the results of the different studies are compatible and take into account the fact that land is a finite resource. Finally, based on the surveyed studies, we estimate the potential contribution of these alternatives to the goals of emission reduction proposed by the European Union for the years 2020 and 2050. Taking into account the results of the different studies analysed in this survey, land-based alternatives can contribute from 13% to 52% of the European proposed target by 2020. The implementation of these alternatives would concurrently require from 8% to 30% of EU-25 agricultural land to be afforested or diverted to bioenergy crops in this period

  13. Carbon burnout project-coal fineness effects

    Energy Technology Data Exchange (ETDEWEB)

    Mike Celechin [Powergen UK plc, Nottingham (United Kingdom)

    2004-02-01

    The aim of this DTI project is to establish good quality plant and rig data to demonstrate the effect of changing coal fineness on carbon burnout in a controlled manner, which can then be used to support computational fluid dynamics (CFD) and engineering models of the process. The modelling elements of the project were completed by Mitsui Babcock Energy Ltd., and validated using the data produced by the other partners. The full scale plant trials were successfully completed at Powergen's Kingsnorth Power Station and a full set of tests were also completed on Powergen's CTF. During these test both carbon-in-ash and NOx levels were seen to increase with increasing fuel particle size. Laboratory analysis of fly ash produced during the plant and rig trials revealed that only small differences in char morphology and reactivity could be detected in samples produced under significantly different operating conditions. Thermo Gravimetric Analysis was also undertaken on a range of PF size fractions collected form mills operating at different conditions. 3 refs., 13 figs., 1 tab.

  14. Effects of agricultural management on productivity, soil quality and climate change mitigation - evaluations within the EU Project (FP 7) CATCH-C

    Science.gov (United States)

    Spiegel, Heide; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2014-05-01

    Soils are the main basis for the production of food and feed. Furthermore, the production of biomass for energy and material use is becoming increasingly important. Goals for an optimal management of agricultural soils are, on the one hand, the maintenance or improvement of soil quality and, on the other hand, high productivity and climate change mitigation (reduction of GHG emissions and C sequestration). Thus, the EU project CATCH-C aims to evaluate current management practices concerning these three goals based on indicators derived from long-term field experiments of the project partners and from literature data. A maximum of 72 indicators for productivity, soil quality and the potential for carbon storage in the soil and the reduction of greenhouse gas emissions were selected by the project partners. As indicators for productivity, crop yields are determined in almost all field trials. The content of soil organic carbon (SOC) is an indicator for chemical, physical and biological soil quality and was analysed in the topsoil in all field trials. Less data exist for SOC contents in the subsoil. An important physical soil quality indicator is the bulk density, however, it is not determined in all field trials of the project partners. Therefore, information on SOC stocks, with relevance to carbon storage and climate change mitigation, is not available in all field experiments. Other physical indicators, such as penetration resistance, runoff coefficient and soil losses are evaluated. Essential biological indicators are microbial biomass and the number and weight of earthworms, which have been tested in several field trials. The evaluation of all these indicators will help to select "best management practices" and to address trade-offs and synergies for all indicators under consideration of major European farm type zones. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies

  15. Site Productivity and Forest Carbon Stocks in the United States: Analysis and Implications for Forest Offset Project Planning

    Directory of Open Access Journals (Sweden)

    James E. Smith

    2012-06-01

    Full Text Available The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide guidance to managers planning land acquisition for forest-based greenhouse gas mitigation projects. Specifically, we summarize two condition class indicators of site productivity within the FIA forest inventory database—physclcd and siteclcd—as they relate to current aboveground live tree carbon stocks. Average carbon density is higher on more productive sites, but compared to the overall variability among sites, the differences are relatively small for all but the highest and lowest site classes. Some minor differences in eastern- versus western-forests were apparent in terms of how carbon on the least productive sites differed from most other forest land over time. Overall results suggest that xeric sites in most regions as well as sites that correspond to the lowest, non-productive classifications of forest land should preferentially not be used forestry-based greenhouse gas mitigation projects, but all other forest areas appear to be suitable.

  16. Stakeholders of Voluntary Forest Carbon Offset Projects in China: An Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Derong Lin

    2015-01-01

    Full Text Available Climate change is one of the defining challenges facing the planet. Voluntary forest carbon offset project which has the potential to boost forest carbon storage and mitigate global warming has aroused the global concern. The objective of this paper is to model the game situation and analyze the game behaviors of stakeholders of voluntary forest carbon offset projects in China. A stakeholder model and a Power-Benefit Matrix are constructed to analyze the roles, behaviors, and conflicts of stakeholders including farmers, planting entities, communities, government, and China Green Carbon Foundation. The empirical analysis results show that although the stakeholders have diverse interests and different goals, a win-win solution is still possible through their joint participation and compromise in the voluntary forest carbon offset project. A wide governance structure laying emphasis on benefit balance, equality, and information exchanges and being regulated by all stakeholders has been constructed. It facilitates the agreement among the stakeholders with conflicting or different interests. The joint participation of stakeholders in voluntary forest carbon offset projects might change the government-dominated afforestation/reforestation into a market, where all participators including government are encouraged to cooperate with each other to improve the condition of fund shortage and low efficiency.

  17. Kenya Airways Launches New Project to Reduce Carbon Emissions

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Kenya Airways announced its new carbon offset project in May,aiming to have guests directly take part in a carbon emissions reduction plan for environmental protection.Titus Naikuni,Managing Director of

  18. Final Restoration and Mitigation Monitoring Plan for the Island Ponds Restoration Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Restoration and Mitigation Monitoring Plan (RMMP) presents the approaches necessary to satisfy mitigation and monitoring requirements described in the various...

  19. The Role of Public-Private Partnerships in Local Infrastructure: the Case of Carbon Offset Projects

    International Nuclear Information System (INIS)

    Investment in low carbon infrastructure is considered as an important component of the fight against climate change. The mechanisms of climate regulation (such as carbon offsets) transfer to project developers the risks associated with reducing emissions of greenhouse gas (GHG) emissions, i.e. operational and technological risk, or risks associated with the environmental monitoring and the regulatory mechanism itself. The success of projects - and thus their ability to attract private capital - depends importantly on the risk sharing arrangements between the private and public partners involved in the project. We show that the delegation of tasks between the partners can create risks that affect the environmental effectiveness and economic efficiency of the project. Contracts need to be well designed to mitigate those risks. For a sample of landfill gas flaring projects financed under the Clean Development Mechanism, it is shown that the out-sourcing of the provision of technology creates additional risks. The out-sourcing of the development of the Project Design Documents as required by UNFCCC and the separation of the operation of the landfill and the CDM project appear to be manageable by risk sharing arrangements between partners. In the latter case, each partner should bear the risk associated with his own responsibility. In fact, if carbon revenues are the only income stream for the CDM project developer, the incentive to reduce GHG emissions is maintained. (author)

  20. Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2015-07-01

    Full Text Available Greenhouse gas emissions in China have been increasing in line with its energy consumption and economic growth. Major means for energy-related greenhouse gases mitigation in the foreseeable future are transition to less carbon intensive energy supplies and structural changes in energy consumption. In this paper, a bottom-up model is built to examine typical projected scenarios for energy supply and demand, with which trends of energy-related carbon dioxide emissions by 2050 can be analyzed. Results show that low-carbon technologies remain essential contributors to reducing emissions and altering emissions trends up to 2050. By pushing the limit of current practicality, emissions reduction can reach 20 to 28 percent and the advent of carbon peaking could shift from 2040 to 2030. In addition, the effect of electrification at end-use sectors is studied. Results show that electrifying transport could reduce emissions and bring the advent of carbon peaking forward, but the effect is less significant compared with low-carbon technologies. Moreover, it implies the importance of decarbonizing power supply before electrifying end-use sectors.

  1. Carbon sequestration in soils - has the potential for climate change mitigation been over-stated?

    Science.gov (United States)

    Powlson, David

    2013-04-01

    The term "carbon sequestration" is commonly used to describe any increase in soil organic carbon (SOC) content caused by a change in land management, with the implication that increased soil carbon (C) storage mitigates climate change. But this only true if the management practice causes additional net transfer of C from atmosphere to land. Limitations of C sequestration for climate change mitigation include: (1) the quantity of C stored in soil is finite; (2) the process is reversible; (3) even if SOC is increased there may be changes in the fluxes of other greenhouse gases especially nitrous oxide (N2O). Removing land from annual cropping and converting to forest, grassland or perennial crops will remove C from atmospheric CO2 and genuinely contribute to climate change mitigation. However, indirect effects such as conversion of land elsewhere under native vegetation to agriculture could negate the benefit due to increased CO2 emission. Re-vegetating degraded land, of limited value for food production, avoids this problem. Adding organic materials such as crop residues or animal manure to soil, whilst increasing SOC, generally does not constitute an additional transfer of C from atmosphere to land - it depends on the alternative fate of the residue. Increases in SOC from reduced tillage now appear to be much smaller than previously claimed, at least in temperate regions, and in some situations increased nitrous oxide emission may outweigh any increase in stored C. The climate change benefit of increased SOC from enhanced crop growth (e.g. from the use of fertilizers) must be balanced against greenhouse gas emissions associated with manufacture and use of fertilizer. For soils under long-term grassland there is less scope for increasing soil C stock than in arable soils because these already have a higher SOC content. A key issue with grasslands is to ensure good management practices that maintain the high SOC content. Any form of soil degradation, such as

  2. Learning through a portfolio of carbon capture and storage demonstration projects

    Science.gov (United States)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  3. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  4. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation

    International Nuclear Information System (INIS)

    A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation

  5. Multi-phase Temporal Seismic Imaging of a Slope Stability Mitigation Project at Newby Island Sanitary Landfill, San Jose, California

    Science.gov (United States)

    Treece, B. J.; Catchings, R.; Reed, D.; Goldman, M.

    2014-12-01

    Without slope stability mitigation, liquefaction-induced settlement in bay mud and Pleistocene alluvial deposits may lead to the collapse of levee walls surrounding sanitary landfills that are located adjacent to the San Francisco Bay. To analyze the effectiveness of a slope stability mitigation project involving deep soil mixing at Newby Island Sanitary Landfill in San Jose, California, we acquired P- and S-wave seismic surveys along a transect through the mitigated region during, and two years after, completion of the mitigation project. Deep soil mixing involves the injection of a cement slurry in augered holes, resulting in groups of soil-cement columns (elements) that are intended to increase the strength and rigidity of the subsurface materials. For our seismic investigations, we used accelerated-weight-drop (AWD) and hammer impacts to generate P- and S-wave seismic sources, respectively, at 57 geophone locations, spaced 5 m apart. The resulting seismic data were recorded using 40-Hz, vertical-component (P-wave) and 4.5-Hz, horizontal-component (S-wave) sensors. Initially, we developed tomographic refraction (velocity) images along a progressive transition from a yet-to-be-mitigated area into a more recently mitigated area, located along the base of a steep slope composed of compacted landfill. The initial survey revealed an increase in seismic velocity in the treated area, seismic velocity increases with curing time for soil-cement elements, and a high-velocity zone beneath the active injection zone. The influence of the mitigation was most apparent from increases in Vp/Vs and Poisson's ratios. To assess the long-term effects of the mitigation project, an identical, follow-up survey was acquired in July 2014, 23 months after the initial survey. We present a comparative analysis of the tomographic images from the two surveys, variations in Vp/Vs and Poisson's ratios over time, and a comparison of in situ, time-varying seismic parameters with laboratory

  6. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  7. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  8. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  9. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  10. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation

    International Nuclear Information System (INIS)

    Highlights: • This paper introduces the design of a hybrid energy-economy model, GTEM-C. • The model offers a unified tool to analyse the energy-carbon-environment nexus. • Results are presented on global energy transformation due to carbon mitigation. • Electrification with renewable energies can contain the spiking of carbon prices. - Abstract: This paper introduces the design of the CSIRO variant of the Global Trade and Environment model (GTEM-C). GTEM-C is a hybrid model that combines the top-down macroeconomic representation of a computable general equilibrium model with the bottom-up engineering details of energy production. The model features detailed accounting for global energy flows that are embedded in traded energy goods, and it offers a unified framework to analyse the energy-carbon-environment nexus. As an illustrative example, we present simulation results on global energy transformation under the Intergovernmental Panel on Climate Change’s representative carbon pathways 4.5 and 8.5. By testing the model’s sensitivity to the relevant parameter, we find that the pace of electrification will significantly contain the spiking of carbon prices because electricity can be produced from carbon-free or less carbon-intensive technologies. The decoupling of energy use and carbon footprint, due to the uptake of clean electricity technologies, such as nuclear, wind, solar, and carbon capture and storage, allows the world to maintain high level of energy consumption, which is essential to economic growth

  11. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.

    Science.gov (United States)

    Adler, Paul R; Mitchell, James G; Pourhashem, Ghasideh; Spatari, Sabrina; Del Grosso, Stephen J; Parton, William J

    2015-06-01

    Crop residues are potentially significant sources of feedstock for biofuel production in the United States. However, there are concerns with maintaining the environmental functions of these residues while also serving as a feedstock for biofuel production. Maintaining soil organic carbon (SOC) along with its functional benefits is considered a greater constraint than maintaining soil erosion losses to an acceptable level. We used the biogeochemical model DayCent to evaluate the effect of residue removal, corn stover, and wheat and barley straw in three diverse locations in the USA. We evaluated residue removal with and without N replacement, along with application of a high-lignin fermentation byproduct (HLFB), the residue by-product comprised of lignin and small quantities of nutrients from cellulosic ethanol production. SOC always decreased with residue harvest, but the decrease was greater in colder climates when expressed on a life cycle basis. The effect of residue harvest on soil N2O emissions varied with N addition and climate. With N addition, N2O emissions always increased, but the increase was greater in colder climates. Without N addition, N2O emissions increased in Iowa, but decreased in Maryland and North Carolina with crop residue harvest. Although SOC was lower with residue harvest when HLFB was used for power production instead of being applied to land, the avoidance of fossil fuel emissions to the atmosphere by utilizing the cellulose and hemicellulose fractions of crop residue to produce ethanol (offsets) reduced the overall greenhouse gas (GHG) emissions because most of this residue carbon would normally be lost during microbial respiration. Losses of SOC and reduced N mineralization could both be mitigated with the application of HLFB to the land. Therefore, by returning the high-lignin fraction of crop residue to the land after production of ethanol at the biorefinery, soil carbon levels could be maintained along with the functional benefit of

  12. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Directory of Open Access Journals (Sweden)

    K. Becker

    2012-10-01

    Full Text Available We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas – if established in hot, dry coastal areas around the world – could capture 17–25 tonnes of carbon dioxide per hectare per year from the atmosphere (averaged over 20 yr. Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to reduce significantly the current upward trend in atmospheric CO2 levels.

    In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42–63 € per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS. In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level.

  13. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  14. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  15. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  16. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    International Nuclear Information System (INIS)

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location

  17. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    Energy Technology Data Exchange (ETDEWEB)

    Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States); Pounds, T.S.; Smith, S.O. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1994-08-24

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  18. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump's ability to mitigate the SY-101 tank hydrogen gas hazard

  19. ILUC mitigation case studies Tanzania. Applying the Low Indirect Impact Biofuel (LIIB) Methodology to Tanzanian projects

    Energy Technology Data Exchange (ETDEWEB)

    Van de Staaij, J.; Spoettle, M.; Weddige, U.; Toop, G. [Ecofys, Utrecht (Netherlands)

    2012-10-15

    NL Agency is supporting WWF and the Secretariat of the Roundtable on Sustainable Biofuels (RSB) with the development of a certification module for biofuels with a low risk of indirect land use change (ILUC), the Low Indirect Impact Biofuel (LIIB) methodology (www.LIIBmethodology.org). The LIIB methodology was developed to certify that biomass feedstock for biofuels has been produced with a low risk of indirect impacts. It is designed as an independent module that can be added to biofuel policies and existing certification systems for sustainable biofuel and/or feedstock production, such as the RSB Standard, RSPO or NTA8080. It presents detailed ILUC mitigation approaches for four different solution types field-tested and audited in international pilots. Within the Global Sustainable Biomass programme and the Sustainable Biomass Import programme, coordinated by NL Agency, three projects are working on sustainable jatropha in Tanzania. Ecofys has been commissioned by NL Agency to contribute to the further development of the LIIB methodology by applying it to these three jatropha projects in Tanzania. All three projects located in the North of Tanzania, address sustainability in one way or another, but focus on the direct effects of jatropha cultivation and use. Interestingly, they nevertheless seem to apply different methods that could also minimise negative indirect impacts, including ILUC. Bioenergy feedstock production can have unintended consequences well outside the boundary of production operations. These are indirect impacts, which cannot be directly attributed to a particular operation. The most cited indirect impacts are ILUC and food/feed commodity price increases (an indirect impact on food security). ILUC can occur when existing cropland is used to cover the feedstock demand of additional biofuel production. When this displaces the previous use of the land (e.g. food production) this can lead to expansion of land use to new areas (e.g. deforestation) when

  20. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.

    Science.gov (United States)

    McKechnie, Jon; Colombo, Steve; Chen, Jiaxin; Mabee, Warren; MacLean, Heather L

    2011-01-15

    The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16-38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies. PMID:21142063

  1. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  2. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  3. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    OpenAIRE

    Kaul, M; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon ...

  4. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  5. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    International Nuclear Information System (INIS)

    Limiting global warming to any level requires limiting the total amount of CO2 emissions, or staying within a CO2 budget. Here we assess how emissions from short-lived non-CO2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH4 mitigation as a sensitivity case, CO2 budgets could be 25% higher. A limit on cumulative CO2 emissions remains critical for temperature targets. Even a 25% higher CO2 budget still means peaking global emissions in the next two decades, and achieving net zero CO2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO2 budget by targeting non-CO2 diminishes strongly along with CO2 mitigation, because these are partly linked through economic and technological factors. (letter)

  6. Polyimide Nanocomposite Circuit Board Materials to Mitigate Internal Electrostatic Discharge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic T8.02, NASA has identified a need for improved circuit boards to mitigate the hazards of internal electrostatic discharge (IESD) on missions where high...

  7. Carbon-Carbon High Melt Coating for Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Melt Coating system is applied to a carbon-carbon structure and embeds HfC, ZrB2 in the outer layers. ACC High Melt builds on the time tested base material...

  8. 我国碳减排的定量评估%A Quantitavie Assessment on Optimal Carbon Mitigation in China

    Institute of Scientific and Technical Information of China (English)

    李宾

    2014-01-01

    As the biggest carbon -emitter and the second largest economy, China is experiencing higher and higher pressures for the mitigation of carbon emissions.In the process of the whole world reacting together to climate change, what’s our mitigation level? Basing on Nordhaus’s RICE-2010 model, this paper constructs a RICE-E model with a new characteristic of endogenizing the supply of fossil fuels in the economic module.Numerical computations indicate that from 2005 , China shall achieve full mitigation by 2095, and the corresponding carbon tax increases from 68.7 yuan per ton carbon to near 2000 yuan.Such an effort level is not the most radical among the world’s major powers.The mitigation pressure of China is lower than that of Russia and USA, at the same level with that of EU and Latin America, but higher than that of Japan and India.Moreover, the EKC point where carbon emissions turn from increasing to decreasing is in 2055.%作为全球第一大碳排放国和第二大经济体,我国正承受着越来越大的碳减排压力。在世界各国都参与应对气候变化的进程中,我国的最优碳减排幅度是怎样的呢?本文在Nordhaus的RICE-2010模型基础上,通过将化石能源的消耗内生于经济系统模块,改良出RICE-E模型。数值计算表明,从2005至2095年,我国需实现完全碳减排,相应的碳税水平从每吨碳排放68.7元(2010年价)提高到接近2000元。这个力度在世界各大国中并不是最激进的,位处俄罗斯和美国之后,与欧盟、拉美为同一档次,但强于日本和印度。在此碳减排进程下,我国碳排放量由升转降的时间拐点出现在2055年左右。

  9. Architecture for Mitigating Short-Term Warning Cosmic Threats: READI Project

    Science.gov (United States)

    Nambiar, Shrrirup P.; Hussein, Alaa; Silva-Martinez, Jackelynne; Reinert, Jessica; Gonzalez, Fernando

    2016-01-01

    Earth is being constantly bombarded by a large variety of celestial bodies and has been since its formation 4.5 billion years ago. Among those bodies, mainly asteroids and comets, there are those that have the potential to create large scale destruction upon impact. The only extinction-level impact recorded to date was 65 million years ago, during the era of dinosaurs. The probability of another extinction-level, or even city-killer, impact may be negligible, but the consequences can be severe for the biosphere and for our species. Therefore it is highly imperative for us to be prepared for such a devastating impact in the near future, especially since humanity is at the threshold of wielding technologies that allow us to do so. Majority of scientists, engineers, and policymakers have focused on long-term strategies and warning periods for Earth orbit crossing Near-Earth Objects (NEOs), and have suggested methods and policies to tackle such problems. However, less attention has been paid to short warning period NEO threats. Such NEOs test current technological and international cooperation capabilities in protecting ourselves, and can create unpredictable devastation ranging from local to global scale. The most recent example is the Chelyabinsk incident in Russia. This event has provided a wakeup call for space agencies and governments around the world towards establishing a Planetary Defense Program. The Roadmap for EArth Defense Initiative (READI) is a project by a team of international, intercultural, and interdisciplinary participants of the International Space University's Space Studies Program 2015 hosted by Ohio University, Athens, OH proposing a roadmap for space agencies, governments, and the general public to tackle NEOs with a short warning before impact. Taking READI as a baseline, this paper presents a technical description of methodologies proposed for detection and impact mitigation of a medium-sized comet (up to 800m across) with a short

  10. Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Andrasko, Kenneth; Makundi, Willy; La Rovere, Emilio Lebre; Ravinandranath, N.H.; Melli, Anandi; Rangachari, Anita; Amaz, Mireya; Gay, Carlos; Friedmann, Rafael; Goldberg, Beth; van Horen, Clive; Simmonds, Gillina; Parker, Gretchen

    1998-11-01

    The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level, and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly

  11. Precision Remote Sensor for Oxygen and Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will lead to the design, construction, and field-testing of a prototype PHOCS instrument for atmospheric column retrievals of oxygen and carbon...

  12. Final Project Report for "Interfacial Thermal Resistance of Carbon Nanotubes”

    Energy Technology Data Exchange (ETDEWEB)

    Cumings, John [Univ. of Maryland, College Park, MD (United States)

    2016-04-15

    This report describes an ongoing project to comprehensively study the interfacial thermal boundary resistance (Kapitza resistance) of carbon nanotubes. It includes a list of publications, personnel supported, the overall approach, accomplishments and future plans.

  13. A numerical model for cost effective mitigation of CO₂ in the EU with stochastic carbon sink

    OpenAIRE

    Gren, Ing-Marie; Munnich, Miriam; Carlsson, Mattias; Elofsson, Katarina

    2009-01-01

    This paper presents a model for the analysis of the potential of carbon sinks in the EU Emissions Trading Scheme (ETS) under conditions of stochastic carbon sequestration by forest land. A partial equilibrium model is developed which takes into account both the ETS and national commitments. Chance constraint programming is used to analyze the role of stochastic carbon sinks for national and EU-wide costs as well as carbon allowance price. The results show that the inclusion of the carbon sink...

