WorldWideScience

Sample records for carbon metabolism unveils

  1. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Nengyi Zhang

    Full Text Available BACKGROUND: Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system. METHODOLOGY/PRINCIPAL FINDINGS: We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  2. Unveiling the Metabolic Pathways Associated with the Adaptive Reduction of Cell Size During Vibrio harveyi Persistence in Seawater Microcosms.

    Science.gov (United States)

    Kaberdin, Vladimir R; Montánchez, Itxaso; Parada, Claudia; Orruño, Maite; Arana, Inés; Barcina, Isabel

    2015-10-01

    Owing to their ubiquitous presence and ability to act as primary or opportunistic pathogens, Vibrio species greatly contribute to the diversity and evolution of marine ecosystems. This study was aimed at unveiling the cellular strategies enabling the marine gammaproteobacterium Vibrio harveyi to adapt and persist in natural aquatic systems. We found that, although V. harveyi incubation in seawater microcosm at 20 °C for 2 weeks did not change cell viability and culturability, it led to a progressive reduction in the average cell size. Microarray analysis revealed that this morphological change was accompanied by a profound decrease in gene expression affecting the central carbon metabolism, major biosynthetic pathways, and energy production. In contrast, V. harveyi elevated expression of genes closely linked to the composition and function of cell envelope. In addition to triggering lipid degradation via the β-oxidation pathway and apparently promoting the use of endogenous fatty acids as a major energy and carbon source, V. harveyi upregulated genes involved in ancillary mechanisms important for sustaining iron homeostasis, cell resistance to the toxic effect of reactive oxygen species, and recycling of amino acids. The above adaptation mechanisms and morphological changes appear to represent the major hallmarks of the initial V. harveyi response to starvation. PMID:25903990

  3. Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis.

    Directory of Open Access Journals (Sweden)

    Oriol Güell

    2014-05-01

    Full Text Available We unravel how functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks. We perform an exhaustive computational screening of synthetic lethal reaction pairs in Escherichia coli in a minimal medium and we find that synthetic lethal pairs divide in two different groups depending on whether the synthetic lethal interaction works as a backup or as a parallel use mechanism, the first corresponding to essential plasticity and the second to essential redundancy. In E. coli, the analysis of pathways entanglement through essential redundancy supports the view that synthetic lethality affects preferentially a single function or pathway. In contrast, essential plasticity, the dominant class, tends to be inter-pathway but strongly localized and unveils Cell Envelope Biosynthesis as an essential backup for Membrane Lipid Metabolism. When comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic networks of the two organisms exhibit a large difference in the relative importance of plasticity and redundancy which is consistent with the conjecture that plasticity is a sophisticated mechanism that requires a complex organization. Finally, coessential reaction pairs are explored in different environmental conditions to uncover the interplay between the two mechanisms. We find that synthetic lethal interactions and their classification in plasticity and redundancy are basically insensitive to medium composition, and are highly conserved even when the environment is enriched with nonessential compounds or overconstrained to decrease maximum biomass formation.

  4. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.

    Science.gov (United States)

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-08-15

    Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics is still at an early stage. The 'omics' based genome-wide profiling comprising the transcriptome, miRNome and proteome are highly useful in identifying the deregulated molecular processes involved in hepatocarcinogenesis. One of the end products and processes of the central dogma being the metabolites and metabolic processes mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes involved in HCC by employing metabolism associated gene-set enrichment analysis. Further, the metabolic process enrichment scores were integrated with the transcriptome profiles of HCC. Integrative analysis shows three distinct metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii) enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in hepatocarcinogenesis. The three distinct metabolic processes were found to occur both in tumor and liver cancer cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample information has identified two major clusters based on AFP (alpha-fetoprotein) and metastasis. The study reveals the three major regulatory processes involved in HCC stages. PMID:27107678

  5. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    OpenAIRE

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increa...

  6. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis.

    Science.gov (United States)

    Zeisel, Steven H

    2013-03-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a > three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  7. Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    OpenAIRE

    Mario Lebrato; Juan-Carlos Molinero; Cartes, Joan E.; Domingo Lloris; Frédéric Mélin; Laia Beni-Casadella

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depos...

  8. Sinking jelly-carbon unveils potential environmental variability along a continental margin.

    Directory of Open Access Journals (Sweden)

    Mario Lebrato

    Full Text Available Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2 after trawling and integrating between 30,000 and 175,000 m(2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.

  9. Rewriting central metabolism for carbon conservation

    OpenAIRE

    Bogorad, Igor Walter

    2015-01-01

    The efficient use of carbon sources is a core objective in metabolic engineering and biorefinery. Most approaches have focused on optimizing naturally occurring pathways to improve titer, productivity, and yield. However, certain inherent limitations cannot be surpassed if natural pathways are used. Here we designed two synthetic metabolic pathways, Non-Oxidative Glycolysis (NOG) and Methanol Condensation Cycle (MCC) for the utilization of sugar and methanol, respectively. We also created a ...

  10. Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering.

    Science.gov (United States)

    McQualter, Richard B; Bellasio, Chandra; Gebbie, Leigh K; Petrasovits, Lars A; Palfreyman, Robin W; Hodson, Mark P; Plan, Manuel R; Blackman, Deborah M; Brumbley, Stevens M; Nielsen, Lars K

    2016-02-01

    In planta production of the bioplastic polyhydroxybutyrate (PHB) is one important way in which plant biotechnology can address environmental problems and emerging issues related to peak oil. However, high biomass C4 plants such as maize, switch grass and sugarcane develop adverse phenotypes including stunting, chlorosis and reduced biomass as PHB levels in leaves increase. In this study, we explore limitations to PHB accumulation in sugarcane chloroplasts using a systems biology approach, coupled with a metabolic model of C4 photosynthesis. Decreased assimilation was evident in high PHB-producing sugarcane plants, which also showed a dramatic decrease in sucrose and starch content of leaves. A subtle decrease in the C/N ratio was found which was not associated with a decrease in total protein content. An increase in amino acids used for nitrogen recapture was also observed. Based on the accumulation of substrates of ATP-dependent reactions, we hypothesized ATP starvation in bundle sheath chloroplasts. This was supported by mRNA differential expression patterns. The disruption in ATP supply in bundle sheath cells appears to be linked to the physical presence of the PHB polymer which may disrupt photosynthesis by scattering photosynthetically active radiation and/or physically disrupting thylakoid membranes. PMID:26015295

  11. Engineering Plant One-Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    David Rhodes

    2005-02-09

    Primary and secondary metabolism intersect in the one-carbon (C1) area. Primary metabolism supplies most of the C1 units and competes with secondary metabolism for their use. This competition is potentially severe because secondary products such as lignin, alkaloids, and glycine betaine (GlyBet) require massive amounts of C1 units. Towards the goal of understanding how C1 metabolism is regulated at the metabolic and gene levels so as to successfully engineer C1 supply to match demand, we have: (1) cloned complete suites of C1 genes from maize and tobacco, and incorporated them into DNA arrays; (2) prepared antisense constructs and mutants engineered with alterations in C1 unit supply and demand; and (3) have quantified the impacts of these alterations on gene expression (using DNA arrays), and on metabolic fluxes (by combining isotope labeling, MS, NMR and computer modeling). Metabolic flux analysis and modeling in tobacco engineered for GlyBet synthesis by expressing choline oxidizing enzymes in either the chloroplast or cytosol, has shown that the choline biosynthesis network is rigid, and tends to resist large changes in C1 demand. A major constraint on engineering enhanced flux to GlyBet in tobacco is a low capacity of choline transport across the chloroplast envelope. Maize and sorghum mutants defective in GlyBet synthesis show greatly reduced flux of C1 units into choline in comparison to GlyBet-accumulating wildtypes, but this is not associated with altered expression of any of the C1 genes. Control of C1 flux to choline in tobacco, maize and sorghum appears to reside primarily at the level of N-methylation of phosphoethanolamine. A candidate signal for the control of this flux is the pool size of phosphocholine which down-regulates and feedback inhibits phosphoethanolamine N-methyltransferase. Methionine S-methyltransferase (MMT) catalyzes the synthesis of S-methylmethionine (SMM) from methionine (Met) and S-adenosylmethionine (AdoMet). SMM can be

  12. Molecular Basis of Microbial One-Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Molecular Basis of Microbial One-Carbon Metabolism was held at Connecticut College, New London, Connecticut. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. One Carbon Metabolism, Fetal Growth and Long Term Consequences

    OpenAIRE

    Kalhan, Satish C.

    2013-01-01

    One carbon metabolism, or methyl transfer, is critical for metabolism in all cells, is involved in the synthesis of purines, pyrimidines, in the methylation of numerous substrates, proteins, DNA and RNA, and in the expression of a number of genes. Serine is the primary endogenous methyl donor to the one carbon pool. Perturbations in methyl transfer due to nutrient and hormonal changes can have profound effect on cell function, growth and proliferation. It is postulated that at critical stages...

  14. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  15. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    Energy Technology Data Exchange (ETDEWEB)

    Myrold, David D. [Oregon State Univ., Corvallis, OR (United States); Bottomely, Peter J. [Oregon State Univ., Corvallis, OR (United States); Jumpponen, Ari [Kansas State Univ., Manhattan, KS (United States); Rice, Charles W. [Kansas State Univ., Manhattan, KS (United States); Zeglin, Lydia H. [Kansas State Univ., Manhattan, KS (United States); David, Maude M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jansson, Janet K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestat, Emmanuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-17

    biology approach, considering the complex soil microbial community as a functioning system and using state-of-the-art metatranscriptomic, metaproteomic, and metabolomic approaches. These omics tools were refined, applied to field experiments, and confirmed with controlled laboratory studies. Our experiments were designed to specifically identify microbial community members and processes that are instrumental players in processing of C in the prairie soils and how these processes are impacted by wetting and drying events. This project addresses a key ecosystem in the United States that current climate models predict will be subjected to dramatic changes in rainfall patterns as a result of global warming. Currently Mollisols, such as those of the tallgrass prairie, are thought to sequester more C than is released into the atmosphere, but it is not known what changes in rainfall patterns will have on future C fluxes. Through an analysis of the molecular response of the soil microbial community to shifts in precipitation cycles that are accompanied by phenologically driven changes in quality of plant C rhizodeposits, we gained deeper insight into how the metabolism of microbes has adapted to different precipitation regimes and the impact of this adaption on the fate of C deposited into soil. In doing so, we addressed key questions about the microbial cycling of C in soils that have been identified by the DOE.

  16. Games Uniforms Unveiled

    Institute of Scientific and Technical Information of China (English)

    Linda

    2008-01-01

    The uniforms for Beijing Olympics’ workers, technical staff and volunteers have been unveiled to mark the 200-day countdown to the Games. The uniforms feature the key element of the clouds of promise and will be in three colors:red for Beijing Olympic Games Committee staff, blue

  17. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...

  18. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  19. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  20. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Shragge, B.

    1987-12-01

    The intertidal macroalga Enteromorpha compressa showed the ability to use HCO/sub 3//sup -/, as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural sea water concentration of this carbon form was saturating, additional CO/sub 2/ above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO/sub 2/ during mild desiccation. Based on carbon fixing enzyme activities and Ci pulse-chase incorporation patterns, it was found that Enteromorpha is a C/sub 3/ plant. However, this alga did not show O/sub 2/ inhibited photosynthetic rates at natural sea water Ci conditions. It is suggested that such a C/sub 4/-like gas exchange response is due to the HCO/sub 3//sup -/ utilization system concentrating CO/sub 2/ intracellularly, thus alleviating apparent photorespiration.

  1. The Central Carbon and Energy Metabolism of Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Adriano Nunes-Nesi

    2013-05-01

    Full Text Available Diatoms are heterokont algae derived from a secondary symbiotic event in which a eukaryotic host cell acquired an eukaryotic red alga as plastid. The multiple endosymbiosis and horizontal gene transfer processes provide diatoms unusual opportunities for gene mixing to establish distinctive biosynthetic pathways and metabolic control structures. Diatoms are also known to have significant impact on global ecosystems as one of the most dominant phytoplankton species in the contemporary ocean. As such their metabolism and growth regulating factors have been of particular interest for many years. The publication of the genomic sequences of two independent species of diatoms and the advent of an enhanced experimental toolbox for molecular biological investigations have afforded far greater opportunities than were previously apparent for these species and re-invigorated studies regarding the central carbon metabolism of diatoms. In this review we discuss distinctive features of the central carbon metabolism of diatoms and its response to forthcoming environmental changes and recent advances facilitating the possibility of industrial use of diatoms for oil production. Although the operation and importance of several key pathways of diatom metabolism have already been demonstrated and determined, we will also highlight other potentially important pathways wherein this has yet to be achieved.

  2. Carbon conversion and metabolic rate in two marine sponges.

    Science.gov (United States)

    Koopmans, M; van Rijswijk, P; Martens, D; Egorova-Zachernyuk, T A; Middelburg, J J; Wijffels, R H

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a (13)C isotope pulse-chase approach. The sponges were fed (13)C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total (13)C enrichment, and fatty acid (FA) composition and (13)C enrichment. Algal biomarkers present in the sponges were highly labeled after feeding but their labeling levels decreased until none was left 10 days after enrichment. The sponge-specific FAs incorporated (13)C label already during the first day and the amount of (13)C label inside these FAs kept increasing until 3 weeks after labeling. The algal-derived carbon captured by the sponges during the 8-h feeding period was thus partly respired and partly metabolized during the weeks following. Apparently, sponges are able to capture enough food during short periods to sustain longer-term metabolism. The change of carbon metabolic rate of fatty acid synthesis due to mechanical damage of sponge tissue was studied by feeding sponges with (13)C isotope-labeled diatom (Pheaodactylum tricornutum) either after or before damaging and tracing back the (13)C content in the damaged and healthy tissue. The filtration and respiration in both sponges responded quickly to damage. The rate of respiration in H. oculata reduced immediately after damage, but returned to its initial level after 6 h. The (13)C data revealed that H. oculata has a higher metabolic rate in the tips where growth occurs compared to the rest of the tissue and that the metabolic rate is increased after damage of the tissue. For D. avara, no differences were found between damaged and non-damaged tissue. However, the filtration rate decreased directly after damage. PMID:24489407

  3. Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert

    Science.gov (United States)

    Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    The carbon metabolism of the cryptoendolithic microbiota of sandstones from the Ross Desert of Antarctica was studied in situ and in vitro. Organic and inorganic carbon compounds were metabolized by the microbiota, with bicarbonate incorporation into community lipids occurring primarily in the light. Light intensity affected the photometabolism of carbon with a photosynthesis-intensity response optimum at about 200 to 300 micromoles of photons per m2 per s. Photosynthesis was also affected by temperature, with a minimum activity at -5 degrees C, an optimum activity at 15 degrees C, and complete inhibition at 35 degrees C, indicating that the cryptoendolithic community was psychrophilic. The primary source of CO2 for photosynthesis in situ was the atmosphere. CO2 may also be photometabolized by using the carbon produced from respiration within the endolithic community. Photosynthesis occurred maximally when the microbiota was wet with liquid water and to a lesser extent in a humid atmosphere. This simple microbial community, therefore, exists under extremes of water, light, and temperature stress which affect and control its metabolism.

  4. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism

    OpenAIRE

    Strijbis, K.; Distel, B.

    2010-01-01

    Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming...

  5. Metabolism of various carbon sources by Azospirillum brasilense.

    OpenAIRE

    Westby, C A; Cutshall, D S; Vigil, G V

    1983-01-01

    Azospirillum brasilense Sp7 and two mutants were examined for 19 carbon metabolism enzymes. The results indicate that this nitrogen fixer uses the Entner-Doudoroff pathway for gluconate dissimilation, lacks a catabolic but has an anabolic Embden-Meyerhof-Parnas hexosephosphate pathway, has amphibolic triosephosphate enzymes, lacks a hexose monophosphate shunt, and has lactate dehydrogenase, malate dehydrogenase, and glycerokinase. The mutants are severely deficient in phosphoglycerate and pyr...

  6. Mitochondrial dysfunction remodels one-carbon metabolism in human cells

    Science.gov (United States)

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.10575.001 PMID:27307216

  7. Exhaustive Analysis of a Genotype Space Comprising 10(15 Central Carbon Metabolisms Reveals an Organization Conducive to Metabolic Innovation.

    Directory of Open Access Journals (Sweden)

    Sayed-Rzgar Hosseini

    2015-08-01

    Full Text Available All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism's potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 10(15 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 10(9 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes--viable on new carbon sources--through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation.

  8. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  9. Lord Shiva Statue Unveiled

    CERN Multimedia

    2004-01-01

    On 18 June, CERN unveiled an unusual new landmark, a 2m tall statue of the Indian deity Lord Shiva. The Director-General and Dr. Kakodkar watch as Mr.Chandrasekhar signs the Guest Book. The statue is a gift from India, celebrating CERN's long association with India which started in the 1960's and continues strongly today. It was unveiled by the Director General, Dr Robert Aymar, His Excellency Mr K. M. Chandrasekhar, Ambassador (WTO-Geneva) and Dr Anil Kakodkar, Chairman of the Atomic Energy Commission and Secretary, Dept of Atomic Energy, India. In the Hindu religion, this form of the dancing Lord Shiva is known as the Nataraj and symbolises Shakti, or life force. As a plaque alongside the statue explains, the belief is that Lord Shiva danced the Universe into existence, motivates it, and will eventually extinguish it. Carl Sagan drew the metaphor between the cosmic dance of the Nataraj and the modern study of the 'cosmic dance' of subatomic particles. The statue was made in India. The original sculpture was...

  10. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion...

  11. Carbon Metabolism Enzymes of Rhizobium tropici Cultures and Bacteroids.

    Science.gov (United States)

    Romanov, V I; Hernández-Lucas, I; Martínez-Romero, E

    1994-07-01

    We determined the activities of selected enzymes involved in carbon metabolism in free-living cells of Rhizobium tropici CFN299 grown in minimal medium with different carbon sources and in bacteroids of the same strain. The set of enzymatic activities in sucrose-grown cells suggests that the pentose phosphate pathway, with the participation of the Entner-Doudoroff pathway, is probably the primary route for sugar catabolism. In glutamate- and malate-grown cells, high activities of the gluconeogenic enzymes (phosphoenolpyruvate carboxykinase, fructose-6-phosphate aldolase, and fructose bisphosphatase) were detected. In bacteroids, isolated in Percoll gradients, the levels of activity for many of the enzymes measured were similar to those of malate-grown cells, except that higher activities of glucokinase, glucose-6-phosphate dehydrogenase, and NAD-dependent phosphogluconate dehydrogenase were detected. Phosphoglucomutase and UDP glucose pyrophosphorylase showed high and constant levels under all growth conditions and in bacteroids. PMID:16349319

  12. Ecophysiology of terminal carbon metabolizing bacteria in anoxic sedimentary environments

    International Nuclear Information System (INIS)

    Chemical, radiotracer, and microbiological experiments were used to understand the transformation of simple carbon compounds by anaerobic bacteria in diverse aquatic sediments and laboratory cultures. The mildly acidic sediments of Knack Lake (pH 6.2), displayed low rates of organic decomposition, and methane formation occurred almost exclusively from acetate. Low pH inhibited methanogenesis and organic decomposition. Fall turnover in Lake Mendota sediments was associated with dramatic changes in environmental parameters including: elevated concentrations of sulfate and carbon metabolites, increased rates of sulfate reduction, decreased levels of methanogenesis, increased ratio (by viable counts) of sulfate reducing to methanogenic bacteria, and higher 14CO2/14C4 + 14CO2 gas ratios produced during the biodegradation of 14C-carbon substrates (e.g., acetate and methanol). Hydrogen consumption by sulfate reducers in Lake Mendota sediments and in co-cultures of Desulfovibrio vulgaris and Methanosarcina barkeri led to an alteration in the carbon and electron flow pathway resulting in increased CO2, sulfide production, and decreased methanogenesis. These data agreed with the environmental observations in Lake Mendota that high sulfate concentrations resulted in higher ratios of CO2/CH4 produced from the degradation of organic matter. A new glycine-metabolizing acetogenic species was isolated and characterized from Knaack Lake which further extended the known diversity of anaerobic bacteria in nature

  13. Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae

    OpenAIRE

    Van Voorhies, Wayne A.

    2012-01-01

    Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain i...

  14. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Science.gov (United States)

    Corbin, Joshua M.; Ruiz-Echevarría, Maria J.

    2016-01-01

    Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325

  15. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    OpenAIRE

    Visser, M.

    2015-01-01

    ABSTRACT One-carbon metabolism in acetogenic and sulfate-reducing bacteria Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen, sulfur, phosphorous, and carbon. The continuous cycling of these elements is due to geo-chemical processes and the combined metabolism of all life on earth. Microorganisms like bacteria and archaea play a major role in this. This is also true for the carbon cycle. In this cycle carbon dioxide and methane are two im...

  16. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP;

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...... internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol...

  17. Influence of Cd, Co, and Zn on inorganic carbon acquisition and carbon metabolism in Emiliania huxleyi.

    Science.gov (United States)

    Sutton, J. N.; Boye, M.; De La Broise, D.; Probert, I.

    2014-12-01

    Trace elements are essential micronutrients for primary producers; hence they influence the global carbon cycle and contribute to the regulation of Earth's climate. Over the past 25 years, the influence of Fe concentration on phytoplankton production has been well studied and this research has been instrumental in our understanding of the influence that biology has on the sequestration of atmospheric CO2. However, other trace elements that are directly involved in carbon metabolism by primary producers, such as Zn, Cd, and Co, have received less attention. We examined the physiological response of two strains of Emiliania huxleyi to a range of realistic trace element concentrations (Zn, Cd, Co) in the marine environment under batch, semi-continuous, and continuous culture conditions. In addition, the continuous culture system was maintained at a pH of 8.15 ±0.02 by a sensor and regulator-controlled CO2­ injection system. The results from this study will highlight the influence that trace element composition of seawater has on the growth rate, elemental quota, inorganic carbon uptake, and carbon metabolism of Emiliania huxleyi. Potential limitations for the interpretation of paleo-productivity records will be discussed.

  18. No Association of SNPs in One-Carbon Metabolism Genes with Prostate Cancer Risk

    OpenAIRE

    Stevens, Victoria L; Rodriguez, Carmen; Sun, Juzhong; Talbot, Jeffrey T.; Michael J Thun; Eugenia E Calle

    2008-01-01

    One-carbon metabolism mediates the inter-conversion of folates for the synthesis of precursors used in DNA synthesis, repair and methylation. Inadequate folate nutrition or compromised metabolism can disrupt these processes and facilitate carcinogenesis. In this study, we investigated associations of 39 candidate SNPs in nine one-carbon metabolism genes with risk of prostate cancer using 1,144 cases and 1,144 controls from the Cancer Prevention Study-II Nutrition Cohort. None of these SNPs we...

  19. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    Science.gov (United States)

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  20. Investigation into the flux distribution of central carbon metabolism in Corynebacterium glutamicum using principal component analysis

    Directory of Open Access Journals (Sweden)

    Shang Chuanyu

    2015-01-01

    Full Text Available Central carbon metabolism is the main source of energy required by organisms and it provides precursors for other in vivo metabolic processes. The flux flowing through the pathways involved in central carbon metabolism characterizes its biological function and genetic readout between species or environments. In recent years, using a 13C tracer technique, researchers have measured the flux of central carbon metabolism in Corynebacterium glutamicum under a variety of nutritional and environmental changes or genetic modifications. However, there is no integrated and comparative analysis of these measured flux values. In this study, the flux values of central carbon metabolism in Corynebacterium glutamicum that were obtained in other recent studies were consolidated. A preliminary examination of the distribution characteristics of flux values in each metabolic pathway was conducted and the regression relationship between different fluxes was investigated. The principal components of the flux vector were further extracted and aggregated based on the components, and the general features of flux distribution of central carbon metabolism as well as the influence of environmental and genetic factors on the flux distribution were determined. This study provides a foundation for further investigation into the flux distribution and regulation characteristics of central carbon metabolism.

  1. Soil metabolic transformations of carbon-14-myo-inositol, carbon-14-phytic acid and carbon-14-iron(III) phytate

    International Nuclear Information System (INIS)

    Uniformly labelled 14C-phytic acid and 14C-iron(III) phytate were synthesized from uniformly labelled 14C-myo-inositol. The three compounds were incubated in an Andosol sandy loam at 70% field capacity and 36.50C for a 12-day period. Myo-inositol, phytic acid and iron(III) phytate underwent a 61.0, 1.9 and 0% microbial oxidation respectively to CO2 during the incubation period. The rate of fixation of 14C-phytic acid was illustrated by its rapid decline in metabolism in the 12-day period. The metabolism rate of phytic was considerably reduced by the presumed formation of iron(III) and aluminium phytate. The metabolism rate of myo-inositol was reduced nine-fold after an initial rapid metabolism during the first day of incubation. The following mechanisms were observed in the soil metabolism of myo-inositol: (1) soil mineral-inositol carbon adsorption, (2) humic acid-inositol carbon adsorption, (3) the phosphorylation of myo-inositol, and (4) the epimerization of myo-inositol to chiro-inositol. The formation of (1) and (2) was found to be highly dependent upon microbial activity. Interactions (1), (2) and (3)are considered as possible mechanisms for the inhibition of the microbial oxidation of myo-inositol. The inhibition of myo-inositol oxidation via adsorption or phosphorylation is considered to be due to the chemical blockage of the stereo-specific microbial oxidative attack on the axial hydroxyl group. (author)

  2. Proteomic Analysis of One-carbon Metabolism-related Marker in Liver of Rat Offspring*

    OpenAIRE

    You, Young-Ah; Lee, Ji Hye; Kwon, Eun Jin; Yoo, Jae Young; Kwon, Woo-Sung; Pang, Myung-Geol; Kim, Young Ju

    2015-01-01

    Maternal food intake has a significant effect on the fetal environment, and an inadequate maternal diet may result in intrauterine growth restriction. Intrauterine growth restriction newborn rat pups nursed by normal diet-fed dams exhibited rapid catch-up growth, which plays a critical role in the risk for metabolic and cardiovascular disease in later life. Specifically, one-carbon metabolism in the liver plays a critical role in placental and fetal growth. Impaired functioning of one-carbon ...

  3. Targeting one carbon metabolism with an antimetabolite disrupts pyrimidine homeostasis and induces nucleotide overflow

    OpenAIRE

    Ser, Zheng; GAO, XIA; Johnson, Christelle; Mehrmohamadi, Mahya; Liu, Xiaojing; Li, SiQi; Locasale, Jason W.

    2016-01-01

    Anti-metabolite agents that affect nucleotide metabolism are frontline chemotherapy agents in several cancers and often successfully target one carbon metabolism. However, the precise mechanisms and resulting determinants of their therapeutic value are unknown. We show that 5-fluorouracil (5-FU), a commonly used anti-metabolite therapeutic with varying efficacy, induces specific alterations to nucleotide metabolism by disrupting pyrimidine homeostasis. An integrative metabolomics analysis of ...

  4. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-HsiangTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  5. Sucrose metabolism: gateway to diverse carbon use and sugar signaling.

    Science.gov (United States)

    Ruan, Yong-Ling

    2014-01-01

    Sucrose metabolism plays pivotal roles in development, stress response, and yield formation, mainly by generating a range of sugars as metabolites to fuel growth and synthesize essential compounds (including protein, cellulose, and starch) and as signals to regulate expression of microRNAs, transcription factors, and other genes and for crosstalk with hormonal, oxidative, and defense signaling. This review aims to capture the most exciting developments in this area by evaluating (a) the roles of key sucrose metabolic enzymes in development, abiotic stress responses, and plant-microbe interactions; (b) the coupling between sucrose metabolism and sugar signaling from extra- to intracellular spaces; (c) the different mechanisms by which sucrose metabolic enzymes could perform their signaling roles; and (d) progress on engineering sugar metabolism and transport for high yield and disease resistance. Finally, the review outlines future directions for research on sugar metabolism and signaling to better understand and improve plant performance. PMID:24579990

  6. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.

    Science.gov (United States)

    Long, Christopher P; Gonzalez, Jacqueline E; Sandoval, Nicholas R; Antoniewicz, Maciek R

    2016-09-01

    Understanding the impact of gene knockouts on cellular physiology, and metabolism in particular, is centrally important to quantitative systems biology and metabolic engineering. Here, we present a comprehensive physiological characterization of wild-type Escherichia coli and 22 knockouts of enzymes in the upper part of central carbon metabolism, including the PTS system, glycolysis, pentose phosphate pathway and Entner-Doudoroff pathway. Our results reveal significant metabolic changes that are affected by specific gene knockouts. Analysis of collective trends and correlations in the data using principal component analysis (PCA) provide new, and sometimes surprising, insights into E. coli physiology. Additionally, by comparing the data-to-model predictions from constraint-based approaches such as FBA, MOMA and RELATCH we demonstrate the important role of less well-understood kinetic and regulatory effects in central carbon metabolism. PMID:27212692

  7. Kinetic and Stoichiometric Relationships of the Energy and Carbon Metabolism in the Culture of Microalgae

    Directory of Open Access Journals (Sweden)

    Katarzyna Chojnacka

    2004-01-01

    Full Text Available Some microalgae can grow metabolizing inorganic and organic carbon sources, which might occur simultaneously and independently, while energy is supplied by light and/or an organic carbon source. In this context, the contribution of each metabolism to total growth can be determined by quantitative analysis. The illumination of microalgal cells growing in the presence of organic substances, might cause an effect which can drive the carbon metabolism in different ways. When analyzing the growth of different strains of microalgae, some differences could be distinguished, between additive or inhibitory effect of light on heterotrophic metabolism in mixotrophic or photoheterotrophic growth. This manuscript proposes, the integration of a kinetic and stoichiometric metabolic model which explains the differences of carbon and energy utilization modes between mixotrophic and photoheterotrophic growth in microalgae. This model presumably discloses relevant independent facts between the mechanisms of photosynthesis and the oxidative metabolism of organic compounds, such as glucose and the importance of these differences on the production of biomass and secondary metabolites.

  8. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A; Xu, Yifan

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.

  9. Polymorphisms in 1-Carbon Metabolism, Epigenetics and Folate-Related Pathologies

    OpenAIRE

    Stover, Patrick J.

    2012-01-01

    Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways necessary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocysteine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and chromatin methylation, and result from nutritional deficiencies and common gene variants. The mechanisms underlying folate-associated pathologies and developmental anomalies have yet to be established. This review focuse...

  10. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  11. Metabolic Fluxes in Corynebacterium glutamicum during Lysine Production with Sucrose as Carbon Source

    OpenAIRE

    Wittmann, Christoph; Kiefer, Patrick; Zelder, Oskar

    2004-01-01

    Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively hig...

  12. Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin

    2012-04-17

    Cities are considered major contributors to global warming, where carbon emissions are highly embedded in the overall urban metabolism. To examine urban metabolic processes and emission trajectories we developed a carbon flux model based on Network Environ Analysis (NEA). The mutual interactions and control situation within the urban ecosystem of Vienna were examined, and the system-level properties of the city's carbon metabolism were assessed. Regulatory strategies to minimize carbon emissions were identified through the tracking of the possible pathways that affect these emission trajectories. Our findings suggest that indirect flows have a strong bearing on the mutual and control relationships between urban sectors. The metabolism of a city is considered self-mutualistic and sustainable only when the local and distal environments are embraced. Energy production and construction were found to be two factors with a major impact on carbon emissions, and whose regulation is only effective via ad-hoc pathways. In comparison with the original life-cycle tracking, the application of NEA was better at revealing details from a mechanistic aspect, which is crucial for informed sustainable urban management. PMID:22424579

  13. Role of Nitrogen and Carbon Transport, Regulation, and Metabolism Genes for Saccharomyces cerevisiae Survival In Vivo†

    OpenAIRE

    Joanne M Kingsbury; Goldstein, Alan L.; McCusker, John H.

    2006-01-01

    Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vivo include ammonium, urea, and amino acids, while potential carbon sources include glucose, lactate,...

  14. The influence of soil drought on the photosynthetic carbon metabolism in different cotton sorts and lines

    International Nuclear Information System (INIS)

    In this article the results about influence of a drought on assimilation of ability CO2 during photosynthesis at different cotton sorts and lines are submitted. It was established that in these conditions speed of a turnover Pentose phosphate reduction of cycle decreases. However thus amplification inclusion 14C in products P E P-carboxylation and glycolate metabolism of carbon is observed

  15. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance

    Science.gov (United States)

    Badur, Mehmet G.; Zhang, Hui; Metallo, Christian M.

    2016-01-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications. PMID:26289220

  16. Metabolic carbon labelling systems. Modelling, simulation, analysis, data evaluation

    International Nuclear Information System (INIS)

    The work in hand presents a modelling tool of universal applicability, for description, analysis, simulation and evaluation of labelling experiments. The term 'universal' should not be understood as providing a model applicable to all biological systems, but rather as a fundamental and universal framework, made up of the various analytic tools developed, which considerably reduces the technical expenditure required for the development of metabolic flow models reflecting the various metabolic networks. Creating simulation and data analysis tools for scientific research always implies a substantial programming effort. Scientists tend to regard such programming work not so much as a scientific but rather as a technical task. This attitude has fatal consequences with respect to software development in the academic domain, as true quality will only be achieved if the required work is appropriately rewarded. Thus the situation is characterised by dispersed activities and programming work leading to a great number of more or less specialised, individual programs that require constant adaptation or new development of tools in order to take into account scientific progress. Object-oriented technology has brought about some progress in this respect, so that today at least various working groups can profit from enhanced and long-term cooperation and flow of information. (orig./AJ)

  17. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Science.gov (United States)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  18. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    Science.gov (United States)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  19. Samuel Ruben's Contributions to Research on Photosynthesis and Bacterial Metabolism with Radioactive Carbon.

    Science.gov (United States)

    Gest, Howard

    2004-01-01

    The earliest experiments on the pathways of carbon in photosynthetic and heterotrophic metabolism using radioactive carbon, (11)C, as a tracer were performed by Samuel (Sam) Ruben, Martin Kamen, and their colleagues. The short half-life of (11)C (20 min), however, posed severe limitations on identification of metabolic intermediates, and this was a major stimulus to search for a radioactive carbon isotope of longer half-life. (14)C was discovered by Ruben and Kamen in 1940, but circumstances prevented continuation of their research using the long-lived isotope. Because of the untimely accidental death of Ruben in 1943, there are very few published accounts on the life and work of this extraordinary scientist. This paper summarizes highlights of Ruben's outstanding accomplishments. PMID:16328812

  20. France: the programme of festivities is unveiled

    CERN Document Server

    2004-01-01

    The programme of events to be held in the local French area in honour of CERN's fiftieth anniversary was unveiled in the CMS hall on 26 April at a ceremony attended by many local authority representatives.

  1. Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks

    Science.gov (United States)

    Bardoscia, Marco; Marsili, Matteo; Samal, Areejit

    2015-07-01

    System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov chain Monte Carlo (MCMC) sampling based on flux balance analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.

  2. Metabolism

    Science.gov (United States)

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  3. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust.

    Science.gov (United States)

    Magnabosco, Cara; Ryan, Kathleen; Lau, Maggie C Y; Kuloyo, Olukayode; Sherwood Lollar, Barbara; Kieft, Thomas L; van Heerden, Esta; Onstott, Tullis C

    2016-03-01

    Subsurface microbial communities comprise a significant fraction of the global prokaryotic biomass; however, the carbon metabolisms that support the deep biosphere have been relatively unexplored. In order to determine the predominant carbon metabolisms within a 3-km deep fracture fluid system accessed via the Tau Tona gold mine (Witwatersrand Basin, South Africa), metagenomic and thermodynamic analyses were combined. Within our system of study, the energy-conserving reductive acetyl-CoA (Wood-Ljungdahl) pathway was found to be the most abundant carbon fixation pathway identified in the metagenome. Carbon monoxide dehydrogenase genes that have the potential to participate in (1) both autotrophic and heterotrophic metabolisms through the reversible oxidization of CO and subsequent transfer of electrons for sulfate reduction, (2) direct utilization of H2 and (3) methanogenesis were identified. The most abundant members of the metagenome belonged to Euryarchaeota (22%) and Firmicutes (57%)-by far, the highest relative abundance of Euryarchaeota yet reported from deep fracture fluids in South Africa and one of only five Firmicutes-dominated deep fracture fluids identified in the region. Importantly, by combining the metagenomics data and thermodynamic modeling of this study with previously published isotopic and community composition data from the South African subsurface, we are able to demonstrate that Firmicutes-dominated communities are associated with a particular hydrogeologic environment, specifically the older, more saline and more reducing waters. PMID:26325359

  4. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  5. Georges Charpak street sign unveiled

    CERN Multimedia

    Paola Catapano

    2011-01-01

    While it might not be the only French street named in honour of the late Georges Charpak, who passed away in September 2010 at the age of 87, the street chosen by the mayor of Saint-Genis-Pouilly is certainly the only one located directly opposite the CERN "campus". The road overlooks buildings on the CERN Meyrin site, where Georges Charpak spent most of his career as a physicist, conducting the research that won him the Nobel Prize in Physics in 1992.   From left to right: Sigurd Lettow, Dominique Charpak and the mayor of Saint-Genis-Pouilly. The unveiling took place on 17 October and was organised by the mayor of Saint-Genis-Pouilly. George Charpak’s wife, Dominique, and Sigurd Lettow, CERN Director of Administration and General Infrastructure, attended what was an intimate and touching ceremony. The mayor’s speech at the event praised Georges’ commitment to scientific education. The highlight of the event, however, was a witty and humorous ...

  6. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves

    Directory of Open Access Journals (Sweden)

    Galina Brychkova

    2015-08-01

    Full Text Available Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm. Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA, Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants.

  7. Sugar-starvation-induced changes of carbon metabolism in excised maize root tips

    International Nuclear Information System (INIS)

    Excised maize (Zea mays L.) root tips were used to study the early metabolic effects of glucose (Glc) starvation. Root tips were prelabeled with [1-13C]Glc so that carbohydrates and metabolic intermediates were close to steady-state labeling, but lipids and proteins were scarcely labeled. They were then incubated in a sugar-deprived medium for carbon starvation. Changes in the level of soluble sugars, the respiratory quotient, and the 13C enrichment of intermediates, as measured by 13C and 1H nuclear magnetic resonance, were studied to detect changes in carbon fluxes through glycolysis and the tricarboxylic acid cycle. Labeling of glutamate carbons revealed two major changes in carbon input into the tricarboxylic acid cycle: (a) the phosphoenolpyruvate carboxylase flux stopped early after the start of Glc starvation, and (b) the contribution of glycolysis as the source of acetyl-coenzyme A for respiration decreased progressively, indicating an increasing contribution of the catabolism of protein amino acids, fatty acids, or both. The enrichment of glutamate carbons gave no evidence for proteolysis in the early steps of starvation, indicating that the catabolism of proteins was delayed compared with that of fatty acids. Labeling of carbohydrates showed that sucrose turnover continues during sugar starvation, but gave no indication for any significant flux through gluconeogenesis

  8. Nutritional Manipulation of One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity

    Directory of Open Access Journals (Sweden)

    Megan N. Hall

    2012-01-01

    Full Text Available Exposure to arsenic (As through drinking water is a substantial problem worldwide. The methylation of As, a reactive metalloid, generates monomethyl- (MMA and dimethyl-arsenical (DMA species. The biochemical pathway that catalyzes these reactions, one-carbon metabolism, is regulated by folate and other micronutrients. Arsenic methylation exerts a critical influence on both its urinary elimination and chemical reactivity. Mice having the As methyltransferase null genotype show reduced urinary As excretion, increased As retention, and severe systemic toxicity. The most toxic As metabolite in vitro is MMAIII, an intermediate in the generation of DMAV, a much less toxic metabolite. These findings have raised the question of whether As methylation is a detoxification or bioactivation pathway. Results of population-based studies suggest that complete methylation of inorganic As to DMA is associated with reduced risk for As-induced health outcomes, and that nutrients involved in one-carbon metabolism, such as folate, can facilitate As methylation and elimination.

  9. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Maria Faltynowicz

    2014-02-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  10. Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A

    DEFF Research Database (Denmark)

    Boyles, Abee L; Wilcox, Allen J; Taylor, Jack A;

    2009-01-01

    child had either cleft lip with or without cleft palate (CL/P) or cleft palate only (CPO), and no other major defects. We analyzed 108 SNPs and one insertion in 29 genes involved in folate/one-carbon metabolism and 68 SNPs from 16 genes involved in vitamin A metabolism. Using the Triad Multi......An increased risk of facial clefts has been observed among mothers with lower intake of folic acid or vitamin A around conception. We hypothesized that the risk of clefts may be further moderated by genes involved in metabolizing folate or vitamin A. We included 425 case-parent triads in which the......-Marker (TRIMM) approach we performed SNP, gene, chromosomal region, and pathway-wide association tests of child or maternal genetic effects for both CL/P and CPO. We stratified these analyses on maternal intake of folic acid or vitamin A during the periconceptional period. As expected with this high number of...

  11. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    OpenAIRE

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai; Liu, Sheng-Qun; Tian, Chen-Jie

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks and subsequently subjected to two temperature treatments (158C, low temperature; 258C, ambient control) for 2 weeks. Low-temperature stress significantlydecreasedAMcolonisation, plant height and biomass. TotalNco...

  12. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    Science.gov (United States)

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  13. Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila.

    Science.gov (United States)

    Gillmaier, Nadine; Schunder, Eva; Kutzner, Erika; Tlapák, Hana; Rydzewski, Kerstin; Herrmann, Vroni; Stämmler, Maren; Lasch, Peter; Eisenreich, Wolfgang; Heuner, Klaus

    2016-03-18

    Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen. PMID:26792862

  14. A large metabolic carbon contribution to the δ 13C record in marine aragonitic bivalve shells

    Science.gov (United States)

    Gillikin, David P.; Lorrain, Anne; Meng, Li; Dehairs, Frank

    2007-06-01

    It is well known that the incorporation of isotopically light metabolic carbon (C M) significantly affects the stable carbon isotope (δ 13C) signal recorded in biogenic carbonates. This can obscure the record of δ 13C of seawater dissolved inorganic carbon (δ 13C DIC) potentially archived in the shell carbonate. To assess the C M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ 13C DIC, tissue, hemolymph and shell δ 13C. All shells showed an ontogenic decrease in shell δ 13C, with as much as a 4‰ decrease over the lifespan of the clam. There was no apparent ontogenic change in food source indicated by soft tissue δ 13C values, therefore a change in the respired δ 13C value cannot be the cause of this decrease. Hemolymph δ 13C, on the other hand, did exhibit a negative relationship with shell height indicating that respired CO 2 does influence the δ 13C value of internal fluids and that the amount of respired CO 2 is related to the size or age of the bivalve. The percent metabolic C incorporated into the shell (%C M) was significantly higher (up to 37%, with a range from 5% to 37%) than has been found in other bivalve shells, which usually contain less than 10%C M. Interestingly, the hemolymph did contain less than 10%C M, suggesting that complex fractionation might occur between hemolymph and calcifying fluids. Simple shell biometrics explained nearly 60% of the observed variability in %C M, however, this is not robust enough to predict %C M for fossil shells. Thus, the metabolic effect on shell δ 13C cannot easily be accounted for to allow reliable δ 13C DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %C M and shell height (+0.19% per mm of shell height).

  15. An Integrative Approach to Energy, Carbon, and Redox Metabolism in the Cyanobacterium Synechocystis sp. PCC 6803. Special Report

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, R.

    2003-06-30

    The main objectives for the first year were to produce a detailed metabolic reconstruction of synechocystis sp. PCC 6803 especially in interrelated areas of photosynthesis, respiration, and central carbon metabolism to support a more complete understanding and modeling of this organism. Additionally, Integrated Genomics, Inc., provided detailed bioinformatic analysis of selected functional systems related to carbon and energy generation and utilization, and of the corresponding pathways, functional roles and individual genes to support wet lab experiments by collaborators.

  16. Epiphyte dynamics and carbon metabolism in a nutrient enriched Mediterranean seagrass ( Posidonia oceanica ) ecosystem

    Science.gov (United States)

    Apostolaki, Eugenia T.; Holmer, Marianne; Marbà, Núria; Karakassis, Ioannis

    2011-08-01

    The study aimed at examining the relationship between epiphyte dynamics and carbon metabolism in seagrass ecosystems under nutrient enrichment. Temporal variability of epiphytes and factors controlling their dynamics (i.e. environmental conditions, substratum availability, substratum stability and herbivore pressure) were assessed in a fish farm impacted and an unaffected Mediterranean seagrass ( Posidonia oceanica) meadow in the Aegean Sea (Greece). The factors controlling epiphyte dynamics responded differently to nutrient enrichment and partly interacted, rendering their cumulative effect on epiphyte load difficult to elucidate. Yet epiphytes accumulated on seagrass leaves near to the fish farm throughout the year, contributing 2 times more in above-ground biomass at cages than the control station. Reduction in substratum availability (i.e. decrease in leaf biomass) and increase in herbivore pressure affected epiphyte load, albeit their effects were not strong enough to counterbalance the effect of nutrient input from fish farm effluents. Moderate yet continuous nutrient input possibly stimulated epiphyte growth in excess of herbivory, shifting the control of epiphytes from top-down to bottom-up. Epiphyte accumulation affected carbon metabolism in the seagrass ecosystem by contributing to enhanced dissolved organic carbon (DOC) release, but seagrass loss was so acute that increased epiphyte cover could not counterbalance the decrease in community carbon production which was mainly driven by seagrass decline.

