WorldWideScience

Sample records for carbon isotopic composition

  1. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O16 than the patterns from marine environments. The C12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.)

  2. Molybdenum isotopic composition of modern and Carboniferous carbonates

    OpenAIRE

    Voegelin, Andrea R.; Nägler, Thomas F.; Samankassou, Elias; Villa, Igor M.

    2009-01-01

    We investigate the redox-sensitive isotope system of molybdenum (Mo) in marine carbonates to evaluate their potential as archive of the Mo isotopic composition of coeval seawater. We present Mo isotope data (δ98/95Mo) of modern skeletal and non-skeletal carbonates as well as a variety of precipitates from the mid and late Carboniferous. The external reproducibility is determined by repeated analyses of two commercially available carbonate standards. The resulting uncertainty of the low concen...

  3. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  4. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases

    International Nuclear Information System (INIS)

    Carbon and hydrogen isotopic compositions are reported for methane, hydrogen and carbon dioxide from four New Zealand geothermal areas; Ngawha, Wairakei, Broadlands and Tikitere. Carbon-13 contents are between -24.4 and -29.5 per mille (PDB) for methane, and between -3.2 and -9.1 per mille for carbon dioxide. Deuterium contents are between -142 and -197 per mille (SMOW) for methane and between -310 and -600 per mille for hydrogen. The different areas have different isotopic compositions with some general relationships to reservoir temperature. The isotopic exchange of hydrogen with water indicates acceptable reservoir temperatures of 180 to 260 deg C from most spring samples but often higher than measured temperatures in well samples. Indicated temperatures assuming 13C equilibria between CH4 and CO2 are 100 to 200 deg C higher than measured maxima. This difference may be due to partial isotopic equilibration or may reflect the origin of the methane. Present evidence cannot identify whether the methane is primordial, or from decomposing sediments or from reduction of magmatic CO2. The isotopic equilibria between CH4, CO2, H2 and H2O are reviewed and a new semiempirical temperature scale proposed for deuterium exchange between methane and water. (author)

  5. Isotopic composition of carbon monoxide in St. Louis, Missouri area

    International Nuclear Information System (INIS)

    The concentration and isotropic composition of carbon monoxide were determined for air samples taken in the vicinity of St. Louis, Missouri, to provide information as to the movement of the pollutant plume from the city. Urban air was detected as far as 48 miles downwind of St. Louis; however, movement of the pollutant plume was not detected. The effect of engine carbon monoxide produced along a highway in a rural area was found to be minimal three miles downwind of the highway. Diurnal studies demonstrated an inverse relationship between carbon monoxide concentration and oxygen and carbon isotopic ratios during the night. A parallel relation prevailed during the day

  6. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    Science.gov (United States)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The isotopic difference between δ13Cfossil and 13C-enriched carbonates is 28 to 30 per mil, suggesting maximal isotopic fractionation by primary producers, and little environmental (or diagenetic) processing of primary photosynthetic carbon. The carbonates of the Tayshir anomaly preserve two organic materials: matrix or bulk carbon characterized by a δ13Corg that covaries with δ13Ccarb, and a small, but morphologically diagnostic component whose δ13Cfossil values do not covary with δ13Ccarb. The stratigraphic thickness (~ 50 m) and isotopic heterogeneity of the organic matter within the Tayshir anomaly (~ 50 m) suggest a prolonged and large contribution of organic carbon remineralization.

  7. The Li isotope composition of modern biogenic carbonates

    Science.gov (United States)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  8. Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India

    Indian Academy of Sciences (India)

    S Banerjee; S K Bhattacharya; S Sarkar

    2006-02-01

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the subtle controls of facies variation,depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood.The Vindhyan Super- group hosts four carbonate units,exhibiting a wide variability in depositional processes and paleogeography.A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values.It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis.The effect of diagenetic alteration is,however,more pronounced in case of oxygen isotopes than carbon isotopes.Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed.Major alteration of original isotope ratios was observed in case of shallow marine carbonates,which became exposed to meteoric fluids during early diagenetic stage.Duration of exposure possibly determined the magnitude of alteration and shift from the original values.Moreover,dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates.The present study suggests that variations in sediment depositional settings,in particular the possibility of subaerial exposure,need to be considered while extracting chronostratigraphic signi ficance from 13C data.

  9. Respiration and assimilation processes reflected in the carbon isotopic composition of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    The paper presents diurnal variations of concentration and carbon isotopic composition of atmospheric carbon dioxide caused by respiration and assimilation processes. Air samples were collected during early and late summer in 1998 in unpolluted area (village Guciow located near Roztocze National Park, SE Poland) in three different environments: uncultivated field on a hill, a meadow in the Wieprz river valley and a forest. The effect is very strong during intensive vegetation growth on a sunny day and clear night. The largest diurnal variations in atmospheric CO2 concentration and its carbon isotopic composition in June above the meadow were about 480 ppm and 10 pro mille, respectively. (author)

  10. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface

  11. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  12. Influence of carbon source on the stable carbon isotopic composition of the seagrass Thalassia testudinum

    International Nuclear Information System (INIS)

    The effects of isotopically distinct organic carbon sources in sediments and CO2 enrichment on the stable carbon isotope composition of Thalassia testudinum (turtle grass) seedlings were investigated. Seedling leaves became increasingly 13C depleted in all treatments with time. In the CO2 enriched treatment, δ13C values for seedlings declined from -9.1 to -57.1 per mille over the nine month culture period; the latter value is the lightest stable carbon isotope composition ever reported for a higher plant. In all non-CO2-enriched treatments, δ13C values declined from -9.1 per mille at T=0 to between -18.3 and -22.2 per mille after nine months. The lack of treatment effect in the non-CO2-enriched cultures was probably due to the release and exchange of isotopically light CO2 from the CO2 enriched treatment within the relatively closed environment of the culture room. This exchange was reflected in media dissolved inorganic carbon (DIC) δ13C values that indicated increasing 13C depletion relative to the initial compositions of the synthetic seawater salts. Depletion of 13C in leaf tissue of seedlings in the non-CO2-enriched treatments occurred faster than did media DIC 13C depletion, suggesting an increase in isotopic fractionation as seedlings grew. The reasons for this increasing fractionation are unclear, but they may reflect a decreasing contribution of isotopically heavy seed research and/or increasing availability of exogenous carbon. 18 refs, 1 fig., 2 tabs

  13. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose

    International Nuclear Information System (INIS)

    The isotopic composition of atmospheric carbon dioxide provides an important constraint for models of the global carbon cycle. It is shown that carbon in C4 plants preserves an isotopic record of the CO2 used in photosynthesis. Data for the maize plant Zea mays yield results for the isotopic composition of atmospheric CO2 consistent with measurements of modern air and air trapped in polar ice. Data from C4 plants may thus be used to extend the isotopic record of atmospheric CO2 into the past, complementing data from other sources. (author)

  14. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  15. Modeling Environmental Controls on the Carbon Isotope Composition of Ecosystem Respired Carbon Dioxide

    Science.gov (United States)

    Cai, T.; Flanagan, L. B.

    2006-12-01

    Our main objective was to test whether the carbon isotope composition of ecosystem respired CO2 varied in response to environmental conditions in a manner consistent with well-known leaf-level studies of photosynthetic 13C discrimination. We developed an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance and chloroplast CO2 concentration separately for sunlit and shaded leaves within multiple canopy layers. The stomatal conductance model was linked to differences in water potential and resistances in the hydraulic pathway between the soil and the tree foliage. This part of the ecosystem model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis (GEP). The estimates of GEP were based on eddy covariance measurements of net ecosystem CO2 exchange (NEE) and the Fluxnet-Canada Research Network standard protocol for partitioning NEE into GEP and total ecosystem respiration (TER). The carbon isotope composition of carbohydrate formed during photosynthesis was calculated based on the Farquhar model of isotope effects. Total ecosystem respiration was modeled, based on measured temperature and soil moisture, as the sum of four components (1) above-ground plant, (2) root, (3) litter, and (4) mineral soil. We applied a variety of techniques to allocate the contribution of these different components so that modeled TER was consistent with TER calculated from NEE measurements. The carbon isotope composition of CO2 released during above-ground plant and root respiration was calculated based on an assimilated-weighted average of carbohydrate fixed during a variable number of days previous to the day of respiration. The isotope composition of CO2 released by litter and mineral soil respiration was based on measurements of the δ13C values of these components (we assumed no isotope fractionation during respiration) and held constant in all calculations. The model was compared to

  16. Molecular and carbon isotopic compositions of gas inclusions of deep carbonate rocks in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shixin; WANG Xianbin; MENG Zifang; LI Yuan; Paul Farrimond; LI Liwu; DUAN Yi

    2004-01-01

    Gaseous components of gas inclusions in deep carbonate rocks (>5700 m) from the Tacan 1 well were analyzed by online mass spectrometry by means of either the stepwise heating technique or vacuum electromagnetism crushing. The carbon isotopic compositions of gases released by vacuum electromagnetism crushing were also measured. Although the molecular compositions of gas inclusions show differences between the two methods, the overall characteristics are that gas inclusions mainly contain CO2, whilst hydrocarbon gases, such as CH4, C2H6 and C3H8, are less abundant. The content of CO is higher in the stepwise heating experiment than that in the method of vacuum electromagnetism crushing, and there are only minor amounts of N2, H2 and O2 in gas inclusions. Methane δ13C values of gas inclusions in Lower Ordovician and Upper Cambrian rocks (from 5713.7 to 6422 m; -52‰-63‰) are similar to those of bacterial methane, but their chemical compositions do not exhibit the dry character in comparison with biogenic gases. These characteristics of deep gas inclusions may be related to the migration fractionation. Some deep natural gases with light carbon isotopic characteristics in the Tazhong Uplift may have a similar origin. The δ13C1 values of gas inclusions in Lower Cambrian rocks (7117-7124 m) are heavier (-39‰), consistent with highly mature natural gases. Carbon isotopic compositions of CO2 in the gas inclusions of deep carbonate rocks are similar (from -4‰ to -13‰) to those of deep natural gases, indicating predominantly an inorganic origin.

  17. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  18. Isotopic composition of carbon and nitrogen in ureilitic fragments of the Almahata Sitta meteorite

    OpenAIRE

    Downes, Hilary; Abernethy, F.A.J.; Smith, C.L.; Ross, A. J.; Verchovsky, A. B.; Grady, M. M.; Jenniskens, P.; Shaddad, M.H.

    2015-01-01

    This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon-rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They co...

  19. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  20. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    Science.gov (United States)

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. PMID:26358051

  1. Carbon and Oxygen Isotopic Composition of Surface-Sediment Carbonate in Bosten Lake (Xinjiang, China) and its Controlling Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengjun; Steffen MISCHKE; ZHENG Mianping; Alexander PROKOPENKO; GUO Fangqin; FENG Zhaodong

    2009-01-01

    Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity

  2. Modelling carbon isotope composition of dissolved inorganic carbon and methane in marine porewaters

    Science.gov (United States)

    Meister, Patrick; Liu, Bo; Khalili, Arzhang; Barker Jørgensen, Bo

    2014-05-01

    Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in marine sedimentary porewaters at near surface temperatures show extremely large variation in apparent fractionation covering a range from -100 ‰ to +30 ‰. This fractionation is essentially the result of microbial activity, but the mechanisms and factors controlling this fractionation are still incompletely understood. This study provides a reaction transport model approach to evaluate the effects of the most important processes and factors on carbon isotope distribution with the goal to better understand carbon isotope distribution in modern sediment porewaters and in the geological record. Our model results show that kinetic fractionation during methanogenesis, both through the acetoclastic and autotrophic pathways, results in a nearly symmetrical distribution of δ13C values in DIC and CH4 with respect to the isotope value of buried organic matter. An increased fractionation factor during methanogenesis leads to a larger difference between δ13CDIC and δ13CCH4. Near the sulphate methane transition zone, DIC is more depleted in 13C due to diffusive mixing with DIC produced by anaerobic oxidation of methane (AOM) and organoclastic sulphate reduction. The model also shows that an upward decrease in δ13CCH4 near the SMT can only be caused by equilibrium fractionation during AOM including a backward "leakage" of carbon from DIC to CH4 through the enzymatic pathway. However, this effect of reversibility has no influence on the DIC pool as long as methane is completely consumed at the SMT. Only a release of methane at the sediment-water interface, due to a fraction of the methane escaping re-oxidation, results in a small shift towards more positive δ13CDIC values. Methane escape at the SMT is possible if either the methane flux is too high to be entirely oxidized by AOM, or if bubbles of methane gas by-pass the sulphate reduction zone and escape episodically into the water column

  3. The isotopic composition of soil organic carbon on a north - south transect in western Canada

    Czech Academy of Sciences Publication Activity Database

    Bird, M.; Šantrůčková, Hana; Lloyd, J.; Lawson, E.

    2002-01-01

    Roč. 53, - (2002), s. 393-403. ISSN 1351-0754 Institutional research plan: CEZ:AV0Z6066911 Keywords : isotopic composition * soil organic carbon * western Canada Subject RIV: EH - Ecology, Behaviour Impact factor: 1.452, year: 2002

  4. Oxygen and carbon isotope composition from the UHP Shuanghe marbles, Dabie Mountains, China

    Institute of Scientific and Technical Information of China (English)

    王清晨; Douglas; Rumble

    1999-01-01

    Investigations on the oxygen and carbon isotope compositions from the ultrahigh-pressure (UHP)-metamorphosed Shuanghe marbles, that occur as a member of a UHP slab, show that the δ18O values range from +11.1‰ to+20.5‰ SMOW, and δ13C from+1.0‰ to+5.7‰ PDB, respectively. The variations in isotope compositions show a centimeter scale of homogeneity and a heterogeneity of regional scale larger than 1 meter. In contrast to the eclogite marbles from Norway, the Shuanghe marbles have inherited the carbon isotope compositions from their sedimentary precursor. The δ13C shows positive correlation to the content of dolomite. The depletion in 18O, compared with the protolithic carbonate strata, might result from three possible geological processes: 1) exchanging oxygen isotope with meteoric water before the UHP metamorphism, 2) decarbonation during the UHP metamorphism, and 3) exchanging oxygen isotope with country gneiss at local scale during retrograde metamorphism. It seems that the adveetion

  5. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    The 13C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H3PO4 has been studied in the temperature interval of 60-150 deg C. The values of the 13C(1) isotope effects in the decarbonylation of lactic acid in 100% H3PO4, in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C(1)-OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13C fractionation factors determined in concentrated PA approach quite closely the 13C fractionation corresponding to C(2)-C(1) bond scission. The 13C(1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13C isotope effects calculated assuming that the frequency corresponding to the C(1)-OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H3PO4 has been suggested. A possible secondary 18O and a primary18O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  6. The growth environments of sloan diamonds: inferences based on their carbon isotope composition

    International Nuclear Information System (INIS)

    Carbon isotope compositions have been determined from the Sloan diatremes of the Colorado-Wyoming State Line kimberlite district (North America). The diamonds were previously broken for a study of their mineral inclusions. Based on mineral inclusion composition, the Sloan diamonds are divided into the broad peridotitic and eclogitic categories found for diamonds worldwide. Group I is comprised entirely of peridotitic diamonds whereas most of the diamonds in Group II and Group III are of eclogitic affinity. Differences in diamond morphology and mass are found between the three groups. Significant variation in δ13C was documented within single diamonds. Carbon isotope modelling of the Sloan diamond data suggests that the ranges in δ13C found for Group I and Group II diamonds at Sloan could have been produced from relatively homogeneous carbon reservoirs undergoing Rayleigh fractionation. The Group III diamonds were probably not produced from a single, isotopically homogeneous carbon reservoir. It is possible that the wide range of δ13C values for Group III diamonds was formed from an initially inhomogeneous (primordial or recycled) carbon source. Alternatively, the Group III diamonds may have crystallized from a less inhomogeneous, 13C-depleted fraction remaining after crystallization of Group I and Group II diamonds. The latter posibility suggests that the full range of δ13C values found for Sloan diamonds could have been produced in stages from an initially homogeneous carbon source. 2 figs., 3 refs

  7. Carbon and oxygen isotopic composition of the carbonates from the Jacupiranga and Catalao I carbonatite complexes, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Morikiyo, Toshiro (Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Science); Hirano, Hideo; Matsuhisa, Yukihiro

    1990-11-01

    Carbon and oxygen isotope compositions were measured for carbonates from the Jacupiranga and Catalao I carbonatite complexes in Brazil. The {delta}{sup 13}C values of the Jacupiranga carbonates are uniform, ranging from -6.4 to -5.6 per mille with the average of -6.07 per mille. Except for one sample, the {delta}{sup 18}O values of the carbonates are between 7.1 and 8.1 per mille, and the average value is 7.6 per mille. The isotopic compositions of the Jacupiranga carbonates represent the value of primary igneous carbonatite. The {delta}{sup 13}C values of dolomites are about 0.5 per mille higher than those of calcites. The {delta}{sup 13}C values of carbonates from the Catalao I complex range from -6.8 to -5.2 per mille with the average of -5.83 per mille. Those values are similar to the values of the Jacupiranga carbonates. However, oxygen isotopic compositions of the Catalao I carbonates show a wide range of 8.4 to 22.3 per mille. Carbonates with the lowest {delta}{sup 18}O values in the complex are considered to represent the igneous stage. Carbonates with extremely high {delta}{sup 18}O values of about 22 per mille are considered to have precipitated from low-temperature hydrothermal fluids. The group of intermediate {delta}{sup 18}O values indicates a variable degree of contamination by the {delta}{sup 18}O-rich hydrothermal carbonates. The contribution of secondary stage hydrothermal carbonates seems to be significant in the Catalao I complex as compared with the Jacupiranga complex. The development of a network structure in the Catalao I complex may have enhanced the circulation of the later stage hydrothermal fluids. (author).

  8. C, Sr and Sr isotopic composition on probable vendian- tommotian carbonate sequences in Nw Argentina

    International Nuclear Information System (INIS)

    C-isotope stratigraphy is one of the most powerfool tools in Precambrian chronostratigraphy, especially when sediments lack recognizable animal fossils. The δ13C secular variation curves for marine carbonates in the Neoproterozoic-Cambrian interval show strong positive-negative excursions, several of them interpreted as the stratigraphic position of ancient ice ages (Hoffman et al. 1998). The Sr isotope composition of the seawater for this age interval is characterized by a continuous increase of 87Sr/86Sr that is interrupted, several times, by sharp rises, which represent important changes in the Earth history (Montanez et al. 2000). Only limited data on the behavior of C and Sr isotopes in carbonates are available in South America. We examine here carbonate sequences from the Argentine Precordillera, San Juan province, and from other carbonate sequences in NW Argentina that could be, potentially, proxies for the Precambrian-Cambrian transition. We have studied their δ13C and 87Sr/86Sr chemostratigraphy and compare it to global C and Sr isotope secular variation curves for this time span. This study aims to improve the relatively coarse stratigraphic resolution provided only by the study of the fossil record in some of the carbonate successions under consideration (au)

  9. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta13C P-type diamonds tend to have inclusions lower in SiO2, Al2O3, Cr2O3, MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta13C E-type diamonds tend to have inclusions lower in SiO2, Al2O3, MgO, Mg/(Mg + Fe), Na2O, K2O, TiO2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  10. Oxygen and carbon isotopic compositions of gases respired by humans

    OpenAIRE

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N2/O2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mech...

  11. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N2/O2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O2 consumption in human respiration and how they are affected by related diseases

  12. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  13. Carbon isotopic composition of fossil leaves from the Early Cretaceous sediments of western India

    Indian Academy of Sciences (India)

    S Chakraborty; B N Jana; S K Bhattacharya; I Robertson

    2011-08-01

    Stable carbon isotope analysis of fossil leaves from the Bhuj Formation, western India was carried out to infer the prevailing environmental conditions. Compression fossil leaves such as Pachypteris indica, Otozamite kachchhensis, Brachyphyllum royii and Dictyozamites sp. were recovered from three sedimentary successions of the Bhuj Formation, Early Cretaceous in age. A chronology was established based on faunal assemblage and palyno-stratigraphy and further constrained by carbon isotope stratigraphy. The three sampling sites were the Karawadi river bank near Dharesi; the Chawad river bank near Mathal; and the Pur river section near Trambau village in Gujarat. The Dharesi sample was also analyzed to investigate intra-leaf 13C variability. The mean 13C of the leaf was −24.6 ± 0.4‰ which implied negligible systematic change along the leaf axis. The Mathal sample was fragmented in nature and showed considerable variation in carbon isotopic composition. The Trambau sample considered to be the oldest, dating to the middle of Aptian (ca. 116 Ma), shows the most depleted value in 13C among all of them. The overall 13C trend ranging from mid Aptian (ca. 116 Ma) to early Albian (ca. 110 Ma) shows a progressive increase in 13C from −26.8 to −20.5‰. Based on these measurements the carbon isotopic composition of atmospheric carbon dioxide of the Aptian–Albian period is estimated to be between −7.4 and −1.7‰. The ratio of the partial pressure of carbon dioxide in leaf to that of the ambient atmosphere calculated based on a model is estimated to be similar to that of the modern plants. This indicates that the Early-Cretaceous plants adapted to the prevailing high carbon dioxide regime by increasing their photosynthetic uptake.

  14. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth

    OpenAIRE

    Horita, Juske; Polyakov, Veniamin B.

    2014-01-01

    Due to its bonding environments, carbon can make up numerous compounds with many other elements. However, the abundance and dynamics of carbon in the deep Earth remains uncertain due to its complex behavior during the primary accretion and differentiation of the Earth in its early history. The naturally occurring stable isotopes of carbon serve as a useful tracer to study the carbon cycle, both on the surface and in the deep Earth. Here, a new model is presented for understanding a first-orde...

  15. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    OpenAIRE

    Baoli Wang; Cong-Qiang Liu; Xi Peng; Fushun Wang

    2013-01-01

    In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHY)in freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton whi...