  14. Carbon Footprints and Embodied Carbon Flows Analysis for China’s Eight Regions: A New Perspective for Mitigation Solutions

    Directory of Open Access Journals (Sweden)

    Xi Xie

    2015-07-01

    Full Text Available Carbon footprints have been widely employed as an indicator for total carbon dioxide released by human activities. In this paper, we implemented a multi-regional input-output framework to evaluate the carbon footprints and embodied carbon flows for the eight regions of China from consumption-based perspective. It is found that the construction, electricity/stream supply, and machine manufacturing rank as the top sectors with the largest total carbon emissions. The construction sector alone accounts for 20%–50% of the national emissions. Besides the sectoral carbon footprints, regional footprints and their differences in carbon emissions were also observed. The middle region had the largest total carbon footprints, 1188 million ton, while the capital region ranked the first for its per capita carbon footprint, 7.77 ton/person. In regard to the embodied carbon flows within China, the study detected that the embodied carbon flows take up about 41% of the total carbon footprints of the nation. The northwest region and the eastern coast region are found to be the largest net embodied carbon exporter and importer, respectively. Further investigation revealed significant differences between production-based and consumption-based carbon emissions, both at sectoral and total amounts. Results of this paper can provide specific information to policies on sectoral and regional carbon emission reduction.

  15. Trade-Offs Associated with Soil Carbon Sequestration in ecosystems as Climate Change Mitigation (Invited)

    Science.gov (United States)

    Six, J. W.; Kong, A. Y.

    2010-12-01

    Ecosystems, especially agroecosystems, have been proposed to have the potential to mitigate anthropogenic contributions to climate change through management. It has been suggested that the adoption of agricultural soil management practices that decrease disturbance and/or increase C inputs to soils can transform soils from C ‘sources’ to C ‘sinks’. However, for these management practices to genuinely mitigate climate change, they must slow the increase of atmospheric CO2 levels by establishing a net transfer of C from atmospheric CO2 to the soil or vegetation. Furthermore, a change in land management must not increase the emission of any other greenhouse gases (e.g., nitrous oxide). Here, we expose the global warming ‘costs’ - tradeoffs - associated with management options that have been promoted as soil C sequestration strategies, but may not always achieve their goals of climate change mitigation. We also discuss fundamental mechanistic potentials and constraints to the sequestration of C in soils, which allow but also limit the potential of soil C sequestration as a means of climate change mitigation. Only by using a whole (agro)ecosystems approach that addresses the linked cycles of C, nitrogen, and phosphorous in soils, can management practices genuinely contribute to climate change mitigation.

  16. D Applications in Disaster Mitigation and Management: Core Results of Ditac Project

    Science.gov (United States)

    Kaptan, K.; Kavlak, U.; Yilmaz, O.; Celik, O. T.; Manesh, A. K.; Fischer, P.; Lupescu, O.; Ingrassia, P. L.; Ammann, W. J.; Ashkenazi, M.; Arculeo, C.; Komadina, R.; Lechner, K.; Arnim, G. v.; Hreckovski, B.

    2013-08-01

    According to statistical data, natural disasters as well as the number of people affected by them are occurring with increasing frequency compared to the past. This situation is also seen in Europe Union; So, Strengthening the EU capacity to respond to Disasters is very important. This paper represents the baseline results of the FP-7 founded DITAC project, which aims to develop a holistic and highly structured curriculum for responders and strategic crisis managers. Up-to-date geospatial information is required in order to create an effective disaster response plan. Common sources for geospatial information such as Google Earth, GIS databases, and aerial surveys are frequently outdated, or insufficient. This limits the effectiveness of disaster planning. Disaster Management has become an issue of growing importance. Planning for and managing large scale emergencies is complex. The number of both victims and relief workers is large and the time pressure is extreme. Emergency response and triage systems with 2D user interfaces are currently under development and evaluation. Disasters present a number of spatially related problems and an overwhelming quantity of information. 3D user interfaces are well suited for intuitively solving basic emergency response tasks. Such tasks include commanding rescue agents and prioritizing the disaster victims according to the severity of their medical condition. Further, 3D UIs hold significant potential for improving the coordination of rescuers as well as their awareness of relief workers from other organizations. This paper describes the outline of a module in a Disaster Management Course related to 3D Applications in Disaster Mitigation and Management. By doing this, the paper describes the gaps in existing systems and solutions. Satellite imageries and digital elevation data of Turkey are investigated for detecting sites prone to natural hazards. Digital image processing methods used to enhance satellite data and to produce

  17. Mitigation of project risk through communication training : a serious games proposal / Hedré Pretorius

    OpenAIRE

    Pretorius, Hedré

    2014-01-01

    Complex projects often fail even when formal project management systems are in place. Project management processes and methodologies are well defined and described in academic and business literature. There is however less published research on the socio-cultural factors that are critical for project success. This study investigated whether project stakeholders view communication as one of the critical success factors for project success. Critical project success factors were identified from ...

  18. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Christopher

    1993-04-01

    This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

  19. Self Assembled Carbon Nanotube Enhanced Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA STTR program is to develop single wall carbon nanotube (SWCNT) based ultracapacitors for energy storage devices (ESD) application, using...

  20. Aerospace Grade Carbon Felt Preform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Materials, Inc. (FMI) will develop an aerospace-grade carbon felt preform by employing application specific materials with effective processes and fabrication...

  1. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  2. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  3. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  4. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site's contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b)

  5. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  6. Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum

    NARCIS (Netherlands)

    Dornburg, V.; Marland, G.

    2008-01-01

    Kirschbaum (Mitig Adapt Strat Glob Change 11:1151–1164, 2006) explores the climatic impact over time of temporarily sequestering carbon from the atmosphere. He concludes that temporary storage of carbon in the terrestrial biosphere “achieves effectively no climate-change mitigation”. His strongly wo

  7. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    Science.gov (United States)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  8. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Arturo Balderas [Environment Department, University of York, YO10 5DD (United Kingdom); Instituto Tecnologico y de Estudios Superiores de Occidente (ITESO), Tlaquepaque CP (Mexico); Technology and Sustainable Development Section, Center for Clean Technology and Environmental Policy, University of Twente/CSTM, P.O. Box 217, 7500 AE Enschede (Netherlands); Marchant, Rob; Smart, James C.R. [Environment Department, University of York, YO10 5DD (United Kingdom); Lovett, Jon C. [Environment Department, University of York, YO10 5DD (United Kingdom); Technology and Sustainable Development Section, Center for Clean Technology and Environmental Policy, University of Twente/CSTM, P.O. Box 217, 7500 AE Enschede (Netherlands); Tipper, Richard [Ecometrica, Edinburgh, EH9 1PJ (United Kingdom)

    2010-01-15

    Carbon sequestration in forest sinks is an important strategy to remove greenhouse gases and to mitigate climate change; however its implementation has been limited under the Clean Development Mechanism of the Kyoto Protocol which has not created the incentives for widespread implementation. The objective of this paper is to analyze the sequestration costs of agroforestry afforestation and reforestation projects (ARPs) following a partial market equilibrium using average cost curves and economic break even analysis to identify the supply costs. The modelling done in this work contrasts the voluntary and clean development mechanism transaction costs. Data is based on the voluntary project, Scolel Te, being implemented in Mexico. Cost curves are developed for seven different sequestration options considering transaction and implementation costs; information from agricultural production in Chiapas Mexico is used to integrate opportunity costs of two agroforestry practices suggesting that sequestration costs may follow a 'U' shape, with an initial reduction due to economies of scale and a subsequent increase caused by high opportunity costs. The widespread implementation of agroforestry options not requiring complete land conversion (e.g. living fences and coffee under shade) might be cost effective strategies not generating high opportunity costs. Results also suggest that payments in the early years of the project and lower transaction costs favour the development of ARPs in the voluntary market especially in marginal rural areas with high discount rates. (author)

  9. Navy Radon Assessment and Mitigation Program: Work/quality assurance project plan screening phase

    International Nuclear Information System (INIS)

    In 1987, the military services of the United States were tasked to take appropriate action to establish an indoor radon assessment and mitigation program. As a result, the Naval Facilities Engineering Command (NAVFACENGCOM) was assigned the responsibility of identifying potential hazards to personnel from exposure to naturally occurring radon gas and prioritizing corrective actions and to coordinating these actions with the major claimants. NAVRAMP is based upon current US Environmental Protection Agency (EPA) guidelines. The program has been separated into four phases. The screening phase will concentrate on evaluating radon levels, based on statistical samples, in those buildings that have been determined to be at most at risk to elevated levels of radon, such as base housing, schools, day-care centers, hospitals, brigs, Base Officer Quarters, and Base Enlisted Quarters. During the assessment phase, every building that contains personnel for over 4 h/day will be evaluated. Mitigation work will be accomplished by Navy or Navy-contracted personnel. HAZWRAP services during the mitigation phase will consist of determining the extent of reduction in radon levels after the mitigation effort. 7 refs., 11 figs

  10. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  11. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands.

    Science.gov (United States)

    Vuichard, Nicolas; Ciais, Philippe; Wolf, Adam

    2009-11-15

    Although the CO(2) mitigation potential of biofuels has been studied by extrapolation of small-scale studies, few estimates exist of the net regional-scale carbon balance implications of biofuel cultivations programs, either growing conventional biofuel crops or applying new advanced technologies. Here we used a spatially distributed process-driven model over the 20 Mha of recently abandoned agricultural lands of the Former Soviet Union to quantify the GHG mitigation by biofuel production from Low Input/High Diversity (LIHD) grass-legume prairies and to compare this GHG mitigation with the one of soil C sequestration as it currently occurs. LIHD has recently received a lot of attention as an emerging opportunity to produce biofuels over marginal lands leading to a good energy efficiency with minimal adverse consequences on food security and ecosystem services. We found that, depending on the time horizon over which one seeks to maximize the GHG benefit, the optimal time for implementing biofuel production shifts from "never" (short-term horizon) to "as soon as possible" (longer-term horizon). These results highlight the importance of reaching agreement a priori on the target time interval during which biofuels are expected to play a role within the global energy system, to avoid deploying biofuel technology over a time interval for which it has a detrimental impact on the GHG mitigation objective. The window of opportunity for growing LIHD also stresses the need to reduce uncertainties in soil C inputs, turnover, and soil organic matter stability under current and future climate and management practices.

  12. Hydrological and biogeochemical constraints on terrestrial carbon cycle projections

    Science.gov (United States)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2 emissions. However, the future fate of this sink in the coming decades is very uncertain, as current Earth System Models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day Evapotranspiration (ET) and Gross Primary Productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease of the projected GPP and to a ca. 50% reduction of the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on Net Biome Productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Also, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. Moreover, a similar strategy is used to provide constraints on the feedbacks involving the terrestrial carbon cycle and the climate system. The findings indicate that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase of the atmospheric CO2 concentration and for future climate change.

  13. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Schweitzer, M.; Scharre, P.; Pressman, B.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability.

  14. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    International Nuclear Information System (INIS)

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability

  15. LIFE CLIMATREE project: A novel approach for accounting and monitoring carbon sequestration of tree crops and their potential as carbon sink areas

    Science.gov (United States)

    Stergiou, John; Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella

    2016-04-01

    Climate Change Mitigation is one of the most important objectives of the Kyoto Convention, and is mostly oriented towards reducing GHG emissions. However, carbon sink is retained only in the calculation of the forests capacity since agricultural land and farmers practices for securing carbon stored in soils have not been recognized in GHG accounting, possibly resulting in incorrect estimations of the carbon dioxide balance in the atmosphere. The agricultural sector, which is a key sector in the EU, presents a consistent strategic framework since 1954, in the form of Common Agricultural Policy (CAP). In its latest reform of 2013 (reg. (EU) 1305/13) CAP recognized the significance of Agriculture as a key player in Climate Change policy. In order to fill this gap the "LIFE ClimaTree" project has recently founded by the European Commission aiming to provide a novel method for including tree crop cultivations in the LULUCF's accounting rules for GHG emissions and removal. In the framework of "LIFE ClimaTree" project estimation of carbon sink within EU through the inclusion of the calculated tree crop capacity will be assessed for both current and future climatic conditions by 2050s using the GISS-WRF modeling system in a very fine scale (i.e., 9km x 9km) using RCP8.5 and RCP4.5 climate scenarios. Acknowledgement: LIFE CLIMATREE project "A novel approach for accounting and monitoring carbon sequestration of tree crops and their potential as carbon sink areas" (LIFE14 CCM/GR/000635).

  16. Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    Science.gov (United States)

    Pavlock, Kate M.

    2011-01-01

    Lessons Learne: 1. Design-out unnecessary risk to prevent excessive mitigation management during flight. 2. Consider iterative checkouts to confirm or improve human factor characteristics. 3. Consider the total flight test profile to uncover unanticipated human-algorithm interactions. 4. Consider test card cadence as a metric to assess test readiness. 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use.

  17. Implications of climate mitigation for future agricultural production

    International Nuclear Information System (INIS)

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  18. Implications of climate mitigation for future agricultural production

    Science.gov (United States)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-12-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  19. Hypothesis-driven and field-validated method to prioritize fragmentation mitigation efforts in road projects.

    Science.gov (United States)

    Vanthomme, Hadrien; Kolowski, Joseph; Nzamba, Brave S; Alonso, Alfonso

    2015-10-01

    The active field of connectivity conservation has provided numerous methods to identify wildlife corridors with the aim of reducing the ecological effect of fragmentation. Nevertheless, these methods often rely on untested hypotheses of animal movements, usually fail to generate fine-scale predictions of road crossing sites, and do not allow managers to prioritize crossing sites for implementing road fragmentation mitigation measures. We propose a new method that addresses these limitations. We illustrate this method with data from southwestern Gabon (central Africa). We used stratified random transect surveys conducted in two seasons to model the distribution of African forest elephant (Loxodonta cyclotis), forest buffalo (Syncerus caffer nanus), and sitatunga (Tragelaphus spekii) in a mosaic landscape along a 38.5 km unpaved road scheduled for paving. Using a validation data set of recorded crossing locations, we evaluated the performance of three types of models (local suitability, local least-cost movement, and regional least-cost movement) in predicting actual road crossings for each species, and developed a unique and flexible scoring method for prioritizing road sections for the implementation of road fragmentation mitigation measures. With a data set collected in improves upon available methods and can help inform prioritization of road and other linear infrastructure segments that require impact mitigation methods to ensure long-term landscape connectivity. PMID:26591467

  20. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  1. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  2. Columbia River wildlife mitigation habitat evaluation procedures report: Scotch Creek Wildlife Area, Berg Brothers, and Douglas County pygmy rabbit projects

    International Nuclear Information System (INIS)

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites

  3. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chris A.

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

  4. Carbon credit of renewable energy projects in Malaysia

    Science.gov (United States)

    Lim, X.; Lam, W. H.; Shamsuddin, A. H.

    2013-06-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  5. Carbon credit of renewable energy projects in Malaysia

    International Nuclear Information System (INIS)

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  6. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    Energy Technology Data Exchange (ETDEWEB)

    Zaballa Romero, M.; Traerup, S.; Wieben, E.; Ravnkilde Moeller, L.; Koch, A.

    2013-01-15

    The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource needs estimates put forward in connection to REDD+. This report investigates the economics of implementing forest and REDD+ projects through eight case studies from Africa, Latin America and Asia, analyzing real forest and REDD+ investments. The report is part of efforts to share financial experiences and lessons learned with policymakers, project developers and stakeholders, with the objective to inform forest project and strategy development. It presents experiences and advice on the risks, costs and revenues of forest projects, thereby informing not only the development of future REDD+ initiatives but also the testing of advanced market commitments as a finance option for sustainable forest management. The findings in the report underline the fact that only through sound and transparent financial information will forest projects and national forest initiatives become interesting for private financial institutions and comparable with other investment opportunities. It is therefore important to include robust analysis of the operations business case and its financial attractiveness to commercial investors, early in the design process. As for the economics of forest and forest carbon projects, it appears that REDD+ payments alone, especially at current prices, will not deliver the revenues that cover all expenses of transparent and long-term mitigation of forest carbon emissions. Instead the findings underline the importance of building up forest operations which effectively manages risk and delivers several revenue streams. These findings are aligned with the advocacy efforts of UNEP and the UN-REDD Programme on multiple benefits and the combination of various funding and

  7. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US

    International Nuclear Information System (INIS)

    The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

  8. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  9. The role of carbon capture and sequestration policies for climate change mitigation

    OpenAIRE

    Kalkuhl, Matthias; Edenhofer, Ottmar; Lessmann, Kai

    2012-01-01

    This paper takes the ‘policy failure’ in establishing a global carbon price for efficient emissions reduction as a starting point and analyzes to what extent technology policies can be a reasonable second-best approach. From a supply-side perspective, carbon capture and storage (CCS) policies differ substantially from renewable energy policies: they increase fossil resource demand and simultaneously lower emissions. We show in a theoretical model that, under idealized conditions, a pure CCS s...

  10. POLYTETRAFLUOROETHYLENE-RICH POLYPHENLENESULFIDE BLEND TOP COATINGS FOR MITIGATING CORROSION OF CARBON STEEL IN 300 DEGREE CELCIUS BRINE.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.; JUNG, D.

    2006-06-01

    We evaluated usefulness of a coating system consisting of an underlying polyphenylenesulfide (PPS) layer and top polytetrafluoroethylene (PTFE)-blended PPS layer as low friction, water repellent, anti-corrosion barrier film for carbon steel steam separators in geothermal power plants. The experiments were designed to obtain information on kinetic coefficient of friction, surface free energy, hydrothermal oxidation, alteration of molecular structure, thermal stability, and corrosion protection of the coating after immersing the coated carbon steel coupons for up to 35 days in CO{sub 2}-laden brine at 300 C. The superficial layer of the assembled coating was occupied by PTFE self-segregated from PPS during the melt-flowing process of this blend polymer; it conferred an outstanding slipperiness and water repellent properties because of its low friction and surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex linked to Na. Although such molecular transformation increased the friction and surface free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer significantly contributed to preventing the permeation of moisture and corrosive electrolytes through the coating film, so mitigating the corrosion of carbon steel.

  11. Mitigation costs, distributional effects, and ancillary benefits of carbon policies in the Nordic countries, the U.K., and Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Bye, B; Rosendahl, K.E. [Research Department, Statistics Norway, P.O. Box 8131 Dep., 0033 Oslo (Norway); Kverndokk, S. [Ragnar Frisch Centre for Economic Research, Gaustadalleen 21, 0349 Oslo (Norway)

    2002-07-01

    This paper provides a survey of top-down modelling analyses of carbon (C) abatement mitigation costs, distributional effects and ancillary benefits in the Nordic countries, the U.K. and Ireland. Special emphasis is placed on the effects of revenue recycling and tax exemptions. According to the analyses, modest emissions reductions can be met without substantial costs for the countries studied, and a strong double dividend is found in some analyses. The gross domestic product (GDP) or welfare effects are mostly in the range of -0.4 and 1.2% when C emissions are reduced by 20-30 per cent. Lowest costs are obtained without tax exemptions and with tax revenues used to reduce distortionary taxes. Ancillary benefits are mostly in the range 35-80/MgC{sup -1}, i.e., about the same order of magnitude as the mitigation costs. Distributional effects are mostly regressive, unless the tax revenues are distributed in lump-sum fashion with equal transfers to each household.

  12. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    Science.gov (United States)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-05-01

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications

  13. Economic aspects of hydro geological risk mitigation measures management in Italy: the ReNDiS project experience

    Science.gov (United States)

    Spizzichino, D.; Campobasso, C.; Gallozzi, P. L.; Dessi', B.; Traversa, F.

    2009-04-01

    ReNDiS project is a useful tool for monitoring, analysis and management of information data on mitigation measures and restoration works of soil protection at national scale. The main scope of the project, and related monitoring activities, is to improve the knowledge about the use of national funds and efforts against floods and landslides risk and, as a consequence, to better address the preventive policies in future. Since 1999 after the disastrous mudflow event occurred in Sarno in 1998, which caused the loss of 160 human lives, an extraordinary effort was conducted by the Italian Government in order to promote preventive measures against the hydro geological risk over the entire Italian territory. The Italian Ministry for the Environment promoted several and annual soil protection programmes. The ReNDiS project (Repertory of mitigation measures for National Soil Protection) is carried out by ISPRA - Institute for Environmental protection and Research, with the aim of improving the knowledge about the results of preventive policies against floods and landslides in order to better address national funds as requested by the Minister itself. The repertory is composed by a main archive and two secondary interface, the first for direct data management (ReNDiS-ist) and the latter (ReNDiS-web) for the on-line access and public consultation. At present, ReNDiS database contains about 3000 records concerning those programmes, focused on restoration works but including also information on landslide typologies and processes. The monitoring project is developed taking into account all the information about each step of every mitigation measure from the initial funding phase until the end of the work. During present work, we have statistically analyzed the ReNDiS database in order to highlight the conformity between the characteristic and type of the hazard (identified in a specific area) and the corresponding mitigation measures adopted for risk reduction. Through specific

  14. Final environmental impact statement Kenetech/PacifiCorp Windpower Project Carbon County, Wyoming

    International Nuclear Information System (INIS)

    The Draft and Final Environmental Impact Statements (DEIS and FEIS) assess the environmental consequences of a proposed windpower energy development in Carbon County, Wyoming. This abbreviated FEIS revises and supplements the DEIS for the project and addresses comments expressed for the DEIS. The proposed project entails the erection of approximately 1,390 wind turbine generators and associated facilities (e.g., roads, substations, distribution and communications lines) by KENETECH Windpower, Inc. A 230-kV transmission line would be built by PacifiCorp, Inc. to connect a proposed substation on Foote Creek Rim near Arlington to the Miner's substation near Hanna. The proposed project would use standard procedures as currently employed by other right-of-way projects, plus additional project-specific and site-specific mitigation measures to ensure that project impacts are minimized on all important resources. Impacts to most resources would be negligible to moderate during the life-of-project. Potentially significant impacts from the project include avian mortality; declining avian populations; threatened, endangered, candidate, and/or state sensitive species mortality and/or habitat loss; disturbance to nearby residents due to noise; changes in visual resources; disturbance of important Native American traditional sites; changes in plant community species composition due to snow redistribution; displacement of big game due to windfarm operation; and loss of sage grouse nesting habitat. The proposed project could also have numerous beneficial impacts including increased revenues generated by taxes, increased employment, and benefits derived from using a nonpolluting resource for electric power generation

  15. Analysis on Projects of Mine Calamity Mitigation Funded by National Natural Science Fund

    Institute of Scientific and Technical Information of China (English)

    ZhuWangxi; WangLaigui

    2003-01-01

    From 1997 to 2002, NSFC Department of Engineering and Materials funded 118 projects on the study of mine by a total of 32.39 million RMB, among which, the number of projects relevant to mine calamity are 76, accounting for 64.4 percent of the total number; the sum of fund is 17.49 million RMB, accounting for 54 percent of the total sum (the detailed data are shown in Table 1); the number of general projects is 68, accounting for the main proportion of the total projects. In short, the number of projects and the sum of funds increase annually, as shown in Table 2, Fig. 1, and Fig.2.