  17. Molecular Basis of Microbial One-Carbon Metabolism 2008 Gordon Research Conference (July 20-25, 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Stephen W. Ragsdale

    2009-08-12

    One-carbon (C-1) compounds play a central role in microbial metabolism. C-1 compounds include methane, carbon monoxide, CO2, and methanol as well as coenzyme-bound one-carbon compounds (methyl-B12, CH3-H4folate, etc). Such compounds are of broad global importance because several C-1 compounds (e.g., CH4) are important energy sources, some (e.g., CO2 and CH4) are potent greenhouse gases, and others (e.g., CH2Cl2) are xenobiotics. They are central in pathways of energy metabolism and carbon fixation by microbes and many are of industrial interest. Research on the pathways of one-carbon metabolism has added greatly to our understanding of evolution, structural biology, enzyme mechanisms, gene regulation, ecology, and applied biology. The 2008 meeting will include recent important findings in the following areas: (a) genomics, metagenomics, and proteomic studies that have expanded our understanding of autotrophy and C-1 metabolism and the evolution of these pathways; (b) redox regulation of carbon cycles and the interrelationship between the carbon cycle and other biogeochemical cycles (sulfur, nitrogen, oxygen); (c) novel pathways for carbon assimilation; (d) biotechnology related to C-1 metabolism; (e) novel enzyme mechanisms including channeling of C-1 intermediates during metabolism; and (f) the relationship between metal homeostasis and the global carbon cycle. The conference has a diverse and gender-balanced slate of speakers and session leaders. The wide variety of disciplines brought to the study of C-1 metabolism make the field an excellent one in which to train young researchers.

  18. An integrative approach to energy, carbon, and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Overbeek, Ross; Fonstein, Veronika; Osterman, Andrei; Gerdes, Svetlana; Vassieva, Olga; Zagnitko, Olga; Rodionov, Dmitry

    2005-02-15

    covering energy, carbon, and redox metabolism in the Synechocystis sp. PCC 6803 and other cyanobacteria has been performed (Specific Aim 4). The main objectives for this year (adjusted to reflect a new, public domain, setting of the Project research team) were: Aim 1. To develop, test, and deploy a new open source system, the SEED, for integrating community-based annotation, and comparative analysis of all publicly available microbial genomes. Develop a comprehensive genomic database by integrating within SEED all publicly available complete and nearly complete genome sequences with special emphasis on genomes of cyanobacteria, phototrophic eukaryotes, and anoxygenic phototrophic bacteria--invaluable for comparative genomic studies of energy and carbon metabolism in Synechocystis sp. PCC 6803. Aim 2. To develop the SEED's biological content in the form of a collection of encoded Subsystems largely covering the conserved cellular machinery in prokaryotes (and central metabolic machinery in eukaryotes). Aim 3. To develop, utilizing core SEED technology, the CyanoSEED--a specialized WEB portal for community-based annotation, and comparative analysis of all publicly available cyanobacterial genomes. Encode the set of additional subsystems representing key metabolic transformations in cyanobacteria and other photoautotrophs. We envisioned this resource as complementary to other public access databases for comparative genomic analysis currently available to the cyanobacterial research community. Aim 4. Perform in-depth analysis of several subsystems covering energy, carbon, and redox metabolism in the Synechocystis sp. PCC 6803 and all other cyanobacteria with available genome sequences. Reveal inconsistencies and gaps in the current knowledge of these subsystems. Use functional and genome context analysis tools in CyanoSEED to predict, whenever possible, candidate genes for inferred functional roles. To disseminate freely these conjectures and predictions by publishing

  19. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.

    Science.gov (United States)

    Rush, E C; Katre, P; Yajnik, C S

    2014-01-01

    This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12) on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal-fetal one carbon metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting with maternal nutrition before conception. PMID:24219896

  20. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai;

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks and subseque......Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... and subsequently subjected to two temperature treatments (158C, low temperature; 258C, ambient control) for 2 weeks. Low-temperature stress significantly decreasedAMcolonisation, plant height and biomass. TotalNcontent and activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase of AM...... phosphate synthase and amylase activities at low temperature. Moreover, low-temperature stress increased theC :Nratio in the leaves of maize plants, and AM colonisation decreased the root C :N ratio. These results suggested a difference in the C and N metabolism of maize plants at ambient and low...

  1. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood ...

  2. Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools and Remodel One-Carbon Metabolism.

    Science.gov (United States)

    Nikkanen, Joni; Forsström, Saara; Euro, Liliya; Paetau, Ilse; Kohnz, Rebecca A; Wang, Liya; Chilov, Dmitri; Viinamäki, Jenni; Roivainen, Anne; Marjamäki, Päivi; Liljenbäck, Heidi; Ahola, Sofia; Buzkova, Jana; Terzioglu, Mügen; Khan, Nahid A; Pirnes-Karhu, Sini; Paetau, Anders; Lönnqvist, Tuula; Sajantila, Antti; Isohanni, Pirjo; Tyynismaa, Henna; Nomura, Daniel K; Battersby, Brendan J; Velagapudi, Vidya; Carroll, Christopher J; Suomalainen, Anu

    2016-04-12

    Mitochondrial dysfunction affects cellular energy metabolism, but less is known about the consequences for cytoplasmic biosynthetic reactions. We report that mtDNA replication disorders caused by TWINKLE mutations-mitochondrial myopathy (MM) and infantile onset spinocerebellar ataxia (IOSCA)-remodel cellular dNTP pools in mice. MM muscle shows tissue-specific induction of the mitochondrial folate cycle, purine metabolism, and imbalanced and increased dNTP pools, consistent with progressive mtDNA mutagenesis. IOSCA-TWINKLE is predicted to hydrolyze dNTPs, consistent with low dNTP pools and mtDNA depletion in the disease. MM muscle also modifies the cytoplasmic one-carbon cycle, transsulfuration, and methylation, as well as increases glucose uptake and its utilization for de novo serine and glutathione biosynthesis. Our evidence indicates that the mitochondrial replication machinery communicates with cytoplasmic dNTP pools and that upregulation of glutathione synthesis through glucose-driven de novo serine biosynthesis contributes to the metabolic stress response. These results are important for disorders with primary or secondary mtDNA instability and offer targets for metabolic therapy. PMID:26924217

  3. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda;

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... to baseline ventilation, whereas CMR(glu) increased. CONCLUSION: In patients with acute bacterial meningitis, we found variable levels of CBF and cerebrovascular CO(2) reactivity, a low a-v DO(2), low cerebral metabolic rates of oxygen and glucose, and a cerebral lactate efflux. In these patients, a...... ventilation strategy guided by jugular bulb oximetry and/or repeated CBF measurements may be more optimal in terms of cerebral oxygenation than a strategy aiming at identical levels of P(a)CO(2) for all patients....

  4. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses

    Czech Academy of Sciences Publication Activity Database

    Pinheiro, C.; António, C.; Dobrev, Petre; Vaňková, Radomíra; Wilson, J. C.

    2011-01-01

    Roč. 62, č. 14 (2011), s. 4965-4974. ISSN 0022-0957 Institutional research plan: CEZ:AV0Z50380511 Keywords : Carbon metabolism * hormone balance * LC-MS Subject RIV: EF - Botanics Impact factor: 5.364, year: 2011

  5. Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality

    Science.gov (United States)

    Berggren, Martin; Giorgio, Paul A.

    2015-06-01

    Dissolved organic carbon (DOC) in rivers contains a wide range of molecules that can be assimilated by microbes. However, there is today no integrated understanding of how the source and composition of this DOC regulate the extent to which the DOC can support microbial growth and respiration. We analyzed patterns in microbial metabolism of DOC from different streams and rivers in Québec, by combining short-term bacterial production and respiration measurements with long-term DOC loss and analyses of bacterial use of different single substrates. We show that distinct metabolic patterns indeed exist across catchments, reflecting the varying nature and sources of the DOC. For example, DOC from forest headwaters systematically supported the highest bacterial growth efficiency (BGE) that was recorded, while in contrast DOC in peat bog drainage was used with significantly lower BGE. The carbon consumption in clear mountain rivers, possibly represented by autochthonous algal DOC, supported the highest bacterial respiration rates and the highest long-term DOC losses. By using principle component analysis, we demonstrate how the major axes of variation in all of the measured metabolic responses are tightly connected to spectrofluorometrical DOC composition indicators and to isotopic indicators of DOC source. If causality is assumed, our results imply that changes in DOC supply from different sources, for example, caused by land use or climate change, should result in dramatic changes in the patterns of aquatic microbial metabolism and thus in altered aquatic ecosystem functioning, with likely consequences for food-web structures and greenhouse gas balances.

  6. Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato.

    Science.gov (United States)

    Lira, Bruno Silvestre; Rosado, Daniele; Almeida, Juliana; de Souza, Amanda Pereira; Buckeridge, Marcos Silveira; Purgatto, Eduardo; Guyer, Luzia; Hörtensteiner, Stefan; Freschi, Luciano; Rossi, Magdalena

    2016-03-01

    Although chlorophyll (Chl) degradation is an essential biochemical pathway for plant physiology, our knowledge regarding this process still has unfilled gaps. Pheophytinase (PPH) was shown to be essential for Chl breakdown in dark-induced senescent leaves. However, the catalyzing enzymes involved in pigment turnover and fruit ripening-associated degreening are still controversial. Chl metabolism is closely linked to the biosynthesis of other isoprenoid-derived compounds, such as carotenoids and tocopherols, which are also components of the photosynthetic machinery. Chls, carotenoids and tocopherols share a common precursor, geranylgeranyl diphosphate, produced by the plastidial methylerythritol 4-phosphate (MEP) pathway. Additionally, the Chl degradation-derived phytol can be incorporated into tocopherol biosynthesis. In this context, tomato turns out to be an interesting model to address isoprenoid-metabolic cross-talk since fruit ripening combines degreening and an intensely active MEP leading to carotenoid accumulation. Here, we investigate the impact of PPH deficiency beyond senescence by the comprehensive phenotyping of SlPPH-knockdown tomato plants. In leaves, photosynthetic parameters indicate altered energy usage of excited Chl. As a mitigatory effect, photosynthesis-associated carotenoids increased while tocopherol content remained constant. Additionally, starch and soluble sugar profiles revealed a distinct pattern of carbon allocation in leaves that suggests enhanced sucrose exportation. The higher levels of carbohydrates in sink organs down-regulated carotenoid biosynthesis. Additionally, the reduction in Chl-derived phytol recycling resulted in decreased tocopherol content in transgenic ripe fruits. Summing up, tocopherol and carotenoid metabolism, together with the antioxidant capacity of the hydrophilic and hydrophobic fractions, were differentially affected in leaves and fruits of the transgenic plants. Thus, in tomato, PPH plays a role beyond

  7. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera

    OpenAIRE

    Ruiz-Halpern, Sergio; Vaquer-Sunyer, Raquel; Duarte, Carlos M.

    2014-01-01

    Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport, and fate of organic carbon (OC) is relevant to gain a better understanding on the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated OC fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the OC pool and associated fluxes in this ecosyst...

  8. Airbus Unveils A380 "Superjumbo" Jet

    Institute of Scientific and Technical Information of China (English)

    Stefan Lovgren; 贾庆文

    2005-01-01

    @@ The new Airbus 380 "superjumbo"jet, unveiled in Toulouse1, France,will carry 555 passengers (when configured2 for three classes of seating). Its wingspan3 stretches nearly the length of a football field-50 feet (15 meters) wider than any commercial plane in the air today.

  9. A Large Metabolic Carbon Ccontribution to the δ13C Record in Marine Aragonitic Bivalve Shells

    Science.gov (United States)

    Gillikin, D. P.; Lorrain, A.; Dehairs, F.

    2006-12-01

    The stable carbon isotopic signature archived in bivalve shells was originally thought to record the δ13C of seawater dissolved inorganic carbon (δ13C-DIC). However, more recent studies have shown that the incorporation of isotopically light metabolic carbon (M) significantly affects the δ13C signal recorded in biogenic carbonates. To assess the M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13C-DIC, tissue, hemolymph and shell δ13C. We found up to a 4‰ decrease through ontogeny in shell δ13C in a 23 year old individual. There was no correlation between shell height or age and tissue δ13C. Thus, the ontogenic decrease observed in the shell δ13C could not be attributed to changes in food sources as the animal ages leading to more negative metabolic CO2, since this would require a negative relationship between tissue δ13C and shell height. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with height, but the δ13C values were more positive than expected, indicating that hemolymph may not be a good proxy of extrapallial fluid δ13C. Nevertheless, the hemolymph data indicate that respired CO2 does influence the δ13C of internal fluids and that the amount of respired CO2 is related to the age of the bivalve. The percent metabolic C incorporated into the shell (%M) was significantly higher (up to 37%) than has been found in other bivalve shells, which usually contain less than 10 %M. Attempts to use shell biometrics to predict %M could not explain more than ~60% of the observed variability. Moreover, there were large differences in the %M between different sites. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13C-DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %M and shell height (+0.19% per mm of shell height).

  10. Modeling the Contribution of Allosteric Regulation for Flux Control in the Central Carbon Metabolism of E. coli

    DEFF Research Database (Denmark)

    Machado, Daniel; Herrgard, Markus; Rocha, Isabel

    2015-01-01

    Modeling cellular metabolism is fundamental for many biotechnological applications, including drug discovery and rational cell factory design. Central carbon metabolism (CCM) is particularly important as it provides the energy and precursors for other biological processes. However, the complex...

  11. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    International Nuclear Information System (INIS)

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14CO2 into glycolic acid, glycine, and serine, while 14C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO-6 molar while the CO2-compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  12. Inorganic Carbon Turnover caused by Digestion of Carbonate Sands and Metabolic Activity of Holothurians

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Kenneth; Silverman, Jacob; Kravitz, Benjamin S.; Rivlin, Tanya; Schneider-Mor, Aya; Barbosa, Sergio; Byrne, Maria; Caldeira, Ken

    2013-11-20

    Recent measurements have shown that holothurians (sea cucumbers) play an important role in the cycling of CaCO3 in tropical coral reef systems through ingestion and processing of carbonate sediment. In this study inorganic additional aspects of carbon turnover were determined in laboratory incubations of Holothuria atra, H. leucospilota and Stichopus herrmanni from One Tree Reef, Great Barrier Reef. The pH values of the gut lumen ranged from 6.1 to 6.7 in animals with empty digestive tracts as opposed to 7.0 to 7.6 when digestive tracts were filled with sediment. Empty gut volume estimates for H. atra and S. herrmanni were 36 ± 4 mL and 151 ± 14 mL, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni of 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. The CaCO3 saturation state for both aragonite and calcite minerals during laboratory incubations decreased markedly due to a greater increase in dissolved inorganic carbon (DIC) relative to total alkalinity (AT) as a result of respiration by the animals. Our results support the hypothesis that deposit feeders such as sea cucumbers play an important ecological role in the coral reef CaCO3 cycle.

  13. One carbon metabolism and bone homeostasis and remodeling: A review of experimental research and population studies.

    Science.gov (United States)

    Feigerlova, Eva; Demarquet, Lea; Guéant, Jean-Louis

    2016-07-01

    Homocysteine (HCY) is a degradation product of the methionine pathway. The B vitamins, in particular vitamin B12 and folate, are the primary nutritional determinant of HCY levels and therefore their deficiencies result in hyperhomocysteinaemia (HHCY). Prevalence of hyperhomocysteinemia (HHCY) and related dietary deficiencies in B vitamins and folate increase with age and have been related to osteoporosis and abnormal development of epiphyseal cartilage and bone in rodents. Here we provide a review of experimental and population studies. The negative effects of HHCY and/or B vitamins and folate deficiencies on bone formation and remodeling are documented by cell models, including primary osteoblasts, osteoclast and bone progenitor cells as well as by animal and human studies. However, underlying pathophysiological mechanisms are complex and remain poorly understood. Whether these associations are the direct consequences of impaired one carbon metabolism is not clarified and more studies are still needed to translate these findings to human population. To date, the evidence is limited and somewhat conflicting, however further trials in groups most vulnerable to impaired one carbon metabolism are required. PMID:27086080

  14. Expression of human dopamine receptor in potato (Solanum tuberosum results in altered tuber carbon metabolism

    Directory of Open Access Journals (Sweden)

    Świędrych Anna

    2005-02-01

    Full Text Available Abstract Background Even though the catecholamines (dopamine, norepinephrine and epinephrine have been detected in plants their role is poorly documented. Correlations between norepinephrine, soluble sugars and starch concentration have been recently reported for potato plants over-expressing tyrosine decarboxylase, the enzyme mediating the first step of catecholamine synthesis. More recently norepinephrine level was shown to significantly increase after osmotic stress, abscisic acid treatment and wounding. Therefore, it is possible that catecholamines might play a role in plant stress responses by modulating primary carbon metabolism, possibly by a mechanism similar to that in animal cells. Since to date no catecholamine receptor has been identified in plants we transformed potato plants with a cDNA encoding human dopamine receptor (HD1. Results Tuber analysis of transgenic plants revealed changes in the activities of key enzymes mediating sucrose to starch conversion (ADP-glucose phosphorylase and sucrose synthase and sucrose synthesis (sucrose phosphate synthase leading to altered content of both soluble sugars and starch. Surprisingly the catecholamine level measured in transgenic plants was significantly increased; the reason for this is as yet unknown. However the presence of the receptor affected a broader range of enzyme activities than those affected by the massive accumulation of norepinephrine reported for plants over-expressing tyrosine decarboxylase. Therefore, it is suggested that the presence of the exogenous receptor activates catecholamine cAMP signalling in plants. Conclusions Our data support the possible involvement of catecholamines in regulating plant carbon metabolism via cAMP signalling pathway.

  15. Early pregnancy B vitamin status, one carbon metabolism, pregnancy outcome and child development.

    Science.gov (United States)

    Solé-Navais, Pol; Cavallé-Busquets, Pere; Fernandez-Ballart, Joan D; Murphy, Michelle M

    2016-07-01

    Periconception supplementation with folic acid is recommended until 12 gestational weeks to prevent neural tube defects. Doses of folic acid contained in supplements and timing and length of use during pregnancy vary. The effects of status in periconception and pregnancy folate, cobalamin, betaine and their interactions on one carbon metabolism (1C), as well as the global effect of 1C on foetal growth and pregnancy outcome, are reviewed. Results from prospective studies are reviewed. Cessation of folic acid supplement use after the first trimester is associated with a sharp drop in plasma folate status and enhanced conversion of betaine to dimethylglycine. Dimethylglycine production is also higher in mothers with low folate status than in those with normal-high folate status. The effects of high doses of folic acid on one carbon metabolism in mothers with low early pregnancy cobalamin status and on foetal growth are also reviewed. Several studies report that moderately elevated early pregnancy fasting plasma total homocysteine (tHcy) is inversely associated with birth weight and a predictor of intrauterine growth retardation. There is also evidence for increased risk of preterm birth when maternal folate status is low. PMID:26700149

  16. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin.

    Science.gov (United States)

    Jackson, Lindsay M D; Kroukamp, Otini; Wolfaardt, Gideon M

    2015-01-01

    Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures. PMID:26441887

  17. Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis.

    Science.gov (United States)

    Budzinski, Ilara G F; Moon, David H; Lindén, Pernilla; Moritz, Thomas; Labate, Carlos A

    2016-01-01

    Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD(+) for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree. PMID:27446160

  18. Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis.

    Directory of Open Access Journals (Sweden)

    Alexandra-Viola Bohne

    Full Text Available Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2, a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC, which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes.

  19. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.

    Science.gov (United States)

    Alonso, Ana P; Goffman, Fernando D; Ohlrogge, John B; Shachar-Hill, Yair

    2007-10-01

    The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. PMID:17683473

  20. Exhaustive analysis of a genotype space comprising 1015 central carbon metabolisms reveals an organization conducive to metabolic innovation

    OpenAIRE

    Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas

    2015-01-01

    All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism's potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 10(15) metabolisms that encodes all possible su...

  1. Exhaustive Analysis of a Genotype Space Comprising 10(15 )Central Carbon Metabolisms Reveals an Organization Conducive to Metabolic Innovation.

    OpenAIRE

    Sayed-Rzgar Hosseini; Aditya Barve; Andreas Wagner

    2015-01-01

    All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism's potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 10(15) metabolisms that encodes all possible su...

  2. Photosynthetic carbon metabolism in photoautotrophic cell suspension cultures grown at low and high CO2

    International Nuclear Information System (INIS)

    Photosynthetic carbon metabolism was characterized in four photoautotrophic cell suspension cultures. There was no apparent difference between two soybeans (Glycine max) and one cotton (Gossypium hirsutum) cell line which required 5% CO2 for growth, and a unique cotton cell line that grows at ambient CO2 (660 microliters per liter). Photosynthetic characteristics in all four lines were more like C3 mesophyll leaf cells than the cell suspension cultures previously studied. The pattern of 14C-labeling reflected the high ratio of ribulosebisphosphate carboxylase to phosphoenolpyruvate carboxylase activity and showed that CO2 fixation occurred primarily by the C3 pathway. Photorespiration occurred at 330 microliters per liter CO2, 21% O2 as indicated by the synthesis of high levels of 14C-labeled glycine and serine in a pulse-chase experiment and by oxygen inhibition of CO2 fixation. Short-term CO2 fixation in the presence and absence of carbonic anhydrase showed CO2, not HCO3-, to be the main source of inorganic carbon taken up by the low CO2-requiring cotton cells. The cells did not have a CO2-concentrating mechanism as indicated by silicone oil centrifugation experiments. Carbonic anhydrase was absent in the low CO2-requiring cotton cells, present in the high CO2-requiring soybean cell lines, and absent in other high CO2 cell lines examined. Thus, the presence of carbonic anhydrase is not an essential requirement for photoautotrophy in cell suspension cultures which grow at either high or low CO2 concentrations

  3. Metabolic Effect of Estrogen Receptor Agonists on Breast Cancer Cells in the Presence or Absence of Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Anissa Belkaid

    2016-05-01

    Full Text Available Metabolic shift is one of the major hallmarks of cancer development. Estrogen receptor (ER activity has a profound effect on breast cancer cell growth through a number of metabolic changes driven by its effect on transcription of several enzymes, including carbonic anhydrases, Stearoyl-CoA desaturase-1, and oncogenes including HER2. Thus, estrogen receptor activators can be expected to lead to the modulation of cell metabolism in estrogen receptor positive cells. In this work we have investigated the effect of 17β-estradiol, an ER activator, and ferulic acid, a carbonic anhydrase inhibitor, as well as ER activator, in the absence and in the presence of the carbonic anhydrase inhibitor acetazolamide on the metabolism of MCF7 cells and MCF7 cells, stably transfected to express HER2 (MCF7HER2. Metabolic profiles were studied using 1D and 2D metabolomic Nuclear Magnetic Resonance (NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results in the context of biochemical pathways. Overall changes in hydrophilic metabolites were largest following treatment of MCF7 and MC7HER2 cells with 17β-estradiol. However, the carbonic anhydrase inhibitor acetazolamide had the largest effect on the profile of lipophilic metabolites.

  4. The activated sludge metabolic characteristics changing sole carbon source from readily biodegradable acetate to toxic phenol.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Song, Jiamei

    2016-01-01

    A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330-350 mg L(-1), was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L(-1), 347.5 mg L(-1), and 35.5 mg L(-1), respectively. Then, XSTO and EPS decreased to 124.5 mg L(-1) and 340.0 mg L(-1), respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L(-1) to 54.6 mg L(-1) during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L(-1), which then decreased to 245.6 mg L(-1) at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I. PMID:27191552

  5. Carbon isotope ratios in crassulacean Acid metabolism plants: seasonal patterns from plants in natural stands.

    Science.gov (United States)

    Szarek, S R

    1976-09-01

    A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of (14)CO(2) photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in temperature regime and soil water status. Carbon isotope ratios of total tissue and soluble extract fractions were relatively constant throughtout the entire year. Additionally, the sigma(13)C values were similar in all plants of the same species along the elevational gradient, i.e. -12.5 +/- 0.86 per thousand for O. phaeacantha and -15.7 +/- 0.95 per thousand for Y. baccata. The results of this study indicate Crassulacean acid metabolism predominates as the major carbon pathway of these plants, which do not facultatively utilize the reductive pentose phosphate cycle of photosynthesis as the primary carboxylation reaction. PMID:16659680

  6. Cash boost to Great British science unveiled

    CERN Multimedia

    2002-01-01

    "Trade and Industry Secretary, Patricia Hewitt today unveiled new plans for the DTI's record science budget over the next three years, to keep Britain at the forefront of world science. The plans include funding to develop life saving new health techniques, to seek alternative energy sources, to help our rural economy, to develop the computers of tomorrow and boost business with the next generation of leading edge technologies" (1 page).

  7. International Workshop on Carbon Cycling and Coral Reef Metabolism; Sangosho no tanso junkan ni kansuru kokusai workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-16

    The paper described the International Workshop on Carbon Cycling and Coral Reef Metabolism which was held at Miyako-jima, Okinawa Pref. on October 17-24, 1995. In the workshop, researchers got together which are involved in marine chemistry, marine biology, coral ecology, and environmental science, and discussed the carbon cycling and metabolism of coral reef. Discussions were made on what the coral reef ecosystem is, and what the definition of a sink or a source for CO2 is. Also discussed were scales of how much time and space should be considered to make these issues clear. Further, it was proposed that it was necessary to investigate carbon balance of both the whole system and the components of the system and to keep track of mass transfer among neighboring components of the system. Seventeen presentations were given. The workshop obtained a definite consensus on carbon balance of the coral reef system. 123 refs., 39 figs., 9 tabs.

  8. Clinical utility of polymorphisms in one-carbon metabolism for breast cancer risk prediction

    Directory of Open Access Journals (Sweden)

    Shaik Mohammad Naushad

    2011-01-01

    Full Text Available This study addresses the issues in translating the laboratory derived data obtained during discovery phase of research to a clinical setting using a breast cancer model. Laboratory-based risk assessment indi-cated that a family history of breast cancer, reduced folate carrier 1 (RFC1 G80A, thymidylate synthase (TYMS 5’-UTR 28bp tandem repeat, methylene tetrahydrofolate reductase (MTHFR C677T and catecholamine-O-methyl transferase (COMT genetic polymorphisms in one-carbon metabolic pathway increase the risk for breast cancer. Glutamate carboxypeptidase II (GCPII C1561T and cytosolic serine hydroxymethyl transferase (cSHMT C1420T polymorphisms were found to decrease breast cancer risk. In order to test the clinical validity of this information in the risk prediction of breast cancer, data was stratified based on number of protective alleles into four categories and in each category sensitivity and 1-specificity values were obtained based on the distribution of number of risk alleles in cases and controls. Receiver operating characteristic (ROC curves were plotted and the area under ROC curve (C was used as a measure of discriminatory ability between cases and controls. In subjects without any protective allele, aberrations in one-carbon metabolism showed perfect prediction (C=0.93 while the predictability was lost in subjects with one protective allele (C=0.60. However, predictability increased steadily with increasing number of protective alleles (C=0.63 for 2 protective alleles and C=0.71 for 3 protective alleles. The cut-off point for discrimination was >4 alleles in all predictable combinations. Models of this kind can serve as valuable tools in translational re-search, especially in identifying high-risk individuals and reducing the disease risk either by life style modification or by medical intervention.

  9. Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the intermated maize IBM mapping population

    Science.gov (United States)

    Understanding the genetic basis of nitrogen and carbon metabolism will accelerate development of plant varieties with high yield and improved nitrogen use efficiency. In this study, we measured the activities of ten enzymes from carbon and nitrogen metabolism and seedling/juvenile biomass in the mai...

  10. Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism.

    Directory of Open Access Journals (Sweden)

    Bin Rui

    Full Text Available NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.

  11. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    NARCIS (Netherlands)

    Assies, J.; Mocking, R.J.; Lok, A.; Ruhe, H.G.; Pouwer, F.; Schene, A.H.

    2014-01-01

    OBJECTIVE: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive respons

  12. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    NARCIS (Netherlands)

    Assies, J.; Mocking, R. J. T.; Lok, A.; Ruhe, H. G.; Pouwer, F.; Schene, A. H.

    2014-01-01

    Objective: Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive respons

  13. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.

    Science.gov (United States)

    Zahoor, Ahmed; Lindner, Steffen N; Wendisch, Volker F

    2012-01-01

    Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols. PMID:24688664

  14. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    Directory of Open Access Journals (Sweden)

    Volker Fritz Wendisch

    2012-10-01

    Full Text Available Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources, and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols.

  15. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    Science.gov (United States)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the

  16. Metabolic flux determination using carbon 13 NMR. Application to normal and tumoral cells from central nervous system

    International Nuclear Information System (INIS)

    Carbon 13 NMR constitutes a potent tool to study cellular metabolism by the use of 13C enriched substrates. Analyzes of 13C NMR spectra recorded from acidic cell extracts lead to the evaluation of specific enrichment of various metabolites. On the other hand, the measure of homonuclear 13C-13C spin coupling gives information on the different isotopomers for a given molecule. Mathematical models were different isotopomers for a given molecule. Mathematical models were developed to interpret the NMR data in terms of metabolic fluxes through the metabolic network of interest. Various models established in our laboratory are presented. These models were applied to metabolic studies of cultured central nervous system cells as rat cerebellar astrocytes and granule cells, and the C6 glioma cell line. (authors). 17 refs., 3 figs., 2 tabs

  17. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera.

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-12-01

    Full Text Available Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport and fate of organic carbon is relevant to gain a better understanding of the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated organic carbon fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the organic carbon pool and associated fluxes in this ecosystem. The Bay of Portocolom was in net metabolic balance on a yearly basis, but heterotrophic during the summer months. Community respiration (CR was positively correlated to C. prolifera biomass, while net community production (NCP had a negative correlation. The benthic compartment represented, on average, 72.6 ± 5.2 % of CR and 86.8 ± 4.5 % of gross primary production (GPP. Dissolved organic carbon (DOC production peaked in summer and was always positive, with the incubations performed in the dark almost doubling the flux of those performed in the light. Exchangeable dissolved organic carbon (EDOC, however, oscillated between production and uptake, being completely recycled within the system and representing around 14% of the DOC flux. The pools of bottom and surface DOC were high for an oligotrophic environment, and were positively correlated to the pool of EDOC. Thus, despite being in metabolic balance, this ecosystem acted as a conduit for organic carbon (OC, as it is able to export OC to adjacent areas derived from allochtonous inputs during heterotrophic conditions. These inputs likely come from groundwater discharge, human activity in the watershed, delivered to the sediments through the high capacity of C. prolifera to remove particles from the water column, and from the air-water exchange of EDOC, demonstrating that these communities are a major contributor to the cycling of OC in coastal embayments.

  18. Primitive Form of Bony Fish Unveiled

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With over 50,000 species,Osteichthyans, or bony fish, accounts for 98% of the present-day vertebrates. Bony fish falls into two groups: actinopterygians, meaning ray-finned bony fish, and sarcopterygians,meaning lobe-finned bony fish. The huge morphotype difference of the two catagories cast doubts on research into the origin and evolution of bony fish. The recent discovery of a primitive fish species by CAS researchers and their overseas colleagues provides a missing link between the two lineages, unveiling unique features for understanding primitive bony vertebrates.

  19. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-03-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO(2) fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were determined in leaves and phloem exudates of Kalanchoë daigremontiana Hamet et Perr., and related to CO(2) fixation by PEPC and Rubisco. Three types of leaf carbon pools could be distinguished. (i) Starch and malate pools were dominant and showed a pattern of reciprocal mobilization and accumulation (85/54 and 13/48 mg C g(-1) DW, respective, at the beginning/end of phase I). The carbon isotope composition of these pools was compatible with predominant PEPC fixation (delta(13)C values of -13 and -11 per thousand for starch and malate compared to -11 per thousand of PEPC fixed carbon). (ii) Isotopic composition (-17 per thousand and -14 per thousand) and concentration of glucose and fructose (2 and 3 mg C g(-1) DW, respectively) were not affected by diurnal metabolism, suggesting a low turnover. (iii) Sucrose (1-3 mg C g(-1) DW), in contrast, exhibited large diurnal changes in delta(13)C values (from -17 per thousand in the evening to -12 per thousand in the morning), which were not matched by net changes in sucrose concentration. This suggests a high sucrose turnover, fed by nocturnal starch degradation and direct Rubisco fixation during the day. A detailed dissection of the carbon fixation and mobilization pattern in K. daigremontiana revealed that direct fixation of Rubisco during the light accounted for 30% of phloem sucrose, but only 15% of fixed carbon, indicating that carbon from direct Rubisco fixation was preferentially used for leaf export. PMID:20159885

  20. Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Maria V.Busi; Maria E.Gomez-Lobato; Sebastian P.Rius; Valeria R.Turowski; Paula Casati; Eduardo J.Zabaleta; Diego F.Gomez-Casati; Alejandro Araya

    2011-01-01

    We characterized the transcriptomic response of transgenic plants carrying a mitochondrial dysfunction induced by the expression of the unedited form of the ATP synthase subunit 9.The u-ATP9 transgene driven by A9 and APETALA3 promoters induce mitochondrial dysfunction revealed by a decrease jn both oxygen uptake and adenine nucleotides(ATP,ADP)levels without changes in the ATP/ADP ratio.Furthermore,we measured an increase in ROS accumulation and a decrease in glutathione and ascorbate levels with a concomitant oxidative stress response.The transcriptome analysis of young Arabidopsis flowers,validated by Qrt-PCR and enzymatic or functional tests,showed dramatic changes in u-ATP9 plants.Both lines display a modification in the expression of various genes involved in carbon,lipid,and cell wall metabolism,suggesting that an important metabolic readjustment occurs in plants with a mitochondrial dysfunction.Interestingly,transcript levels involved in mitochondrial respiration,protein synthesis,and degradation are affected.Moreover,the Ievels of several mRNAs encoding for transcription factors and DNA binding proteins were also changed.Some of them are involved in stress and hormone responses,suggesting that several signaling pathways overlap.Indeed,the transcriptome data revealed that the mitochondrial dysfunction dramatically alters the expression of genes involved in signaling pathways,including those related to ethylene,absicic acid,and auxin signal transduction.Our data suggest that the mitochondrial dysfunction model used in this report may be usefuI to uncover the retrograde signaling mechanism between the nucleus and mitochondria in plant cells.

  1. Biochemical hydrogen isotope fractionation during biosynthesis in higher plants reflects carbon metabolism of the plant

    Science.gov (United States)

    Cormier, Marc-André; Kahmen, Ansgar

    2015-04-01

    Compound-specific isotope analyses of plant material are frequently applied to understand the response of plants to the environmental changes. As it is generally assume that the main factors controlling δ2H values in plants are the plant's source water and evaporative deuterium enrichment of leaf water, hydrogen isotope analyses of plant material are mainly applied regarding hydrological conditions at different time scales. However, only few studies have directly addressed the variability of the biochemical hydrogen isotope fractionation occurring during biosynthesis of organic compounds (ɛbio), accounting also for a large part in the δ2H values of plants but generally assumed to be constant. Here we present the results from a climate-controlled growth chambers experiment where tested the sensitivity of ɛbio to different light treatments. The different light treatments were applied to induce different metabolic status (autotrophic vs. heterotrophic) in 9 different plant species that we grew from large storage organs (e.g. tubers or roots). The results show a systematic ɛbio shift (up to 80 ) between the different light treatments for different compounds (i.e. long chain n-alkanes and cellulose). We suggest that this shift is due to the different NADPH pools used by the plants to build up the compounds from stored carbohydrates in heterotrophic or autotrophic conditions. Our results have important implications for the calibration and interpretation of sedimentary and tree rings records in geological studies. In addition, as the δ2H values reflect also strongly the carbon metabolism of the plant, our findings support the idea of δ2H values as an interesting proxy for plant physiological studies.

  2. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants: a new approach to estimating in vivo carbonic anhydrase activity

    Energy Technology Data Exchange (ETDEWEB)

    Holtum, J.A.M.; Summons, R.; Roeske, C.A.; Comins, H.N.; O' Leary, M.H.

    1984-01-01

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with TC YO2, then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the ( TC) malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance or by mass spectrometry. Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum, 40 for Kalanchoee daigremontiana, and 100 or greater for Bryophyllum tubiflorum, Kalanchoee serrata, and Kalanchoae tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. 37 references, 2 figures, 8 tables.

  3. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    Directory of Open Access Journals (Sweden)

    Jiménez-Zurdo José I

    2010-03-01

    Full Text Available Abstract Background The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs, and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in S. meliloti has remained unexplored. Results Two independent S. meliloti mutants, 2011-3.4 and 1021Δhfq, were obtained by disruption and deletion of the hfq gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Δhfq revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64% elicited by the 1021Δhfq mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of nifA and fixK1/K2, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of fixK is only aerobiosis dependent. Finally, we found that some of the recently

  4. The effects of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Jerzy W. Poskuta

    2014-02-01

    Full Text Available Roots of whole 3 week-old pea seedlings (Pisum sativum L. var. "Bordi" were immersed for 24 h in solutions of lead chloride at Pb copcentrations of 200, 400, 800,12000 mg dm3. Accumulation of lead in roots was independent of the Pb concentration, whereas the accumulation of Pb in shoots was an almost linear function of the concentration of this element in the root medium. This treatment caused Pb concentration-dependent inhibition of apparent photosynthesis (APS, photorespiration (PR, 14CO2 uptake, stomatal opening and transpiration of shoots and also germination of seeds. The most sensitive to Pb contamination was CO2 exchange, then transpiration and to a lesser degree germination of seeds. Lead caused a considerable alteration of photosynthetic and photorespiratory carbon metabolism, restricted the 14C-labeling of: phosphoglycerate, ribose+ribulose, sucrose, glycolate and glycine+serine. Under conditions of C02 uptake limited by lead, an enhancement of the 14C-labeling of malate+citrate, alanine and glucose was observed.

  5. 2004 Molecular Basis of Microbial One-Carbon Metabolism Gordon Conference - August 1-6, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Joseph A. Krzycki

    2005-09-15

    The Gordon Research Conference (GRC) on 2004 Molecular Basis of Microbial One-Carbon Metabolism Gordon Conference - August 1-6, 2004 was held at Mount Holyoke College, South Hadley, MA from August 1-6, 2004. The Conference was well-attended with 117 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  6. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H2 consumption was linked to the inhibition of CO2 production and an increase in the propionate/acetate rate; whereas, H2 consumption was linked to a stimulation of CO2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  7. Application of artificial neural networks to investigate one-carbon metabolism in Alzheimer's disease and healthy matched individuals.

    Directory of Open Access Journals (Sweden)

    Fabio Coppedè

    Full Text Available Folate metabolism, also known as one-carbon metabolism, is required for several cellular processes including DNA synthesis, repair and methylation. Impairments of this pathway have been often linked to Alzheimer's disease (AD. In addition, increasing evidence from large scale case-control studies, genome-wide association studies, and meta-analyses of the literature suggest that polymorphisms of genes involved in one-carbon metabolism influence the levels of folate, homocysteine and vitamin B12, and might be among AD risk factors. We analyzed a dataset of 30 genetic and biochemical variables (folate, homocysteine, vitamin B12, and 27 genotypes generated by nine common biallelic polymorphisms of genes involved in folate metabolism obtained from 40 late-onset AD patients and 40 matched controls to assess the predictive capacity of Artificial Neural Networks (ANNs in distinguish consistently these two different conditions and to identify the variables expressing the maximal amount of relevant information to the condition of being affected by dementia of Alzheimer's type. Moreover, we constructed a semantic connectivity map to offer some insight regarding the complex biological connections among the studied variables and the two conditions (being AD or control. TWIST system, an evolutionary algorithm able to remove redundant and noisy information from complex data sets, selected 16 variables that allowed specialized ANNs to discriminate between AD and control subjects with over 90% accuracy. The semantic connectivity map provided important information on the complex biological connections among one-carbon metabolic variables highlighting those most closely linked to the AD condition.

  8. Redox driven metabolic tuning: Carbon source and aeration affect synthesis of poly(3-hydroxybutyrate) in Escherichia coli

    OpenAIRE

    Nikel, Pablo I.; de Almeida, Alejandra; Giordano, Andrea M.; Pettinari, M. Julia

    2010-01-01

    Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as...

  9. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    OpenAIRE

    Assies, J.; Mocking, R J T; Lok, A; Ruhé, H.G.; Pouwer, F.; Schene, A. H.

    2014-01-01

    Objective Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive responses, might underlie comorbidity between CVD and psychiatric disorders. Method We conducted a literature search and integrated data in a narrative review. Results Oxidative stress, mainly generated in...

  10. Unveiling the potential of prohibitin in cancer.

    Science.gov (United States)

    Koushyar, Sarah; Jiang, Wen G; Dart, D Alwyn

    2015-12-28

    Recently, research has shed new light on the role of Prohibitin (PHB) in cancer pathogenesis across an array of cancer types. Important mechanisms for PHB have been unveiled in several cancers, especially with regard to the androgen independent state of prostate cancer (PC) and oestrogen dependent breast cancer. However, PHB is often overlooked due to its complex but subtle roles within the cell. Having gathered both historical and current research exploring PHB's role in different cancer types including prostate and breast, here we aim to pair this information with its molecular properties in the hope of translating this information into a clinical perspective, thus discussing its possible use in future cancer therapy. PMID:26450374

  11. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana

    OpenAIRE

    Wild, Birgit; Wanek, Wolfgang; Postl, Wolfgang; Richter, Andreas

    2010-01-01

    Crassulacean acid metabolism (CAM) plants exhibit a complex interplay between CO2 fixation by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), and carbon demand for CAM maintenance and growth. This study investigated the flux of carbon from PEPC and direct Rubisco fixation to different leaf carbon pools and to phloem sap over the diurnal cycle. Concentrations and carbon isotope compositions of starch, soluble sugars, and organic acids were ...

  12. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  13. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    Science.gov (United States)

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors. PMID:26031097

  14. Modeling the diversion of primary carbon flux into secondary metabolism under variable nitrate and light/dark conditions.

    Science.gov (United States)

    Larbat, Romain; Robin, Christophe; Lillo, Cathrine; Drengstig, Tormod; Ruoff, Peter

    2016-08-01

    In plants, the partitioning of carbon resources between growth and defense is detrimental for their development. From a metabolic viewpoint, growth is mainly related to primary metabolism including protein, amino acid and lipid synthesis, whereas defense is based notably on the biosynthesis of a myriad of secondary metabolites. Environmental factors, such as nitrate fertilization, impact the partitioning of carbon resources between growth and defense. Indeed, experimental data showed that a shortage in the nitrate fertilization resulted in a reduction of the plant growth, whereas some secondary metabolites involved in plant defense, such as phenolic compounds, accumulated. Interestingly, sucrose, a key molecule involved in the transport and partitioning of carbon resources, appeared to be under homeostatic control. Based on the inflow/outflow properties of sucrose homeostatic regulation we propose a global model on how the diversion of the primary carbon flux into the secondary phenolic pathways occurs at low nitrate concentrations. The model can account for the accumulation of starch during the light phase and the sucrose remobilization by starch degradation during the night. Day-length sensing mechanisms for variable light-dark regimes are discussed, showing that growth is proportional to the length of the light phase. The model can describe the complete starch consumption during the night for plants adapted to a certain light/dark regime when grown on sufficient nitrate and can account for an increased accumulation of starch observed under nitrate limitation. PMID:27164436

  15. Phenotyping hepatocellular metabolism using uniformly labeled carbon-13 molecular probes and LC-HRMS stable isotope tracing.

    Science.gov (United States)

    Meissen, John K; Pirman, David A; Wan, Min; Miller, Emily; Jatkar, Aditi; Miller, Russell; Steenwyk, Rick C; Blatnik, Matthew

    2016-09-01

    Metabolite stable isotope tracing is a powerful bioanalytical strategy that has the potential to unravel phenotypic markers of early pharmaceutical efficacy by monitoring enzymatic incorporation of carbon-13 atoms into targeted pathways over time. The practice of probing biological systems with carbon-13 labeled molecules using broad MS-based screens has been utilized for many years in academic laboratories but has had limited application in the pharmaceutical R&D environment. The goal of this work was to establish a LCMS analytical workflow that was capable of monitoring carbon-13 isotope changes in glycolysis, the TCA and urea cycles, and non-essential amino acid metabolism. This work applies a standardized protein precipitation with 80% cold methanol and two distinct reverse-phase ion-pair liquid chromatography methods coupled to either a positive- or negative-ion mode high-resolution accurate mass spectrometry screening method. The data herein combines thousands of single-point peak integrations into a novel metabolite network map as a visualization aid to probe and monitor stable isotope incorporation in murine hepatocytes using uniformly labeled (13)C6 glucose, (13)C3 lactate, and (13)C5 glutamine. This work also demonstrates that nitrogen metabolism may have a large influence on the TCA cycle and gluconeogenic carbon fluxes in hepatocyte cell culture. PMID:27343766

  16. Associations of Exhaled Carbon Monoxide and Fractional Exhaled Nitric Oxide with Metabolic Syndrome: A Cohort Study

    Science.gov (United States)

    Guo, Yanjun; Ma, Jixuan; Lu, Wei; He, Jintong; Zhang, Runbo; Yuan, Jing; Chen, Weihong

    2016-01-01

    Exhaled carbon monoxide (eCO) and fractional exhaled nitric oxide (FeNO) could reflect underlying inflammatory and oxidative stresses, which play important roles in pathogenetic pathways of metabolic syndrome (MetS). However, epidemiologic evidence was limited. We conducted a study in Wuhan-Zhuhai (WHZH) cohort of 3649 community participants to investigate the association between eCO, FeNO and MetS in both cross-sectional and prospective ways. The results showed that higher eCO and FeNO were associated cross-sectionally with a higher prevalence of MetS. The multivariable-adjusted odds ratios for MetS at baseline were 1.22 (95% confidence interval [CI]: 1.11 to 1.35) associated with per log eCO and 1.14 (95% CI: 1.00 to 1.30) associated with per log FeNO. During a follow-up of 3 years, 358/2181 new developed MetS cases were identified. Compared with lowest quartile of eCO and FeNO, the multivariable-adjusted risk ratios (95% CI) for MetS were 1.48 (1.06 to 2.06) related to the highest quartile of eCO. These findings remained consistent across sex but not smoking status, eCO was only associated with MetS in non-smokers when stratified by smoking status. In conclusion, our study demonstrated that eCO and FeNO were independently and positively associated with the prevalence of MetS cross-sectionally, while only eCO was positively related with the incidence of MetS prospectively. PMID:27076211

  17. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  18. Chemistry union unveils names of four new elements

    Science.gov (United States)

    Johnston, Hamish

    2016-07-01

    The periodic table could soon be graced by four new symbols – Nh, Mc, Ts and Og – after the International Union of Pure and Applied Chemistry (IUPAC) unveiled its proposed names for the four most recently discovered elements.