  16. Noble gas isotopic composi-tions of deep carbonate rocks from the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Abundances and isotopic compositions of noble gases (He, Ne, Ar, Kr) with various existence states in carbonate rocks from the Tacanl Well have been investigated by means of the stepwise heating technique. The elemental abundance patterns of noble gases in the samples show the enrichment of heavy noble gases and depletion of 20Ne relative to the atmosphere, which are designated as type- I and are similar to that observed in water, natural gases and sedimentary rocks. The 3He/4He ratios of deep carbonate samples at lower and medium temperature (300-700℃) and a majority of samples at higher temperature (1100-1500℃) steps are very similar to those of natural gases in the same strata in this area, this feature of radiogenic crustal helium shows that the Tazhong Uplift is relatively stable.However, significant helium and argon isotopic anomalies are found at the 1100℃ step in the Middle-Upper Ordoviclan carbonate rock, suggesting the incorporation of manfie-derived volatiles, this may be due to minor igneous minerals contained in sedimentary carbonate rocks. The 40Ar/36Ar ratios in the Cambrian carbonate rock are slightly higher than those in Ordovician carbonate rocks, which may reflect the influence of the chronologic accumulation effect of crust radiogenic 40Ar. Argon isotopes of various existence states in source rocks are much more different, both 38Ar/36Ar and 40Ar/36Ar ratios at the higher temperature steps are higher than those at the lower temperature steps.``

  17. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    Science.gov (United States)

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  18. The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide

    Directory of Open Access Journals (Sweden)

    M. Saurer

    2008-11-01

    Full Text Available Carbon monoxide in the atmosphere is originating from various combustion and oxidation processes. Recently, the proportion of CO resulting from the combustion of wood for domestic heating may have increased due to political measures promoting this renewable energy source. Here, we used the stable isotope composition of CO (δ13C and δ18O for the characterization of different CO sources in Switzerland, along with other indicators for traffic and wood combustion (NOx-concentration, aerosol light absorption at different wavelengths. We assessed diurnal variations of the isotopic composition of CO at 3 sites during winter: a village site dominated by domestic heating, a site close to a motorway and a rural site. The isotope ratios of wood combustion emissions were studied at a test facility, indicating significantly lower δ18O of CO from wood combustion compared to traffic emissions. At the village and the motorway site, we observed very pronounced diurnal δ18O-variations of CO with an amplitude of up to 8‰. Solving the isotope mass balance equation for three distinct sources (wood combustion, traffic, clean background air resulted in diurnal patterns consistent with other indicators for wood burning and traffic. The average night-time contribution of wood-burning to total CO was 70% at the village site, 47% at the motorway site and 28% at the rural site based on the isotope mass balance. As this analysis showed a strong sensitivity towards the pure source isotope values, we additionally applied a combined CO/NOx-isotope model for verification. Here, we separated the CO emissions into different sources based on different CO/NOx emissions ratios for wood combustion and traffic, and inserted this information in the isotope mass balance equation. Accordingly, a highly significant agreement between measured and calculated δ18O-values of CO was found (r=0

  19. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    Directory of Open Access Journals (Sweden)

    Baoli Wang

    2013-02-01

    Full Text Available In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHYin freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton which assimilated more dissolved inorganic carbon (DIC, resulting in the increase of δ13CPHY, δ13CDIC and pH. When the concentration of dissolved carbon dioxide (CO2 was less than 10 mmol L–1, phytoplankton shifted to using HCO3– as a carbon source. This resulted in the sharp increase of δ13CPHY. The carbon stable isotope composition of phytoplankton tended to decrease with the increase of Bacillariophyta, which dominated in January and April, but tended to increase with the increase of Chlorophyta and Dinophyta, which dominated in July. Multiple regression equations suggested that the influence of biological factors such as taxonomic difference on δ13CPHY could be equal or more important than that of physical and chemical factors. Thus, the effect of taxonomic differences on δ13CPHY must be considered when explaining the δ13C of organic matter in lacustrine ecosystem.

  20. Stable carbon isotope composition of monoterpanes in essential oils and crude oils

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Twenty-five monoterpanes from six types of essential oils and hydrogenated turpentine oil have been identified and their stable carbon isotope composition determined.Monoterpanes in essential oils sourced from terrestrial higher plants display a δ13C value in the range of-34‰-26‰,and mostly between-29‰ and-27‰.The δ13C value of any single monoterpane is very consistent in different essential oils.Acyclic monoterpanes show closer isotope composition between-28.6‰ and-26.2‰,with an average value of-27.7‰.In contrast,the isotope composition of cyclic monoterpanes is more scattered with an average value of-28.6‰.Isotopic fractionation with 13C enrichment has been observed during both artificial and geological hydrogenation of monoterpenoids to monoterpanes,and this is more obvious for the acyclic monoterpenoids.In addition to higher plants,acyclic monoterpane 2,6-dimethylheptane in crude oil can also be originated from other organic inputs.

  1. Recent planktic foraminifers in the Fram Strait (Arctic Ocean): carbon and oxygen stable isotope composition

    Science.gov (United States)

    Pados, T.; Spielhagen, R. F.; Bauch, D.; Meyer, H.; Segl, M.

    2012-12-01

    In paleoceanographic reconstructions the carbon isotopic compositions (δ13C) of fossil foraminifers refer to, e.g., paleoproductivity and stratification, while oxygen isotopic (δ18O) records provide information about variations in sea surface temperatures and salinities in the past. However, for a correct interpretation of the fossil data it is important to improve our understanding of the correlation between recent oceanic variability and the composition of shells of living calcareous microorganisms. For this, the upper water column and sediment surface in the Fram Strait (Arctic Ocean, 78°50'N, 5°W-8°E) were sampled for planktic foraminifer species Neogloboquadrina pachyderma (sin.) and Turborotalita quinqueloba with a large-diameter multinet and a multicorer, respectively. The δ13C and δ18O values of the shells are compared to the stable isotope composition of the ambient water and to equilibrium calcite values to define the preferred calcification depths of the foraminifers and to determine the factors controlling the isotopic signature of these calcareous microorganisms. The study area was chosen because of its high oceanographic variability: in the eastern Fram Strait the northward flowing West Spitsbergen Current (WSC) carries Atlantic Water, with a thin mixed layer on top, while in the west the upper 200 m consists of cold, low-saline Arctic outflow waters of the East Greenland Current (EGC) and warmer, saline waters of Atlantic origin underneath. Despite this variable oceanographic regime along the studied transect, the stable carbon isotope ratios of the shells do not show major differences according to their horizontal but to their vertical distribution: the δ13C values of N. pachyderma (sin.) from plankton tow samples vary roughly between -1 and -0.1‰ depending on the water depth, while the δ18O values of the tests differ more between the stations.

  2. Modelling thermogenic gas generation from coal using carbon isotope compositions of coalseam and pyrolytically derived gases and residues

    International Nuclear Information System (INIS)

    A thermogenic origin for methane has been assigned when its carbon isotope composition is heavier than -60 per thousand. Artificial maturation studies under closed systems on a variety of organic components (oil, coal, kerogen and model compounds) suggests that there can be up to a -30 per thousand difference between the parent organic matter and the lightest methane; however the carbon isotope composition of methane varies significantly during the course of conversion depending on the mechanism of formation and the heterogeneity of the methane-generating moieties. A microbial origin for methane is generally associated with carbon isotope values 2. The present study aims to quantitate the yield and carbon isotope composition of thermogenic gases and liquids generated during artifical pyrolysis of coals so as to enable an assessment of the role of thermogenic processes in the generation of coalseam methane and associated gases and liquids in the Bowen Basin. (author)

  3. Stable isotopic composition of pedogenic carbonate in soils of Minusinsk Hollow

    Science.gov (United States)

    Vasil'chuk, Jessica; Krechetov, Pavel; Budantseva, Nadine; Chizhova, Julia; Vasil'chuk, Yurij

    2016-04-01

    The purpose of the research is to characterize the isotopic composition of carbonate neoformations in soils and estimate its correlation with isotopic composition of water and parent material. The study site is located in the Minusinsk Hollow that is situated among Kuznetsk Alatau and Sayan Mountains. Three key-sites with in different parts of hollow, under mainly steppe vegetation with calciphilic grasses and diverse parent material were studied including: 1) Kazanovka Khakass state national reserve in foothills of Kuznetsk Alatau 2) Hankul salt lake that is considered as natural monument 3) region of Sayanogorsk aluminum smelter on a left bank of the Yenisei river. The samples of pedogenic and lithogenic carbonates as well as water samples were analyzed using the Delta-V mass spectrometer with a standard option of a gas bench according to standard methods. Carbonate coatings (also called pendants or cutans) is one of the most common types of carbonate neoformations occurring in the region. Fine coatings' layers one over another usually can be found on the bottom sides of rubble and gravel inside the soil profile colour varies from white to brownish and yellowish (probably depending on the impurities of organic matter). In Petric Calcisols, Chernozems and Kastanozems δ18O values of coatings vary in a rather small range from ‑ 8.9 to ‑ 10.1 ‰ PDB. This probably shows that their forming took place approximately in the same climatic conditions. While δ18O values of carbonate parent rocks are close to them and are vary from ‑ 11.1 to ‑ 11.9 ‰ PDB. Also, δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers, that can indicate differences connected with the diffusion of organic material. River waters' δ18O values also show a small range from ‑ 16.62 to ‑ 17.66‰ SMOW, while salt lakes' waters due to the fractionation evaporation effects demonstrate much heavier values from ‑ 4.73 to ‑ 9.22‰ SMOW. The

  4. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  5. Carbon Isotope Composition of Mysids at a Terrestrial-Marine Ecotone, Clayoquot Sound, British Columbia, Canada

    Science.gov (United States)

    Mulkins, L. M.; Jelinski, D. E.; Karagatzides, J. D.; Carr, A.

    2002-04-01

    The relative contribution of summertime terrestrial versus marine carbon to an estuary on coastal British Columbia, Canada was explored using stable carbon isotopic (δ 13C values) analysis of mysid crustaceans (Malacostraca: Peracarida: Mysidacea). We hypothesized that landscape linkages between the forested upland and adjacent inshore marine waters, via river, groundwater and overland flows, may influence carbon content and metabolism in the coastal zone. We sampled 14 stations spatially distributed in a grid and found δ 13C compositions of mysids ranged from -15·2 to -18·4‰. There was, however, no obvious spatial distribution of δ 13C values relative to the estuarine gradient in Cow Bay. Heavy tidal mixing is suggested to disperse marine and terrestrial carbon throughout the entire bay. From a temporal perspective however, mysid δ 13C signatures became enriched over the sampling period (mid-July to mid-August), which is representative of a stronger marine influence. This may arise because mysids are exposed to greater marine-derived carbon sources later in the summer, a decrease in freshwater input (and hence terrestrial carbon), changes in phytoplankton or macrophyte community structure, or that mysids preferentially feed on marine food sources. Overall, the recorded isotopic values are characteristic of marine organic carbon signatures suggesting that in summer, despite the proximity to shore, little or no terrestrial carbon penetrates the food web at the trophic level of mysids. This notwithstanding we believe there is a strong need for additional study of carbon flows at the marine-terrestrial interface, especially for disturbed watersheds.

  6. Environmental inputs that can influence carbon isotopic compositions of hot spring biofilms

    Science.gov (United States)

    Donatelli, J. L.; Havig, J. R.; Shock, E.

    2011-12-01

    The carbon isotopic compositions of hydrothermal biofilms are influenced by microbial carbon cycling, and can be correlated with the presence or absence of specific genes in environmental genomic analyses (Havig et al., 2011, JGR). Additional isotopic data on potential environmental sources of carbon will enable further tests of the specific pathways of carbon assimilation and cycling throughout hydrothermal ecosystems. Hot springs at Yellowstone National Park (YNP) are often located in open meadows or forested areas with varying amounts of vegetation and exposed soil surrounding the pools. These pools are open systems which have the potential to accumulate allochthonous materials via physical and biogenic processes. These inputs may affect the δ13C signatures of the hot spring waters and the biofilms associated with them. In the YNP hot springs we have studied since 2003, biofilms range in δ13C from -1.2 to -30.7%. Dissolved inorganic carbon (DIC) in coexisting fluids ranges from 4.3 to -3.9%. The heaviest biofilms typically show minimal isotopic fractionation from the DIC in coexisting fluids. DIC values are strongly influenced by inputs from magma degassing, water-rock reactions in the hydrothermal system, and the atmosphere. Dissolved organic carbon (DOC) values for the coexisting fluids range from -16.5 to -26.8%, which are within the range of biofilm δ13C values. DOC values will also be affected by diverse processes as precipitation infiltrates, reacts, and eventually returns to the surface as hydrothermal fluids, but may also be influenced by biologically derived inputs from the local environments where hot springs occur. In an effort to characterize the environmental context of hot springs, we have collected isotopic data on lodgepole pine needles, grasses, soils, insects and bison feces. Of these, the δ13C data for bison feces (-27.7 to -29.6%) are lighter than any of the DOC data. Pine needles (-26.3 to -29.1%) and soils (-24.8 to -27.1%) overlap with

  7. Factors controlling the temporal variability of ecosystem respiration and its carbon isotope composition

    Science.gov (United States)

    Fassbinder, J.; Griffis, T. J.; Baker, J. M.; Erickson, M.; Billmark, K.; Smith, J.

    2009-12-01

    Ecosystem respiration (FR ) is the major pathway for carbon loss from terrestrial ecosystems. Stable carbon isotope analyses have been used to improve our understanding of the processes controlling ecosystem respiration. In particular, 13CO2 has been used to partition the autotrophic (Fa) and heterotrophic (Fh) contributions to FR. Further, there has been some concern in the literature regarding the temporal variability of the isotopic composition of ecosystem respiration (δR) and its potential influence on ecosystem flux partitioning based on isotope methods. In this study, we used an automated chamber and tunable diode laser system to measure soil respiration (FRs) and its isotopic composition (δRs) in an agricultural ecosystem under a C3/C4 crop rotation. Further, we used the same chamber-TDL system in a climate controlled greenhouse facility with C3/C4 treatments to examine the main factors causing variability in δRs and δR. The chamber data revealed strong diurnal patterns in the isotopic composition of Fh in the agricultural soil plots before crop emergence and in the greenhouse experiments involving bare soils. The diurnal pattern consisted of a sharp enrichment of up to 6‰ from 0700 to 1200 hr followed by a gradual depletion throughout the afternoon and evening. The diurnal signals of FR and soil temperature closely resembled the diurnal signal of δh, but consistently lagged δh by 3 to 4 hours. During peak corn growth, diurnal variation in δRs was strongly influenced by the isotopic composition of root respiration (δas), which enriched nighttime δRs by as much as 7‰ and daytime δRs by as much as 3‰. Chamber and flux-gradient data also indicated considerable seasonal variation in δR during corn growing seasons, ranging from -25‰ at the time of planting to -11‰ during peak growth. Less variation in δR was observed during soybean seasons, with values ranging from -26 to -21‰. Major shifts in δR during corn seasons were consistently

  8. Stable isotope composition of bulk and secondary carbonates from the Quaternary loess-paleosol sequence in Sutto, Hungary

    DEFF Research Database (Denmark)

    Koeniger, Paul; Barta, Gabriella; Thiel, Christine;

    2014-01-01

    Stable carbon and oxygen isotope composition of pedogenic carbonates were studied from the Quaternary loess-paleosol sequence of Sutto in Hungary to investigate genetic processes in a paleoenvironmental context and to distinguish subtypes. Bulk carbonate samples taken at 2 cm vertical resolution,...... matter or vegetation. Secondary carbonates are more reliable than bulk samples because of their direct connection to the host strata. (C) 2012 Elsevier Ltd and INQUA. All rights reserved....

  9. Carbon and helium isotopic composition of fumarolic gases and hot spring gases from Kirishima volcanic area

    International Nuclear Information System (INIS)

    When a structure survey on the Kirishima volcano was conducted in 1994, authors conducted a chemical investigation on volcanic volatile components. In this paper, on volcanic and fumarolic gases samples adopted at that time, their analytic results such as carbon isotopic compositions of CH4 and CO2, and 3-He/4-He ratio were reported, according to which here was described on a forecasting result on origin of volcanic gas of the Kirishima volcanic area under a relation of volcano structure. As a result, it was thought that CO2/3-He and delta 13-C(CO2) distributed at a nearly duplicated region with another island volcano area, and most of CO2 seemed to form at an origin of mantle. As at the Iwoyama CH4 formed by thermolytic origin was emitted, at the Sinmoe-dake CH4 showing delta 13-C reaching isotope equilibrium with CO2 of magma origin at 400 centigrade was emitted. And, the carbon isotope ratio of CH4 showed high possibility to be increased by living actions or organic oxidation. (G.K.)

  10. Interpreting bryophyte stable carbon isotope composition: Plants as temporal and spatial climate recorders

    Science.gov (United States)

    Royles, Jessica; Horwath, Aline B.; Griffiths, Howard

    2014-04-01

    are unable to control tissue water content although physiological adaptations allow growth in a wide range of habitats. Carbon isotope signals in two mosses (Syntrichia ruralis and Chorisodontium aciphyllum) and two liverworts (Conocephalum conicum and Marchantia polymorpha), whether instantaneous (real time, Δ13C), or organic matter (as δ13COM), provide an assimilation-weighted summary of bryophyte environmental adaptations. In mosses, δ13COM is within the measured range of Δ13C values, which suggests that other proxies, such as compound-specific organic signals, will be representative of historical photosynthetic and growth conditions. The liverworts were photosynthetically active over a wider range of relative water contents (RWC) than the mosses. There was a consistent 5‰ offset between Δ13C values in C. conicum and M. polymorpha, suggestive of greater diffusion limitation in the latter. Analysis of a C. aciphyllum moss-peat core showed the isotopic composition over the past 200 years reflects recent anthropogenic CO2 emissions. Once corrected for source-CO2 inputs, the seasonally integrated Δ13COM between 1350 and 2000 A.D. varied by 1.5‰ compared with potential range of the 12‰ measured experimentally, demonstrating the relatively narrow range of conditions under which the majority of net assimilation takes place. Carbon isotope discrimination also varies spatially, with a 4‰ shift in epiphytic bryophyte organic matter found between lowland Amazonia and upper montane tropical cloud forest in the Peruvian Andes, associated with increased diffusion limitation.

  11. Factors controlling carbon isotopic composition of land snail shells estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, Naizhong; Yamada, Keita; Yoshida, Naohiro

    2014-05-01

    Carbon isotopic composition (δ13C) of land snail shell carbonate is widely applied in reconstructing the C3/C4 vegetation distribution of paleo-environment, which is considered to reflect variations of some environmental parameters [1][2][3]. Land snail shell carbon has three potential sources: diet, atmospheric CO2 and ingested carbonate (limestone) [4]. However, their relative contributions to shell carbonate have not been understood well yet [4][5][6][7][8]. More researches are necessary before we could apply this tool in paleo-environment reconstruction, especially inter-lab culturing experiment. A kind of land snail species, Acusta despecta sieboldiana, was collected at Yokohama, Japan and cultured under suitable environment to lay eggs. The second generations were growing up from eggs to adults around 6-12 months at the temperature of 20°, 25° and 30°, respectively. All of the snails at 25° and 30° and most of those at 20° were fed by cabbage (C3 plant) during their life span while others were fed by corn (C4 plant). To investigate the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. δ13C of shells were analyzed by an Isotope Ratio Mass Spectrometry (Thermo Finnigan MAT 253); δ13C of food and snail tissue were measured by a Cavity Ring-Down Spectroscopy (Picarro G1121-i). At the same time, δ13C of eggshell and new born snails were analyzed by a Continuous Flow Isotope Ratio Mass Spectrometry (GasBench II). We confirmed that diet, atmospheric CO2 and ingested limestone could be important sources controlling shell δ13C values. And the temperature could affect shell carbonate δ13C values, too. A simple but credible frame was raised to discuss the mechanism of how each possible source and environmental parameter could affect shell carbonate δ13C values based on previous works [4][6][8] and this study. According to this frame and some reasonable assumptions, we have estimated the

  12. Constraints on Phanerozoic paleotemperature and seawater oxygen isotope evolution from the carbonate clumped isotope compositions of Late Paleozoic marine fossils (Invited)

    Science.gov (United States)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Pérez-Huerta, A.; Shenton, B.; Yancey, T. E.

    2013-12-01

    A long-standing geoscience controversy has been the interpretation of the observed several per mil increase in the oxygen isotope compositions of marine calcites over the Phanerozoic Eon. Explanations for this trend have included decreasing seawater paleotemperatures, increasing seawater oxygen isotope values, and post-depositional calcite alteration. Carbonate clumped isotope paleothermometry is a useful geochemical tool to test these hypotheses because of its lack of dependence on the bulk isotopic composition of the water from which carbonate precipitated. This technique is increasingly applied to ancient marine invertebrate shells, which can be screened for diagenesis using chemical and microstructural approaches. After several years of clumped isotope analysis of these marine carbonates in a handful of laboratories, a long-term temperature and isotopic trend is emerging, with the results pointing to relatively invariant seawater δ18O and generally decreasing seawater temperatures through the Phanerozoic. Uncertainties remain, however, including the effects of reordering of primary clumped isotope compositions via solid-state diffusion of C and O through the mineral lattice at elevated burial temperatures over hundred million year timescales. To develop a quantitative understanding of such reordering, we present data from laboratory heating experiments of late Paleozoic brachiopod calcite. When combined with kinetic models of the reordering reaction, the results of these experiments suggest that burial temperatures less than ~120 °C allow for preservation of primary brachiopod clumped isotope compositions over geological timescales. Analyses of well-preserved Carboniferous and Permian brachiopods reinforce these results by showing that shells with apparent clumped isotope temperatures of ~150 °C are associated with deep sedimentary burial (>5 km), whereas those with putatively primary paleotemperatures in the 10-30 °C range experienced no more than ~1.5 km

  13. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    OpenAIRE

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of ^(13)C and ^(18)O isotopes bound to each other within carbonate minerals in ^(13)C^(18)O^(16)O_2^(2−) groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solutio...

  14. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    Directory of Open Access Journals (Sweden)

    G. Saiz

    2014-10-01

    C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC components, with each of these also partitioned into proximal (> 125 μm and distal (13C compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7 ‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion was computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, and for global 13C isotopic disequilibria calculations.

  15. The chromium isotopic composition of an Early to Middle Ordovician marine carbonate platform, eastern Precordillera, San Juan, Argentina

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Frei, Robert; Gilleaudeau, Geoffrey Jon; Peralta, Silvio; Kah, Linda; Gaucher, Claudio

    A broad suite of redox proxy data suggest that despite ocean and atmosphere oxygenation in the late Neoproterozoic, euxinic conditions persisted in the global deep oceans until the at least Ordovician [1,2,3]. Major changes in the sulphur isotopic composition of carbonate associated sulphate and ...