  16. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  17. THE POTENTIAL OF RECLAIMED LANDS TO SEQUESTER CARBON AND MITIGATE THE GREENHOUSE EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Song Jin

    2006-05-01

    Reclaimed mine lands have the potential to sequester carbon. The use of amendments to increase fertility and overall soil quality is encouraging. Waste amendments such as sewage sludge and clarifier sludge, as well as commercial compost were tested to determine their effects on carbon sequestration and humic acid formation in reclaimed mine lands. Sewage sludge and clarifier sludge have the potential to work as reclaimed mine lands amendments. C:N ratios need to be understood to determine probability of nutrient leaching and water contamination. Microbial activity on the humic acid fraction of sludge is directed toward the readily degradable constituents containing single chain functional groups. This finding indicate that amendments with lower molecular constituents such as aliphatic compounds are more amenable to microbial degradation, therefore serves as better nutrient sources to enhance the formation of vegetation in mine lands and leads to more efficient carbon sequestration.

  18. Strategizing Carbon-Neutral Mines: A Case for Pilot Projects

    Directory of Open Access Journals (Sweden)

    Ian M. Power

    2014-05-01

    Full Text Available Ultramafic and mafic mine tailings are a valuable feedstock for carbon mineralization that should be used to offset carbon emissions generated by the mining industry. Although passive carbonation is occurring at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond and Mount Keith nickel mines, there remains untapped potential for sequestering CO2 within these mine wastes. There is the potential to accelerate carbonation to create economically viable, large-scale CO2 fixation technologies that can operate at near-surface temperature and atmospheric pressure. We review several relevant acceleration strategies including: bioleaching of magnesium silicates; increasing the supply of CO2 via heterotrophic oxidation of waste organics; and biologically induced carbonate precipitation, as well as enhancing passive carbonation through tailings management practices and use of CO2 point sources. Scenarios for pilot scale projects are proposed with the aim of moving towards carbon-neutral mines. A financial incentive is necessary to encourage the development of these strategies. We recommend the use of a dynamic real options pricing approach, instead of traditional discounted cash-flow approaches, because it reflects the inherent value in managerial flexibility to adapt and capitalize on favorable future opportunities in the highly volatile carbon market.

  19. Energy department pulls out of carbon-capture project

    Science.gov (United States)

    Gwynne, Peter

    2015-03-01

    A project aiming to demonstrate carbon capture and sequestration (CCS) from a coal-fired power plant is set to be cancelled after the US Department of Energy (DOE) announced it will withdraw its 1bn in support for the initiative.

  20. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    Science.gov (United States)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  1. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses

    Science.gov (United States)

    Crop residues are potentially significant sources of feedstock for biofuel production in the US. However there are concerns with maintaining the environmental functions of these residues while also serving as a feedstock for biofuel production. Maintaining soil organic carbon (SOC) along with its fu...

  2. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  3. Soil management options to sequester carbon and mitigate the greenhouse effect

    NARCIS (Netherlands)

    Batjes, N.H.

    2000-01-01

    The imbalance between global sources and sinks in the global budget of atmospheric CO2 is one of the most important problems in the study of global change. At present there is a 'missing sink' of about 1-2 Pg C yr -1. It is likely that a major part of this sink for carbon is to be found in the funct

  4. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan

    2001-11-01

    Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.

  5. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Lal, Rattan

    2001-12-31

    Farmers, gardeners, and, of course, argonomists know that adding organic matter to soils is a good thing to do. Organic matter increases soil water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation, and improves tilth. Depending on its type-humus, manure, stubble, litter-organic matter contains between 40 and 60% carbon.

  6. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects. PMID:24856957

  7. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions

    NARCIS (Netherlands)

    Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F.

    2010-01-01

    Extensive degradation of Indonesian peatlands by deforestation, drainage and recurrent fires causes release of huge amounts of peat soil carbon to the atmosphere. Construction of drainage canals is associated with conversion to other land uses, especially plantations of oil palm and pulpwood trees,

  8. The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture

    Science.gov (United States)

    Over the past three decades, one issue which has received significant attention from the scientific community is climate change and the possible impacts on the global environment. Increased atmospheric carbon dioxide (CO2) concentration, along with other trace gases [i.e., methane (CH4) and nitrous ...

  9. Climate mitigation in the least carbon emitting countries. Dilemmas of Co-benefits in Cambodia and Laos

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J., Email: jyrki.luukkanen@utu.fi; Kakonen, M.; Karhumaa, K. [and others

    2013-09-01

    Development has entered a time where it cannot be thought of without reference to climate change. While historically development in the industrialized countries has to a great extent been driven by a fossil fuel based economy, this option is no longer seen as viable for developing countries, which are expected to pursue different pathways of development. At the same time, the impacts of a changing climate affect the poorest countries and populations disproportionately, and multilateral policy declarations signed by most countries underline that there must be an effort to prevent and mitigate this. The effects of climate change onto development policies and practice is also reflected in donor countries' change in perception. Donor countries have begun increasingly integrating climate change objectives into development cooperation programmes and official development assistance (ODA). While significant in terms of discontinuing support to fossil fuels and attempting to increase resilience, this trend also brings into the fore new dilemmas. The main dilemma which emerges - and is explored further in this book - is when development cooperation finance is used in the least developed countries for projects and policies which are principally oriented towards climate change mitigation.

  10. Erosion Processes of Carbon Materials under Hydrogen Bombardment and their Mitigation by Doping

    Energy Technology Data Exchange (ETDEWEB)

    Juan Pardo, E. de; Balden, M.B.; Cieciwa, B.; Roth, J. [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Garcia-Rosales, C. [Univ. de Navarra, San Sebastian (Spain). Campus Tecnologico

    2004-08-01

    Two regimes of the chemical erosion of carbon materials under hydrogen bombardment have been separated: (i) the thermally activated regime, Y{sub therm}; with the maximal erosion yield in the temperature range between 550 and 850 K, and (ii) the so-called 'surface' regime, Y{sub surf} ; at low temperatures ({approx} 300K) and low impact energies (< 100 eV). Doping carbon materials largely reduces their chemical reactivity with hydrogen and their chemical erosion. In addition, dopant enrichment at the surface due to preferential sputtering of carbon contributes to a reduction of the erosion yield. Erosion measurements with 30 eV and 1 keV D for various doped carbon materials with dopant concentration between 0.25 and 13 at.% were performed at temperatures between 77 and 1100 K. For Y{sub surf} at high ion fluences (>10{sup 25} D/m{sup 2}); a reduction of the erosion yield by one order of magnitude is observed for fine-grain carbide-doped graphites. Scanning electron microscopy (SEM) allows to associate these fluence dependencies with the evolution of a rough surface morphology of several mm in the erosion area. For Y{sub therm} an almost complete suppression of the CD{sub 4}-production yield is observed for Tidoped C layers. This reduction due to the doping on atomic scale exceeds all previously observed reductions of materials with a coarser dopant distribution. For all investigated carbon materials, the yield below RT does not depend on temperature.

  11. Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: ACase Study In Jambi Province, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan; Dasanto,Bambang D.; Makundi, Willy; Hero, Julius; Ridwan, M.; Masripatin, Nur

    2007-06-01

    Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemployment (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.

  12. GREENGRASS. Sources and sinks of greenhouse gases from managed European grasslands and mitigation strategies. Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F. [Institut National de la Recherche Agronomique INRA Clermont-Ferrand, 63122 Saint-Genes-Champanelle (FR)] (and others)

    2005-03-15

    In support of the European post-Kyoto policy, the GREENGRASS project will measure the net global warming potential resulting from the exchange of CO2, N2O and Twitch managed European grasslands and assess the European wide mitigation potential of key field and farm management scenarios. Long-term micrometeorological measurements at sites in a European wide network will be complemented by experimental assessment of the effects of management options bonnet fluxes. The results will be used to refine emission factors used in national inventories and to evaluate farm-level mitigation scenarios with respect to tenet global warming potential associated to grassland management. These evaluations will be conducted at the field and farm level, and by upscaling simulation results to the Europe scale. (Contributions by Risoe National Laboratory (Denmark), INRA Clermont Ferrand (France), INRA Grignon (France), INRA Dijon (France), Institut de l'Elevage Angers (France), LSCE Gif-sur-Yvette (France), Cetre Interprofessionel Technique d'Etudes de la Pollution Atmospherique (France), Forest Research Institute (Hungary), Szent Istvan University (Hungary), Eoetvoes Lorand University Elte (Hungary), Trinity College of Dublin (Ireland), Istituto di Biometeorologia (IBIMET) del Consiglio Nazionale delle Ricerche (Italy), University of Tuscia (Italy), Energy research Centre of the Netherlands ECN (Netherlands), Wageningen University (Netherlands), Plant Research International (Netherlands), Centre of Ecology and Hydrology (United Kingdom), Scottish Agricultural College (Scotland), University of Aberdeen (Scotland), Federal Research Station for Agroecology and Agriculture (Switzerland))

  13. Biorefinery and Carbon Cycling Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  14. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  15. Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs.

    Science.gov (United States)

    Jamal Khan, S; Visvanathan, C; Jegatheesan, V

    2012-06-01

    In this study, the influence of powdered activated carbon (PAC) and cationic polymer (MPE50) was investigated on the fouling propensity in hybrid MBRs. Three laboratory scale MBRs were operated simultaneously including MBR(Control), MBR(PAC), and MBR(Polymer). Optimum dosages of PAC and polymer to the MBR(PAC) and MBR(Polymer), respectively were determined using jar tests. It was found that the MBR(PAC) exhibited low fouling tendency and prolonged filtration as compared to the other MBRs. Improved filtration in MBR(PAC) was attributed to the flocculation and adsorption phenomena. The effective stability of the biomass by PAC in the form of biological activated carbon (BAC) was verified by the increase in mean particle size. The BAC aided sludge layer exhibited porous cake structure resulting in the prolong filtration. However, both the membrane hybrid systems revealed effective adsorption of organic matter by 40% reduction in the soluble EPS concentration. PMID:22264429

  16. Soil management options to sequester carbon and mitigate the greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Batjes, N.H. [International Soil Reference and Information Centre ISRIC, ICSU World Data Centre for Soils, Wageningen (Netherlands)

    2000-07-01

    The imbalance between global sources and sinks in the global budget of atmospheric CO2 is one of the most important problems in the study of global change. At present there is a 'missing sink' of about 1-2 Pg C/yr. It is likely that a major part of this sink for carbon is to be found in the functioning of terrestrial ecosystems. The Kyoto Protocol currently restricts the allowable terrestrial sequestration of carbon to strictly defined cases of 'afforestation, reforestation and deforestation'. Appropriate conservation and management of the terrestrial natural resources and especially of soils, however, can substantially reduce the buildup of atmospheric greenhouse gases over the next 25 to 50 years while new, 'clean' technologies for energy production are being developed and overall anthropogenic emissions are being curtailed. 1 ref.

  17. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates.

    Science.gov (United States)

    Mystakidis, Stefanos; Davin, Edouard L; Gruber, Nicolas; Seneviratne, Sonia I

    2016-06-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2  emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change. PMID:26732346

  18. China's Voluntary Mitigation Target and Road of Low-carbon Development

    Institute of Scientific and Technical Information of China (English)

    He Jiankun

    2011-01-01

    China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and development of new and renewable energies,because of the rapid development of economy,it is difficult to change the huge total amount and fast increase of CO2 emission in the near future.China has to confront the tough challenge to address global climate change.China plans to reduce carbon intensity,that is,CO2 emissions per unit GDP,by 40 to 45% by 2020 compared with the 2005 level.It is a strategic option to coordinate domestic sustainable development with coping with global climate change on the basis of China's national circumstances,representing the core content and key measures for transforming development pattern and realizing low-carbon development.To achieve the target,more capital and technology inputs are required for energy conservation and low-carbon development during the twelfth and Thirteenth Five Year Plan period than in the Eleventh Five Year Plan period.In addition,energy conservation achieved by structural adjustment,industrial upgrading and product value-added improvement is also expected to play a greater role.Therefore,China should strengthen technological innovation,make greater efforts to transform the development pattern,take advantage of the synergistic effect of policies and measures while coping with global climate change and building a domestic tow-oriented society.China should also establish an industrial system characterized by low-carbon emission.Then China will ultimately achieve a win-win situation in both domestic sustainable development and coping with global climate change.

  19. Space Radiation Cancer Risk Projections for Exploration Missions: Uncertainty Reduction and Mitigation

    Science.gov (United States)

    Cucinotta, Francis; Badhwar, Gautam; Saganti, Premkumar; Schimmerling, Walter; Wilson, John; Peterson, Leif; Dicello, John

    2002-01-01

    In this paper we discuss expected lifetime excess cancer risks for astronauts returning from exploration class missions. For the first time we make a quantitative assessment of uncertainties in cancer risk projections for space radiation exposures. Late effects from the high charge and energy (HZE) ions present in the galactic cosmic rays including cancer and the poorly understood risks to the central nervous system constitute the major risks. Methods used to project risk in low Earth orbit are seen as highly uncertain for projecting risks on exploration missions because of the limited radiobiology data available for estimating HZE ion risks. Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Monte-Carlo sampling from subjective error distributions represents the lack of knowledge in each factor to quantify risk projection overall uncertainty. Cancer risk analysis is applied to several exploration mission scenarios. At solar minimum, the number of days in space where career risk of less than the limiting 3% excess cancer mortality can be assured at a 95% confidence level is found to be only of the order of 100 days.

  20. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  1. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  2. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    OpenAIRE

    Xingguo Han; Xue Sun; Cheng Wang; Mengxiong Wu; Da Dong; Ting Zhong; Thies, Janice E.; Weixiang Wu

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated...

  3. The role of PIXE in the AIRUSE project "testing and development of air quality mitigation measures in Southern Europe"

    Science.gov (United States)

    Lucarelli, F.; Chiari, M.; Calzolai, G.; Giannoni, M.; Nava, S.; Udisti, R.; Severi, M.; Querol, X.; Amato, F.; Alves, C.; Eleftheriadis, K.

    2015-11-01

    The European AIRUSE LIFE+ project aims at testing existing and future mitigation measures and developing new strategies for the improvement of air quality in Southern European countries. The project involves public and private institutions of Spain, UK, Portugal, Italy and Greece. PM10 and PM2.5 daily samplings have been scheduled for one year (from January 2013) in four urban sites, Barcelona (Spain), Porto (Portugal), Athens (Greece), and Florence (Italy). The daily data set gives an overall representative picture of the PM composition in these urban sites. The project includes also samplings with hourly resolution for limited periods. Hourly samples give an easier identification of the different aerosol sources due to the capability of tracking rapid changes as the ones occurring in many particulate emissions as well as in atmospheric transport and dilution processes. The role of PIXE technique within the project has been described in this paper. The comparison of data obtained by different techniques (e.g. PIXE, IC and ICP) assured a quality assurance control on the huge quantity of data obtained in the project. PIXE data together with those obtained by other analytical techniques have been used to reconstruct the average aerosol chemical composition and in Positive Matrix Factorization (PMF) analysis to determine the aerosol sources and their impact on PM10 and PM2.5 mass. In particular the high sensitivity of PIXE for all the crustal elements (including Si which is not easily detected by ICP) allows the direct determination of the Saharan dust contribution. Finally, the 1-h resolution data, which can be obtained only by PIXE, confirmed and reinforced the identification of the aerosol sources obtained by the daily concentrations.

  4. Mitigation action plan for the 100-HR-3 and 100-KR-4 pump and treat project

    International Nuclear Information System (INIS)

    This project involves drilling 22 wells, improving access roads to existing and new wells, laying connecting pipes, and constructing groundwater treatment facilities in the 100-KR-4 Area and 100-HR-3 Operable Units. Drilling is expected to be completed by September 1996, but the treatment operations will continue for approximately 10 years

  5. Comparison of registry methodologies for reporting carbon benefits for afforestation projects in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Timothy R.H. [Winrock International, 1621 North Kent Street, Suite 1200, Arlington, VA 22209 (United States)], E-mail: tpearson@winrock.org; Brown, Sandra [Winrock International, 1621 North Kent Street, Suite 1200, Arlington, VA 22209 (United States); Andrasko, Kenneth [World Bank/Carbon Finance Unit, 1818 H Street, NW, Room MC3-835, Washington, DC 20433 (United States)], E-mail: kandrasko@worldbank.org

    2008-10-15

    No mandatory national program currently exists to mitigate climate change in the US Consequently, voluntary programs and mandatory state-level programs are multiplying to allow users to register emission-offset activities, creating multiple often contradictory measurement and recording standards. For the land use sector we examined a hypothetical project: tree planting on rangelands in California. We apply four sets of protocols from the following registries - the California Climate Action Registry, the Chicago Climate Exchange (CCX), the Regional Greenhouse Gas Initiative and the USDOE 1605(b) program - and compare the results to the 'actual' net sequestration and also briefly compare them to international protocols such as the relevant Clean Development Mechanism methodology. Carbon in land use can be estimated accurately, precisely and cost-effectively, but to achieve this requires good protocols. As predicted, the consequence of applying different protocols for reportable carbon was significant. The choice of measurement pools, the handling of the baseline and the issue of uncertainty led to a baseline estimate of 0-66,690 t CO{sub 2}-e, and final sequestered carbon totals (after 60 years) that varied between 118,044 and 312,685 t CO{sub 2}-e-a factor of 2.5 difference. The amount reported under 1605(b) is the closest to 'actual' with CCX entity reporting the most divergent.

  6. Comparison of registry methodologies for reporting carbon benefits for afforestation projects in the United States

    International Nuclear Information System (INIS)

    No mandatory national program currently exists to mitigate climate change in the US Consequently, voluntary programs and mandatory state-level programs are multiplying to allow users to register emission-offset activities, creating multiple often contradictory measurement and recording standards. For the land use sector we examined a hypothetical project: tree planting on rangelands in California. We apply four sets of protocols from the following registries - the California Climate Action Registry, the Chicago Climate Exchange (CCX), the Regional Greenhouse Gas Initiative and the USDOE 1605(b) program - and compare the results to the 'actual' net sequestration and also briefly compare them to international protocols such as the relevant Clean Development Mechanism methodology. Carbon in land use can be estimated accurately, precisely and cost-effectively, but to achieve this requires good protocols. As predicted, the consequence of applying different protocols for reportable carbon was significant. The choice of measurement pools, the handling of the baseline and the issue of uncertainty led to a baseline estimate of 0-66,690 t CO2-e, and final sequestered carbon totals (after 60 years) that varied between 118,044 and 312,685 t CO2-e-a factor of 2.5 difference. The amount reported under 1605(b) is the closest to 'actual' with CCX entity reporting the most divergent

  7. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  8. HYDROTHERMALLY SELF-ADVANCING HYBRID COATINGS FOR MITIGATING CORROSION OF CARBON STEEL.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.

    2006-11-22

    Hydrothermally self-advancing hybrid coatings were prepared by blending two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and calcium aluminate cement (CAC) as the hydraulic filler, and then their usefulness was evaluated as the room temperature curable anti-corrosion coatings for carbon steel in CO{sub 2}-laden geothermal environments at 250 C. The following two major factors supported the self-improving mechanisms of the coating during its exposure in an autoclave: First was the formation of a high temperature stable polymer structure of Ca-complexed carboxylate groups containing SAL (Ca-CCG-SAL) due to hydrothermal reactions between SAL and CAC; second was the growth with continuing exposure time of crystalline calcite and boehmite phases coexisting with Ca-CCG-SAL. These two factors promoted the conversion of the porous microstructure in the non-autoclaved coating into a densified one after 7 days exposure. The densified microstructure not only considerably reduced the conductivity of corrosive ionic electrolytes through the coatings' layers, but also contributed to the excellent adherence of the coating to underlying steel' s surface that, in turn, retarded the cathodic oxygen reduction reaction at the corrosion site of steel. Such characteristics including the minimum uptake of corrosive electrolytes by the coating and the retardation of the cathodic corrosion reaction played an important role in inhibiting the corrosion of carbon steel in geothermal environments.

  9. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  10. Using offsets to mitigate environmental impacts of major projects: A stakeholder analysis.

    Science.gov (United States)

    Martin, Nigel; Evans, Megan; Rice, John; Lodhia, Sumit; Gibbons, Philip

    2016-09-01

    Global patterns of development suggest that as more projects are initiated, business will need to find acceptable measures to conserve biodiversity. The application of environmental offsets allows firms to combine their economic interests with the environment and society. This article presents the results of a multi-stakeholder analysis related to the design of offsets principles, policies, and regulatory processes, using a large infrastructure projects context. The results indicate that business was primarily interested in using direct offsets and other compensatory measures, known internationally as indirect offsets, to acquit their environmental management obligations. In contrast, the environmental sector argued that highly principled and scientifically robust offsets programs should be implemented and maintained for enduring environmental protection. Stakeholder consensus stressed the importance of offsets registers with commensurate monitoring and enforcement. Our findings provide instructive insights into the countervailing views of offsets policy stakeholders.

  11. Risk security and soil loss mitigation: the EU case study of the Sufalnet Project

    Directory of Open Access Journals (Sweden)

    Marina Rigillo

    2014-10-01

    Full Text Available Former and abandoned landfills represent a good opportunity for producing new impervious surfaces for the urban environment, contrasting soil loss (specially the agricultural one and improving the recovery of brownfield. From such perspective, landfill redevelopment could be intended as the beginning of a new life cycle for the site, corresponding to a kick off action for achieving environmental and socio-economic development. This is the purpose of the Sufalnet Project (Sustainable Use of Former and Abandoned Landfill that defines a new approach for landfill redevelopment in form of model strategy by which reducing both the risk of the project failure and of the environmental pollution. Model strategy acts as cultural device for managing redevelop- ment process and its complexity.

  12. Using offsets to mitigate environmental impacts of major projects: A stakeholder analysis.

    Science.gov (United States)

    Martin, Nigel; Evans, Megan; Rice, John; Lodhia, Sumit; Gibbons, Philip

    2016-09-01

    Global patterns of development suggest that as more projects are initiated, business will need to find acceptable measures to conserve biodiversity. The application of environmental offsets allows firms to combine their economic interests with the environment and society. This article presents the results of a multi-stakeholder analysis related to the design of offsets principles, policies, and regulatory processes, using a large infrastructure projects context. The results indicate that business was primarily interested in using direct offsets and other compensatory measures, known internationally as indirect offsets, to acquit their environmental management obligations. In contrast, the environmental sector argued that highly principled and scientifically robust offsets programs should be implemented and maintained for enduring environmental protection. Stakeholder consensus stressed the importance of offsets registers with commensurate monitoring and enforcement. Our findings provide instructive insights into the countervailing views of offsets policy stakeholders. PMID:27173891

  13. MITIGATION OF RISKS OF MAPPING COMPLEX DATA SOURCES ON THE EXAMPLE OF SOLVENCY II PROJECT

    OpenAIRE

    Abrahamyan, Nazeli

    2015-01-01

    The purpose of this diploma thesis is to describe the basic principles of Business Intelligence, its meaning in business reporting with focus on ensuring relevant information for stakeholders and consequently to identify the major risk factors in complex data mapping process of a project carried out for an insurance company Solvency II regulatory reporting. The identification of risks is based on a detailed analysis of the mapping process and its weak points. The main benefit of the thesis wi...

  14. Risk security and soil loss mitigation: the EU case study of the Sufalnet Project

    OpenAIRE

    Marina Rigillo

    2014-01-01

    Former and abandoned landfills represent a good opportunity for producing new impervious surfaces for the urban environment, contrasting soil loss (specially the agricultural one) and improving the recovery of brownfield. From such perspective, landfill redevelopment could be intended as the beginning of a new life cycle for the site, corresponding to a kick off action for achieving environmental and socio-economic development. This is the purpose of the Sufalnet Project (Sustainable Use of F...