  19. Unveiling the Origin of Cosmic Rays

    Science.gov (United States)

    Olinto, Angela V.

    2015-04-01

    The origin of cosmic rays, relativistic particles that range from below GeVs to hundreds of EeVs, is a century old mystery. Extremely energetic phenomena occurring over a wide range of scales, from the Solar System to distant galaxies, are needed to explain the non-thermal particle spectrum that covers over 12 orders of magnitude. Space Missions are the most effective platforms to study the origin and history of these cosmic particles. Current missions probe particle acceleration and propagation in the Solar System and in our Galaxy. This year ISS-CREAM and CALET join AMS in establishing the International Space Station as the most active site for studying the origin of Galactic cosmic rays. These missions will study astrophysical cosmic ray accelerators as well as other possible sources of energetic particles such as dark matter annihilation or decay. In the future, the ISS may also be the site for studying extremely high-energy extragalactic cosmic rays with JEM-EUSO. We review recent results in the quest for unveiling the sources of energetic particles with balloons and space payloads and report on activities of the Cosmic ray Science Interest Group (CosmicSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG).

  20. Endothelial dysfunction in normal and prediabetic rats with metabolic syndrome exposed by oral gavage to carbon black nanoparticles

    DEFF Research Database (Denmark)

    Folkmann, Janne Kjærsgaard; Vesterdal, Lise Kristine; Sheykhzade, Majid;

    2012-01-01

    Exposure to nanosized particles may increase the risk of cardiovascular diseases by endothelial dysfunction, particularly in susceptible subjects with metabolic syndrome. We investigated vasomotor dysfunction in aorta from obese and lean Zucker rats after oral exposure to nanosized carbon black (CB......-induced vasorelaxation and phenylephrine-induced vasocontraction was not affected in rats exposed to CB. The endothelial dysfunction was not observed in rats sacrificed 13 weeks after the last CB exposure. There was unaltered expression of Chrm3, Nos3, Nos2, Ccl2, and Hmox1 in aorta tissue of CB-exposed rats. In...... conclusion, repeated oral exposure to CB was associated with endothelial dysfunction in rats, further aggravating the effect of metabolic syndrome....

  1. Impact of CO2 concentration on autotrophic metabolisms and carbon fate in saline aquifers - A case study

    Science.gov (United States)

    Dupraz, Sebastien; Fabbri, Antonin; Joulian, Catherine; Dictor, Marie-Christine; Battaglia-Brunet, Fabienne; Ménez, Bénédicte; Crouzet, Catherine; Henry, Benoît; Garrido, Francis

    2013-10-01

    The purpose of this study was to identify and quantify the fate and speciation of carbon that can occur in mixtures of geological media (crushed rock) and autotrophic microbial communities. A sulfate reducing bacterium (Desulfotomaculum geothermicum) and a methanogenic archaeon (Methanothermococcus thermolithotrophicus) were both tested separately and together, with and without crushed sedimentary rock (carbonaceous sandstone) for different CO2 partial pressures (0.22, 0.88, 3.52, and 8 bar) at 54 °C in saline artificial groundwater. In order to quantify the respective metabolic activities, the inorganic gases of interest (H2, CH4, H2S and CO2) were measured and the speciation of carbon was assessed by measuring volatile, non-purgeable, total and dissolved organic carbon as well as total and dissolved inorganic carbon. Despite a protective effect of the mineral matrix, the results showed a high sensitivity of autotrophic microorganisms to the stress induced by pressures of CO2 superior to one bar and revealed that a part of this stress was due to direct toxic effects. M. thermolithotrophicus demonstrated a better tolerance to CO2 and was dominating the consortia. This ascendancy was interpreted as resulting from equilibrium displacement due to transport effects of methane between the liquid and gas phases. Abiotic dissolution was observed but some biomineralization processes of carbonates were also identified for D. geothermicum. Both strains displayed very different patterns in their conversion of inorganic carbon: while M. thermolithotrophicus was mainly producing methane, D. geothermicum induced the formation of biomass. The availability of crushed rock increased the proportion of sessile biofilms. All these results were analyzed in correlation with a successful PHREEQC simulation and demonstrate the strong influence of the microbial activities and diversity on the carbon fate in the immediate surroundings of geological CCS storage zones.

  2. Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study

    OpenAIRE

    Mendel Ron W; Hofheins Jennifer E

    2007-01-01

    Abstract Background The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate. Methods After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsius™ and, on a separate day, 12 ounces of Diet Coke®. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry) and substrate oxidation (v...

  3. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis.

    OpenAIRE

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has been the subject of extensive research and several genes encoding proteins involved in the central carbohydrate metabolism have been described (Llanos et al., 1992; Llanos et al., 1993; Cancilla et al., 1995...

  4. ESA Unveils Its New Comet Chaser.

    Science.gov (United States)

    1999-07-01

    The objective is to study one of these primordial objects at close quarters by placing a lander on its surface and chasing, with an orbiter, the comet for millions of kilometres through space. Comets - among the oldest (4.6 billion years!) and last altered objects in the solar system - are regarded as the building blocks from which the planets formed. Thus the Rosetta's discoveries will allow the scientists to learn more about birth and evolution of the planets and about the origin of life on the Earth. The final design of the Rosetta orbiter will be revealed for the first time at the Royal Society in London on 1 July when a 1:4 scale model will be unveiled by ESA's Director of Science, Prof.. Roger Bonnet. (The full size version of the spacecraft is 32 metres across, so large that it would stretch the entire width of a football pitch. Almost 90 of this is accounted for by the giant solar panels which are needed to provide electrical power in the dark depths of the Solar System). "Rosetta is a mission of major scientific importance," said Prof. Bonnet. "It will build on the discoveries made by Giotto and confirm ESA's leading role in the exploration of the Solar System and the Universe as a whole." The timing of this event has been chosen to coincide with the London meeting of the Rosetta Science Working Team and the second Earth flyby of the now non-operational Giotto spacecraft. In addition, the opening of the British Museum's 'Cracking Codes' Exhibition, for which the Rosetta Stone is the centrepiece, is set to take place on 10 July. The Rosetta mission. Rosetta is the third Cornerstone in ESA's 'Horizon 2000' long-term scientific programme. It will be launched by Ariane 5 rocket from Kourou spaceport in French Guiana in January 2003. In order to gain sufficient speed to reach the distant comet, Rosetta will require gravity assists from the Earth (twice) and Mars. After swinging around Mars in May 2005, Rosetta will return to Earth's vicinity in October 2005 and

  5. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil

    Institute of Scientific and Technical Information of China (English)

    LI Juan; LI Yan-ting; YANG Xiang-dong; ZHANG Jian-jun; LIN Zhi-an; ZHAO Bing-qiang

    2015-01-01

    Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especialy organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Chang-ping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control (CK), a commonly used application rate of inorganic fertilizer treatment (NPK); a commonly used application rate of inorganic fertilizer with swine manure in-corporated treatment (NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment (NPKS). Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene was used to determine the bacterial community structure and single carbon source utilization proifles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments signiifcantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term (NPKM, NPKS) signiifcantly promoted soil bacterial structure than the application of inorganic fertilizer only (NPK), and NPKM treatment was the most important driver for in-creases in the soil microbial community richness (S) and structural diversity (H). Overal utilization of carbon sources by soil microbial communities (average wel color development, AWCD) and microbial substrate utilization diversity and evenness indices (H’ and E) indicated that long

  6. Effect of carbon monoxide on xenobiotic metabolism in the isolated perfused rabbit lung

    Energy Technology Data Exchange (ETDEWEB)

    Trela, B.A.

    1988-01-01

    It was the aim of this study to determine the level and duration of CO exposure necessary to alter mixed function oxidase-mediated activity in the intact lung and to determine the magnitude of this effect. The effect of CO on the mixed function oxidase-mediated activities of aminopyrine, aniline, 4-ipomeanol and p-nitroanisole in isolated perfused rabbit lungs (IPRL) was investigated. Several concentrations of CO were evaluated for their effect on cytochrome P-450-mediated activity in the lung. Both artificial medium and whole blood were utilized as recirculating perfusates. Monomethyl-4-aminoantipyrine was the major metabolite of aminopyrine produced by in vitro hepatic and pulmonary preparations and by the intact lung. Ventilation of isolated rabbit lungs with 7.5% CO for 2.5 hours caused a 40% decrease in the rates of metabolism of both aminopyrine and p-nitroanisole. This level of CO exposure did not alter the cytochrome P-450-mediated metabolism of aniline nor 4-ipomeanol in the intact lung. Aminopyrine metabolism in isolated rabbit lungs perfused with whole blood was also decreased following the administration of 7.5% CO suggesting that the hemoglobin in whole blood affords no protection against CO-induced inhibition of mixed function oxidase activity in the intact lung. The isozyme of cytochrome P-450 which preferentially metabolizes aminopyrine and p-nitroanisole may be more sensitive to CO-induced inhibition than the form(s) which metabolize aniline and 4-ipomeanol.

  7. Stable carbon isotope fractionation of trans-1,2-dichloroethylene during co-metabolic degradation by methanotrophic bacteria

    Science.gov (United States)

    Brungard, K.L.; Munakata-Marr, J.; Johnson, C.A.; Mandernack, K.W.

    2003-01-01

    Changes in the carbon isotope ratio (??13C) of trans-1,2-dichloroethylene (t-DCE) were measured during its co-metabolic degradation by Methylomonas methanica, a type I methanotroph, and Methylosinus trichosporium OB3b, a type II methanotroph. In closed-vessel incubation experiments with each bacterium, the residual t-DCE became progressively enriched in 13C, indicating isotopic fractionation. From these experiments, the biological fractionation during t-DCE co-metabolism, expressed as ??, was measured to be -3.5??? for the type I culture and -6.7??? for the type II culture. This fractionation effect and subsequent enrichment in the ??13C of the residual t-DCE can thus be applied to determine the extent of biodegradation of DCE by these organisms. Based on these results, isotopic fractionation clearly warrants further study, as measured changes in the ??13C values of chlorinated solvents could ultimately be used to monitor the extent of biodegradation in laboratory or field settings where co-metabolism by methanotrophs occurs. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Effects of glycine hydroxamate, carbon dioxide, and oxygen on photorespiratory carbon and nitrogen metabolism in spinach mesophyll cells

    International Nuclear Information System (INIS)

    The effects of added glycine hydroxamate on the photosynthetic incorporation of 14CO2 into metabolites by isolated mesophyll cells of spinach (Spinacia oleracea L.) was investigated under conditions favorable to photorespiratory (PR) metabolism (0.04% CO2 and 20% O2) and under conditions leading to nonphotorespiratory (NPR) metabolism (0.2% CO2 and 2.7% O2). Glycine hydroxamate (GH) is a competitive inhibitor of the photorespiratory conversion of glycine to serine, CO2 and NH4+. During PR fixation, addition of the inhibitor increased glycine and decreased glutamine labeling. In contrast, labeling of glycine decreased under NPR conditions. This suggests that when the rate of glycolate synthesis is slow, the primary route of glycine synthesis is through serine rather than from glycolate. GH addition increased serine labeling under PR conditions but not under NPR conditions. This increase in serine labeling under PR conditions but not under NPR conditions. This increase in serine labeling at a time when glycine to serine conversion is partially blocked by the inhibitor may be due to serine accumulation via the ''reverse'' flow of photorespiraton from 3-P-glycerate to hydroxypyruvate when glycine levels are high. GH increased glyoxylate and decreased glycolate labeling. These observations are discussed with respect to possible glyoxylate feedback inhibition of photorespiration

  9. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows

    OpenAIRE

    Duarte, Carlos M.; Marbà, Núria; Gacia, Esperança; Fourqurean, James W.; Beggins, Jeff; Barrón, Cristina; Apostolaki, Eugenia T.

    2010-01-01

    The metabolic rates of seagrass communities were synthesized on the basis of a data set on seagrass community metabolism containing 403 individual estimates derived from a total of 155 different sites. Gross primary production (GPP) rates (mean ± SE = 224.9 ± 11.1 mmol O2 m−2 d−1) tended to be significantly higher than the corresponding respiration (R) rates (mean ± SE = 187.6 ± 10.1 mmol O2 m−2 d−1), indicating that seagrass meadows tend to be autotrophic ecosystems, reflected in a positive ...

  10. Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism.

    Science.gov (United States)

    Eisenhut, Marion; Hocken, Nadine; Weber, Andreas P M

    2015-07-01

    Plant photorespiration is an essential prerequisite for oxygenic photosynthesis. This metabolic repair pathway bestrides four compartments, which poses the requirement for several metabolites transporters for pathway function. However, in contrast to the well-studied enzymatic steps of the core photorespiratory cycle, only few photorespiratory translocators have been identified to date. In this review, we give an overview of established and unknown plastidic transport proteins involved in photorespiration and intertwined nitrogen and sulfur metabolism, respectively. Furthermore, we discuss the evolutionary origin of the dicarboxylate translocators and the recently identified glycolate glycerate translocator. PMID:25465893

  11. Preliminary Insights Into the Interplay Among Oxygen, Organic Carbon, and Microbial Metabolism in North Atlantic Subseafloor Sediment Communities

    Science.gov (United States)

    Amenabar, M. J.; Dore, J. E.; Spivack, A. J.; Murray, R. W.; D'Hondt, S.; Boyd, E. S.

    2015-12-01

    Deep marine sediments harbor abundant microbial cells that, if active, are likely to exert a strong influence on element biogeochemical cycling. However, our understanding of the fraction of cells that are active in situ and the metabolic processes that sustain them remain underexplored. Here we describe recent results of our studies aimed at unraveling the links between geochemical heterogeneity, cellular viability and synthesis, and metabolism along a vertical depth profile in sediment from four deep sites (>5 km beneath ocean surface) cored by R/V KNORR Expedition KN-223 in the North Atlantic (2014). These sediment columns exhibit varying levels of organic carbon and different vertical extents of oxygen (O2) penetration, which we hypothesize is due to variation in the extent of heterotrophic metabolism. We prepared most probable number (MPN) assays with acetate or peptone as electron donor and carbon source, and five different terminal electron acceptors (O2, NO3, SO4, MnO2, and ferrihydrite) with sediments from 4 to 5 depths in each of the four cores MPNs were similar for acetate- and peptone-amended cultures, regardless of electron acceptor, and generally decreased with depth in the sediment column. MPNs amended with O2 as electron acceptor were greater than MPNs amended with NO3, SO4, MnO2, and ferrihydrite in samples from all depths. Moreover, MPNs were higher for assays amended with O2 from cores where the depth of O2 penetration was shallow when compared to cores where O2 is predicted to penetrate to basement rock. These results are consistent with aerobic heterotrophs limiting the penetration of O2 in deep marine sediments, and thereby provide a mechanism to explain the relationship between low O2 penetrations in sediment cores with elevated organic carbon contents. We will also present results of our ongoing isotopic labeling experiments aimed at determining rates of DNA and protein synthesis as proxies for cell replication and productivity, respectively

  12. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. PMID:27108206

  13. One-carbon metabolism nutrient status and plasma S-adenosylmethionine concentrations in middle-aged and older Chinese in Singapore

    OpenAIRE

    Inoue-Choi, Maki; Nelson, Heather H.; Robien, Kim; Arning, Erland; Bottiglieri, Teodoro; Koh, Woon-Puay; Yuan, Jian-Min

    2012-01-01

    S-adenosylmethionine (SAM) is a primary methyl donor for the methylation of many molecules including DNA. DNA methylation is believed to play an important role in functions of cells and genes. Dietary, genetic and metabolic factors that influence systematic SAM levels are not fully understood. We conducted cross-sectional analysis to evaluate associations between plasma concentrations of one-carbon metabolism nutrients and metabolites and plasma SAM concentrations using healthy individuals wi...

  14. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has been the s

  15. Carbon dioxide metabolism by Actinomyces viscosus: pathways for succinate and aspartate production.

    OpenAIRE

    Brown, A T; Breeding, L C

    1980-01-01

    14C-labeled bicarbonate was incorporated into trichloroacetic acid-insoluble material by cell suspensions of A. viscosus strain M100 and also into the four-carbon fermentation product, succinate, but not into the three-carbon fermentation product, lactate. The initial step in the conversion of 14C-labeled bicarbonate into both trichloroacetic acid-insoluble material and succinate was catalyzed by the enzyme phosphoenolypyruvate carboxylase, which served to convert the glycolytic intermediate,...

  16. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke

    Science.gov (United States)

    Circulating homocysteine levels (tHcy), a product of the folate one carbon metabolism pathway (FOCM) through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD), cancer and dementia. The FOCM is the ...

  17. The Myriophyllum spicatum L. -epiphyte complex: A study of the community carbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Godmaire, H.

    1988-01-01

    The kinetics of extracellular organic carbon (EOC) released by Myriophyllum spicatum L. were investigated and the importance of EOC release to epiphytic heterotrophs was determined. EOC released by colonized Myriophyllum leaves was positively related to the dissolved inorganic carbon (DIC) concentration of the external medium and to photosynthetic activity. Maximum rate of release occurred during the exponential phase of growth. In short-term incubation (1-6 h), {sup 14}C-EOC accounted for 0.2-0.4% of carbon photoassimilation. {sup 14}C-EOC consisted primarily of low molecular weight products. The {sup 14}C-technique seriously underestimated the release rate compared to direct measurement of EOC which gave values of approximately 2.2% of carbon photoassimilation. During a diurnal cycle, the EOC release rate increased in the afternoon as photosynthesis decreased, and reached 2.8% of the carbon photoassimilation at the end of the light period. Axenic plants were characterized by lower growth rates and lower EOC release rates than colonized plants. The amount of EOC released during the day by colonized plants was 2.0 to 4.5 fold greater than the utilized by epiphytic heterotrophs. Therefore, EOC released by Myriophyllum may constitute a significant source of carbon for attached and surrounding heterotrophic organisms.

  18. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    Science.gov (United States)

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  19. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. PMID:23841885

  20. The carbon storage regulator (Csr system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917.

    Directory of Open Access Journals (Sweden)

    Olga Revelles

    Full Text Available The role of the post-transcriptional carbon storage regulator (Csr system in nutrient utilization and in the control of the central metabolism in E. coli reference commensal strain Nissle 1917 was investigated. Analysis of the growth capabilities of mutants altered for various components of the Csr system (csrA51, csrB, csrC and csrD mutations showed that only the protein CsrA - the key component of the system - exerts a marked role in carbon nutrition. Attenuation of CsrA activity in the csrA51 mutant affects the growth efficiency on a broad range of physiologically relevant carbon sources, including compounds utilized by the Entner-Doudoroff (ED pathway. Detailed investigations of the metabolomes and fluxomes of mutants and wild-type cells grown on carbon sources representative of glycolysis and of the ED pathway (glucose and gluconate, respectively, revealed significant re-adjusting of central carbon metabolism for both compounds in the csrA51 mutant. However, the metabolic re-adjusting observed on gluconate was strikingly different from that observed on glucose, indicating a nutrient-specific control of metabolism by the Csr system.

  1. Multifactor dimensionality reduction analysis to elucidate the cross-talk between one-carbon and xenobiotic metabolic pathways in multi-disease models.

    Science.gov (United States)

    Naushad, Shaik Mohammad; Vijayalakshmi, Sana Venkata; Rupasree, Yedluri; Kumudini, Nadella; Sowganthika, Sampathkumar; Naidu, Janardhanan Venketlakshmi; Ramaiah, M Janaki; Rao, Dunna Nageswara; Kutala, Vijay Kumar

    2015-07-01

    Putatively functional polymorphisms of one-carbon and xenobiotic metabolic pathways influence susceptibility for wide spectrum of diseases. The current study was aimed to explore gene-gene interactions among these two metabolic pathways in four diseases i.e. breast cancer, systemic lupus erythematosus (SLE), coronary artery disease (CAD) and Parkinson's disease (PD). Multifactor dimensionality reduction analysis was carried out on four case-control datasets. Cross-talk was observed between one-carbon and xenobiotic pathways in breast cancer (RFC 80 G>A, COMT H108L and TYMS 5'-UTR 28 bp tandem repeat) and SLE (CYP1A1 m1, MTRR 66 A>G and GSTT1). Gene-gene interactions within one-carbon metabolic pathway were observed in CAD (GCPII 1561 C>T, SHMT 1420 C>T and MTHFR 677 C>T) and PD (cSHMT 1420 C>T, MTRR 66 A>G and RFC1 80 G>A). These interaction models showed good predictability of risk for PD (The area under the receiver operating characteristic curve (C) = 0.83) and SLE (C = 0.73); and moderate predictability of risk for breast cancer (C = 0.64) and CAD (C = 0.63). Cross-talk between one-carbon and xenobiotic pathways was observed in diseases with female preponderance. Gene-gene interactions within one-carbon metabolic pathway were observed in diseases with male preponderance. PMID:25648260

  2. Ecological network analysis for carbon metabolism of eco-industrial parks: a case study of a typical eco-industrial park in Beijing.

    Science.gov (United States)

    Lu, Yi; Chen, Bin; Feng, Kuishuang; Hubacek, Klaus

    2015-06-16

    Energy production and industrial processes are crucial economic sectors accounting for about 62% of greenhouse gas (GHG) emissions globally in 2012. Eco-industrial parks are practical attempts to mitigate GHG emissions through cooperation among businesses and the local community in order to reduce waste and pollution, efficiently share resources, and help with the pursuit of sustainable development. This work developed a framework based on ecological network analysis to trace carbon metabolic processes in eco-industrial parks and applied it to a typical eco-industrial park in Beijing. Our findings show that the entire metabolic system is dominated by supply of primary goods from the external environment and final demand. The more carbon flows through a sector, the more influence it would exert upon the whole system. External environment and energy providers are the most active and dominating part of the carbon metabolic system, which should be the first target to mitigate emissions by increasing efficiencies. The carbon metabolism of the eco-industrial park can be seen as an evolutionary system with high levels of efficiency, but this may come at the expense of larger levels of resilience. This work may provide a useful modeling framework for low-carbon design and management of industrial parks. PMID:25983044

  3. The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain Nissle 1917.

    Science.gov (United States)

    Revelles, Olga; Millard, Pierre; Nougayrède, Jean-Philippe; Dobrindt, Ulrich; Oswald, Eric; Létisse, Fabien; Portais, Jean-Charles

    2013-01-01

    The role of the post-transcriptional carbon storage regulator (Csr) system in nutrient utilization and in the control of the central metabolism in E. coli reference commensal strain Nissle 1917 was investigated. Analysis of the growth capabilities of mutants altered for various components of the Csr system (csrA51, csrB, csrC and csrD mutations) showed that only the protein CsrA - the key component of the system - exerts a marked role in carbon nutrition. Attenuation of CsrA activity in the csrA51 mutant affects the growth efficiency on a broad range of physiologically relevant carbon sources, including compounds utilized by the Entner-Doudoroff (ED) pathway. Detailed investigations of the metabolomes and fluxomes of mutants and wild-type cells grown on carbon sources representative of glycolysis and of the ED pathway (glucose and gluconate, respectively), revealed significant re-adjusting of central carbon metabolism for both compounds in the csrA51 mutant. However, the metabolic re-adjusting observed on gluconate was strikingly different from that observed on glucose, indicating a nutrient-specific control of metabolism by the Csr system. PMID:23840455

  4. Coral-algae metabolism and diurnal changes in the CO2-carbonate system of bulk sea water

    Directory of Open Access Journals (Sweden)

    Paul L. Jokiel

    2014-05-01

    Full Text Available Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (Pnet, which in turn drove net calcification (Gnet, and altered pH. Pnet exerted the dominant control on [CO32−] and aragonite saturation state (Ωarag over the diel cycle. Dark calcification rate decreased after sunset, reaching zero near midnight followed by an increasing rate that peaked at 03:00 h. Changes in Ωarag and pH lagged behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet was the primary driver of calcification. Daytime coral metabolism rapidly removes dissolved inorganic carbon (DIC from the bulk seawater and photosynthesis provides the energy that drives Gnet while increasing the bulk water pH. These relationships result in a correlation between Gnet and Ωarag, with Ωarag as the dependent variable. High rates of H+ efflux continued for several hours following mid-day peak Gnet suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Hypothesis. DIC flux (uptake followed Pnet and Gnet and dropped off rapidly following peak Pnet and peak Gnet indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Over a 24 h period the plot of total alkalinity (AT versus DIC as well as the plot of Gnet versus Ωarag revealed a circular hysteresis pattern over the diel cycle in the coral and coral-algae mesocosms, but not the macroalgae mesocosm. Presence of macroalgae did not change Gnet of the corals, but altered the relationship between Ωarag and Gnet. Predictive models of how future global changes will effect coral growth that are based on oceanic Ωarag must include the influence of future localized Pnet on Gnet and changes in rate of reef carbonate

  5. Carbon cycling and carbon metabolism by soil fungi in a boreal forest: impacts of wildfire and permafrost on functional genes, isotope signatures, and ectomycorrhizae

    Science.gov (United States)

    Waldrop, M. P.; Harden, J. W.

    2006-12-01

    carbon for microbial metabolism. Ectomycorrhizal mats occurred only in control soils and increased fungal biomass, functional gene abundance, enzyme activities and process rates compared to non-mat soils. Taken together these results indicate that linkages can be made between the distribution of soil microbial communities, molecular scale information, and soil carbon dynamics.

  6. Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study

    Directory of Open Access Journals (Sweden)

    Mendel Ron W

    2007-09-01

    Full Text Available Abstract Background The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate. Methods After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsius™ and, on a separate day, 12 ounces of Diet Coke®. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry and substrate oxidation (via respiratory exchange ratio were measured at baseline (pre-ingestion and at the end of each hour for 3 hours post-ingestion. Results Two-way ANOVA revealed a significant interaction (p ® ingestion. No differences in respiratory exchange ratio were noted between trials. Conclusion These preliminary findings indicate Celsius™ has thermogenic properties when ingested acutely. The effects of repeated, chronic ingestion of Celsius™ on body composition are unknown at this time.

  7. Monitoring primary carbon metabolism in plants using heavy isotope labelling and mass spectrometry

    OpenAIRE

    Lindén, Pernilla

    2015-01-01

    This thesis covers the possibilities and limitations of studying primary metabolism in intact plants, with special focus on heavy isotope labelling and mass spectrometry methodology. In paper I, a series of Arabidopsis thaliana mutants lacking one or both genes of mitochondrial malate dehydrogenase (mMDH characterised) were characterised. We found that mMDH has a complex respiration-controlling role. In paper II, we continued to study one of the single mutants, mmdh1. We developed a method us...

  8. Characterizing the metabolic trade-off in Nitrosomonas europaea in response to changes in inorganic carbon supply.

    Science.gov (United States)

    Jiang, D; Khunjar, W O; Wett, B; Murthy, S N; Chandran, K

    2015-02-17

    The link between the nitrogen and one-carbon cycles forms the metabolic basis for energy and biomass synthesis in autotrophic nitrifying organisms, which in turn are crucial players in engineered nitrogen removal processes. To understand how autotrophic nitrifying organisms respond to inorganic carbon (IC) conditions that could be encountered in engineered partially nitrifying systems, we investigated the response of one of the most extensively studied model ammonia oxidizing bacteria, Nitrosomonas europaea (ATCC19718), to three IC availability conditions: excess gaseous and excess ionic IC supply (40× stoichiometric requirement), excess gaseous IC supply (4× stoichiometric requirement in gaseous form only), and limiting IC supply (0.25× stoichiometric requirement). We found that, when switching from excess gaseous and excess ionic IC supply to excess gaseous IC supply, N. europaea chemostat cultures demonstrated an acclimation period that was characterized by transient decreases in the ammonia removal efficiency and transient peaks in the specific oxygen uptake rate. Limiting IC supply led to permanent reactor failures (characterized by biomass washout and failure of ammonia removal) that were preceded by similar decreases in the ammonia removal efficiency and peaks in the specific oxygen uptake rate. Notably, both excess gaseous IC supply and limiting IC supply elicited a previously undocumented increase in nitric and nitrous oxide emissions. Further, gene expression patterns suggested that excess gaseous IC supply and limiting IC supply led to consistent up-regulation of ammonia respiration genes and carbon assimilation genes. Under these conditions, interrogation of the N. europaea proteome revealed increased levels of carbon fixation and transport proteins and decreased levels of ammonia oxidation proteins (active in energy synthesis pathways). Together, the results indicated that N. europaea mobilized enhanced IC scavenging pathways for biosynthesis and

  9. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism

    OpenAIRE

    Kaushal, Neeru; Gupta, Kriti; Bhandhari, Kalpna; Kumar, Sanjeev; Thakur, Prince; Nayyar, Harsh

    2011-01-01

    Chickpea is a heat sensitive crop hence its potential yield is considerably reduced under high temperatures exceeding 35 °C. In the present study, we evaluated the efficacy of proline in countering the damage caused by heat stress to growth and to enzymes of carbon and antioxidative metabolism in chickpea. The chickpea seeds were raised without (control) and with proline (10 μM) at temperatures of 30/25 °C, 35/30 °C, 40/35 °C and 45/40 °C as day/ night (12 h/12 h) in a growth chamber. The sho...

  10. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  11. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard;

    2006-01-01

    , erythritol, xylitol, and arabitol were produced as carbon storage compounds when the flux through the PP pathway exceeded the need in ribulose-5-phosphate for the biomass synthesis. Glycerol, erythritol, and xylitol seem to be involved in osmoregulation. Mannitol was produced when the catabolic reduction of...

  12. Control of Proteobacterial Central Carbon Metabolism by the HexR Transcriptional Regulator. A Case Study in Shewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Leyn, Semen; Li, Xiaoqing; Zheng, Qijing; Novichkov, Pavel; Reed, Samantha B.; Romine, Margaret F.; Fredrickson, Jim K.; Yang, Chen; Osterman, Andrei L.; Rodionov, Dmitry A.

    2011-08-17

    Bacteria exploit multiple mechanisms for controlling central carbon metabolism (CCM). Thus, a bioinformatic analysis together with some experimental data implicated HexR transcriptional factor as a global CCM regulator in some lineages of Gammaproteobacteria operating as a functional replacement of Cra regulator characteristic of Enterobacteriales. In this study we combined a large-scale comparative genomic reconstruction of HexRcontrolled regulons in 87 species of Proteobacteria with the detailed experimental analysis of HexR regulatory network in Shewanella oneidensis model system. Although nearly all of the HexR-controlled genes are associated with CCM, remarkable variations were revealed in the scale (from 1-2 target operons in Enterobacteriales up to 20 operons in Aeromonadales) and gene content of HexR regulons between 11 compared lineages. A predicted 17-bp pseudo-palindrome with a consensus tTGTAATwwwATTACa, was confirmed as HexR-binding motif for 15 target operons (comprising 30 genes) by in vitro binding assays. The negative effect of the key CCM intermediate, 2-keto-3-deoxy-6- phosphogluconate, on the DNA-regulator complex formation was verified. A dual mode of HexR action on various target promoters, repression of genes involved in catabolic pathways and activation of gluconeogenic genes, was for the first time predicted by the bioinformatc analysis and experimentally verified by changed gene expression pattern in S. oneidensis AhexR mutant. Phenotypic profiling revealed the inability of this mutant to grow on lactate or pyruvate as a single carbon source. A comparative metabolic flux analysis of wild-type and mutant strains of S. oneidensis using 13Clactate labeling and GC-MS analysis confirmed the hypothesized HexR role as a master regulator of gluconeogenic flux from pyruvate via the transcriptional activation of phosphoenolpyruvate synthase (PpsA).

  13. Proofpoint unveils the industry's most advanced anti-spam laboratory

    CERN Multimedia

    2003-01-01

    "Proofpoint, Inc., the leader in large enterprise anti-spam solutions, today unveiled its Anti-Spam Laboratory, the world's most advanced center for spam research and analysis, and the first to be based on advanced Machine Learning science" (1 page).

  14. Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism

    Science.gov (United States)

    Choi, Su-Jin

    2012-01-01

    This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…

  15. Metabolism and distribution of 14C- and 35S-labeled carbon disulfide in immature rats of different ages

    International Nuclear Information System (INIS)

    The metabolism and distribution of 14C- and 35S-CS2 was examined in 1-, 5-, 10-, 20-, 30-, and 40-day-old rats. During a 3-hr period following an ip dose of 14C-CS2, 58-83% of the dose was expired as CS2 and 4-9% was metabolized to expired CO2 depending on age. Thirty- and forty-day-old rats metabolized significantly more CS2 to CO2 and expired significantly less CS2 than 1- through 20-day-old rats. At the end of the measured expiration period, only biotransformation products of CS2, which were in part covalently bound, remained in tissues from rats of all ages. Tissue levels of 35S-CS2-derived radioactivity exceeded levels of 14C-CS2-derived radioactivity indicating that sulfur metabolites free from the carbon atom of CS2 were formed in rats as young as 1 day of age. The 35S-CS2-derived radioactivity per g of tissue and thus 35S covalently bound to tissue protein was significantly higher in 1- through 20-day-old rats than in 30- and 40-day-old rats. Twenty-four hr after dosing, up to 13 times more 35S-labeled metabolites were covalently bound in organs from 1-day-old rats than in similar organs from 40-day-old rats. The results showed that elimination of the biotransformation products of CS2, in particular the covalently binding sulfur metabolites, was prolonged in newborn rats in comparison to 40-day-old rats

  16. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation.

    Science.gov (United States)

    Park, Eun-Jung; Hong, Young-Shick; Lee, Byoung-Seok; Yoon, Cheolho; Jeong, Uiseok; Kim, Younghun

    2016-07-01

    Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries. PMID:27078092

  17. Altered white matter metabolism in delayed neurologic sequelae after carbon monoxide poisoning: A proton magnetic resonance spectroscopic study.

    Science.gov (United States)

    Kuroda, Hiroshi; Fujihara, Kazuo; Mugikura, Shunji; Takahashi, Shoki; Kushimoto, Shigeki; Aoki, Masashi

    2016-01-15

    Proton magnetic resonance spectroscopy ((1)H-MRS) was recently used to examine altered metabolism in the white matter (WM) of patients experiencing carbon monoxide (CO) poisoning; however, only a small number of patients with delayed neurologic sequelae (DNS) were analyzed. We aimed to detect altered metabolism in the WM of patients with DNS using (1)H-MRS; to explore its clinical relevance in the management of patients experiencing CO poisoning. Patients experiencing acute CO poisoning underwent (1)H-MRS and cerebrospinal fluid (CSF) examination within 1week and at 1month after acute poisoning. Metabolites including choline-containing compounds (Cho), creatine (Cr), N-acetylaspartate (NAA), and lactate were measured from the periventricular WM. Myelin basic protein (MBP) concentrations were measured in CSF. Fifty-two patients experiencing acute CO poisoning (15 with DNS, 37 without DNS; median age, 49years; 65% males) underwent (1)H-MRS. Within 1week, NAA/Cr ratios, reflecting neuroaxonal viability, were lower in patients with DNS than in those without DNS (PDNS, Cho/Cr ratios were higher, and NAA/Cr and NAA/Cho ratios lower in patients with DNS (P=0.0001, DNS development; (1)H-MRS at 1month may be useful for discriminating patients with DNS and predicting long-term outcomes. PMID:26723994

  18. Effect of carbon tetrachloride on glycogen metabolism in fasted and refed mice

    International Nuclear Information System (INIS)

    Hepatic glycogen was depleted rapidly in fasted mice treated with CCl4. Glycogen breakdown was slow when CCl4 was administered after 1 hr of refeeding. There was an initial increase and then a reduction in liver glycogen of mice refed for 2 hr prior to CCl4 injection. The incorporation of glucose-U-14C into glycogen was higher in mice which were refed before CCl4 administration than in fasted mice treated with the hepatotoxin. The specific activity of lactate was higher in CCl4 treated mice. The data suggested differences in glycogen metabolism of fasted and refed mice in response to CCl4 treatment. (author)

  19. Analysis of metabolic alterations in Arabidopsis following changes in the carbon dioxide and oxygen partial pressures

    Institute of Scientific and Technical Information of China (English)

    Alexandra Florian; Stefan Timm; Zoran Nikoloski; Takayuki Tohge; Hermann Bauwe; Wagner LArajo; Alisdair RFernie

    2014-01-01

    As sessile organisms, plants are subject to a multitude of environmental variations including several which directly affect their interaction with the atmosphere. Given the indiscriminant nature of Rubisco, the relative rates of photosynthesis and photorespiration are known to be responsive to changes in gas composition. However, compre-hensive profiling methods have not yet been applied in order to characterize the wider consequences of these changes on primary metabolism in general. Moreover, although transcrip-tional profiling has revealed that a subset of photorespiratory enzymes are co-expressed, whether transcriptional responses play a role in short-term responses to atmospheric composi-tional changes remains unknown. To address these questions, plants Arabidopsis thaliana (Arabidopsis) ecotype Columbia (Col-O) grown under normal air conditions were transferred to different CO2 and O2 concentrations and characterized at the physiological, molecular, and metabolic levels fol owing this transition. The results reveal alterations in the components, which are directly involved in, or supporting, photorespiration, including transcripts and metabolite levels. The results further highlight that the majority of the regulation of these pathways is not mediated at the level of transcription and that the photorespiratory pathway is essential also in conditions in which flux through the pathway is minimized, yet suggest that flux through this pathway is not mediated at the level of transcription.

  20. Proteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of Methanothermobacter marburgensis

    Science.gov (United States)

    Diender, Martijn; Pereira, Ricardo; Wessels, Hans J. C. T.; Stams, Alfons J. M.; Sousa, Diana Z.

    2016-01-01

    Hydrogenotrophic methanogenic archaea are efficient H2 utilizers, but only a few are known to be able to utilize CO. Methanothermobacter thermoautotrophicus is one of the hydrogenotrophic methanogens able to grow on CO, albeit about 100 times slower than on H2 + CO2. In this study, we show that the hydrogenotrophic methanogen Methanothermobacter marburgensis, is able to perform methanogenic growth on H2/CO2/CO and on CO as a sole substrate. To gain further insight in its carboxydotrophic metabolism, the proteome of M. marburgensis, grown on H2/CO2 and H2/CO2/CO, was analyzed. Cultures grown with H2/CO2/CO showed relative higher abundance of enzymes involved in the reductive acetyl-CoA pathway and proteins involved in redox metabolism. The data suggest that the strong reducing capacity of CO negatively affects hydrogenotrophic methanogenesis, making growth on CO as a sole substrate difficult for this type of methanogens. M. marburgensis appears to partly deal with this by up-regulating co-factor regenerating reactions and activating additional pathways allowing for formation of other products, like acetate.

  1. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    Science.gov (United States)

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  2. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    OpenAIRE

    Volker Fritz Wendisch; Steffen Nikolaus Lindner; Ahmed Zahoor

    2012-01-01

    Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of t...

  3. Effects of COD to Phosphorus Ratios on the Metabolism of PAOs in Enhanced Biological Phosphorus Removal with Different Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    Tao Jiang; Junguo He; Xiaonan Yang; Jianzheng Li

    2015-01-01

    To elucidate the phosphorus removal and metabolism under various COD/P ratio, a sludge highly enriched in PAOs was used to investigate the impacts of COD/P in batch tests under different carbon supply conditions. Acetate, propionate and a mixture of acetate and propionate at a ratio of 3 ∶ 1 ( COD basis) was used as carbon sources with the COD/P of 20, 15,10 and 5�0 gCOD/gP, respectively. The minimum COD/P ratios for complete P removal were found to be 8�24 gCOD/gP for acetate, 11�40 gCOD/gP for propionate and 9�10 gCOD/gP for the 3 ∶ 1 mixture of acetate and propionate. Converted to a mass basis, all three cases had a very similar ratio of 7�7 gVFA/gP, which represented a useful guide for operation of EBPR plants to identify possible shortages inVFAs. The trend in PHV accumulation during the anaerobic period along with the decrease of COD/P ratios suggested that, PAOs may use the TCA pathway for anaerobic VFA uptake to maintain the required NADH production with reduced glycogen degradation. During the aerobic phase, the glycogen pool was reduced but remained enough compared to the requirement for anaerobic VFA uptake, and the synthesis and degradation of glycogen was not the inhibition factor of PAOs.

  4. Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila.

    Science.gov (United States)

    Häuslein, Ina; Manske, Christian; Goebel, Werner; Eisenreich, Wolfgang; Hilbi, Hubert

    2016-04-01

    Amino acids represent the prime carbon and energy source for Legionella pneumophila, a facultative intracellular pathogen, which can cause a life-threatening pneumonia termed Legionnaires' disease. Genome, transcriptome and proteome studies indicate that L. pneumophila also utilizes carbon substrates other than amino acids. We show here that glycerol promotes intracellular replication of L. pneumophila in amoeba or macrophages (but not extracellular growth) dependent on glycerol-3-phosphate dehydrogenase, GlpD. An L. pneumophila mutant strain lacking glpD was outcompeted by wild-type bacteria upon co-infection of amoeba, indicating an important role of glycerol during infection. Isotopologue profiling studies using (13) C-labelled substrates were performed in a novel minimal defined medium, MDM, comprising essential amino acids, proline and phenylalanine. In MDM, L. pneumophila utilized (13) C-labelled glycerol or glucose predominantly for gluconeogenesis and the pentose phosphate pathway, while the amino acid serine was used for energy generation via the citrate cycle. Similar results were obtained for L. pneumophila growing intracellularly in amoeba fed with (13) C-labelled glycerol, glucose or serine. Collectively, these results reveal a bipartite metabolism of L. pneumophila, where glycerol and carbohydrates like glucose are mainly fed into anabolic processes, while serine serves as major energy supply. PMID:26691313

  5. Sources and metabolism of carbon in a Canadian boreal hydroelectric reservoir

    International Nuclear Information System (INIS)

    Using isotopic approaches, we try to document the sources and pathways of this CO2 with special attention to seasonal patterns and to the cycling of organic carbon in the reservoir Robert-Bourassa . It is located in the Boreal forest area, south-east of Hudson Bay and is part of a series of 8 reservoirs. It has a mean surface area of 2835 km2 and was flooded in 1979. The isotopic monitoring of the reservoir started in 1998. However, we will essentially refer here to data collected during the summers of 2001 and 2002. Three sampling strategies were retained: i) sampling in surface waters of 15 sites scattered across the reservoir, ii) sampling along three water columns (from shallow to deep sites), and iii) sampling of of inflow and outflow waters of the reservoir, once a month during 1 year. At each sampling site, in situ measurements included: water and air temperatures, pH, alkalinity and wind speed. Samples were collected at each site for the measurement of concentrations of dissolved organic carbon (DOC), C/N ratios of dissolved organic matter (DOM) and isotopic compositions of dissolved inorganic carbon (DIC), DOC, air CO2 and dissolved organic nitrogen (DON)

  6. Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli

    Directory of Open Access Journals (Sweden)

    Martin Collin H

    2010-11-01

    Full Text Available Abstract Background The ability to synthesize chiral building block molecules with high optical purity is of considerable importance to the fine chemical and pharmaceutical industries. Production of one such compound, 3-hydroxyvalerate (3HV, has previously been studied with respect to the in vivo or in vitro enzymatic depolymerization of biologically-derived co-polymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate. However, production of this biopolymeric precursor typically necessitates the supplementation of a secondary carbon source (e.g., propionate into the culture medium. In addition, previous approaches for producing 3HV have not focused on its enantiopure synthesis, and thus suffer from increased costs for product purification. Results Here, we report the selective biosynthesis of each 3HV stereoisomer from a single, renewable carbon source using synthetic metabolic pathways in recombinant strains of Escherichia coli. The product chirality was controlled by utilizing two reductases of opposing stereoselectivity. Improvement of the biosynthetic pathway activity and host background was carried out to elevate both the 3HV titers and 3HV/3HB ratios. Overall, shake-flask titers as high as 0.31 g/L and 0.50 g/L of (S-3HV and (R-3HV, respectively, were achieved in glucose-fed cultures, whereas glycerol-fed cultures yielded up to 0.19 g/L and 0.96 g/L of (S-3HV and (R-3HV, respectively. Conclusions Our work represents the first report of direct microbial production of enantiomerically pure 3HV from a single carbon source. Continued engineering of host strains and pathway enzymes will ultimately lead to more economical production of chiral 3HV.

  7. Intracellular concentrations and metabolism of carbon compounds in tobacco callus cultures: Effects of light and auxin

    Energy Technology Data Exchange (ETDEWEB)

    Lawyer, A.L.; Grady, K.L.; Bassham, J.A.

    1981-10-01

    Callus cultures derived from pith tissue of Nicotiana tobacum were grown on two media either under continuous illumination or in complete darkness. The first medium limited greening ability of callus grown in the light (3 milligrams per liter naphthalene acetic acid, 0.3 milligram per liter 2-isopentenylaminopurine, Murashige and Skoog salts, and 2% sucrose). The second medium encouraged chlorophyll synthesis (greening) though not shoot formation (0.3 milligram per liter naphthalene acetic acid; 0.3 milligrams per liter 2-isopentylaminopurine). To measure intracellular concentrations, calli were grown for 15 days on these standard media containing (U-/sup 14/C)sucrose. The dry weight proportions of the calli (as a fraction of fresh weight) and many metabolite concentrations nearly doubled in light-grown cells compared to dark-grown cells and increase 30 to 40% on low-auxin media relative to high-auxin media. Glutamine concentrations (from 4 to 26 millimolar) were very high, probably due to the NH/sub 3/ content of the media. Proline concentrations were 20-fold higher in calli grown on low-auxin media in the light (green cells), possibly a stress response to high osmotic potentials in these cells. To analyze sucrose metabolism, callus cells were allowed to take up 0.2% (weight per volume) (U-/sup 14/C)sucrose for up to 90 minutes. In callus tissues and in pith sections from stems of tobacco plants, sucrose was primarily metabolized through invertase activity, producing equal amounts of labeling glucose and fructose. Respiration of /sup 14/CO/sub 2/ followed the labeling patterns of tricarboxylic acid cycle intermediates. Photorespiration activity was low.