  16. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    International Nuclear Information System (INIS)

    This study discusses the conditions of formation and provenance of calcite cleats in coal deposits of Antarctica and Ohio, based on their isotope compositions of oxygen, carbon and strontium. The paper gives some data of the relative radioisotope abundance of 87Sr. (Auth.)

  17. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past....... Processes that potentially fractionate Cr isotopes, perhaps during deposition, burial and alteration need to be constrained.Previous studies have shown that Cr isotopes are fractionated during oxidative weathering on land, where heavy Cr isotopes are preferentially removed with Cr(VI) while residual soils...... retain an isotopically light Cr signature. Cr(VI) enriched in heavy Cr isotopes is then transported via river waters to the oceans and sequestered into marine sediments. Marine chemical sediments such asbanded iron formations and modern marine carbonates have proven useful in recording the Cr isotope...

  18. Stable hydrogen and carbon isotopic compositions of biogenic methanes from several shallow aquatic environments

    International Nuclear Information System (INIS)

    Stable hydrogen (δD) and carbon (δ/sup 13/C) isotopic compositions of methane gas bubbles formed in the sediments of several shallow aquatic environments were measured and found to range from -3460/oo to -2630/oo and from -75.00/oo to -51.50/oo, respectively. Evaluation of the δD data with a previously published model implies that acetate dissimilation accounts for about 50% to 80% of the total methane production. δD-CH/sub 4/ and δ/sup 13/C-CH/sub 4/ are generally inversely correlated; this indicates that the observed isotopic variation is not solely due to differential methane oxidation. δ/sup 13/C-CH/sub 4/ values reported in this paper imply that methane produced in these sediments is generally substantially more /sup 13/C-depleted than the estimated average atmospheric methane source. Methane with a δD near the estimated atmospheric source average is produced in some of these sediments; this apparent agreement may be fortuitous as few relevant data are available

  19. Study of the carbon and oxygen isotopic compositions in marine shells of Salvador-Bahia, Brazil

    International Nuclear Information System (INIS)

    The carbon and oxygen isotopic composition of 68 samples of marine shells from the region of Salvador was determined. These samples are from points on the open coast and in the interior of the Todos os Santos Bay and they are composed in part by recent specimens and in part by old specimens taken from Quaternary sediments. The results for δ 18O are in the range of -2,83per mille to + 1,21per mille (PDB) and for δ 13C in the range of -3,10per mille to +2,63per mille (PDB). The reults for the recent shells from the interior of the Todos os Santos Bay show variations in the δ 13C values associated to the dominance of organic matter in some regions. For the old samoles, gathered in te variations in the δ 13C values was associated to the existence in points of that region of deposits of fluvio-lagunar sediments, originated during the last marine transgression. It was identified, for a few species with the same age and location, the effect of biological fractionations. Nevertheless, the observed dominant factor on the isotopic differentiation was the environmental fractionation. (Author)

  20. Mineralogy and stable isotope compositions of carbonate and sulphide minerals of carbonate crusts associated with gas hydrate-forming cold vents from the NE Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Conly, A.G. [Lakehead Univ., Thunder Bay, ON (Canada). Dept. of Geology; Scott, S.D. [Toronto Univ., ON (Canada). Dept. of Geology; Riedel, M. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada, Pacific Geoscience Centre

    2005-07-01

    In 2001, the ROPOS submersible sampled 21 specimens of carbonate crusts from 2 gas hydrate fields located offshore Vancouver Island on the northeast Pacific continental margin. The mineralogy and stable isotopic composition of carbonate and sulphide minerals were used to evaluate petrogenesis and the relationship to associated gas hydrate occurrences. The crusts form the upper surface of carbonate and pelagic mud mounds within the gas hydrate fields. The crusts are made up of micritic carbonate with a highly variable morphology that includes blocky, fissile, nodular and mudcemented brecciated forms. The crusts include micritic calcite and dolomite/ferroan dolomite, with up to 30 per cent detrital and authigenic silicates. The finely disseminated sulphide minerals include pyrite and trace amounts of sphalerite. Bulk-rock chemical compositions are mainly homogeneous. Any variations reflect the calcite:dolomite and carbonate:silicate ratios. The {delta}13 C values for bulk carbonate (calcite and dolomite) were presented. No definitive correlation between {delta}13 C value and carbonate mineralogy was noted, but calcite-dominant samples were found to be more depleted. The {delta}34 S values for sulphide were also presented. The carbon isotopic composition of the carbonate is associated with the balance of inorganic and organic carbon species. Bacterial sulphate reduction and/or bacterial fermentation and carbonate reduction processes responsible for the production of methane were found to control the {delta}13 C of the carbon dioxide reservoir in gas hydrate environments. It was shown that methane was the carbon source involved in bacterial sulphate reduction and that the isotopic composition of the CO{sub 2} reservoir may be controlled by fractionation during bacterial carbonate reduction. The range in sulphur isotopes correlates with the bacterial sulphate reduction under partially closed conditions, where the rate of diffusion of sulphate is less than the rate of

  1. Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus

    Science.gov (United States)

    Crocker, Kimberley C.; DeNiro, Michael J.; Ward, Peter D.

    1985-12-01

    Eggwaters from the chambered cephalopod Nautilus are depleted in both 18O and deuterium relative to ambient seawater. Eggwaters from six other species, including the related chambered cephalopod Sepia, do not show such depletion. These observations indicate that the previously observed step towards more positive δ 18O values in calcium carbonate laid down after Nautilus hatches, relative to carbonate precipitated prior to hatching, can be explained by equilibration of the carbonate with water in the egg before hatching and with seawater after hatching. The presence of an oxygen isotope difference between eggwater and seawater for Nautilus and its absence for Sepia suggest that hatching will be recorded in the δ 18O values of shell carbonates for some but not all extinct and extant chambered cephalopods. The δ 13C values of the organic fraction of the siphuncle in Nautilus do not show any consistent pattern with regard to the time of formation before or after hatching. This observation suggests that the minimum in δ 13C values previously observed for calcium carbonate precipitated after Nautilus hatches is not caused by a change in food sources once the animal becomes free-swimming, as has been suggested.

  2. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  3. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-11-01

    δ13Catm level in the Penultimate (~ 140 000 yr BP and Last Glacial Maximum (~ 22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  4. Conditions of diamond formation beneath the Sino-Korean craton: paragenesis, temperatures and the isotopic composition of carbon

    International Nuclear Information System (INIS)

    Mineral inclusions (23 pyrope garnets, 30 chromites) have been extracted from 28 diamonds selected from the Pipe 50 kimberlite in Liaoning Province, and the pipes of the Shengli 1 and Hongqi 6 kimberlites in Shandong province. These inclusions, and several from the collection of Meyer et al., (1994), have been analysed for major elements using EMP and for trace elements using the proton microprobe. Carbon-isotope compositions have been measured on 44 diamonds (23 from Liaoning, 21 from Shandong), of which 32 contained identified inclusions. The δ13C values range from +0.9 to -6.0 per mill; the heaviest carbon is found in stones with very low-Ca garnets. This implies that the isotopic composition of carbon in harzburgitic rocks is related to the primary depletion process, which suggests ancient formation of the diamonds

  5. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Directory of Open Access Journals (Sweden)

    N. Zhang

    2014-05-01

    Full Text Available The carbon isotopic composition (δ13C of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone. However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66–80%, 16–24%, and 0–13%. For corn (C4 plant fed groups, because of the possible food stress (lower consumption ability of C4 plant, the values vary respectively as 56–64%, 18–20%, and 16–26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite–HCO3−–aragonite equilibrium.

  6. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-05-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant) fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66-80%, 16-24%, and 0-13%. For corn (C4 plant) fed groups, because of the possible food stress (lower consumption ability of C4 plant), the values vary respectively as 56-64%, 18-20%, and 16-26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite-HCO3--aragonite equilibrium.

  7. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from laboratory culturing experiment

    Science.gov (United States)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-10-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail subspecies, Acusta despecta sieboldiana, collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on results obtained from previous works and this study, a simple but credible framework is presented to illustrate how each source and environmental parameter affects shell carbonate δ13C values. According to this framework and some reasonable assumptions, we estimated the contributions of different carbon sources for each snail individual: for cabbage-fed (C3 plant) groups, the contributions of diet, atmospheric CO2, and ingested limestone vary in the ranges of 66-80, 16-24, and 0-13%, respectively. For corn-fed (C4 plant) groups, because of the possible food stress (less ability to consume C4 plants), the values vary in the ranges of 56-64, 18-20, and 16-26%, respectively. Moreover, according to the literature and our observations, the subspecies we cultured in this study show preferences towards different plant species for food. Therefore, we suggest that the potential food preference should be considered adequately for some species in paleoenvironment studies. Finally, we inferred that only the isotopic exchange of the calcite-HCO3--aragonite equilibrium during egg laying and hatching of our cultured snails controls carbon isotope fractionation.

  8. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m-3, in agreement with previous literature data. The major mass of POC was found on the smallest particles (r13C/12C of the small particles is close to the one expected (d13C = 26 +- 20//sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols (13C = -21 +- 20/00) for POC associated with sea-salt droplets transported to the marine atmosphere

  9. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  10. Physical and Human Controls on the Carbon Composition of Organic Matter in Tropical Rivers: An Integrated Analysis of Landscape Properties and River Isotopic Composition

    International Nuclear Information System (INIS)

    We applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. To evaluate physical and human controls on the carbon composition of organic matter in tropical rivers, we applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. Our main objective was to establish the relationship between basin attributes and forms, fluxes and composition of dissolved and particulate organic matter in river channels. A physical template was developed as a GIS-based comprehensive tool to support the understanding of the biogeochemistry of the surface waters of two tropical rivers: the Ji-Parana (Western Amazonia) and the Piracicaba (southeastern of Brazil). For each river we divided the basin into drainage units, organized according to river network morphology and degree of land use impact. Each sector corresponded to a sampling point where river isotopic composition was analysed. River sites and basin characteristics were calculated using datasets compiled as layers in ArcGis Geographical Information System and ERDAS-IMAGINE (Image Processing) software. Each delineated drainage area was individually characterized in terms of topography, soils, river network and land use. Carbon stable isotopic composition of dissolved organic matter (DOM) and particulate organic matter (POM) was determined at several sites along the main tributaries and small streams. The effects of land use on fluvial carbon composition were quantified by a linear regression analysis, relating basin cover and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, vegetation plays a key role in the composition of riverine organic matter in agricultural ecosystems. (author)

  11. Comparative Evaluation of Oxygen Isotope Composition and Carbon Isotope Discrimination in Selecting for Greater Agronomic Water Use Efficiency in Wheat

    International Nuclear Information System (INIS)

    The efficacy of using oxygen isotope composition (δ18O) and carbon isotope discrimination (Δ13C, CID or Δ) in selecting for greater agronomic water-use efficiency in wheat was studied. The objective was to determine whether natural-abundance measurements of Δ13C or δ18O of crop dry matter can be used to separate differences in access to soil water during grain filling from differences in assimilate re-translocation to the grain. The study consisted of carefully-controlled irrigation and rainfall-exclusion, which established two treatments with different soil-water availability at depth when they entered the post-anthesis (p-A) phase. Values of Δ13C and δ18O were measured on green leaves, senesced leaves, stem, non-grain ear parts (chaff) and grain from samples taken several times p-A from a field trial grown in SE Australia in 2004. Soil water content was measured from sowing to maturity using a neutron moisture meter, while roots were extracted from soil cores. Leaf porosity was also measured p-A using a Thermoline viscous-flow porometer and the values were related to stomatal conductance; in addition, canopy temperature was measured using a hand-held Mikron M-120 infrared thermometer. Substantial variation was observed in Δ13C and δ18O among plant parts, with the grain having the smallest values of Δ13C and the largest values of δ18O. There were large changes in grain Δ13C and grain δ18O with time p-A. Grain-Δ13C was smallest and grain δ18O largest at 12 d p-A. At 27, 34 and 48 d p-A, the value of grain Δ13C had increased by up to 1.5 per mille and grain δ18O had decreased by up to 2 per mille. The magnitudes of these changes with time p-A were consistent with observed contributions to grain dry weight from re-translocation of stored assimilates. No treatment differences were observed for grain δ18O. Small treatment differences found for grain Δ13C late in grain filling may have been due to the small treatment difference in sub-soil water use

  12. Stable Carbon Isotopic Compositions of Methylated-MTTC in Crude Oils from Saline Lacustrine Depositional Environment: Source Implications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Significantly high abundant methyl-MethylTrimethylTridecylChromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of these compounds is dominated by methyl-MTTC and dimethylMTTC series, which indicate diagenetic products of a hypersaline depositional environment in the early stage and show a low degree of methylation. The occurrence of significantly high abundant methyl-MTTC depends mainly on good preservation conditions with a strongly reductive, hypersaline and water-columned depositional environment and subsequent non-intensive diagenetic transformations. The stable carbon isotopic compositions of the methyl-MTTCs and dimethyl-MTTCs in two samples are far different from the stable carbon isotopic composition of C30 hopane of apparent bacteria biogenesis (up to 4.11‰ and 5.75‰, respectively). This obviously demonstrates that the methyl-MTTC and dimethyl-MTTCs cannot be of bacteria origin, which is different from the previous point of view about non-photosynthetic bacteria products or possible bacteria-reworked products. On the contrary, the stable carbon isotopic compositions of methyi-MTTC and dimethyl-MTTCs in the two samples were similar to that of the samecarbon-numbered n-alkanes (nC27-nC28-nC29), which indicates that they share the same source origin. Especially in the crude oil from the Zhao61 well, stable carbon isotopic compositions are also similar to that of the same carbon-numbered steranes with ααα-20R isomer (mostly less than 0.4‰). In consideration of the results of previous studies on saline lake ecological sedimentation, the authors hold that the methyl-MTTC and dimethyl-MTTCs in the saline lake sediments should be of algal biogenesis origin.

  13. A high resolution record of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-04-01

    Full Text Available The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm, as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a highly resolved record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC and the Talos Dome ice cores in East Antarctica. We find an 0.4‰ offset between the mean δ13Catm level in the Penultimate (~140 000 yr BP and Last Glacial Maximum (~22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  14. Carbon isotopic composition of atmospheric methane in New Zealand and Antarctica

    International Nuclear Information System (INIS)

    A series of carbon isotope and concentration determinations for methane in air samples collected in New Zealand and Antarctica are presented. The 13C methane data show a seasonal cycle which is attributed to methane released by large scale biomass burning in tropical regions and irregular incursions of air from the northern into the southern hemisphere. Carbon-14 data from Baring Head, New Zealand, are used to infer the current level of 'fossil' methane in the atmosphere. (author). 16 refs, 3 figs

  15. Carbon Isotope Composition of Ecosystem Respired Carbon Dioxide in Three Boreal Forest Ecosystems: Measurements and Model Calculations

    Science.gov (United States)

    Cai, T.; Flanagan, L. B.

    2007-12-01

    We conducted measurements of seasonal and inter-annual variation in the carbon isotope composition of ecosystem respired CO2 (δR) in aspen, black spruce and jack pine dominated ecosystems in northern Saskatchewan during 2004-2006 as part of the Fluxnet-Canada Research Network. All three sites showed relatively small variation (approximately -26 to -29 per mil) in δR values during the entire study. The measurements were strongly correlated with modeled δ13C values of ecosystem respired CO2. The model calculated leaf CO2 assimilation, stomatal conductance and chloroplast CO2 concentration separately for sunlit and shaded leaves within multiple canopy layers, and, therefore, allowed us to estimate canopy photosynthetic 13C discrimination. All three sites showed variation in canopy 13C discrimination in response to environmental conditions in a manner consistent with well-known leaf-level studies. Specifically, 13C discrimination was positively correlated with soil moisture and negatively correlated with photon flux density, air temperature and vapor pressure deficit. As a consequence a strong diurnal pattern was observed for 13C discrimination. The measured δR values also varied in response to environmental conditions in a manner consistent with well-known leaf-level studies of photosynthetic 13C discrimination, but with a dampened response caused by the contribution of heterotrophic respiration, which had a constant δ13C value. These results indicate that the stable isotope composition of respired CO2 is a useful ecosystem-scale tool to study constraints to photosynthesis and acclimation of ecosystems to environmental stress.

  16. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Skála, Roman; Řanda, Zdeněk; Mizera, Jiří

    2012-01-01

    Roč. 47, č. 6 (2012), s. 1010-1028. ISSN 1086-9379 R&D Projects: GA ČR GA205/09/0991 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : moldavites * geochemistry * ries * carbon stable isotopes * moldavites (Germany) Subject RIV: DD - Geochemistry Impact factor: 2.800, year: 2012

  17. Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought

    OpenAIRE

    Galle, Alexander; Esper, Jan; Feller, Urs; Ribas-Carbo, Miquel; Fonti, Patrick

    2010-01-01

    * To withstand and to recover from severe summer drought is crucial for trees, as dry periods are predicted to occur more frequently over the coming decades.* In order to better understand growth-related tree responses to drought, wood formation, vessel characteristics and stable carbon isotope composition (δ13C) in tree rings of Quercus pubescens saplings imposed to two consecutive summer droughts were compared with regularly watered control trees.* In both years, photosynthetic activity was...

  18. Carbon Isotopic Composition of Cypress Tress from South Florida and Changing Hydrologic Conditions

    Science.gov (United States)

    Anderson, W. T.; Sternberg, L. S.; Pinzon, M. C.; Gann-Troxler, T.; Childers, D. L.; Duever, M.

    2005-12-01

    Carbon isotope values were determined from cypress tree rings from two different study areas in South Florida. One site is located in the South Eastern Everglades Marsh where pond cypress was sampled from tree islands (annual tree rings from 1970 to 2000). Bald cypress trees were sampled at the other site located along the Loxahatchee River in a coastal wetland (decadal tree rings from 1830 to 1990). The isotopic time-series from both sites display different, location-specific information. The pond cypress isotopic time-series has a positive correlation with the total amount of annual precipitation, while the bald cypress data from Loxahatchee River study area had two different records dependent on the level of saltwater stress. Typically terrestrial trees growing in a temperate environment, water stress causes an increase in water-use-efficiency resulting in a relative 13C enrichment. However, trees growing in wetland settings in some cases do not respond in the same manner. We propose a conceptual model on changes in carbon assimilation and isotopic fractionation as controlled by differences in stomatal resistance (water stress) and mesophyll resistance (biochemical and nutrient related) to explain the isotopic records from both sites. With further work and longer time-series, our approach may be tested, and used to reconstruct change in hydroperiods further back in time.

  19. Variations of organic carbon isotopic composition and its environmental significance during the last glacial on western Chinese Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    CHEN Fahu; RAO Zhiguo; ZHANG Jiawu; JIN Ming; MA Jianying

    2006-01-01

    A high-resolution loess section in the western Chinese Loess Plateau, Yuanbao Section,was sampled for organic carbon isotopic analyses.The soil organic carbon isotope (δ13Corg) varied between -22.6‰ and -27.5‰ during the last glacial at the section. During the last interstadial, the δ13Corg values were more negative than those in both early and late periods of the last glacial by 4‰. The isotopic composition indicates a coupled response of the pure C3 plants to the temperature, precipitation and the concentration of atmospheric CO2. Decrease in temperature and the atmospheric CO2 concentration from the last interstadial to Last Glaicial Maximum (LGM) caused the organic carbon isotopes to become positive by 1.5‰-2.0‰. The amplitude of 4‰in the δ13Corg variation during the last glacial should be mainly caused by the precipitation change.Therefore, the δ13Corg variations of the Yuanbao Section during the last glacial period documented the large-amplitude fluctuation of the monsoon precipitation, which is estimated to be 250-310 mm more during the last interstadial than that in the LGM, and 100 mm more than that during early last glacial. The rapid changes of the monsoon precipitation on millennial scale during the last glacial have also been recorded in the isotopic variations in Yuanbao loess section. As the isotopic composition varies complicatedly as shown in the Ioess-paleosol sequence, it cannot be simply attributed to the abundances of C3and C4 plants or be used as an indicator of the summer monsoon variations.