  15. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the

  16. Forestry for mitigating the greenhouse effect : an ecological and economic assessment of the potential of land use to mitigate CO2 emissions in the Highlands of Chiapas, Mexico

    NARCIS (Netherlands)

    Jong, de B.H.J.

    2000-01-01

    The present study intends to answer some of the important questions that arise when translating projects that have an ecological potential to mitigate carbon excesses, into actual implementation of these projects in a farmer-dominated landscape. Farm and community forestry projects for greenhouse ga

  17. Carbon Disclosure Project. Climate Change and Shareholder Value In 2004

    International Nuclear Information System (INIS)

    On 1st November 2003, the Carbon Disclosure Project (CDP) issued a second information request to the FT500 Global Index companies. 95 institutional investors representing assets in excess of $10 trillion are signatories to the request, which asked for disclosure of investment-relevant information relating to the risks and opportunities presented by climate change. Full details of the responses and reports can be found at www.cdproject.net

  18. Fabrication and Characterization of Carbon Nanocomposite Photopolymers via Projection Stereolithography

    OpenAIRE

    Campaigne III, Earl Andrew

    2014-01-01

    Projection Stereolithography (PSL) is an Additive Manufacturing process that digitally patterns light to selectively expose and layer photopolymer into three dimensional objects. Nanomaterials within the photopolymer are therefore embedded inside fabricated objects. Adding varying concentrations of multi-walled carbon nanotubes (MWCNT) to the photopolymer may allow for the engineering of an objects tensile strength and electric conductivity. This research has two goals (i) the fabrication of...

  19. Using Design as Boundary Spanner Object in Climate Change Mitigation Projects

    Directory of Open Access Journals (Sweden)

    Walter Fernandez

    2010-01-01

    Full Text Available Climate change is a growing concern for society and the focus of numerous research initiatives across multiple fields of science. These initiatives often need to capitalize on the cross-specialized knowledge contributed by researchers from very different fields. The diversity of worldviews among key stakeholders requires an effective overall design strategy acting as a boundary spanner object. This study presents an account of the issues faced by a multidisciplinary research project and discusses the suitability of a design approach to help address issues such as equality, empowerment, autonomy, creativity, performance, reduction of innovation cycle times and also provide for the necessary balance between control, speediness and flexibility.

  20. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chris A. (Montana Department of Fish, Wildlife and Parks, Helena, MT); Summerfield, Bob; Young, Lewis (Kootenai National Forest, Libby, MT)

    1987-02-01

    This report summarizes the results of the project activities from September 1, 1984 to December 31, 1986. To date, habitat treatments have been initiated on eight areas. The treatments include selective slash and burn, prescribed fire and fertilization. Inclement weather precluded the completion of the prescribed burns scheduled during fall 1985 and fall 1986. The lower Stonehill prescribed fire was rescheduled from fall 1985 to spring 1986 with the burn accomplished, producing varied results. Extensive pretreatment vegetative information has been collected from all units scheduled for habitat manipulations. Additionally, future projects have been delineated for other areas frequented by bighorn sheep. Ten adult bighorn sheep (5 ewes and 5 rams) have been fitted with radio transmitters. Systematic aerial and ground surveys were utilized to monitor the movements and seasonal habitat preferences of the instrumented sheep. Age and sex information was gathered whenever possible to aid in the development of a population model, Monthly pallet group collections were initiated in May 1985 to provide samples for 2.6 diaminopimetic acid (DAPA), food habits and lungworm larvae analysis. The majority of the data analysis is ongoing and will be presented in later reports.

  1. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  2. Mitigation options in forestry, land-use change and biomass burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.L. [Univ. of California, Lawrence Berkeley National Lab. (United States)

    1998-10-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs.

  3. Mitigation options in forestry, land-use change and biomass burning in Africa

    International Nuclear Information System (INIS)

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs

  4. Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Calatroni, Sergio; Chiggiato, Paolo; Costa Pinto, Pedro; Marques, Hugo; Neupert, Holger; Taborelli, Mauro; Vollenberg, Wilhelmus; Wevers, Ivo; Yaqub, Kashif

    2010-01-01

    Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as the SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon (a-C) coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.95 and 1.05 after air transfer to the measuring instrument. After 1 month of air exposure the SEY rises by 10 - 20 % of the initial values. Storage in desiccator or by packaging in Al foil makes this increase negligible. The coatings have a similar X-ray photoelectron spectroscopy (XPS) C1s spectrum for a large set of deposition parameters and exhibit an enlarged linewidth compared to HOPG graphite. The static outgassing witho...

  5. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    International Nuclear Information System (INIS)

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600–700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial. (letters)

  6. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  7. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  8. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Science.gov (United States)

    Liao, Chengzhang; Luo, Yiqi; Fang, Changming; Li, Bo

    2010-01-01

    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1) in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation. PMID:20523733

  9. Mitigating and Tracking Black Carbon Exposure at Schools in the Mountain View Corridor of Salt Lake City

    Science.gov (United States)

    Roberts, P. T.; Brown, S. G.; Vaughn, D.; DeWinter, J. L.

    2015-12-01

    Black carbon (BC) is a short lived climate forcer and is associated with human health effects. We measured BC inside and outside at four schools in Salt Lake City during two studies in 2011-2014. In addition, PM2.5 was measured indoor and outdoor at one school, and gaseous air toxics outdoor at one school. The schools are within 500 m of a planned major freeway, and two of them will adjoin the freeway. The objectives included determining the outdoor and indoor concentrations of BC, the likely sources of BC, and once the freeway is built, the change in ambient BC at the schools. We determined the current state of air quality outdoors at these schools, to provide baseline data for comparison when the major freeway is operational, and indoors as a baseline before installing improved filtration to reduce BC in classrooms. Using MATES IV cancer risk values, we found that diesel particulate matter, as indicated by ambient, outdoor BC measurements, was responsible for 84% of the cancer risk at the schools. The HVAC system was moderately effective at filtrating PM mass (73% reduction), but very poor at filtering BC (7%-34% reduction), indicating that air toxics risk is similar indoors and outdoors. Improved filtration devices could potentially mitigate this risk, and improved filtration systems have been recommended for the schools. Lastly, we used the difference in absorption at two Aethalometer channels to determine that the majority of BC (> 90%) during the spring through fall is from fossil fuel emissions.

  10. Mitigate cross-cultural pragmatic failure in interpretation with project-based learning

    Institute of Scientific and Technical Information of China (English)

    冯瑞玲

    2012-01-01

    Mistakes in interpretation are concerned with not merely poor language competence but also incapability of smooth crosscultural communication, which indicates that interpreters should be more competent in pragmatics consistent to the cultural models of relevance. The analysis demonstrates the importance of understanding cross-cultural pragmatics and some implications for teaching, particularly in the EIaL environment. Project-based learning, conforming to the requirements of personnel training against the background of globalization, can well serve the goal of developing students' overall cross-cultural communication competence in interpretation courses, when culture and its impacts on pragmatic competence of interpretation are not left out in both the in-class and after-class activities, but are dealt with in a sensitive and open-minded way.

  11. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    Science.gov (United States)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  12. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    Science.gov (United States)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-04-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg‑1 dry weight soil, dws season‑1 to 112.2 mg kg‑1 dws season‑1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  13. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change.

    Science.gov (United States)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg(-1) dry weight soil, dws season(-1) to 112.2 mg kg(-1) dws season(-1)) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  14. Advanced CO2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Phillips, Adrienne [Montana State Univ., Bozeman, MT (United States)

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  15. What is Carbon? Conceptualising carbon and capabilities in the context of community sequestration projects in the global South

    OpenAIRE

    Twyman, Chasca; Smith, Thomas; Arnall, Alex

    2015-01-01

    Carbon has been described as a ‘surreal commodity.’ While carbon trading, storage, sequestration, and emissions have become a part of the contemporary climate lexicon, how carbon is understood, valued, and interpreted by actors responsible for implementing carbon sequestration projects is still unclear. In this review paper, we are concerned with how carbon has come to take on a range of meanings. In particular, we appraise what is known about the situated meanings that people involved in del...

  16. Carbon Disclosures: Comparability, the Carbon Disclosure Project and the Greenhouse Gas Protocol

    Directory of Open Access Journals (Sweden)

    Jane Andrew

    2011-12-01

    Full Text Available Corporate carbon disclosures have become increasingly commonplace and are often presented as a useful voluntary mechanism for internal and external decision making. The production of the data is said to assistcorporations position themselves strategically in terms of the carbon risks and opportunities they may face. External to the firm, carbon disclosures hold the promise of assisting capital allocation decisions that are ‘carbon responsible’. It is claimed that the process of disclosure can sensitise the market to globalenvironmental problems such as climate change. In order to consider these claims, the broad purpose of this paper is to question whether the voluntary information that is produced can live up to its expectations and provide a meaningful basis for climate change related decision making. To that end, this exploratory studyexamines the carbon disclosures of Australasian mining companies over three years in compliance with a voluntary carbon disclosure regime – the Carbon Disclosure Project (CDP – and assesses those disclosureswith respect to comparability, an important criterion for information usefulness.

  17. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  18. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  19. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  20. Establishing the Framework of Assessing the Development Process of Chinese Forest Carbon Offset Projects

    OpenAIRE

    Wang, Jue

    2015-01-01

    Forest carbon offset projects have been growing vigorously in China in the last ten years. It is necessary to form an overall picture of the projects, to analyze the quality of their development processes, and to shed light on the development of upcoming projects. In order to evaluate their development process, a framework of assessment was built up and applied in practical project assessment. In this thesis, firstly, the situation of the global carbon markets and Chinese forest carbon of...

  1. Towards a comparable carbon footprint for local initiatives: The FP7 project TESS

    Science.gov (United States)

    Reusser, Dominik E.; Kropp, Jürgen P.

    2014-05-01

    TESS (Towards European Societal Sustainability -- www.tess-transition.eu) is a three-year, European-wide research project. It aims to reach an understanding of the potential for community-led initiatives to help deliver a truly sustainable, low-carbon future. Transitions to low-carbon societies take place at multiple and complementary scales. Transition processes are highly dependent on the innovative potential of community-based initiatives and their articulation with appropriate institutional architecture. Community-based initiatives are potentially more adaptable and less constrained by current structural circumstances than top-down policies and can give impetus to large-scale and technology driven changes. TESS will provide an understanding on the upscaling possibilities of such high-potential community-based initiatives by addressing two main questions: What is the impact of community-based initiatives in terms of carbon reduction potential and economic effect? What institutional structures (values, policies and mechanisms) support these initiatives in persisting beyond the initial phase and moving into an acceleration phase, spreading desired impacts? Answers will be provided through (1) a novel measuring, reporting and verification (MRV) framework for benchmarking community-based initiatives. This will enable quantifiable, comparable and standardised evaluation, and (2) the identification of success factors for the emergence, persistence and diffusion of promising initiatives, including online initiatives. We will identify these initiatives through case studies across regions and sectors and produce a systemic understanding of their impact on societal transitions towards sustainability. Our research will be integrated and transdisciplinary, with the unique opportunity to bring together social and natural scientists to foster a transition towards European societal sustainability. Our work will feed into and extend the Climate Adapt database to facilitate

  2. Progress report to the Iowa Department of Natural Resources : Carbon Sequestration Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report on carbon sequestration studies in progress at Neal Smith National Wildlife Refuge. The objectives of the project are to: estimate carbon...

  3. Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects

    International Nuclear Information System (INIS)

    This paper introduces, explains, and describes methods for addressing the issues of permanence, leakage, and additionality (PLA) of agricultural soil carbon sequestration (ASCS) activities at the project level. It is important to cast these as project-level issues, because they relate to the integrity and consistency of using location-specific ASCS projects as an offset against GHG emissions generated in other sectors (e.g., energy). The underlying objective is to understand and quantify what the net carbon benefits of an ASCS project are once we account for the fact that (1) the sequestered carbon may be stored impermanently, (2) the project may displace emissions outside the project boundaries (leakage), and (3) the project's carbon sequestration may not be entirely additional to what would have occurred anyway under business-as-usual (no project) conditions. This article evaluates methods for identifying and estimating PLA and gauges the potential magnitude of these effects on the economic returns to a project

  4. Socioeconomic monitoring and mitigation plan for the Salt Repository Project Site, Deaf Smith County, Texas: Revision 5: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    The purpose of the Socioeconomic Monitoring and Mitigation Plan (SMMP) is to identify, in consultation with the affected States and Indian Tribes, potentially significant adverse socioeconomic impacts that could result from site characterization activities, to describe approaches that will be used to monitor any such identified impacts, and to describe procedures for mitigating them. Chapter 3 of the SMMP provides a description of site characterization phase activities planned to assess the geologic condition of the site and construction the exploratory shafts and surface support facilities. The rationale for developing socioeconomic monitoring studies is presented in Chapter 4. Chapter 5 contains descriptions of the socioeconomic monitoring and mitigation procedures whenever they are applicable. Additionally, in Chapter 6, the SMMP includes a procedure for modifying the monitoring and mitigation program and an approach for reporting monitoring results to interested parties. 8 refs., 20 figs., 4 tabs.

  5. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    Energy Technology Data Exchange (ETDEWEB)

    ERMI, A.M.

    2000-01-24

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.

  6. Socioeconomic monitoring and mitigation plan for the Salt Repository Project Site, Deaf Smith County, Texas: Revision 5: Draft

    International Nuclear Information System (INIS)

    The purpose of the Socioeconomic Monitoring and Mitigation Plan (SMMP) is to identify, in consultation with the affected States and Indian Tribes, potentially significant adverse socioeconomic impacts that could result from site characterization activities, to describe approaches that will be used to monitor any such identified impacts, and to describe procedures for mitigating them. Chapter 3 of the SMMP provides a description of site characterization phase activities planned to assess the geologic condition of the site and construction the exploratory shafts and surface support facilities. The rationale for developing socioeconomic monitoring studies is presented in Chapter 4. Chapter 5 contains descriptions of the socioeconomic monitoring and mitigation procedures whenever they are applicable. Additionally, in Chapter 6, the SMMP includes a procedure for modifying the monitoring and mitigation program and an approach for reporting monitoring results to interested parties. 8 refs., 20 figs., 4 tabs

  7. Carbon accounting and cost estimation in forestry projects using CO2Fix V.3

    OpenAIRE

    Groen, T.A.; Nabuurs, G.J.; Schelhaas, M.J.

    2006-01-01

    Carbon and financial accounting of projects in the Land Use, Land-Use Change and Forestry sector is a topic of hot debate. Large uncertainty remains concerning the carbon dynamics, the way they should be accounted and the cost efficiency of the projects. Part of the uncertainty can be alleviated by standardisation and transparency of reporting methods. For this reason we further developed CO2FIX, a forest ecosystem carbon model, with modules for carbon and financial accounting. The model is a...

  8. Projected impacts to the production of outdoor recreation opportunities across US state park systems due to the adoption of a domestic climate change mitigation policy

    International Nuclear Information System (INIS)

    Highlights: • A technical efficiency model identifies where state park systems can be improved. • The technical efficiency model is joined with output of CC policy simulations. • Shifts in operating expenditure under the CC mitigation policy are estimated. • Results reveal substantial variability across states. • Increasing technical efficiency is the best solution to adapt to CC policy impacts. - Abstract: Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the

  9. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  10. Application of a Fused Carbon Nanomaterial Filter for Lunar Dust Abatement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Technologies will further test and develop its patented carbon nanotube filtration technology to NASA's Lunar Exploration challenges. This project focuses on...

  11. Socioeconomic Factors Affecting Farmers’ Awareness of Clean Development Mechanism Projects: Case of Smallholder Forest Carbon Projects

    Directory of Open Access Journals (Sweden)

    Oscar I. Ayuya

    2011-05-01

    Full Text Available The objective of the study was to identify the socio-economic and institutional factors which influence the level of awareness of Clean Development Mechanism (CDM projects and in so doing to highlight the policy implications for the stakeholders when designing clean development mechanism projects among smallholder farmers. Findings shows that 23% of the farmers were correctly aware of the project and the results of the ordered logit model indicate that age, gender, education level, group membership, existence of tree farming and contact with extension services was found to influence awareness level of smallholder forest Carbon projects. To assist the community to adapt to climate change and produce sufficiently on a sustainable basis and achieve the desired food security under climate change challenges, the study recommends policies to increase awareness of such agro-environmental initiatives and that of extension providers should distinguish their clientele anchored on vital demographic characteristics such as age and gender. If the probability of younger farmers to be aware this initiative is higher, extension communications should be directed to such age group, particularly during initial stages project information dissemination.

  12. The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics

    International Nuclear Information System (INIS)

    Highlights: • Exchanging methane for carbon dioxide emissions affects peak global warming. • Economic constraints severely affects exchange possibilities. • Chosen metric determines if economic to eliminate all removable methane emissions. • If all methane emissions could be removed, this could aid meeting two-degrees warming target. - Abstract: Greenhouse gas emissions associated with Representative Concentration Pathway RCP2.6 could limit global warming to around or below a 2 °C increase since pre-industrial times. However this scenario implies very large and rapid reductions in both carbon dioxide (CO2) and non-CO2 emissions, and suggests a need to understand available flexibility between how different greenhouse gases might be abated. There is a growing interest in developing a greater understanding of the particular role of shorter lived non-CO2 gases as abatement options. We address this here through a sensitivity study of different methane (CH4) emissions pathways to year 2100 and beyond, by including exchanges with CO2 emissions, and with a focus on related climate and economic advantages and disadvantages. Metrics exist that characterise gas equivalence in terms of climate change effect per tonne emitted. We analyse the implications of CO2 and CH4 emission exchanges under two commonly considered metrics: the 100-yr Global Warming Potential (GWP-100) and Global Temperature Potential (GTP-100). This is whilst keeping CO2-equivalent emissions pathways fixed, based on the standard set of emissions usually associated with RCP2.6. An idealised situation of anthropogenic CH4 emissions being reduced to zero across a period of two decades and with the implementation of such cuts starting almost immediately gives lower warming than for standard RCP2.6 emissions during the 21st and 22nd Century. This is despite exchanging for higher CO2 emissions. Introducing Marginal Abatement Cost (MAC) curves provides an economic assessment of alternative gas reduction

  13. Recent results from the carbon fusion project at Notre Dame

    Science.gov (United States)

    Bucher, Brian; Notani, Masahiro; Alongi, Adam; Browne, Justin; Cahillane, Craig; Dahlstrom, Erin; Davies, Paul; Fang, Xiao; Lamm, Larry; Ma, Chi; Moncion, Alexander; Tan, Wanpeng; Tang, Xiao-Dong; Thomas, Spencer

    2012-11-01

    The carbon fusion project at Notre Dame is aimed towards measuring the 12C+12C fusion cross section and its decay branches relevant to astrophysics down to the lowest possible energies. To complement this approach, we are also exploring new techniques for providing more reliable extrapolations of the cross sections in the energy ranges where experimental data are unavailable. In this paper, we report two recent results: 1) an upper limit for the 12C+12C fusion cross section, and 2) a new measurement of 12C(12C,n) along with an improved extrapolation technique based on the mirror reaction channel, 12C(12C,p). The outlook for astrophysical heavy-ion fusion studies at Notre Dame is also discussed.

  14. Recent results from the carbon fusion project at Notre Dame

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, Brian; Notani, Masahiro; Alongi, Adam; Browne, Justin; Cahillane, Craig; Dahlstrom, Erin; Davies, Paul; Fang Xiao; Lamm, Larry; Ma Chi; Moncion, Alexander; Tan Wanpeng; Tang Xiaodong; Thomas, Spencer [Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556-5670 (United States)

    2012-11-12

    The carbon fusion project at Notre Dame is aimed towards measuring the {sup 12}C+{sup 12}C fusion cross section and its decay branches relevant to astrophysics down to the lowest possible energies. To complement this approach, we are also exploring new techniques for providing more reliable extrapolations of the cross sections in the energy ranges where experimental data are unavailable. In this paper, we report two recent results: 1) an upper limit for the {sup 12}C+{sup 12}C fusion cross section, and 2) a new measurement of {sup 12}C({sup 12}C,n) along with an improved extrapolation technique based on the mirror reaction channel, {sup 12}C({sup 12}C,p). The outlook for astrophysical heavy-ion fusion studies at Notre Dame is also discussed.

  15. Recent results from the carbon fusion project at Notre Dame

    International Nuclear Information System (INIS)

    The carbon fusion project at Notre Dame is aimed towards measuring the 12C+12C fusion cross section and its decay branches relevant to astrophysics down to the lowest possible energies. To complement this approach, we are also exploring new techniques for providing more reliable extrapolations of the cross sections in the energy ranges where experimental data are unavailable. In this paper, we report two recent results: 1) an upper limit for the 12C+12C fusion cross section, and 2) a new measurement of 12C(12C,n) along with an improved extrapolation technique based on the mirror reaction channel, 12C(12C,p). The outlook for astrophysical heavy-ion fusion studies at Notre Dame is also discussed.

  16. Indian methane and nitrous oxide emissions and mitigation flexibility

    Science.gov (United States)

    Garg, Amit; Shukla, P. R.; Kapshe, Manmohan; Menon, Deepa

    Methane (CH 4) and nitrous oxide (N 2O) contributed 27% and 7%, respectively, to India's CO 2 equivalent greenhouse gas (GHG) emissions in 2000, the remaining being the carbon dioxide (CO 2) emissions. Presently, agriculture and livestock related emissions contribute above 65% of Indian CH 4 emissions and above 90% of N 2O emissions. Since these activities are widely dispersed, with a considerable portion being sub-sustenance activities, emission mitigation requires considerable efforts. We use geographical information system (GIS) interfaced Asia-Pacific Integrated Model (AIM/Enduse), which employs technology share projections, for estimating future CH 4 and N 2O emissions. The future emissions and mitigation flexibility are analyzed for a reference scenario and two mitigation scenarios (medium and strong). Future CH 4 emissions in 2030 are projected to reach 24.4 Tg (reference scenario), 21.3 Tg (medium mitigation scenario) and 17.6 Tg (strong mitigation scenario). Future CH 4 emission scenarios indicate rising shares of municipal solid waste (MSW) and coal bed methane, where mitigation technologies have good penetration potential. Improved cattle feed and digesters, and better rice paddy cultivation practices that are adopted for higher yields and improved irrigation coverage also offer CH 4 mitigation as ancillary benefits. Future N 2O emissions in 2030 are projected to reach 0.81 Tg (reference scenario), 0.69 Tg (medium mitigation scenario) and 0.6 Tg (strong mitigation scenario). Better utilization of nitrogen fertilizer and increased use of organic fertilizers, partly produced from MSW, offer interesting mitigation opportunities for N 2O emissions. Some of these technology initiatives are already visible in India at different stages of development and appropriate policy thrust may strengthen them in future.

  17. The Effect of the Hayward Corridor Improvement Project on Carbon Monoxide Emission

    Science.gov (United States)

    Muhlfelder, M.; Martinez, E.; Maestas, A.; Peek, A.