  8. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo

    International Nuclear Information System (INIS)

    The aim of this research is focused on the biological effects of multi wall carbon nanotubes (MWCNTs) on three different human cell types, laboratory animals in vivo, and immunological effects. Large numbers of researchers are directly involved in the handling of nanostructured materials such as MWCNTs and nanoparticles. It is important to assess the potential health risks related to their daily exposure to carbon nanotubes. The administration of sterilized nanosamples has been performed on laboratory animals, in both acute and chronic administration, and the pathological effects on the parenchymal tissues have been investigated. We studied the serum immunological modifications after intraperitoneal administration of the MWCNTs. We did not observe any antigenic reaction; the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modification of immunoglobulins was observed, hence no modification of humoral immunity was documented. We also studied the effects of MWCNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation for all conditions studied, whereas hSMCs demonstrated a reduction of cell growth only for the highest MWCNTs concentrations after 72 h. Also, no growth modification was observed in the Caco-2 cell line. We observed that a low quantity of MWCNTs does not provoke any inflammatory reaction. However, for future medical applications, it is important to realize prosthesis based on MWCNTs, through studying the corresponding implantation effects. Moreover, it has to be emphasized that this investigation does not address, at the moment, the carcinogenicity of MWCNTs, which requires a detailed follow-up investigation on the specific topic. In view of the subsequent and more extensive use of MWCNTs, especially in applications where carbon nanotubes are injected into the human body for drug delivery, as a contrast agent carrying entities for MRI, or as the basic

  9. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo

    Science.gov (United States)

    Chiaretti, M.; Mazzanti, G.; Bosco, S.; Bellucci, S.; Cucina, A.; LeFoche, F.; Carru, G. A.; Mastrangelo, S.; Di Sotto, A.; Masciangelo, R.; Chiaretti, A. M.; Balasubramanian, C.; DeBellis, G.; Micciulla, F.; Porta, N.; Deriu, G.; Tiberia, A.

    2008-11-01

    The aim of this research is focused on the biological effects of multi wall carbon nanotubes (MWCNTs) on three different human cell types, laboratory animals in vivo, and immunological effects. Large numbers of researchers are directly involved in the handling of nanostructured materials such as MWCNTs and nanoparticles. It is important to assess the potential health risks related to their daily exposure to carbon nanotubes. The administration of sterilized nanosamples has been performed on laboratory animals, in both acute and chronic administration, and the pathological effects on the parenchymal tissues have been investigated. We studied the serum immunological modifications after intraperitoneal administration of the MWCNTs. We did not observe any antigenic reaction; the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modification of immunoglobulins was observed, hence no modification of humoral immunity was documented. We also studied the effects of MWCNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation for all conditions studied, whereas hSMCs demonstrated a reduction of cell growth only for the highest MWCNTs concentrations after 72 h. Also, no growth modification was observed in the Caco-2 cell line. We observed that a low quantity of MWCNTs does not provoke any inflammatory reaction. However, for future medical applications, it is important to realize prosthesis based on MWCNTs, through studying the corresponding implantation effects. Moreover, it has to be emphasized that this investigation does not address, at the moment, the carcinogenicity of MWCNTs, which requires a detailed follow-up investigation on the specific topic. In view of the subsequent and more extensive use of MWCNTs, especially in applications where carbon nanotubes are injected into the human body for drug delivery, as a contrast agent carrying entities for MRI, or as the basic

  10. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.; Jespersen, A.M.; Bentley, T.L.; Lefevre, D.; Richardson, Katherine; Riemann, B.

    1996-01-01

    Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios of......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14...

  11. Changes in photosynthetic carbon metabolism in senescent leaves of chickpea, Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar V. Murumkar

    2014-02-01

    Full Text Available Photosynthetic processes in mature and senescent leaves of chickpea (Cicer arietinum L. have been compared. With age, leaf photosynthetic pigments viz. chlorophyll a, chlorophyll b and carotenoids, and rate of 14°C fixation were considerably affected. Analysis of δ13C, and short term photosynthetic products showed no major change in the path of photosynthetic carbon fixation. Study of long term photosynthetic 14C assimilation revealed that in old senescent leaves, 14C incorporation into organic acid and sugar fractions was enhanced.

  12. photosynthetic carbon metabolism in wild, primitive and cultivated forms of wheat at three levels of ploidy

    International Nuclear Information System (INIS)

    14CO2 assimilation was studied with diploid, tetraploid, hexaploid species of the genera Triticum and their wild relatives Aegilops. Attached mature leaves of 3 - 4 week-old plants were allowed to undergo photosynthesis under air at ambient temperature. The pattern of distribution of 14C was notably similar in Triticum and Aegilops species whatever the level of ploidy. Sucrose was the sink for photosynthetic carbon. 14C for sucrose synthesis was supplied either through the glycolate pathway by glycolate, the product of the photorespiration or by the Calvin cycle intermediates exported into the cytoplasm. Depending on the species, the glycolate pathway provided 40 to 75% of the sucrose 14C. The higher labeling of sucrose was associated with the greater participation of the glycolate pathway in the wild diploid (DD) A. squarrosa and in the cultivated hexaploid (AABBDD) T. aestivum. The results suggest that the expression of the male D genome is dominant over the female AB genome in T. aestivum. In T. aestivum under ambient conditions lowering (low temperature) or hindering (1% O2) photorespiration, sucrose labeling decreased, but serine and glycine labeling was favoured. We propose that in wheat leaves, the role of photorespiration is to drain part of the carbon exported from the chloroplast as glycolate, towards sucrose synthesis. (author)

  13. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  14. Patterns of Carbon Partitioning in Leaves of Crassulacean Acid Metabolism Species during Deacidification.

    Science.gov (United States)

    Christopher, J. T.; Holtum, JAM.

    1996-09-01

    Carbohydrates stored during deacidification in the light were examined in 11 Crassulacean acid metabolism (CAM) species from widely separated taxa grown under uniform conditions. The hypothesis that NAD(P) malic enzyme CAM species store chloroplastic starch and glucans, and phosphoenolpyruvate carboxykinase species store extrachloroplastic sugars or polymers was disproved. Of the six malic enzyme species examined, Kalanchoe tubiflora, Kalanchoe pinnata, Kalanchoe daigremontiana, and Vanilla planifolia stored mainly starch. Sansevieria hahnii stored sucrose and Agave guadalajarana did not store starch, glucose, fructose, or sucrose. Of the five phosphoenolpyruvate carboxykinase species investigated, Ananus comosus stored extrachloroplastic carbohydrate, but Stapelia gigantea, Hoya carnosa, and Portea petropolitana stored starch, whereas Aloe vera stored both starch and glucose. Within families, the major decarboxylase was common for all species examined, whereas storage carbohydrate could differ both between and within genera. In the Bromeliaceae, A. comosus stored mainly fructose, but P. petropolitana stored starch. In the genus Aloe, A. vera stored starch and glucose, but A. arborescens is known to store a galactomannan polymer. We postulate that the observed variation in carbohydrate partitioning between CAM species is the result of two principal components: (a) constraints imposed by the CAM syndrome itself, and (b) diversity in biochemistry resulting from different evolutionary histories. PMID:12226397

  15. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  16. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.;

    1996-01-01

    of 2-3), C-14 uptake into the particulate plus the dissolved fractions approximated to net photosynthesis. Rate constants derived from the chemically determined changes were used to parameterize models that accounted for the respiration of photosynthetic products and for the recycling of respiratory CO......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14......Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios...

  17. Using Eddy Covariance Sensors to Quantify Carbon Metabolism of Peatlands: A Case Study in Turkey

    OpenAIRE

    Can Ertekin; Guler Aslan; Fatih Evrendilek; Nusret Karakaya

    2011-01-01

    Net ecosystem exchange (NEE) of carbon dioxide (CO2) was measured in a cool temperate peatland in northwestern Turkey on a continuous basis using eddy covariance (EC) sensors and multiple (non-)linear regression-M(N)LR-models. Our results showed that hourly NEE varied between −1.26 and 1.06 mg CO2 m−2 s−1, with a mean value of 0.11 mg CO2 m−2 s−1. Nighttime ecosystem respiration (R E) was on average measured as 0.23 ± 0.09 mg CO2 m−2 s−1. Two best-fit M(N)LR models estimated daytime R E as 0....

  18. Universe unveiled the cosmos in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2015-01-01

    The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, I gasped realizing that those bubbles carried with them miniature galaxies bringing the entire Cosmos into my bathtub... Alfie is back. And so are George and other characters from the author’s previous book Einstein’s Enigma or Black Holes in My Bubble Bath. While the present book, Universe Unveiled - The Cosmos in My Bubble Bath, is completely independent, its storyline can be considered a sequel to the previous one. The scientific content spanning ancient world models to the most recent mysteries of cosmology is presented in an entirely nontechnical and descriptive style through the discussions between Alfie, the enlightened learner, and George, professor of astrophysics. Fantasies, based on these discussions that cover the scientific facts, are created by the magical bubble baths taken by Alfie. Universe Unveiled blends accurate science with philosophy, drama, humour, and fantasy to create an exciting co...

  19. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Usui Yuki

    2012-06-01

    Full Text Available Abstract Background It has long been recognized that analyzing the behaviour of the complex intracellular biological networks is important for breeding industrially useful microorganisms. However, because of the complexity of these biological networks, it is currently not possible to obtain all the desired microorganisms. In this study, we constructed a system for analyzing the effect of gene expression perturbations on the behavior of biological networks in Escherichia coli. Specifically, we utilized 13 C metabolic flux analysis (13 C-MFA to analyze the effect of perturbations to the expression levels of pgi and eno genes encoding phosphoglucose isomerase and enolase, respectively on metabolic fluxes. Results We constructed gene expression-controllable E. coli strains using a single-copy mini F plasmid. Using the pgi expression-controllable strain, we found that the specific growth rate correlated with the pgi expression level. 13 C-MFA of this strain revealed that the fluxes for the pentose phosphate pathway and Entner-Doudoroff pathway decreased, as the pgi expression lelvel increased. In addition, the glyoxylate shunt became active when the pgi expression level was almost zero. Moreover, the flux for the glyoxylate shunt increased when the pgi expression level decreased, but was significantly reduced in the pgi-knockout cells. Comparatively, eno expression could not be decreased compared to the parent strain, but we found that increased eno expression resulted in a decreased specific growth rate. 13 C-MFA revealed that the metabolic flux distribution was not altered by an increased eno expression level, but the overall metabolic activity of the central metabolism decreased. Furthermore, to evaluate the impact of perturbed expression of pgi and eno genes on changes in metabolic fluxes in E. coli quantitatively, metabolic sensitivity analysis was performed. As a result, the perturbed expression of pgi gene had a great impact to the

  20. Unveiling spatial correlations in biophotonic architecture of transparent insect wings

    OpenAIRE

    Kumar, Pramod; Shamoon, Danish; Singh, Dhirendra P.; Mandal, Sudip; Singh, Kamal P.

    2014-01-01

    We probe the natural complex structures in the transparent insect wings by a simple, non-invasive, real time optical technique using both monochromatic and broadband femtosecond lasers. A stable, reproducible and novel diffraction pattern is observed unveiling long range spatial correlations and structural-symmetry at various length scales for a large variety of wings. While matching the sensitivity of SEM for such microstructures, it is highly efficient for extracting long range structural o...

  1. Unveiling spatial correlations in biophotonic architecture of transparent insect wings

    CERN Document Server

    Kumar, Pramod; Singh, Dhirendra P; Mandal, Sudip; Singh, Kamal P

    2014-01-01

    We probe the natural complex structures in the transparent insect wings by a simple, non-invasive, real time optical technique using both monochromatic and broadband femtosecond lasers. A stable, reproducible and novel diffraction pattern is observed unveiling long range spatial correlations and structural-symmetry at various length scales for a large variety of wings. While matching the sensitivity of SEM for such microstructures, it is highly efficient for extracting long range structural organization with potentially broad applicability.

  2. Sources and metabolism of carbon in a Canadian boreal hydroelectric reservoir

    International Nuclear Information System (INIS)

    Average emission values of 1 to 2 g of CO2·m-2·d-1 were observed for hydroelectric reservoirs located in northern Quebec. Here, using isotopic approaches, we try to document the sources and pathways of this CO2 with special attention to seasonal patterns and to the cycling of organic carbon in the reservoir Robert-Bourassa . It is located in the Boreal forest area, south-east of Hudson Bay and is part of a series of 8 reservoirs (including notably LG-2 and LG-3). It has a mean surface area of 2835 km2 and was flooded in 1979. The isotopic monitoring of the reservoir started in 1998. However, we will essentially refer here to data collected during the summers of 2001 and 2002. Three sampling strategies were retained: i) sampling in surface waters of ∼15 sites scattered across the reservoir, ii) sampling along three water columns (from shallow to deep sites), and iii) sampling of of inflow and outflow waters of the reservoir, once a month during 1 year. At each sampling site, in situ measurements included: water and air temperatures, pH, alkalinity and wind speed. Samples were collected at each site for the measurement of concentrations of dissolved organic carbon (DOC), C/N ratios of dissolved organic matter (DOM) and isotopic compositions of dissolved inorganic carbon (DIC), DOC, air CO2 and dissolved organic nitrogen (DON). Samples were also collected for the measurements of 14C-concentrations in DOM and of δ18O-values of dissolved oxygen (DO). δ13C-values of DIC vary, throughout the reservoir, from -9 per mille to -14 per mille vs VPDB (i.e., from -13 to -19, for the corresponding dissolved CO2) whereas δ13C-values in the overlying air-CO2 vary from -9 to -11 per mille. Both show a shift towards more depleted values under windy conditions. δ13C-values in DOC vary little in the reservoir. They average -27.1±0.2 per mille. C/N ratios of DOM vary between 12 and 38 with a mean of 30. The 14C activity of DOM, at the deepest sampling station vary between 106

  3. In vivo studies of pyridine nucleotide metabolism in Escherichia coli and Saccharomyces cerevisiae by carbon-13 NMR spectroscopy

    International Nuclear Information System (INIS)

    Pyridine nucleotide metabolism has been studied in vivo in a prokaryotic (Escherichia coli) and a eukaryotic (Saccharomyces cerevisiae) system cultured in a medium containing carbon-13-labeled nicotinic acid, followed by NMR detection of the labeled organisms. Chemical exchange between oxidized and reduced nucleotides is found to be sufficiently slow on the NMR time scale to permit the observation of separate resonances corresponding to each redox state. The possibility of significant exchange broadening of reduced pyridine nucleotide resonances under some conditions was further evaluated based on comparative NMR studies utilizing organisms cultured in the presence of either [2-13C]nicotinate or [5-13C]nicotinate. Based on these experiments, it was concluded that broadening as a consequence of intermediate exchange is not significant. Although it was initially anticipated that the carbon-13 resonances arising from the di- and triphosphopyridine nucleotide pools could not be distinguished, the absence of observable resonances corresponding to reduced nucleotides in oxygenated yeast and E. coli cells suggests that the NMR method is fairly specific for determining the redox status of the diphosphopyridine nucleotide pool. Studies of the effects of a variety of perturbations including variation of the oxygen supply, addition of ethanol, and addition of the oxidative phosphorylation uncoupler dinitrophenol have been carried out. Dramatic differences in the response of the catabolic reduction charge, CRC = [NADH]/[NADH] + [NAD+], between the yeast and E. coli cells are observed. The CRC values for the yeast undergo large changes in response to these perturbations which are not observed for the bacterial cells. 52 references, 9 figures, 2 tables

  4. Facilitating Understanding of the Purine Nucleotide Cycle and the One-Carbon Pool: Part II--Metabolism of the One-Carbon Pool

    Science.gov (United States)

    Arinze, Ifeanyi J.

    2005-01-01

    Some metabolic processes such as glycolysis, gluconeogenesis, and lipogenesis are readily understood because they are circumscribed in metabolic pathways that have clearly identifiable beginning points, end products, and other features. Other metabolic pathways that do not appear to be straightforward pose difficulties for students. In part I of…

  5. Using Eddy Covariance Sensors to Quantify Carbon Metabolism of Peatlands: A Case Study in Turkey

    Directory of Open Access Journals (Sweden)

    Can Ertekin

    2011-01-01

    Full Text Available Net ecosystem exchange (NEE of carbon dioxide (CO2 was measured in a cool temperate peatland in northwestern Turkey on a continuous basis using eddy covariance (EC sensors and multiple (non-linear regression-M(NLR-models. Our results showed that hourly NEE varied between −1.26 and 1.06 mg CO2 m−2 s−1, with a mean value of 0.11 mg CO2 m−2 s−1. Nighttime ecosystem respiration (RE was on average measured as 0.23 ± 0.09 mg CO2 m−2 s−1. Two best-fit M(NLR models estimated daytime RE as 0.64 ± 0.31 and 0.24 ± 0.05 mg CO2 m−2 s−1. Total RE as the sum of nighttime and daytime RE ranged from 0.47 to 0.87 mg CO2 m−2 s−1, thus yielding estimates of gross primary productivity (GPP at −0.35 ± 0.18 and −0.74 ± 0.43 mg CO2 m−2 s−1. Use of EC sensors and M(NLR models is one of the most direct ways to quantify turbulent CO2 exchanges among the soil, vegetation and atmosphere within the atmospheric boundary layer, as well as source and sink behaviors of ecosystems.

  6. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    Science.gov (United States)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    , inter-species transfers (with Rhizobium epibionts), and within-cell depth profiles. Spatial enrichment patterns were correlated with morphological features evidenced in TEM images of microtomed filaments. These features indicate how 15N and 13C "hotspots" are dispersed throughout individual cells in different species, and may indicate isolated locations of increased N2 fixation, sites of amino acid/protein synthesis, or cyanophycin storage granules. This combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.

  7. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    pathway. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.

  8. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    Science.gov (United States)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  9. The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes.

    Directory of Open Access Journals (Sweden)

    Valentina Baldazzi

    2010-06-01

    Full Text Available Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment.

  10. The carbon storage regulator (Csr) system exerts a nutrient-specific control over central metabolism in Escherichia coli strain nissle 1917

    OpenAIRE

    Revelles, Olga; Millard, Pierre; Nougayrede, Jean-Philippe; Dobrindt, Ulrich; Oswald, Eric; Létisse, Fabien; Portais, Jean-Charles

    2013-01-01

    The role of the post-transcriptional carbon storage regulator (Csr) system in nutrient utilization and in the control of the central metabolism in E. coli reference commensal strain Nissle 1917 was investigated. Analysis of the growth capabilities of mutants altered for various components of the Csr system (csrA51, csrB, csrC and csrD mutations) showed that only the protein CsrA - the key component of the system - exerts a marked role in carbon nutrition. Attenuation of CsrA activity in the c...

  11. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions.

    OpenAIRE

    Lohmeier-Vogel, E M; Hahn-Hägerdal, B.; Vogel, H J

    1995-01-01

    The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-met...

  12. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  13. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms.

    Science.gov (United States)

    Liu, Hui; Wang, Qin; Sun, Yanfu; Zhou, Kangqun; Liu, Wen; Lu, Qian; Ming, Caibing; Feng, Xidan; Du, Jianjun; Jia, Xiaoshan; Li, Jun

    2016-07-01

    A newly designed pilot-scale system was developed to enrich denitrifying phosphate-accumulating organisms (DNPAOs) for nitrogen and phosphorus nutrient removal synchronously. A strain of DNPAOs was isolated and its biochemical characteristics and metabolic mechanisms of this bacterial strain were analyzed. The results showed that compared with previously reported system, this newly designed system has higher removal rates of nutrients. Removal efficiencies of NH3-N, TN, TP, and COD in actual wastewater were 82.64%, 79.62%, 87.22%, and 90.41%, respectively. Metabolic activity of DNPAOs after anoxic stage in this study even reached 94.64%. Pseudomonas aeruginosa is a strain of non-fermentative DNPAOs with strong nitrogen and phosphorus removal abilities. Study on the metabolic mechanisms suggested that intracellular PHB of P. aeruginosa plays dual roles, supplying energy for phosphorus accumulation and serving as a major carbon source for denitrification. PMID:26995616

  14. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Étienne Audet-Walsh

    2016-02-01

    Full Text Available Reprogramming of cellular metabolism plays a central role in fueling malignant transformation, and AMPK and the PGC-1α/ERRα axis are key regulators of this process. The intersection of gene-expression and binding-event datasets for breast cancer cells shows that activation of AMPK significantly increases the expression of PGC-1α/ERRα and promotes the binding of ERRα to its cognate sites. Unexpectedly, the data also reveal that ERRα, in concert with PGC-1α, negatively regulates the expression of several one-carbon metabolism genes, resulting in substantial perturbations in purine biosynthesis. This PGC-1α/ERRα-mediated repression of one-carbon metabolism promotes the sensitivity of breast cancer cells and tumors to the anti-folate drug methotrexate. These data implicate the PGC-1α/ERRα axis as a core regulatory node of folate cycle metabolism and further suggest that activators of AMPK could be used to modulate this pathway in cancer.

  15. Clinical usefulness of positron emission tomography in the evaluation of regional cerebral blood flow and cerebral oxygen metabolism under glycerol and carbon dioxide loadings

    Energy Technology Data Exchange (ETDEWEB)

    Tanada, Shuji; Yonekura, Yoshiharu; Senda, Michio

    1987-02-01

    Cerebral blood flow (CBF) and oxygen metabolism (CMRO/sub 2/) were studied in normal cerebral cortices by positron emission tomography using continuous inhalation method of oxygen-15 labeled carbon dioxide and oxygen, and single inhalation method of oxygen-15 labeled carbon monoxide. The values of CBF, CMRO/sub 2/, and oxygen extraction fraction (OEF) in cerebral cortices of 18 healthy normal volunteers represented 40 +- 7 ml/100 ml/min, 3.2 +- 0.5 ml O/sub 2//100 ml/min, and 0.43 +- 0.07, respectively. In cases with glycerol loading, CBF increased in 10/14 cases. Studies of 6 cases with intracranial pressure indicated the presence of mechanism by which depressed CMRO/sub 2/ improved and was kept in normal values. The loading of 5% carbon dioxide showed an increase in CBF in cases with cerebral infarction, which implied the good cerebral vascular response to the elevated arterial carbon dioxide, but no particular changes were observed in CMRO/sub 2/ which seemed to be less responsive to the elevated arterial carbon dioxide level. In cases with moyamoya disease, 5% carbon dioxide loading showed no changes in CBF and CMRO/sub 2/. This suggested the poor cerebral vascular response to the elevation of arterial carbon dioxide, while X-ray CT failed to demonstrate any abnormalities in corresponding areas. Positron emission tomography proved to have a great potentiality regarding the evaluation of the changes in cerebral blood flow and cerebral oxygen metabolism under various loadings.

  16. A fuzzy logic controller based approach to model the switching mechanism of the mammalian central carbon metabolic pathway in normal and cancer cells.

    Science.gov (United States)

    Dasgupta, Abhijit; Paul, Debjyoti; De, Rajat K

    2016-07-19

    Dynamics of large nonlinear complex systems, like metabolic networks, depend on several parameters. A metabolic pathway may switch to another pathway in accordance with the current state of parameters in both normal and cancer cells. Here, most of the parameter values are unknown to us. A fuzzy logic controller (FLC) has been developed here for the purpose of modeling metabolic networks by approximating the reasons for the behaviour of a system and applying expert knowledge to track switching between metabolic pathways. The simulation results can track the switching between glycolysis and gluconeogenesis, as well as glycolysis and pentose phosphate pathways (PPP) in normal cells. Unlike normal cells, pyruvate kinase (M2 isoform) (PKM2) switches alternatively between its two oligomeric forms, i.e. an active tetramer and a relatively low activity dimer, in cancer cells. Besides, there is a coordination among PKM2 switching and enzymes catalyzing PPP. These phenomena help cancer cells to maintain their high energy demand and macromolecular synthesis. However, the reduction of initial adenosine triphosphate (ATP) to a very low concentration, decreasing initial glucose uptake, destroying coordination between glycolysis and PPP, and replacement of PKM2 by its relatively inactive oligomeric form (dimer) or inhibition of the translation of PKM2 may destabilize the mutated control mechanism of the mammalian central carbon metabolic (CCM) pathway in cancer cells. The performance of the model is compared appropriately with some existing ones. PMID:27225801

  17. Human cytochrome P450 3A4 and a carbon nanofiber modified film electrode as a platform for the simple evaluation of drug metabolism and inhibition reactions.

    Science.gov (United States)

    Xue, Qiang; Kato, Dai; Kamata, Tomoyuki; Guo, Qiaohui; You, Tianyan; Niwa, Osamu

    2013-11-01

    Electrochemical biosensors consisting of cytochrome P450 enzyme modified electrodes have been developed to provide a simple method for screening the metabolism of a drug and its inhibitor. Here, we report a very simple electrochemically driven biosensor for detecting drug metabolism and its inhibition based on cytochrome P450 3A4 (CYP3A4) and a carbon nanofiber (CNF) modified film electrode without any other modified layers such as mediator films. Direct electron transfer (DET) between CYP3A4 and CNFs was observed at a formal potential of -0.302 V. The electrocatalytic reduction current increased with the addition of drugs including testosterone and quinidine. In contrast, the reduction current was greatly suppressed in the presence of ketoconazole, which is a CYP3A4 inhibitor. CNFs with high conductivity, a large surface area and sufficient edge planes provide a suitable microenvironment for achieving excellent DET and biocatalysis properties, which could not be observed when we used other carbon materials such as carbon nanotube (CNT) and carbon black (CB) modified electrodes, indicating that our system is promising as a new bioelectronic platform for electrochemical biosensing. PMID:24027778

  18. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species.

    Science.gov (United States)

    Haque, Mohammad S; Kjaer, Katrine H; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. 'Aromata') and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyze the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16°C (P16D10 or control); CL with a constant temperature of 23°C (P24D0); CL with a variable temperature of 26/16°C (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm. PMID:26217371

  19. Continuous light increases growth, daily carbon gain, antioxidants and alters carbohydrate metabolism in a cultivated and a wild tomato species

    Directory of Open Access Journals (Sweden)

    Mohammad Sabibul Haque

    2015-07-01

    Full Text Available Cultivated tomato species develop leaf injury while grown in continuous light (CL. Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. ‘Aromata’ and a wild tomato species (Solanum pimpinellifolium L. were compared in this study aiming to analyse the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16ºC (P16D10 or control; CL with a constant temperature of 23ºC (P24D0; CL with a variable temperature of 26/16ºC (P24D10. The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum, and to a less degree to the wild species (S. pimpinellifolium. The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm.

  20. Unveiling the physics of the Thomson jumping ring

    OpenAIRE

    Ladera, Celso L.; Donoso, Guillermo

    2014-01-01

    We present a new model, and the validating experiments, that unveil the rich physics behind the flight of a conductive ring in the Thomson experiment, a physics veiled by the fast thrust that impels the ring. We uncover interesting features of the electro-dynamics of the flying ring, e.g. the varying mutual inductance between ring and the thrusting electromagnet, or how to measure the ring proper magnetic field in the presence of the larger field of the electromagnet. We succeed in separating...

  1. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing

    International Nuclear Information System (INIS)

    Cities consume 80% of the world's energy; therefore, analyzing urban energy metabolism and the resulting carbon footprint provides basic data for formulating target carbon emission reductions. While energy metabolism includes both direct and indirect consumptions among sectors, few researchers have studied indirect consumption due to a lack of data. In this study, we used input–output analysis to calculate the energy flows among directly linked sectors. Building on this, we used ecological network analysis to develop a model of urban energy flows and also account for energy consumption embodied by the flows among indirectly linked sectors (represented numerically as paths with a length of 2 or more). To illustrate the model, monetary input–output tables for Beijing from 2000 to 2010 were analyzed to determine the embodied energy consumption and associated carbon footprints of these sectors. This analysis reveals the environmental pressure based on the source (energy consumption) and sink (carbon footprint) values. Indirect consumption was Beijing's primary form, and the carbon footprint therefore resulted mainly from indirect consumption (both accounting for ca. 60% of the total, though with considerable variation among sectors). To reduce emissions, the utilization efficiency of indirect consumption must improve. - Highlights: • We quantified the embodied energy transfers among Beijing's socioeconomic sectors. • We calculated the sectors' intensity of energy consumption and carbon footprint. • The indirect energy consumption was higher than the direct for all sectors. • The high-indirect-consumption sectors are at the end of industrial supply chains. • High-indirect-consumption sectors can improve upstream products energy efficiency

  2. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Stephen R Williams

    2014-03-01

    Full Text Available Circulating homocysteine levels (tHcy, a product of the folate one carbon metabolism pathway (FOCM through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD, cancer and dementia. The FOCM is the sole source of de novo methyl group synthesis, impacting many biological and epigenetic pathways. However, the genetic determinants of elevated tHcy (hyperhomocysteinemia, dysregulation of methionine metabolism and the underlying biological processes remain unclear. We conducted independent genome-wide association studies and a meta-analysis of methionine metabolism, characterized by post-methionine load test tHcy, in 2,710 participants from the Framingham Heart Study (FHS and 2,100 participants from the Vitamin Intervention for Stroke Prevention (VISP clinical trial, and then examined the association of the identified loci with incident stroke in FHS. Five genes in the FOCM pathway (GNMT [p = 1.60 × 10(-63], CBS [p = 3.15 × 10(-26], CPS1 [p = 9.10 × 10(-13], ALDH1L1 [p = 7.3 × 10(-13] and PSPH [p = 1.17 × 10(-16] were strongly associated with the difference between pre- and post-methionine load test tHcy levels (ΔPOST. Of these, one variant in the ALDH1L1 locus, rs2364368, was associated with incident ischemic stroke. Promoter analyses reveal genetic and epigenetic differences that may explain a direct effect on GNMT transcription and a downstream affect on methionine metabolism. Additionally, a genetic-score consisting of the five significant loci explains 13% of the variance of ΔPOST in FHS and 6% of the variance in VISP. Association between variants in FOCM genes with ΔPOST suggest novel mechanisms that lead to differences in methionine metabolism, and possibly the epigenome, impacting disease risk. These data emphasize the importance of a concerted effort to understand regulators of one carbon metabolism as potential therapeutic targets.

  3. Carbon cycle: storage beneath mangroves

    OpenAIRE

    BOUILLON, S

    2011-01-01

    In the face of continued deforestation, the high carbon stocks in mangrove forests unveiled by Donato et al. provide a strong incentive to consider mangrove ecosystems as priority areas for conservation. Furthermore, these results highlight the need for scientists and funding agencies to address uncertainties regarding the fate of the carbon after land clearance. Only a handful of studies have quantified the loss of sediment carbon after mangrove clear-cutting – but all suggest that these los...

  4. Report on compounds labelled with nitrogen-13 or carbon-11 used in cancer metabolic studies with quantitative two-dimensional scanning and pet tomography

    International Nuclear Information System (INIS)

    The use of compounds labelled with radionuclides of the elements commonly involved in metabolic processes (oxygen, carbon, nitrogen) is becoming important in the non-invasive study of organ and tumour function. The application of compounds labelled with 13N and 11C to the study of amino-acid metabolism and changes in vasculature following chemotherapy and radiation therapy is described. In particular, 13N-labelled L-glutamate has been found to be useful in visualizing a number of human tumours including osteogenic sarcoma, rhabdomyosarcoma, Ewing's sarcoma, malignant fibrous histiocytoma, pineal gland tumours, primitive neuroectodermal tumours, medulloblastoma and several other solid tumours. In patients with bone tumours, changes in 13N-L-glutamate scans during chemotherapy were found to correlate with changes in other clinical parameters, such as serum alkaline phosphatase, histology and 99Tcsup(m)-bone scans, thus indicating that labelled L-glutamate is potentially useful in evaluating the response of solid tumours to chemotherapy. Scans of patients and volunteers using 13N-L-glutamate and 13N-L-valine indicate that the L-amino acids may be useful in studies of metabolic processes in the liver, myocardium and pancreas. Red blood cells, labelled with 11C-carbon monoxide via inhalation of the radioactive gas, have been used to assess changes in tumour vascularity following radiation therapy. Alpha-aminoisobutyric acid labelled with 11C has been synthesized and its distribution in normal and tumour-bearing dogs has been studied. (author)

  5. Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism

    Science.gov (United States)

    Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.

    2016-01-01

    Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (Penzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.

  6. Exposure to Glycolytic Carbon Sources Reveals a Novel Layer of Regulation for the MalT Regulon

    Directory of Open Access Journals (Sweden)

    Sylvia A. Reimann

    2011-01-01

    Full Text Available Bacteria adapt to changing environments by means of tightly coordinated regulatory circuits. The use of synthetic lethality, a genetic phenomenon in which the combination of two nonlethal mutations causes cell death, facilitates identification and study of such circuitry. In this study, we show that the E. coli ompR malTcon double mutant exhibits a synthetic lethal phenotype that is environmentally conditional. MalTcon, the constitutively active form of the maltose system regulator MalT, causes elevated expression of the outer membrane porin LamB, which leads to death in the absence of the osmoregulator OmpR. However, the presence and metabolism of glycolytic carbon sources, such as sorbitol, promotes viability and unveils a novel layer of regulation within the complex circuitry that controls maltose transport and metabolism.

  7. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine

    2012-04-01

    This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. PMID:22188053

  8. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

    Directory of Open Access Journals (Sweden)

    Dany J V Beste

    2011-07-01

    Full Text Available Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using ¹³C-metabolic flux analysis (MFA. Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with ¹³C labeled glycerol or sodium bicarbonate. Through measurements of the ¹³C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO₂ into biomass. As the human host is abundant in CO₂ this finding requires further investigation in vivo as CO₂ fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using ¹³C-MFA.

  9. Putting a Price On Carbon

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Australian Government unveils its new climate change plan amid controversy The Australian Government made public its long awaited new climate change plan on July 10. Based on the plan,the government will collect a carbon tax from Australia’s major

  10. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms.

    OpenAIRE

    Dang, V D; Bohn, C.; Bolotin-Fukuhara, M.; Daignan-Fornier, B

    1996-01-01

    In Saccharomyces cerevisiae, carbon and nitrogen metabolisms are connected via the incorporation of ammonia into glutamate; this reaction is catalyzed by the NADP-dependent glutamate dehydrogenase (NADP-GDH) encoded by the GDH1 gene. In this report, we show that the GDH1 gene requires the CCAAT box-binding activator (HAP complex) for optimal expression. This conclusion is based on several lines of evidence: (1) overexpression of GDH1 can correct the growth defect of hap2 and hap3 mutants on a...

  11. Inter-relationships between single carbon units' metabolism and resting energy expenditure in weight-losing patients with small cell lung cancer. Effects of methionine supply and chemotherapy

    DEFF Research Database (Denmark)

    Sengeløv, H; Hansen, O P; Simonsen, L; Bülow, J; Nielsen, O J; Ovesen, Liselotte

    The one-carbon unit metabolism was investigated in 8 weight-losing patients with small cell carcinoma of the lung (SCLC). At diagnosis, 6 of the 8 patients had elevated formiminoglutamic acid (FIGLU) excretion after a histidine load, suggesting a lack of one-carbon units. In accordance, a...... significant decrease of FIGLU excretion was observed in the patients after oral administration of DL-methionine for 4 days. The elevated FIGLU excretion was positively correlated to weight loss prior to diagnosis and negatively correlated to serum albumin at time of diagnosis. After 3 months of combination...... chemotherapy, FIGLU excretion was reduced in all patients except 1, who had progressive disease. Despite the elevated FIGLU excretions, all patients had normal blood folate levels. The resting energy expenditure (REE) was recorded in 7 patients, and a significant, positive correlation was observed between...

  12. Preparation of carbon-11 labelled acetate and palmitic acid for the study of myocardial metabolism by emission-computerised axial tomography

    International Nuclear Information System (INIS)

    Methods have been developed for the labelling of acetate and palmitic acid with the positron-emitting radionuclide, 11C(T=20.4 min). Labelling was achieved via carbonation of the appropriate alkyl magnesium bromide (methyl magnesium bromide or n-pentadecyl magnesium bromide) with 11C-labelled carbon dioxide produced by the 14Np(p,α)11C nuclear reaction. The radiochemical yield and speed of each method of labelling are such that a radiochemically pure product is obtained in injectable form and in activity (>10 mCi) suitable for the study of myocardial metabolism by emission-computerised axial tomography. High pressure liquid chromatography and thin layer chromatography were used to assess the radiochemical purity of each radiopharmaceutical. The specific activity of 11C-labelled acetate was estimated by an enzymic procedure to be greater than 0.5 Ci/μmole. (author)

  13. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying {sup 13}C- and {sup 15}N-labeled substrates simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Lars M. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); RWTH Aachen University, Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, Aachen (Germany); Desphande, Rahul R. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Michigan State University, Department of Plant Biology, East Lansing, MI (United States); Schmid, Andreas [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Hayen, Heiko [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V, Dortmund (Germany); University of Wuppertal, Department of Food Chemistry, Wuppertal (Germany)

    2012-06-15

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly {sup 13}C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., {sup 13}C and {sup 15}N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with {sup 13}C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both {sup 13}C-labeled glucose and {sup 15}N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  14. 'THE UNVEILED HEART' a teaching program in cardiovascular nuclear medicine

    International Nuclear Information System (INIS)

    The functional investigation of cardiac diseases using nuclear techniques involves several variables, such as myocardial perfusion, cellular viability or mechanical contraction. The combined, topographical and quantitative assessment of these variables can characterize the functional state of the heart in terms of normal myocardium, ischemia, hibernation or necrosis. The teaching program, 'The Unveiled Heart', has been designed in order to help nuclear physicians or cardiologists approaching these concepts and their implications for diagnosis of coronary artery disease, optimization of therapeutic strategies and prognosis evaluation. Anatomical correlations with coronary angiographic results obtained during balloon occlusion at the time of coronary angioplasty demonstrate the complementary role of imaging techniques and highlight the patient to patient variability of risk areas. A sectorial model derived from a polar projection of the myocardium presents for each sector the probability of involvement of a given coronary artery

  15. Reimagining Field Education in Social Work: The Promise Unveiled

    Directory of Open Access Journals (Sweden)

    Purnima George

    2013-11-01

    Full Text Available The current wave of neo-liberalism in Canada has driven our universities to retreat from their responsibilities as public institutions, accountable to their communities. In this paper we present a case study of field education in Canada and discuss the implications of the neoliberal academy on social work field education. On the basis of our experience as faculty consultants of BSW and MSW students, and coming from a school of social work that embraces an anti-oppression perspective as its guiding philosophy, we undertake a reconceptualization exercise in which we re-imagine field education. We politicize field education as a site with transformative possibilities. We describe the principles and processes that inform our reconceptualization and offer an example of how this might be realized in practice. This paper contributes towards developing new knowledge that unveils the promise of transformative change through a re-imagination of field education.

  16. Energetics and kinetics unveiled on helium cluster growth in tungsten

    Science.gov (United States)

    Wang, Jinlong; Niu, Liang-Liang; Shu, Xiaolin; Zhang, Ying

    2015-09-01

    The energetics and kinetics regarding helium (He) cluster growth in bcc tungsten (W) are unveiled using combined techniques of molecular statics and molecular dynamics. The principal mechanisms accounting for the decrease of system potential energy are identified to be trap mutation,   →  1/2 cluster transformation, loop punching, coalescence between 1/2[1 1-1] and 1/2[1-1-1] loops, and loop capturing. The kinetic barriers associated with these key atomistic events are estimated. This work provides new insights into the complex yet intriguing atomistic evolution sequence of the He cluster and interstitial loop in W-based nuclear fusion materials under irradiation.

  17. Trajectory-Based Unveiling of Angular Momentum of Photons

    CERN Document Server

    Li, Yongnan; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2015-01-01

    The Heisenberg uncertainty principle suggests that it is impossible to determine the trajectory of a quantum particle in the same way as a classical particle. However, we may still yield insight into novel behavior of photons based on the average photon trajectories (APTs). Here we explore the APTs of photons carrying spin angular momentum (SAM) and/or orbital angular momentum (OAM) under the paraxial condition. We define the helicity and differential helicity for unveiling the three-dimensional spiral structures of the APTs of photons. We clarify the novel behaviors of the APTs caused by the SAM and OAM as well as the SAM-OAM coupling. The APT concept is very helpful for profoundly understanding the motion of trapped particles and for elucidating other physical systems. Due to the presence of the helical path caused by the SAM and/or the OAM, the actual traveling distance of the photons might be much longer than the geometric distance.

  18. Unveiling the physics of the Thomson jumping ring

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2015-04-01

    We present a new theoretical model and validating experiments that unveil the rich physics behind the flight of the conductive ring in the Thomson experiment—physics that is hard to see because of the rapid motion. The electrodynamics of the flying ring exhibits interesting features, e.g., varying mutual inductance between the ring and the electromagnet. The dependences of the ring electrodynamics upon time and position as the ring travels upward are conveniently separated and determined to obtain a comprehensive view of the ring motion. We introduce a low-cost jumping ring setup that incorporates pickup coils connected in opposition, allowing us to scrutinize the ring electrodynamics and confirm our theoretical model with good accuracy. This work is within the reach of senior students of science or engineering, and it can be implemented either as a teaching laboratory experiment or as an open-ended project.

  19. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. PMID:27491712

  20. Linked gene networks involved in nitrogen and carbon metabolism and levels of water-soluble carbohydrate accumulation in wheat stems.

    Science.gov (United States)

    McIntyre, C Lynne; Casu, Rosanne E; Rattey, Allan; Dreccer, M Fernanda; Kam, Jason W; van Herwaarden, Anthony F; Shorter, Ray; Xue, Gang Ping

    2011-12-01

    High levels of water-soluble carbohydrates (WSC) provide an important source of stored assimilate for grain filling in wheat. To better understand the interaction between carbohydrate metabolism and other metabolic processes associated with the WSC trait, a genome-wide expression analysis was performed using eight field-grown lines from the high and low phenotypic tails of a wheat population segregating for WSC and the Affymetrix wheat genome array. The 259 differentially expressed probe sets could be assigned to 26 functional category bins, as defined using MapMan software. There were major differences in the categories to which the differentially expressed probe sets were assigned; for example, probe sets upregulated in high relative to low WSC lines were assigned to category bins such as amino acid metabolism, protein degradation and transport and to be involved in starch synthesis-related processes (carbohydrate metabolism bin), whereas downregulated probe sets were assigned to cell wall-related bins, amino acid synthesis and stress and were involved in sucrose breakdown. Using the set of differentially expressed genes as input, chemical-protein network analyses demonstrated a linkage between starch and N metabolism via pyridoxal phosphate. Twelve C and N metabolism-related genes were selected for analysis of their expression response to varying N and water treatments in the field in the four high and four low WSC progeny lines; the two nitrogen/amino acid metabolism genes demonstrated a consistent negative association between their level of expression and level of WSC. Our results suggest that the assimilation of nitrogen into amino acids is an important factor that influences the levels of WSC in the stems of field-grown wheat. PMID:21789636

  1. Interactions between carbon metabolism and the uptake and assimilation of inorganic nitrogen in Ankistrodesmus falcatus (Corda) Ralfs

    International Nuclear Information System (INIS)

    Nitrate uptake in nitrogen-limited Ankistrodesmus falcatus (Corba) Ralfs was found to be directly dependent on: (1) nitrate concentration; (2) the availability of carbon dioxide or recently synthesised carbon skeletons; (3) light intensity and (4) the presence of ammonium or metabolites of ammonium assimilation. Nitrate uptake was found to obey simple Michaelis-Menten kinetics. In the absence of carbon dioxide, nitrate uptake was destabilised and resulted in nitrate efflux from the cells. If the cells were pre-adapted to high levels of carbon dioxide, a decrease in the concentration of supplied carbon dioxide resulted in only a transient suppression of nitrate uptake. These results indicate that carbon dioxide was required for the stabilisation of the nitrate uptake system and that nitrate uptake, reduction and assimilation could proceed if supplies of recently synthesised carbon skeletons were available for subsequent ammonium incorporation into amino acids. It was concluded that the mobilisation of storage carbohydrate could provide the necessary reducing potential and ATP for nitrate uptake. The addition of ammonium to A. falcatus cells accumulating nitrate resulted in the immediate cessation of nitrate uptake and subsequent nitrate efflux from the cells. Assays of nitrate reductase activity indicated that the activity of the enzyme increased under nitrogen-limitation. Nitrogen-limited, nitrate-growth and ammonium-grown cultures of A. falcatus were used to determine the effects of nitrate and ammonium addition on photosynthetic oxygen exchange, carbon fixation and the path of carbon flow. The addition of these species of inorganic nitrogen resulted in the suppression of photosynthetic oxygen evolution and carbon fixation. Labelling with 14C was used during the carbon fixation studies

  2. Expression and activity of carbonic anhydrase IX is associated with metabolic dysfunction in MDA-MB-231 breast cancer cells.