  20. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    To better understand 14C cycling in terrestrial ecosystems, 14C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14C in atmospheric CO2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14C values of residual SOM after acid hydrolysis, the Δ 14C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14C abundance in acid-soluble SOM. The most of CO2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  1. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    Science.gov (United States)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  2. Carbon isotope techniques

    International Nuclear Information System (INIS)

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The 11C, 12C, 13C, and 14C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations

  3. Compositional and stable carbon isotopic fractionation during non-autocatalytic thermochemical sulfate reduction by gaseous hydrocarbons

    Science.gov (United States)

    Xia, Xinyu; Ellis, Geoffrey S.; Ma, Qisheng; Tang, Yongchun

    2014-01-01

    The possibility of autocatalysis during thermochemical sulfate reduction (TSR) by gaseous hydrocarbons was investigated by examination of previously reported laboratory and field data. This reaction was found to be a kinetically controlled non-autocatalytic process, and the apparent lack of autocatalysis is thought to be due to the absence of the required intermediate species. Kinetic parameters for chemical and carbon isotopic fractionations of gaseous hydrocarbons affected by TSR were calculated and found to be consistent with experimentally derived values for TSR involving long-chain hydrocarbons. Model predictions based on these kinetic values indicate that TSR by gaseous hydrocarbon requires high-temperature conditions. The oxidation of C2–5 hydrocarbons by sulfate reduction is accompanied by carbon isotopic fractionation with the residual C2–5 hydrocarbons becoming more enriched in 13C. Kinetic parameters were calculated for the stable carbon isotopic fractionation of gaseous hydrocarbons that have experienced TSR. Model predictions based on these kinetics indicate that it may be difficult to distinguish the effects of TSR from those of thermal maturation at lower levels of hydrocarbon oxidation; however, unusually heavy δ13C2+ values (>−10‰) can be diagnostic of high levels of conversion (>50%). Stoichiometric and stable carbon isotopic data show that methane is stable under the investigated reaction conditions and is likely a product of TSR by other gaseous hydrocarbons rather than a significant reactant. These results indicate that the overall TSR reaction mechanism for oxidation of organic substrates containing long-chain hydrocarbons involves three distinct phases as follows: (1) an initial slow and non-autocatalytic stage characterized by the reduction of reactive sulfate by long-chain saturated hydrocarbons; (2) a second autocatalytic reaction phase dominated by reactions involving reduced sulfur species and partially oxidized hydrocarbons; (3

  4. Carbon-13 kinetic isotope effect and its temperature dependence in the decarboxylation of lactic acid of natural isotopic composition with aqueous sulphuric acid

    International Nuclear Information System (INIS)

    Carbon-13 kinetic isotope effect in the decarboxylation of lactic acid of natural isotopic composition in sulphuric acid diluted with water in M(H2O)/M(H2SO4) molar ratio equal to 2.2 has been studied in the temperature range 80-130 C and found to be normal. The absolute values and the temperature dependence of the experimental 13C-K.I.E. are in agreement with the absolute values and the temperature dependence of the theoretical 13C-K.I.E. calculated under the assumption that one frequency corresponding to the carbon-oxygen bound broken in the decarboxylation reaction is lost in the course of activation of lactic acid molecules. The chemical side reactions leading to the abnormal temperature dependence of the carbon-13 and carbon-14 isotope fractionation, observed in the course of decarboxylation of lactic acid in concentrated sulphuric acid, have been suggested. (author). 11 refs, 1 fig., 1 tab

  5. Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa: Evidence for 13C depletion in the mantle

    International Nuclear Information System (INIS)

    The mean 13C-content of diamonds containing peridotitic minerals does not differ significantly from those containing sulfides. Diamonds containing eclogitic minerals can be subdivided into two groups based on their carbon isotopic composition: Group-A, and Group-B. The clinopyroxenes occluded by the Group-A diamonds are depleted in SiO2, MgO, and CaO and significantly enriched in Al2O3, FeO, and MnO compared to clinopyroxenes occluded by Group-B diamonds. Carbon in two graphite-diamond eclogites has a mean isotopic composition of -5.31%; in both samples graphite shows a slight enrichment in 13C compared to the coexisting diamond. There is no difference in the C isotopic composition between Type I and Type II diamonds for sulfide and peridotitic minerals occluding diamonds. All Type II diamonds containing eclogitic minerals belong to Group-A. No correlation between N content and C isotopic composition could be established, although a large range in both variables is observed for the sample suite. The composition of eclogitic minerals included in diamonds of low 13C-content differs from that of eclogite xenoliths characterized by 18O-depletions, which have been related to subduction processes. Hence the data available do not suggest a common cause for the depletion of the heavy isotopes of the two elements. The chemical and isotopic characteristics of the suite of diamond samples reflect different mantle environments. Diamonds depleted in 13C(13C = -15 to -16 per mille) come from a region at greater depth than those of 13C contents of -5 to -6 per mille. The source region of the former is characterized by higher Fe, Mn, Al, and lower Mg, Ca, Si, and N contents than that of the latter. (author)

  6. C and O isotopic composition of late cretaceous-paleocene carbonate sequences in Argentina and Chile

    International Nuclear Information System (INIS)

    In many basins where the Cretaceous-Tertiary (K-T) transition has been investigated, important environmental changes have been observed. Only in few places in South America this transition was recorded by carbonates to allow for a C, O isotope investigation, important sensors for climatic changes. Among these localities, it deserves mentioning the Pernambuco-Paraiba a coastal basin, NE Brazil, the Yacoraite and Neuquen basins, Argentina, and Navidad, Algarrobo and Magellan basins, Chile. Some C and O isotope data for K-T transition carbonates are available for the Pernambuco-Paraiba coastal basin. In this basin, Ferreira et al. (1996) observed an important incursion of δ13C from +2%oPDB to -5.5%oPDB at the K-T transition in limestones, as usually observed worldwide (e.g. Magaritz,1989) accompanied by an increase in δ18O (-6 to -3%oPDB) to 1%oPDB, suggesting an important cooling at the K-T transition. Ashrof and Stinnesbeck (1989) recognized a major climatic change in the K-T transition in north-eastern Brazil, a tropical to subtropical climate predominated during the Maastrichtian, whereas subtropical to temperate one prevailed during the Danian. Hsu and Wissert (1980) proposed, based on O isotopes, that during Late Maastrichtian, temperatures in South Atlantic ranged from 18 to 25oC, culminating with cooling immediately before the K-T transition. Huber et al. (1995) proposed a gradual cooling to values as low as 10oC, in the Late Maastrichtian, in the southern high latitudes. We examine here the behavior of C and O isotopes and chemistry (Si, Mg/Ca, Sr, Fe and Mn) in the Yacoraite Fm. (Maimara and Cabra Corral localities, NW Argentina) and in the Magellanes Province, southern Chile. One of the scopes of this study is to contrast the C and O isotope patterns from southern South America with those in NE Brazil (au)

  7. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; Da Li; Hong-Fei Ling; Shao-Yong Jiang

    2008-01-01

    Isotopic compositions of Mn-carbonate and organic carbon from the same individual samples and sulfur isotopic compositions of pyrites in the basal Datangpo Formation were analyzed. Highly 34S-enriched pyrites (δ34Spyrite = 31.7-59.4‰) were precipitated in relatively occlusive pore water under anoxic condition in sediments, which is consistent with the observation of large and scattered pyrite framboids. The sulfidic deep ocean was not "oxidized" in the early Datangpo interglacial interval, thus the level of seawater sulfate remained low and marine δ3.4Ssuiphate remained high. Low δ13Ccar (average - 7.4‰) and abnormal relationship between δ13Ccar and frac-tionation (Δcar-org) imply that the negative δ13Ccar excursion may have resulted from oxidation of part of a large organic carbon reservoir. High Δcar-org (average 25A‰) implicates high CO2 level in the atmosphere. Small standard deviation (1.0‰) of δ13Ccar values indicates the Mn-carbonate was precipitated near the water-sediment interface under dysoxic conditions rather than in occlusive pore water in sediments.

  8. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    Science.gov (United States)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  9. An updated estimation of the stable carbon and oxygen isotopic compositions of automobile CO emissions

    Science.gov (United States)

    Tsunogai, Urumu; Hachisu, Yosuke; Komatsu, Daisuke D.; Nakagawa, Fumiko; Gamo, Toshitaka; Akiyama, Ken-ichi

    We estimate up-to-date values of the average isotopic compositions of CO emitted from automobiles. In the estimation, we determined the isotopic compositions of CO in tail pipe exhaust for four gasoline automobiles and two diesel automobiles under varying conditions of both idling and running. While the dependence on the automobile manufacturer is little, each automobile equipped with functional catalytic converter exhibits a large temporal δ13C and δ18O variation. They tend to show 13C and 18O enrichment in accordance with the reduction of CO in exhaust, suggesting that the functional catalytic converter in engines enhances the δ13C and δ18O values of CO from tail pipes through a kinetic isotope effect during CO destruction. Assuming that automobiles run a modeled driving cycle, we estimated the average δ13C and δ18O of CO to be -23.8±0.8‰ PDB and +25.3±1.0‰ SMOW, respectively, for recent gasoline automobiles, and -19.5±0.7‰ PDB and +15.1±1.0‰ SMOW, respectively, for recent diesel automobiles. While the δ13C and δ18O values of recent gasoline automobiles coincide well with the isotopic compositions of source CO in present trunk road atmosphere estimated in this study, those are +4-+6‰ ( δ13C) and +1-+3‰ ( δ18O) higher than those reported previously and also those emitted from old, non-catalyst automobiles determined in this study. Recent improvements in functional catalytic converters have enhanced and will enhance the δ13C and δ18O values of CO from automobiles.

  10. Deuterium content of European palaeowaters as inferred from isotopic composition of fluid inclusions trapped in carbonate cave deposits

    International Nuclear Information System (INIS)

    The results of isotope investigations of groundwaters and carbonate cave deposits collected in karstic regions of southern and central Poland are discussed in detail. Combined isotope studies of carbonate cave deposits allowed some important conclusions to be formulated regarding climatic and environmental conditions prevailing over the European continent during the last 300,000 years: (a) δD values of fluid inclusions suggest a remarkable constancy of the heavy isotope content of European palaeoinfiltration waters recharged during interglacial periods, (b) climate-induced, long term changes in isotopic composition of precipitation and surface air temperature over Europe can be characterized by the deuterium gradient of about 1.4 per mille per deg. C, (c) an apparent constancy of the continental gradient in deuterium content of European palaeoinfiltration waters, as judged from fluid inclusion data, and its similarity to the present-day gradient suggests that atmospheric circulation over Europe has not undergone substantial changes during the last 300,000 years. (author). 28 refs, 4 figs, 1 tab

  11. Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite

    Science.gov (United States)

    Socki, R. A.; Gibson, E. K.; Jull, A. J. T.; Karlsson, H. R.

    1991-01-01

    Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968.

  12. Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile

    Science.gov (United States)

    Quade, Jay; Rech, Jason A.; Latorre, Claudio; Betancourt, Julio L.; Gleeson, Erin; Kalin, Mary T.K.

    2007-01-01

    We evaluate the impact of exceptionally sparse plant cover (0–20%) and rainfall (2–114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from -8.2% at the wettest sites to +7.9% at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229–240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20–30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1%) of carbonate from the driest study sites indicates it formed&mdahs;perhaps abiotically—in the presence of pure atmospheric CO2. δ18O (VPDB) values from soil carbonate range from -5.9% at the wettest sites to +7.3% at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.

  13. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    Science.gov (United States)

    Faure, G.; Botoman, G.

    1984-01-01

    Isotopic compositions of oxygen, carbon and strontium of calcite cleats in coal seams of southern Victoria Land, Antarctica, and Tuscarawas County, Ohio, contain a record of the conditions a the time of their formation. The Antarctic calcites (?? 18O(SMOW) = +9.14 to +11.82%0) were deposited from waters enriched in 16O whose isotopic composition was consistent with that of meteoric precipitation at low temperature and high latitude. The carbon of the calcite cleats (?? 13C(PDB) = -15.6 to -16.9%0) was derived in part from the coal (?? 13C(PDB) = -23.5 to -26.7%0) as carbon dioxide and by oxidation of methane or other hydrocarbon gases. The strontium ( 87Sr 86Sr = 0.71318-0.72392) originated primarily from altered feldspar grains in the sandstones of the Beacon Supergroup. Calcite cleats in the Kittaning No. 6 coal seam of Ohio (?? 18O(SMOW) = +26.04 to +27.79%0) were deposited from waters that had previously exchanged oxygen, possibly with marine carbonate at depth. The carbon (?? 13C(PDB) = 0.9 to +2.4%0) is enriched in 13C even though that cleats were deposited in coal that is highly enriched in 12C and apparently originated from marine carbonates. Strontium in the cleats ( Sr 87 0.71182-0.71260) is not of marine origin but contains varying amounts of radiogenic 87Sr presumably derived from detrital Rb-bearing minerals in the adjacent sedimentary rocks. The results of this study suggest that calcite cleats in coal of southern Victoria Land, Antarctica, were deposited after the start of glaciation in Cenozoic time and that those in Ohio precipitated from formation waters derived from the underlying marine carbonate rocks, probably in the recent geologic past. ?? 1984.

  14. Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-05-01

    Full Text Available In order to investigate the carbon episodes at Gosan background super-site (33.17° N, 126.10° E in East Asia during spring of 2007 and 2008, total suspended particles (TSP were collected and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition13C of TC. The carbon episodes at the Gosan site were categorized as long-range transported anthropogenic pollutant (LTP from Asian continent, Asian dust (AD accompanying with LTP, and local pollen episodes. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during the pollen episodes (range: −26.2 ‰ to −23.5 ‰, avg.: −25.2 ± 0.9 ‰, followed by the LTP episodes (range: −23.5 ‰ to −23.0 ‰, avg.: −23.3 ± 0.3 ‰ and the AD episodes (range: −23.3 to −20.4 %, avg.: −21.8 ± 2.0 ‰. The δ13CTC of the airborne pollens (−28.0 ‰ collected at the Gosan site showed value similar to that of tangerine fruit (−28.1 ‰ produced from Jeju Island. Based on the carbon isotope mass balance equation and the TN and TC regression approach, we found that ∼40–45 % of TC in the TSP samples during the pollen episodes was attributed to airborne pollens from Japanese cedar trees planted around tangerine farms in Jeju Island. The δ13C of citric acid in the airborne pollens (−26.3 ‰ collected at the Gosan site was similar to that in tangerine fruit (−27.4 ‰. The negative correlation between the citric acid-carbon/TC ratios and δ13CTC were obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollens and then transported to the Gosan site. Based on the thermal evolution pattern of organic aerosols during the carbon episodes, we found that organic aerosols originated from East China are more volatile on

  15. Carbon-13 isotope composition of the mean CO2 source in the urban atmosphere of Krakow, southern Poland

    Science.gov (United States)

    Zimnoch, Miroslaw; Jasek, Alina; Rozanski, Kazimierz

    2014-05-01

    Quantification of carbon emissions in urbanized areas constitutes an important part of the current research on the global carbon cycle. As the carbon isotopic composition of atmospheric carbon dioxide can serve as a fingerprint of its origin, systematic observations of δ13CO2 and/or Δ14CO2, combined with atmospheric CO2mixing ratio measurements can be used to better constrain the urban sources of this gas. Nowadays, high precision optical analysers based on absorption of laser radiation in the cavity allow a real-time monitoring of atmospheric CO2 concentration and its 13CO2/12CO2 ratio, thus enabling better quantification of the contribution of different anthropogenic and natural sources of this gas to the local atmospheric CO2load. Here we present results of a 2-year study aimed at quantifying carbon isotopic signature of the mean CO2 source and its seasonal variability in the urban atmosphere of Krakow, southern Poland. The Picarro G2101-i CRDS isotopic analyser system for CO2and 13CO2/12CO2 mixing ratio measurements has been installed at the AGH University of Science and Technology campus in July 2011. Air inlet was located at the top of a 20m tower mounted on the roof of the faculty building (ca. 42m a.g.l.), close to the city centre. While temporal resolution of the analyser is equal 1s, a 2-minute moving average was used for calculations of δ13CO2 and CO2 mixing ratio to reduce measurement uncertainty. The measurements were calibrated against 2 NOAA (National Oceanic and Atmospheric Administration) primary standard tanks for CO2 mixing ratio and 1 JRAC (Jena Reference Air Cylinder) isotope primary standard for δ13C. A Keeling approach based on two-component mass and isotope balance was used to derive daily mean isotopic signatures of local CO2 from individual measurements of δ13CO2 and CO2 mixing ratios. The record covers a 2-year period, from July 2011 to July 2013. It shows a clear seasonal pattern, with less negative and less variable δ13CO2 values

  16. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    OpenAIRE

    Zhang, N.; Yamada, K; Suzuki, N; N. Yoshida

    2014-01-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of m...

  17. Environmental controls on the stable carbon isotopic composition of soil organic carbon: implications for modelling the distribution of C3 and C4 plants, Australia

    OpenAIRE

    Wynn, Jonathan G.; Michael I. Bird

    2011-01-01

    We use multivariate statistics to examine the continental-scale patterns of the stable carbon isotopic composition (δ13C) of soil organic carbon (SOC) from a data set collected throughout the natural range of variation in climatic, edaphic and biotic controls in Australia. Climate and soil texture (percent of mineral particles <63 μm) are found to be the dominant controls on δ13CSOC. Of the environmental variables analysed, the strongest correlations to δ13CSOC do not simply occur with res...

  18. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle

    Science.gov (United States)

    Eggleston, S.; Schmitt, J.; Bereiter, B.; Schneider, R.; Fischer, H.

    2016-03-01

    We present new δ13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in δ13C(atm) of 0.5‰ occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in δ13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of δ13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.

  19. The Influence of CO on the Carbon Isotopic Composition of CH4 in Closed Pyrolysis Experiment With Coal

    Institute of Scientific and Technical Information of China (English)

    刘全有; 刘文汇

    2004-01-01

    A low-mature coal (Ro=0.4%, from the Manjia'er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic compositions of the pyrolyst fractions (hydrocarbon, CO2, CO, etc.) at two temperature points (350°C and 550°C) were measured. The results showed that δ13CCH4 value is generally heavier at 350°C than that at 550°C, because the high abundance of CO generated at low temperature would greatly influence δ13CCH4 value, and the retention time of CO in gas chromatograph is close to that of CH4. But CO is formed through chemical reaction of the oxygen-containing functional group C=O, e.g. Lactones, ketones, ether, etc. At low temperature, while CO2 comes mainly from zecarboxylization.The carbon isotopic composition of coal gas from Lanzhou Coal Gas Works was definitely different from that of thermally pyrolysed products from coal. Theδ13CCH4 value of coal gas was abnormally heavier than δ13CCO. At the same time, the reversed sequence (δ13C-1>δ13C-2) of δ13C1 and δ13C2 happened. The bond energy of free ions generally decides the sequence of generation of hydrocarbon fractions according to the chemical structure, whereas the stability of pyrolysate fractions and their carbon isotope fractionation are affected by the C-C bond energy.

  20. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan

    International Nuclear Information System (INIS)

    The Danshuei Estuary is distinctive for the relatively short residence time (1-2 d) of its estuarine water and the very high concentration of ammonia, which is the dominant species of dissolved inorganic nitrogen in the estuary, except near the river mouth. These characteristics make the dynamics of nitrogen cycling distinctively different from previously studied estuaries and result in unusual isotopic compositions of particulate nitrogen (PN). The δ15NPN values ranging from - 16.4 per mille to 3.8 per mille lie in the lower end of nitrogen isotopic compositions (- 16.4 to + 18.7 per mille ) of suspended particulate matter observed in estuaries, while the δ13C values of particulate organic carbon (POC) and the C/N (organic carbon to nitrogen) ratios showed rather normal ranges from - 25.5 per mille to - 19.0 per mille and from 6.0 to 11.3, respectively. There were three major types of particulate organic matter (POM) in the estuary: natural terrigenous materials consisting mainly of soils and bedrock-derived sediments, anthropogenic wastes and autochthonous materials from the aquatic system. During the typhoon induced flood period in August 2000, the flux-weighted mean of δ13CPOC values was - 24.4 per mille , that of δ15NPN values was + 2.3 per mille and that of C/N ratio was 9.3. During non-typhoon periods, the concentration-weighted mean was - 23.6 per mille for δ13CPOC, - 2.6 per mille for δ15NPN and 8.0 for C/N ratio. From the distribution of δ15NPN values of highly polluted estuarine waters, we identified the waste-dominated samples and calculated their mean properties: δ13CPOC value of - 23.6 ± 0.7 per mille , δ15NPN value of - 3.0 ± 0.1 per mille and C/N ratio of 8.0 ± 1.4. Using a three end-member mixing model based on δ15NPN values and C/N ratios, we calculated contributions of the three major allochthonous sources of POC, namely, wastes, soils and bedrock-derived sediments, to the estuary. Their contributions were, respectively, 83%, 12% and

  1. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon (14C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14C abundances showed that (1) bomb-derived 14C has penetrated the first 16 cm mineral soil at least; (2) Δ14C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  2. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  3. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States

    Science.gov (United States)

    Kendall, C.; Silva, S.R.; Kelly, V.J.

    2001-01-01

    Riverine particulate organic matter (POM) samples were collected bi-weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996-97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios were used to identify four endmember sources of POM: Plankton, fresh terrestrial plant material, aquatic plants, and soil organic material. This large-scale study also incorporated ancillary chemical and hydrologic data to refine and extend the interpretations of POM sources beyond the source characterizations that could be done solely with isotopic and elemental ratios. The ancillary data were especially useful for differentiating between seasonal changes in POM source materials and the effects of local nutrient sources and in-stream biogeochemical processes. Average values of ??13 C and C : N for all four river systems suggested that plankton is the dominant source of POM in these rivers, with higher percentages of plankton downstream of reservoirs. Although the temporal patterns in some rivers are complex, the low ??13C and C : N values in spring and summer probably indicate plankton blooms, whereas relatively elevated values in fall and winter are consistent with greater proportions of decaying aquatic vegetation and/or terrestrial material. Seasonal shifts in the ??13C of POM when the C : N remains relatively constant probably indicate changes in the relative rates of photosynthesis and respiration. Periodic inputs of plant detritus are suggested by C : N ratios >15, principally on the Columbia and Ohio Rivers. The ??15N and ??13C also reflect the importance of internal and external sources of dissolved carbon and nitrogen, and the degree of in-stream processing. Elevated ??15N values at some sites probably reflect inputs from sewage and/or animal waste. This information on the spatial and temporal variation in sources of POM in four major river systems should prove

  4. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta)13C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta)13C of soil-respired carbon dioxide (CO2) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta)13C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta)13C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  5. Carbon isotope composition of individual amino acids in the Murchison meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Engel, M.H. [School of Geology and Geophysics, 100 E Boyd Street, University of Oklahoma, Norman, Oklahoma 73019 (United States); Macko, S.A. [Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22903 (United States); Silter, J.A. [School of Geology and Geophysics, 100 E Boyd Street, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    1996-07-01

    A SIGNIFICANT parties of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets.{sup 1} The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis{sup 2} and the composition of organic matter on Earth before living systems developed.{sup 3} Previous studies{sup 11,12} have shown that meteorite amino acids are enriched in {sup 13}C relatives to their terrestrial counterparts, but individual species were not distinguished. Here we report the {sup 13}C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in {sup 13}C, indicating an extraterrestrial origin. Alanine is not racemic, and the {sup 13}C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began. {copyright} {ital 1996 American Institute of Physics.}

  6. Carbon isotope composition of individual amino acids in the Murchison meteorite

    International Nuclear Information System (INIS)

    A SIGNIFICANT parties of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets.1 The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis2 and the composition of organic matter on Earth before living systems developed.3 Previous studies11,12 have shown that meteorite amino acids are enriched in 13C relatives to their terrestrial counterparts, but individual species were not distinguished. Here we report the 13C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in 13C, indicating an extraterrestrial origin. Alanine is not racemic, and the 13C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began. copyright 1996 American Institute of Physics

  7. Carbon and oxygen isotope microanalysis of carbonate.

    Science.gov (United States)

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  8. Carbon isotope effects associated with aceticlastic methanogenesis

    Science.gov (United States)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  9. Seasonal effects on carbon isotope composition of cactus in a desert environment

    International Nuclear Information System (INIS)

    It is stated that two different enzymes are involved in the fixation of CO2 in cactus plants under light and dark conditions and that because these enzymes discriminate against 13C in the atmosphere to different extents the wide range of C isotope discrimination values (delta13C) found in these plants has been attributed to different contributions of dark and light fixation to C gain. The proportion of total C fixed at night can be altered, however, by environmental variables such as temperature, water status, and photoperiod, and predictable changes in delta13C have been observed when these environmental conditions have been varied. The studies, with few exceptions, have, however, been made under artificial conditions. In the studies described here the sensitivity of the delta13C ratios to seasonal environmental influences was examined in a natural system. It was found that the C isotope composition of the plants did not change during the experiments, indicating insensitivity to short term seasonal influences. The experimental site was at an altitude of 289 m. at the Palm Desert, California. Total titratable acidity and malic acid content were determined in addition to the delta13C ratio. The extent of the diurnal change in the titratable acidity varied with rainfall, particularly in the autumn. It is concluded from the data obtained that the delta13C ratio of the plants studied is relatively insensitive to short term seasonal changes under natural desert conditions. The data also confirm that no exogenous CO2 is fixed in the light in this environment. The varying delta13C ratios observed in wild populations of cactus are a result of long term environmental differences other than seasonal effects, and hence credence is given to the use of such ratios for the reconstruction of past climates. (U.K.)