    2013-12-01

    In August of 2010, construction began on a stretch of road in Downtown Hayward to address a problem with traffic flow. Known as the Hayward Corridor, the project reshaped the flow of traffic, replacing the two way streets of Foothill, Mission, and A Street with a loop between them. This project began with the initiative of reducing congestion in this area and improving access to businesses for pedestrians. The project was expected to have little environmental impact in most common assessments of degree of effect, including particulate matter, ozone and carbon monoxide levels. This report will discuss the effect of the Hayward Corridor Improvement Project on carbon monoxide emission. Data available to the public in the project's Environmental Impact Report shows that carbon monoxide levels before construction began were at an acceptable level according to federal and state standards. Projections for future concentrations both with and without the project show a decrease in carbon monoxide levels due to technological improvements and the gradual replacement of older, less efficient vehicles. The Environmental Impact Report projected that there would be little difference in carbon monoxide levels whether the project took place or not, at an average of 1.67x102 fewer parts per million per 1 hour period of measurement emitted in the case of the project not taking place. While it is not possible to draw a conclusion on what the current carbon monoxide levels would be if the project had not taken place due to the changes in traffic flow and other surrounding roads as a result of the project, the data gathered in June of 2013 suggested that carbon monoxide levels are higher than the values projected in 2007. This report summarizes both the accuracy of these carbon monoxide level projections and the effect of construction on carbon monoxide levels in the Hayward Corridor and the surrounding area.

  18. Review of the Policy and Legal Framework for Implementing Clean Development Mechanism Projects in Uganda and its Implications for Climate Change Mitigation - Comment

    Directory of Open Access Journals (Sweden)

    Mabasi Thadeus

    2008-09-01

    Full Text Available This paper reviews the policy and legal framework for the implementation of CDM projects in Uganda and its implications for climate change mitigation. It gives a background to climate change in Uganda and notes that climate change in Uganda can largely be attributed to unsustainable utilisation of the natural resources which has led to over exploitation and total loss of some of the natural resources. The paper reviews the international legal regime for climate change and its significance for climate change mitigation in Uganda and observes that Uganda has implemented the UNFCCC and the Kyoto Protocol in accordance with the principles of common but differentiated responsibilities and the precautionary principle. This has for instance culminated in the carrying out of a National Inventory of Sources and Sinks of Greenhouse gases. The role of CDM in climate change mitigation is explored by examining the key CDM projects that have been implemented in Uganda. The key finding of the paper is that Uganda does not have an independent policy or law which deals with CDM and recommends that such policy and legal inadequacies should urgently be addressed.

  19. SAGA-HIMAT project for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Project of SAGA Heavy Ion Medical Accelerator in Tosu (SAGA HIMAT) is promoted by Saga prefecture with private financial supports, investments, and also personal donations. With this funding, facility construction is conducted by a collaboration of SAGA-HIMAT foundation and SAGA HIMAT company. The facility is constructing in Tosu-shi near Shinn-Tosu shinkansen station, which has easy access from Kyushu island area and also south west Japan. In the facility, there are three treatment rooms, where first one has been equipped with horizontal and 45 degree oblique beam lines, second one has horizontal and vertical beam lines, and third one is for future preparation of spot scanning irradiation system. Design of an accelerator itself is same as a therapy facility at Gunma University, i.e., acceleration ion is carbon, maximum beam energy is 400MeV/u, and maximum beam intensity is 1.3x109pps. An injection line to a synchrotron and transport lines to three treatment rooms had been rearranged. Designs of the accelerator and an irradiation system have started at beginning of 2010, and the construction of a facility building has started at beginning of this year (2011). Installations of accelerator devices are expected to start at beginning of 2012, and the facility is planned to complete in 2013. In this paper, we present our project and current status of the facility construction. (author)

  20. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  1. Burlington Bottoms Wildlife Mitigation Project. Final environmental assessment/management plan and finding of no significant impact

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property

  2. Multifunctional Carbon Electromagnetic Materials, Motors, and Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposal is to apply multifunctional carbon electromagnetic materials, including carbon nanotube electrical thread (replaces copper wire) and...

  3. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  4. Carbon accounting and cost estimation in forestry projects using CO2Fix V.3

    NARCIS (Netherlands)

    Groen, T.A.; Nabuurs, G.J.; Schelhaas, M.J.

    2006-01-01

    Carbon and financial accounting of projects in the Land Use, Land-Use Change and Forestry sector is a topic of hot debate. Large uncertainty remains concerning the carbon dynamics, the way they should be accounted and the cost efficiency of the projects. Part of the uncertainty can be alleviated by

  5. Soil carbon stocks of Jordan and projected changes upon improved management of croplands

    NARCIS (Netherlands)

    Batjes, N.H.

    2006-01-01

    Inventories of carbon stocks and projected changes at national scale are needed in the context of the Framework Convention on Climate Change (UNFCCC), but uncertainties in the necessary soil data remain large. Soil organic carbon (SOC) and inorganic carbon (SIC) reserves in Jordan were estimated usi

  6. Possibilities for carbon sequestration in Irish forests. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Byrne K.A.

    2000-01-01

    Full Text Available Ireland has a rapidly expanding forest estate which covers some 9/ of the land area. It is government policy to increase this to 17/ by the year 2030. Preliminary studies suggest that forestry activities have the potential to contribute significantly to the mitigation of greenhouse gas emissions. Although some studies have been carried out the determination of the carbon stores and sinks in Irish forests will require a considerable research effort in the future. A key aspect of such studies will be field based studies which measure all components of the carbon cycle and their relationship to climatic and environmental conditions as well as management practices. Many of these issues will be addressed in the recently announced research programme of the Council for Forest Research and Development (COFORD.

  7. Carbon-Carbon High Melt Coating for Nozzle and Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — C-CAT, which has proven carbon-carbon fabrication capabilities, will investigate use of ACC-6 High Melt oxidation protective system on carbon-carbon for use on the...

  8. Convergent modeling of past soil organic carbon stocks but divergent projections

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2015-03-01

    Full Text Available Soil carbon models are important tool to understand soil carbon balance and project carbon stocks in terrestrial ecosystems, particularly under global change. The initialization and/or parameterization of soil carbon models can vary among studies even when the same model and dataset are used, causing potential uncertainties in projections. Although a few studies have assessed such uncertainties, it is yet unclear what these uncertainties are correlated with and how they change across varying environmental and management conditions. Here, applying a process-based biogeochemical model to 90 individual field experiments (ranging from 5 to 82 years of experimental duration across the Australian cereal-growing regions, we demonstrated that well-designed calibration procedures enabled the model to accurately simulate changes in measured carbon stocks, but did not guarantee convergent forward projections (100 years. Major causes of the projection uncertainty were due to insufficient understanding of how microbial processes and soil carbon composition change to modulate carbon turnover. For a given site, the uncertainty significantly increased with the magnitude of future carbon input and years of the projection. Across sites, the uncertainty correlated positively with temperature, but negatively with rainfall. On average, a 331% uncertainty in projected carbon sequestration ability can be inferred in Australian agricultural soils. This uncertainty would increase further if projections were made for future warming and drying conditions. Future improvement in soil carbon modeling should focus on how microbial community and its carbon use efficiency change in response to environmental changes, better quantification of composition of soil carbon and its change, and how the soil carbon composition will affect its turnover time.

  9. Simulation of Long-Term Carbon and Nitrogen Dynamics in Grassland-Based Dairy Farming Systems to Evaluate Mitigation Strategies for Nutrient Losses.

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas Shah

    Full Text Available Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological interactions and emission measurements, most experiments focus on analysis of short-term effects of isolated mitigation practices. Here we present a model that allows simulating long-term effects at the whole-farm level of combined measures related to grassland management, animal housing and manure handling after excretion, during storage and after field application. The model describes the dynamics of pools of organic carbon and nitrogen (N, and of inorganic N, as affected by farm management in grassland-based dairy systems. We assessed the long-term effects of delayed grass mowing, housing type (cubicle and sloping floor barns, resulting in production of slurry and solid cattle manure, respectively, manure additives, contrasting manure storage methods and irrigation after application of covered manure. Simulations demonstrated that individually applied practices often result in compensatory loss pathways. For instance, methods to reduce ammonia emissions during storage like roofing or covering of manure led to larger losses through ammonia volatilization, nitrate leaching or denitrification after application, unless extra measures like irrigation were used. A strategy of combined management practices of delayed mowing and fertilization with solid cattle manure that is treated with zeolite, stored under an impermeable sheet and irrigated after application was effective to increase soil carbon stocks, increase feed self-sufficiency and reduce losses by ammonia volatilization and soil N losses. Although long-term datasets (>25 years of farm nutrient dynamics and loss flows are not available to validate the model, the model is firmly based on knowledge of

  10. Enhanced Practical Photosynthetic CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  11. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  12. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    Science.gov (United States)

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  13. Essays on mitigation options

    OpenAIRE

    Peinl, Hannes

    2015-01-01

    Die kumulative Dissertation "Essays on mitigation options" untersucht in drei Artikeln Wälder, Erneuerbare Energien sowie technologische Treibhausgassenken (carbon capture and storage (CCS) als wesentliche Vermeidungsoptionen im Kontext des Klimawandels. Der erste Artikel analysiert im Rahmen eines forstökonomischen, dynamischen Partialmodells grundlegende theoretische Bedingungen einer erweiterten forstlichen Kohlenstoffeinspeicherung. Der zweite Artikel untersucht im Rahmen eines allgemeine...

  14. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    Energy Technology Data Exchange (ETDEWEB)

    ERMI, A.M.

    1999-08-25

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation, The original system was designed and implemented by LANL, supplied to WHC, and turned over to LMHC for operation. In 1999, the hardware and software were upgraded to provide a state-of-the-art, Year-2000 compliant system.

  15. Mini Total Organic Carbon Analyzer (miniTOCA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Total Organic Carbon (TOC) analyzers function by converting (oxidizing) all organic compounds (contaminants) in the water sample to carbon dioxide gas (CO2), then...

  16. Strategizing Carbon-Neutral Mines: A Case for Pilot Projects

    OpenAIRE

    Ian M. Power; Jenine McCutcheon; Anna L. Harrison; Wilson, Siobhan A; Dipple, Gregory M.; Simone Kelly; Colette Southam; Gordon Southam

    2014-01-01

    Ultramafic and mafic mine tailings are a valuable feedstock for carbon mineralization that should be used to offset carbon emissions generated by the mining industry. Although passive carbonation is occurring at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond and Mount Keith nickel mines, there remains untapped potential for sequestering CO2 within these mine wastes. There is the potential to accelerate carbonation to create economically viable, large-scale CO2 fixati...

  17. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  18. Implementation of forest cover and carbon mapping in the Greater Mekong subregion and Malaysia project - A case study of Thailand

    Science.gov (United States)

    Pungkul, S.; Suraswasdi, C.; Phonekeo, V.

    2014-02-01

    The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.

  19. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Among the...

  20. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  1. An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on Asian Modeling Exercise scenarios

    International Nuclear Information System (INIS)

    This paper presents an evaluation of global warming mitigation options based on scenarios from the Asian Modeling Exercise. Using an extended version of the integrated assessment model MARIA-23 (Multiregional Approach for Resource and Industry Allocation), we analyze nuclear fuel recycling options, carbon capture and storage technologies (CCS), and biomass utilization. To assess the potential implications of decreased social acceptance of nuclear power in the wake of the Fukushima nuclear accident, additional scenarios including a nuclear power expansion limitation, are analyzed. We also evaluate MARIA-23 model simulation estimates of long-term contributions and interrelationships among nuclear power, biomass, and CCS. Finally, potential costs of nuclear limitation under carbon control policies are assessed. The simulation results in this paper suggest the following: (1) under the reference scenario, global GDP losses in climate limitation scenarios range from 1.3% per year to 3.9% per year in 2060, rising to between 3.5% per year and 4.5% per year in 2100; (2) the use of nuclear fuel reprocessing technologies increase rapidly in all carbon control policy scenarios; (3) under a scenario where the price of CO2 is $30 and nuclear power expansion is strictly limited, GDP losses increase significantly—from 4.5% per year to 6.4% per year by 2100; (4) nuclear power and CCS are substitute mitigation technologies. With nuclear power technology available CCS deployment reaches approximately 15,000 Mt-CO2 per year by 2010; without a nuclear power option, CCS deployment rises to more than 80,000 Mt-CO2 per year; and (5) biomass utilization cannot fully compensate for limitations to nuclear power expansion in policy scenarios. In addition to examining the role of these three technologies on global scales, we report results for several major Asian regions, namely Japan, China, and India. China tends to deploy nuclear power (if available) in response to rapidly growing power

  2. Management of water extracted from carbon sequestration projects

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods

  3. Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)

    Science.gov (United States)

    Heimann, M.

    2014-01-01

    Becker et al. (2013) argue that an afforestation of 0.73 × 109 ha with Jatropha curcas plants would generate an additional terrestrial carbon sink of 4.3 PgC yr-1, enough to stabilise the atmospheric mixing ratio of carbon dioxide (CO2) at current levels. However, this is not consistent with the dynamics of the global carbon cycle. Using a well-established global carbon cycle model, the effect of adding such a hypothetical sink leads to a reduction of atmospheric CO2 levels in the year 2030 by 25 ppm compared to a reference scenario. However, the stabilisation of the atmospheric CO2 concentration requires a much larger additional sink or corresponding reduction of anthropogenic emissions.

  4. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-24

    This document provides descriptions of components and tasks that are involved in the computer system for the data acquisition and control of the mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los alamos National Laboratory and supplied to Westinghouse Hanford Company. The computers (both personal computers and specialized data-taking computers) and the software programs of the system will hereafter collectively be referred to as the DACS (Data Acquisition and Control System).

  5. Desorption experiments and modeling of micropollutants on activated carbon in water phase: application to transient concentrations mitigation

    OpenAIRE

    Bourneuf, Séda; Jacob, Matthieu; Albasi, Claire; Sochard, Sabine; Richard, Romain; Manero, Marie-Hélène

    2016-01-01

    International audience Experimental studies and numerical modeling were conducted to assess the feasibility of a granular activated carbon column to buffer load variations of contaminants before wastewater treatment devices. Studies of cycles of adsorption, and more especially desorption, of methyldiethanolamine (MDEA) and 2,4-dimethylphenol (2,4-DMP) have been carried out on granular activated carbon (GAC). Dynamic variations of contaminants concentrations were run at several conditions o...

  6. 碳交易与碳税兼容性分析--兼论中国减排路径选择%Study on the Pathway of China to Mitigate Emissions Based on the Compatibility of Carbon Tax and ETS

    Institute of Scientific and Technical Information of China (English)

    魏庆坡

    2015-01-01

    As important environmental policy instruments, ETS and carbon tax are dedicated to address climate change and promote low carbon economy. However, none of them could achieve the theoretical emission reduction results. With the increasingly serious climate problem and emission mitigation presaue, more and more countries are trying to employ more than one environmental policy instrument to tackle carbon emission issues, including China. But the realistic problems are whether these two ‘quite different ’ emission reduction systems could work well and how they can work well. On the basis of theory analysis, this paper discussed the compatibility between absolute emission reduction target and carbon tax, and the result shows that there are systematic problems. As to relative emission reduction target, the result shows that it could be compatible with carbon tax. For the issues related to absolute target, this thesis argued that ceiling price and floor price, banking system, borrowing system, reducing the overlap of adjustment coverage, projects offsetting and other systems should be introduced, which could improve the defects of both in reality and constitute a hybrid system with enhancing both advantages and avoiding their disadvantages. With background of establishing national ETS market and preparation of carbon tax, taking the compatibility analysis above as a basis, proceeding from China ’ s reduction commitment and domestic pilot ETSs, we argued that China, as a developing country, should consider the social economy development as the prerequisite of emission mitigation. Responding to initial period of mitigation and arduous reduction task, as well as low-volume transaction having little impact on allowance price fluctuation, this paper put forward that incorporating carbon tax to address environmental complexity and diversity. Furthermore, these instrument combinations could increase taxes revenues, balance mitigation pressure, etc. Therefore, the pathway

  7. The effect of mitigation measures on size distributed mass concentrations of atmospheric particles and black carbon concentrations during the Olympic Summer Games 2008 in Beijing.

    Science.gov (United States)

    Schleicher, Nina; Norra, Stefan; Dietze, Volker; Yu, Yang; Fricker, Mathieu; Kaminski, Uwe; Chen, Yuan; Cen, Kuang

    2011-12-15

    The period of the 2008 Olympic Summer Games in Beijing can be considered as a unique opportunity to study the influences of emission reduction measures on air quality improvement. Within this study atmospheric particles of different size classes (2.5 to 80 μm) were investigated before, during, and after the Olympic Games period in order to observe and assess the success of short-term measures to mitigate extreme urban aerosol pollution and also to investigate, which particle size classes were reduced most effectively. Furthermore, black carbon (BC) concentrations in fine particles (PM(2.5)) during the source control period were compared to those of the previous years in order to investigate the decrease of combustion-derived aerosols. It is shown that besides the implemented mitigation measures precipitation decisively contributed to a considerable decrease of particulate air pollution in Beijing compared to the respective concentrations during the time directly before and after the Olympic Games, and also compared to average August concentrations during the previous years and the following year 2009. Particles of the fine fraction of the coarse mode (2.5 to 5 μm), which have a residence time in the order of several days and which, therefore, are typically transported over long distances from outside of Beijing, were less efficiently reduced than coarser particles. This indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough to also reduce the fine fraction of the coarse mode more efficiently. Furthermore, the study showed that coarse geogenic particles, which originated to a high percentage from construction sites and resuspension processes due to traffic seemed to be reduced most efficiently during the Olympic Games period. PMID:22035559

  8. The Contribution of Managed and Unmanaged Forests to Climate Change Mitigation—A Model Approach at Stand Level for the Main Tree Species in Bavaria

    OpenAIRE

    Christoph Schulz; Markus Blaschke; Sebastian Höllerl; Daniel Klein

    2013-01-01

    Forestry-based carbon sequestration projects demand a comprehensive quantification of the different climate change mitigation effects. In our study, we modeled a life cycle of managed pure stands consisting of the four main tree species in Bavaria (spruce, pine, beech and oak). For spruce and beech, an unmanaged stand was additionally integrated in order to analyze the differences in climate change mitigation effects compared to the managed stands. We developed a climate change mitigation mod...

  9. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  10. Compact Instrument for Measurement of Atmospheric Carbon Monoxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposed the development of a rugged, compact, and automated instrument for the high sensitivity measurement of tropospheric carbon monoxide...

  11. Compact Instrument for Measurement of Atmospheric Carbon Monoxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to continue the development of a rugged, compact, and automated instrument for the high sensitivity measurement of tropospheric carbon...

  12. Indoor multipath mitigation

    DEFF Research Database (Denmark)

    Dragünas, Kostas

    2010-01-01

    is the presence of multipath. The current paper analyzes several available multipath mitigation techniques which would be suitable for indoor applications. A few deconvolution based techniques such as the Projection Onto Convex Sets and the Deconvolution Approach are selected for closer investigation...

  13. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Directory of Open Access Journals (Sweden)

    Maria J. Sánchez-González

    2016-06-01

    Full Text Available The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI, the specific leaf area (SLA, the water use efficiency (WUE, the radiation use efficiency (RUE and dry weight (DW accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m increased fruit firmness (N, total soluble solids content (SSC and titratable acidity (TA, whereas pH was reduced in the three ripening stages: mature green/breaker (G, turning (T, and pink/light red (P. Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality.

  14. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  15. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility

    Science.gov (United States)

    Greve, Michelle; Reyers, Belinda; Mette Lykke, Anne; Svenning, Jens-Christian

    2013-12-01

    Carbon offset projects through forestation are employed within the emissions trading framework to store carbon. Yet, information about the potential of landscapes to stock carbon, essential to the design of offset projects, is often lacking. Here, based on data on vegetation carbon, climate and soil, we quantify the potential for carbon storage in woody vegetation across tropical Africa. The ability of offset projects to produce co-benefits for ecosystems and people is then quantified. When co-benefits such as biodiversity conservation are considered, the top-ranked sites are sometimes different to sites selected purely for their carbon-stocking potential, although they still possess up to 92% of the latter carbon-stocking potential. This work provides the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from carbon storage reforestation projects at the smallest costs and risks, providing crucial information for prioritization of investments in carbon storage projects.

  16. Virginia Center for Coal and Energy Research directs project to test carbon capture sites

    OpenAIRE

    Trulove, Susan

    2008-01-01

    The Virginia Center for Coal and Energy Research (VCCER) at Virginia Tech will direct the $2,399,736 Southeast Regional Carbon Sequestration Partnership (SECARB) Phase II Task 10 project to identify sites for a potential large-volume carbon dioxide (CO2) injection tests.

  17. Accounting methods for carbon credits: Impacts on the minimum area of CDM forestry projects

    OpenAIRE

    Locatelli, Bruno; Pedroni, Lucio

    2004-01-01

    International audience The Ninth Conference of the Parties (COP-9) decided to adopt an accounting system based on expiring carbon credits to address the problem of non-permanent carbon storage in forests established under the Clean Development Mechanism (CDM). This article reviews and discusses carbon accounting methods that were under consideration before COP-9 and presents a model which calculates the minimum area that forest plantation projects should reach to be able to compensate CDM ...

  18. Work plan for transition of SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    The purpose of this effort is to transfer operating and maintenance responsibility for the 241-SY-101 data acquisition and control system (DACS-1) from Los Alamos National Laboratory to Westinghouse Hanford Company. This work plan defines the tasks required for a successful turnover. It identifies DACS-1 transition, deliverables, responsible organizations and individuals, interfaces, cost, and schedule. The transition plan will discuss all required hardware, software, documentation, maintenance, operations, and training for use at Hanford Waste Tank 241-SY-101. The transfer of responsibilities for DACS-1 to WHC is contingent on final approval of applicable Acceptance for Beneficial Use documentation by Waste Tank Operations. The DACS-1 was designed to provide data monitoring, display, and storage for Tank 241-SY-101. The DACS-1 also provides alarm and control of all the hydrogen mitigation testing systems, as well as ancillary systems and equipment (HVAC, UPS, etc.) required to achieve safe and reliable operation of the testing systems in the tank

  19. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    Energy Technology Data Exchange (ETDEWEB)

    Ermi, A.M.

    1997-05-01

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.

  20. RFI Mitigation Workshop

    Science.gov (United States)

    2010-05-01

    The increased sensitivity of passive instrumentation in radio astronomy and remote sensing and the intensifying active use of the spectrum have led to an increasing level of radio frequency interference (RFI) of the active services on the passive use of the spectrum. Advances in technology and computing have opened up new possibilities for mitigating the effects of certain classes of interference in the observing data. Interference in allocated bands always leads to data loss for the passive users of the spectrum even if interference mitigation is applied. However, interference mitigation in non-allocated spectral bands may facilitate the partial use of this spectrum for passive (non-interfering) observations. There is no generic method to mitigate all types of interference, so a multi-layered system approach may be advisable to reduce detrimental effects for a congested interference environment. Specific mitigation methods implemented at different points in the data acquisition chain will thus result in a cumulative mitigation effect on the data. This third RFI Mitigation Workshop considered RFI mitigation in radio astronomy in all its facets with the aim of facilitating the implementation of instrumental and data processing techniques. This workshop aimed to take a forward look at applications for the next generation of radio instruments, such as the SKA and its pathfinders and LOFAR, as well as considering their application to existing instruments. This workshop has been organized by ASTRON and NAIC, with support from the Engineering Forum of FP7 RadioNet, the SKA Project Development Office, and in collaboration with CRAF and IUCAF.