    NARCIS (Netherlands)

    Li, Ying; Wang, H.; Oosterwijk, E.; Tu, C.; Shiverick, K.T.; Silverman, D.N.; Frost, S.C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a "triple-negative," basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydra

  3. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Bajhaiya, Amit K; Dean, Andrew P; Zeef, Leo A H; Webster, Rachel E; Pittman, Jon K

    2016-03-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  4. Progress on photosynthetic carbon metabolism types in marine macroalgae%大型海藻光合碳代谢类型的研究进展

    Institute of Scientific and Technical Information of China (English)

    芦笛

    2013-01-01

    As a part of marine algae, marine macroalgae, whose edible and medicinal values are widely applied, participate in global CO2 and O2 turnover through photosynthesis. Therefore, when viewed from ecology as well as economics, the process of photosynthetic CO2 fixation and metabolism in marine macroalgae is of great significance. Up to the present, metabonomics and enzymology researches on photosynthetic carbon metabolism in marine macroalgae have proved the existence of the PEPCK-or PEPC-type C4 pathway as well as the CAM pathway in addition to the C3 pathway, although the integrality of the pathways is still unknown. Moreover, the results of photosynthetic gas exchange indicate that the photosynthetic carbon metabolism pathway in macroalgae performs the C4-like type on the whole. This situation resembles some terrestrial C3 plants with additional C4 pathway. Therefore, researches on photosynthetic carbon metabolism pathways in macroalgae remain to be explored in depth in the future.%作为海洋藻类的一部分,大型海藻通过光合作用参与了海洋对全球CO2和O2的周转,其食用和药用价值也得到了广泛应用。因此无论从生态还是经济角度来看,研究大型海藻通过光合作用对CO2进行固定和代谢的过程都具有重要意义。到目前为止,世界上对大型海藻光合碳代谢途径的研究从代谢组学和酶学角度证明了大型海藻体内除了C3途径外,还同时存在不能确定完整与否的PEPCK或PEPC类型的C4途径或CAM途径;光合气体交换的结果显示其光合碳代谢途径从整体上表现出类似C4(C4-like)类型。这种情况与一些体内存在C4途径的陆生C3植物相似。因此大型海藻光合碳代谢途径仍然有待深入研究。

  5. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    Science.gov (United States)

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  6. Expression and Activity of Carbonic Anhydrase IX Is Associated With Metabolic Dysfunction in MDA-MB-231 Breast Cancer Cells

    OpenAIRE

    Ying LI; Wang, Hai; Oosterwijk, Egbert; Tu, Chingkuang; Shiverick, Kathleen T.; Silverman, David N.; Frost, Susan C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a “triple-negative,” basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydrase XII (CAXII). CAIX expression in the basal B cells is both density-and hypoxia-dependent and is correlated with carbonic anhydrase activity. Evidence is provided that CAIX contributes to extracel...

  7. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate.

    Science.gov (United States)

    Krivokapich, J; Huang, S C; Schelbert, H R

    1993-06-01

    The dual purposes of this study with positron emission tomography were to measure the effects of dobutamine on myocardial blood flow and oxidative metabolism, and to compare carbon-11 (C-11) acetate versus nitrogen-13 (N-13) ammonia in quantitating flow in normal subjects. Flow was quantitated with N-13 ammonia at rest and at peak dobutamine infusion (40 micrograms/kg/min) in 21 subjects. In 11 subjects, oxidative metabolism was also estimated at rest and peak dobutamine infusion using the clearance rate of C-11 acetate, k mono (min-1). A 2-compartment kinetic model was applied to the early phase of the C-11 acetate data to estimate flow. The rest and peak dobutamine rate-pressure products were 7,318 +/- 1,102 and 19,937 +/- 3,964 beats/min/mm Hg, respectively, and correlated well (r = 0.77) with rest and peak dobutamine flows of 0.77 +/- 0.14 and 2.25 ml/min/g determined using N-13 ammonia as a flow tracer. Rest and dobutamine flows estimated with C-11 acetate were highly correlated with those determined with N-13 ammonia (r = 0.92). k mono increased from 0.05 +/- 0.01 to 0.18 +/- 0.02 min-1, and correlated highly with the increase in flows (r = 0.91) and rate-pressure products (r = 0.94). Thus, the increase in cardiac demand associated with dobutamine is highly correlated with an increase in supply and oxidative metabolism. C-11 acetate is a unique tracer that can be used to image both flow and metabolism simultaneously. PMID:8498380

  8. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Varma

    2015-06-01

    Full Text Available Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001. However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  9. Helicobacter pylori seropositivity's association with markers of iron, 1-carbon metabolism, and antioxidant status among US adults: a structural equations modeling approach.

    Directory of Open Access Journals (Sweden)

    May A Beydoun

    Full Text Available We tested a model in which Helicobacter pylori seropositivity (Hps predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status.National Health and Nutrition Examination Surveys (NHANES 1999-2000 cross-sectional data among adults aged 20-85 y were analyzed (n = 3,055. Markers of Hps, iron status (serum ferritin and transferrin saturation (TS; 1-C metabolism (serum folate (FOLserum, B-12, total homocysteine (tHcy, methylmalonic acid (MMA and antioxidant status (vitamins A and E were entered into a structural equations model (SEM.Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites, and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA that were positively associated with antioxidant status (combining serum vitamins A and E. Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox. The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox was estimated at β = -0.006±0.003, p<0.05.In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals.

  10. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    Science.gov (United States)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2013-10-01

    The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally state.

  11. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air-sea CO2 fluxes

    Science.gov (United States)

    Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.

    2014-05-01

    The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air-sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air-sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air-sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover ( 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally state.

  12. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    the organism produces during autotrophic growth, and are conducting isotopic labeling experiments to determine if these compounds serve as substrates for the iron oxide mat communities. However, isotopic analysis of DIC in the springs as well as bulk iron oxide mat definitively show that fixation of DIC by M. yellowstonensis is not the only source of C within the mats. Metagenome analysis of the microbial communities and genome analysis of isolates suggest the presence of heterotrophic metabolic pathways. Indeed, initial labeling experiments demonstrate strong heterotrophic metabolism in the iron oxide mats as well as in M. yellowstonensis. Several potential sources of reduced C are available in the springs, but whether any of these potential substrates actually feed the iron mat communities is yet to be determined. Carbon isotope ratios of the bulk iron mat communities and potential heterotrophic C sources suggest that heterotrophic uptake of these sources, like autotrophy of DIC, is not the only source of C in the system. Identifying the major active carbon pools and potential geochemical and microbial carbon links will illuminate carbon cycling in this system and should provide insights into how energy is transferred from key chemolithotrophic reactions to other components of the microbial system.

  13. Hidden temporal order unveiled in stock market volatility variance

    Science.gov (United States)

    Shapira, Y.; Kenett, D. Y.; Raviv, Ohad; Ben-Jacob, E.

    2011-06-01

    When analyzed by standard statistical methods, the time series of the daily return of financial indices appear to behave as Markov random series with no apparent temporal order or memory. This empirical result seems to be counter intuitive since investor are influenced by both short and long term past market behaviors. Consequently much effort has been devoted to unveil hidden temporal order in the market dynamics. Here we show that temporal order is hidden in the series of the variance of the stocks volatility. First we show that the correlation between the variances of the daily returns and means of segments of these time series is very large and thus cannot be the output of random series, unless it has some temporal order in it. Next we show that while the temporal order does not show in the series of the daily return, rather in the variation of the corresponding volatility series. More specifically, we found that the behavior of the shuffled time series is equivalent to that of a random time series, while that of the original time series have large deviations from the expected random behavior, which is the result of temporal structure. We found the same generic behavior in 10 different stock markets from 7 different countries. We also present analysis of specially constructed sequences in order to better understand the origin of the observed temporal order in the market sequences. Each sequence was constructed from segments with equal number of elements taken from algebraic distributions of three different slopes.

  14. Traditional Islamic cities unveiled: the quest for urban design regularity

    Directory of Open Access Journals (Sweden)

    Jorge Correia

    2015-08-01

    Full Text Available Traditional Islamic cities have generally gathered orientalized gazes and perspectives, picking up from misconceptions and stereotypes that during the second half af the 19th century andwere perpectuated by colonialism. More recent scholarship has shed light on the urban organizationand composition of such tissues; most of them confined to old quarters or historical centres ofthriving contemporary cities within the Arab-Muslim world. In fact, one of the most striking featureshas been the unveiling of layered urban assemblages where exterior agents have somehowlaunched or interrupted an apparent islamicized continuum. Primarly, this paper wishes to search forexternal political factors that have designed regularly geometrized patterns in medium-sized Arabtowns. For that, two case studies from different geographies - Maghreb and the Near East - will bemorphologically analysed through updated urban surveys. Whereas Nablus (Palestine ows the urbanmatrix of its old town to its Roman past, in Azemmour’s medina (Morocco it is still possible to trackthe thin European early-modern colonial stratum. However, both cases show how regularity patternschallenge Western concepts of geometrical design to embrace levels of rationality related to tradionalIslamic urban forms, societal configurations and built environment. Urban morphology becomes afundamental tool for articulating the history with me processes of sedimentation and evolution in orderto read current urban prints and dynamics. Thus, the paper will also interpret alternative logics ofrational urban display in Azemmour and Nablus, linked to ways of living within the Islamic sphere.

  15. Unveiling the physics of the Thomson jumping ring

    CERN Document Server

    Ladera, Celso L

    2014-01-01

    We present a new model, and the validating experiments, that unveil the rich physics behind the flight of a conductive ring in the Thomson experiment, a physics veiled by the fast thrust that impels the ring. We uncover interesting features of the electro-dynamics of the flying ring, e.g. the varying mutual inductance between ring and the thrusting electromagnet, or how to measure the ring proper magnetic field in the presence of the larger field of the electromagnet. We succeed in separating the position and time dependences of the ring variables as it travels upward in a diverging magnetic field, obtaining a comprehensive view of the ring motion. We introduce a low-cost jumping ring set-up that incorporates simple innovative devices, e.g. a couple of pick-up coils connected in opposition that allows us to scrutinize the ring electro-dynamics, and to confirm the predictions of our theoretical model with good accuracy. This work is within the reach of senior students of science or engineering, and it can be e...

  16. Hidden temporal order unveiled in stock market volatility variance

    Directory of Open Access Journals (Sweden)

    Y. Shapira

    2011-06-01

    Full Text Available When analyzed by standard statistical methods, the time series of the daily return of financial indices appear to behave as Markov random series with no apparent temporal order or memory. This empirical result seems to be counter intuitive since investor are influenced by both short and long term past market behaviors. Consequently much effort has been devoted to unveil hidden temporal order in the market dynamics. Here we show that temporal order is hidden in the series of the variance of the stocks volatility. First we show that the correlation between the variances of the daily returns and means of segments of these time series is very large and thus cannot be the output of random series, unless it has some temporal order in it. Next we show that while the temporal order does not show in the series of the daily return, rather in the variation of the corresponding volatility series. More specifically, we found that the behavior of the shuffled time series is equivalent to that of a random time series, while that of the original time series have large deviations from the expected random behavior, which is the result of temporal structure. We found the same generic behavior in 10 different stock markets from 7 different countries. We also present analysis of specially constructed sequences in order to better understand the origin of the observed temporal order in the market sequences. Each sequence was constructed from segments with equal number of elements taken from algebraic distributions of three different slopes.

  17. Peculiarities of One-Carbon Metabolism in the Strict Carnivorous Cat and the Role in Feline Hepatic Lipidosis

    Directory of Open Access Journals (Sweden)

    Marica Bakovic

    2013-07-01

    Full Text Available Research in various species has indicated that diets deficient in labile methyl groups (methionine, choline, betaine, folate produce fatty liver and links to steatosis and metabolic syndrome, but also provides evidence of the importance of labile methyl group balance to maintain normal liver function. Cats, being obligate carnivores, rely on nutrients in animal tissues and have, due to evolutionary pressure, developed several physiological and metabolic adaptations, including a number of peculiarities in protein and fat metabolism. This has led to specific and unique nutritional requirements. Adult cats require more dietary protein than omnivorous species, maintain a consistently high rate of protein oxidation and gluconeogenesis and are unable to adapt to reduced protein intake. Furthermore, cats have a higher requirement for essential amino acids and essential fatty acids. Hastened use coupled with an inability to conserve certain amino acids, including methionine, cysteine, taurine and arginine, necessitates a higher dietary intake for cats compared to most other species. Cats also seemingly require higher amounts of several B-vitamins compared to other species and are predisposed to depletion during prolonged inappetance. This carnivorous uniqueness makes cats more susceptible to hepatic lipidosis.

  18. Vision Changes after Space Flight Are Related to Alterations in Folate-Dependent One-Carbon Metabolism

    Science.gov (United States)

    Smith, Scott M.; Gibson, C. Robert; Mader, Thomas H.; Ericson, Karen; Ploutz-Snyder, Robert; Heer, Martina; Zwart, Sara R.

    2011-01-01

    About 20% of astronauts on International Space Station missions have developed measurable ophthalmic changes after flight. This study was conducted to determine whether the folate-dependent 1-carbon pathway is altered in these individuals. Data were modeled to evaluate differences between individuals with ophthalmic changes (n=5) and those without them (n=15). We also correlated mean preflight serum concentrations of the 1-carbon metabolites with changes in measured refraction after flight. Serum homocysteine (HCy), cystathionine, 2-methylcitric acid, and methylmalonic acid concentrations were 25%-45% higher (Pvision issues strongly suggests impairment of the folate-dependent 1-carbon transfer pathway. Impairment of this pathway, by polymorphisms, diet or other means, may interact with components of the microgravity environment to influence these pathophysiologic changes. This study was funded by the NASA Human Research Program.

  19. Microevolution Analysis of Bacillus coahuilensis Unveils Differences in Phosphorus Acquisition Strategies and Their Regulation

    Science.gov (United States)

    Gómez-Lunar, Zulema; Hernández-González, Ismael; Rodríguez-Torres, María-Dolores; Souza, Valeria; Olmedo-Álvarez, Gabriela

    2016-01-01

    Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution). Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México), to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2,893) constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements (MGEs) or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo) biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with MGEs. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding alkaline phosphatase that

  20. Microevolution analysis of Bacillus coahuilensis unveils differences in phosphorus acquisition strategies and their regulation

    Directory of Open Access Journals (Sweden)

    Zulema eGómez-Lunar

    2016-02-01

    Full Text Available Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution. Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México, to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2, 893 constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with mobile genetic elements. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding

  1. Depletion of the "gamma-type carbonic anhydrase-like" subunits of complex I affects central mitochondrial metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Fromm, Steffanie; Göing, Jennifer; Lorenz, Christin; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    "Gamma-type carbonic anhydrase-like" (CAL) proteins form part of complex I in plants. Together with "gamma carbonic anhydrase" (CA) proteins they form an extra domain which is attached to the membrane arm of complex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2, CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially important during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures complex I amount was reduced by 90-95% but levels of complexes III and V were unchanged. At the same time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL proteins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial metabolism. PMID:26482706

  2. Single-operator multiparameter metabolic analyzer (SOMMA) for total carbon dioxide (C{sub T}) with coulometric detection. Operator`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.M.

    1992-01-01

    This manual contains the presently known information about using the SOMMA (Single-Operator Multiparameter Metabolic Analyzer) -Coulometer system for total carbon dioxide (C{sub T}) analysis of seawater samples. Being Version 1.0, it is preliminary and will be revised as new information is obtained from SOMMA users. As part of a US Department of Energy (DOE) program to conduct a global survey of CO{sub 2} in the ocean in conjunction with the World Ocean Circulation Experiment (WOCE) Hydrographic Program and Joint Global Ocean Flux Study, C{sub T} measurements are being made with SOMMA systems by several US and foreign laboratories. The purpose of the manual and future versions is to improve the accuracy and precision of seawater analysis through better documentation of methods and to facilitate communication of new operating procedures.

  3. Effect of Nitrogen and Potassium Nutrition on Carbon and Nitrogen Metabolism at Late Growing Stage and Grain Yield Formation in Spring Maize

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Study on the relationship between grain yield formation and metabolism of carbon and nitrogen as influenced by N and K nutrition level during maturation was carried out through field experiments and biochemistry analyses. The results confirmed that it was necessary to maintain a higher photosynthetic capacity of leaves and abundant N supplies for root at late growing stages. The soluble protein content, RuBPC and PEPC activities in leaves, harvest index(HI) and harvest index of nitrogen (HIN)increased obviously with appropriate N and K application rate, which accelerated C and N translocation from vegetative parts to grain, enhanced photosynthetic capacity of leaves and abundant(but not excessive)N supply for root during late growing period.

  4. Physiological and Metabolic Effects of Carbon Monoxide Oxidation in the Model Marine Bacterioplankton Ruegeria pomeroyi DSS-3

    OpenAIRE

    Cunliffe, Michael

    2013-01-01

    Ruegeria pomeroyi expresses carbon monoxide (CO) dehydrogenase and oxidizes CO; however, CO has no effect on growth. Nuclear magnetic resonance (NMR) spectra showed that CO has no effect on cellular metabolite profiles. These data support ecosystem models proposing that, even though bacterioplankton CO oxidation is biogeochemically significant, it has an insignificant effect on bacterioplankton productivity.

  5. Modulatory effect of plasma folate and polymorphisms in one-carbon metabolism on catecholamine methyltransferase (COMT) H108L associated oxidative DNA damage and breast cancer risk

    International Nuclear Information System (INIS)

    The present study was aimed to investigate the modulatory role of plasma folate and eight putatively functional polymorphisms of one-carbon metabolism on catecholamine methyltransferase (COMT)-mediated oxidative DNA damage and breast cancer risk. Plasma folate and 8-oxo-2'-deoxyguanosine (8-oxodG) were estimated by commercially available kits, while polymorphisms were screened by PCR-RFLP and PCR-AFLP methods. COMT H108L polymorphism showed independent association with breast cancer (OR: 1.73, 95% CI: 1.31 -2.30). No significant interaction was observed between folate status and COMT genotype. Multifactor dimensionality reduction (MDR) analysis gave evidence for the significant epistatic (gene-gene) interactions (p<0.0001) of COMT H108L with reduced folate carrier 1 (RFC1) G80A, thymidylate synthase (TYMS) 5'-UTR 3R2R, TYMS 3'-UTR ins6/del6. Increased plasma 8-oxodG were observed in cases compared to controls (mean ± SE: 5.59 ± 0.60 vs. 3.50 ± 0.40 ng/ml, p<0.004). Plasma folate deficiency alone was not a significant predictor of 8-oxodG elevation. The genotype combinations namely, RFC1 G80A/methionine synthase reductase (MTRR) A66G, RFC1 G80A/SHMT C1420T/TYMS 3R2R and serine hydroxymethyltransferase (SHMT) C1420T/TYMS 3R2R/methionine synthase (MTR) A2756G/COMT H108L were strong predictors of 8-oxodG elevation in the order of risk. To conclude, the current study provides substantial evidence for a cross talk between one-carbon metabolism and COMT catalysis that might influence oxidative DNA damage and breast cancer risk. (author)

  6. Hepatic Methionine Homeostasis Is Conserved in C57BL/6N Mice on High-Fat Diet Despite Major Changes in Hepatic One-Carbon Metabolism

    Science.gov (United States)

    Dahlhoff, Christoph; Desmarchelier, Charles; Sailer, Manuela; Fürst, Rainer W.; Haag, Alexander; Ulbrich, Susanne E.; Hummel, Björn; Obeid, Rima; Geisel, Jürgen; Bader, Bernhard L.; Daniel, Hannelore

    2013-01-01

    Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine. PMID:23472083

  7. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu2+ Treatment

    Science.gov (United States)

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu2+. Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  8. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

    Science.gov (United States)

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  9. Subcellular compartmentation of sugar signalling: Links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning

    Directory of Open Access Journals (Sweden)

    Axel eTiessen

    2013-01-01

    Full Text Available Recent findings suggest that both subcellular compartmentation and route of sucrolysis are important for plant development, growth, and yield. Signalling effects are dependent on the tissue, cell type and stage of development. Downstream effects also depend on the amount and localisation of hexoses and disaccharides. All enzymes of sucrose metabolism (e.g. invertase, hexokinase, fructokinase, sucrose synthase, and sucrose 6-phosphate synthase are not produced from single genes, but from paralogue families in plant genomes. Each paralogue has unique expression across plant organs and developmental stages. Multiple isoforms can be targeted to different cellular compartments (e.g. plastids, mitochondria, nuclei, and cytosol. Many of the key enzymes are regulated by post-transcriptional modifications and associate in multimeric protein complexes. Some isoforms have regulatory functions, either in addition to or in replacement of their catalytic activity. This explains why some isozymes are not redundant, but also complicates elucidation of their specific involvement in sugar signalling. The subcellular compartmentation of sucrose metabolism forces refinement of some of the paradigms of sugar signalling during physiological processes. For example, the catalytic and signalling functions of diverse paralogues needs to be more carefully analysed in the context of post-genomic biology. It is important to note that it is the differential localization of both the sugars themselves as well as the sugar-metabolizing enzymes that ultimately led to sugar signalling. We conclude that a combination of subcellular complexity and gene duplication/subfunctionalization gave rise to sugar signalling as a regulatory mechanism in plant cells.

  10. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains

    OpenAIRE

    Zinder, S H; Anguish, T.

    1992-01-01

    CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and othe...

  11. Vitamins B2 and B6 and genetic polymorphisms related to one-carbon metabolism as risk factors for gastric adenocarcinoma in the European prospective investigation into cancer and nutrition.

    NARCIS (Netherlands)

    Eussen, S.J.; Vollset, S.E.; Hustad, S.; Midttun, O.; Meyer, K.; Fredriksen, A.; Ueland, P.M.; Jenab, M.; Slimani, N.; Ferrari, P.; Agudo, A.; Sala, N.; Capella, G.; Giudice, G. Del; Palli, D.; Boeing, H.; Weikert, C.; Bueno-De-Mesquita, H.B.; Buchner, F.L.; Carneiro, F.; Berrino, F.; Vineis, P.; Tumino, R.; Panico, S.; Berglund, G.; Manjer, J.; Stenling, R.; Hallmans, G.; Martinez, C.; Arrizola, L.; Barricarte, A.; Navarro, C.; Rodriguez, L.; Bingham, S.; Linseisen, J.; Kaaks, R.; Overvad, K.; Tjonneland, A.; Peeters, P.H.M.; Numans, M.E.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Morois, S.; Trichopoulou, A.; Lund, E.; Plebani, M.; Riboli, E.; Gonzalez, C.A.

    2010-01-01

    B vitamins and polymorphisms in genes coding for enzymes involved in one-carbon metabolism may affect DNA synthesis and methylation and thereby be implicated in carcinogenesis. Previous data on vitamins B2 and B6 and genetic polymorphisms other than those involving MTHFR as risk factors for gastric

  12. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach.

    Science.gov (United States)

    Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T

    2016-01-15

    Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and

  13. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.).

    Science.gov (United States)

    Aranjuelo, Iker; Erice, Gorka; Sanz-Sáez, Alvaro; Abadie, Cyril; Gilard, Françoise; Gil-Quintana, Erena; Avice, Jean-Christophe; Staudinger, Christiana; Wienkoop, Stefanie; Araus, Jose L; Bourguignon, Jacques; Irigoyen, Juan J; Tcherkez, Guillaume

    2015-12-01

    C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars. PMID:26081746

  14. Called to respond: The potential of unveiling hiddens

    Directory of Open Access Journals (Sweden)

    Alison L Black

    2014-12-01

    Full Text Available Interested in exploring how personal stories and aesthetic modes of representing experiences can nudge open academic and educational spaces, this article/collection of particles seeks to document our encounters of being affected and called to respond to things the other has written and represented. As a way of engaging with questions about what research and research data might be and become, our attention has been drawn to stories and images from our lives that we have not shaken off – and to how, as we have opened these to the other, making once private moments public, our hiddens have morphed tenderly into a shared knowing and being. As we have acted on the call we have felt to respond we have found ourselves entering spaces of collaboration, communion, contemplation, and conversation – spaces illuminated by what we have not been able to – and cannot – set aside. Using visual and poetic materials we explore heartfelt and heartbroken aspects of our educational worlds and lives, to be present with each other and our (reemerging personal and professional meanings. We see the shared body (of work, of writing, of image that develops from the taking of brave steps and the risky slipping off of academic masks and language, as a manifestation of the trusted and nurturing spaces that can be generated through collaborative opportunities to gather together. These steps towards unveiling hiddens are producing in us and of us a friendship, fluency, and fluidity as we write new ways of becoming. In turn, we hope the uncovering and revealing of our dialogue in the public gathering of this journal might supports readers’ telling of their own life stories through what calls them to respond.

  15. Modelling light-dark regime influence on the carbon-nitrogen metabolism in a unicellular diazotrophic cyanobacterium

    OpenAIRE

    Grimaud, Ghjuvan Micaelu; Dron, Anthony; Rabouille, Sophie; Sciandra, Antoine; Bernard, Olivier

    2013-01-01

    We propose a dynamical model depicting nitrogen (N2 ) fixation (diazotrophy) in a unicellular cyanobacterium, Crocosphaera watsonii, grown under light limitation and obligate diazotrophy. In this model, intracellular carbon and nitrogen are both divided into a functional pool and a storage pool. An internal pool that explicitly describes the nitrogenase enzyme is also added. The model is successfully validated with continuous culture experiments of C. watsonii under three light regimes, indic...

  16. Transport, compartmentation, and metabolism of homoserine in higher plant cells. Carbon-13- and phosphorus-31-nuclear magnetic resonance studies

    International Nuclear Information System (INIS)

    The transport, compartmentation, and metabolism of homoserine was characterized in two strains of meristematic higher plant cells, the dicotyledonous sycamore (Acer pseudoplatanus) and the monocotyledonous weed Echinochloa colonum. Homoserine is an intermediate in the synthesis of the aspartate-derived amino acids methionine, threonine (Thr), and isoleucine. Using 13C-nuclear magnetic resonance, we showed that homoserine actively entered the cells via a high-affinity proton-symport carrier (K(m) approximately 50-60 micromolar) at the maximum rate of 8 +/- 0.5 micromol h-1 g-1 cell wet weight, and in competition with serine or Thr. We could visualize the compartmentation of homoserine, and observed that it accumulated at a concentration 4 to 5 times higher in the cytoplasm than in the large vacuolar compartment. 31P-nuclear magnetic resonance permitted us to analyze the phosphorylation of homoserine. When sycamore cells were incubated with 100 micromolar homoserine, phosphohomoserine steadily accumulated in the cytoplasmic compartment over 24 h at the constant rate of 0.7 micromol h-1 g-1 cell wet weight, indicating that homoserine kinase was not inhibited in vivo by its product, phosphohomoserine. The rate of metabolism of phosphohomoserine was much lower (0.06 micromol h-1 g-1 cell wet weight) and essentially sustained Thr accumulation. Similarly, homoserine was actively incorporated by E. colonum cells. However, in contrast to what was seen in sycamore cells, large accumulations of Thr were observed, whereas the intracellular concentration of homoserine remained low, and phosphohomoserine did not accumulate. These differences with sycamore cells were attributed to the presence of a higher Thr synthase activity in this strain of monocot cells

  17. Dynamics of bacterial metabolic profile and community structure during the mineralization of organic carbon in intensive swine farm wastewater

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2015-06-01

    Full Text Available Land application of intensive swine farm wastewater has raised serious environmental concerns due to the accumulation and microbially mediated transformation of large amounts of swine wastewater organic C (SWOC. Therefore, the study of SWOC mineralization and dynamics of wastewater microorganisms is essential to understand the environmental impacts of swine wastewater application. We measured the C mineralization of incubated swine wastewaters with high (wastewater H and low (wastewater L organic C concentrations. The dynamics of bacteria metabolic profile and community structure were also investigated. The results showed that SWOC mineralization was properly fitted by the two-simultaneous reactions model. The initial potential rate of labile C mineralization of wastewater H was 46% higher than that of wastewater L, whereas the initial potential rates of recalcitrant C mineralization of wastewaters H and L were both around 23 mg L-1 d-1. The bacterial functional and structural diversities significantly decreased for both the wastewaters during SWOC mineralization, and were all negatively correlated to specific UV absorbance (SUVA254; P < 0.01. The bacteria in the raw wastewaters exhibited functional similarity, and both metabolic profile and community structure changed with the mineralization of SWOC, mainly under the influence of SUVA254 (P < 0.001. These results suggested that SWOC mineralization was characterized by rapid mineralization of labile C and subsequent slow decomposition of recalcitrant C pool, and the quality of SWOC varied between the wastewaters with different amounts of organic C. The decreased bio-availability of dissolved organic matter affected the dynamics of wastewater bacteria during SWOC mineralization.

  18. FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling

    OpenAIRE

    Zechner, Rudolf; Zimmermann, Robert; Eichmann, Thomas O.; Kohlwein, Sepp D.; Haemmerle, Guenter; Lass, Achim; Madeo, Frank

    2012-01-01

    Lipolysis is defined as the catabolism of triacylglycerols stored in cellular lipid droplets. Recent discoveries of essential lipolytic enzymes and characterization of numerous regulatory proteins and mechanisms have fundamentally changed our perception of lipolysis and its impact on cellular metabolism. New findings that lipolytic products and intermediates participate in cellular signaling processes and that “lipolytic signaling” is particularly important in many nonadipose tissues unveil a...

  19. Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain)

    Science.gov (United States)

    Sperlich, D.; Chang, C. T.; Peñuelas, J.; Gracia, C.; Sabaté, S.

    2014-10-01

    Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc, max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly

  20. Determination of energy metabolites in cancer cells by porous graphitic carbon liquid chromatography electrospray ionization mass spectrometry for the assessment of energy metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Szoboszlai, Norbert, E-mail: szobosz@chem.elte.hu [Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny 1/A, H-1117 Budapest (Hungary); Guo, Xinghua [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Ozohanics, Olivér [Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Pusztaszeri u. 59-67, H-1025 Budapest (Hungary); Oláh, Júlia [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest (Hungary); Gömöry, Ágnes [Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Pusztaszeri u. 59-67, H-1025 Budapest (Hungary); Mihucz, Victor G. [Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny 1/A, H-1117 Budapest (Hungary); Jeney, András [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest (Hungary); Vékey, Károly [Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Pusztaszeri u. 59-67, H-1025 Budapest (Hungary)

    2014-03-01

    Graphical abstract: - Highlights: • All types of sugar metabolites can be investigated in one run on graphitic stationary phase. • Method development for acidic metabolites of energy metabolism using a single LC–MS run. • Study of 15 acidic energy metabolites on a PGC column using common eluents. • Lactate, acidic amino acid, organic acid and sugar phosphate determination in a single run. • Metabolism of U-{sup 13}C glucose and 1-{sup 13}C acetate in ZR-75-1 cells studied. - Abstract: A high performance liquid chromatography (HPLC) tandem mass spectrometric (MS/MS) method has been developed for the simultaneous determination of fifteen glucose, or acetate derived metabolites isolated from tumor cells. Glycolytic and tricarboxylic acid (TCA) cycle metabolites as well as acidic amino acids were separated on a HPLC porous graphitic carbon (PGC) column and simultaneously determined by means of triple quadrupole MS/MS using multiple reaction monitoring (MRM). Target compounds were eluted within 10 min with 8% v/v formic acid as an electronic modifier added to a 4:1 v/v methanol water mobile phase. The calibration is linear in the 1–100 μM concentration range for each analyte. The limit of detection ranges between 0.39 and 2.78 μM for the analytes concerned. To test the PGC–HPLC–MS/MS method in metabolomic studies, ZR-75.1 human mammary adenocarcinoma cells were labeled with U-{sup 13}C glucose or 1-{sup 13}C acetate. Applying the MRM mode, the incorporation of {sup 13}C into metabolites, isolated from the tumor cells, and derived from glucose or acetate, could be properly identified.

  1. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Directory of Open Access Journals (Sweden)

    Alyne Oliveira Lavinsky

    2015-10-01

    Full Text Available Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS, starch (S, phenolics (PHE, and lignin (LIG. Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710 (sensitive genotypes and DKB390 and BRS1055 (tolerant genotypes under two soil water tensions: field capacity (FC, − 18 kPa and water deficit (WD, − 138 kPa. WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  2. Determination of energy metabolites in cancer cells by porous graphitic carbon liquid chromatography electrospray ionization mass spectrometry for the assessment of energy metabolism

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • All types of sugar metabolites can be investigated in one run on graphitic stationary phase. • Method development for acidic metabolites of energy metabolism using a single LC–MS run. • Study of 15 acidic energy metabolites on a PGC column using common eluents. • Lactate, acidic amino acid, organic acid and sugar phosphate determination in a single run. • Metabolism of U-13C glucose and 1-13C acetate in ZR-75-1 cells studied. - Abstract: A high performance liquid chromatography (HPLC) tandem mass spectrometric (MS/MS) method has been developed for the simultaneous determination of fifteen glucose, or acetate derived metabolites isolated from tumor cells. Glycolytic and tricarboxylic acid (TCA) cycle metabolites as well as acidic amino acids were separated on a HPLC porous graphitic carbon (PGC) column and simultaneously determined by means of triple quadrupole MS/MS using multiple reaction monitoring (MRM). Target compounds were eluted within 10 min with 8% v/v formic acid as an electronic modifier added to a 4:1 v/v methanol water mobile phase. The calibration is linear in the 1–100 μM concentration range for each analyte. The limit of detection ranges between 0.39 and 2.78 μM for the analytes concerned. To test the PGC–HPLC–MS/MS method in metabolomic studies, ZR-75.1 human mammary adenocarcinoma cells were labeled with U-13C glucose or 1-13C acetate. Applying the MRM mode, the incorporation of 13C into metabolites, isolated from the tumor cells, and derived from glucose or acetate, could be properly identified

  3. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Institute of Scientific and Technical Information of China (English)

    Alyne Oliveira Lavinsky; Paulo César Magalhães; Roniel Geraldo Ávila; Mariana Melo Diniz; Thiago Corrêa de Souza

    2015-01-01

    Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A) and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS), starch (S), phenolics (PHE), and lignin (LIG). Data were collected from pot-grown plants of four maize genotypes:BRS 1010 and 2B710 (sensitive genotypes) and DKB390 and BRS1055 (tolerant genotypes) under two soil water tensions:field capacity (FC,−18 kPa) and water deficit (WD,−138 kPa). WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB) because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  4. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Institute of Scientific and Technical Information of China (English)

    Alyne; Oliveira; Lavinsky; Paulo; César; Magalh?es; Roniel; Geraldo; ávila; Mariana; Melo; Diniz; Thiago; Corrêa; de; Souza

    2015-01-01

    Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis(A) and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars(TSS), starch(S), phenolics(PHE), and lignin(LIG). Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710(sensitive genotypes) and DKB390 and BRS1055(tolerant genotypes) under two soil water tensions: field capacity(FC,-18 kP a) and water deficit(WD,-138 kP a). WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass(DGB) because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  5. Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism and ecosystem carbon fluxes

    Directory of Open Access Journals (Sweden)

    Silvia eMazzuca

    2013-03-01

    Full Text Available A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the COST Action ES0609 Seagrasses productivity. From genes to ecosystem management, is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems.During ten days, twenty researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, underwater acoustics gathered at the marine station of STARESO (Corsica to study together the nearby Posidonia oceanica meadow. The Station de Recherches Sous-marine et Océanographiques (STARESO is located in an oligotrophic area classified as "pristine site" where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, that grows in front of the lab, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general.

  6. Influence of a carbamate pesticide on growth, respiration (14C)-carbon metabolism and symbiosis of a Rhizobium sp

    International Nuclear Information System (INIS)

    Addition of aldicarb (2 methyl-2(methyl thio) propionaldehyde-O-methyl carbamoyl oxime) in the growth medium enhanced the growth of Rhizobium sp. (cowpea group) at 2ppm level while an inhibition was observed at the normal (5 ppm) and higher (10 ppm) concentrations. Respiration of the cells was also inhibited by 5 and 10 ppm levels of the chemical eventhough a stimulation was observed at 2 ppm (lower) concentration. The insecticide, when incorporated at 5 and 10 ppm levels in the medium increased the 14C-glucose incorporation and considerably altered the assimilation of the radioactive carbon in different fractions of rhizobium cells. Soil application of this insecticide (Temik 10 G) reduced the number of nodules formed and the total nitrogen content in cowpea plants inoculated with the Rhizobium sp. but enhanced the dry matter production of cowpea plants. (Auth.)

  7. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2

    Directory of Open Access Journals (Sweden)

    C. Müller

    2007-05-01

    Full Text Available The aim of this study was to identify the microbial communities that are actively involved in the assimilation of rhizosphere-C and are most sensitive in their activity to elevated atmospheric CO2 in grassland ecosystems. For this, we analyzed 13C signatures in microbial biomarker phospholipid fatty acids (PLFA from an in situ 13CO2 pulse-labeling experiment in the Gießen Free-Air Carbon dioxide Enrichment grasslands (GiFACE, Germany exposed to ambient and elevated (i.e. 50% above ambient CO2 concentrations. Carbon-13 PLFA measurements at 3 h, 10 h and 11 months after the pulse-labeling indicated a much faster transfer of newly produced rhizosphere-C to fungal compared to bacterial PLFA. After 11 months, the proportion of 13C had decreased in fungal PLFA but had increased in bacterial PLFA compared to a few hours after the pulse-labeling. Nevertheless, a significant proportion of the rapidly assimilated rhizosphere-C was still present in fungal PLFA after 11 months. These results demonstrate the dominant role of fungi in the immediate assimilation of rhizodeposits in grassland ecosystems, while also suggesting a long-term retention of rhizosphere-C in the fungal mycelium as well as a possible translocation of the rhizosphere-C from the fungal to bacterial biomass. Elevated CO2 caused an increase in the relative abundance of root-derived PLFA-C in the saprotrophic fungal PLFA 18:2ω6,9 as well as arbuscular mycorrhizal fungal PLFA 16:1ω5, but a decrease in the saprotrophic fungal biomarker PLFA 18:1ω9. This suggests enhanced rhizodeposit-C assimilation only by selected fungal communities under elevated CO2.

  8. The arogenate dehydratase gene family: towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways.

    Science.gov (United States)

    Corea, Oliver R A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2012-10-01

    Phe is formed from arogenate in planta through the action of arogenate dehydratase (ADT), and there are six ADT isoenzymes in the "model" vascular plant species Arabidopsis thaliana. This raised the possibility that specific ADTs may be differentially regulated so as to control Phe biosynthesis for protein synthesis vs its much more massive deployment for phenylpropanoid metabolism. In our previous reverse genetics study using 25 single/multiple ADT knockout (KO) lines, a subset of these knockouts was differentially reduced in their lignin contents. In the current investigation, it was hypothesized that Phe pool sizes might correlate well with reduction in lignin contents in the affected KO lines. The free amino acid contents of these KO lines were thus comprehensively analyzed in stem, leaf and root tissues, over a growth/developmental time course from 3 to 8 weeks until senescence. The data obtained were then compared to, and contrasted with, the differential extent of lignin deposition occurring in the various lines. Relative changes in pool sizes were also analyzed by performing a pairwise confirmatory factor analysis for Phe:Tyr, Phe:Trp and Tyr:Trp, following determination of the deviation from the mean for Phe, Tyr and Trp in each plant line. It was found that the Phe pool sizes measured were differentially reduced only in lignin-deficient lines, and in tissues and at time points where lignin biosynthesis was constitutively highly active (in wild type lines) under the growth conditions employed. In contrast, this trend was not evident across all ADT KO lines, possibly due to maintenance of Phe pools by non-targeted isoenzymes, or by feedback mechanisms known to be in place. PMID:22818526

  9. Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain

    Directory of Open Access Journals (Sweden)

    D. Sperlich

    2014-06-01

    Full Text Available Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L. during a period of mild winter conditions and their responses to a sudden cold period. The state of the photosynthetic machinery in both periods was thus tested by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials similar to those under spring conditions. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max, the maximum photosynthetic electron transport rate (Jmax, and the optimal fluorometric quantum yield of photosystem II (Fv/Fm. This change persisted for several weeks after the cold period despite the recovery of the temperature to the conditions previous to the frost event. The responses of Vc, max and Jmax were highly species-specific, where Q. ilex exhibited the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a comparatively stronger winter effect on sunlit leaves. Our results generally agreed with

  10. Metabolic responses to auxin. V. Dissociation by carbon monoxide of effects of indoleacetic acid on growth and respiration

    Energy Technology Data Exchange (ETDEWEB)

    Marre, E.; Forti, G.; Gaur, B.K.

    1960-01-01

    In isolated pea internode segments the effect of indoleacetic acid on oxygen uptake is completely suppressed, or reversed, by a carbon monoxide/oxygen ratio of 2.8/1, which inhibits only 20 to 25% of the basal respiration. The reversal by light of the CO induced inhibition is followed by the abrupt reappearance of the auxin effect on respiration, which almost immediately reaches its maximum level. A marked stimulation of growth is observed even in the presence of a 2.8/1 CO/O/sub 2/ ratio, which completely inhibits the effect on respiration. The ratio (growth with indoleacetic acid/growth in water) is even slightly higher with CO than in normal air. The absolute growth values of the segments treated with indoleacetic acid and CO at 2.8/1 ratio (in the dark) are consistently higher than those of the controls in distilled water and air, though the O/sub 2/ uptake in the former is about 25% lower than in the latter. 9 references, 1 table.

  11. Nasa Unveils Cosmic Images Book in Braille for Blind Readers

    Science.gov (United States)

    2008-01-01

    BALTIMORE - At a Tuesday ceremony at the National Federation of the Blind, NASA unveiled a new book that brings majestic images taken by its Great Observatories to the fingertips of the blind. "Touch the Invisible Sky" is a 60-page book with color images of nebulae, stars, galaxies and some of the telescopes that captured the original pictures. Each image is embossed with lines, bumps and other textures. These raised patterns translate colors, shapes and other intricate details of the cosmic objects, allowing visually impaired people to experience them. Braille and large-print descriptions accompany each of the book's 28 photographs, making the book's design accessible to readers of all visual abilities. Sample page Sample page The book contains spectacular images from the Hubble Space Telescope, Chandra X-ray Observatory, Spitzer Space Telescope and powerful ground-based telescopes. The celestial objects are presented as they appear through visible-light telescopes and different spectral regions invisible to the naked eye, from radio to infrared, visible, ultraviolet and X-ray light. The book introduces the concept of light and the spectrum and explains how the different observatories complement each others' findings. Readers take a cosmic journey beginning with images of the sun, and travel out into the galaxy to visit relics of exploding and dying stars, as well as the Whirlpool galaxy and colliding Antennae galaxies. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Jet Power and Black Hole Assortment Revealed in New Chandra Image Action Replay of Powerful Stellar Explosion Black Holes Are The Rhythm at The Heart of Galaxies "Touch the Invisible Sky" was written by astronomy educator and accessibility specialist Noreen Grice of You Can Do Astronomy LLC and the Museum of Science, Boston, with authors Simon Steel, an astronomer with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and Doris Daou, an astronomer

  12. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough

    Science.gov (United States)

    Sun, Qing-lei; Zeng, Zhi-gang; Chen, Shuai; Sun, Li

    2016-01-01

    Alvinocaris longirostris is a species of shrimp existing in the hydrothermal fields of Okinawa Trough. To date the structure and function of the microbial community associated with A. longirostris are essentially unknown. In this study, by employment of the techniques of high through-put sequencing and clone library construction and analysis, we compared for the first time the community structures and metabolic profiles of microbes associated with the gill and gut of A. longirostris in a hydrothermal field of Okinawa Trough. Fourteen phyla were detected in the gill and gut communities, of which 11 phyla were shared by both tissues. Proteobacteria made up a substantial proportion in both tissues, while Firmicutes was abundant only in gut. Although gill and gut communities were similar in bacterial diversities, the bacterial community structures in these two tissues were significantly different. Further, we discovered for the first time the existence in the gill and gut communities of A. longirostris the genes (cbbM and aclB) encoding the key enzymes of Calvin-Benson-Bassham (CBB) cycle and the reductive tricarboxylic acid (rTCA) cycle, and that both cbbM and aclB were significantly more abundant in gill than in gut. Taken together, these results provide the first evidence that at least two carbon fixation pathways are present in both the gill and the gut communities of A. longirostris, and that the communities in different tissues likely differ in autotrophic productivity. PMID:27111851

  13. Rain-Shelter Cultivation Modifies Carbon Allocation in the Polyphenolic and Volatile Metabolism of Vitis vinifera L. Chardonnay Grapes

    Science.gov (United States)

    Han, Mei-Mei; Yang, Xiao-Fan; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2016-01-01

    This study investigated the effect of rain-shelter cultivation on the biosynthesis of flavonoids and volatiles in grapes, with an aim of determining whether rain-shelter application could help to improve the sensory attributes and quality of grapes. Vitis vinifera L. Chardonnay grapes, grown in the Huaizhuo basin region of northern China, were selected within two consecutive years. A rain-shelter roof was constructed using a colorless polyethylene (PE) film with a light transmittance of 80%. Results showed that rain-shelter treatment did not affect the accumulation of soluble solids during grape maturation. However, the allocation of assimilated carbon in phenolic and volatile biosynthetic pathways varied significantly, leading to alterations in polyphenolic and volatile profiles. The rain-shelter cultivation enhanced the concentration of flavan-3-ols via the flavonoid-3’5’-hydroxylase (F3’5’H) pathway, but reduced the level of flavonols and flavan-3-ols via the flavonoid-3’-hydroxylase (F3’H) pathway. In addition, the rain-shelter cultivation significantly enhanced the synthesis of fatty acid-derived volatiles, isoprene-derived terpenoids and amino acid-derived branched-chain aliphatics, but led to a decrease in the accumulation of isoprene-derived norisoprenoids and amino acid-derived benzenoids. Principal component analysis revealed some key compounds that differentiated the grapes cultivated under open-field and rain-shelter conditions. Moreover, the effect of the rain-shelter application on the accumulation of these compounds appeared to be vintage dependent. The alteration of their profiles caused by the rain-shelter treatment was significant in the vintage that received higher rainfall, which usually took place in the first rapid growth and veraison phases. PMID:27218245

  14. Unveiling a Reflective Diary Methodology for Exploring the Lived Experiences of Stress and Coping

    Science.gov (United States)

    Travers, Cheryl

    2011-01-01

    This article unveils a diary methodology exploring accounts of ongoing experiences during the final furlong of university life and examines the role of diary keeping for gaining insights into stress and coping with performance-related and general life stressors. The focus is on thirty young people who, following a year working in industry, were in…

  15. DOE unveils 20-year priority list for developing 28 research facilities

    CERN Multimedia

    Dawson, J

    2004-01-01

    "With a level of fanfare that signaled a significant commitment by the Bush administration to basic science research, Secretary of Energy Spencer Abraham used a packed National Press Club luncheon on 10 November to unveil the Department of Energy's priority list for developing 28 major science facilities over the next two decades" (1 page)

  16. Synoptic evaluation of carbon cycling in Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air–sea CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. Forest

    2013-10-01

    Full Text Available The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration responds to changes and modulates air–sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean, we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air–sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air–sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h−1 blowing from the N-E and a decaying ice cover (2 with a mean uptake rate of −2.0 ± 3.3 mmol C m−2d−1. We attribute this discrepancy to: (1 elevated PP rates (>600 mg C m−2d−1 over the shelf prior to our survey, (2 freshwater dilution by river runoff and ice melt, and (3 the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m−2d−1. Although generally −2d−1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C. Subsurface PP represented 37.4% of total PP for the whole area and as much as ~72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54% total community respiration (~250 mg C m−2d−1, whereas protozoans, metazoans, and benthos, contributed to 24%, 10%, and 12%, respectively. The range of production-to-biomass ratios of bacteria was

  17. Effect of Carbon and Nitrogen Availability on Metabolism of Amino Acids in Germinating Spores of Arbuscular Mycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-Ru; JIANG Dong-Hua; ZHANG Ping-Hua

    2011-01-01

    The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels; both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.