  10. Source characterization using compound composition and stable carbon isotope ratio of PAHs in sediments from lakes, harbor, and shipping waterway

    International Nuclear Information System (INIS)

    Molecular compositions and compound specific stable carbon isotope ratios of polycyclic aromatic hydrocarbons (PAH) isolated from sediments were used to characterize possible sources of contamination at an urban lake, a harbor, a shipping waterway, and a relatively undisturbed remote lake in the northwest United States. Total PAH concentrations in urban lake sediments ranged from 66.0 to 16,500 μg g-1 dry wt. with an average of 2600 μg g-1, which is ∼ 50, 100, and 400 times higher on average than PAH in harbor (48 μg g-1 on average), shipping waterway (26 μg g-1), and remote lake (7 μg g-1) sediments, respectively. The PAH distribution patterns, methyl phenanthrene/phenanthrene ratios, and a pyrogenic index at the sites suggest a pyrogenic origin for PAHs. Source characterization using principal component analysis and various molecular indices including C2-dibenzothiophenes/C2-phenanthrenes, C3-dibenzothiophenes/C3-phenanthrenes, and C2-chrysenes/C2-phenanthrenes ratios, was able to differentiate PAH deposited in sediments from the four sites. The uniqueness of the source of the sediment PAHs from urban lake was also illustrated by compound specific stable carbon isotope analysis. It was concluded that urban lake sediments are accumulating PAH from sources that are unique from contamination detected at nearby sites in the same watershed

  11. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  12. Assessment of grain-scale homogeneity and equilibration of carbon and oxygen isotope compositions of minerals in carbonate-bearing metamorphic rocks by ion microprobe

    Science.gov (United States)

    Ferry, John M.; Ushikubo, Takayuki; Kita, Noriko T.; Valley, John W.

    2010-11-01

    Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ˜5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ 18O and ±0.71‰ for δ 13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ 18O and 0.10-0.29‰ for δ 13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ 13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ 13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ 18O (up to 9.4‰), intercrystalline inhomogeneity in δ 18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ 18O and δ 13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively

  13. Carbon isotope composition of dissolved humic and fulvic acids in the Tokachi river system

    International Nuclear Information System (INIS)

    This study reports carbon isotopic ratios (Δ14C and δ13C) of dissolved humic and fulvic acids in the Tokachi River system, northern Japan. These acids have a refractory feature and they represent the largest fraction of dissolved organic matter in aquatic environments. The acids were isolated using the XAD extraction method from river water samples collected at three sites (on the upper and lower Tokachi River, and from one of its tributaries) in June 2004 and 2005. δ13C values were -27.8 to -26.9 per mil for humic and fulvic acids. On the other hand, the Δ14C values ranged from -247 to +26 per mil and the average values were -170±79 per mil for humic acid and -44±73 per mil for fulvic acid. The difference was attributed to the residence time of fulvic acid in the watershed being shorter than that of humic acid. The large variation suggested that humic substances have a different pathway in each watershed environment. (authors)

  14. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    OpenAIRE

    Krylov, A. A.; Khlystov, O.M.; Hachikubo, A.; Minami, H.; Nunokawa, Y.; Shoji, H; Zemskaya, T. I.; L. Naudts; Pogodaeva, T.V.; Kida, M; Kalmychkov, G. V.; J. Poort

    2010-01-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The d13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near ...

  15. Leaf wax composition and carbon isotopes vary among major conifer groups

    Science.gov (United States)

    Diefendorf, Aaron F.; Leslie, Andrew B.; Wing, Scott L.

    2015-12-01

    Leaf waxes (e.g. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle, water availability, and plant ecophysiology. Previous studies indicated that conifers have lower n-alkane concentrations than angiosperms and that 13C fractionation during n-alkane synthesis (εn-alkane) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 43 conifer species (and Ginkgo biloba) from the University of California Botanical Garden at Berkeley, sampling all extant conifer families and almost two-thirds of extant genera. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially Southern Hemisphere Araucariaceae and Podocarpaceae (monkey puzzles, Norfolk Island pines, and yellowwoods), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL, observed in the context of a common growth environment for all plants we sampled, suggests that ACL is strongly influenced by factors other than climate. An analysis of εn-alkane indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in Taxaceae (yews and relatives). The

  16. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    International Nuclear Information System (INIS)

    Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), 'air' (i.e. N2 + O2 + Ar, 1-5%) and CO2 (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (4 content (>90%) with low CO2 (1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, 4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.

  17. Paleoclimatic Change Inferred from Carbon Isotope Composition of Organic Matter in Sediments of Dabusu Lake, Jilin Province, China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ji(沈吉); ZHANG Enlou(张恩楼); YANG Xiangdong(羊向东); Ryo Matsumoto

    2004-01-01

    Study on the organic compounds and stable isotope composition of a sediment section in Dabusu Lake revealed that the organic materials in the sediments came mainly from terrestrial plants brought into the lake by runoff. The δ13C of the organic materials had high values during warm-dry climatic stages and decreased in cold-wet stages. Analysis of data on carbonate content and 14 C age showed that the lake basin had experienced several wet-cold and warm-dry climatic cycles since 15000 a BP. Since 6700 a BP, the climate reached a relatively stable warm-dry stage, so that the lake water was gradually condensed and finally a saline lake was formed.

  18. Carbon isotopes in photosynthesis

    International Nuclear Information System (INIS)

    The efficiency of photosynthesis continues to interest biochemists, biologists, and plant physiologists. Scientists interested in CO2 uptake are concerned about the extent to which the uptake rate is limited by such factors as stomatal diffusion and the chemistry of the CO2 absorption process. The fractionation of carbon isotopes that occurs during photosynthesis is one of the most useful techniques for investigating the efficiency of CO2 uptake

  19. Tracing the Carbon Cycle in a Small Boreal Catchment of a Groundwater Dominated River Using the Isotopic Composition of Dissolved Inorganic Carbon

    Science.gov (United States)

    Niinikoski, P. I. A.; Karhu, J.

    2015-12-01

    Understanding the carbon cycle in river systems is particularly important in fragile catchments with agriculture, urbanization, water purification facilities and other possible contamination sources. The isotopic composition and concentration of dissolved inorganic carbon (DIC) has been used to determine carbon sinks and sources in river systems. The Vantaanjoki River, in southern Finland, is located in one of the most densely populated areas in Finland. Previous studies have shown the river having a considerable amount of groundwater - surface water interaction which leads to local groundwater being vulnerable to any contaminants released into the river. The catchment of the river has six water purification facilities, and during times of high discharge some of the waste water is released into the river without treatment. Other possible sources of contamination are urban areas, agriculture and a saw mill. In this study the isotopic composition of DIC was studied, along with the concentration of DIC in the river water, to determine the major influences in carbon balance in the river water, to see if human induced changes in the environment are affecting the carbon cycle. The highest δ13CDIC values were found in the summer, and the lowest ones in the spring. Locations of the water purification facilities or fields along the flow path did not show on the δ13CDIC values, nor in the DIC contents of the water. Similar trends in δ13CDIC values related to the variations between warm and cold seasons have been reported in other studies as well and are likely due to organic material forming and decaying in and around the river channel.

  20. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird.

    Science.gov (United States)

    Pearson, Scott F; Levey, Douglas J; Greenberg, Cathryn H; Martínez Del Rio, Carlos

    2003-05-01

    The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine delta15N and delta13C turnover rates for blood, delta15N and delta13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for delta13C and from 0.5 to 1.7 days for delta15N . Half-life did not differ among diets. Whole blood half-life for delta13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7-3.6% for nitrogen isotopes and by -1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds on diets with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require use of mixing models that incorporate elemental concentration. PMID:16228250

  1. Oxygen and carbon isotopic composition of limestones and dolomites, bikini and eniwetok atolls

    Science.gov (United States)

    Grant, Gross M.; Tracey, J.I., Jr.

    1966-01-01

    Aragonitic, unconxolidated sediments from the borings on the Eniwetok and Bikini atolls are isotopically identical with unaltered skeletal fragments, whereas the recrystallized limestones exhibit isotopic variations resulting from alteration in meteoric waters during periods of emergence. Dolomites and associated calcites are enriched in O18, perhaps because of interaction with hypersaline brines.

  2. Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient.

    Science.gov (United States)

    Keitel, Claudia; Matzarakis, Andreas; Rennenberg, Heinz; Gessler, Arthur

    2006-08-01

    This study investigated the influence of climate on the carbon isotopic composition (sigma13C) and oxygen isotopic enrichment (delta18O) above the source water of different organic matter pools in European beech. In July and September 2002, sigma13C and delta18O were determined in phloem carbohydrates and in bulk foliage of adult beech trees along a transect from central Germany to southern France, where beech reaches its southernmost distributional limit. The data were related to meteorological and physiological parameters. The climate along the transect stretches from temperate [subcontinental (SC)] to submediterranean (SM). Both sigma13Cleaf and delta18Oleaf were representative of site-specific long-term environmental conditions. sigma13C of leaves collected in September was indicative of stomatal conductance, vapour pressure deficit (VPD) and radiation availability of the current growing season. delta18O was mainly correlated to mean growing season relative humidity (RH) and VPD. In contrast to the leaves, sigma13Cphloem varied considerably between July and September and was well correlated with canopy stomatal conductance (Gs) in a 2 d integral prior to phloem sampling. The relationship between sigma13C and delta18O in both leaves and phloem sap points, however, to a combined influence of stomatal conductance and photosynthetic capacity on the variation of sigma13C along the transect. delta18Ophloem could be described by applying a model that included 18O fractionation associated with water exchange between the leaf and the atmosphere and with the production of organic matter. Hence, isotope signatures can be used as effective tools to assess the water balance of beech, and thus, help predict the effects of climatic change on one of the ecologically and economically most important tree species in Central Europe. PMID:16898013

  3. Estimation of food composition of Hodotermes mossambicus (Isoptera: Hodotermitidae) based on observations and stable carbon isotope ratios

    Institute of Scientific and Technical Information of China (English)

    Craig T. Symes; Stephan Woodborne

    2011-01-01

    The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13 C isotope values, -13.8‰to -14.0‰) and C3 plants (δ13C isotope values, -25.6‰ to -27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H, mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.

  4. Carbon isotopic composition effects on interatomic interactions and the properties of diamond

    International Nuclear Information System (INIS)

    The interatomic interaction potential parameters were determined for 12C and 13C in diamond. The results were used to obtain the isotopic dependences of such diamond properties as the Debye temperature, molar heat capacity, thermal expansion coefficient, energies of vacancy formation and self-diffusion, surface energy, and longitudinal velocity of sound. The isotopic dependence of isochoric heat capacity disappeared as the temperature increased. Sign inversion was observed for the isotopic dependence of the thermal expansion coefficient at a certain temperature: its growth changed into a drop. This approach was also used to estimate changes in the interatomic interaction potential and crystal bulk compression modulus of lithium in going from 7Li to 6Li. The isotopic dependences of phase transition parameters and the whole p-T phase diagram of a simple substance were predicted

  5. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    Science.gov (United States)

    Schoeninger, Margaret J.; DeNiro, Michael J.

    1984-04-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The δ15N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9%. more positive than those from animals that fed exclusively in the terrestrial environment; ranges for the two groups overlap by less than 1%. Bone collagen δ15N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen δ15N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3%. difference in the δ15N values of their bone collagen. Specifically, carnivorous and herbivorous terrestrial animals have mean δ15N values for bone collagen of + 8.0 and + 5.3%., respectively. Among marine animals, those that fed on fish have a mean δ15N value for bone collagen of + 16.5%., whereas those that fed on invertebrates have a mean δ15N value of + 13.3%. These results support previous suggestions of a 3%. enrichment in δ15N values at each successively higher trophic level. In contrast to the results for δ15N values, the ranges of bone collagen δ13C values from marine and terrestrial feeders overlap to a great extent. Additionally, bone collagen δ13C values do not reflect the trophic levels at which the animals fed. These results indicate that bone collagen δ15N values will be useful in determining relative dependence on marine and terrestrial food sources and in investigating trophic level relationships among different animal species within an ecosystem. This approach should be applicable to animals represented by prehistoric or fossilized

  6. Strontium geochemistry and carbon and oxygen isotopic compositions of Lower Proterozoic dolomite and calcite marbles from the Marmorilik Formation, West Greenland

    International Nuclear Information System (INIS)

    The Marmorilik Formation, Rinkian mobile belt, West Greenland, is a large, Lower Proterozoic carbonate-rock sequence, deformed and metamorphosed under greenschist to amphibolite facies conditions. The pre-deformation thickness of the sequence is at least 2000 m, with about 1400 m of dolomite marble and 350 m of calcite marble. Strontium contents of forty-two dolomite and calcite marbles range from 30 to 100 ppm and 300 to 800 ppm, respectively, whereas samples with calcite of secondary origin have strontium contents between 80 ppm and 200 ppm. Carbon and oxygen isotope ratios were determined for forty calcite and dolomite marbles as -0.2+-1.0 per 1000 delta13C and -9.9+-1.5 per 1000 delta18O (vs. PDB) and are compatible with the isotopic compositions of unmetamorphosed carbonates of similar age. Calcite from eight calciumsilicate rocks, breccias and calcite veins is significantly more negative in delta13C and delta18O. Five 13C analyses of graphite in marble range from -9.6 to -14 per 1000. Possible post-depositional changes in the strontium content and carbon and oxygen isotope compositions are discussed. It is concluded that (a) the calcite marbles are not dedolomites and are therefore of primary origin, (b) the delta 13C and delta 18O values of the marbles are primary or diagenetic (i.e., pre-metamorphic), and (c) the isotopic composition of the graphite is compatible with, though not necessarily evidence for, a biogenic origin. (Auth.)

  7. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Hung-Chun [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); You, Chen-Feng, E-mail: cfy20@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); Sun, Chih-Hsien [Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan (China)

    2010-03-15

    Mud volcanoes are important pathways for CH{sub 4} emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH{sub 4} were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH{sub 4} (>90%), 'air' (i.e. N{sub 2} + O{sub 2} + Ar, 1-5%) and CO{sub 2} (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH{sub 4} concentration (CH{sub 4} > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO{sub 2} up to 85%, and much lower CH{sub 4} content (<37%). High CH{sub 4} content (>90%) with low CO{sub 2} (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C{sub 1} (methane)/C{sub 2} (ethane) + C{sub 3} (propane) and {delta}{sup 13}C{sub CH4} results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH{sub 4} concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH{sub 4} emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH{sub 4} could contribute up to 10% of total natural CH{sub 4} emissions in Taiwan.

  8. Carbon isotopic composition and its implications on paleoclimate of the underground ancient forest ecosystem in Sihui,Guangdong

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We present the carbon isotopic composition of the total organic carbon(TOC) and fine roots in the sedimentary profile from the underground ancient forest in Sihui to study the climatic and environmental changes from 4.5 ka BP to 0.6 ka BP.Results show that C3 plant was the main vegetation from 4.5 ka BP to 0.6 ka BP in this region.The ancient forest began to develop in the wetland at around 4 ka BP and disappeared together with the wetland at about 3.0 ka BP,implying that the climate had changed greatly at around 3.0 ka BP.As indicated by the simulation results,the content of atmospheric CO2 increased slightly during 3.5 ka BP and 3.0 ka BP,implying climate warming during that period.The interval of radiocarbon age between 3.0 ka BP and 1.2 ka BP was possibly caused by the strong erosion when the block was lifted in the neotectonic movement.From 1.2 ka BP to 0.6 ka BP,the region remained in terrestrial sedimentary environment,and the surface plant biomass declined gradually.Drought caused by the climate change was the likely cause for the disappearance of the ancient forest.South transition of Intertropical Convergence Zone(ITCZ) was probably the main mechanism for the climate change.

  9. Carbon isotopic composition and its implications on paleoclimate of the underground ancient forest ecosystem in Sihui, Guangdong

    Institute of Scientific and Technical Information of China (English)

    DING Ping; SHEN ChengDe; WANG Ning; YI WeiXi; LIU KeXin; DING XingFang; FU DongPo

    2009-01-01

    We present the carbon isotopic composition of the total organic carbon (TOC) and fine roots in the sedimentary profile from the underground ancient forest in Sihui to study the climatic and environ-mental changes from 4.5 ka BP to 0.6 ka BP. Results show that C3 plant was the main vegetation from 4.5 ka BP to 0.6 ka BP in this region. The ancient forest began to develop in the wetland st around 4 ks BP and disappeared together with the wetland at about 3.0 ka BP, implying that the climate had changed greatly at around 3.0 ka BP. As indicated by the simulation results, the content of atmospheric CO2 increased slightly during 3.5 ka BP and 3.0 ka BP, implying climate warming during that period. The interval of radiocarbon age between 3.0 ka BP and 1.2 ka BP was possibly caused by the strong erosion when the block was lifted in the neotectonic movement. From 1.2 ks BP to 0.6 ka BP, the region re-mained in terrestrial sedimentary environment, and the surface plant biomass declined gradually. Drought caused by the climate change was the likely cause for the disappearance of the ancient forest. South transition of Intertropical Convergence Zone (ITCZ) was probably the main mechanism for the climate change.

  10. Stable isotopic compositions of elemental carbon in PM1.1 in north suburb of Nanjing Region, China

    Science.gov (United States)

    Guo, Zhaobing; Jiang, Wenjuan; Chen, Shanli; Sun, Deling; Shi, Lei; Zeng, Gang; Rui, Maoling

    2016-02-01

    Stable isotopic compositions (δ13C) of elemental carbon (EC) in PM1.1 in north suburb of Nanjing region were determined in order to quantitatively evaluate the carbon sources of atmospheric fine particles during different seasons. Besides, δ13C values from potential sources such as coal combustion, vehicle exhaust, biomass burning, and dust were synchronously measured. The results showed that the average δ13C values of EC in PM1.1 in winter and summer were - 23.89 ± 1.6‰ and - 24.76 ± 0.9‰, respectively. Comparing with δ13C values from potential sources, we concluded that the main sources of EC in PM1.1 were from the emission of coal combustion and vehicle exhaust. The higher δ13C values in winter than those in summer were chiefly attributed to the more coal consumption. Combining with the concentrations of SO42 - and K+ in PM1.1, the high δ13C values of EC on 24 December and 27 December 2013 were ascribed to extra input of corn straw burning in addition to coal combustion and vehicle exhaust.

  11. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP. PMID

  12. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  13. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    Science.gov (United States)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources

  14. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  15. Characterization of n-alkanes and their carbon isotopic composition in sediments from a small catchment of the Dianchi watershed.

    Science.gov (United States)

    Wang, Yanhua; Yang, Hao; Zhang, Jixiang; Gao, Wenjing; Huang, Changchun; Xie, Biao

    2015-01-01

    The biomarker composition and stable carbon isotope values of organic matter (OM) in sediment cores from Shuanglong catchment of the Dianchi watershed show an unimodal n-alkane distribution ranging from C15-C33 with a strong predominance of odd-numbered n-alkanes, maximizing at n-C27, n-C29 and n-C31. Organic carbon to nitrogen (OC/N) ratio indicates a strong terrestrial influence on the OM. The values of δ(13)C27, δ(13)C29 and δ(13)C31 of n-alkanes range from -36.1‰ to -26.1‰, -34.1‰ to -30.1‰ and -33.8‰ to -28.7‰, respectively, suggesting a mainly C3 land plants origin. The carbon preference index (CPI25-31), odd-even preference (OEP27-31), average chain length (ACL25-33), pristine/phytane (pr/ph), Paq, (C27+C29)/2C31, nC16-23/nC24-33 and 3C17/(C21+C23+C25) values are also consistent with the predominance of C3 land plant-derived OM. Different sources of OM are reflected by the peak of n-C15, ascribed to a contribution by aquatic algae and photosynthetic bacteria. Eutrophication seems to be enhanced by both autochthonous (weak) and allochthonous (strong) contributions of OM. A major factor affecting the OM accumulation in the catchment and OM transportation to the Dianchi Lake may be increased by human activities from 1871 to 2011. PMID:24630457

  16. Carbon isotopic composition in components of a mangrove ecosystem in the Sepetiba Bay, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    The carbon isotopic ratios (13C/12C) for various components of a mangrove ecosystem in the Sepetiba Bay, RJ, in order to evaluate the possibility of its use a tracer for organic matter in these environments are presented. The results showed consistent differences of (13C/12C) isotopic ratio between the organic matter from mangrove (+-26%0, PDB) and the one from marine origin (+-20%0, PDB). These results suggest that this ratio can be used as tracer of organic carbon in the studied environment. (Author)

  17. Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?

    Directory of Open Access Journals (Sweden)

    C. J. Sapart

    2013-07-01

    Full Text Available Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4 variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites, the Kr isobaric interference (up to ~0.8 ‰, system dependent, inter-laboratory calibration offsets (~0.2 ‰ and uncertainties in past CH4 levels (~0.5 ‰.

  18. Semi-automatic determination of the carbon and oxygen stable isotope compositions of calcite and dolomite in natural mixtures

    International Nuclear Information System (INIS)

    A semi-automatic, on-line method was developed to determine the δ13C and δ18O values of coexisting calcite and dolomite. An isotopic mass balance is used to calculate the compositions of dolomite after having measured that of calcite and of the “bulk” sample. The limit of validity of this method is established by performing isotopic measurements of artificial mixtures made of precisely weighted and isotopically-characterised dolomite and calcite. The accuracy and repeatability of the calculation of dolomite δ13C and δ18O are statistically determined with a Monte-Carlo procedure of error propagation. Stable isotope ratios are determined by using an automated MultiPrep™ system on-line with an isotope-ratio mass-spectrometer (IRMS). The reaction time and the temperature of reaction were optimised by comparing the results with the isotopic composition of known mixtures. The best results were obtained by phosphoric acid digestion after 20 min at 40 °C for calcite and 45 min at 90 °C for dolomite. This procedure allows an accurate determination of the isotopic ratios from small samples (300 μg). Application of this protocol to natural mixtures of calcite and dolomite requires the accurate determination of the relative abundance of calcite and dolomite by combining Mélières manocalcimetry (MMC) and X-ray diffractometry (XRD).