  1. The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics

    NARCIS (Netherlands)

    Huntingford, Chris; Lowe, Jason A.; Howarth, Nicholas; Bowerman, Niel H.A.; Gohar, Laila K.; Otto, Alexander; Lee, David S.; Smith, Stephen M.; den Elzen, Michel G.J.; van Vuuren, Detlef P.; Millar, Richard J.; Allen, Myles R.

    2015-01-01

    Greenhouse gas emissions associated with Representative Concentration Pathway RCP2.6 could limit global warming to around or below a 2°C increase since pre-industrial times. However this scenario implies very large and rapid reductions in both carbon dioxide (CO2) and non-CO2 emissions, and suggests

  2. Species and media effects on soil carbon dynamics in the landscape: opportunities for climate change mitigation from urban landscape plantings

    Science.gov (United States)

    Most scientists now agree that climate change is occurring as a direct result of human activities. Agricultural production has been shown to be a major emitter of greenhouse gas (GHG) emissions; however, horticulture production is unique in that it also has the potential to serve as a major carbon (...

  3. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    NARCIS (Netherlands)

    Rogelj, Joeri; Meinshausen, M.; Schaeffer, M.; Knutti, R.; Riahi, Keywan

    2015-01-01

    Limiting global warming to any level requires limiting the total amount of CO2 emissions, or staying within a CO2 budget. Here we assess how emissions from short-lived non-CO2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO2 budgets. Our default case,

  4. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    Science.gov (United States)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  5. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a growing need to develop improved technologies for precise airborne measurements of carbon dioxide, CO2. CO2 measurements are of great importance to many...

  6. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  7. Conformal Carbon Nanotubes for Stray Light Suppression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to apply CVD and non-CVD carbon nanotubes to complex shapes that numerous scientists have requested for stray light control.  Currently, CVD...

  8. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  9. Precision remote sensor for oxygen and carbon dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  10. Simple, Micro-Miniature Total Organic Carbon Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a simple method for on-orbit or advanced mission Total Organic Carbon (TOC) monitoring has been a goal for many years. This proposal seeks to develop...

  11. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  12. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  13. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has successfully developed a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. PSI...

  14. Lyocell Based Carbon Carbon Composite for Use as a Large Exit Cone Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Office of the Chief Technologist (OCT) has identified a "carbon-carbon nozzle (domestic source)" as a "Top Technical Challenge" in the 2011-2016 timeframe...

  15. Alternative Fabrication Designs for Carbon-Carbon (C-C) Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In order for carbon-carbon nozzle extensions and exit cones to serve as practical, low cost components for future Earth-to-Orbit propulsion systems, it is necessary...

  16. Carbon Brainprint: final report on HEFCE project LSDHE43

    OpenAIRE

    Parsons, David J.; Chatterton, Julia C.; Clements-Croome, Derek; Elmualim, A.; Darby, Howard; Yearly, T.; I Wilson; Ishiyama, Edward

    2011-01-01

    The need for organisations to reduce their carbon footprint is now well accepted. HEFCE has recently published its policy (2010/01) requiring universities to set targets to reduce their greenhouse gas emissions and targeting reductions of 34% and 80% across the sector by 2020 and 2050 respectively. Universities, however, also help other organisations to reduce their own carbon footprints, both through providing existing or potential employees with the necessary knowledge and...

  17. Graphitic Carbon Foam Structural Cores and Multifunctional Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Project will procure available graphite foam products in small quantities, perform testing, and build simple prototype designs. Several specific applications have...

  18. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  19. Residual effect of organic carbon as a tool for mitigating nitrogen oxides emissions in semi-arid climate

    OpenAIRE

    Sánchez Martín, Laura; Vallejo Garcia, Antonio

    2010-01-01

    Residual effects of different fertilizers (mineral and organic) on the first pulses of carbon dioxide (CO2), nitric oxide (NO), and nitrous oxide (N2O) after rewetting dry soil with or without application of a mineral N fertilizer were studied in a laboratory experiment. Six months before this study was conducted the fields had received either manure + urea, manure, urea or no fertilizer. In the first phase the soil was rewetted with water simulating a summer shower (heavy rainfall in short t...

  20. 稻田周年减排增汇技术研究%Study on techniques of mitigating GHG emissions and increasing carbon sink in paddy field

    Institute of Scientific and Technical Information of China (English)

    白朴; 张国平; 曾玮; 白若琦; 张春泉; 卢华金

    2015-01-01

    On the basis of research and practice on crop cultivation for many years and in terms of saving energy,mitigating GHG emissions,increasing carbon sink and improving production efficiency,the authors dis-cuss the comprehensive supporting techniques such as optimization of planting patterns,popularization of low-car-bon and high-yield superior varieties,precise fertilization,water-saving irrigation,and scientific control of disease and insect pest so as to realize the round-year low carbon cultivation objective of both increase in the output and benefit in paddy field and substantial decrease in the direct and indirect GHG emissions.%基于多年作物栽培研究与实践,从稻田周年节能、减排、增汇、增产、增效的角度,论述了种植模式优化、低碳高产优质品种推广、精确减量施肥、节水节能灌溉、病虫害科学防治等综合性配套技术,以实现兼顾稻田周年产出和效益增加,温室气体直接排放与间接排放均大幅度下降的低碳栽培目标。

  1. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey. (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST)

    Science.gov (United States)

    Kaneda, Y.; Erdik, M. O.; Takahashi, N.; Meral Ozel, N.; Hori, T.; Hori, M.; Kumamoto, K.; Kalafat, D.; Pinar, A.; Ozel, A. O.; Yalciner, A. C.; Nurlu, M.; Tanircan, G.; Citak, S.; Ariyoshi, K.; Necmioglu, O.

    2014-12-01

    Since 1900, around 90,000 people have lost their lives in 76 earthquakes occurred in Turkey, with a total affected population of ~7 million and direct estimated losses of ~25 billion USD. About half the lives lost were due to two earthquakes associated with the North Anatolian Fault in 1939 and 1999. During this time, seven large westward-migrating earthquakes created a 900-km-long continuous surface rupture along the fault zone from Erzincan to the Marmara Sea, stopping just short of Istanbul. Based on a time-dependent model that includes coseismic and postseismic effects of the 1999 Kocaeli earthquake with moment magnitude (Mw) = 7.4, Parsons concluded that the probability of an earthquake with Mw >7 in the Sea of Marmara near Istanbul is 35% to 70% in the next 30 years. This high probability is shared by Tokyo and San Francisco; however, the earthquake fragility of the pre-2000 building stock in Turkey is much higher than that of California or Japan. (Erdik, 2013). All of the arguments described above provide a sound basis for a Japanese-Turkish partnership enabling each partner to share experiences gained from past destructive earthquakes and prepare for expected large earthquakes. The SATREPS project aims to address this need, also focusing on the tsunami hazard. The project's main objectives are i) to develop disaster mitigation policies and strategies based on multidisciplinary research activities; ii) to provide decision makers with newly found knowledge for its implementation to the current regulations; iii) to organize disaster education programs in order to increase disaster awareness in Turkey; iv) to contribute the evaluation of active fault studies in Japan. To achieve successfully these objectives, 4 research groups have been set specializing on observations, simulations, civil engineering and disaster education and the results will be integrated for disaster mitigation in the Marmara region and disaster education in Turkey.

  2. Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)

    OpenAIRE

    Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

    2000-01-01

    This paper describes a standardized method for establishing a multi-project baseline for a power system. The method provides an approximation of the generating sources that are expected to operate on the margin in the future for a given electricity system. It is most suitable for small-scale electricity generation and electricity efficiency improvement projects. It allows estimation of one or more carbon emissions factors that represent the emissions avoided by projects, striking a bala...

  3. How to Evaluate Capital Projects that Offer Environmental/Carbon Reduction Benefits

    OpenAIRE

    Frank Lefley; Joseph Sarkis

    2013-01-01

    In many cases, projects that have strong environmental / carbon reduction benefits may be neglected due to biases associated with traditional project appraisal approaches. To reduce the level of rejections for such projects, the authors apply an innovative methodology, the financial appraisal profile (FAP) model. FAP is a normative model that seeks to address some of the issues and limitations posed by standard appraisal and evaluation approaches. By making the right decision in the first pla...

  4. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    Science.gov (United States)

    Mendoza Lebrun, Daniel

    of CO2 emissions at a highly resolved level. Such a study would improve fossil fuel flux products by enhancing measurement accuracy and prompt location-specific mitigation policy. The carbon cycle science and policymaking communities are both poised to benefit greatly from the development of a highly resolved spatiotemporal emissions product.

  5. Local climate mitigation and eco-efforts in housing and construction as transition places

    DEFF Research Database (Denmark)

    Holm, Jesper; Stauning, Inger; Søndergård, Bent

    2011-01-01

    In the transition of socio-technical systems, local projects and experiments concerning the low carbon economy and climate mitigation/adaptation serve as transition places. Situated in specific contexts, they become sites of innovation and creativity. This paper sets out to discuss and characterize...

  6. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  7. Soil carbon sequestration in mixed farming landscapes: Insights from the Lachlan soil carbon project

    OpenAIRE

    Pearson, Leonie J.; Crean, Jason; Badgery, Warwick; Murphy, Brian; Rawson, Andrew; Capon, Timothy; Reeson, Andrew

    2012-01-01

    The potential for soil carbon sequestration to play a significant role in meeting Australia’s greenhouse reduction targets has attracted widespread interest. Despite this interest, the economic scope for soil carbon sequestration remains poorly understood and the practical approaches that could be used to capture any opportunities have not been explored. In this paper we present preliminary results on a pilot soil carbon sequestration variable price, reverse tender auction in the mixed (wheat...

  8. Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study

    Science.gov (United States)

    Mu, Jianhong E.; Wein, Anne; McCarl, Bruce

    2015-01-01

    We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.

  9. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FMI has developed graded density CBCF preforms for graded density phenolic impregnated carbon ablator (PICA) material to meet NASA's future exploration mission...

  10. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FMI currently manufactures Phenolic Impregnated Carbon Ablator (PICA) material for Thermal Protection Systems (TPS) systems, such as the Stardust Sample Return...

  11. Carbon Accounting and Cost Estimation in Forestry Projects Using CO2Fix V.3

    International Nuclear Information System (INIS)

    Carbon and financial accounting of projects in the Land Use, Land-Use Change and Forestry sector is a topic of hot debate. Large uncertainty remains concerning the carbon dynamics, the way they should be accounted and the cost efficiency of the projects. Part of the uncertainty can be alleviated by standardisation and transparency of reporting methods. For this reason we further developed CO2FIX, a forest ecosystem carbon model, with modules for carbon and financial accounting. The model is applied to four cases: (1) Joint implementation afforestation project in Romania, (2) Forest management project in Central Europe, (3) Reduced impact logging possibly under the Clean Development Mechanism (CDM) in the future, and (4) Afforestation with native species under the Clean Development Mechanism. The results show the wide applicability of CO2FIX, from degrading grasslands as baseline cases to multiple cohort forest ecosystems. Also the results show that Forest Management in the European case can generate considerable amounts of carbon emission reductions. Further, the results show that although reduced impact logging is not yet an allowed option under the Clean Development Mechanism, it shows promising results in that it is (1) very cost effective, (2) seems to be able to generate intermediate amounts of credits and (3) seems to us as a project type that is not prone to leakage issues. These results are yet another indication to seriously consider reduced impact logging as an eligible measure under the CDM

  12. Cambridgeshire bioenergy project

    Energy Technology Data Exchange (ETDEWEB)

    Dent, N. (Renewables East, Norwich (United Kingdom)), Email: nigeldent@renewableseast.org.uk

    2009-07-01

    Developing low and zero carbon new homes from 2016 is a key part of the UK's plans for mitigating climate change. A regional partnership lead by Renewables East (RE) and Cambridgeshire Horizons (Switzerland) is responding to this challenge by showing how to deliver low carbon electricity and heat for new developments within Cambridgeshire, England that will save one million tonnes of CO{sub 2} over 30 years. RE, CH with their partners are assembling evidence to show that a low-carbon future for Cambridgeshire can be underpinned by a biomass CCHP plant. Not only will Cambridgeshire residents have access to low carbon energy, but the existing local communities could also benefit from this local carbon energy supply. Early-stage project development risks are being successfully mitigated through publicly-funded work, with outcomes being shared across further developments in Cambridgeshire, the region and nationwide. (orig.)

  13. Designing Surface Monitoring Meshes for Geologic Carbon Capture and Storage Sites: Accurate Emissions Accounting for an Essential 2°C Mitigation Technology

    Science.gov (United States)

    Augustin, C. M.; Swart, P. K.; Broad, K.

    2014-12-01

    Geologic carbon capture and storage (CCS) is a feasible solution to the international greenhouse gas (GHG) emissions problem and it has recently been called a "vital" mitigation tool by the International Energy Agency. However, there exists uncertainty concerning the terminal fate of stored carbon dioxide (CO2.) In this regard, reliable monitoring, verification and accounting (MVA) technologies are essential for making CCS publicly acceptable. Chiefly, MVA addresses safety and environmental concerns by providing a warning system to prevent or alleviate CO2 leakages. A secondary purpose of MVA technologies is to prove compliance with CO2 reduction standards through inventory verification. A key MVA tool for tracking CO2 leakages is surface (atmospheric) monitoring. Demonstrating its value, industry actors feel an impetus to invest in surface monitoring as a low-risk, high-value technology to mitigate liability in cases of potential leakages. Despite how necessary this tool is, to date, all surface monitoring mesh designs and best practices have been proposed locally, without discussion of standardization or optimization on a regional, national or international level. We identify the fundamental problem of surface monitoring mesh design as locating the monitoring sites to record CO2 levels over the designated geographic area at lowest cost with maximum impact. We approach this problem from both an operations research (OR) perspective and atmospheric dispersion perspective. From an OR perspective, we approach mesh design using multiobjective optimization models - we specify the relative placement of candidate sites, observation time interval, and optimality criteria. In the second approach, we model CO2 leakage scenarios to test the effectiveness of proposed mesh design from the first approach. We use atmospheric dispersion modeling softwares AERMOD and SCREEN3 - both tools developed by the United States Environmental Protection Agency and codified into law - for

  14. Project of Carbon Capture in Small and Medium Farms in the Brunca Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gilmar Navarrete

    2013-12-01

    Full Text Available The Clean Development Mechanism (CDM of the Kyoto Protocol, allows the non Annex 1 countries to receive projects that contribute to reducing greenhouse gas emissions and sustainable development in developing countries. The CDM, since its inception, has issued credits equivalent to 1.434.737.562 tons of CO2, distributed across 7.450 projects around the world, from 15 different sectors. Sectors 14 that allow forestry projects (such as reforestation and afforestation have registered 53 projects to date; 19 of which are in Latin America. Nevertheless, the contribution of this sector currently represents less than 1% of CDM Certificates of Emissions Reduction (CERs issued. In September 2013, through their National Forestry Financing Fund (FONAFIFO, Costa Rica registered their first CDM project with the United Nations Framework Convention on Climate Change (UNFCCC, after having complied with all the project cycle processes. The project, known as "Carbon Sequestration in Small and Medium Farms, Brunca Region, Costa Rica" was a project executed by FONAFIFO under their Environmental Services Payment Program. This project was developed in Pérez Zeledón, San José, Costa Rica in partnership with the Cooperative Corporation CoopeAgri RL. The total goal of the project is to reduce the greenhouse gas emission by 176,050 ton of CO2-e, in a period of 20 years and commercialize the CERs in the regulated carbon market.

  15. Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1997-08-24

    A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

  16. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  17. 全球长期减排目标与碳排放权分配原则%Long-Term Climate Change Mitigation Target and Carbon Permit Allocation

    Institute of Scientific and Technical Information of China (English)

    何建坤; 陈文颖; 滕飞; 刘滨

    2009-01-01

    Long-term climate change mitigation target would highly constrain global carbon emissions in future.Carbon permit allocation under the long-term mitigation target would impact development space for all countries,involving the fundamental interests.Some developed countries advocate the principle of per capita emission convergence while China and other developing countries propose the principle of convergence of accumulative emission per capita to consider historical responsibility.If the latter is used for carbon permit allocation,CO_2 emissions of developed countries since the industrial revolution have far exceeded their allocated permits.Developed countries'high per capita emissions at present and for quite a long period in future would continue to occupy emission spaces for developing countries.Therefore,developed countries must commit deeper emission reduction rate for the next commitment period at the Copenhagen conference in order to achieve the emission pathway under the long-term emission reduction target,and to save necessary development space for developing countries.At the same time,developed countries should provide adequate financial and technical suppoa as compensation for their overuse of the development space for developing countries,to improve developing countries'capacity to respond to climate change under the framework of sustainable development.On the one hand,we should insist on the principle of equity to obtain reasonable emission space for our country in the international climate change negotiation;while on the other hand,we should enhance development toward low-carbon economy to protect global environment and to achieve sustainable development.%全球长期减排目标将对世界未来的碳排放形成严重制约,减排义务的分担原则涉及各国的发展空间,事关根本利益.部分发达国家倡导人均排放趋同原则,回避发达国家的历史责任,中国等发展中国家提出人均累积排放趋同原则,强调公

  18. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection.

    Science.gov (United States)

    Gerrity, Daniel; Gamage, Sujanie; Holady, Janie C; Mawhinney, Douglas B; Quiñones, Oscar; Trenholm, Rebecca A; Snyder, Shane A

    2011-02-01

    In an effort to validate the use of ozone for contaminant oxidation and disinfection in water reclamation, extensive pilot testing was performed with ozone/H(2)O(2) and biological activated carbon (BAC) at the Reno-Stead Water Reclamation Facility in Reno, Nevada. Three sets of samples were collected over a five-month period of continuous operation, and these samples were analyzed for a suite of trace organic contaminants (TOrCs), total estrogenicity, and several microbial surrogates, including the bacteriophage MS2, total and fecal coliforms, and Bacillus spores. Based on the high degree of microbial inactivation and contaminant destruction, this treatment train appears to be a viable alternative to the standard indirect potable reuse (IPR) configuration (i.e., membrane filtration, reverse osmosis, UV/H(2)O(2), and aquifer injection), particularly for inland applications where brine disposal is an issue. Several issues, including regrowth of coliform bacteria in the BAC process, must be addressed prior to full-scale implementation.

  19. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  20. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  1. China’s Low-Carbon Scenario Analysis of CO2 Mitigation Measures towards 2050 Using a Hybrid AIM/CGE Model

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-04-01

    Full Text Available China’s emissions continue to rise rapidly in line with its mounting energy consumption, which puts considerable pressure on China to meet its emission reduction commitments. This paper assesses the impacts of CO2 mitigation measures in China during the period from 2010 to 2050 by using a computable general equilibrium method, called AIM/CGE. Results show that renewable energy makes a critical difference in abating emissions during the period from 2010 to 2020. The scenarios with emission trading would drive more emission reductions, whereby the emission-cutting commitment for 2020 would be achieved and emission reductions in 2050 would be more than 57.90%. Meanwhile, the share of non-fossil energy increases significantly and would be more than doubled in 2050 compared with the BAU scenario. A carbon tax would result in a significant decline in emissions in the short term, but would have an adverse effect on economic growth and energy structure improvements. It is also observed that the integrated measures would not only substantially decrease the total emissions, but also improve the energy structure.

  2. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles.

    Science.gov (United States)

    Lee, Eon S; Zhu, Yifang

    2014-02-18

    Modern passenger vehicles are commonly equipped with cabin air filters but their filtration efficiency for ultrafine particle (UFP) is rather low. Although setting the vehicle ventilation system to recirculation (RC) mode can reduce in-cabin UFPs by ∼ 90%, passenger-exhaled carbon dioxide (CO2) can quickly accumulate inside the cabin. Using outdoor air (OA) mode instead can provide sufficient air exchange to prevent CO2 buildup, but in-cabin UFP concentrations would increase. To overcome this dilemma, we developed a simultaneous mitigation method for UFP and CO2 using high-efficiency cabin air (HECA) filtration in OA mode. Concentrations of UFP and other air pollutants were simultaneously monitored in and out of 12 different vehicles under 3 driving conditions: stationary, on local roadways, and on freeways. Under each experimental condition, data were collected with no filter, in-use original equipment manufacturer (OEM) filter, and two types of HECA filters. The HECA filters offered an average in-cabin UFP reduction of 93%, much higher than the OEM filters (∼ 50% on average). Throughout the measurements, the in-cabin CO2 concentration remained in the range of 620-930 ppm, significantly lower than the typical level of 2500-4000 ppm observed in the RC mode. PMID:24471775

  3. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  4. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  5. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  6. Projecting the climatic effects of increasing carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M C; Luther, F M [eds.

    1985-12-01

    This report presents the current knowns, unknowns, and uncertainties regarding the projected climate changes that might occur as a result of an increasing atmospheric CO/sub 2/ concentration. Further, the volume describes what research is required to estimate the magnitude and rate of a CO/sub 2/-induced clamate change with regional and seasonal resolution. Separate abstracts have been prepared for the individual papers. (ACR)

  7. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies.

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Young, Claudia J; Dahal, Devendra; Sohl, Terry L; Davis, Brian

    2015-06-01

    Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.

  8. DimeRisk Project: Development of an educational and training program for the prevention and mitigation of seismic risk in Spain

    Science.gov (United States)

    Martín-González, Fidel; Martín-Velazquez, Silvia; Giner-Robles, Jorge; Martínez-Díaz, Jose Jesus; Rodríguez-Pascua, Miguel Angel; Béjar, Marta; Pérez-López, Raul; López, Jose Antonio; Morales, Javier; Barranco, Ana; Palomo, Isabel

    2014-05-01

    In Spain, due to the low recurrence of earthquakes in the last century, there is no awareness of seismic risk and prevention plans. For this reason, moderate magnitude earthquakes have generated significant damage and casualties. However, the risk is evident, in Spain during the nineteenth century there were more than five destructive earthquakes with intensities greater than VIII (e.g. Arenas del Rey IX-X, Torrevieja IX-X). A recent example was the 2011 Lorca earthquake, that with moderate magnitudes and intensities (magnitude Mw 5.2, intensity VI) it struck a populated area with old historic buildings and a population unprepared (9 victims, 324 injured, 1,200 million in reparations). In this earthquake many errors were found in the behavior of the population and in the basic self-protection measures. Many countries have educational programs that significantly reduce the damage and losses caused by earthquakes. The objective of this project (Dimerisk project) is to generate training and educational materials that help mitigate the damage and losses caused by earthquakes. This project is based on plans of experienced countries (e.g. U.S.A., Italy, Mexico, New Zealand) but having into account the mistakes made in the last earthquake in Spain, and also the characteristics of the Spanish educational system and building characteristics. This project has been founded by FUNDACION MAPFRE. The team is formed by geologist, earthquake researchers and teachers at secondary schools and universities. The ultimate goal is to generate material that can inform about the seismic and geological processes that participate in an earthquake and the basics of self-protection against earthquakes. This project has focused on scenarios (offices, factories, homes, education centers) and educational levels (schools, colleges and universities). Educational materials have been also developed for different educational levels with basic concepts related to seismicity, how to behave during an

  9. The Ontario Ministry of Natural Resources large-scale forest carbon project : a summary

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, J.; Candau, J.N.; Chen, J.; Colombo, S.; Ter-Mikaelian, M. [Ontario Ministry of Natural Resources, Sault Ste. Marie, ON (Canada). Ontario Forest Research Inst.