  18. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2

    Directory of Open Access Journals (Sweden)

    C. Müller

    2007-09-01

    Full Text Available The aim of this study was to identify the microbial communities that are actively involved in the assimilation of rhizosphere-C and are most sensitive in their activity to elevated atmospheric CO2 in a temperate semi-natural low-input grassland ecosystem. For this, we analyzed 13C signatures in microbial biomarker phospholipid fatty acids (PLFA from an in-situ 13CO2 pulse-labeling experiment in the Giessen Free Air Carbon dioxide Enrichment grasslands (GiFACE, Germany exposed to ambient and elevated (i.e. 50% above ambient CO2 concentrations. Short-term 13C PLFA measurements at 3 h and 10 h after the pulse-labeling revealed very little to no 13C enrichment after 3 h in biomarker PLFAs and a much greater incorporation of new plant-C into fungal compared to bacterial PLFAs after 10 h. After a period of 11 months following the pulse-labeling experiment, the 13C enrichment of fungal PLFAs was still largely present but had decreased, while bacterial PLFAs were much more enriched in 13C compared to a few hours after the pulse-labeling. These results imply that new rhizodeposit-C is rapidly processed by fungal communities and only much later by the bacterial communities, which we attributed to either a fungal-mediated translocation of rhizosphere-C from the fungal to bacterial biomass or a preferential bacterial use of dead root or fungal necromass materials as C source over the direct utilization of fresh root-exudate C in these N-limited grassland ecosystems. Elevated CO2 caused an increase in the proportional 13C enrichment (relative to the universal biomarker 16:0 of the arbuscular mycorrhizal fungal biomarker PLFA 16:1ω5 and one gram-positive bacterial biomarker PLFA i16:0, but a decrease in the proportional 13C enrichment of 18:1ω9c, a commonly used though questionable fungal biomarker PLFA. This suggests enhanced fungal rhizodeposit-C assimilation only by arbuscular mycorrhizal fungal species under elevated CO2.

  19. Most Blood Biomarkers Related to Vitamin Status, One-Carbon Metabolism, and the Kynurenine Pathway Show Adequate Preanalytical Stability and Within-Person Reproducibility to Allow Assessment of Exposure or Nutritional Status in Healthy Women and Cardiovascular Patients123

    OpenAIRE

    Midttun, Øivind; Townsend, Mary K.; Nygård, Ottar; Tworoger, Shelley S.; Brennan, Paul; Johansson, Mattias; Ueland, Per Magne

    2014-01-01

    Knowledge of stability during sample transportation and changes in biomarker concentrations within person over time are paramount for proper design and interpretation of epidemiologic studies based on a single measurement of biomarker status. Therefore, we investigated stability and intraindividual vs. interindividual variation in blood concentrations of biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway. Whole blood (EDTA and heparin, n = 12) was stored w...

  20. Metabolic acidosis

    Science.gov (United States)

    Acidosis - metabolic ... Metabolic acidosis occurs when the body produces too much acid. It can also occur when the kidneys are not ... the body. There are several types of metabolic acidosis. Diabetic acidosis develops when acidic substances, known as ...

  1. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.-Wheat (Triticum aestivum L. Cropping System in Central China.

    Directory of Open Access Journals (Sweden)

    Li-Jin Guo

    Full Text Available Investigating microbial metabolic characteristics and soil organic carbon (SOC within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT and no tillage (NT] as main plots and straw returning methods [preceding crop residue returning (S, 2100-2500 kg C ha-1 and removal (NS, 0 kg C ha(-1] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC fractions within aggregates and their relationships under a rice-wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%, and 0.25 mm aggregate, and 0.25 mm aggregate, and 0.25 and 0.25 mm aggregate in the upper (0-5 cm soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in <0.25 mm aggregate. Our results suggested that conservation tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities.

  2. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant.

    Science.gov (United States)

    Luo, Feifei; Wang, Qian; Yin, Chunlin; Ge, Yinglu; Hu, Fenglin; Huang, Bo; Zhou, Hong; Bao, Guanhu; Wang, Bin; Lu, Ruili; Li, Zengzhi

    2015-09-01

    and distilled water. This indicates that fungal fatty acid metabolism is enhanced when contacting insect, but when in the absence of insect hosts NRP synthesis is increased. Ornithine, arginine and GABA are decreased in mycelia cultured in pupae extracts and root exudates but remain unchanged in distilled water, which suggests that they may be associated with fungal cross-talk with insects and plants. Trehalose and mannitol are decreased while adenine is increased in three conditions, signifying carbon shortage in cells. Together, these results unveil that B. bassiana has differential metabolic responses in pupae extracts and root exudates, and metabolic similarity in root exudates and distilled water is possibly due to the lack of insect components. PMID:25584432

  3. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III-reducer Rhodoferax ferrireducens

    Directory of Open Access Journals (Sweden)

    Daugherty Sean

    2009-09-01

    Full Text Available Abstract Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.

  4. 2012 Molecular Basis of Microbial One-Carbon Metabolism Gordon Research Conferences and Gordon Research Seminar, August 4-10,2012

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Thomas

    2012-08-10

    The 2012 Gordon Conference will present and discuss cutting-edge research in the field of microbial metabolism of C1 compounds. The conference will feature the roles and application of C1 metabolism in natural and synthetic systems at scales from molecules to ecosystems. The conference will stress molecular aspects of the unique metabolism exhibited by autotrophic bacteria, methanogens, methylotrophs, aerobic and anaerobic methanotrophs, and acetogens.

  5. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    Science.gov (United States)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  6. Surprisal Analysis of Glioblastoma Multiform (GBM) MicroRNA Dynamics Unveils Tumor Specific Phenotype

    OpenAIRE

    Zadran, Sohila; Remacle, Françoise; Levine, R. D.

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer –specific phenotypic state. Utilizing global miRNA microarray expression data of normal an...

  7. Potentiality of Women Unveiled: Microfinance...... A study on Gobardhana Block of Barpeta District, Assam

    OpenAIRE

    Bhabananda Deb Nath

    2012-01-01

    Privation of exposure, women cluster of our society were ignored, their potentiality and credentials never note-of for productive utilization, thus, their qualities remains unveiled. The SHG movement of microfinance (mF),bring an exception and has able to reach all over the world for her easy factors of financing , where women occupied the major share, as such, the entrepreneurial and other potentialities of this neglected cluster, become a case of concern. Same instance is in the ...

  8. Unveiling the relationship between the transaction timing, spending and dropout behavior of customers (Online First)

    OpenAIRE

    Glady, N.; Lemmens, A.; Croux, C.

    2015-01-01

    The customer lifetime value combines into one construct the transaction timing, spending and dropout processes that characterize the purchase behavior of customers. Recently, the potential relationship between these processes, either at the individual customer level (i.e. intra-customer correlation) or between customers (i.e. inter-customer correlation), has received more attention. In this paper, we propose to jointly unveil the direction and intensity of these correlations using copulas. We...

  9. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway.

    Directory of Open Access Journals (Sweden)

    Annarita Fiorillo

    Full Text Available Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU and fully folded (FF conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173, thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable

  10. Metabolic Disorders

    Science.gov (United States)

    ... as your liver, muscles, and body fat. A metabolic disorder occurs when abnormal chemical reactions in your body ... that produce the energy. You can develop a metabolic disorder when some organs, such as your liver or ...

  11. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  12. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit.

    Science.gov (United States)

    Liu, Chenggang; Wang, Yanjie; Pan, Kaiwen; Jin, Yanqiang; Li, Wei; Zhang, Lin

    2015-11-01

    Dwarf bamboo (Fargesia rufa Yi), one of the staple foods for the endangered giant pandas, is highly susceptible to water deficit due to its shallow roots. In the face of climate change, maintenance and improvement in its productivity is very necessary for the management of the giant pandas' habitats. However, the regulatory mechanisms underlying plant responses to water deficit are poorly known. To investigate the effects of P application on photosynthetic C and N metabolism, water use efficiency (WUE) and growth of dwarf bamboo under water deficit, a completely randomized design with two factors of two watering (well-watered and water-stressed) and two P regimes (with and without P fertilization) was arranged. P application hardly changed growth, net CO2 assimilation rate (P(n)) and WUE in well-watered plants but significantly increased relative growth rate (RGR) and P(n) in water-stressed plants. The effect of P application on RGR under water stress was mostly associated with physiological adjustments rather than with differences in biomass allocation. P application maintained the balance of C metabolism in well-watered plants, but altered the proportion of nitrogenous compounds in N metabolism. By contrast, P application remarkably increased sucrose-metabolizing enzymes activities with an obvious decrease in sucrose content in water-stressed plants, suggesting an accelerated sucrose metabolism. Activation of nitrogen-metabolizing enzymes in water-stressed plants was attenuated after P application, thus slowing nitrate reduction and ammonium assimilation. P application hardly enlarged the phenotypic plasticity of dwarf bamboo in response to water in the short term. Generally, these examined traits of dwarf bamboo displayed weak or negligible responses to water-P interaction. In conclusion, P application could accelerate P(n) and sucrose metabolism and slow N metabolism in water-stressed dwarf bamboo, and as a result improved RGR and alleviated damage from soil

  13. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications.

    Science.gov (United States)

    Wu, Gang; Yan, Qiang; Jones, J Andrew; Tang, Yinjie J; Fong, Stephen S; Koffas, Mattheos A G

    2016-08-01

    Engineering cell metabolism for bioproduction not only consumes building blocks and energy molecules (e.g., ATP) but also triggers energetic inefficiency inside the cell. The metabolic burdens on microbial workhorses lead to undesirable physiological changes, placing hidden constraints on host productivity. We discuss cell physiological responses to metabolic burdens, as well as strategies to identify and resolve the carbon and energy burden problems, including metabolic balancing, enhancing respiration, dynamic regulatory systems, chromosomal engineering, decoupling cell growth with production phases, and co-utilization of nutrient resources. To design robust strains with high chances of success in industrial settings, novel genome-scale models (GSMs), (13)C-metabolic flux analysis (MFA), and machine-learning approaches are needed for weighting, standardizing, and predicting metabolic costs. PMID:26996613

  14. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    was studied twice during May 2005 (premonsoon) and August 2005 (monsoon). It exchanges waters with the sea (Bay of Bengal) and several rivers open into the lake. The lake showed contrasting levels of dissolved inorganic carbon (DIC) and organic carbon (DOC...

  15. Effects of calcium magnesium carbonate and roughage level on feedlot performance, ruminal metabolism, and site and extent of digestion in steers fed high-grain diets.

    Science.gov (United States)

    Crawford, G I; Keeler, C D; Wagner, J J; Krehbiel, C R; Erickson, G E; Crombie, M B; Nunnery, G A

    2008-11-01

    A feedlot growth performance experiment and 2 metabolism experiments were conducted to evaluate dietary roughage concentration and calcium magnesium carbonate in steers fed a high-grain diet. In Exp. 1, one hundred ninety-two crossbred yearling steers (320 +/- 10 kg of initial BW) were fed diets based on steam-flaked corn with 0, 0.75, or 1.5% CaMg(CO(3))(2). There were no effects (P > or = 0.13) on ADG, DMI, G:F, or total water intake due to CaMg(CO(3))(2). In Exp. 2, five ruminally and duodenally fistulated steers (263 +/- 9 kg of initial BW) were used in a 5 x 5 Latin square design, with 5 dietary treatments arranged in a 2 x 2 + 1 factorial: 1) 3.8% dietary roughage and no CaMg(CO(3))(2); 2) 7.6% dietary roughage and no CaMg(CO(3))(2); 3) 11.4% dietary roughage and no CaMg(CO(3))(2); 4) 3.8% dietary roughage and 1.5% CaMg(CO(3))(2); and 5) 7.6% dietary roughage and 1.5% CaMg(CO(3))(2). Water consumption was less (quadratic, P = 0.003) when 7.6% dietary roughage was fed compared with 3.8 or 11.4% dietary roughage. Intake of DM was not affected (P > or = 0.16) by dietary roughage or by CaMg(CO(3))(2). Poststomach and total tract starch digestion decreased (linear, P interaction (P = 0.01) occurred as steers consuming 13.5% roughage, 1.0% CaMg(CO(3))(2) had greater DMI per meal than those consuming 4.5% dietary roughage, no CaMg(CO(3))(2) and 9.0% dietary roughage, 1.0% CaMg(CO(3))(2). Steers consuming 13.5% dietary roughage, 1.0% CaMg(CO(3))(2) and 9.0% dietary roughage, no CaMg(CO(3))(2) had greater meal length (min/meal; P = 0.01) than steers consuming 4.5% dietary roughage, no CaMg(CO(3))(2). Total tract OM digestibility decreased linearly (P = 0.01), and ruminal pH increased linearly (P = 0.01) with increasing dietary roughage concentration. Inclusion of CaMg(CO(3))(2) can replace limestone and MgO but did not produce ruminal pH responses similar to those observed by increasing dietary roughage in high-concentrate diets. PMID:18567736

  16. Unveiling Magnetic Dipole Radiation in Phase-Reversal Leaky-Wave Antennas

    OpenAIRE

    S Gupta; Jiang, L.; C. Caloz

    2013-01-01

    The radiation principle of travelling-wave type phase-reversal antennas is explained in details, unveiling the presence of magnetic-dipole radiation in addition to well-known electric dipole radiation. It is point out that such magnetic dipole radiation is specific to the case of traveling-wave phase-reversal antennas whereas only electric-dipole radiation exists in resonant-type phase-reversal antennas. It is shown that a phase-reversal travelling-wave antenna alternately operates as an arra...

  17. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    OpenAIRE

    Vijayalakshmi Varma; Boros, László G.; Nolen, Greg T.; Ching-Wei Chang; Martin Wabitsch; Beger, Richard D.; Jim Kaput

    2015-01-01

    Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate asso...

  18. Assinatura metabólica do cancro do pulmão: estudo metabolómico de tecidos e biofluidos humanos

    OpenAIRE

    Rocha, Cláudia Manuela Mesquita da

    2015-01-01

    This thesis reports the application of metabolomics to human tissues and biofluids (blood plasma and urine) to unveil the metabolic signature of primary lung cancer. In Chapter 1, a brief introduction on lung cancer epidemiology and pathogenesis, together with a review of the main metabolic dysregulations known to be associated with cancer, is presented. The metabolomics approach is also described, addressing the analytical and statistical methods employed, as well as the current state of the...

  19. Metabolic ecology.

    Science.gov (United States)

    Humphries, Murray M; McCann, Kevin S

    2014-01-01

    Ecological theory that is grounded in metabolic currencies and constraints offers the potential to link ecological outcomes to biophysical processes across multiple scales of organization. The metabolic theory of ecology (MTE) has emphasized the potential for metabolism to serve as a unified theory of ecology, while focusing primarily on the size and temperature dependence of whole-organism metabolic rates. Generalizing metabolic ecology requires extending beyond prediction and application of standardized metabolic rates to theory focused on how energy moves through ecological systems. A bibliometric and network analysis of recent metabolic ecology literature reveals a research network characterized by major clusters focused on MTE, foraging theory, bioenergetics, trophic status, and generalized patterns and predictions. This generalized research network, which we refer to as metabolic ecology, can be considered to include the scaling, temperature and stoichiometric models forming the core of MTE, as well as bioenergetic equations, foraging theory, life-history allocation models, consumer-resource equations, food web theory and energy-based macroecology models that are frequently employed in ecological literature. We conclude with six points we believe to be important to the advancement and integration of metabolic ecology, including nomination of a second fundamental equation, complementary to the first fundamental equation offered by the MTE. PMID:24028511

  20. Uzbekistan unveiled

    International Nuclear Information System (INIS)

    Through centuries of revolution, war and strife, the people of Uzbekistan have built a reputation as skilled and tenacious merchants. Since antiquity, when the Silk Road from China turned toward Europe at Smarakand, they have been master traders of such valuable commodities as cotton, fruits, vegetables, spices and gold. Now, they're about to introduce another of their specialties to the world: Uranium. Uranium mining in the country is controlled by a new, independent company, the Kizilkumredmetzoloto, parent of the Navoi Mining ampersand Metallurgy Combine [NMMC]. Established in 1958 at the height of the Cold War, when uranium mining for military stockpiles got started in earnest, Navoi was wholly owned by the USSR's Ministry of Medium Machine Building. Up until 1991, virtually all of Navoi's uranium production, strictly in the form of uranium concentrates, was used for either military purposes or for nuclear power plants within the former Soviet Union. The republic exerted no control over the final destination of its uranium. All production and operating decisions for Navoi's mines were dictated by the Soviet Union's Ministry of Atomic Power ampersand Industry [MAPI], which developed annual quotas for uranium production in each republic of the country. Uranium from the republics was sold to Techsnabexport [Tenex], the distribution and marketing arm of MAPI. Exports to other countries were handled strictly by Tenex

  1. NASA's Great Observatories Celebrate the International Year of Astronomy With a National Unveiling of Spectacular Images

    Science.gov (United States)

    2009-02-01

    In 1609, Galileo first turned his telescope to the heavens and gave birth to modern astronomy. To commemorate four hundred years of exploring the universe, 2009 is designated the International Year of Astronomy. NASA's Great Observatories - the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory - are marking the occasion with the release of a suite of images at over 100 planetariums, museums, nature centers, and schools across the country in conjunction with Galileo's birthday on February 15. The selected sites will unveil a large 9-square-foot print of the spiral galaxy Messier 101 that combines the optical view of Hubble, the infrared view of Spitzer, and the X-ray view of Chandra into one multi-wavelength picture. "It's like using your eyes, night vision goggles, and X-ray vision all at the same time," says Dr. Hashima Hasan, lead scientist for the International Year of Astronomy at NASA Headquarters in Washington. Cas A animation Chandra X-ray Image of M101 Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of Messier 101. Each image shows a different wavelength view of the galaxy that illustrates not only the different science uncovered by each observatory, but also just how far astronomy has come since Galileo. Messier 101 is a face-on spiral galaxy about 22 million light-years away in the constellation Ursa Major. It is in many ways similar to, but larger than, our own Milky Way galaxy. Hubble's visible light view shows off the swirls of bright stars and glowing gas that give the galaxy its nickname the Pinwheel Galaxy. In contrast, Spitzer's infrared-light image sees into the spiral arms and reveals the glow of dust lanes where dense clouds can collapse to form new stars. Chandra's X-ray picture uncovers the high-energy features in the galaxy, such as remnants of exploded stars or matter zooming around black holes. The juxtaposition of observations from these three telescopes

  2. Carbon isotopes: variations of their natural abundance. Application to correction of radiocarbon dates, to the study of plant metabolism and to paleoclimate

    International Nuclear Information System (INIS)

    The radiocarbon activity of contemporaneous samples shows: i) variations in the specific activity of the atmospheric C14, which varies with time and locality. ii) variations due to isotope discrimination, or fractionation, of the carbon isotope ratio during the fixation of carbon by organic or inorganic matter. The variation in the atmospheric concentration of carbon 14 as observed in tree rings are synchronous and of the same amplitude for both hemispheres (southern and northern). A curve for correction of radiocarbon dates of the southern hemisphere is given for the last 500 years. The activity of atmospheric radiocarbon as measured in tree rings varies with latitude, showing a difference of (4.5+-1) per mille between the northern and southern hemispheres, the latter having lower concentration of radiocarbon, equivalent to an age difference of about 35 years. This variation can be explained by a larger exchange of carbon 14 between the atmosphere and the sea in the southern hemisphere to a larger free ocean surface (40%) and a higher agitation by winds. The main differences of the isotope fractionation by different types of plants are correlated to their photosynthetic pathways and thus to the enzyme which effects the primary fixation of carbon. The delta C13 values can be used as basis of a paleoclimate indicator

  3. Urban metabolism: A review of research methodologies

    International Nuclear Information System (INIS)

    Urban metabolism analysis has become an important tool for the study of urban ecosystems. The problems of large metabolic throughput, low metabolic efficiency, and disordered metabolic processes are a major cause of unhealthy urban systems. In this paper, I summarize the international research on urban metabolism, and describe the progress that has been made in terms of research methodologies. I also review the methods used in accounting for and evaluating material and energy flows in urban metabolic processes, simulation of these flows using a network model, and practical applications of these methods. Based on this review of the literature, I propose directions for future research, and particularly the need to study the urban carbon metabolism because of the modern context of global climate change. Moreover, I recommend more research on the optimal regulation of urban metabolic systems. Highlights: •Urban metabolic processes can be analyzed by regarding cities as superorganisms. •Urban metabolism methods include accounting, assessment, modeling, and regulation. •Research methodologies have improved greatly since this field began in 1965. •Future research should focus on carbon metabolism and optimal regulation. -- The author reviews research progress in the field of urban metabolism, and based on her literature review, proposes directions for future research

  4. Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses

    OpenAIRE

    Hocking, William P.; Irene Roalkvam; Carina Magnussen; Runar Stokke; Steen, Ida H.

    2015-01-01

    The hyperthermophilic, sulfate-reducing archaeon, Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained from A. fulgidus during growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism of A. fulgidus. The model suggests proton translocation by “Mitchell-type” loops facilitated by Fqo catalyzing a Fdred:mena...

  5. DRUG METABOLISM

    Directory of Open Access Journals (Sweden)

    Deepak Singla

    2011-02-01

    Full Text Available The termmetabolism, derived from the Greek language, simply means change or transformation. It relates to various processes within the body that convert food and other substances into energy and other metabolic byproducts used by the body. Drug metabolism is the body’s way of transforming drugs, so they can be excreted from the body. Many drugs arenot active until they have been metabolized in the body by enzymes that transform them. Most drugs are lipophilic, meaning they pass through membranes to reach their target site. Most drugs are treated by the body like foreign substances, also known as xenobiotics. Humans have evolved a complex system for xenobiotic metabolism

  6. Metabolic neuropathies

    Science.gov (United States)

    ... body ( sepsis ) Thyroid disease Vitamin deficiencies (including vitamins B12 , B6 , E , and B1 ) Some metabolic disorders are ... by injection. Abnormal blood sugar level or thyroid function may need medicines to correct the problem. For ...

  7. Metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gogia Atul

    2006-02-01

    Full Text Available The Metabolic syndrome is a widely prevalent and multi-factorial disorder. The syndrome has been given several names, including- the metabolic syndrome, the insulin resistance syndrome, the plurimetabolic syndrome, and the deadly quartet. With the formulation of NCEP/ATP III guidelines, some uniformity and standardization has occurred in the definition of metabolic syndrome and has been very useful for epidemiological purposes. The mechanisms underlying the metabolic syndrome are not fully known; however resistance to insulin stimulated glucose uptake seems to modify biochemical responses in a way that predisposes to metabolic risk factors. The clinical relevance of the metabolic syndrome is related to its role in the development of cardiovascular disease. Management of the metabolic syndrome involves patient-education and intervention at various levels. Weight reduction is one of the main stays of treatment. In this article we comprehensively discuss this syndrome- the epidemiology, pathogenesis, clinical relevance and management. The need to do a comprehensive review of this particular syndrome has arisen in view of the ever increasing incidence of this entitiy. Soon, metabolic syndrome will overtake cigarette smoking as the number one risk factor for heart disease among the US population. Hardly any issue of any primary care medical journal can be opened without encountering an article on type 2 diabetes, dyslipidemia or hypertension. It is rare to see type 2 diabetes, dyslipidemia, obesity or hypertension in isolation. Insulin resistance and resulting hyperinsulinemia have been implicated in the development of glucose intolerance (and progression to type 2 diabetes, hypertriglyceridemia, hypertension, polycystic ovary yndrome, hypercoagulability and vascular inflammation, as well as the eventual development of atherosclerotic cardiovascular disease manifested as myocardial infarction, stroke and myriad end organ diseases. Conversely

  8. Lipid Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008393 Effects of angiotensin Ⅱ type 1 receptor blocker on triglyceride metabolism in the liver: experiment with Zucker fatty rats. RAN Jianmin(冉建民), et al. Dept Endocrinol, Guangzhou Red Cross Hosp, 4th Hosp Med Coll, Jinan Univ, Guangzhou 510220. Natl Med J China 2008;88(22):1557-1561. Objective To investigate the effects of angiotensin receptor blocker (ARB) on triglyceride (TG) metabolism and mechanism thereof.

  9. Animal metabolism

    International Nuclear Information System (INIS)

    Studies on placental transport included the following: clearance of tritiated water as a baseline measurement for transport of materials across perfused placentas; transport of organic and inorganic mercury across the perfused placenta of the guinea pig in late gestation; and transport of cadmium across the perfused placenta of the guinea pig in late gestation. Studies on cadmium absorption and metabolism included the following: intestinal absorption and retention of cadmium in neonatal rats; uptake and distribution of an oral dose of cadmium in postweanling male and female, iron-deficient and normal rats; postnatal viability and growth in rat pups after oral cadmium administration during gestation; and the effect of calcium and phosphorus on the absorption and toxicity of cadmium. Studies on gastrointestinal absorption and mineral metabolism included: uptake and distribution of orally administered plutonium complex compounds in male mice; gastrointestinal absorption of 144Ce in the newborn mouse, rat, and pig; and gastrointestinal absorption of 95Nb by rats of different ages. Studies on iodine metabolism included the following: influence of thyroid status and thiocyanate on iodine metabolism in the bovine; effects of simulated fallout radiation on iodine metabolism in dairy cattle; and effects of feeding iodine binding agents on iodine metabolism in the calf

  10. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study

    Science.gov (United States)

    Schoepf, Verena; Levas, Stephen J.; Rodrigues, Lisa J.; McBride, Michael O.; Aschaffenburg, Matthew D.; Matsui, Yohei; Warner, Mark E.; Hughes, Adam D.; Grottoli, Andréa G.

    2014-12-01

    Coral skeletal δ13C can be a paleo-climate proxy for light levels (i.e., cloud cover and seasonality) and for photosynthesis to respiration (P/R) ratios. The usefulness of coral δ13C as a proxy depends on metabolic isotope effects (related to changes in photosynthesis) being the dominant influence on skeletal δ13C. However, it is also influenced by kinetic isotope effects (related to calcification rate) which can overpower metabolic isotope effects and thus compromise the use of coral skeletal δ13C as a proxy. Heikoop et al. (2000) proposed a simple data correction to remove kinetic isotope effects from coral skeletal δ13C, as well as an equation to calculate P/R ratios from coral isotopes. However, despite having been used by other researchers, the data correction has never been directly tested, and isotope-based P/R ratios have never been compared to P/R ratios measured using respirometry. Experimental coral bleaching represents a unique environmental scenario to test this because bleaching produces large physiological responses that influence both metabolic and kinetic isotope effects in corals. Here, we tested the δ13C correction and the P/R calculation using three Pacific and three Caribbean coral species from controlled temperature-induced bleaching experiments where both the stable isotopes and the physiological variables that cause isotopic fractionation (i.e., photosynthesis, respiration, and calcification) were simultaneously measured. We show for the first time that the data correction proposed by Heikoop et al. (2000) does not effectively remove kinetic effects in the coral species studied here, and did not improve the metabolic signal of bleached and non-bleached corals. In addition, isotope-based P/R ratios were in poor agreement with measured P/R ratios, even when the data correction was applied. This suggests that additional factors influence δ13C and δ18O, which are not accounted for by the data correction. We therefore recommend that the

  11. Highly Clumpy Structure of the Thermal Composite Supernova Remnant 3C391 Unveiled by Chandra

    CERN Document Server

    Chen, Y; Slane, P O; Wang, Q D; Chen, Yang; Su, Yang; Slane, Patrick O.

    2005-01-01

    The nature of the internal thermal X-ray emission seen in ``thermal composite" supernova remnants is still uncertain. Chandra observation of the 3C391 shows a southeast-northwest elongated morphology and unveils a highly clumpy structure of the remnant. Detailed spatially resolved spectral analysis for the small-scale features reveals normal metal abundance and uniform temperature for the interior gas. The properties of the hot gas comparatively favor the cloudlet evaporation model as a main mechanism for the ``thermal composite" X-ray appearance, though radiative rim and thermal conduction may also be effective. A faint protrusion is found in Si and S lines out of the southwest radio border.

  12. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity.

    Science.gov (United States)

    Gaublomme, Jellert T; Yosef, Nir; Lee, Youjin; Gertner, Rona S; Yang, Li V; Wu, Chuan; Pandolfi, Pier Paolo; Mak, Tak; Satija, Rahul; Shalek, Alex K; Kuchroo, Vijay K; Park, Hongkun; Regev, Aviv

    2015-12-01

    Extensive cellular heterogeneity exists within specific immune-cell subtypes classified as a single lineage, but its molecular underpinnings are rarely characterized at a genomic scale. Here, we use single-cell RNA-seq to investigate the molecular mechanisms governing heterogeneity and pathogenicity of Th17 cells isolated from the central nervous system (CNS) and lymph nodes (LN) at the peak of autoimmune encephalomyelitis (EAE) or differentiated in vitro under either pathogenic or non-pathogenic polarization conditions. Computational analysis relates a spectrum of cellular states in vivo to in-vitro-differentiated Th17 cells and unveils genes governing pathogenicity and disease susceptibility. Using knockout mice, we validate four new genes: Gpr65, Plzp, Toso, and Cd5l (in a companion paper). Cellular heterogeneity thus informs Th17 function in autoimmunity and can identify targets for selective suppression of pathogenic Th17 cells while potentially sparing non-pathogenic tissue-protective ones. PMID:26607794

  13. Potential use of carbon-11 labeled alpha-aminoisobutyric acid (AIB) as an in vivo tracer of amino acid uptake in differing metabolic states

    International Nuclear Information System (INIS)

    AIB has been used as a model amino acid for the evaluation of alanine-preferring amino acid transport. Hormonal factors and starvation alter the tissue distribution of amino acids, particularly in liver and muscle. With positron emission tomography and labeling of biochemical tracers with C-11, (t1/2=20.4 min), it is now possible to study amino acid kinetics in vivo using external imaging. In order to investigate the utility of C-11 AIB as an in vivo tracer of altered tissue metabolism, C-14 AIB was studied in groups of rats with either streptozotocin-induced diabetes, insulin-induced hypoglycemia or starvation. The data suggest an increased amino acid uptake in liver in starvation, an increased uptake in muscle in response to insulin and associated hypoglycemia and decreased transport in muscle in starvation, as seen by other investigators. These results suggest that C-11 AIB may be useful as an in vivo monitor of metabolic changes in body tissues

  14. Thaumarchaeotal Signature Gene Distribution in Sediments of the Northern South China Sea: an Indicator of the Metabolic Intersection of the Marine Carbon, Nitrogen, and Phosphorus Cycles?

    OpenAIRE

    Dang, Hongyue; ZHOU, Haixia; Yang, Jinying; Ge, Huangmin; Jiao, Nianzhi; Luan, Xiwu; Zhang, Chuanlun; Martin G Klotz

    2013-01-01

    Thaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earth's surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the ass...

  15. The effects of folate intake on DNA and single-carbon pathway metabolism in the fruit fly Drosophila melanogaster compared to mammals.

    Science.gov (United States)

    Blatch, Sydella A; Stabler, Sally P; Harrison, Jon F

    2015-11-01

    Mechanisms of vitamin function in non-mammals are poorly understood, despite being essential for development. Folate and cobalamin are B-vitamin cofactors with overlapping roles in transferring various single-carbon units. In mammals, one or both is needed for nucleotide synthesis, DNA methylation, amino acid conversions and other reactions. However, there has been little investigation of the response to folate or cobalamin in insects. Here, we manipulated folate intake and potentially cobalamin levels in the fruit fly Drosophila melanogaster with chemically-defined diets, an antibiotic to reduce bacterially-derived vitamins, and the folate-interfering pharmaceutical methotrexate, to see if single-carbon metabolites and DNA synthesis rates would be affected. We found that similar to mammals with low folate intake, fruit fly larvae had significantly slower growth and DNA synthesis rates. But changes to single carbon-metabolites did not mirror that of mammals with abnormal folate or given MTX. Five of the nine metabolites measured were not significantly affected (methionine, serine, glycine, methylglycine, and dimethylglycine) and three (cystathionine, methylgycine, and methylmalonic acid) were only decreased in larvae consuming methotrexate. Metabolites expected to be elevated if flies used cobalamin from microbial symbionts were not affected by dietary sulfaquinoxaline. Our data support the role of folate in nucleotide synthesis in D. melanogaster and that microbial symbionts provide functioning folates. We could not confirm how folate intake affects single carbon pathway metabolites, nor whether Drososphila use microbially-derived cobalamin. Further work should explore which cofactors are used in fruit flies in these important and potentially novel pathways. PMID:26219578

  16. The immunomodulatory role of carbon monoxide during transplantation

    OpenAIRE

    Amano Mariane; Camara Niels Olsen Saraiva

    2013-01-01

    Abstract The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The p...

  17. Metabolic microspheres

    Science.gov (United States)

    Fox, Sidney W.

    1980-08-01

    A systematic review of catalytic activities in thermal proteinoids and microspheres aggregated therefrom yields some new inferences on the origins and evolution of metabolism. Experiments suggest that, instead of being inert, protocells were already biochemically and cytophysically competent. The emergence and refinement of metabolism ab initio is thus partly traced conceptually. When the principle of molecular self-instruction, as of amino acids in peptide synthesis, is taken into account as a concomitant of natural selection, an expanded theory of organismic evolution, including saltations, emerges.

  18. Context-dependent metabolic networks

    CERN Document Server

    Beguerisse-Díaz, Mariano; Oyarzún, Diego; Picó, Jesús; Barahona, Mauricio

    2016-01-01

    Cells adapt their metabolism to survive changes in their environment. We present a framework for the construction and analysis of metabolic reaction networks that can be tailored to reflect different environmental conditions. Using context-dependent flux distributions from Flux Balance Analysis (FBA), we produce directed networks with weighted links representing the amount of metabolite flowing from a source reaction to a target reaction per unit time. Such networks are analyzed with tools from network theory to reveal salient features of metabolite flows in each biological context. We illustrate our approach with the directed network of the central carbon metabolism of Escherichia coli, and study its properties in four relevant biological scenarios. Our results show that both flow and network structure depend drastically on the environment: networks produced from the same metabolic model in different contexts have different edges, components, and flow communities, capturing the biological re-routing of metab...

  19. Metabolic Syndrome

    Science.gov (United States)

    ... If you already have metabolic syndrome, making these healthy lifestyle choices can help reduce your risk of heart disease and other health problems. If lifestyle changes alone can’t control your ... to help. Maintain a healthy weight Your doctor can measure your body mass ...

  20. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolis...

  1. Metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Charles Shaeffer

    2004-01-01

    @@ The emergence of cardiac disease as the number one world-wide cause of death justifies efforts to identify individuals at higher risk for preventive therapy. The metabolic syndrome, originally described by Reaven, 1 has been associated with higher cardiovascular disease risk. 2 Type Ⅱ diabetes is also a frequent sequela. 3

  2. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942

    Directory of Open Access Journals (Sweden)

    Julián Triana

    2014-08-01

    Full Text Available The reconstruction of genome-scale metabolic models and their applications represent a great advantage of systems biology. Through their use as metabolic flux simulation models, production of industrially-interesting metabolites can be predicted. Due to the growing number of studies of metabolic models driven by the increasing genomic sequencing projects, it is important to conceptualize steps of reconstruction and analysis. We have focused our work in the cyanobacterium Synechococcus elongatus PCC7942, for which several analyses and insights are unveiled. A comprehensive approach has been used, which can be of interest to lead the process of manual curation and genome-scale metabolic analysis. The final model, iSyf715 includes 851 reactions and 838 metabolites. A biomass equation, which encompasses elementary building blocks to allow cell growth, is also included. The applicability of the model is finally demonstrated by simulating autotrophic growth conditions of Synechococcus elongatus PCC7942.

  3. Gerber Technology Unveils New YuniquePLMTM Brand Identity Expressing Commitment to Stimulate the Apparel, Footwear and Soft Goods PLM Landscape

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gerber Technology, a business unit of Gerber Scientific, Inc. (NYSE:GRB) and a world leader in automated CAD/CAM and PLM solutions for the apparel and flexible materials industry, today unveiled its new PLM brand

  4. Effect of sublethal (5, 15, 40, 150, 400 R) whole-body x irradiation on collagen metabolism in the liver manifest as a subnormal response to subsequent carbon tetrachloride injury

    International Nuclear Information System (INIS)

    The effect of sublethal, whole body x-irradiation on the induction of synthesis and the maturation of hepatic collagen was studied. The findings of this study support suggestions made by others that problems in wound healing observed in x-irradiated subjects can be traced in part to defects in collagen metabolism. The model employed was that of acute carbon tetrachloride (CCl4) poisoning of mouse liver. This model was chosen instead of the more conventional skin wounding technique because of its relative ease of application, the uniformity of response, and the ability to clearly define the limits of assay. The fibrotic response of liver to CCl4 was studied 1, 3 and 6 weeks following irradiation (0, 5, 15, 40, 150 or 400 R) and three days after the administration of CCl2. The significance of this work rests with the fact that an alteration of collagen synthesis was demonstrated under CCl4 stress following exposure to a dose as low as 150 R. This x-ray effect was expressed as a reduction in prolyl hydroxylase activity, a key enzyme in the biosynthesis of collagen. Previously, such an effect has only been demonstrated indirectly and with higher doses of radiation, e.g. 1500 R. Further, this sublethal injury was found to require more than 1 week for repair as opposed to 1 hour for the repair of classical sublethal radiation damage. These findings indicate that impaired wound healing observed following x-irradiation may be linked to defects in collagen metabolism and that these defects may remain for more extended periods and result from lower x-ray doses than previously reported

  5. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene–Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Xiayu Wu

    2016-06-01

    Full Text Available Folate-mediated one-carbon metabolism (FMOCM is linked to DNA synthesis, methylation, and cell proliferation. Vitamin B6 (B6 is a cofactor, and genetic polymorphisms of related key enzymes, such as serine hydroxymethyltransferase (SHMT, methionine synthase reductase (MTRR, and methionine synthase (MS, in FMOCM may govern the bioavailability of metabolites and play important roles in the maintenance of genomic stability and cell viability (GSACV. To evaluate the influences of B6, genetic polymorphisms of these enzymes, and gene–nutrient interactions on GSACV, we utilized the cytokinesis-block micronucleus assay (CBMN and PCR-restriction fragment length polymorphism (PCR-RFLP techniques in the lymphocytes from female breast cancer cases and controls. GSACV showed a significantly positive correlation with B6 concentration, and 48 nmol/L of B6 was the most suitable concentration for maintaining GSACV in vitro. The GSACV indexes showed significantly different sensitivity to B6 deficiency between cases and controls; the B6 effect on the GSACV variance contribution of each index was significantly higher than that of genetic polymorphisms and the sample state (tumor state. SHMT C1420T mutations may reduce breast cancer susceptibility, whereas MTRR A66G and MS A2756G mutations may increase breast cancer susceptibility. The role of SHMT, MS, and MTRR genotype polymorphisms in GSACV is reduced compared with that of B6. The results appear to suggest that the long-term lack of B6 under these conditions may increase genetic damage and cell injury and that individuals with various genotypes have different sensitivities to B6 deficiency. FMOCM metabolic enzyme gene polymorphism may be related to breast cancer susceptibility to a certain extent due to the effect of other factors such as stress, hormones, cancer therapies, psychological conditions, and diet. Adequate B6 intake may be good for maintaining genome health and preventing breast cancer.

  6. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene-Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients.

    Science.gov (United States)

    Wu, Xiayu; Xu, Weijiang; Zhou, Tao; Cao, Neng; Ni, Juan; Zou, Tianning; Liang, Ziqing; Wang, Xu; Fenech, Michael

    2016-01-01

    Folate-mediated one-carbon metabolism (FMOCM) is linked to DNA synthesis, methylation, and cell proliferation. Vitamin B6 (B6) is a cofactor, and genetic polymorphisms of related key enzymes, such as serine hydroxymethyltransferase (SHMT), methionine synthase reductase (MTRR), and methionine synthase (MS), in FMOCM may govern the bioavailability of metabolites and play important roles in the maintenance of genomic stability and cell viability (GSACV). To evaluate the influences of B6, genetic polymorphisms of these enzymes, and gene-nutrient interactions on GSACV, we utilized the cytokinesis-block micronucleus assay (CBMN) and PCR-restriction fragment length polymorphism (PCR-RFLP) techniques in the lymphocytes from female breast cancer cases and controls. GSACV showed a significantly positive correlation with B6 concentration, and 48 nmol/L of B6 was the most suitable concentration for maintaining GSACV in vitro. The GSACV indexes showed significantly different sensitivity to B6 deficiency between cases and controls; the B6 effect on the GSACV variance contribution of each index was significantly higher than that of genetic polymorphisms and the sample state (tumor state). SHMT C1420T mutations may reduce breast cancer susceptibility, whereas MTRR A66G and MS A2756G mutations may increase breast cancer susceptibility. The role of SHMT, MS, and MTRR genotype polymorphisms in GSACV is reduced compared with that of B6. The results appear to suggest that the long-term lack of B6 under these conditions may increase genetic damage and cell injury and that individuals with various genotypes have different sensitivities to B6 deficiency. FMOCM metabolic enzyme gene polymorphism may be related to breast cancer susceptibility to a certain extent due to the effect of other factors such as stress, hormones, cancer therapies, psychological conditions, and diet. Adequate B6 intake may be good for maintaining genome health and preventing breast cancer. PMID:27347936

  7. The Role of Genetic Polymorphisms as Related to One-Carbon Metabolism, Vitamin B6, and Gene–Nutrient Interactions in Maintaining Genomic Stability and Cell Viability in Chinese Breast Cancer Patients

    Science.gov (United States)

    Wu, Xiayu; Xu, Weijiang; Zhou, Tao; Cao, Neng; Ni, Juan; Zou, Tianning; Liang, Ziqing; Wang, Xu; Fenech, Michael

    2016-01-01

    Folate-mediated one-carbon metabolism (FMOCM) is linked to DNA synthesis, methylation, and cell proliferation. Vitamin B6 (B6) is a cofactor, and genetic polymorphisms of related key enzymes, such as serine hydroxymethyltransferase (SHMT), methionine synthase reductase (MTRR), and methionine synthase (MS), in FMOCM may govern the bioavailability of metabolites and play important roles in the maintenance of genomic stability and cell viability (GSACV). To evaluate the influences of B6, genetic polymorphisms of these enzymes, and gene–nutrient interactions on GSACV, we utilized the cytokinesis-block micronucleus assay (CBMN) and PCR-restriction fragment length polymorphism (PCR-RFLP) techniques in the lymphocytes from female breast cancer cases and controls. GSACV showed a significantly positive correlation with B6 concentration, and 48 nmol/L of B6 was the most suitable concentration for maintaining GSACV in vitro. The GSACV indexes showed significantly different sensitivity to B6 deficiency between cases and controls; the B6 effect on the GSACV variance contribution of each index was significantly higher than that of genetic polymorphisms and the sample state (tumor state). SHMT C1420T mutations may reduce breast cancer susceptibility, whereas MTRR A66G and MS A2756G mutations may increase breast cancer susceptibility. The role of SHMT, MS, and MTRR genotype polymorphisms in GSACV is reduced compared with that of B6. The results appear to suggest that the long-term lack of B6 under these conditions may increase genetic damage and cell injury and that individuals with various genotypes have different sensitivities to B6 deficiency. FMOCM metabolic enzyme gene polymorphism may be related to breast cancer susceptibility to a certain extent due to the effect of other factors such as stress, hormones, cancer therapies, psychological conditions, and diet. Adequate B6 intake may be good for maintaining genome health and preventing breast cancer. PMID:27347936

  8. C/sub 4/ photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, S.E.

    1984-04-01

    Based on analysis of /sup 14/CO/sub 2/ fixation kinetics and assays of enzymes related to C/sub 4/ metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO/sub 2/ to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO/sub 2/ into RPP-cycle intermediates and sucrose, as well as malate and aspartate. /sup 14/CO/sub 2/ pulse/chase kinetics show no significant loss of label from C/sub 4/ acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ (PEP) = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C/sub 4/ photosynthesis does not occur in callus derived from this C/sub 4/ dicot but is regenerated concomitant with shoot regeneration, and ..beta..-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C/sub 4/ acids that are not involved in the CO/sub 2/ shuttle mechanism characteristic of C/sub 4/ photosynthesis. 161 references, 19 figures, 12 tables.