  19. Variations of Microbial Communities and the Contents and Isotopic Compositions of Total Organic Carbon and Total Nitrogen in Soil Samples during Their Preservation

    Institute of Scientific and Technical Information of China (English)

    TAO Qianye; LI Yumei; WANG Guo'an; QIAO Yuhui; LIU Tung-Sheng

    2009-01-01

    Semi-sealed preservation of soil samples at difierent moisture of 4%and 23%,respectively, was simulated to observe the variations of soil microbiaI communities and determine the contents and isotopic compositions of the total organic carbon and total nitrogen on the 7th and 30th day, respectively.The results show that during preservation,the quantity of microbial communities tended to increase first and then decrease,with a wider variation range at higher moisture(23%).At the moisture content of 23%,the microbial communities became more active on the 7th day.but less after 30 days,and their activity Was stable with little fluctuation at the moisture content of 4%.However. there were no significant changes in the contents and isotopic compositions of the total organic carbon and total nitrogen.During preservation.the responses of soil microbes to the environment are more sensitive to changes in the total nitrogen and organic carbon contents.It is thus suggested that the variations of microbial communities have not exerted remarkable impacts on the isotope compositions of the total nitrogen and total organic carbon.

  20. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  1. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    Science.gov (United States)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  2. Trophic Relationships and Habitat Preferences of Delphinids from the Southeastern Brazilian Coast Determined by Carbon and Nitrogen Stable Isotope Composition

    OpenAIRE

    Tatiana Lemos Bisi; Paulo Renato Dorneles; José Lailson-Brito; Gilles Lepoint; Alexandre de Freitas Azevedo; Leonardo Flach,; Olaf Malm; Krishna Das

    2013-01-01

    To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (d13C) and nitrogen (d15N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the d13C and d15N values among four populations of S. guianensis. Variation in carbon ...

  3. Modern climate and vegetation variability recorded in organic compounds and carbon isotopic compositions in the Dianchi watershed.

    Science.gov (United States)

    Xu, Meina; Wang, Yanhua; Yang, Hao; Xie, Biao; Niu, Xiaoyin

    2015-09-01

    The aliphatic hydrocarbons distribution and compound-specific characteristics of carbon isotopic compositions in the sediments from the small catchment (197 km(2)) of the Dianchi watershed were investigated for identification of modern climate and vegetation variations in the study area. Results show that a regular bimodal n-alkanes distribution ranged from nC16 to nC33, with strong dominance at nC17 for short-chain n-alkanes and nC31 for long-chain n-alkanes. Mass chromatogram of total fatty acids also indicates corresponding mixed contribution of algae, hydrophilous non-emergent (C4 plants) and terrestrial plants (C3 plants) to sedimentary organic matter (OM). At the depth of -24 to -25 cm (early 1970s), nC31/nC17 and terrestrial to aquatic ratio of hydrocarbons (TAR) values decrease, suggesting a shift of OM origins from C3 terrestrial plants to algae-derived C4 plants. The highest water stage in 1971 was found to be recorded in the particle size (drought resulted in the excessive OM inputs to the watershed. PMID:25976326

  4. Foliar Carbon Isotope Composition (δ13C) and Water Use Efficiency of Different Populus deltoids Clones Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Zhao Fengjun; Gao Rongfu; Shen Yingbai; Su Xiaohua; Zhang Bingyu

    2006-01-01

    Foliar carbon isotope composition (δ13C),total dry biomass,and long-term water use efficiency (WUEL)of 12 Populus deltoids clones were studied under water stress in a greenhouse.Total dry biomass of clones decreased greatly,while δ13C increased.Single-element variance analysis in the same water treatment indicated that WUEL difference among clones was significant.Clones J2,J6,J7,J8,and J9 were excellent with high WUEL.Extremely significant δ13C differences among water treatments and clones were revealed by two-element variance analysis.Water proved to be the primary factor affecting δ13C under water stress.It showed that there was a good positive correlation between δ13C and WUEL in the same water treatment,and that a high WUEL always coincided with a high δ13C.δ13C might be a reliable indirect index to estimate WUEL among P.deltoids clones.

  5. Stable carbon isotope analysis of heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Fixari, B.; Le Perchec, P.; Bigois, M.; Casabianca, H.; Jame, P. [CNRS, Vernaison (France). Lab. des Materiaux Organiques

    1994-03-01

    Stable carbon isotope analysis of various heavy oils and some thermo-catalytically converted products was performed with a thermal analyser coupled with an isotopic ratio mass spectrometer. The temperature-programmed oxidative pyroanalysis technique subdivides the classical {sup 13}C/{sup 12}C ratio, affording new insights into the structural composition of heavy oils such as the contribution of naphthenoaromatics, and appears to be of interest for following their thermal refining. 24 refs., 11 figs., 2 tabs.

  6. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ13C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.)

  7. The stable carbon isotope composition of PM 2.5 and PM 10 in Mexico City Metropolitan Area air

    Science.gov (United States)

    López-Veneroni, D.

    The sources and distribution of carbon in ambient suspended particles (PM 2.5 and PM 10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes ( 13C/ 12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (-27 to -29‰ vs. PDB), while street dust (PM 10) represented the isotopically heaviest endmember (-17‰). The δ13C values of rural soils from four geographically separated sites were similar (-20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between -23 and -26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around -25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM 10 fraction and 54% for PM 2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (-29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope

  8. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing

    Science.gov (United States)

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-01-01

    Molecular distributions and stable carbon isotopic compositions (δ13C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19–C36), fatty acids (C8–C32) and n-alcohols (C16–C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ13C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from –34.1 to −24.7% and −26.9 to −24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China. PMID:27270951

  9. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing

    Science.gov (United States)

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-06-01

    Molecular distributions and stable carbon isotopic compositions (δ13C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19–C36), fatty acids (C8–C32) and n-alcohols (C16–C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ13C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from –34.1 to ‑24.7% and ‑26.9 to ‑24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.

  10. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Directory of Open Access Journals (Sweden)

    B. He

    2010-04-01

    Full Text Available Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N, stable carbon isotopic13C composition, as well as molecular-level analyses. Total organic carbon (TOC content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose yielded between 4.0 and 18.6 mg (100 mg OC−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to

  11. Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Mandal, T.K.; Karapurkar, S.; Naja, M.; Gadi, R.; Ahammed, Y.N.; Kumar, A.; Saud, T.; Saxena, M.

    aerosols over AS are characterized by significantly higher TC/TN ratios (approx.50 + or - 10) compared to aerosol over Indian cities (5.6 + or - 2.6) as well as over BOB (6.8 + or - 12.5), most likely due to having significant inorganic carbon contributed...

  12. Carbon stable isotopic composition of karst soil CO2 in central Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    郑乐平

    1999-01-01

    The δ13 values of soil CO2 are less than that of atmosphere CO2 in the karst area. On the soil-air interface, the δ13 vlaues of soil CO2 decrease with the increase in soil depth; below the soil-air interface, the δ13C values of soil CO2 are invariable. The type of vegetation on the land surface has an influence on the δ13C values of soil CO2 Due to the activity of soil microbes, the δ13C values of soil CO2 are variable with seasonal change in grass. Isotopic tracer indicates that atmosphere CO2 has a great deal of contribution to soil CO2 at the lower parts of soil profile.

  13. Chemical characterization and stable carbon isotopic composition of particulate polycyclic aromatic hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2012-08-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography coupled with a mass spectrometer (GC/MS and molecular isotopic compositions13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the different species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion from others origins of particulate matter (vehicular exhaust using isotopic measurements (with δ13CPAH = −28.7 to −26.6‰ but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach of source tracking.

  14. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  15. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Directory of Open Access Journals (Sweden)

    B. He

    2010-10-01

    Full Text Available Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N ratio, bulk stable organic carbon isotopic composition13C, and carbohydrate composition analyses. Total organic carbon (TOC content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.1‰ to −21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC−1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose, were between 4.0 and 18.6 mg (100 mg OC−1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and

  16. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Science.gov (United States)

    He, B.; Dai, M.; Huang, W.; Liu, Q.; Chen, H.; Xu, L.

    2010-10-01

    Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N) ratio, bulk stable organic carbon isotopic composition (δ13C), and carbohydrate composition analyses. Total organic carbon (TOC) content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from -25.1‰ to -21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)-1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose), were between 4.0 and 18.6 mg (100 mg OC)-1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and/or transformation during transport. Sediment budget based on calculated regional accumulation rates

  17. Carbon isotope geochemistry in the Yalujiang estuary

    Institute of Scientific and Technical Information of China (English)

    吴莹; 张经

    2001-01-01

    The distribution of particulate organic carbon (POC) along the lower reaches is similar between the dry season and the flood season in the Yalujiang Estuary, North China. However, the values of particulate organic carbon of the upperstream in the dry season are one magnitude lower than the concentrations in the flood season. Stable carbon isotope ratios have been used to study the sources of particulate organic carbon in the Yalujiang Estuary. The isotopic composition of POC shows a range from -23.1‰ to -29.4‰ with a little seasonal variation. The isotopic evidence indicates that the POC in the Yalujiang Estuary is predominantly of terrestrial origin rather than a result of in situ plankton. The study of the ratio of POC: Chla shows that the turbidity maximum plays an important role in POC cycle in the Yalujiang Estuary. Organic detritus and soil erosion are the main contributions to POC in the turbidity maximum, especially in the flood season.

  18. The stable carbon isotope composition of green-lipped mussels Perna canaliculus, Marlborough Sounds

    International Nuclear Information System (INIS)

    Variations are shown for the δ13C values of green-lipped mussels, Perna canaliculus, collected on several occasions between October 1983 and April 1985 from six sites in the Marlborough Sounds, South Island, New Zealand. Additional limited data is presented for mussels from two other sites and on other fish and particulate matter. The δ13C in Perna canaliculus was found to vary seasonally, with the least negative values in winter 1984. The δ13C values ranged from -16.7 to -21.3 per thousand, with males on average 0.7 per thousand less negative than females. Phytoplankton composition would be expected to also vary in δ13C with least negative values when at their greatest production rate, i.e. in spring or summer, and thus mussel compositions appear to show a lag of several months. There was no evidence that terrestrial food was important. (author). 25 refs.; 10 figs.; 8 tabs

  19. Oxygen and carbon isotopic composition of hydrothermal vein minerals from the Copeland, goldfield, NSW

    International Nuclear Information System (INIS)

    The Copeland goldfield yielded nearly 1.8t Au from vein systems developed in low metamorphic grade siltstones and sandstones of Palaeozoic age centred on a region 15 km west of Gloucester and 105 km north of Newcastle in the southern New England Fold Belt, New South Wales. Despite the small size of the goldfield, interest in the area arises because of the enigmatic nature of the mineralisation. Mineralisation is clearly structurally controlled; structures have formed under essentially a brittle regime, but the timing of the structures and their relationship to major nearby structures, such as the Peel-Manning Fault System (PMFS) have remained unclear. Models for vein-style, gold-quartz mineralisation such as the slate-belt type appear to be discounted, by reason of the low strain in the host rocks and very low grade of metamorphism (prehnite-pumpellyite facies). By a similar argument, the lack of igneous activity in the area does not immediately suggest a link between gold mineralisation and magmatic activity. This contribution presents isotopic data (O, C) for hydrothermal vein quartz and calcite from a number of deposits in the region, as part of a larger study aimed at identifying the source of ore-forming components, and the conditions and timing of gold deposition

  20. Carbon isotope effects in carbonate systems

    Science.gov (United States)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  1. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    Science.gov (United States)

    Krylov, Alexey A.; Khlystov, Oleg M.; Hachikubo, Akihiro; Minami, Hirotsugu; Nunokawa, Yutaka; Shoji, Hitoshi; Zemskaya, Tamara I.; Naudts, Lieven; Pogodaeva, Tatyana V.; Kida, Masato; Kalmychkov, Gennady V.; Poort, Jeffrey

    2010-06-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.

  2. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes.

    OpenAIRE

    Bowling, DR; Pataki, DE; Randerson, JT

    2008-01-01

    Stable carbon isotopes are used extensively to examine physiological, ecological, and biogeochemical processes related to ecosystem, regional, and global carbon cycles and provide information at a variety of temporal and spatial scales. Much is known about the processes that regulate the carbon isotopic composition (delta(13)C) of leaf, plant, and ecosystem carbon pools and of photosynthetic and respiratory carbon dioxide (CO(2)) fluxes. In this review, systematic patterns and mechanisms unde...

  3. NanoSIMS Determination of Carbon and Oxygen Isotopic Compositions of Presolar Graphites from the Murchison Meteorite

    Science.gov (United States)

    Stadermann, F. J.; Croat, T. K.; Bernatowicz, T.

    2004-01-01

    Graphite from the Murchison density separate KFC1 (2.15 - 2.20 g/cu cm) has previously been studied by combined SEM/EDX and ion microprobe analysis. These studies found several distinct morphological types of graphites and C isotopic compositions that vary over more than 3 orders of magnitude, clearly establishing their presolar origin. Subsequent TEM measurements of a subset of these particles found abundant embedded crystals of metal (Zr, Mo, Ti, Ru) carbides which were incorporated during the growth of the graphites. A new TEM study of a large set of KFC1 graphites led to the discovery of another type of presolar material, Ru-Fe metal. Here we report results of the C and O isotopic measurements in the same graphite sections, which makes it possible for the first time to directly correlate isotopic and TEM data of KFC1 grains.

  4. [Composition and seasonal variations of carbon isotopes in aerosols of Lhasa, Tibet].

    Science.gov (United States)

    Huang, Jie; Kang, Shi-chang; Shen, Cheng-de; Cong, Zhi-yuan; Liu, Ke-xin; Liu, Li-chao

    2010-05-01

    A total of 30 samples of total suspended particles were collected at an urban site in western of Lhasa city, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. 14C was taken as a reference to quantitatively distinguish the fossil and biogenic-derived origins along with the characteristics of seasonal variations of all carbonaceous materials in Lhasa are discussed. The results showed that the f(c) values in Lhasa ranged from 0.357 to 0.702, with an average of 0.493, which is higher than Beijing and Tokyo, but are far lower than that of remote/rural regions such as Launceston, indicating a major biogenic influence in Lhasa. Values of f(c) displayed clear seasonal variations with higher mean value in winter, a decreasing trend in spring, while relatively lower values in summer and autumn. Higher f(C) values in winter demonstrate that carbonaceous aerosol is mainly dominated by wood burning and incineration of agricultural wastes during the winter. The lower f(c) values in summer and autumn might be caused by increased diesel engines, motor vehicles emissions, which are related to the tourism in Lhasa. delta13C values ranged from -26.40% per hundred to approximately -25.10% per hundred, with an average of -25.8% per hundred, and showed no clear seasonal variation. The relative higher values in summer reflected the increment of fossil carbon emissions. 13C(TC) values are relatively homogeneous at -25.8% per hundred, considering the characteristics of seasonal variations of f(c) values, it can be concluded that carbonaceous aerosol of Lhasa was mainly influenced by a constant mixing of several pollution sources such as motor vehicles and wood burning emissions. PMID:20623843

  5. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jidun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province 256600 (China); Wu, Fengchang, E-mail: wufengchang@163.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xiong, Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fasheng; Du, Xiaoming; An, Da [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Lifang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2014-03-01

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC–IRMS). The δ{sup 13}C values of individual n-alkanes (C{sub 16}–C{sub 31}) varied between − 24.1‰ and − 35.6‰, suggesting a dominance of {sup 13}C-depleted n-alkanes that originated from C{sub 3} plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage. - Highlights: • Long-chain n-alkanes and FFAs are mainly derived from terrestrial sources. • Short-chain n-alkanes and fatty acids are mainly derived from bacterial and/or algal sources. • Long-chain BFAs are mainly derived from algal sources in hypereutrophic lakes.

  6. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China

    International Nuclear Information System (INIS)

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC–IRMS). The δ13C values of individual n-alkanes (C16–C31) varied between − 24.1‰ and − 35.6‰, suggesting a dominance of 13C-depleted n-alkanes that originated from C3 plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage. - Highlights: • Long-chain n-alkanes and FFAs are mainly derived from terrestrial sources. • Short-chain n-alkanes and fatty acids are mainly derived from bacterial and/or algal sources. • Long-chain BFAs are mainly derived from algal sources in hypereutrophic lakes

  7. Isotope analysis of carbon monoxide in atmospheric samples

    International Nuclear Information System (INIS)

    A technique was established that allows the analysis of carbon and oxygen isotope composition of CO in small air samples (250ml). The method is based on the oxidation of CO to CO2 with iodine pentoxide and the subsequent isotope analysis of CO2. Potential applications include the use of CO and its isotopes as a tracer to distinguish different pollution sources. (author)

  8. Carbonate clumped isotope thermometry in continental tectonics

    Science.gov (United States)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  9. (Carbon isotope fractionation inplants)

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  10. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  11. He, Ar, N and C isotope compositions in Tatun Volcanic Group (TVG), Taiwan: Evidence for an important contribution of pelagic carbonates in the magmatic source

    Science.gov (United States)

    Roulleau, Emilie; Sano, Yuji; Takahata, Naoto; Yang, Frank T.; Takahashi, Hiroshi A.

    2015-09-01

    The Tatun Volcanic Group (TVG), Northeastern Taiwan, is considered to be the extension of the Ryukyu arc, and belongs to the post-collisional collapse Okinawa Trough. Strong hydrothermal activity is concentrated along the Chinshan fault, and Da-you-keng (DYK) represents the main fumarolic area where the most primitive isotopic and chemical composition is observed. In this study, we present chemical and He, Ar, C and N isotopic compositions of fumaroles, bubbling gas and water from hot springs sampled in 2012 and 2013. High 3He/4He ratios from DYK fumaroles (≈ 6.5 Ra) show a typical arc-like setting, whereas other sampling areas show a strong dependence of 3He/4He and CH4/3He ratios with the distance from the main active hydrothermal area (DYK). This could mean strong crustal contamination and thermal decomposition of organic matter from local sediments. Carbon isotope compositions of DYK range from - 6.67‰ to - 5.85‰, and indicate that carbon contribution comes mainly from pelagic carbonates from the slab (limestone, mantle and sediment contributions are 63%, 19% and 18%, respectively). This is consistent with the negative δ15N values (- 1.4 ± 0.5‰) observed for DYK, implying a strong nitrogen-mantle contribution, and an absence of contribution from nitrogen-pelagic carbonates. These results have important consequences related to the Ryukyu subducted slab. In fact, the Ryukyu margin presents little in off scraping the sedimentary cover to the subducting plate that does not permit any nitrogen contribution in magma from TVG.

  12. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition.

    Directory of Open Access Journals (Sweden)

    Tatiana Lemos Bisi

    Full Text Available To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ(13C and nitrogen (δ(15N isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ(13C and δ(15N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ(13C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ(13C value, while oceanic species showed significantly lower δ(13C values. The highest δ(15N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ(15N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ(13C values, but similar δ(15N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ(13C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area.

  13. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition.

    Science.gov (United States)

    Bisi, Tatiana Lemos; Dorneles, Paulo Renato; Lailson-Brito, José; Lepoint, Gilles; Azevedo, Alexandre de Freitas; Flach, Leonardo; Malm, Olaf; Das, Krishna

    2013-01-01

    To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ(13)C and δ(15)N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ(13)C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ(13)C value, while oceanic species showed significantly lower δ(13)C values. The highest δ(15)N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ(15)N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ(13)C values, but similar δ(15)N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ(13)C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area. PMID:24358155

  14. Carbon and oxygen isotopic composition of carbonate cements of different phases in terrigenous siliciclastic reservoirs and significance for their origin: A case study from sandstones of the Triassic Yanchang Formation, southwestern Ordos Basin,China

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; ZHUO Xizhun; CHEN Guojun; LI Xiaoyan

    2008-01-01

    Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ18O values range from -0.3‰-0.1‰) and lighter oxygen isotope (their ‰18O values range from -22.1‰--19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later dissolution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous calcites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.

  15. Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil

    International Nuclear Information System (INIS)

    Depth profiles of the specific activities of 14C and carbon isotopic compositions (Δ 14C, δ 13C) in soil organic matter and soil CO2 in a Japanese larch forest were determined. For investigating the transport of CO2 in soil, specific activities of 14C, Δ 14C and δ 13C in the organic layer, and atmospheric CO2 in the same forest area were also determined. The specific activity of 14C and Δ 14C in the soil organic matter decreased with the increase in depth of 0-60 cm, while that of soil CO2 did not vary greatly at a soil depth of 13-73 cm and was more prevalent than that of atmospheric CO2. Peaks of specific activities of 14C appeared at the depth of 0-4 cm and Δ 14C values were positive in the depth range from 0 to 15 cm. These results suggest that the present soil at a depth of 0-4 cm had been produced from the mid-1950s up until 1963, and the bomb C had reached the depth of 15 cm in the objective soil area. The δ 13C in the soil organic matter increased at the depth of 0-55 cm, while that of soil CO2 collected on 8 November 2004 decreased rapidly at the depth of 0-13 cm and only slightly at the depth of 53-73 cm. By combining the Δ 14C and δ 13C of the respective components and using the Keeling plot approach it was made clear that the entering of atmospheric CO2 showed a large contribution to soil CO2 at the depth of 0-13 cm and a negligible contribution at the depth of 53-73 cm for soil air collected on 8 November 2004. Respiration of live roots was presumed to be the main source of soil CO2 at the depth of 53-73 cm on 8 November 2004

  16. Carbon isotope composition and its implications of Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, North Tibet

    Institute of Scientific and Technical Information of China (English)

    ZHU; Jingquan; LI; Yongtie; JIANG; Maosheng; CHEN; Daizha

    2004-01-01

    The δ13C values of Lower Cretaceous Aptian-Albian platform-type carbonates in the Cuoqin Basin, North Tibet vary between 2.48‰ and 5.46‰. The mean value is 3.93‰. The values are not only provided with positive excursion, but also 1.17‰ higher than those of contemporaneous pelagic carbonates which possess pretty high δ13C values. The origin is approached. During the oceanic anoxic events, a great number of organisms were rapidly buried, causing the increase of the δ13C value of oceanic total dissolved carbon (TDC) and generally promoting the values of marine carbonates. After that, owing to the organisms undergoing different isotopic fractionation in the paleo-ocean with stratified structure,δ13C values of shallow sea carbonate were obviously higher than those of pelagic carbonates.