    2005-07-01

    Forest carbon provides an indicator of the sustainability of forest management practices and is also a sign of the sequestration and emission of carbon dioxide (CO{sub 2}) between forests and the atmosphere. The background and objectives of a large-scale forest carbon modelling project were described in this climate change report. Three approaches were used to estimate carbon storage: (1) the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS); (2) a modified version of the FORCARB model developed by the United States Department of Agriculture (USDA) Forest Service; and (3) direct estimation of forest biomass carbon using Ontario's growth and yield forest resources inventory data. It was suggested that the use of 3 different approaches will help to validate future results, as well as to identify gaps and inconsistencies in individual modelling approaches. Progress in each of the 3 modelling approaches was presented as well as a methodology of the models and their data acquisition processes. The administrative boundaries of Ontario's 50 forest management units were presented. Application of the modelling approaches used in the report met reporting requirements for forest carbon specified by the Kyoto Protocol. It was anticipated that the results of the project will help to identify Ontario's forest sector contributions to global carbon enrichment. It was concluded that future large-scale carbon modelling will incorporate scenarios with varying management practices to predict their impact on carbon storage. The application of the results will be used to develop long-term planning and management strategies. 30 refs., 4 figs.

  10. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to

  11. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1984-06-01

    This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

  12. Greenhouse gas emission mitigation in the Sri Lanka power sector supply side and demand side options

    Energy Technology Data Exchange (ETDEWEB)

    Wijayatunga, P.D.C. [University of Moratuwa (Sri Lanka). Centre for Energy Studies; Fernando, W.J.L.S. [Sri Lanka Energy Managers Association, Colombo (Sri Lanka); Shrestha, R.M. [Asian Inst. of Technology, Pathumthani (Thailand). Energy Program

    2003-12-01

    Sri Lanka has had a hydropower dominated electricity generation sector for many years with a gradually decreasing percentage contribution from hydroresources. At the same time, the thermal generation share has been increasing over the years. Therefore, the expected fuel mix in the future in the large scale thermal generation system would be dominated by petroleum products and coal. This will result in a gradual increase in greenhouse gas (GHG) and other environmental emissions in the power sector and, hence, require special attention to possible mitigation measures. This paper analyses both the supply side and demand side (DSM) options available in the Sri Lanka power sector in mitigating emissions in the sector considering the technical feasibility and potential of such options. Further, the paper examines the carbon abatement costs associated with such supply side and DSM interventions using an integrated resource planning model, which is not used in Sri Lanka at present. The sensitivities of the final generation costs and emissions to different input parameters, such as discount rates, fuel prices and capital costs, are also presented in the paper. It is concluded that while some DSM measures are economically attractive as mitigation measures, all the supply side options have a relatively high cost of mitigation, particularly in the context of GHG emission mitigation. Further it is observed that when compared with the projected price of carbon under different global carbon trading scenarios, these supply side options cannot provide economically beneficial CO{sub 2} mitigation in countries like Sri Lanka. (author)

  13. Greenhouse gas emission mitigation in the Sri Lanka power sector supply side and demand side options

    International Nuclear Information System (INIS)

    Sri Lanka has had a hydropower dominated electricity generation sector for many years with a gradually decreasing percentage contribution from hydroresources. At the same time, the thermal generation share has been increasing over the years. Therefore, the expected fuel mix in the future in the large scale thermal generation system would be dominated by petroleum products and coal. This will result in a gradual increase in greenhouse gas (GHG) and other environmental emissions in the power sector and, hence, require special attention to possible mitigation measures. This paper analyses both the supply side and demand side (DSM) options available in the Sri Lanka power sector in mitigating emissions in the sector considering the technical feasibility and potential of such options. Further, the paper examines the carbon abatement costs associated with such supply side and DSM interventions using an integrated resource planning model, which is not used in Sri Lanka at present. The sensitivities of the final generation costs and emissions to different input parameters, such as discount rates, fuel prices and capital costs, are also presented in the paper. It is concluded that while some DSM measures are economically attractive as mitigation measures, all the supply side options have a relatively high cost of mitigation, particularly in the context of GHG emission mitigation. Further it is observed that when compared with the projected price of carbon under different global carbon trading scenarios, these supply side options cannot provide economically beneficial CO2 mitigation in countries like Sri Lanka

  14. Towards an integrated scientific approach for carbon accounting in forestry. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland). 28-30 Sep 2000

    OpenAIRE

    Karjalainen T.; Laitat E.; Loustau D.; Lindner M.

    2000-01-01

    In the COST E21-Action ""Contribution of Forests and Forestry to Mitigate Greenhouse Effects"", emphasis is put on the quantification of carbon storage in the forest ecosystems and on the understanding of linkages between human activities and climate change, particularly the role of forests and forestry. COST E21 integrates natural, socio-economic as well as methodological aspects relevant for reporting under the unitéd Nations Framework Convention on Climate Change and the Kyoto Protocol, as...

  15. Biodiverse Planting for Carbon and Biodiversity on Indigenous Land

    OpenAIRE

    Renwick, Anna R.; Catherine J Robinson; Martin, Tara G.; Tracey May; Phil Polglase; Possingham, Hugh P.; Josie Carwardine

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local commu...

  16. A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon

    International Nuclear Information System (INIS)

    This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries

  17. Wind power projects in the CDM: Methodologies and tools for baselines, carbon financing and substainability analysis

    DEFF Research Database (Denmark)

    Ringius, L.; Grohnheit, Poul Erik; Nielsen, Lars Henrik;

    2002-01-01

    The report is intended to be a guidance document for project developers, investors, lenders, and CDM host countries involved in wind power projects in the CDM. The report explores in particular those issues that are important in CDM project assessment anddevelopment - that is, baseline development......, carbon financing, and environmental sustainability. It does not deal in detail with those issues that are routinely covered in a standard wind power project assessment. The report tests, compares, andrecommends methodologies for and approaches to baseline development. To present the application...... and implications of the various methodologies and approaches in a concrete context, Africa's largest wind farm-namely the 60 MW wind farm located in Zafarana,Egypt is examined as a hypothetical CDM wind power project The report shows that for the present case example there is a difference of about 25% between...

  18. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Erik [Center For Transportation And The Environment, Inc., Atlanta, GA (United States)

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  19. An integrated multi-parameter monitoring approach for the quantification and mitigation of the climate change impact on the coasts of Eastern Crete, S. Aegean Sea (Project AKTAIA)

    Science.gov (United States)

    Ghionis, George; Alexandrakis, George; Karditsa, Aikaterini; Sifnioti, Dafni; Vousdoukas, Michalis; Andreadis, Olympos; Petrakis, Stelios; Poulos, Serafim; Velegrakis, Adonis; Kampanis, Nikolaos; Lipakis, Michalis

    2014-05-01

    associated sediment transport and beach morphodynamics, calibrated with in situ data, is used to predict beach response and vulnerability to different climate change scenarios. Finally, the socio-economic impact of the climate change on the coastal zone will be assessed and a management protocol for the coastal zone and for the mitigation of the climate change impact will be developed. The ultimate scope of the project is to benefit the society by providing current and high quality information on the consequences of the climate change, especially those related to sea-level rise, and on the available protection and mitigation measures. In addition, the technological product will help in the proper planning of the required actions and technical interventions, reducing the need for costly, incomplete and frequently redundant localized studies and the risk of unsuccessful interventions. Acknowledgements The project is supported by the Action "Cooperation 2007-2013" (09SYN-31-711 "AKTAIA") of the Operational Program "Competitiveness and Entrepreneurship" co-funded by the European Regional Development Fund (ERDF) and the General Secretariat for Research and Technology (Hellenic Ministry of Education).

  20. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Ross [University of Central Florida; Benscoter, Brian [Florida Atlantic University; Comas, Xavier [Florida Atlantic University; Sumner, David [USGS; DeAngelis, Donald [USGS

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  1. The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    OpenAIRE

    Carah Jennifer; Hanus Mark; Golinkoff Jordan

    2011-01-01

    Abstract Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are n...

  2. U.S. China Carbon Capture and Storage Development Project at West Virginia University

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Jerald

    2013-12-31

    The original overall objective of this activity was to undertake resource evaluation and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China’s coal sector. Several project execution barriers were encountered in the course of this project, most notably a project stop/delay due to funds availability/costing restrictions from the US State Department to the US Department of Energy at the end of CY2012, which halted project execution from January 2, 2013 to April 1, 2013. At the resolution of this project delay, it was communicated to the project team that the overall project period would also be reduced, from a completion date of February 28, 2014 to December 31, 2013. The net impact of all these changes was a reduction in the project period from 24 months (3/1/2012-2/28/2014) to 22 months (3/1/2012-12/31/2013), with a 3 month stop from 1/1/2013-3/31/2013. The project team endeavored to overcome these project time impacts, focusing heavily on technoeconomic modeling that would be deliverable under Task 3 (Ordos Basin Feasibility Study), and choosing to abandon the full investigation into the Demonstration Site (Task 4) due to the reduced project time. The ultimate focus of this project changed to work with the Chinese on a carbon atlas/geologic characterization, and on mechanisms for CO2 storage options from high-quality streams within China.

  3. Joint implementation of a land-use project without trees: dryland restoration and carbon storage with annual cultivation of halophytes

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, J.N.; Maracas, K.B. [Ecoenergy International Corp., Boulder, CO (United States); Moscarella, J.P.; Ashford, M.S. [Ecoenergy International Corp. Washington, DC (United States); Hoyt, E.A. [EIC Consultores de Mexico, Mexico City (Mexico)

    1998-08-01

    This paper describes a joint implementation (JI) project being developed in the coastal state of Sonora, in northern Mexico. The present project involves the development of a demonstration project to grow the halophyte species Salicornia bigelovii on about 500 hectares of coastal desert in Sonora, Mexico. The project, named Project Salicornia, is meant to be a prototype for further commercial development of this crop to provide marketable products and carbon offsets on a larger scale. (author)

  4. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    DEFF Research Database (Denmark)

    Zaballa Romero, Mauricio Ernesto; Trærup, Sara Lærke Meltofte; Wieben, Emilie;

    , it appears that REDD+ payments alone, especially at current prices, will not deliver the revenues that cover all expenses of transparent and long-term mitigation of forest carbon emissions. Instead the findings underline the importance of building up forest operations which effectively manages risk...... and delivers several revenue streams. These findings are aligned with the advocacy efforts of UNEP and the UN-REDD Programme on multiple benefits and the combination of various funding and revenue streams. Only through this wider approach can our management and utilization of forest resources be ensured......The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource...

  5. Early Implementation of Large Scale Carbon Dioxide Removal Projects through the Cement Industry

    Science.gov (United States)

    Zeman, F. S.

    2014-12-01

    The development of large-scale carbon dioxide reduction projects requires high purity CO2and a reactive cation source. A project seeking to provide both of these requirements will likely face cost barriers with current carbon prices. The cement industry is a suitable early implementation site for such projects by virtue of the properties of its exhaust gases and those of waste concrete. Cement plants are the second largest source of industrial CO2 emissions, globally. It is also the second largest commodity after water, has no ready substitute and is literally the foundation of society. Finally, half of the CO2 emissions originate from process reactions rather than fossil fuel combustion resulting in higher flue gas CO2concentrations. These properties, with the co-benefits of oxygen combustion, create a favorable environment for spatially suitable projects. Oxygen combustion involves substituting produced oxygen for air in a combustion reaction. The absence of gaseous N2 necessitates the recirculation of exhaust gases to maintain kiln temperatures, which increase the CO2 concentrations from 28% to 80% or more. Gas exit temperatures are also elevated (>300oC) and can reach higher temperatures if the multi stage pre-heater towers, that recover heat, are re-designed in light of FGR. A ready source of cations can be found in waste concrete, a by-product of construction and demolition activities. These wastes can be processed to remove cations and then reacted with atmospheric CO2 to produce carbonate minerals. While not carbon negative, they represent a demonstration opportunity for binding atmospheric CO2while producing a saleable product (precipitated calcium carbonate). This paper will present experimental results on PCC production from waste concrete along with modeling results for oxygen combustion at cement facilities. The results will be presented with a view to mineral sequestration process design and implementation.

  6. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  7. Impacts of observation-driven trait variation on carbon fluxes in an earth system projection

    Science.gov (United States)

    Verheijen, Lieneke; van Bodegom, Peter; Aerts, Rien; Brovkin, Victor

    2014-05-01

    Climate projections are still highly uncertain and differences in predicted terrestrial global carbon budgets by earth system models (ESMs) are large, both with respect to the size and direction of change. Part of these uncertainties in the land carbon dynamics are caused by differences in the modeled functional responses of vegetation in reaction to climatic drivers. In reality, changes in vegetation responses to the environment are driven by processes like species plasticity, acclimation, (genotypic) adaptation, species turnover and shifts in species abundances. These processes can cause shifts within community mean trait values, which in turn are will affect carbon fluxes to and from the system. Because most current dynamic global vegetation models (DGVMs, the terrestrial part of ESMs) are not species based, these processes are not or poorly modeled. The recent availability of a large trait database (TRY-database), including both field measurements and experimental data, enables parameterization of the models with observational trait data. Many community mean trait values correlate with local environmental conditions. Such trait-climate relationships can be used to model variation in traits in DGVMs and allow for spatial and temporal variation in functional vegetation responses. The aim of this study was to identify the impacts of observation-driven trait variation on modeled carbon fluxes in climate projections. We determined and incorporated relationships between observational trait and climate data for each plant functional type (PFT) in the DGVM JSBACH. Within each grid cell, traits were varied every year, based on the local climatic conditions in the model. We also included CO2 acclimation of traits based on FACE-experiments, as projections concern elevated CO2 concentrations. Impacts on global carbon budgets were large; in the simulation with variable traits the high latitudes (temperate, boreal and arctic areas) were stronger carbon sinks and the tropical

  8. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  9. The Potential of Brazil's Forest Sector for Mitigating Global Warming under the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, Philip M. [Instituto Nacional de Pesquisas da Amazonia INPA, Av. Andre Araujo, 1756, C.P. 478, 69011-970 Manaus-Amazonas (Brazil)

    2001-07-01

    Activities in Brazil's forest sector have substantial potential for mitigating global warming as well as additional environmental and other benefits. Silvicultural plantations of different types, reduced impact logging, and deforestation avoidance all have potential mitigation roles. The magnitude of the annual emission from recent rates of deforestation in Amazonia presents an opportunity for carbon (C) benefits through reducing current rates of deforestation. Measures related to Amazonian deforestation have greater potential carbon benefits than do options such as plantation silviculture, but much depends on how benefits are calculated. Procedures are needed for assessing the environmental and social impacts of Clean Development Mechanism (CDM) projects. 55 refs.

  10. Sensor integritY Management and Prognostics Technology with On-line fault Mitigation (SYMPTOM) for Improved Flight Safety of Commercial Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test the Sensor integritY Management and Prognostics Technology with On-line fault Mitigation (SYMPTOM) system. The SYMPTOM assures...

  11. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks

    OpenAIRE

    Marbà, Núria; Arias-Ortiz, Ariane; Masqué, Pere; Kendrick, Gary A.; Mazarrasa, Inés; Bastyan, Geoff R.; García-Orellana, Jordi; Duarte, Carlos M.

    2015-01-01

    © 2015 British Ecological Society. Seagrass meadows are sites of high rates of carbon sequestration and they potentially support 'blue carbon' strategies to mitigate anthropogenic CO2 emissions. Current uncertainties on the fate of carbon stocks following the loss or revegetation of seagrass meadows prevent the deployment of 'blue carbon' strategies. Here, we reconstruct the trajectories of carbon stocks associated with one of the longest monitored seagrass restoration projects globally. We d...

  12. Analyzing environmental and structural charactersitics of concrete for carbon mitigation and climate adaptation in urban areas: A case study in Rajkot, India

    Science.gov (United States)

    Solis, Andrea Valdez

    Increasing temperatures, varying rain events accompanied with flooding or droughts coupled with increasing water demands, and decreasing air quality are just some examples of stresses that urban systems face with the onset of climate change and rapid urbanization. Literature suggests that greenhouse gases are a leading cause of climate change and are of a result of anthropogenic activities such as infrastructure development. Infrastructure development is heavily dependent on the production of concrete. Yet, concrete can contribute up to 7% of total CO29 emissions globally from cement manufacturing alone. The goal of this dissertation was to evaluate current concrete technologies that could contribute to carbon mitigation and climate adaptation in cities. The objectives used to reach the goal of the study included (1) applying a material flow and life cycle analysis (MFA-LCA) to determine the environmental impacts of pervious and high volume fly ash (HVFA) concrete compared to ordinary portland cement (OPC) concrete in a developing country; (2) performing a comparative assessment of pervious concrete mixture designs for structural and environmental benefits across the U.S. and India; and (3) Determining structural and durability benefits from HVFA concrete mixtures when subjected to extreme hot weather conditions (a likely element of climate change). The study revealed that cities have a choice in reducing emissions, improving stormwater issues, and developing infrastructure that can sustain higher temperatures. Pervious and HVFA concrete mixtures reduce emissions by 21% and 47%, respectively, compared to OPC mixtures. A pervious concrete demonstration in Rajkot, India showed improvements in water quality (i.e. lower levels of nitrogen by as much as 68% from initial readings), and a reduction in material costs by 25%. HVFA and OPC concrete mixtures maintained compressive strengths above a design strength of 27.6 MPa (4000 psi), achieved low to moderate permeability

  13. Implementation of forest cover and carbon mapping in the Greater Mekong subregion and Malaysia project – A case study of Thailand

    International Nuclear Information System (INIS)

    The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion

  14. Climate change mitigation studies in Sri Lanka

    International Nuclear Information System (INIS)

    In Sri Lanka, Climate Change Mitigation Studies have received low priority and have been limited to an ADB-sponsored preliminary study followed by an initial assessment of some mitigation options in the energy and agricultural sectors, with technical assistance from the US Country Studies Program. The major focus was on options of the mitigation of carbon dioxide emissions from the energy sector. Owing to funding constraints, only the potential for reduction of carbon dioxide emissions resulting from the various mitigation options were quantified; analysis of monetary costs and benefits or policy/programs for adoption of the options were not undertaken. For the non-energy sector, a very limited study on mitigation of methane emissions from rice fields was carried out. (au)

  15. Climate change mitigation studies in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Wickramaratne, Rupa [Ministry of Forestry and Environment, GEF/UNDP Enabling Activity Project (Sri Lanka)

    1998-12-01

    In Sri Lanka, Climate Change Mitigation Studies have received low priority and have been limited to an ADB-sponsored preliminary study followed by an initial assessment of some mitigation options in the energy and agricultural sectors, with technical assistance from the US Country Studies Program. The major focus was on options of the mitigation of carbon dioxide emissions from the energy sector. Owing to funding constraints, only the potential for reduction of carbon dioxide emissions resulting from the various mitigation options were quantified; analysis of monetary costs and benefits or policy/programs for adoption of the options were not undertaken. For the non-energy sector, a very limited study on mitigation of methane emissions from rice fields was carried out. (au)

  16. Remote Sensing Technologies Mitigate Drought

    Science.gov (United States)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  17. From Carbon Projects to Better Land-Use Planning: Three Latin American Initiatives

    Directory of Open Access Journals (Sweden)

    Laura M. Rival

    2013-09-01

    Full Text Available I start with a discussion of the limits of the United Nations’ Reducing Emissions from Deforestation and Forest Degradation and cobenefits (REDD+ program and the need to embed forest carbon within integrated ecosystem services on a landscape scale. By comparing a REDD+ project with two non-REDD+ projects, I show that there are diverse ways of applying the Earth system governance lens to address the continuing deterioration of goods and services provided by ecological systems. I then compare the valuation of ecosystem services and the governance of their provision in the three projects under review: Bolsa Floresta in the state of Amazonas, Brazil; Araçuaí Sustentável in the state of Minas Gerais, Brazil; and the Yasuní–Ishpingo Tambococha Tiputini Initiative in Ecuador. I show how each project has given birth to innovative mixed policies based on citizen mobilization. These dynamic hybrid policies are uniquely fitted to the particular ecological, historical, sociocultural, and political contexts in which they took root, contexts they help to transform. I conclude that result-based payment systems such as those envisaged for REDD+ have the potential to increase the production of additional carbon absorption capacity. However, they are not always appropriate or cost effective, nor do they substitute for command-and-control instruments, or for popular mobilization.

  18. Mitigation assessment results and priorities in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongxin; Wei Zhihong [Tsinghua Univ., Beijing (China)

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  19. Temperature, salinity, nutrients, carbon, and other profile data collected worldwide as part of the CARINA project (NODC Accession 0057766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis project is an international collaborative effort of the EU IP CARBOOCEAN, and US partners. It has...

  20. Fate of carbon in Alaskan Landscapes Project: database for soils from eddy covariance tower sites, Delta Junction, AK

    Science.gov (United States)

    King, Stagg; Harden, Jennifer; Manies, Kristen L.; Munster, Jennie; White, L. Douglas

    2002-01-01

    Soils in Alaska, and in high latitude terrestrial ecosystems in general, contain significant amounts of organic carbon, most of which is believed to have accumulated since the start of the Holocene about 10 ky before present. High latitude soils are estimated to contain 30-40% of terrestrial soil carbon (Melillo et al., 1995; McGuire and Hobbie, 1997), or ~ 300-400 Gt C (Gt = 1015 g), which equals about half of the current atmospheric burden of carbon. Boreal forests in particular are estimated to have more soil carbon than any other terrestrial biome (Post et al., 1982; Chapin and Matthews, 1993). The relations among net primary production, soil carbon storage, recurrent fire disturbance, nutrients, the hydrologic cycle, permafrost and geomorphology are poorly understood in boreal forest. Fire disturbance has been suggested to play a key role in the interactions among the complex biogeochemical processes influencing carbon storage in boreal forest soils (Harden et al., 2000; Zhuang et al., 2002). There has been an observed increase in fire disturbance in North American boreal black spruce (Picea mariana) forests in recent decades (Murphy et al., 1999; Kasichke et al., 2000), concurrent with increases in Alaskan boreal and arctic surface temperatures and warming of permafrost (Osterkamp and Romanofsky, 1999). Understanding the role of fire in long term carbon storage and how recent changes in fire frequency and severity may influence future high latitude soil carbon pools is necessary for those working to understand or mitigate the effects of global climate change.

  1. Imminent ocean acidification projected with the NCAR global coupled carbon cycle-climate model

    Directory of Open Access Journals (Sweden)

    M. Steinacher

    2008-11-01

    Full Text Available Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm, and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185%. Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally soon and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.

  2. FutureGen 2.0 Pipeline and Regional Carbon Capture Storage Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris [Patrick Engineering Inc., Lisle, IL (United States); Wortman, David [Patrick Engineering Inc., Lisle, IL (United States); Brown, Chris [Battelle Memorial Inst., Richland, WA (United States); Hassan, Syed [Gulf Interstate Engineering, Houston, TX (United States); Humphreys, Ken [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States); Willford, Mark [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States)

    2016-03-31

    efforts are also documented in this report. All permit applications had been submitted to all agencies for those permits or approvals required prior to the start of project construction. Most of the requisite permits were received during Phase II. This report includes information on each permitting effort. Successes and lessons learned are included in this report that will add value to the next generation of carbon storage efforts.