  9. C4 photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    International Nuclear Information System (INIS)

    Based on analysis of 14CO2 fixation kinetics and assays of enzymes related to C4 metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO2 to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO2 into RPP-cycle intermediates and sucrose, as well as malate and aspartate. 14CO2 pulse/chase kinetics show no significant loss of label from C4 acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ [PEP] = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C4 photosynthesis does not occur in callus derived from this C4 dicot but is regenerated concomitant with shoot regeneration, and β-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C4 acids that are not involved in the CO2 shuttle mechanism characteristic of C4 photosynthesis. 161 references, 19 figures, 12 tables

  10. Photorespiratory glycolate-glyoxylate metabolism.

    Science.gov (United States)

    Dellero, Younès; Jossier, Mathieu; Schmitz, Jessica; Maurino, Veronica G; Hodges, Michael

    2016-05-01

    Photorespiration is one of the major carbon metabolism pathways in oxygen-producing photosynthetic organisms. This pathway recycles 2-phosphoglycolate (2-PG), a toxic metabolite, to 3-phosphoglycerate when ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) uses oxygen instead of carbon dioxide. The photorespiratory cycle is in competition with photosynthetic CO2 fixation and it is accompanied by carbon, nitrogen and energy losses. Thus, photorespiration has become a target to improve crop yields. Moreover, during the photorespiratory cycle intermediate metabolites that are toxic to Calvin-Benson cycle and RuBisCO activities, such as 2-PG, glycolate and glyoxylate, are produced. Thus, the presence of an efficient 2-PG/glycolate/glyoxylate 'detoxification' pathway is required to ensure normal development of photosynthetic organisms. Here we review our current knowledge concerning the enzymes that carry out the glycolate-glyoxylate metabolic steps of photorespiration from glycolate production in the chloroplasts to the synthesis of glycine in the peroxisomes. We describe the properties of the proteins involved in glycolate-glyoxylate metabolism in Archaeplastida and the phenotypes observed when knocking down/out these specific photorespiratory players. Advances in our understanding of the regulation of glycolate-glyoxylate metabolism are highlighted. PMID:26994478

  11. Effects of corn processing method and dietary inclusion of wet distillers grains with solubles on energy metabolism, carbon-nitrogen balance, and methane emissions of cattle.

    Science.gov (United States)

    Hales, K E; Cole, N A; MacDonald, J C

    2012-09-01

    The growing ethanol industry in the Southern Great Plains has increased the use of wet distillers grains with solubles (WDGS) in beef cattle (Bos taurus) finishing diets. Few studies have used steam-flaked corn (Zea mays L.; SFC)-based diets to evaluate the effects of WDGS in finishing cattle diets, and a reliable estimate of the net energy value of WDGS has yet to be determined. Effects of corn processing method and WDGS on energy metabolism, C and N balance, and enteric methane (CH(4)) production were evaluated in a short-term study using 8 Jersey steers and respiration calorimetry chambers. A 2 by 2 factorial arrangement of treatments was used in a Latin square design. The 4 treatment combinations consisted of: i) SFC-based diet with 0% WDGS (SFC-0); ii) SFC-based diet with 30% WDGS (SFC-30); iii) dry-rolled corn (DRC)-based diet with 0% WDGS (DRC-0); and iv) DRC-based diet with 30% WDGS (DRC-30). Diets were balanced for degradable intake protein (DIP) and ether extract (EE) by the addition of cottonseed (Gossypium hirsutum L.) meal and yellow grease. As a proportion of GE, grain processing method did not affect (P ≥ 0.12) fecal, digestible, urinary, and ME, or heat production. Steers consuming SFC-based diets produced less (P < 0.04) CH(4) than steers consuming DRC-based diets. Retained energy tended to be greater (P = 0.09) for cattle consuming SFC- than DRC-based diets. Inclusion of WDGS did not affect (P ≥ 0.17) fecal, digestible, urinary, metabolizable, and retained energy, or heat production as a proportion of GE. Furthermore, neither inclusion of WDGS or grain processing method affected (P ≥ 0.17) daily CO(2) production. Due in part to greater N intake, cattle consuming diets containing 30% WDGS excreted more (P = 0.01) total N and excreted a greater (P < 0.01) quantity of N in the urine. From these results, we conclude that cattle consuming SFC-based diets produce less CH(4) and retain more energy than cattle fed DRC-based diets; however, dietary

  12. Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus in response to partial defoliation by mechanical injury or insect herbivory

    Directory of Open Access Journals (Sweden)

    Castrillón-Arbeláez Paula

    2012-09-01

    Full Text Available Abstract Background Amaranthus cruentus and A. hypochondriacus are crop plants grown for grain production in subtropical countries. Recently, the generation of large-scale transcriptomic data opened the possibility to study representative genes of primary metabolism to gain a better understanding of the biochemical mechanisms underlying tolerance to defoliation in these species. A multi-level approach was followed involving gene expression analysis, enzyme activity and metabolite measurements. Results Defoliation by insect herbivory (HD or mechanical damage (MD led to a rapid and transient reduction of non-structural carbohydrates (NSC in all tissues examined. This correlated with a short-term induction of foliar sucrolytic activity, differential gene expression of a vacuolar invertase and its inhibitor, and induction of a sucrose transporter gene. Leaf starch in defoliated plants correlated negatively with amylolytic activity and expression of a β-amylase-1 gene and positively with a soluble starch synthase gene. Fatty-acid accumulation in roots coincided with a high expression of a phosphoenolpyruvate/phosphate transporter gene. In all tissues there was a long-term replenishment of most metabolite pools, which allowed damaged plants to maintain unaltered growth and grain yield. Promoter analysis of ADP-glucose pyrophosphorylase and vacuolar invertase genes indicated the presence of cis-regulatory elements that supported their responsiveness to defoliation. HD and MD had differential effects on transcripts, enzyme activities and metabolites. However, the correlation between transcript abundance and enzymatic activities was very limited. A better correlation was found between enzymes, metabolite levels and growth and reproductive parameters. Conclusions It is concluded that a rapid reduction of NSC reserves in leaves, stems and roots followed by their long-term recovery underlies tolerance to defoliation in grain amaranth. This requires the

  13. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    OpenAIRE

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. T...

  14. 添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响%Effects of Straw and Black Carbon Addition on C-N Transformation and Microbial Metabolism Profile in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    王娟; 张丽君; 姚槐应

    2013-01-01

    The effects of straw and black carbon addition to paddy soil on carbon and nitrogen transformation were studied in a pot experiment. At booting and mature stages, soil C-N transformation and microbial metabolism profile were analyzed. According to the results of organic carbon, total nitrogen, ammonium concentration, both straw and black carbon addition could promote C-N transformation of paddy soil, thereby enhancing the yield of rice grain to some extent. The results of microbial metabolism identified by Microresp suggested that rising concentrations of straw and carbon had an increasing influence on microbial metabolism. The main reason behind the difference was the higher utilization of fructose, alanine, acetyl glucosamine and lysine-HCl after the soil was amended with straw and black carbon. The effect of straw addition on microbial biomass carbon and net carbon mineralization was significantly higher than that of black carbon. Conversely, black carbon had higher effects on the yield of rice grain and soil carbon sequestration.%通过向水稻土中添加秸秆和黑炭进行水稻盆栽实验(秸秆的添加量为2 g/kg和10 g/kg,黑炭的添加量为5 g/kg和25 g/kg),分别在孕穗期和成熟期取样研究土壤碳氮转化及微生物代谢剖面的变化.对土壤有机碳、全氮、铵氮等含量的测定结果显示,秸秆和黑炭均能于一定程度上促进土壤碳氮转化,提高水稻产量;Microresp方法检测的微生物代谢图谱表明,秸秆和黑炭的添加量越大,对微生物的代谢影响越大.造成这些差异的主要原因是添加秸秆和黑炭后微生物对果糖、丙氨酸、乙酰葡萄糖胺和赖氨酸盐酸盐的利用率上升.另外,秸秆对微生物碳和净碳矿化速率的影响显著高于黑炭,而黑炭对水稻产量和土壤固碳的影响更大.

  15. Secondary psychosis induced by metabolic disorders

    Directory of Open Access Journals (Sweden)

    Olivier eBonnot

    2015-05-01

    Full Text Available Metabolic disorders are not well recognized by psychiatrists as a possible source of secondary psychoses. Inborn errors of metabolism (IEMs are not frequent. Although, their prompt diagnosis may lead to suitable treatments. IEMs are well known to paediatricians, in particular for their most serious forms, having an early expression most of the time. Recent years discoveries have unveiled later expression forms, and sometimes, very discreet first physical signs. There is a growing body of evidence that supports the hypothesis that IEMs can manifest as atypical psychiatric symptoms, even in the absence of clear neurological symptoms. In the present review, we propose a detailed overview at schizophrenia-like and autism-like symptoms that can lead practitioners to bear in mind an IEM. Other psychiatric manifestations are also found, as behavioral., cognitive, learning and mood disorders. However, they are less frequent. Ensuring an accurate IEM diagnosis, in front of these psychiatric symptoms should be a priority, in order to grant suitable and valuable treatment for these pathologies.

  16. Metabolic Engineering of Saccharomyces cerevisiae for Conversion of d-Glucose to Xylitol and Other Five-Carbon Sugars and Sugar Alcohols▿

    Science.gov (United States)

    Toivari, Mervi H.; Ruohonen, Laura; Miasnikov, Andrei N.; Richard, Peter; Penttilä, Merja

    2007-01-01

    Recombinant Saccharomyces cerevisiae strains that produce the sugar alcohols xylitol and ribitol and the pentose sugar d-ribose from d-glucose in a single fermentation step are described. A transketolase-deficient S. cerevisiae strain accumulated d-xylulose 5-phosphate intracellularly and released ribitol and pentose sugars (d-ribose, d-ribulose, and d-xylulose) into the growth medium. Expression of the xylitol dehydrogenase-encoding gene XYL2 of Pichia stipitis in the transketolase-deficient strain resulted in an 8.5-fold enhancement of the total amount of the excreted sugar alcohols ribitol and xylitol. The additional introduction of the 2-deoxy-glucose 6-phosphate phosphatase-encoding gene DOG1 into the transketolase-deficient strain expressing the XYL2 gene resulted in a further 1.6-fold increase in ribitol production. Finally, deletion of the endogenous xylulokinase-encoding gene XKS1 was necessary to increase the amount of xylitol to 50% of the 5-carbon sugar alcohols excreted. PMID:17630301

  17. Unveiling long-term variability in XMM-Newton surveys within the EXTraS project

    Science.gov (United States)

    Rosen, S.; Read, A.; Law-Green, D.; Watson, M.; Pye, J.; O'Brien, P.

    2016-06-01

    The EXTraS project (Exploring the X-ray transient and variable sky) is an EU/FP7-Cooperation Space framework programme that aims to bring together a diverse set of time-domain analyses of XMM-Newton X-ray data and make them available to the public in a coherent manner. Through a combination of pointed observations and slew scans, XMM-Newton has repeatedly observed many regions of the sky, in a few cases up to ˜50 times, ˜70000 sources being observed more than once. While non-uniformly spaced and often sparse, these snapshots provide scientifically valuable information on the photometric behaviour of sources on longer term (hours to ˜ a decade) timescales. Here we describe the collation of XMM-Newton data for long-term variability from the 3XMM-DR5 catalogue, the slew survey and upper-limit information from the associated XMM-Newton products, and the analysis being performed on the ensuing light curves. We also present emerging examples of some newly identified long-term variable sources to highlight the value of this element of the EXTraS project. These longer baseline light curves can (i) unveil variable sources that appear stable in individual observations, (ii) reveal exotic and transient sources and (iii) complement short-term variability information from elsewhere in the EXTraS project by probing slower physical phenomena.

  18. Unveiling the geography of historical patents in the United States from 1836 to 1975.

    Science.gov (United States)

    Petralia, Sergio; Balland, Pierre-Alexandre; Rigby, David L

    2016-01-01

    It is clear that technology is a key driver of economic growth. Much less clear is where new technologies are produced and how the geography of U.S. invention has changed over the last two hundred years. Patent data report the geography, history, and technological characteristics of invention. However, those data have only recently become available in digital form and at the present time there exists no comprehensive dataset on the geography of knowledge production in the United States prior to 1975. The database presented in this paper unveils the geography of historical patents granted by the United States Patent and Trademark Office (USPTO) from 1836 to 1975. This historical dataset, HistPat, is constructed using digitalized records of original patent documents that are publicly available. We describe a methodological procedure that allows recovery of geographical information on patents from the digital records. HistPat can be used in different disciplines ranging from geography, economics, history, network science, and science and technology studies. Additionally, it is easily merged with post-1975 USPTO digital patent data to extend it until today. PMID:27576103

  19. A strategy to unveil transient sources of ultra-high-energy cosmic rays

    Directory of Open Access Journals (Sweden)

    Takami Hajime

    2013-06-01

    Full Text Available Transient generation of ultra-high-energy cosmic rays (UHECRs has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ∼ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.

  20. Unveiling the geography of historical patents in the United States from 1836 to 1975

    Science.gov (United States)

    Petralia, Sergio; Balland, Pierre-Alexandre; Rigby, David L.

    2016-01-01

    It is clear that technology is a key driver of economic growth. Much less clear is where new technologies are produced and how the geography of U.S. invention has changed over the last two hundred years. Patent data report the geography, history, and technological characteristics of invention. However, those data have only recently become available in digital form and at the present time there exists no comprehensive dataset on the geography of knowledge production in the United States prior to 1975. The database presented in this paper unveils the geography of historical patents granted by the United States Patent and Trademark Office (USPTO) from 1836 to 1975. This historical dataset, HistPat, is constructed using digitalized records of original patent documents that are publicly available. We describe a methodological procedure that allows recovery of geographical information on patents from the digital records. HistPat can be used in different disciplines ranging from geography, economics, history, network science, and science and technology studies. Additionally, it is easily merged with post-1975 USPTO digital patent data to extend it until today. PMID:27576103

  1. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis.

    Science.gov (United States)

    Varshney, Pallavi; Narasimhan, Aarti; Mittal, Shankila; Malik, Garima; Sardana, Kabir; Saini, Neeru

    2016-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by altered proliferation and differentiation of keratinocytes as well as infiltration of immune cells. Increased expression of Th17 cells and cytokines secreted by them provides evidence for its central role in the pathogenesis of psoriasis. IL-17A, signature cytokine of Th17 cells was found to be highly differentially expressed in psoriatic lesional skin. However, cellular and molecular mechanism by which IL-17A exerts its function on keratinocyte is incompletely understood. To understand IL-17A mediated signal transduction pathways, gene expression profiling was done and differentially expressed genes were analysed by IPA software. Here, we demonstrate that during IL-17A signaling total cholesterol levels were elevated, which in turn resulted in the suppression of genes of cholesterol and fatty acid biosynthesis. We found that accumulation of cholesterol was essential for IL-17A signaling as reduced total cholesterol levels by methyl β cyclodextrin (MBCD), significantly decreased IL-17A induced secretion of CCL20, IL-8 and S100A7 from the keratinocytes. To our knowledge this study for the first time unveils that high level of intracellular cholesterol plays a crucial role in IL-17A signaling in keratinocytes and may explain the strong association between psoriasis and dyslipidemia. PMID:26781963

  2. Unveiling the gas and dust disk structure in HD 163296 using ALMA observations

    CERN Document Server

    de Gregorio-Monsalvo, I; Dent, W; Pinte, C; López, C; Klaassen, P; Hales, A; Cortés, P; Rawlings, M G; Tachihara, K; Testi, L; Takahashi, S; Chapillon, E; Mathews, G; Juhasz, A; Akiyama, E; Higuchi, A E; Saito, M; Nyman, L - Å; Phillips, N; Rodń, J; Corder, S; Van Kempen, T

    2013-01-01

    Aims: The aim of this work is to study the structure of the protoplanetary disk surrounding the Herbig Ae star HD 163296. Methods: We have used high-resolution and high-sensitivity ALMA observations of the CO(3-2) emission line and the continuum at 850 microns, as well as the 3- dimensional radiative transfer code MCFOST to model the data presented in this work. Results: The CO(3-2) emission unveils for the first time at sub-millimeter frequencies the vertical structure details of a gaseous disk in Keplerian rotation, showing the back- and the front-side of a flared disk. Continuum emission at 850 microns reveals a compact dust disk with a 240 AU outer radius and a surface brightness profile that shows a very steep decline at radius larger than 125 AU. The gaseous disk is more than two times larger than the dust disk, with a similar critical radius but with a shallower radial profile. Radiative transfer models of the continuum data confirms the need for a sharp outer edge to the dust disk. The models for the ...

  3. Unveiling Gargantua: A new search strategy for the most massive central cluster black holes

    CERN Document Server

    Brockamp, Michael; Britzen, Silke; Zensus, Anton

    2016-01-01

    We aim to unveil the most massive central cluster black holes in the universe. We present a new search strategy which is based on a black hole mass gain sensitive 'calorimeter' and which links the innermost stellar density profile of a galaxy to the adiabatic growth of its central SMBH. In a first step we convert observationally inferred feedback powers into SMBH growth rates by using reasonable energy conversion efficiency parameters, $\\epsilon$. In the main part of this paper we use these black hole growth rates, sorted in logarithmically increasing steps encompassing our whole parameter space, to conduct $N$-Body computations of brightest cluster galaxies with the newly developed MUESLI software. For the initial setup of galaxies we use core-Sersic models in order to account for SMBH scouring. We find that adiabatically driven core re-growth is significant at the highest accretion rates. As a result, the most massive black holes should be located in BCGs with less pronounced cores when compared to the pred...

  4. A possible mechanism of metabolic regulation in Gibberella fujikuroi using a mixed carbon source of glucose and corn oil inferred from analysis of the kinetics data obtained in a stirrer tank bioreactor.

    Science.gov (United States)

    Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M

    2013-01-01

    A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. PMID:23825106

  5. Metabolic flux rewiring in mammalian cell cultures.

    Science.gov (United States)

    Young, Jamey D

    2013-12-01

    Continuous cell lines (CCLs) engage in 'wasteful' glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  6. Unveiling orbital angular momentum and acceleration of light beams and electron beams

    Science.gov (United States)

    Arie, Ady

    Special beams, such as the vortex beams that carry orbital angular momentum (OAM) and the Airy beam that preserves its shape while propagating along parabolic trajectory, have drawn significant attention recently both in light optics and in electron optics experiments. In order to utilize these beams, simple methods are needed that enable to easily quantify their defining properties, namely the OAM for the vortex beams and the nodal trajectory acceleration coefficient for the Airy beam. Here we demonstrate a straightforward method to determine these quantities by astigmatic Fourier transform of the beam. For electron beams in a transmission electron microscope, this transformation is easily realized using the condenser and objective stigmators, whereas for light beam this can be achieved using a cylindrical lens. In the case of Laguerre-Gauss vortex beams, it is already well known that applying the astigmatic Fourier transformation converts them to Hermite-Gauss beams. The topological charge (and hence the OAM) can be determined by simply counting the number of dark stripes of the Hermite-Gauss beam. We generated a series of electron vortex beams and managed to determine the topological charge up to a value of 10. The same concept of astigmatic transformation was then used to unveil the acceleration of an electron Airy beam. The shape of astigmatic-transformed depends only on the astigmatic measure and on the acceleration coefficient. This method was experimentally verified by generating electron Airy beams with different known acceleration parameters, enabling direct comparison to the deduced values from the astigmatic transformation measurements. The method can be extended to other types of waves. Specifically, we have recently used it to determine the acceleration of an optical Airy beams and the topological charge of so-called Airy-vortex light beam, i.e. an Airy light beam with an embedded vortex. This work was supported by DIP and the Israel Science

  7. A new 4D trajectory-based approach unveils abnormal LV revolution dynamics in hypertrophic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Andrea Madeo

    these methods. Left ventricle deformation in patients affected by hypertrophic cardiomyopathy compared to healthy subjects may be assessed by modern shape analysis better than by traditional 3D Speckle Tracking Echocardiography global parameters. Hypertrophic cardiomyopathy pathophysiology was unveiled in a new manner whereby also diastolic phase abnormalities are evident which is more difficult to investigate by traditional ecocardiographic techniques.

  8. Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics.

    Science.gov (United States)

    Alves, Luiz G A; Ribeiro, Haroldo V; Lenzi, Ervin K; Mendes, Renio S

    2013-01-01

    We report on a quantitative analysis of relationships between the number of homicides, population size and ten other urban metrics. By using data from Brazilian cities, we show that well-defined average scaling laws with the population size emerge when investigating the relations between population and number of homicides as well as population and urban metrics. We also show that the fluctuations around the scaling laws are log-normally distributed, which enabled us to model these scaling laws by a stochastic-like equation driven by a multiplicative and log-normally distributed noise. Because of the scaling laws, we argue that it is better to employ logarithms in order to describe the number of homicides in function of the urban metrics via regression analysis. In addition to the regression analysis, we propose an approach to correlate crime and urban metrics via the evaluation of the distance between the actual value of the number of homicides (as well as the value of the urban metrics) and the value that is expected by the scaling law with the population size. This approach has proved to be robust and useful for unveiling relationships/behaviors that were not properly carried out by the regression analysis, such as [Formula: see text] the non-explanatory potential of the elderly population when the number of homicides is much above or much below the scaling law, [Formula: see text] the fact that unemployment has explanatory potential only when the number of homicides is considerably larger than the expected by the power law, and [Formula: see text] a gender difference in number of homicides, where cities with female population below the scaling law are characterized by a number of homicides above the power law. PMID:23940525

  9. Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics.

    Directory of Open Access Journals (Sweden)

    Luiz G A Alves

    Full Text Available We report on a quantitative analysis of relationships between the number of homicides, population size and ten other urban metrics. By using data from Brazilian cities, we show that well-defined average scaling laws with the population size emerge when investigating the relations between population and number of homicides as well as population and urban metrics. We also show that the fluctuations around the scaling laws are log-normally distributed, which enabled us to model these scaling laws by a stochastic-like equation driven by a multiplicative and log-normally distributed noise. Because of the scaling laws, we argue that it is better to employ logarithms in order to describe the number of homicides in function of the urban metrics via regression analysis. In addition to the regression analysis, we propose an approach to correlate crime and urban metrics via the evaluation of the distance between the actual value of the number of homicides (as well as the value of the urban metrics and the value that is expected by the scaling law with the population size. This approach has proved to be robust and useful for unveiling relationships/behaviors that were not properly carried out by the regression analysis, such as [Formula: see text] the non-explanatory potential of the elderly population when the number of homicides is much above or much below the scaling law, [Formula: see text] the fact that unemployment has explanatory potential only when the number of homicides is considerably larger than the expected by the power law, and [Formula: see text] a gender difference in number of homicides, where cities with female population below the scaling law are characterized by a number of homicides above the power law.

  10. Epigenetic modulation of RFC1, MHC2TA and HLA-DR in systemic lupus erythematosus: association with serological markers and six functional polymorphisms of one-carbon metabolic pathway.

    Science.gov (United States)

    Rupasree, Yedluri; Naushad, Shaik Mohammad; Rajasekhar, Liza; Kutala, Vijay Kumar

    2014-02-15

    The current study was conducted to elucidate the effect of genetic variations in one-carbon metabolism on the epigenetic regulation of major histocompatibility complex II transactivator (MHC2TA), reduced folate carrier 1 (RFC1/SLC19A1) and human leukocyte antigen (HLA)-DR in systemic lupus erythematosus (SLE). PCR-RFLP/AFLP, bisulfite-sequencing and real-time PCR approaches were used for genetic, epigenetic and expression analysis respectively. SLE cases exhibited elevated plasma homocysteine levels compared to healthy controls (24.93 ± 1.3 vs. 11.67 ± 0.48 μmol/l), while plasma folate levels showed no association (7.10 ± 2.49 vs. 7.64 ± 2.09 ng/ml). The RFC1 80G>A polymorphism showed 1.32-fold risk (95% CI: 1.02-1.72) for SLE, while glutamate carboxypeptidase II (GCPII) 1561C>T showed reduced risk (OR: 0.47, 95% CI: 0.24-0.90). The expression of RFC1 (0.37 ± 0.09 vs. 0.60 ± 0.17) and HLA-DR (0.68 ± 0.17 vs. 0.98 ± 0.02) was down regulated in the SLE cases. The hypermethylation of RFC1 as observed in the current study may contribute for its down regulation. Plasma folate and thymidylate synthase (TYMS) 5'-UTR 28 bp tandem repeat showed an inverse association with methylation of RFC1 and MHC2TA. SLE cases with hypocomplementemia showed hypermethylation of RFC1, hypomethylation/up regulation of MHC2TA and down regulation of HLA-DR. The hypermethylation of MHC2TA and down regulation of RFC1, MHC2TA and HLA-DR were observed in anti-cardiolipin antibody positive SLE cases. The up regulation of RFC1 and HLA-DR was observed in anti-dsDNA antibody positive SLE cases. The hypomethylation/upregulation of RFC1 and MHC2TA was observed in anti-RNP antibody positive cases. To conclude, one-carbon genetic variants influence epigenetic of MHC2TA and RFC1, thus contributing to phenotypic heterogeneity of SLE. PMID:24333266

  11. Metabolic flux rewiring in mammalian cell cultures

    OpenAIRE

    Young, Jamey D.

    2013-01-01

    Continuous cell lines (CCLs) engage in “wasteful” glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phe...

  12. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients.

    Science.gov (United States)

    Midttun, Oivind; Townsend, Mary K; Nygård, Ottar; Tworoger, Shelley S; Brennan, Paul; Johansson, Mattias; Ueland, Per Magne

    2014-05-01

    Knowledge of stability during sample transportation and changes in biomarker concentrations within person over time are paramount for proper design and interpretation of epidemiologic studies based on a single measurement of biomarker status. Therefore, we investigated stability and intraindividual vs. interindividual variation in blood concentrations of biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway. Whole blood (EDTA and heparin, n = 12) was stored with an icepack for 24 or 48 h, and plasma concentrations of 38 biomarkers were determined. Stability was calculated as change per hour, intraclass correlation coefficient (ICC), and simple Spearman correlation. Within-person reproducibility of biomarkers was expressed as ICC in samples collected 1-2 y apart from 40 postmenopausal women and in samples collected up to 3 y apart from 551 patients with stable angina pectoris. Biomarker stability was similar in EDTA and heparin blood. Most biomarkers were essentially stable, except for choline and total homocysteine (tHcy), which increased markedly. Within-person reproducibility in postmenopausal women was excellent (ICC > 0.75) for cotinine, all-trans retinol, cobalamin, riboflavin, α-tocopherol, Gly, pyridoxal, methylmalonic acid, creatinine, pyridoxal 5'-phosphate, and Ser; was good to fair (ICC of 0.74-0.40) for pyridoxic acid, kynurenine, tHcy, cholecalciferol, flavin mononucleotide, kynurenic acid, xanthurenic acid, 3-hydroxykynurenine, sarcosine, anthranilic acid, cystathionine, homoarginine, 3-hydroxyanthranilic acid, betaine, Arg, folate, total cysteine, dimethylglycine, asymmetric dimethylarginine, neopterin, symmetric dimethylarginine, and Trp; and poor (ICC of 0.39-0.15) for methionine sulfoxide, Met, choline, and trimethyllysine. Similar reproducibilities were observed in patients with coronary heart disease. Thus, most biomarkers investigated were essentially stable in cooled whole blood for up to 48 h and had a

  13. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  14. Blueberries and Metabolic Syndrome

    Science.gov (United States)

    Metabolic Syndrome is a cluster of metabolic disorders that increase the risk of cardiovascular diseases. Type 2 diabetes, elevated blood pressure, and atherogenic dyslipidemia are among the metabolic alterations that predispose the individual to several adverse cardiovascular complications. The hea...

  15. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... in your body tissues. If you have a metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally your enzymes break carbohydrates down into glucose ( ...

  16. Electrochemistry-Mass Spectrometry Unveils the Formation of Reactive Triclocarban MetabolitesS⃞

    OpenAIRE

    Baumann, A.; Lohmann, W.; Rose, T.; Ahn, K. C.; Hammock, B. D.; Karst, U.; Schebb, N. H.

    2010-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide, TCC) is a widely used antibacterial agent in personal care products and is frequently detected as an environmental pollutant in waste waters and surface waters. In this study, we report novel reactive metabolites potentially formed during biotransformation of TCC. The oxidative metabolism of TCC has been predicted using an electrochemical cell coupled online to ...

  17. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles.

    Science.gov (United States)

    Immonen, E; Rönn, J; Watson, C; Berger, D; Arnqvist, G

    2016-02-01

    The lack of evolutionary response to selection on mitochondrial genes through males predicts the evolution of nuclear genetic influence on male-specific mitochondrial function, for example by gene duplication and evolution of sex-specific expression of paralogs involved in metabolic pathways. Intergenomic epistasis may therefore be a prevalent feature of the genetic architecture of male-specific organismal function. Here, we assess the role of mitonuclear genetic variation for male metabolic phenotypes [metabolic rate and respiratory quotient (RQ)] associated with ejaculate renewal, in the seed beetle Callosobruchus maculatus, by assaying lines with crossed combinations of distinct mitochondrial haplotypes and nuclear lineages. We found a significant increase in metabolic rate following mating relative to virgin males. Moreover, processes associated with ejaculate renewal showed variation in metabolic rate that was affected by mitonuclear interactions. Mitochondrial haplotype influenced mating-related changes in RQ, but this pattern varied over time. Mitonuclear genotype and the energy spent during ejaculate production affected the weight of the ejaculate, but the strength of this effect varied across mitochondrial haplotypes showing that the genetic architecture of male-specific reproductive function is complex. Our findings unveil hitherto underappreciated metabolic costs of mating and ejaculate renewal, and provide the first empirical demonstration of mitonuclear epistasis on male reproductive metabolic processes. PMID:26548644

  18. Unveiling topographical changes using LiDAR mapping capability: case study of Belaga in Sarawak, East-Malaysia

    Science.gov (United States)

    Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.

    2016-06-01

    The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.

  19. Adaptive evolution of complex innovations through stepwise metabolic niche expansion.

    Science.gov (United States)

    Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs

    2016-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754

  20. Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.

    Science.gov (United States)

    Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R

    2016-08-01

    Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders. PMID:27302655

  1. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    Directory of Open Access Journals (Sweden)

    Ana Rita Seabra

    2015-07-01

    Full Text Available Glutamine Synthetase (GS catalyses the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of glutamine synthetase isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.

  2. Redesigned Human Metabolic Simulator

    Science.gov (United States)

    Duffield, Bruce; Jeng, Frank; Lange, Kevin

    2008-01-01

    A design has been formulated for a proposed improved version of an apparatus that simulates atmospheric effects of human respiration by introducing controlled amounts of carbon dioxide, water vapor, and heat into the air. Denoted a human metabolic simulator (HMS), the apparatus is used for testing life-support equipment when human test subjects are not available. The prior version of the HMS, to be replaced, was designed to simulate the respiratory effects of as many as four persons. It exploits the catalytic combustion of methyl acetate, for which the respiratory quotient (the molar ratio of carbon dioxide produced to oxygen consumed) is very close to the human respiratory quotient of about 0.86. The design of the improved HMS provides for simulation of the respiratory effects of as many as eight persons at various levels of activity. The design would also increase safety by eliminating the use of combustion. The improved HMS (see figure) would include a computer that would exert overall control. The computer would calculate the required amounts of oxygen removal, carbon dioxide addition, water addition, and heat addition by use of empirical equations for metabolic profiles of respiration and heat. A blower would circulate air between the HMS and a chamber containing a life-support system to be tested. With the help of feedback from a mass flowmeter, the blower speed would be adjusted to regulate the rate of flow according to the number of persons to be simulated and to a temperature-regulation requirement (the air temperature would indirectly depend on the rate of flow, among other parameters). Oxygen would be removed from the circulating air by means of a commercially available molecular sieve configured as an oxygen concentrator. Oxygen, argon, and trace amounts of nitrogen would pass through a bed in the molecular sieve while carbon dioxide, the majority of nitrogen, and other trace gases would be trapped by the bed and subsequently returned to the chamber. If

  3. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis

    OpenAIRE

    Young, Jamey D.; Shastri, Avantika A.; Stephanopoulos, Gregory; Morgan, John A.

    2011-01-01

    Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis of dynamic isotope labeling measurements and have applied it to determine metabolic pathway fluxes in the cyanobacterium Synechocystis sp. PCC6803. Comparison to a theoretically...

  4. Respiration, respiratory metabolism and energy consumption under weightless conditions

    Science.gov (United States)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  5. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Unveiling stories to the oncologist: a matter of sharing and healing

    Directory of Open Access Journals (Sweden)

    Marisa Cordella

    2007-12-01

    Full Text Available This study expands on previous research done on doctor-patient communication in primary care. In particular, it explores the unfolding of patients' personal stories in a check up consultation with a cancer specialist. The corpus of this study is based on twelve patients ranging from 20 to 80 years of age attending a cancer clinic in Santiago, Chile. The medical consultations were tape-recorded and a total of thirty six stories were collected. Storytelling is broadly defined here to encapsulate participants' telling of a past event which informs us about patients' and families' attitudes toward the disease and gives us more knowledge as to how they are dealing and coping with the health condition they are experiencing. The analysis focuses on the micro-analysis of personal stories and the analysis of 'voices' introduced by Cordella (2004 in the context of primary care consultations. Among these 'voices' there are two which are particularly relevant here: the voice of Health-related storytelling and the voice of Social Communicator. Results show that while the voice of Health-related storytelling includes examples in which patients align to the medical script of the consultation and convey stories around their medical condition, the voice of Social Communicator unveils a wealth of material and personal stories that validates the patient as a person despite being under treatment for a medical condition. Patients in this 'voice' articulate a discourse about their self-identity, which contrasts with the stereotypically portrayed sick image of patients. The outcome creates a unique platform of communication that favours the doctor's understanding of patient's wellbeing. ------------------------------------------------- El desarrollo de las historias personales en la consulta oncológica: una forma de compartir y atender la enfermedad. Esta investigación estudia las historias personales que los pacientes oncológicos exponen durante la visita m

  7. THE METABOLISM OF NALED INHALED BY RATS

    Science.gov (United States)

    Naled (Dibrom) was prepared with a (14)carbon label in the 1-ethyl position. The labeled compound was administered in appropriate formulation vehicles to female rats by the inhalation, oral or intraperitoneal routes. Treated animals were either placed in metabolism cages and thei...

  8. Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp PCC 6803

    OpenAIRE

    Knoop, Henning; Gründel, Marianne; Zilliges, Yvonne; Lehmann, Robert; Hoffmann, Sabrina; Lockau, Wolfgang; Steuer, Ralf

    2013-01-01

    Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria necessitates an in-depth understanding of the metabolic interconversions taking place during phototro...

  9. Immunomodulatory Pathways and Metabolism

    OpenAIRE

    Bhargava, Prerna

    2012-01-01

    Energy metabolism plays a vital role in normal physiology, adaptive responses and host defense mechanisms. Research throughout the last decade has shown evidence that immune pathways communicate with metabolic pathways to alter the metabolic status in response to physiological or pathological signals. In this thesis, I will explore how immunomodulatory molecules affect metabolic homeostasis and conversely, how metabolic sensing pathways modulate immune responses. The first part my work utiliz...

  10. In vivo stoichiometry of photorespiratory metabolism.

    Science.gov (United States)

    Abadie, Cyril; Boex-Fontvieille, Edouard R A; Carroll, Adam J; Tcherkez, Guillaume

    2016-01-01

    Photorespiration is a major light-dependent metabolic pathway that consumes oxygen and produces carbon dioxide. In the metabolic step responsible for carbon dioxide production, two molecules of glycine (equivalent to two molecules of O2) are converted into one molecule of serine and one molecule of CO2. Here, we use quantitative isotopic techniques to determine the stoichiometry of this reaction in sunflower leaves, and thereby the O2/CO2 stoichiometry of photorespiration. We find that the effective O2/CO2 stoichiometric coefficient at the leaf level is very close to 2 under normal photorespiratory conditions, in line with expectations, but increases slightly at high rates of photorespiration. The net metabolic impact of this imbalance is likely to be modest. PMID:27249192

  11. Characterization of the Tunicamycin Gene Cluster Unveiling Unique Steps Involved in its Biosynthesis

    Science.gov (United States)

    Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an aß-1,1-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamy...

  12. IEEE Milestone at CERN - W Cleon Anderson (right), president of the Institute of Electrical and Electronics Engineers, unveils the Milestone plaque at CERN, together with Georges Charpak

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    At a ceremony on 26 September at CERN, W Cleon Anderson, president of the Institute of Electrical and Electronics Engineers (IEEE), formally dedicated a "Milestone" plaque in recognition of the invention of electronic particle detectors at CERN. The plaque was unveiled by Anderson and Georges Charpak, the Nobel-prize winning inventor of wire-chamber technology at CERN.

  13. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically...

  14. Metabolic activity, experiment M171. [space flight effects on human metabolism

    Science.gov (United States)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  15. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment.

    Science.gov (United States)

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  16. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    Directory of Open Access Journals (Sweden)

    Hikaru eSuenaga

    2015-09-01

    Full Text Available Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and therefore enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.

  17. Serine and glycine metabolism in cancer☆

    Science.gov (United States)

    Amelio, Ivano; Cutruzzolá, Francesca; Antonov, Alexey; Agostini, Massimiliano; Melino, Gerry

    2014-01-01

    Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers. PMID:24657017

  18. Unveiling temporal correlations in the intensity of a fibre laser during the transition to optical wave turbulence

    CERN Document Server

    Aragoneses, Andres; Tarasov, Nikita; Churkin, Dmitry V; Torrent, M C; Masoller, Cristina; Turitsyn, Sergei K

    2016-01-01

    We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fibre laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measured laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well defined time-scales and are able to uncover correlations both, in the timing of the laser pulses and in their peak intensities. Our findings are relevant for other complex systems that undergo similar transitions involving the generation of extreme fluctuations, where underlying correlations could be found by using appropriated analysis tools.

  19. Unveiling the strangeness secrets: low-energy kaon-nucleon/nuclei interactions studies at DAΦNE

    Science.gov (United States)

    Curceanu, C.; Bazzi, M.; Beer, G.; Berucci, C.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; D'Uffizi, A.; Fabbietti, L.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Levi Sandri, P.; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Ponta, T.; Quaglia, R.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tucaković, I.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2014-03-01

    The DAΦNE electron-positron collider at the Laboratori Nazionali di Frascati of INFN, Italy has made available a unique quality low-energy negatively charged kaons "beam", which is used to unveil the secrets of the kaon-nucleon/nuclei interactions at low energies by the SIDDHARTA-2 and AMADEUS experiments. SIDDHARTA has already performed unprecedented precision measurements of kaonic atoms, and is being presently upgraded, as SIDDHARTA-2, to approach new frontiers. The AMADEUS experiment plans to perform in the coming years precision measurements on kaon-nuclei interactions at low-energies, to study the possible formation of kaonic nuclei, of the Λ(1405) and of many other processes involving strangeness.

  20. Unveiling the strangeness secrets: low-energy kaon-nucleon/nuclei interactions studies at DAΦNE

    Directory of Open Access Journals (Sweden)

    Curceanu C.

    2014-03-01

    Full Text Available The DAΦNE electron-positron collider at the Laboratori Nazionali di Frascati of INFN, Italy has made available a unique quality low-energy negatively charged kaons “beam”, which is used to unveil the secrets of the kaon-nucleon/nuclei interactions at low energies by the SIDDHARTA-2 and AMADEUS experiments. SIDDHARTA has already performed unprecedented precision measurements of kaonic atoms, and is being presently upgraded, as SIDDHARTA-2, to approach new frontiers. The AMADEUS experiment plans to perform in the coming years precision measurements on kaon-nuclei interactions at low-energies, to study the possible formation of kaonic nuclei, of the Λ(1405 and of many other processes involving strangeness.

  1. Nort-South gradients in plasma concentrations of B-vitamins and other components of one-carbon metabolism in Western Europe: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study

    OpenAIRE

    Eussen, S.J.P.M.; Nilsen, R.M.; Midttun, O.; Hustad, S.; IJssenagger, N.; De Meyer, K.; Fredriksen, A.; Ulvik, A.; Ueland, P. M.; Brennan, P; Johansson, M; Bueno-De-Mesquita, B; Vineis, P; Chuang, S. C.; Boutron-Ruault, M. C.

    2013-01-01

    Different lifestyle patterns across Europe may influence plasma concentrations of B-vitamins and one-carbon metabolites and their relation to chronic disease. Comparison of published data on one-carbon metabolites in Western European regions is difficult due to differences in sampling procedures and analytical methods between studies. The present study aimed, to compare plasma concentrations of one-carbon metabolites in Western European regions with one laboratory performing all biochemical a...

  2. PII, the key regulator of nitrogen metabolism in the cyanobacteria

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; ZHAO JinDong

    2008-01-01

    PII proteins are a protein family important to signal transduction in bacteria and plants. PII plays a critical role in regulation of carbon and nitrogen metabolism in cyanobacteria. Through conformation change and covalent modification, which are regulated by 2-oxoglutarate, PII interacts with different target proteins in response to changes of cellular energy status and carbon and nitrogen sources in cyanobacteria and regulates cellular metabolism. This article reports recent progress in PII research in cyanobacteria and discusses the mechanism of PII regulation of cellular metabolism.

  3. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit

    OpenAIRE

    Dai, Z.; Leon, C.; Feil, R.; Lunn, J.; Delrot, S.; Gomes, E.

    2013-01-01

    Changes in carbohydrate metabolism during grape berry development play a central role in shaping the final composition of the fruit. The present work aimed to identify metabolic switches during grape development and to provide insights into the timing of developmental regulation of carbohydrate metabolism. Metabolites from central carbon metabolism were measured using high-pressure anion-exchange chromatography coupled to tandem mass spectrometry and enzymatic assays during the development of...

  4. Genotype networks, innovation, and robustness in sulfur metabolism

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2011-03-01

    involved in sulfur metabolism is organized similarly to that of carbon metabolism. We demonstrate that the maximum genotype distance and robustness of metabolic networks can be explained by the number of superessential reactions and by the sizes of minimal metabolic networks viable in an environment. In contrast to the genotype space of macromolecules, where phenotypic robustness may facilitate phenotypic innovation, we show that here the ability to access novel phenotypes does not monotonically increase with robustness.

  5. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network.

    Science.gov (United States)

    Hodges, Michael; Dellero, Younès; Keech, Olivier; Betti, Marco; Raghavendra, Agepati S; Sage, Rowan; Zhu, Xin-Guang; Allen, Doug K; Weber, Andreas P M

    2016-05-01

    Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses. PMID:27053720

  6. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  7. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    Science.gov (United States)

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined. PMID:27468292

  8. Carbohydrate metabolism in catfish

    International Nuclear Information System (INIS)

    Radiolabeled (U- 14C)-glucose was incorporated in diets and forced-fed to channel catfish and was observed for a 24 hour period. About 95% of fed labeled (U-14C)-glucose was absorbed by catfish, showing a high digestibility of glucose. The amounts of 14C excreted over 24 h as carbon dioxide were 49% and amounts excreted in urine were 3.5%. The amount retained as protein, fat glycogen and other organic compounds were 8.2, 1.2, 6.5 and 32.1 % respectively, for the 24 hour period. The blood concentration of 14 C reached a maximum 2.5 hour after feeding (U-14C)-glucose, then gradually decreased. Based on tissue concentrations of 14C, glycogen was an immediate storage site for absorbed glucose, but 14C- glycogen in liver decreased rapidly. Glucose was quickly and heavily converted into triglyceride, indicating that fat is an important intermediate in the metabolism of glucose in channel catfish. 14C-fat in the serum and liver were transferred to the adipose tissue in the muscle and mesentery about 10 hours after feeding. (Author)

  9. Inborn errors of metabolism

    Science.gov (United States)

    ... metabolism. A few of them are: Fructose intolerance Galactosemia Maple sugar urine disease (MSUD) Phenylketonuria (PKU) Newborn ... disorder. Alternative Names Metabolism - inborn errors of Images Galactosemia References Bodamer OA. Approach to inborn errors of ...

  10. Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition.

    Science.gov (United States)

    Abellán Flos, Marta; García Moreno, M Isabel; Ortiz Mellet, Carmen; García Fernández, Jose Manuel; Nierengarten, Jean-Francois; Vincent, Stéphane P

    2016-08-01

    Glycosidases are key enzymes in metabolism, pathogenic/antipathogenic mechanisms and normal cellular functions. Recently, a novel approach for glycosidase inhibition that conveys multivalent glycomimetic conjugates has emerged. Many questions regarding the mechanism(s) of multivalent enzyme inhibition remain unanswered. Herein we report the synthesis of a collection of novel homo- and heterovalent glyco(mimetic)-fullerenes purposely conceived for probing the contribution of non-catalytic pockets in glysosidases to the multivalent inhibitory effect. Their affinities towards selected glycosidases were compared with data from homovalent fullerene conjugates. An original competitive glycosidase-lectin binding assay demonstrated that the multivalent derivatives and the substrate compete for low affinity non-glycone binding sites of the enzyme, leading to inhibition by a "recognition and blockage" mechanism. Most notably, this work provides evidence for enzyme inhibition by multivalent glycosystems, which will likely have a strong impact in the glycosciences given the utmost relevance of multivalency in Nature. PMID:27374430

  11. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  12. Metabolic Syndrome and Migraine

    OpenAIRE

    Sachdev, Amit; Marmura, Michael J.

    2012-01-01

    Migraine and metabolic syndrome are highly prevalent and costly conditions. The two conditions coexist, but it is unclear what relationship may exist between the two processes. Metabolic syndrome involves a number of findings, including insulin resistance, systemic hypertension, obesity, a proinflammatory state, and a prothrombotic state. Only one study addresses migraine in metabolic syndrome, finding significant differences in the presentation of metabolic syndrome in migraineurs. However, ...

  13. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    Directory of Open Access Journals (Sweden)

    Martinson John

    2011-05-01

    Full Text Available Abstract Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices.

  14. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  15. Metabolic engineering in methanotrophic bacteria.

    Science.gov (United States)

    Kalyuzhnaya, Marina G; Puri, Aaron W; Lidstrom, Mary E

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. PMID:25825038

  16. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  17. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  18. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis.

    Science.gov (United States)

    Torrano, Veronica; Valcarcel-Jimenez, Lorea; Cortazar, Ana Rosa; Liu, Xiaojing; Urosevic, Jelena; Castillo-Martin, Mireia; Fernández-Ruiz, Sonia; Morciano, Giampaolo; Caro-Maldonado, Alfredo; Guiu, Marc; Zúñiga-García, Patricia; Graupera, Mariona; Bellmunt, Anna; Pandya, Pahini; Lorente, Mar; Martín-Martín, Natalia; David Sutherland, James; Sanchez-Mosquera, Pilar; Bozal-Basterra, Laura; Zabala-Letona, Amaia; Arruabarrena-Aristorena, Amaia; Berenguer, Antonio; Embade, Nieves; Ugalde-Olano, Aitziber; Lacasa-Viscasillas, Isabel; Loizaga-Iriarte, Ana; Unda-Urzaiz, Miguel; Schultz, Nikolaus; Aransay, Ana Maria; Sanz-Moreno, Victoria; Barrio, Rosa; Velasco, Guillermo; Pinton, Paolo; Cordon-Cardo, Carlos; Locasale, Jason W; Gomis, Roger R; Carracedo, Arkaitz

    2016-06-01

    Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment. PMID:27214280

  19. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.