  17. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    Science.gov (United States)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  18. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  19. Carbon and Nitrogen Stable Isotope Composition of OM From Florida Bay, the Initial Results of a Paleoenvironmental Seagrass Reconstruction

    Science.gov (United States)

    Evans, S. L.; Anderson, W. T.; Fourqurean, J. W.; Jaffe, R.; Gaiser, E. E.; Collins, L. S.; Holmes, C. W.

    2002-12-01

    The shallow marine waters of Florida Bay provide an ideal environment for seagrasses, which are the most common benthic community in the region. However, these communities are susceptible to a variety of anthropogenic disturbances, particularly changes in water quality, and environmental conditions in Florida Bay have become a concern due to recent increases in salinity, the frequency of algal blooms, and seagrass die-off. These changes have been attributed to 20th century decreases in freshwater discharge from the Everglades to Florida Bay, deteriorated water quality, and changes in exchange between Florida Bay and the Atlantic Ocean. In order to better understand environmental change over long timescales, sediment cores were collected in the summer, 2002, from four locations in Florida Bay for multiple proxy analyses of seagrass abundance, which is an excellent indicator of water quality. Sediment depths ranged from 96 to 244 cm, potentially representing a 5000-year time series. Cores were sampled in 2-cm increments representing an average of 2-10 years for bulk isotopic analysis of sediment organic content. In 2 cores analyzed, δ15N values ranged between 3.2 and 7.6‰ , following an oscillating pattern over time. δ13C values ranged between -11.2 and -8.6‰ along a progressive enrichment trend that is inconsistent with the adjacent development of the metro Miami area and agricultural activities. These patterns show evidence of decoupling between carbon and nitrogen isotopic systems, although values throughout suggest that buried organic matter at these 2 sites is seagrass-derived. Further bulk isotopic analyses of remaining cores, together with organic biomarker analyses, diatom and foraminiferal community analyses, and development of an age model for the cores, will allow more definitive interpretation of the isotope patterns with implications to seagrass productivity levels, and thus, water quality, over time in Florida

  20. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    Science.gov (United States)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  1. Oxygen and carbon isotope composition of Quaternary bivalve shells as a water mass indicator: Last interglacial and Holocene, East Greenland

    DEFF Research Database (Denmark)

    Israelson, C.; Buchardt, Bjørn; Funder, S.V.;

    1994-01-01

    Oxygen and carhon isotope composition of arctic bivahe shells are used in an attempt to reCO'1struct -.urface water temperature and salinities in Scoresby Sund. East Greenland. The oxygen i:;otope compositions or .1,tw mllicuf£!. Hialclla arctica and Tridmlla hOl'm!is han~ been compared with...... south along the Ea5t Greenland coast \\\\as also present during the Holaccnc dimatil.: optimum 800n -7{JOO yr B.P. Analyses of b;\\'al\\t: shells from the last interglacial sho\\\\! that Scoresby Sund during that time was weB circulated and that mell\\\\Jter from 1h.... Greenland ice sheet and sea ice meltwater...

  2. Tracking Movement of Plant Carbon Through Soil to Water by Lignin Phenol Stable Carbon Isotope Composition in a Small Agricultural Watershed

    Science.gov (United States)

    Crooker, K.; Filley, T.; Six, J.; Frey, J.

    2005-12-01

    Few studies integrate land cover, soil physical structure, and aquatic physical fractions when investigating the fate of agricultural carbon in watersheds. In crop systems that involve rotations of soy (a C3 plant) and corn (a C4 plant) the large intrinsic differences in stable carbon isotope values and lignin plus cutin chemistry enable tracking of plant carbon movement from soil fractions to DOM and overland flow during precipitation events. In a small (~3Km2) agricultural basin in central Indiana, we studied plant carbon dynamics in a soy/corn agricultural rotation (2004-2005) to determine the relative inputs of these two plants to soil fractions and the resultant contributions to dissolved, colloidal, and particulate organic matter when mobilized. Using bulk isotope values the fraction of carbon derived from corn in macroaggregates (>250 micron), microaggregates (53-250 mm), and silts plus clays (compound specific isotope analysis of lignin in the soil fractions revealed a wide range of relative inputs among the monomers with cinnamyl phenols being almost exclusively (~ 93%) derived from corn. Syringyl phenols ranged from 75-56% corn and vanillyl phenols ranged from 37-40% corn carbon. The relative input among the fractions mirrors closely the comparative plant chemistry abundances between soy and corn. During export of DOM from the land to the stream the relative abundance of plant source varied with discharge (0.05-1.8 m3/sec) as increases in flow increased the relative export of corn-derived C from the fields. Over the full range of flows lignin phenols varied from 0.05 to 82% corn-derived with the greatest relative corn input for cinnamyl and syringyl carbon. The trend with stream discharge indicates a progressive movement of particulate corn residues with overland flow. Ongoing studies look to resolve contributions of algae, bacteria and terrestrial plants to soil fractions and their mobilized components.

  3. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  4. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  5. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  6. Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments

    Directory of Open Access Journals (Sweden)

    Y. Kashiyama

    2008-05-01

    Full Text Available We determined both the nitrogen and carbon isotopic compositions of various vanadyl alkylporphyrins isolated from siliceous marine sediments of the Onnagawa Formation (middle Miocene, northeastern Japan to investigate the biogeochemistry and ecology of photoautotrophs living in the paleo-ocean. The distinctive isotopic signals support the interpretations of previous works that the origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP is chlorophylls-c1-3, whereas 8-nor-DPEP may have originated from chlorophylls-a2 or b2 or bacteriochlorophyll-a. Although DPEP and cycloheptanoDPEP are presumably derived from common precursory pigments, their isotopic compositions differed in the present study, suggesting that the latter represents a specific population within the photoautotrophic community. The average δ15N value for the entire photoautotrophic community is estimated to be –2 to +1‰ from the δ15N values of DPEP (–6.9 to –3.6‰; n=7, considering that the empirical isotopic relationships that the tetrapyrrole nuclei of chloropigments are depleted in 15N by ~4.8‰ and enriched in 13C by ~1.8‰ relative to the whole cells. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N2-fixation by diazotrophic cyanobacteria. Based on the δ13C values of DPEP (–17.9 to –15.6‰; n=7, we estimated isotopic fractionation associated with photosynthetic carbon fixation to be 8–14‰. This range suggests the importance of β-carboxylation and/or active transport of the carbon substrate, indicating in turn the substantial contribution of diazotrophic cyanobacteria to primary production. Based on the δ15N values of 17-nor-DPEP (–7.4 to –2.4‰ n=7, the δ15N range of chlorophylls-c-producing algae was estimated to be –3

  7. Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin

    Directory of Open Access Journals (Sweden)

    Tjaša Kanduč

    2015-07-01

    Full Text Available CO2 concentrations (partial pressure of CO2, pCO2, and isotope compositions of carbon dioxide in air (δ13CCO2, temperature (T and relative humidity (H have been measured in the atmosphere in the Velenje Basin. Samples were collected monthly in the calendar year 2011 from 9 locations in the area where the largest thermal power plant in Slovenia with the greatest emission of CO2 to the atmosphere (around 4M t/year is located. Values of pCO2 ranged from 239 to 460 ppm with an average value of 294 ppm, which is below the average atmospheric CO2 pressure (360 ppm. δ13CCO2 ranged from -18.0 to -6.4 ‰, with an average value of -11.7 ‰. These values are similar to those measured in Wroclaw, Poland. We performed the comparison of δ13CCO2 values in atmospheric air with Wroclaw since researchers used similar approach to trace δ13CCO2 around anthropogenic sources. The isotopic composition of dissolved inorganic carbon (δ13CDIC in rivers and lakes from the Velenje basin changes seasonally from -13.5 to -7.1‰. The values of δ13CDIC indicate the occurrence of biogeochemical processes in the surface waters, with dissolution of carbonates and degradation of organic matter being the most important. A concentration and diffusion model was used to calculate the time of equilibration between dissolved inorganic carbon in natural sources (rivers and atmospheric CO2.

  8. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; Brunner, A. E.; Grotzinger,J. P.; Jones, J. H.; Leshin, L. A.; Miller, K.; Morris, R. V.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T. C.; Summons, R. E.; Sutter, B.; Webster, C. R.

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  9. By-products of the serpentinization process on the Oman ophiolite : chemical and isotopic composition of carbonate deposits in alkaline springs, and associated secondary phases

    Science.gov (United States)

    Sissmann, O.; Martinez, I.; Deville, E.; Beaumont, V.; Pillot, D.; Prinzhofer, A.; Vacquand, C.; Chaduteau, C.; Agrinier, P.; Guyot, F. J.

    2014-12-01

    The isotopic compositions (d13C, d18O) of natural carbonates produced by the alteration of basic and ultrabasic rocks on the Oman ophiolite have been measured in order to better understand their formation mechanisms. Fossil carbonates developed on altered peridotitic samples, mostly found in fractures, and contemporary carbonates were studied. The samples bear a large range of d13C. Those collected in veins are magnesian (magnesite, dolomite) and have a carbon signature reflecting mixing of processes and important fractionation (-11‰ to 8‰). Their association with talc and lizardite suggests they are by-products of a serpentinization process, that must have occurred as a carbon-rich fluid was circulating at depth. On the other hand, the carbonates are mostly calcic when formed in alkaline springs, most of which are located in the vicinity of lithological discontinuities such as the peridotite-gabbro contact (Moho). Aragonite forms a few meters below the surface of the ponds in Mg-poor water, and is systematically associated with brucite (Mg(OH)2). This suggests most of the Mg dissolved at depth has reprecipitated during the fluid's ascension through fractures or faults as carbonates and serpentine. Further up, on the surface waters of the ponds (depleted in Mg and D.I.C.), thin calcite films precipitate and reach extremely negative d13C values (-28‰), which could reflect either a biological carbon source, or kinetic fractionation from pumping atmospheric CO2. Their formation represent an efficient and natural process for carbon dioxide mineral sequestration. The d18O signature from all samples confirm the minerals crystallized from a low-temperature fluid. The hyperalkaline conditions (pH between 11 and 12) allowing for these fast precipitation kinetics are generated by the serpentinization process occurring at depth, as indicated by the measured associated H2-rich gas flows (over 50%) seeping out to the surface.

  10. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    Science.gov (United States)

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.

  11. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake

    Science.gov (United States)

    Rao, Zhiguo; Jia, Guodong; Li, Yunxia; Chen, Jianhui; Xu, Qinghai; Chen, Fahu

    2016-07-01

    Both the timing of the maximum East Asian summer monsoon (EASM) intensity in monsoonal China and the environmental significance of the Chinese stalagmite oxygen isotopic record (δ18O) have been debated. Here, we present a ca. 120-year-resolution compound-specific carbon (δ13C) and hydrogen (δD) isotopes of terrestrial long-chain n-alkanes extracted from a well-dated sediment core from an alpine lake in north China. Our δ13C data, together with previously reported pollen data from a parallel core, demonstrate a humid mid-Holocene from ca. 8-5 ka BP. Assuming that the climatic humidity of north China is an indicator of the EASM intensity, then the maximum EASM intensity occurred in the mid-Holocene. Our δD data reveal a similar long-term trend to the δ18O record from nearby Lianhua Cave, indicating that the synchronous δD and δ18O records faithfully record the δD and δ18O of precipitation, respectively. The most negative δD and δ18O values occur in the early-mid Holocene, from ca. 11-5 ka BP. This contrast in the timing of isotopic variations demonstrates a complex relationship between the isotopic composition of precipitation and precipitation amount, or EASM intensity. Further comparisons indicate a possible linkage between the precipitation amount in north China and the west-east thermal gradient in the equatorial Pacific. In addition, the temperature of the moisture source area may play an important role in determining the isotopic composition of precipitation in monsoonal China.

  12. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy

    Directory of Open Access Journals (Sweden)

    S. Dai

    2014-11-01

    Full Text Available Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC, organic carbon (OC, water-soluble organic carbon (WSOC, water-soluble inorganic ions (WSII, metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle−1 km−1 respectively. Emission factors of WSII were 0.016 (F- ~4.17 (Cl- mg vehicle−1 km−1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle−1 km−1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle−1 km−1, respectively. Stable carbon isotopic composition δ13C value was measured and it was −25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0–93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A

  13. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy

    Science.gov (United States)

    Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Peng, P.; Sheng, G.; Fu, J.

    2015-03-01

    Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~ 4.17 (Cl-) mg vehicle-1 km-1, contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM2.5mass, EC, OC, WSII except Cl- and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic

  14. Determination of U-isotope composition of silicate and carbonate reference materials for in-situ LA-ICPMS analysis by high precision MC-ICPMS

    Science.gov (United States)

    Scholz, D.; Krause, J.; Jochum, K. P.; Andreae, M. O.

    2010-12-01

    U-series isotope analyses are frequently used in order to constrain the timing and duration of geological and environmental processes during the past 600 ka. This includes paleoclimate reconstruction and timescales of magma generation and ascent. In addition to the commonly applied TIMS and MC-ICPMS techniques, in-situ methods such as LA-ICPMS have recently been developed (e.g. Mertz-Kraus et al. 2010) in order to resolve spatial variability in the U-isotope composition of carbonate and silicate materials. A prerequisite for application of LA-ICPMS for U-isotope measurements is the availability of matrix matched homogeneous reference materials with known U-isotope composition. These are for instance required in order to control instrumental and matrix induced biases occurring during analysis. Here we report high-precision MC-ICPMS U-isotope ratios for various solid reference materials especially produced for in-situ microanalysis (e.g. KL2-G, BCR-2G, ATHO-G, GSD-1G, MACS-3). The analyses were performed with the NU plasma MC-ICP-MS at the Max Planck Institute for Chemistry. Samples were dissolved in an HCl-HF mixture. U was separated following traditional chemical separation and purification. The analytical protocol for the MC-ICPMS analysis utilizes a common standard-bracketing procedure in order to derive correction factors for mass fractionation and Faraday-cup-to-SEM gain. Analyses of three splits of GSD1-G yielded 238U/235U and 234U/238U ratios in agreement within uncertainty, demonstrating the homogeneity of the material (mean value 271.40 ± 0.13 and 0.000017980 ± 31 respectively). The 238U/235U and 234U/238U ratios of the naturally sourced KL2-G (140.96 ± 0.28 and 0.00005322 ± 51, respectively) are significantly different from the ratios determined for the original KL2 rock (137.306 ± 0.070 and 0.00005486 ± 10), which is assumed to be caused by U contamination during glass preparation. BCR-2G and ATHO-G have natural 238U/235U within error. The ratios

  15. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002

    Institute of Scientific and Technical Information of China (English)

    GUO Zhigang; LI Juyuan; FENG Jialiang; FANG Ming; YANG Zuosheng

    2006-01-01

    The molecular compositions and compound-specific carbon isotope compositions of individual long-chain n-alkanes of atmospheric aerosols collected during two severe Asian dust episodes in Qingdao in spring of 2002 were analyzed using gas chromatography/mass spectrometry (GC/MS) and gas chromatography/isotope ratio mass spectrometry (GC/IRMS). Typical plant wax n-alkanes (C29 and C31) had lowerδ13C values than those from anthropogenic (engine exhaust) sources (C21―C23). The average δ13C value of plant wax n-alkane C29 in non-dust episode periods was -30.5‰ (-30.3‰― -31.9‰), while -31.3‰ (-31.1‰―-31.5‰) in dust episode periods; for C31, it was -31.4‰ (-31.1‰―-33.0‰) in non-dust episode periods, and -31.7‰ (-31.3‰―-32.6‰) in dust episode periods. Plant wax in the dust episode samples was mainly from herbaceous plants via long-range transport, while local plant wax was mainly from deciduous plants and woody plants. In North China coast, 83.3% of the plant wax in the severe dust episode samples was from C3 plants while 80.0% for the non-dust samples, indicating that plant wax transported to the northwestern Pacific Ocean by airborne dust from East Asia was mainly from C3 plants. The results suggest that the molecular and molecular-isotopic compositions of individual long-chain n-alkanes can, as an effective indicator, identify the terrestrial organic components in the dust from East Asia and sediments in the northwest Pacific Ocean.

  16. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains.

    Science.gov (United States)

    Maurer, Gregory E; Chan, Allison M; Trahan, Nicole A; Moore, David J P; Bowling, David R

    2016-07-01

    Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ(13) C) of soil respiration (δJ ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3-7; and (c) a second period of enrichment (1-2‰) in years 8-10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more (13) C-depleted deeper in the soil than near the surface, while the bulk soil followed the well-established pattern of (13) C-enrichment at depth. Overall, differences in δJ between mortality classes (soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰). PMID:26824577

  17. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  18. Sources of Organic-Carbon in the Littoral of Lake Gloomier as Indicated by Stable Carbon-Isotope and Carbohydrate Compositions

    NARCIS (Netherlands)

    Boschker, H.T.S.; Dekkers, E.M.J.; Pel, R.; Cappenberg, T.E.

    1995-01-01

    The relative importance of potential carbon sources in the littoral of Lake Gooimeer, a lake in the centre of the Netherlands, was studied using a combination of C-13/C-12-ratio analysis and carbohydrate composition analysis. The littoral is covered on the land side by a 80 m wide Phragmites austral

  19. Changes in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought

    Institute of Scientific and Technical Information of China (English)

    Giovanni Di Matteo; Luigi Perini; Paolo Atzori; Paolo De Angelis; Tiziano Mei; Giada Bertini; Gianfranco Fabbio; Giuseppe Scarascia Mugnozza

    2014-01-01

    We estimated water-use efficiency and potential photosyn-thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard tech-niques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We pos-tulated that responses to drought of coppiced trees would lead to differ-ential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterra-nean area. We observed physiological responses of the coppiced trees that suggested acclimation in photosynthetic potential and water-use effi-ciency:(1) a significant reduction in stomatal conductance (p<0.01) was recorded as the drought increased at the SW site;(2) foliarδ13C increased as drought increased at the SW site (p<0.01);(3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosyn-thetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe.

  20. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills

    International Nuclear Information System (INIS)

    With the increasing demand for and consumption of crude oils, oil spill accidents happen frequently during the transportation of crude oils and oil products, and the environmental hazard they pose has become increasingly serious in China. The exact identification of the source of spilled oil can act as forensic evidence in the investigation and handling of oil spill accidents. In this study, a weathering simulation experiment demonstrates that the mass loss of crude oils caused by short-term weathering mainly occurs within the first 24 h after a spill, and is dominated by the depletion of low-molecular weight hydrocarbons (18n-alkanes). Short-term weathering has no significant effect on δ13C values of individual n-alkanes (C12-C33), suggesting that a stable carbon isotope profile of n-alkanes can be a useful tool for tracing the source of an oil spill, particularly for weathered oils or those with a relatively low concentration or absence of sterane and terpane biomarkers

  1. Lipid and lipid carbon stable isotope composition of the hydrothermal vent shrimp Mirocaris fortunata: evidence for nutritional dependence on photosynthetically fixed carbon

    OpenAIRE

    Pond, David W; Segonzac, Michel; Bell, Michael V; Dixon, David R.; Fallick, Anthony E.; Sargent, John R.

    1997-01-01

    Mirocaris fortunata were sampled from the Lucky Strike hydrothermal vent area (Eiffel Tower site) on the mid-Atlantic ridge during the French DIVA 2 cruise (June 1994). Small adults (17 to 22 mm total length), although morphologically identical, could be divided into 2 categories on the basis of pigmentation, lipid composition and C-13/C-12 stable isotope ratios of fatty acids. Highly pigmented small adults (8.6 to 9.2 mu g carotenoid shrimp(-1)) contained higher levels of total lipid than si...

  2. The Effects of Trimethylamine and Organic Matter Additions on the Stable Carbon Isotopic Composition of Methane Produced in Hypersaline Microbial Mat Environments

    Science.gov (United States)

    Kelley, C. A.; Nicholson, B. E.; Beaudoin, C. S.; Detweiler, A. M.; Bebout, B.

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of non-competitive substrates, such as the methylamines, methanol and dimethylsulfide. The stable carbon isotopic composition of the produced methane has suggested that the methanogens are operating under conditions of substrate limitation. We investigated substrate limitation in gypsum-hosted endoevaporite and soft mat hypersaline environments by the additions of trimethylamine, a non-competitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71 ‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. We hypothesize that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  3. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline, meromictic lake

    International Nuclear Information System (INIS)

    Distribution and isotopic composition (delta13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake, an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion, reached uniform concentrations in the monimolimnion and again increased with depth in monimolimnion bottom sediments. The delta13C[CH4] values in bottom sediment below 1 m sub-bottom depth increased with vertical distance up the core. Monimolimnion delta13C[CH4] values were greater than most delta13C[CH4] values found in the anoxic mixolimnion. No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50 to 60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4/[C2H6 + C3H8] were high in the anoxic mixolimnion, decreased in the monimolimnion and increased with depth in the sediment. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. (author)

  4. Variability in the carbon isotopic composition of foliage carbon pools (soluble carbohydrates, waxes) and respiration fluxes in southeastern U.S. pine forests

    Science.gov (United States)

    Mortazavi, Behzad; Conte, Maureen H.; Chanton, Jeffrey P.; Weber, J. C.; Martin, Timothy A.; Cropper, Wendell P., Jr.

    2012-06-01

    We measured the δ13C of assimilated carbon (foliage organic matter (δCOM), soluble carbohydrates (δCSC), and waxes (δCW)) and respiratory carbon (foliage (δCFR), soil (δCSR) and ecosystem 13CO2 (δCER)) for two years at adjacent ecosystems in the southeastern U.S.: a regenerated 32 m tall mature Pinus palustrisforest, and a mid-rotation 13 m tallPinus elliottii stand. Carbon pools and foliage respiration in P. palustris were isotopically enriched by 2‰ relative to P. elliottii. Despite this enrichment, mean δCER values of the two sites were nearly identical. No temporal trends were apparent in δCSC, δCFR, δCSR and δCER. In contrast, δCOM and δCW at both sites declined by approximately 2‰ over the study. This appears to reflect the adjustment in the δ13C of carbon storage reserves used for biosynthesis as the trees recovered from a severe drought prior to our study. Unexpectedly, the rate of δ13C decrease in the secondary C32-36 n-alkanoic acid wax molecular cluster was twice that observed forδCOM and the predominant C22-26 compound cluster, and provides new evidence for parallel but separate wax chain elongation systems utilizing different carbon precursor pools in these species. δCFR and δCER were consistently enriched relative to assimilated carbon but, in contrast to previous studies, showed limited variations in response to changes in vapor pressure deficit (D). This limited variability in respiratory fluxes and δCSC may be due to the shallow water table as well as the deep taproots of pines, which limit fluctuations in photosynthetic discrimination arising from changes in D.