  3. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach

    NARCIS (Netherlands)

    Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; Jong de, B.H.J.; Mohren, G.M.J.

    2003-01-01

    The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest

  4. TAX TREATMENT OF CARBON CREDIT OPERATIONS IN BRAZILIAN COMPANIES WITH CDM PROJECTS

    Directory of Open Access Journals (Sweden)

    Vanderlei dos Santos

    2012-06-01

    Full Text Available The aim in this study is to identify the tax treatment applied to carbon credit operations in Brazilian companies that are developing projects in the context of the Clean Development Mechanism (CDM. Therefore, an exploratory research with a qualitative approach was developed. Data were collected with the help of questionnaire, forwarded to all Brazilian companies with CDM projects that received approval from the Inter-Ministerial Commission on Global Climate Change (CIMGC without safeguards, according to the list of the Brazilian Ministry of Science and Technology. Out of 117 companies listed, only five answered the research instrument, which represents an accessibility sample. The results show that, as for the tax treatment applied in the companies under analysis, IRPJ and CSLL should be charged on carbon credit operations. Regarding PIS, COFINS, ISS, some companies considered that these taxes are due and others that they are not. There is a consensus, though, about the fact that ICMS and IOF should not be charged. In conclusion, no uniform understanding exists as of yet about due taxes in the research sample, as no specific fiscal legislation exists yet on carbon credits in Brazil.

  5. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-01-30

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2003 through 1/1/2004. As indicated in the list of accomplishments below we have seen very encouraging results from the model scale tests in terms of organism growth rates and we have begun the final tests necessary to meet our project goals. Specific results and accomplishments for the fourth quarter of 2003 include: (1) Bioreactor support systems and test facilities--(A) The solar collector is working well and has survived the winter weather. (B) The improved high-flow CRF-2 test system has been used successfully to run several long-term growth tests with periodic harvesting events. The high flow harvesting system performed well. The mass measurement results after a 4-week test show 275% growth over the initial mass loading. This figure would have been higher had there been no leakage and handling losses. Carbon dating of biomass from this test is planned for carbon uptake estimation. The next test will include direct measurement of carbon uptake in addition to organism mass measurements. (C) Qualitative organism growth testing has begun in the pilot scale bioreactor. Some issues with uniformity of organism loading, fluid leakage and evaporation have surfaced and are currently being addressed, and quantitative testing will begin as soon as these problems are resolved. (2) Organisms and Growth Surfaces--(A) Montana State University (Subcontracted to do organism studies) submitted their final (3-year) project report. An abstract of the report in included in this quarterly report.

  6. Determinants of spatial and temporal patterns in compensatory wetland mitigation.

    Science.gov (United States)

    BenDor, Todd; Brozović, Nicholas

    2007-09-01

    Development projects that impact wetlands commonly require compensatory mitigation, usually through creation or restoration of wetlands on or off the project site. Over the last decade, federal support has increased for third-party off-site mitigation methods. At the same time, regulators have lowered the minimum impact size that triggers the requirement for compensatory mitigation. Few studies have examined the aggregate impact of individual wetland mitigation projects. No previous study has compared the choice of mitigation method by regulatory agency or development size. We analyze 1058 locally and federally permitted wetland mitigation transactions in the Chicago region between 1993 and 2004. We show that decreasing mitigation thresholds have had striking effects on the methods and spatial distribution of wetland mitigation. In particular, the observed increase in mitigation bank use is driven largely by the needs of the smallest impacts. Conversely, throughout the time period studied, large developments have rarely used mitigation banking, and have been relatively unaffected by changing regulatory focus and banking industry growth. We surmise that small developments lack the scale economies necessary for feasible permittee responsible mitigation. Finally, we compare the rates at which compensation required by both county and federal regulators is performed across major watershed boundaries. We show that local regulations prohibiting cross-county mitigation lead to higher levels of cross- watershed mitigation than federal regulations without cross-county prohibitions. Our data suggest that local control over wetland mitigation may prioritize administrative boundaries over hydrologic function in the matter of selecting compensation sites. PMID:17602255

  7. Wildlife Mitigation Program. Record of Decision

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) has decided to adopt a set of Descriptions (goals, strategies, and procedural requirements) that apply to future BPA-funded wildlife mitigation projects. Various. sources-including Indian tribes, state agencies, property owners, private conservation groups, or other Federal agencies-propose wildlife mitigation projects to the Northwest Power Planning Council (Council) for BPA funding. Following independent scientific and public reviews, Council then selects projects to recommend for BPA funding. BPA adopts this set of prescriptions to standardize the planning and implementation of individual wildlife mitigation projects. This decision is based on consideration of potential environmental impacts evaluated in BPA's Wildlife Mitigation Program Final Environmental Impact Statement (DOE/EIS-0246) published March, 20, 1997, and filed with the Environmental Protection Agency (EPA) the week of March 24, 1997 (EPA Notice of Availability Published April 4, 1997, 62 FR 65, 16154). BPA will distribute this Record of Decision to all known interested and affected persons, groups, tribes, and agencies

  8. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  9. The impacts of altered tropical cyclone activity on climate mitigation strategies

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; LePage, Y.; Patel, P.; Chini, L. P.; Thomson, A. M.; Clarke, L.; Calvin, K. V.; Wise, M.; Chambers, J. Q.; Negron Juarez, R. I.

    2012-12-01

    There is growing evidence that anthropogenic climate change may alter patterns of tropical cyclone frequency, intensity and spatial distribution, which in turn will alter the carbon balance of terrestrial systems in the large regions impacted by these storms. Recent studies project up to a doubling of major storms (Saffir-Simpson Scale 3-5) over the next century. Single large storms have been shown to be capable of causing committed carbon emissions equivalent to the annual U.S. carbon sink. These changes have the potential to affect climate mitigation strategies, most of which rely on maintaining or enhancing the terrestrial carbon sink to restrain the accumulation of atmospheric greenhouse gases. Altered patterns of disturbances and the resulting changes to the carbon balance of terrestrial systems could impact the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, and thus future land-use patterns, food prices and energy technology. Here we investigate the potential consequences of altered tropical cyclone activity on climate mitigation strategies using a fully integrated model (iED) that links advanced ecological and socio-economic models. The model combines the regional integrated assessment algorithms of the Global Change Assessment Model (GCAM), with the climate- sensitive ecosystem and carbon modeling in the Ecosystem Demography (ED) model, and the land-use mapping algorithms of the Global Land-use Model (GLM). We explore a range of scenarios of altered future tropical cyclone frequency, intensity and spatial pattern, the resulting effects on the terrestrial carbon balance, and the coupled effects on the food and energy sector under a range of future climate mitigation goals.

  10. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Harris, David; Williams, David; Bowersox, J Richard; Leetaru, Hannes

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  11. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    Science.gov (United States)

    2016-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  12. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    Science.gov (United States)

    Zhu, Zhiliang; McGuire, A. David

    2016-06-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  13. Bioenergy as a Mitigation Measure

    Science.gov (United States)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  14. Final Environmental Impact Statement Continental Divide/Wamsutter II Natural Gas Project, Sweetwater and Carbon Counties, Wyoming

    OpenAIRE

    United States Department of the Interior, Bureau of Land Management

    1999-01-01

    This Final Environmental Impact Statement (FEIS) assesses the environmental consequences of a proposed natural gas development project in eastern Sweetwater and southwestern Carbon Counties, Wyoming. This FEIS incorporates by reference most of the material presented in the Draft Environmental Impact Statement (DEIS) for the Continental Divide/Wamsutter II Natural Gas Project and is designed to be used with the DEIS.

  15. Burden differentiation. GHG emissions, undercurrents and mitigation costs. The joint CICERO-ECN project on sharing the burden greenhouse gas reduction among countries

    Energy Technology Data Exchange (ETDEWEB)

    Ybema, J.R.; Battjes, J.J.; Jansen, J.C.; Ormel, F.T. [ECN Policy Studies, Petten (Netherlands)

    2000-02-01

    The primary aim of the present report is to collect, and to perform a preliminary analysis of information on indicators that are likely to have relevance for the design of burden sharing rules. The indicators considered relate to emission figures per country, per gas, per source, data on energy efficiency, allowance factors for differences in emission levels, and information on the cost to reduce emissions of greenhouse gases. This study takes into account the six greenhouse gases mentioned in Annex A of the Kyoto protocol: carbon dioxide (CO2), methane (CH4), nitrous-oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur-hexafluoride (SF6). At present total CO2 emissions are by far the most important in terms of global warming potential (GWP), while the shares of CH4 and N2O in global GHG emissions are also non-negligible. The IPCC estimates that in 1995 emissions of CO2 account for 84% and the other gases for 16 % of total GWP, among which CH4 for 11% and N2O for 4%. As data on emissions for the latter two gases are available for many countries, these will be included in further project activities to the extent possible. A disadvantage of their inclusion is the low level of reliability of the corresponding emission data as compared to CO2 emission data. This disadvantage holds a fortiori for the remaining three 'Kyoto' gases. As the latter also contribute a very small share to total Global Warming Potential, inclusion of these emissions will be given low priority in subsequent research. From an historical point of view, the industrialised countries are the largest contributors to the global emissions. Particularly, Western Europe showed the highest emissions in the 19th century, while North America played a prominent role during the 20th century. Present-day developing countries are poised to become the main contributors in the 21st century. The increase of the world population is an important driving factor of GHG emissions

  16. Towards an integrated scientific approach for carbon accounting in forestry. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Karjalainen T.

    2000-01-01

    Full Text Available In the COST E21-Action ""Contribution of Forests and Forestry to Mitigate Greenhouse Effects"", emphasis is put on the quantification of carbon storage in the forest ecosystems and on the understanding of linkages between human activities and climate change, particularly the role of forests and forestry. COST E21 integrates natural, socio-economic as well as methodological aspects relevant for reporting under the unitéd Nations Framework Convention on Climate Change and the Kyoto Protocol, as well as decision-making at the European level in the context of carbon mitigation in forest ecosystems. This Action is a pioneering attempt to co-ordinate research: to exchange experience and knowledge towards standardised greenhouse gas inventory accounting for forests over Europe. It will match, within four years (1999-2003, both scientific and political agendas. This paper gives a background presentation of the COST E21-Action, its work plan and its clearing house. It finally gives the outline of country specific information to the COST E21 as presented in this issue in a standard format.

  17. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility

    DEFF Research Database (Denmark)

    Greve, Michelle; Reyers, Belinda; Lykke, Anne Mette;

    2013-01-01

    Carbon (C) offset projects through forestation are employed within the emissions trading framework to store C. Yet, information about the potential of landscapes to stock C, essential to the design of offset projects, is often lacking. Based on data on vegetation C, climate and soil we quantified...... and risks, providing crucial information for prioritization of investments in C storage projects.......Carbon (C) offset projects through forestation are employed within the emissions trading framework to store C. Yet, information about the potential of landscapes to stock C, essential to the design of offset projects, is often lacking. Based on data on vegetation C, climate and soil we quantified...... the potential for C storage in woody vegetation across tropical Africa. The ability for offset projects to produce co-benefits for ecosystems and local communities was also investigated. When co-benefits such as biodiversity conservation were considered, the top-ranked sites were often different to sites...

  18. Factors Influencing Potential Acceptance and Adoption of Clean Development Mechanism Projects: Case of Carbon Trade Tree Project among Small Scale Farmers in Njoro District, Kenya

    OpenAIRE

    Oscar I. Ayuya; Job K. Lagat and John M. Mironga

    2011-01-01

    The aim of study was to assess the willingness of small scale farmers to accept and the extent of willingness to adopt carbon trade tree project and by so doing to identify and quantify factors that will influence adoption of carbon trade tree project. The study used multi-stage sampling procedure to select 150 small-scale farmers in Njoro district, Kenya. Both primary and secondary data sources collected using observations and interviews with the help of a semi-structured questionnaire. The ...

  19. Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia.

    Science.gov (United States)

    Fuller, Douglas O; Hardiono, Martin; Meijaard, Erik

    2011-09-01

    We evaluated three spatially explicit land use and cover change (LUCC) models to project deforestation from 2005-2020 in the carbon-rich peat swamp forests (PSF) of Central Kalimantan, Indonesia. Such models are increasingly used to evaluate the impact of deforestation on carbon fluxes between the biosphere and the atmosphere. We considered both business-as-usual (BAU) and a forest protection scenario to evaluate each model's accuracy, sensitivity, and total projected deforestation and landscape-level fragmentation patterns. The three models, Dinamica EGO (DE), GEOMOD and the Land Change Modeler (LCM), projected similar total deforestation amounts by 2020 with a mean of 1.01 million ha (Mha) and standard deviation of 0.17 Mha. The inclusion of a 0.54 Mha strict protected area in the LCM simulations reduced projected loss to 0.77 Mha over 15 years. Calibrated parameterizations of the models using nearly identical input drivers produced very different landscape properties, as measured by the number of forest patches, mean patch area, contagion, and Euclidean nearest neighbor determined using Fragstats software. The average BAU outputs of the models suggests that Central Kalimantan may lose slightly less than half (45.1%) of its 2005 PSF by 2020 if measures are not taken to reduce deforestation there. The relatively small reduction of 0.24 Mha in deforestation found in the 0.54 Mha protection scenario suggests that these models can identify potential leakage effects in which deforestation is forced to occur elsewhere in response to a policy intervention.

  20. Wildlife mitigation program final environmental impact statement

    International Nuclear Information System (INIS)

    BPA is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and improvement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative, i.e., not to establish program-wide standards. Five standardizing (action) alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  1. Wildlife mitigation program. Draft environmental impact statement

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  2. 2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Johnson; K. A. Gano

    2006-10-03

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

  3. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  4. FEMA Hazard Mitigation Assistance Severe Repetitive Loss (SRL) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Severe Repetitive Loss (SRL). The...

  5. RFI Mitigation for FAST

    Science.gov (United States)

    Zhang, Haiyan; Nan, Rendong; Gan, Hengqian; Yue, Youling; Wu, Mingchang; Zhang, Zhiwei; Jin, Chengjin; Peng, Bo

    2015-08-01

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. The construction was officially commenced in March 2011. The first light of FAST is expected in 2016. Due to the high sensitivity of FAST, Radio Frequency Interference (RFI) mitigation for the telescope is required to assure the realization of the scientific goals. In order to protect the radio environment of FAST site, the local government has established a radio quiet zone with 30 km radius. Moreover, Electromagnetic Compatibility (EMC) designs and measurements for FAST have also been carried out, and some examples, such as EMC designs for actuator and focus cabin, have been introduced briefly.

  6. Stakeholder views on financing carbon capture and storage demonstration projects in China.

    Science.gov (United States)

    Reiner, David; Liang, Xi

    2012-01-17

    Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments. PMID:22191735

  7. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  8. The Role of Extension in Adopting Solar Energy in Rural Areas Case of Carbon Sequestration Project

    Directory of Open Access Journals (Sweden)

    Seyed J.F. Hosseini

    2011-01-01

    Full Text Available Problem statement: Solar energy as a renewable energy source is considered as an important alternative options for farmers. The development of renewable energy in rural areas faces several challenges. Agricultural extension by its nature has an important role in promoting the adoption of new technologies and innovations. Approach: The main focus of this study is to find out the role of extension in adopting solar energy in rural areas by participants in carbon sequestration project. A questionnaire was developed and data was collected from 310 participants in carbon sequestration project. Regression analysis was used to analyze the data. The stepwise method was used in the regression analysis. Results: The result indicates that 30% of the variance in the perception of respondents about role of extension in adopting solar energy could be explained by using educational films and slides, contacting with extension agents, visiting sample sites and providing lectures. Conclusion and Recommendations: The results demonstrated that success of solar energy will depend on the informing population about benefits and in this regard the authorities should provide accurate and on time information. There is no single and appropriate intervention for developing and protecting solar energy in rural areas and in view of the numerous and varied constraints and opportunities, there is need to develop location- specific strategies.

  9. Introducing the global carbon cycle to middle school students with a 14C research project

    Science.gov (United States)

    Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.

    2012-12-01

    Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.

  10. Studies and projections of hydraulic conductivity of Devonian Plavinu and Daugava carbonate aquifers in Latvia

    Science.gov (United States)

    Perkone, E.; Delina, A.; Saks, T.; Raga, B.; Jātnieks, J.; Klints, I.; Popovs, K.; Babre, A.; Bikše, J.; Kalvāns, A.; Retike, I.; Ukass, J.

    2012-04-01

    very important to take into account the fact that groundwater flow in carbonate aquifers is often almost entirely dependent on jointing and concomitant joint enlargement by dissolution. In this study pumping test results provide a wide range of hydraulic conductivity values, for example in Pļaviņu aquifer hydraulic conductivity varies from 0,03 - 266 m/day but in Daugava aquifer values range from 0,06 - 735 m/day. Pumping test results is provided by Latvian Environment, Geology and Meteorology Centre. Studying average values of hydraulic conductivity there exists a correlation between K and aquifer flat depth - Daugava aquifer, which in geological structure, is located above the Pļaviņu aquifer has higher average K value - 32 m/day, in Pļaviņu aquifer - 27 m/day. Correlative study of the depth and hydraulic conductivity allowed to characterize the mean values as function of the aquifer depth for the regional groundwater flow modelling. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

  11. A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics

    International Nuclear Information System (INIS)

    The paper examined the case study of the Saudi electricity sector and provided projections for energy use and respective carbon dioxide (CO2) emissions for the period 2010–2025 with and without cleaner energy technologies. Based on two sets of 20 life cycle assessment studies for carbon capture and storage and solar photovoltaic technologies, CO2 emission reduction rates were used for projecting future CO2 emissions. Results showed enormous savings in CO2 emissions, for the most likely case, year 2025 reported savings that range from 136 up to 235 MtCO2. Including low growth and high growth cases, these savings could range from 115 up to 468 MtCO2 presenting such an unrivalled opportunity for Saudi Arabia. These projections were developed as a way of translating the inherent advantages that cleaner energy technologies could provide for CO2 emissions savings. It is hoped that the results of this paper would inform energy policymaking in Saudi Arabia. - Highlights: • Electricity use in Saudi Arabia is predicted in the period 2010–2025. • Use of photovoltaic plants and carbon capture and storage are considered. • Life cycle assessment of the options is conducted. • Carbon emissions with and without the renewable energy are estimated. • The projections showcase the CO2 emissions savings

  12. Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes

    OpenAIRE

    Hejnowicz, Adam P.; Kennedy, Hilary; Murray A. Rudd; Huxham, Mark R.

    2015-01-01

    Seagrass ecosystems provide numerous ecosystem services that support coastal communities around the world. They sustain abundant marine life as well as commercial and artisanal fisheries, and help protect shorelines from coastal erosion. Additionally, seagrass meadows are a globally significant sink for carbon and represent a key ecosystem for combating climate change. However, seagrass habitats are suffering rapid global decline. Despite recognition of the importance of “Blue Carbon,” no fun...

  13. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate mitigation and adaptation strategy for the Amazon?

    Science.gov (United States)

    Zeng, N.

    2015-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a 'carbon scrubber' or 'carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a 'biomass/bioenergy reserve' that could be utilized in the future. We discuss the particular relevance of this strategy to the Amazon which is under the double threat of climate change and deforestation. As an alternative to REDD, we propose mixed-use of peripheral Amazon basin while keeping the core of the Amazon intact. We argue that this may be a more practical solution in light of the likely climate change impact and human activities.

  14. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  15. Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia

    Science.gov (United States)

    Murray, Josil P; Grenyer, Richard; Wunder, Sven; Raes, Niels; Jones, Julia PG

    2015-01-01

    There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first-generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation. Los Patrones Espaciales

  16. Design of 9-meter carbon-fiberglass prototype blades : CX-100 and TX-100 : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Derek (TPI Composites, Inc., Warren, RI)

    2007-09-01

    TPI Composites, Inc. (TPI), Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ) have collaborated on a project to design, manufacture, and test prototype carbon-fiberglass hybrid wind turbine blades of 9-m length. The project, funded by Sandia National Laboratories, involves prototype blades in both conventional (unidirectional spar fibers running along the blade span) and ''adaptive'' (carbon fibers in off-axis orientation to achieve bend-twist-coupling) configurations. After manufacture, laboratory testing is being conducted to determine the static and fatigue strength of the prototypes, in conjunction with field testing to evaluate the performance under operational conditions.

  17. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  18. Fuel demand projections and comparison of CO2 mitigation scenarios for Brazil until 2035; Projecoes de demanda de combustiveis e comparacao entre cenarios de mitigacao das emissoes de CO2 para o Brasil ate 2035

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, Rodrigo Pacheco; Araujo, Maria Silvia Muylaert de; Freitas, Marcos Aurelio Vasconcelo de; Rosa, Luiz Pinguelli; Silva, Neilton Fidelis da; Campos, Antonio F. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil); Campos, Christiano Pires de; Gutierres, Ricardo [Petroleo Brasileiro S.A (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento; Lampreia, Joao [Agencia Internacional de Energia (IEA), Paris (France)

    2012-07-01

    This article results from work undertaken by the technical cooperation between the Leopoldo Americo Miguez de Mello Research and Development Center of PETROBRAS (CENPES/PETROBRAS) and the International Virtual Institute of Global Change (IVIG/Coppe/UFRJ), evaluates how the Oil Sector and the fuels demand (petroleum and natural gas) from Brazil will be impacted in the short, medium and long term for current climate change mitigation policies, as for possible proposals to the second period of the Kyoto Protocol (post-2012). Thus, emission scenarios were developed by 2035 as among the main greenhouse gases (GHG), carbon dioxide (CO{sub 2}), considering data from the World Energy Outlook 2010 / International Energy Agency (IEA), the Second National Inventory of Anthropogenic Greenhouse Gas Emissions, from the Ministry of Science, Technology and Innovation (MCTI) and the Ten Year Plan for Energy Expansion (PDE), from the Energy Research Company (EPE) / Ministry of Mines and Energy (MME). (author)

  19. Carbon sequestration and the forest sector: Implementing an additional project based on wood products in the construction sector

    OpenAIRE

    Jean-Jacques MALFAIT (GREThA UMR CNRS 5113); Pajot, Guillaume

    2008-01-01

    The aim of the paper is to analyse the implementation of a climate change mitigation strategy for the forest sector. We suggest a strategy based on an increased storage capacity in wood products. An additional resource is provided by recycling and a reallocation of timber usages. In the first part of the paper, the additionality notion (“Kyoto meaning”) is discussed (environmental and economic aspects). Then a case study is conducted on the “Landes de Gascogne forest”. The project is assessed...

  20. Mitigating GHG emissions from ruminant livestock systems

    OpenAIRE

    Klumpp, Katja; Doreau, Michel; Faverdin, Philippe; Jeuffroy, Marie-Helene; Bamière, Laure; Pardon, Lenaïc; Soussana, Jean-François; Pellerin, Sylvain

    2015-01-01

    Improving the net GHG budget of ruminant livestock systems without a reduction in productivity and economic sustainability, requires effective mitigation options in terms of abatement potential and costs. Grasslands and grassland management have a large potential to mitigate livestock GHG emissions at a low (or even negative) cost. A synthesis of eddy flux covariance data (i.e. 189 site years) shows on a mean net carbon storage equal to 0.76 ±0.1 MgC m-2yr-1, indicating a significant carbon s...