    Science.gov (United States)

    Vongsangnak, Wanwipa; Klanchui, Amornpan; Tawornsamretkit, Iyarest; Tatiyaborwornchai, Witthawin; Laoteng, Kobkul; Meechai, Asawin

    2016-06-01

    We present a novel genome-scale metabolic model iWV1213 of Mucor circinelloides, which is an oleaginous fungus for industrial applications. The model contains 1213 genes, 1413 metabolites and 1326 metabolic reactions across different compartments. We demonstrate that iWV1213 is able to accurately predict the growth rates of M. circinelloides on various nutrient sources and culture conditions using Flux Balance Analysis and Phenotypic Phase Plane analysis. Comparative analysis of three oleaginous genome-scale models, including M. circinelloides (iWV1213), Mortierella alpina (iCY1106) and Yarrowia lipolytica (iYL619_PCP) revealed that iWV1213 possesses a higher number of genes involved in carbohydrate, amino acid, and lipid metabolisms that might contribute to its versatility in nutrient utilization. Moreover, the identification of unique and common active reactions among the Zygomycetes oleaginous models using Flux Variability Analysis unveiled a set of gene/enzyme candidates as metabolic engineering targets for cellular improvement. Thus, iWV1213 offers a powerful metabolic engineering tool for multi-level omics analysis, enabling strain optimization as a cell factory platform of lipid-based production. PMID:26911256

  20. Polyamine Metabolism Is Sensitive to Glycolysis Inhibition in Human Neuroblastoma Cells*

    Science.gov (United States)

    Ruiz-Pérez, M. Victoria; Medina, Miguel Ángel; Urdiales, José Luis; Keinänen, Tuomo A.; Sánchez-Jiménez, Francisca

    2015-01-01

    Polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. The oncogene n-myc is known to potentiate polyamine metabolism. Neuroblastoma, the most frequent extracranial solid tumor in children, harbors the amplification of n-myc oncogene in 25% of the cases, and it is associated with treatment failure and poor prognosis. We evaluated several metabolic features of the human neuroblastoma cell lines Kelly, IMR-32, and SK-N-SH. We further investigated the effects of glycolysis impairment in polyamine metabolism in these cell lines. A previously unknown linkage between glycolysis impairment and polyamine reduction is unveiled. We show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and a subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and polyamine metabolism impairment, leading to cell death, and its apparent dependence on n-myc. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc-expressing tumors. PMID:25593318

  1. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new process...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology.......Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...

  2. Integrative metabolic engineering

    Directory of Open Access Journals (Sweden)

    George H McArthur IV

    2015-07-01

    Full Text Available Recent advances in experimental and computational synthetic biology are extremely useful for achieving metabolic engineering objectives. The integration of synthetic biology and metabolic engineering within an iterative design-build-test framework will improve the practice of metabolic engineering by relying more on efficient design strategies. Computational tools that aid in the design and in silico simulation of metabolic pathways are especially useful. However, software helpful for constructing, implementing, measuring and characterizing engineered pathways and networks should not be overlooked. In this review, we highlight computational synthetic biology tools relevant to metabolic engineering, organized in the context of the design-build-test cycle.

  3. Interdisciplinary Pathways for Urban Metabolism Research

    Science.gov (United States)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material

  4. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention

    DEFF Research Database (Denmark)

    Bondia-Pons, Isabel; Barri, Thaer; Hanhineva, Kati;

    2013-01-01

    Non-targeted urine metabolite profiling has not been previously exploited in the field of whole grain (WG) products. WG products, particularly rye, are important elements in a healthy Nordic diet. The aim of this study was to identify novel urinary biomarkers of WG rye bread (RB) intake in a...

  5. Hyperkalaemia induced by carbonic anhydrase inhibitor.

    OpenAIRE

    Wakabayashi, Y.

    1991-01-01

    An 81-year-old man developed hyperkalaemic and hyperchloraemic metabolic acidosis following treatment with a carbonic anhydrase inhibitor for his glaucoma. He had mild renal failure and selective aldosterone deficiency was confirmed. In this case the treatment did not lead to hypokalaemia because of the limited potassium secretory capacity in the renal tubules from selective aldosterone deficiency; rather, it may have led to hyperkalaemia because metabolic acidosis induced by the carbonic anh...

  6. Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification

    OpenAIRE

    Frick Oliver; Yang Tae Hoon; Heinzle Elmar

    2008-01-01

    Abstract Background The importance and power of isotope-based metabolic flux analysis and its contribution to understanding the metabolic network is increasingly recognized. Its application is, however, still limited partly due to computational inefficiency. 13C metabolic flux analysis aims to compute in vivo metabolic fluxes in terms of metabolite balancing extended by carbon isotopomer balances and involves a nonlinear least-squares problem. To solve the problem more efficiently, improved n...

  7. Her Excellency Mrs Sarah Gillett Her Majesty's Ambassador to the Swiss Confederation United Kingdom of Great Britain and Northern Ireland on the occasion of the Antony Gormley sculpture unveiling ceremony Wednesday 7th December 2011

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Her Excellency Mrs Sarah Gillett Her Majesty's Ambassador to the Swiss Confederation United Kingdom of Great Britain and Northern Ireland on the occasion of the Antony Gormley sculpture unveiling ceremony Wednesday 7th December 2011

  8. Unveiling the mechanism of photoinduced isomerization of the photoactive yellow protein (PYP) chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Evgeniy V., E-mail: evgeniy.gromov@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg (Germany)

    2014-12-14

    A detailed theoretical analysis, based on extensive ab initio second-order approximate coupled cluster calculations, has been performed for the S{sub 1} potential energy surface (PES) of four photoactive yellow protein (PYP) chromophore derivatives that are hydrogen bonded with two water molecules and differ merely in the carbonyl substituent. The main focus is put on contrasting the isomerization properties of these four species in the S{sub 1} excited state, related to torsion around the chromophore's single and double carbon-carbon bonds. The analysis provides evidence of the different isomerization behavior of these four chromophore complexes, which relates to the difference in their carbonyl substituents. While a stable double-bond torsion pathway exists on the S{sub 1} PES of the chromophores bearing the –O–CH{sub 3} and –NH{sub 2} substituents, this is not the case for the –S–CH{sub 3} and –CH{sub 3} substituted species. The presence of the –S–CH{sub 3} group leads to a strong instability of the chromophore with respect to the single-bond twist, whereas in the case of the –CH{sub 3} substituent a crossing of the S{sub 1} and S{sub 2} PESs occurs, which perturbs the pathway. Based on this analysis, the key factors that support the double-bond torsion have been identified. These are (i) the hydrogen bonds at the phenolic oxygen of the chromophore, (ii) the weak electron-acceptor character of the carbonyl group, and (iii) the ethylene-like pattern of the torsion in the beginning of the process. Our results suggest that the interplay between these factors determines the chromophore's isomerization in the solvent environment and in the native PYP environment.

  9. Model protocells photochemically reduce carbonate to organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Folsome, C.; Brittain, A.

    1981-06-11

    Synthetic cell-sized organic microstructures effect the long-wavelength uv photosynthesis of organic products from carbonate. Formaldehyde is the most abundant photoproduct and water is the major proton donor for this reduced form of carbon. We show here that these results for model phase-bounded systems are consistent with the postulate that metabolism of progenitors to the earliest living cells could have been, at least in part, photosynthetic.

  10. Unveiling laser diode “fossil” and the dynamic analysis for heliotropic growth of catastrophic optical damage in high power laser diodes

    OpenAIRE

    Qiang Zhang; Yihan Xiong; Haiyan An; Konstantin Boucke; Georg Treusch

    2016-01-01

    Taking advantage of robust facet passivation, we unveil a laser “fossil” buried within a broad area laser diode (LD) cavity when the LD was damaged by applying a high current. For the first time, novel physical phenomena have been observed at these dramatically elevated energy densities within the nanoscale LD waveguide. The observation of the laser “fossil” is interpreted with different mechanisms, including: the origination of bulk catastrophic optical damage (COD) due to locally high energ...

  11. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity.

    Science.gov (United States)

    Pigeyre, Marie; Yazdi, Fereshteh T; Kaur, Yuvreet; Meyre, David

    2016-06-01

    In high-, middle- and low-income countries, the rising prevalence of obesity is the underlying cause of numerous health complications and increased mortality. Being a complex and heritable disorder, obesity results from the interplay between genetic susceptibility, epigenetics, metagenomics and the environment. Attempts at understanding the genetic basis of obesity have identified numerous genes associated with syndromic monogenic, non-syndromic monogenic, oligogenic and polygenic obesity. The genetics of leanness are also considered relevant as it mirrors some of obesity's aetiologies. In this report, we summarize ten genetically elucidated obesity syndromes, some of which are involved in ciliary functioning. We comprehensively review 11 monogenic obesity genes identified to date and their role in energy maintenance as part of the leptin-melanocortin pathway. With the emergence of genome-wide association studies over the last decade, 227 genetic variants involved in different biological pathways (central nervous system, food sensing and digestion, adipocyte differentiation, insulin signalling, lipid metabolism, muscle and liver biology, gut microbiota) have been associated with polygenic obesity. Advances in obligatory and facilitated epigenetic variation, and gene-environment interaction studies have partly accounted for the missing heritability of obesity and provided additional insight into its aetiology. The role of gut microbiota in obesity pathophysiology, as well as the 12 genes associated with lipodystrophies is discussed. Furthermore, in an attempt to improve future studies and merge the gap between research and clinical practice, we provide suggestions on how high-throughput '-omic' data can be integrated in order to get closer to the new age of personalized medicine. PMID:27154742

  12. Metabolic enzymes link morphine withdrawal with metabolic disorder

    Institute of Scientific and Technical Information of China (English)

    Xi Jiang; Jing Li; Lan Ma

    2007-01-01

    @@ Energy metabolism is a fundamental biological process that is vital for the survival of all species. Disorders in the metabolic system result in deficiency or redundancy of certain nutrients, including carbohydrates, lipids, amino acids, etc. Abnormality of the energy metabolism system leads to a number of metabolic diseases, such as the metabolic syndrome. Broadly speaking, the term "metabolic diseases" now tends to be widened to the category that refers to all diseases with metabolism disorder.

  13. Glucose Metabolism in Mentally Retarded Children

    International Nuclear Information System (INIS)

    Glucose metabolism has been studied in normal, mentally retarded and hypothyroid children who exhibited subnormal I.Q. in spite of an adequate thyroxine dose. Two parameters, the breath and the blood, were examined. Continuous breath analysis following intravenous glucose-U-14C was carried out to examine its end product 14CO2. Blood was analysed half-hourly for the specific activity of glucose in this pool. Data are presented in terms of stable carbon dioxide expiration rate, the maximum specific activity of carbon dioxide attained, the glucose pool of the body and its turnover rate. (author)

  14. Metabolic syndrome and migraine

    Directory of Open Access Journals (Sweden)

    Amit eSachdev

    2012-11-01

    Full Text Available Migraine and metabolic syndrome are highly prevaleirnt and costly conditions.The two conditions coexist, but it is unclear what relationship may exist between the two processes. Metabolic syndrome involves a number of findings, including insulin resistance, systemic hypertension, obesity, a proinflammatory state, and a prothrombotic state. Only one study addresses migraine in metabolic syndrome, finding significant differences in the presentation of metabolic syndrome in migraineurs. However, controversy exists regarding the contribution of each individual risk factor to migraine pathogensis and prevalence. It is unclear what treatment implications, if any, exist as a result of the concomitant diagnosis of migraine and metabolic syndrome. The cornerstone of migraine and metabolic syndrome treatments is prevention, relying heavily on diet modification, sleep hygiene, medication use, and exercise.

  15. Inflammasomes and metabolic disease.

    Science.gov (United States)

    Henao-Mejia, Jorge; Elinav, Eran; Thaiss, Christoph A; Flavell, Richard A

    2014-01-01

    Innate immune response pathways and metabolic pathways are evolutionarily conserved throughout species and are fundamental to survival. As such, the regulation of whole-body and cellular metabolism is intimately integrated with immune responses. However, the introduction of new variables to this delicate evolutionarily conserved physiological interaction can lead to deleterious consequences for organisms as a result of inappropriate immune responses. In recent decades, the prevalence and incidence of metabolic diseases associated with obesity have dramatically increased worldwide. As a recently acquired human characteristic, obesity has exposed the critical role of innate immune pathways in multiple metabolic pathophysiological processes. Here, we review recent evidence that highlights inflammasomes as critical sensors of metabolic perturbations in multiple tissues and their role in the progression of highly prevalent metabolic diseases. PMID:24274736

  16. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds......, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  17. Unveiling the Role of CNTs on the Phase Formation of 1D Ferroelectrics

    KAUST Repository

    Mahajan, Amit

    2015-05-21

    Carbon nanotubes (CNTs) have the potential to act as templates or bottom electrodes for three dimension (3D) capacitor arrays, which utilise one dimension (1D) ferroelectric nanostructures to increase memory size and density. However, growing a ferroelectric on the surface of CNTs is non-trivial. Here, we demonstrate that multi-walled (MW) CNTs decrease the time and temperature for formation of lead zirconium titanate Pb(Zr1-xTix)O3 (PZT) by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs/PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNT/PZT synthesised at 500 ºC for 1 h was proved. Although further work is required to prove the concept of 3D capacitor arrays, our result suggests that it is feasible to utilise MWCNTs as templates/electrodes for the formation of 1D PZT nano ferroelectrics.

  18. Nonlinear excitations match correlated motions unveiled by NMR in proteins: a new perspective on allosteric cross-talk

    International Nuclear Information System (INIS)

    In this paper we propose a novel theoretical framework for interpreting long-range dynamical correlations unveiled in proteins through NMR measurements. The theoretical rationale relies on the hypothesis that correlated motions in proteins may be reconstructed as large-scale, collective modes sustained by long-lived nonlinear vibrations known as discrete breathers (DB) localized at key, hot-spot sites. DBs are spatially localized modes, whose nonlinear nature hinders resonant coupling with the normal modes, thus conferring them long lifetimes as compared to normal modes. DBs have been predicted to exist in proteins, localized at few hot-spot residues typically within the stiffest portions of the structure. We compute DB modes analytically in the framework of the nonlinear network model, showing that the displacement patterns of many DBs localized at key sites match to a remarkable extent the experimentally uncovered correlation blueprint. The computed dispersion relations prove that it is physically possible for some of these DBs to be excited out of thermal fluctuations at room temperature. Based on our calculations, we speculate that transient energy redistribution among the vibrational modes in a protein might favor the emergence of DB-like bursts of long-lived energy at hot-spot sites with lifetimes in the ns range, able to sustain critical, function-encoding correlated motions. More generally, our calculations provide a novel quantitative tool to predict fold-spanning dynamical pathways of correlated residues that may be central to allosteric cross-talk in proteins. (paper)

  19. From the Cover: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features

    Science.gov (United States)

    Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé

    2006-08-01

    The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction

  20. Aborted eruptions at Mt. Etna (Italy) in spring 2007 unveiled by an integrated study of gas emission and volcanic tremor

    Science.gov (United States)

    Falsaperla, S.; Behncke, B.; Giammanco, S.; Neri, M.; Langer, H.; Pecora, E.; Salerno, G.

    2012-04-01

    In spring 2007, a sequence of paroxysmal episodes took place at the Southeast Crater of Mt. Etna, Italy. Eruptive activity, characterised by Strombolian explosions, lava fountains, emission of lava flows and tephra, were all associated with an outstanding increase in the amplitude of volcanic tremor. In periods of quiescence between the eruptive episodes, recurring phases of seismic unrest were observed in forms of small temporary enhancements of the volcanic tremor amplitude, even though none of them culminated in eruptive activity. Here, we present the results of an integrated geophysical and geochemical data analysis encompassing records of volcanic tremor, thermal data, plume SO2 flux and radon over two months. We conclude that between February and April 2007, magma triggered repeated episodes of gas pulses and rock fracturing, but failed to reach the surface. Our multidisciplinary study allowed us to unveil these 'aborted' eruptions by investigating the long-temporal evolution of gas measurements along with seismic radiation. Short-term changes were additionally highlighted using a method of pattern classification based on Kohonen Maps and Fuzzy Clustering applied to volcanic tremor and radon data.

  1. Unveiling the X-ray/UV properties of AGN winds using Broad and mini-Broad Absorption Line Quasars

    Science.gov (United States)

    Giustini, M.

    2015-07-01

    BAL/mini-BALs are observed in the UV spectra of ˜ 20-30% of optically selected AGN as broad absorption troughs blueshifted by several thousands km/s, indicative of powerful nuclear winds. They could be representative of the average AGN if their winds cover only 20-30% of the continuum source, and/or represent an evolutionary state analogous to the high-soft state of BHB, when the jet emission is quenched and strong X-ray absorbing equatorial disk winds are virtually ubiquitous. High-quality, possibly time-resolved X-ray/UV studies are crucial to assess the global amount and 'character' of absorption in BAL/mini-BAL QSOs and to constrain the physical mechanism responsible for the launch and acceleration of their winds, therefore placing them in the broader context of AGN geometry and evolution. I will review here the known X-ray properties of BAL/mini-BAL QSOs, and present new results from a comprehensive X-ray spectral analysis of all the Palomar-Green BAL/mini-BAL QSOs with available XMM-Newton observations, for a total of 51 pointings of 14 different sources. These will include the most recent results from a high-quality simultaneous XMM/HST observational campaign on the mini-BAL QSO PG 1126-041, that unveiled with stunning details the X-ray/UV connection in action in an AGN disk wind through correlated X-ray/UV absorption variability.

  2. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  3. Nutritional and metabolic features of Eubacterium suis.

    OpenAIRE

    Wegienek, J; C. A. Reddy

    1982-01-01

    We studied the nutritional and metabolic features of Eubacterium suis, an anaerobic animal pathogen that causes cystitis and pyelonephritis in pigs. Peptone-yeast extract-starch (PYS) medium, which contained Trypticase (BBL Microbiology Systems), yeast extract, starch, minerals, cysteine, and sodium carbonate, was shown to support excellent growth of this organism (absorbance at 600 nm = 1.8). Growth was considerably less (absorbance at 600 nm = 0.6) when the starch in the medium was replaced...

  4. What is Nutrition & Metabolism?

    OpenAIRE

    Feinman Richard D; Hussain M Mahmood

    2004-01-01

    Abstract A new Open Access journal, Nutrition & Metabolism (N&M) will publish articles that integrate nutrition with biochemistry and molecular biology. The open access process is chosen to provide rapid and accessible dissemination of new results and perspectives in a field that is of great current interest. Manuscripts in all areas of nutritional biochemistry will be considered but three areas of particular interest are lipoprotein metabolism, amino acids as metabolic signals, and the effec...

  5. METABOLISM OF IRON STORES

    OpenAIRE

    Saito, Hiroshi

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since th...

  6. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  7. A mathematical model of glutathione metabolism

    Directory of Open Access Journals (Sweden)

    James S Jill

    2008-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.

  8. Mevalonate metabolism in cancer.

    Science.gov (United States)

    Gruenbacher, Georg; Thurnher, Martin

    2015-01-28

    Cancer cells are characterized by sustained proliferative signaling, insensitivity to growth suppressors and resistance to apoptosis as well as by replicative immortality, the capacity to induce angiogenesis and to perform invasive growth. Additional hallmarks of cancer cells include the reprogramming of energy metabolism as well as the ability to evade immune surveillance. The current review focuses on the metabolic reprogramming of cancer cells and on the immune system's capacity to detect such changes in cancer cell metabolism. Specifically, we focus on mevalonate metabolism, which is a target for drug and immune based cancer treatment. PMID:24467965

  9. Simulated effects of site salinity and inundation on long-term growth trajectory and carbon sequestration in monospecific $Rhizophora\\; mucronata$ plantation in the Philippines

    OpenAIRE

    Juanico, Drandreb Earl; Salmo III, Severino

    2014-01-01

    A mathematical model of coastal forest growth is proposed to describe and test the effects of salinity and inundation in the long-term growth performance and carbon sequestration of monospecific mangrove ($Rhizophora\\; mucronata$) plantation in the Philippines. We used allometry in expressing the mangrove growth equation, and stochasticity in scheduling population-level events that drive the development of the mangrove forest. Analysis of the model unveils an index, $\\xi$, that could be used ...

  10. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  11. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  12. Aerobic and Anaerobic Starvation Metabolism in Methanotrophic Bacteria

    OpenAIRE

    Roslev, P.; King, G. M.

    1995-01-01

    The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic prote...

  13. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer.

    Science.gov (United States)

    Matassa, D S; Amoroso, M R; Lu, H; Avolio, R; Arzeni, D; Procaccini, C; Faicchia, D; Maddalena, F; Simeon, V; Agliarulo, I; Zanini, E; Mazzoccoli, C; Recchi, C; Stronach, E; Marone, G; Gabra, H; Matarese, G; Landriscina, M; Esposito, F

    2016-09-01

    Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC. PMID:27206315

  14. Cold-induced metabolism

    NARCIS (Netherlands)

    Lichtenbelt, W. van Marken; Daanen, H.A.M.

    2003-01-01

    Purpose of review Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesis by sympathetic, norepinephrine-induced mitochondrial heat production in brown adipose tissue is a well known component of this metabolic respon

  15. Metabolic syndrome and menopause

    Directory of Open Access Journals (Sweden)

    Jouyandeh Zahra

    2013-01-01

    Full Text Available Abstract Background The metabolic syndrome is defined as an assemblage of risk factors for cardiovascular diseases, and menopause is associated with an increase in metabolic syndrome prevalence. The aim of this study was to assess the prevalence of metabolic syndrome and its components among postmenopausal women in Tehran, Iran. Methods In this cross-sectional study in menopause clinic in Tehran, 118 postmenopausal women were investigated. We used the adult treatment panel 3 (ATP3 criteria to classify subjects as having metabolic syndrome. Results Total prevalence of metabolic syndrome among our subjects was 30.1%. Waist circumference, HDL-cholesterol, fasting blood glucose, diastolic blood pressure ,Systolic blood pressure, and triglyceride were significantly higher among women with metabolic syndrome (P-value Conclusions Our study shows that postmenopausal status is associated with an increased risk of metabolic syndrome. Therefore, to prevent cardiovascular disease there is a need to evaluate metabolic syndrome and its components from the time of the menopause.

  16. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  17. Small diameter carbon nanopipettes

    Science.gov (United States)

    Singhal, Riju; Bhattacharyya, Sayan; Orynbayeva, Zulfiya; Vitol, Elina; Friedman, Gary; Gogotsi, Yury

    2010-01-01

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 °C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 °C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  18. Small diameter carbon nanopipettes

    International Nuclear Information System (INIS)

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 deg. C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 deg. C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  19. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  20. Metabolism in cancer metastasis.

    Science.gov (United States)

    Weber, Georg F

    2016-05-01

    Cancer metabolism has regained substantial research interest over recent years. The focus has been mostly on the primary tumor, while metabolic adjustments during dissemination have been less extensively researched. Deadhesion impairs glucose transport and brings about an ATP deficit that leads to apoptosis. To survive, metastasizing cancer cells need to increase ATP synthesis, which involves mitochondrial activity and is accomplished in part through peroxide signaling. This change in metabolism, associated with cancer spread, is different from the Warburg effect. Therefore it is important to distinguish between the metabolic adjustments in primary tumor cells and those in disseminating tumor cells. In general, it is likely that metabolic responses to environmental cues commonly occur in cell biology. PMID:26355498

  1. NMR metabolic fingerprinting and chemometrics driven authentication of Greek grape marc spirits.

    Science.gov (United States)

    Fotakis, Charalambos; Zervou, Maria

    2016-04-01

    NMR metabolomics was used to investigate 57 Greek spirits of four indigenous and four international varieties from Macedonia (tsipouro) and Crete (tsikoudia) to establish their authenticity. The metabolic profile of Romeiko, Malvasia, Xinomavro, Sangiovese and Nebbiolo varieties was assessed for the first time. The WET1D sequence was used to improve sensitivity and unveil minor metabolites. PCA was applied to delineate the provenance of samples and associate metabolites with distinct varietal characteristics, such as the acidity of Sangiovese, the overripe grapes harvesting of Romeiko, the intense body of Cabernet Sauvignon, the light body of Xinomavro and the glutamic acid for Malvasia. The migration of Cabernet Sauvignon from north Greece to Crete was framed. Monitoring multi-varietal spirits introduced 2-vinylethanol as a marker for yeast selection. OPLS-DA was applied to samples from the same vineyard, thus highlighting genotypic markers. Consequently, the findings address the concepts of typicity and traceability in grape marc spirits. PMID:26593552

  2. The effect of post-mastectomy radiation therapy on breast implants: Unveiling biomaterial alterations with potential implications on capsular contracture

    International Nuclear Information System (INIS)

    Post-mastectomy breast reconstruction with expanders and implants is recognized as an integral part of breast cancer treatment. Its main complication is represented by capsular contracture, which leads to poor expansion, breast deformation, and pain, often requiring additional surgery. In such a scenario, the debate continues as to whether the second stage of breast reconstruction should be performed before or after post-mastectomy radiation therapy, in light of potential alterations induced by irradiation to silicone biomaterial. This work provides a novel, multi-technique approach to unveil the role of radiotherapy in biomaterial alterations, with potential involvement in capsular contracture. Following irradiation, implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy (ATR/FTIR), Scanning Electron Microscopy (SEM), high resolution stylus profilometry, and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Our findings are consistent with radiation-induced modifications of silicone that, although not detectable at the microscale, can be evidenced by more sophisticated nanoscale surface analyses. In light of these results, biomaterial irradiation cannot be ruled out as one of the possible co-factors underlying capsular contracture. - Highlights: • The debate continues whether to perform breast reconstruction before or after PMRT. • Radiation therapy may alter implant material, concurring to capsular contracture. • In this work, irradiated implants were investigated by a multi-technique approach. • Radiation-induced alterations could be evidenced by ATR/FTIR and ToF-SIMS. • Reported alteration might represent a co-factor underlying capsular contracture

  3. The effect of post-mastectomy radiation therapy on breast implants: Unveiling biomaterial alterations with potential implications on capsular contracture

    Energy Technology Data Exchange (ETDEWEB)

    Ribuffo, Diego; Lo Torto, Federico [Department of Plastic Surgery, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); Giannitelli, Sara M. [Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome (Italy); Urbini, Marco; Tortora, Luca [Surface Analysis Laboratory, Department of Mathematics and Physics, University “Roma Tre”, Via della Vasca Navale 84, 00146 Rome (Italy); INFN — National Institute of Nuclear Physics, Section of Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Mozetic, Pamela; Trombetta, Marcella [Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome (Italy); Basoli, Francesco; Licoccia, Silvia [Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00173 Rome (Italy); Tombolini, Vincenzo [Department of Radiation Oncology, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); Spencer-Lorillard Foundation, Viale Regina Elena 291, 00161 Rome (Italy); Cassese, Raffaele [Department of Radiation Oncology, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); Scuderi, Nicolò [Department of Plastic Surgery, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); and others

    2015-12-01

    Post-mastectomy breast reconstruction with expanders and implants is recognized as an integral part of breast cancer treatment. Its main complication is represented by capsular contracture, which leads to poor expansion, breast deformation, and pain, often requiring additional surgery. In such a scenario, the debate continues as to whether the second stage of breast reconstruction should be performed before or after post-mastectomy radiation therapy, in light of potential alterations induced by irradiation to silicone biomaterial. This work provides a novel, multi-technique approach to unveil the role of radiotherapy in biomaterial alterations, with potential involvement in capsular contracture. Following irradiation, implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy (ATR/FTIR), Scanning Electron Microscopy (SEM), high resolution stylus profilometry, and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Our findings are consistent with radiation-induced modifications of silicone that, although not detectable at the microscale, can be evidenced by more sophisticated nanoscale surface analyses. In light of these results, biomaterial irradiation cannot be ruled out as one of the possible co-factors underlying capsular contracture. - Highlights: • The debate continues whether to perform breast reconstruction before or after PMRT. • Radiation therapy may alter implant material, concurring to capsular contracture. • In this work, irradiated implants were investigated by a multi-technique approach. • Radiation-induced alterations could be evidenced by ATR/FTIR and ToF-SIMS. • Reported alteration might represent a co-factor underlying capsular contracture.

  4. Redesign of the Human Metabolic Simulator

    Science.gov (United States)

    Duffield, Bruce; Jeng, Frank; Lange, Kevin

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is currently building a Human Metabolic Simulator (HMS) at the Johnson Space Center as part of the Advanced Life Support Air Revitalization Technology Evaluation Facility (ARTEF). The purpose of ARTEF is to evaluate Environmental Control and Life Support System Technologies for Advanced Missions. The HMS is needed to reproduce the primary metabolic effects of human respiration on an enclosed atmosphere when humans cannot be present and the impact of human presence on the system is required. A HMS was designed, built and successfully operated in 2000 but larger crew size requirements and the expense of upgrade of the current system necessitate redesign. This paper addresses the redesign. Several concepts were considered, ranging from chemical oxidation of a hydrocarbon like ethanol or ethyl acetate to carbon dioxide and water, oxidation of an iron-containing compound, or by using a fuel cell. For reasons of cost, simplicity, safety and other factors, the concept chosen includes: a molecular sieve packaged as an industrial oxygen concentrator to remove oxygen from the atmosphere, with direct carbon dioxide, water and heat injection. The water injection is done via heating water to steam with a heat exchanger and thermal effects are handled by directly adding heat to the air stream with a second heat exchanger. Both heat exchangers are supplied by a hot oil loop. The amount of oxygen removal, carbon dioxide addition, water addition and heat addition were calculated using metabolic profiles for respiration and heat, calculated using a series of empirical equations developed for International Space Station (ISS). Sketches of the Human Metabolic Simulator and the hot oil bath loop used to supply heat to the heat exchangers are included

  5. Prediction for the Carbon Dioxide Emission in Gansu Province Based on the Metabolism Grey Model%基于新陈代谢灰色模型对甘肃省二氧化碳排放强度的预测

    Institute of Scientific and Technical Information of China (English)

    岳立; 陈瑶

    2012-01-01

    A prediction for the carbon dioxide emission in Gansu Province and its GDP in the years of 2010-2020 based on the metabolism grey model has been made. Carbon dioxide emission intensity in Gansu with the current emission reduction measures is obtained. The result shows that there is a long way to go for achieving government's goal of a 40 -45% of CO2 reduction emission per GDP in 2020 less than that in 2005. Therefore, in order to achieve our commitment and to prevent the deterioration of climate change incurred by the emission of greenhouse gas, we should take more effective environmental protection measures to reduce carbon dioxide emission.%运用新陈代谢模型预测甘肃省2010—2020年的二氧化碳排放总量和GDP,并由此得到在当前减排力度下的甘肃省二氧化碳排放强度,结果与我国政府公布2020年单位GDP的二氧化碳排放强度比2005年降低40%-45%的控制目标还相差很多.为了能够实现承诺,更是为了防止二氧化碳等温室气体排放所引起的气候变化问题日益严重,应加大环保力度和采取更为有效的环保措施以减少二氧化碳的排放.

  6. Regulation of lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    Peng LI

    2011-01-01

    @@ Lipids including cholesterol, phospholipids, fatty acids and triacylglycerols are important cellular constituents involved in membrane structure, energy homeostasis and many biological processes such as signal transduction, organelle development and cell differentiation.Recently, the area of lipid metabolism has drawn a great deal of attention due to its emerging role in the development of metabolic disorders such as obesity, diabetes, atherosclerosis and liver steatosis.We decided to organize a special issue of Frontiers in Biology focusing on our current understanding of lipid metabolism.

  7. NMR studies of metabolism

    International Nuclear Information System (INIS)

    In this paper, the authors present applications of NMR to the study of different aspects of metabolism. The authors begin with a brief outline of localization methods that are commonly used to obtain in vivo NMR spectra. The authors then describe in more detail metabolic information recently obtained by NMR of perfused organs, intact animals, and humans. Previous reviews have already covered the applications of NMR to the study of metabolism in microorganisms, isolated or cultivated cells, and tumors. NMR spectroscopy of the brain, and human in vivo NMR spectroscopy have also been reviewed

  8. Insect flight muscle metabolism

    OpenAIRE

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is accompanied by an increase of 50-100-fold in metabolic rate. Small mammals running at maximal speed and flying birds achieve metabolic rates exceeding resting levels by only 7-14-fold. The exaggerated meta...

  9. A Metabolic Switch

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    Our muscles are metabolically flexible, i.e., they are capable of `switching' between two types of oxidation: (1) when fasting, a predominantly lipid oxidation with high rates of fatty acid uptake, and (2) when fed, suppression of lipid oxidation in favour of increased glucose uptake, oxidation and...... storage, in response to insulin. One of the many manifestations of obesity and Type 2 diabetes is an insulin resistance of the skeletal muscles, which suppresses this metabolic switch. This talk describes recent development of a low-dimensional system of ODEs that model the metabolic switch, displaying a...

  10. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas; Krusell, Lene; Montanari, Ombretta; Kloska, Sebastian; Kopka, Joachim; Udvardi, Michael K

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...... transcriptional or post-transcriptional level. Several metabolic pathways appeared to be co-ordinately upregulated in nodules, including glycolysis, CO(2) fixation, amino acid biosynthesis, and purine, haem, and redox metabolism. Insight into the physiological conditions that prevail within nodules was obtained...

  11. Glucose metabolism in ischemic myocardium

    International Nuclear Information System (INIS)

    We determined the myocardial metabolic rate for glucose (MMRGlc) in the ischemic or infarcted myocardium using 18-F-fluorodeoxyglucose (18-FDG) with positron emission tomography (PET), and studied energy metabolism in the ischemic myocardium. In some cases, we compared glucose metabolism images by 18-FDG with myocardial blood flow images using 15-oxygen water. Two normal subjects, seven patients with myocardial infarction and four patients with angina pectoris were studied. Coronary angiography was performed within two weeks before or after the PET study to detect ischemic areas. PET studies were performed for patients who did not eat for 5 to 6 hours after breakfast. Cannulation was performed in the pedal artery to measure free fatty acid, blood sugar, and insulin. After recording the transmission scan for subsequent correction of photon attenuation, blood pool images were recorded for two min. after the inhalation of carbon monoxide (oxygen-15) which labeled the red blood cells in vivo. After 20 min., oxygen-15 water (15 to 20 mCi) was injected for dynamic scans, and flow images were obtained. Thirty min. after this procedure, 18-FDG (5 to 6 mCi) was injected, and 60 min later, a static scan was performed and glucose metabolism images were obtained. Arterial blood sampling for the time activity curve of the tracer was performed at the same time. According to the method of Phelps et al, MMRGlc was calculated in each of the region of interest (ROI) which was located in the left ventricular wall. MMRGlc obtained from each ROI was 0 to 17 mg/100 ml/min. In normal subjects MMRGlc was 0.4 to 7.3 mg/100 ml/min. In patients with myocardial infarction, it ranged from 3 to 5 mg/100 ml/min in the infarcted lesion. In patients with angina pectoris and subendocardial infarction, MMRGlc was 7 to 17 mg/100 ml/min in the ischemic lesion. In this lesion, myocardial blood flow was relatively low by oxygen-15 imagings (so-called mismatch). (J.P.N.)

  12. Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus

    OpenAIRE

    Patyshakuliyeva, A.; Jurak, E.; Kohler, A; Baker, A.; Battaglia, E; Bruijn, de, M.E.; Burton, K.S.; Challen, M.P.; Cuotinho, P.M.; Eastwood, D.C.; Gruben, B.S.; Makela, M.R.; Martin, F.; Nadal, M; Brink, van den, A Arno

    2013-01-01

    Background - Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. Results - In this study, genes encoding putative enzymes from carbon metabolism were i...

  13. What is Metabolic Syndrome?

    Science.gov (United States)

    ... becoming more common due to a rise in obesity rates among adults. In the future, metabolic syndrome may overtake smoking as the leading risk factor for heart disease. It is possible to prevent or delay ...

  14. Metabolism and Endocrinology

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    2012040 Analysis of risk factors of metabolic syndrome in obese subjects:a follow-up study. ZHU Lüyun(朱旅云),et al.Dept Endocrinol,Bethune Internatl Peace Hosp,PLA,Shijiazhuang 050082.Chin JEndocrinol

  15. Engineering of metabolic control

    Science.gov (United States)

    Liao, James C.

    2006-10-17

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  16. What is Nutrition & Metabolism?

    Directory of Open Access Journals (Sweden)

    Feinman Richard D

    2004-08-01

    Full Text Available Abstract A new Open Access journal, Nutrition & Metabolism (N&M will publish articles that integrate nutrition with biochemistry and molecular biology. The open access process is chosen to provide rapid and accessible dissemination of new results and perspectives in a field that is of great current interest. Manuscripts in all areas of nutritional biochemistry will be considered but three areas of particular interest are lipoprotein metabolism, amino acids as metabolic signals, and the effect of macronutrient composition of diet on health. The need for the journal is identified in the epidemic of obesity, diabetes, dyslipidemias and related diseases, and a sudden increase in popular diets, as well as renewed interest in intermediary metabolism.

  17. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is proposed for a Portable Life Support System to remove and reject heat and carbon...

  18. Metabolic Engineering of Bacteria

    OpenAIRE

    Kumar, Ravi R.; Prasad, Satish

    2011-01-01

    Yield and productivity are critical for the economics and viability of a bioprocess. In metabolic engineering the main objective is the increase of a target metabolite production through genetic engineering. Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the production of a certain substance. In the last years, the development of recombinant DNA technology and other related technologies has provided new tools for approaching yield...

  19. Tobacco and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Yatan Pal Singh Balhara

    2012-01-01

    Full Text Available Tobacco is a leading contributor to morbidity and mortality globally. Metabolic syndrome is a constellation of abdominal obesity, atherogenic dyslipidemia, raised blood pressure, insulin resistance (with and without glucose intolerance, pro-inflammatory state, and pro-thrombotic state. Tobacco use is associated with various core components of metabolic syndrome. It has been found to play a causal role in various pathways leading on to development this condition, the current article discusses various facets of this association.

  20. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T.; Quaresima, V.

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  1. Cold-induced metabolism

    OpenAIRE

    Lichtenbelt, W. van Marken; Daanen, H.A.M.

    2003-01-01

    Purpose of review Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesis by sympathetic, norepinephrine-induced mitochondrial heat production in brown adipose tissue is a well known component of this metabolic response in infants and several animal species. In adult humans, however, its role is less clear. Here we explore recent findings on the role and variability of nonshivering thermogenesis in adults. Rece...

  2. Obesity, metabolism, and hypertension.

    OpenAIRE

    Landsberg, L

    1989-01-01

    The relationship between obesity and hypertension is complex and poorly understood. A developing body of information suggests that metabolic factors related to the obese state are importantly involved. The pertinent observations include: (1) Diet influences sympathetic nervous system activity. Fasting suppresses, while carbohydrate and fat feeding stimulate, sympathetic activity. (2) Dietary-induced changes in sympathetic activity contribute to the changes in metabolic rate that accompany cha...

  3. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells

    OpenAIRE

    Maddocks, Oliver D.K.; Christiaan F Labuschagne; Adams, Peter D; Vousden, Karen H.

    2016-01-01

    Summary: Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under ...

  4. Dynamical feedback between circadian clock and sucrose availability explains adaptive response of starch metabolism to various photoperiods

    OpenAIRE

    Feugier, François G.; Satake, Akiko

    2013-01-01

    Plants deal with resource management during all their life. During the day they feed on photosynthetic carbon, sucrose, while storing a part into starch for night use. Careful control of carbon partitioning, starch degradation, and sucrose export rates is crucial to avoid carbon starvation, insuring optimal growth whatever the photoperiod. Efficient regulation of these key metabolic rates can give an evolutionary advantage to plants. Here we propose a model of adaptive starch metabolism in re...

  5. Hereditary and metabolic myelopathies.

    Science.gov (United States)

    Hedera, Peter

    2016-01-01

    Hereditary and metabolic myelopathies are a heterogeneous group of neurologic disorders characterized by clinical signs suggesting spinal cord dysfunction. Spastic weakness, limb ataxia without additional cerebellar signs, impaired vibration, and positional sensation are hallmark phenotypic features of these disorders. Hereditary, and to some extent, metabolic myelopathies are now recognized as more widespread systemic processes with axonal loss and demyelination. However, the concept of predominantly spinal cord disorders remains clinically helpful to differentiate these disorders from other neurodegenerative conditions. Furthermore, metabolic myelopathies are potentially treatable and an earlier diagnosis increases the likelihood of a good clinical recovery. This chapter reviews major types of degenerative myelopathies, hereditary spastic paraplegia, motor neuron disorders, spastic ataxias, and metabolic disorders, including leukodystrophies and nutritionally induced myelopathies, such as vitamin B12, E, and copper deficiencies. Neuroimaging studies usually detect a nonspecific spinal cord atrophy or demyelination of the corticospinal tracts and dorsal columns. Brain imaging can be also helpful in myelopathies caused by generalized neurodegeneration. Given the nonspecific nature of neuroimaging findings, we also review metabolic or genetic assays needed for the specific diagnosis of hereditary and metabolic myelopathies. PMID:27430441

  6. Arsenic toxicity: the effects on plant metabolism

    Directory of Open Access Journals (Sweden)

    PatrickFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  7. On Functional Module Detection in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2013-08-01

    Full Text Available Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models.

  8. On functional module detection in metabolic networks.

    Science.gov (United States)

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  9. Human metabolic atlas: an online resource for human metabolism

    OpenAIRE

    Pornputtapong, Natapol; Nookaew, Intawat; Nielsen, Jens

    2015-01-01

    Human tissue-specific genome-scale metabolic models (GEMs) provide comprehensive understanding of human metabolism, which is of great value to the biomedical research community. To make this kind of data easily accessible to the public, we have designed and deployed the human metabolic atlas (HMA) website (http://www.metabolicatlas.org). This online resource provides comprehensive information about human metabolism, including the results of metabolic network analyses. We hope that it can also...

  10. Engineering Escherichia Coli Fatty Acid Metabolism for the Production of Biofuel Precursors

    OpenAIRE

    Ford, Tyler John

    2015-01-01

    Medium chain fatty acids (MCFAs, 6-12 carbons) are potential precursors to biofuels with properties similar to gasoline and diesel fuel but are not native products of Escherichia coli fatty acid synthesis. Herein we engineer E. coli to produce, metabolize, and activate MCFAs for their future reduction into alcohols and alkanes (potential biofuels). We develop an E. coli strain with an octanoate (8-carbon MCFA) producing enzyme (a thioesterase), metabolic knockouts, and the capa...

  11. 高血糖的"代谢记忆"%"Metabolic memory" of hyperglycemia

    Institute of Scientific and Technical Information of China (English)

    方冬虹; 李延兵

    2009-01-01

    高血糖的"代谢记忆"效应是在DCCT后续研究EDIC结果公布后首次被提出来的,随着2008年EASD年会上UKPDS 10年随访结果的公布,血糖"代谢记忆"的存在被进一步验证.尽管目前血糖"代谢记忆"的确切机制尚不清楚,但无疑对临床血糖管理策略产生了重要的影响.%The concept of "metabolic memory" effect of hyperglycemia was first raised in view of the DCCT follow-up investigation, EDIC study. Since the unveilling of UKPDS follow-up study on EASD in 2008, this theory has been further proved. Although the mechanism of metabolic memory is still not totally clear, it does influence the clinical glucose management strategy of physicions. Diabetes mellitus; Metabolic memory

  12. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms.

    Science.gov (United States)

    Gonçalves, Pedro; Araújo, João Ricardo; Martel, Fátima

    2015-01-01

    The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication. PMID:25523882

  13. Metabolism and Gaseous Exchanges in Two Coastal Lagoons from Rio de Janeiro with Distinct Limnological Characteristics

    OpenAIRE

    Thomaz Sidinei M.; Enrich-Prast Alex; Gonçalves Jr. José F.; Santos Anderson M. dos; Esteves Francisco A.

    2001-01-01

    The global metabolism and exchange of gases with the atmosphere were measured during a diel cycle in two tropical coastal lagoons, using the curves of carbon dioxide and dissolved oxygen. Heterotrophic metabolism (net CO2 production and net O2 consumption) was observed in a black water lagoon (Comprida), and autotrophic metabolism (net O2 production and net CO2 consumption) in a clear water lagoon (Imboassica). These differences were attributed to the limnological characteristics of both ecos...

  14. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    OpenAIRE

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  15. New Type of Oxygenase Involved in the Metabolism of Propane and Isobutane

    OpenAIRE

    Babu, Jegdish P.; Brown, Lewis R.

    1984-01-01

    Nocardia paraffinicum (Rhodococcus rhodochrous), a hydrocarbon-degrading microorganism, was used in a study of propane and isobutane metabolism. The bacterium was able to utilize propane or isobutane as a sole source of carbon, and oxygen was found to be essential for its metabolism. Gas chromatographic analysis showed that n-propanol was the major compound recovered from the metabolism of propane by resting cells, although trace amounts of isopropanol and acetone were detected. When a mixtur...

  16. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  17. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  18. Whole-body CO2 production as an index of the metabolic response to sepsis

    Science.gov (United States)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  19. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp ATCC 39727

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Bruheim, Per; Nielsen, Jens

    2004-01-01

    The actinomycete Nonomuraea sp. ATCC 39727, producer of the glycopeptide A40926 that is used as precursor for the novel antibiotic dalbavancin, has an unusual carbon metabolism. Glucose is primarily metabolized via the Entner-Doudoroff (ED) pathway, although the energetically more favorable Embde...

  20. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...