  5. Effect of temperature on the oxygen isotope composition of carbon dioxide (δ18O) prepared from carbonate minerals by reaction with polyphosphoric acid: An example of the rhombohedral CaCO 3-MgCO 3 group minerals

    Science.gov (United States)

    Crowley, Stephen F.

    2010-11-01

    Measurement of the ratio of 18O to 16O in CO 2(δ18O) produced from rhombohedral carbonate minerals in the compositional range CaCO 3-MgCO 3 by reaction with polyphosphoric acid (PPA), at temperatures of between 25 and 110 °C, shows that values of δ18O are linearly correlated ( r o > 0.99) with the reciprocal of absolute reaction temperature (K/ T). This observation is consistent with earlier studies documenting the effect of temperature on the kinetic fractionation of oxygen isotopes between parent carbonate and product CO 2 and H 2O during acid decomposition. However, analysis of the resultant data reveals: (1) a progressive increase in dδ18O/dT-1 with increasing Mg content, and (2) a significant variation in dδ18O/dT-1 between individual samples of carbonate of identical lattice symmetry and similar chemical composition. The overall increase in gradient with increasing Mg content is assumed to reflect cation radius dependent factors that control the bonding environment at the interface between the metal cation exposed at the surface of the reacting carbonate solid and a H 2CO 3 transitional species during disproportionation of H 2CO 3 to CO 2 and H 2O ("cluster model" of Guo et al., 2009). Phase-specific variations in dδ18O/dT-1 might result from differences in lattice structure variables (e.g., degree of lattice distortion, extent of positional disorder, and non-ideal mixing of substituent cations where carbonates depart from end-member compositions). Lattice structure variables may be dependent on geochemical conditions pertaining at the time of carbonate precipitation (e.g., biosynthetic versus inorganic precipitates) and suggests that dδ18O/dT-1 has the potential to vary, within limits, in response to both the chemical composition and structure of each carbonate sample. Because the oxygen isotope composition of carbonate minerals (δ18O) measured on the VPDB scale is defined by the oxygen isotope composition of CO 2 prepared from NBS19 (calcite) by

  6. Effects of mistletoe removal on growth, N and C reserves, and carbon and oxygen isotope composition in Scots pine hosts.

    Science.gov (United States)

    Yan, Cai-Feng; Gessler, Arthur; Rigling, Andreas; Dobbertin, Matthias; Han, Xing-Guo; Li, Mai-He

    2016-05-01

    Most mistletoes are xylem-tapping hemiparasites, which derive their resources from the host's xylem solution. Thus, they affect the host's water relations and resource balance. To understand the physiological mechanisms underlying the mistletoe-host relationship, we experimentally removed Viscum album ssp. austriacum (Wiesb.) Vollmann from adult Pinus sylvestris L. host trees growing in a Swiss dry valley. We analyzed the effects of mistletoe removal over time on host tree growth and on concentrations of nonstructural carbohydrates (NSC) and nitrogen (N) in needles, fine roots and sapwood. In addition, we assessed the δ(13)C and δ(18)O in host tree rings. After mistletoe removal, δ(13)C did not change in newly produced tree rings compared with tree rings in control trees (still infected with mistletoe), but δ(18)O values increased. This pattern might be interpreted as a decrease in assimilation (A) and stomatal conductance (gs), but in our study, it most likely points to an inadequacy of the dual isotope approach. Instead, we interpret the unchanged δ(13)C in tree rings upon mistletoe removal as a balanced increase in A and gs that resulted in a constant intrinsic water use efficiency (defined as A/gs). Needle area-based concentrations of N, soluble sugars and NSC, as well as needle length, single needle area, tree ring width and shoot growth, were significantly higher in trees from which mistletoe was removed than in control trees. This finding suggests that mistletoe removal results in increased N availability and carbon gain, which in turn leads to increased growth rates of the hosts. Hence, in areas where mistletoe is common and the population is large, mistletoe management (e.g., removal) may be needed to improve the host vigor, growth rate and productivity, especially for relatively small trees and crop trees in xeric growth conditions. PMID:27083524

  7. Carbon and hydrogen isotope composition of plant biomarkers as proxies for precipitation changes across Heinrich Events in the subtropics

    Science.gov (United States)

    Arnold, T. E.; Freeman, K.; Brenner, M.; Diefendorf, A. F.

    2014-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  8. Correlations Between Foliar Stable Carbon Isotope Composition and Environ-mental Factors in Desert Plant Reaumuria soongorica (Pall.) Maxim.

    Institute of Scientific and Technical Information of China (English)

    Jian-Ying MA; Tuo CHEN; Wei-Ya QIANG; Gang WANG

    2005-01-01

    Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ13C values and environmental factors. Results showed that δ13C values in R. soongorica ranged from-22.77‰. to-29.85‰. and that the mean δ13C value (-26.52‰)was higher than a previously reported δ13C value for a different desert ecosystem. This indicates that R.soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ13C values and environmental factors demonstrated that the foliar δ13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ13C values in R. soongorica was not obvious and there was no significant correlation between the δ13C values and mean annual temperature. We conclude that different distribution trends in δ13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R.soongorica. This pattern of δ13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.

  9. The relationship between the isotopic composition of lake and inflow waters and limnology of a small carbonate lake in NW England

    International Nuclear Information System (INIS)

    The isotopic composition of lake waters is a complex issue. The interpretation of isotopic data requires a knowledge of the local processes which may modify the signal. This study has attempted to show how a detailed knowledge of the limnology of a lake can be used to interpret isotopic records. Hawes Water is a small (8 ha), oligotrophic, carbonate lake located in NW England. Detailed modern limnological monitoring took place over a two-year period (April 1998-April 2000). Water temperature was monitored every two hours using dataloggers deployed on the marl shelf and in the open water. Water samples were analysed in the field on a monthly basis, for temperature, pH, total alkalinity and dissolved oxygen. Monthly water samples were taken for laboratory measurements of oxygen, hydrogen and DIC isotopes, nitrates, phosphates, major and trace cations and anions and algal content. The samples were taken from the lake margin, various deep-water sites and three inflow sites. Temperature data shows that Hawes Water is a monomictic lake. Thermal stratification begins in April and continues until October/November when the lake overturns. A thermocline develops at approximately 6 m depth and persists throughout the summer. Dissolved oxygen saturation measurements from surface samples range from 70% in the winter months to ∼140 % in the summer. At the thermocline, levels are >140% from May until August. The hypolimnion becomes sub-oxic during the summer. pCO2 levels in the epilimnion are low throughout the summer period and only begin to rise in November, after the autumn turnover has taken place. Bacterial activity associated with the decomposition of organic matter consumes oxygen and produces CO2 in the hypolimnion. These processes and the relative hydraulic isolation of this part of the lake produces low O2 and high pCO2 values in the summer months. The δ13C of dissolved inorganic carbon reflects the primary productivity of the lake and the isotopic composition of

  10. Quantitative analysis of intraspecific variations in the carbon and oxygen isotope compositions of the modern cool-temperate brachiopod Terebratulina crossei

    Science.gov (United States)

    Takayanagi, Hideko; Asami, Ryuji; Otake, Tsuguo; Abe, Osamu; Miyajima, Toshihiro; Kitagawa, Hiroyuki; Iryu, Yasufumi

    2015-12-01

    This study unravels intraspecific variations in the carbon isotope (δ13C) and oxygen isotope (δ18O) compositions of shells of the modern cool-temperate brachiopod Terebratulina crossei collected at a water depth of 70 m in Otsuchi Bay, northeastern Honshu, Japan. Brachiopod shells have been used as proxies of the δ13C values of dissolved inorganic carbon (DIC) (δ13CDIC) and seawater temperature/δ18O (δ18OSW) values to reconstruct the evolution of Phanerozoic oceans. To identify more reliable shell portions as the proxies, we conducted a rigorous time-series comparison of δ13C and δ18O values between the brachiopod shells and calcite precipitated in isotopic equilibrium with ambient seawater (equilibrium calcite) (δ13CEC and δ18OEC values, respectively). Samples were collected from the outer and inner surfaces of the secondary shell layer along the maximum growth axis (ontogenetic-series and inner-series samples, respectively). The ontogenetic-series δ13C values, which showed regular annual and irregular non-annual cycles, partly fell in but were mostly less than the range of the δ13CEC values. The δ13C cycles were often associated with one or two minor negative peaks. The peaks were likely resulted from an increased incorporation of respiration-derived 12C due to elevated metabolic activity during spawning. The ontogenetic-series δ18O values showed distinct seasonal variations and were mostly within the range of δ18OEC values. The amplitude of the δ18O profiles was relatively large during the younger fast-growth stage, and decreased during the senescent slow-growth stage. The inner-series δ13C and δ18O values of individual shells varied within narrow ranges. The inner-series δ13C values were close to the minimum δ13CEC values. The inner-series δ18O values were in the upper range of the δ18OEC values. Kinetic isotope fractionation effects were evident, but its degree varied among different shells. We identified the shell portions reliably

  11. Biogeochemistry of the stable carbon isotopes in carboxylic acids

    International Nuclear Information System (INIS)

    The carbon isotopic compositions of the carboxyl carbons of fatty acids were determined by measuring the isotopic composition of the carbon dioxide quantitatively released from the acid. A modified version of the Schmidt decarboxylation developed and tested in this work was employed. A study of the evolution of CO2 at 5 +- 20C from the Schmidt decarboxylation of octanoic acid during the developmental program revealed two kinetic phases, each characterized by different rate constants and carbon isotope effects. The first, slower reaction phase displayed overall first-order kinetics, its rate being independent of HN3 concentration. Both pre-equilibration of the HN3-CHCl3 decarboxylation reagent with H2SO4 and saturation of the catalytic H2SO4 phase with KHSO4 drastically altered the rate of evolution and isotopic composition of the product CO2. The mechanistic implications of these results were discussed. A review of the metabolism of saturated fatty acids was made in which the impact of potential isotope fractionations in the various chemical reactions comprising the biosynthetic pathways on the intramolecular carbon isotope distribution within fatty acids was discussed

  12. Effect of varying frontal systems on stable oxygen and carbon isotopic compositions of modern planktic foraminifera of Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, M.; Mohan, R.; Meloth, T.; Naik, S.S.; Sudhakar, M.

    has received little attention. To fill in this lacuna, during the first Indian expedition to Southern Ocean in 2004, plankton net samples, sediment cores and other physical oceanographic parameters were collected. The isotopic results obtained from...

  13. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    OpenAIRE

    Guillon, A.; Ménach, K.; Flaud, P.-M.; Marchand, N.; H. Budzinski; Villenave, E.

    2013-01-01

    The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were ...

  14. Carbonate clumped isotope bond reordering and geospeedometry

    Science.gov (United States)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    short-lived hydrothermal event (Bristow et al., 2011, Nature v. 474, p. 68-71). Most of the uncertainty in these estimates relates to uncertainty in Arrhenius parameters for different calcites. Thus, while the carbonate clumped isotope geospeedometer shows promise for recording cooling rates in settings and lithologies where other geospeedometers may not be applicable, the uncertainty in cooling rate will be large without independent knowledge of the reordering kinetics of each study material. Thus the full potential of the method will only be realized if reordering kinetics can be accurately determined for each study material, or predicted on the basis of mineral composition, texture, or other observable parameters.

  15. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  16. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  17. Pitch carbon microsphere composite

    Science.gov (United States)

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  18. Zinc isotopic compositions of breast cancer tissue.

    OpenAIRE

    Larner, F; Woodley, LN; Shousha, S; Moyes, A; Humphreys-Williams, E; Strekopytov, S; Halliday, AN; Rehkämper, M; Coombes, RC

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn i...

  19. Stable isotope composition of food from different regions of Poland

    International Nuclear Information System (INIS)

    Full text: Stable isotope (hydrogen, oxygen, carbon and nitrogen) composition is important tool for food authenticity and control of origin. The isotopic fractionation of those elements in the environment follows complex patterns allowing to established the correlation between the food (fruits, vegetables etc.) and raw materials (water and CO2). The aim of the study is to explore the relationship between isotope composition of different sorts of food and its geographical origin. The purpose of the study is to compare the data from different regions of Poland. The samples are received directly from a producer. Hydrogen, oxygen, nitrogen and carbon composition is measured in many sorts of food. The collected data gives a possibility to find the relationship between time and place of origin and isotope ratio: 18O/16O, 13C/12C, 15N/14N and D/H. The composition of water presented in the food is tested. Hydrogen is measured by H/Device and oxygen isotope ratio by Gasbench II (both instruments connected with mass spectrometer). For the comparison the water samples from the region of plant growing are tested. In this study for measurements of carbon and nitrogen composition in food, we use our new instrument Elemental Analyser coupled with mass spectrometer. The correlation between stable isotope composition 18O/16O, 13C/12C, 15N/14N, D/H and geographical origin of food will be presented in the paper. In the future, the study will be continued and addition of parameters, as a sulfur isotope composition in food and in surrounding environment (as a pollutant), will be compared. (author)

  20. Stable isotope composition of food from different regions of Poland

    International Nuclear Information System (INIS)

    Full text: Stable isotope (hydrogen, oxygen, carbon and nitrogen) composition is an important tool for food authenticity and control of origin. The isotopic fractionation of those elements in the environment follows complex patterns, allowing to establish the correlation between food (fruits, vegetables etc.) and raw materials (water and CO2). The aim of the study is to explore the relationship between isotope composition of different sorts of food and its geographical origin. The purpose of the study is to compare the data from different regions of Poland. The samples are received directly from a producer. Hydrogen, oxygen, nitrogen and carbon composition is measured in many sorts of food. The collected data give a possibility to find the relationship between time and place of origin and isotope ratio: 18O/16O, 13C/12C, 15N/14N and D/H. The composition of water presented in food is tested. Hydrogen is measured by H/Device and oxygen isotope ratio, by Gasbench II (both instruments connected with mass spectrometer). For the comparison the water samples from the region of plant growing are tested. In this study, for measurements of carbon and nitrogen composition in food, we use our new instrument Elemental Analyser coupled with mass spectrometer. The correlation between stable isotope composition 18O/16O, 13C/12C, 15N/14N, D/H and geographical origin of food will be presented in the paper. In the future, the study will be continued and addition of parameters, as a sulfur isotope composition in food and in surrounding environment (as a pollutant), will be compared. (author)

  1. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  2. Stable isotope composition of inorganic carbonates from Lake Abiyata (Ethiopia): Attempt of reconstructing δ18O palaeohydrological changes during the Holocene

    International Nuclear Information System (INIS)

    Due to the sensitivity of its regional climate to the African monsoon seasonal shifting, Ethiopia has been designated as a key site for palaeoenvironmental reconstructions mainly within the IGBP-PAGES-PEPIII programme. Under the French-Ethiopian ERICA project, we focused on Lake Abiyata located in the Ziway-Shala basin (Central Ethiopia) which has experienced several lacustrine highstands during the Late Pleistocene and Holocene. At present, Lake Abiyata is a closed lake with a very flat catchment area, and corresponds to a half, deep graben infilled by 600-m of sedimentary deposits. In 1995, a 12.6-m-long sequence ABII was cored in Lake Abiyata. A reliable 14C-AMS chronology was defined on both organic matter and inorganic carbonates. Both the modern hydrologeological and geochemical balances of the 'groundwater-lake' system indicate that (i) carbonate cristallization mainly occurs at the water-sediment interface via the mixing of lake water and 14C-depleted groundwaters, and that (ii) modern algae form in equilibrium with the atmospheric reservoir. Phytoplankton is thus considered as an authigenic material, and Core ABII has registered 13,500 cal. yr B.P. of environmental history. The evidence of calcite precipitation at the water-sediment interface calls into question the direct palaeoclimatic reconstruction based on inorganic carbonates. Since the evolution of isotopic contents of carbonates might be linked to the variable proportion of the 'lake/groundwater' end-members in the mixing, calculations based on isotopic mass balance models may allow for the reconstruction of δ18O composition of the lake water. Two major changes can be highlighted: (i) the ∼12,000-5500 cal. yr B.P. period is associated to low 18O contents of lake water, and corresponds to an open hydrological system, with a high lacustrine phytoplanktonic productivity, and (ii) from ∼5500 cal. yr B.P. to Present, regressive conditions are suggested by the δ18O enrichment of the lake water

  3. Diurnal variations of organic molecular tracers and stable carbon isotopic compositions in atmospheric aerosols over Mt. Tai in North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    Z. F. Wang

    2012-04-01

    , we estimate that an average of 24% (up to 64% of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%. In contrast, isoprene SOC was the main contributor (6.6% to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6‰ to −23.2‰, mean −25.0‰ were lower than those (−23.9‰ to −21.9‰, mean −22.9‰ in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic molecular compositions and stable carbon isotopic compositions of aerosol particles in the troposphere over North China Plain.

  4. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    organic carbon (SOC, we estimate that an average of 24% (up to 64% of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%. In contrast, isoprene SOC was the main contributor (6.6% to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6 to −23.2‰, mean −25.0‰ were lower than those (−23.9 to −21.9‰, mean −22.9‰ in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic composition and stable carbon isotopic composition of aerosol particles in the troposphere over the North China Plain.

  5. Use of sulphur and carbon stable-isotope composition of fish scales and muscles to identify the origin of fish

    Science.gov (United States)

    Trembaczowski, Andrzej

    2011-01-01

    δ34S and δ13C analyses were used to determine the origin of trout specimens. The isotope record of their scales and muscles are compared with a database previously obtained from wild- and reared fish coming from Polish rivers and pond farms. The comparison made it possible to find out whether the trout were wild or reared.

  6. Carbon isotopic studies of organic matter in Precambrian rocks.

    Science.gov (United States)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  7. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    OpenAIRE

    R. A. Cabral-Tena; A Sánchez; Reyes-Bonilla, H.; A. H. Ruvalcaba-Díaz; Balart, E.F.

    2015-01-01

    Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth paramet...

  8. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    OpenAIRE

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F

    2016-01-01

    Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show ...

  9. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  10. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    Energy Technology Data Exchange (ETDEWEB)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to

  11. Stable-Carbon-Isotope Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic and Thiotrophic Bacterial Endosymbionts

    OpenAIRE

    Pond, David W; Bell, Michael V; Dixon, David R.; Fallick, Anthony E.; Segonzac, Michel; Sargent, John R.

    1998-01-01

    Fatty acid biomarker analysis coupled with gas chromatography-isotope ratio mass spectrometry was used to confirm the presence of methanotrophic and thiotrophic bacterial endosymbionts in the tissues of a hydrothermal vent mussel (Bathymodiolus sp.), collected from the Menez Gwen vent field on the mid-Atlantic ridge. Monounsaturated (n-8) fatty acids, which are diagnostic of methanotrophic bacteria, were detected in all three types of tissues examined (gill, posterior adductor, and mantle), a...

  12. Carbon isotopes in oil and gas exploration. Examples of applications

    International Nuclear Information System (INIS)

    The use of carbon isotopes in hydrocarbon exploration is reviewed. Examples of the application of stable carbon isotopes are discussed in the fields of: (1) gas exploration, where source rocks of gas deposits or gas shows can be identified by 13C/12C analyses of methane and the exploration efforts redirected; (2) wildcat drilling, in which the carbon isotope composition of methane from the head space of canned cuttings characterizes autochthonous methane and gives information on the maturity of organic matter in relation to depth; (3) oil/oil and source-rock/oil correlation, where the 'isotopic type curve technique', a recently developed sensitive oil/oil and source-rock/oil correlation method, is discussed and applied to correlation problems in the British North Sea region. (author)

  13. Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleoenvironment after the K-T impact event

    Science.gov (United States)

    Maruoka, T.; Koeberl, C.; Bohor, B.F.

    2007-01-01

    To assess the environmental perturbation induced by the impact event that marks the Cretaceous-Tertiary (K-T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K-T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record ??13C values of plant-derived organic matter, reflecting the ??13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the ??13C values of organic matter derived from plants and microbiota. The microbiota ??13C value reflects not only the ??13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds. Across the freshwater K-T boundary at Brownie Butte, the ??13C values decrease by 2.6??? (from - 26.15??? below the boundary clay to - 28.78??? above the boundary clay), similar to the trend in carbonate at marine K-T sites. This means that the organic ??13C values reflect the variation of ??13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in ??13C values is observed across the K-T boundary at Dogie Creek (from - 25.32??? below the boundary clay to - 26.11??? above the boundary clay), the degree of ??13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate. About 2??? decrease in ??13C of atmospheric CO2 was expected from the ??13C variation of marine carbonate at the K-T boundary. This ??13C-decrease of atmospheric CO2 should affect the ??13C values of organic matter derived from plant tissue. As such a

  14. Depletion of 13C in lignin and its implications for stable carbon isotope studies

    International Nuclear Information System (INIS)

    Stable carbon isotope compositions of organic matter are now widely used to trace carbon flow in ecosystems, and have been instrumental in shaping current perceptions of the importance of terrestrial vegetation to estuarine and coastal marine environments. A general assumption in these and other studies relying on carbon isotope compositions for source identification of organic matter has been that the major biochemical components of plant tissues are isotopically invariant. We report here large differences between the carbon isotope compositions of the polysaccharide and lignin components of a variety of vascular plants, including the salt-marsh grass Spartina alterniflora, and demonstrate that the carbon isotope composition of Spartina detritus gradually changes during biogeochemical processing as polysaccharides are preferentially removed, leaving a material that is relatively enriched in lignin-derived carbon and depleted in 13C. (author)

  15. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s)

    Science.gov (United States)

    Weijers, J. W. H.; Wiesenberg, G. L. B.; Bol, R.; Hopmans, E. C.; Pancost, R. D.

    2010-09-01

    Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs) are membrane spanning lipids synthesised by as yet unknown bacteria that thrive in soils and peat. In order to obtain more information on their ecological niche, the stable carbon isotopic composition of branched GDGT-derived alkanes, obtained upon ether bond cleavage, has been determined in a peat and various soils, i.e. forest, grassland and cropland, covered by various vegetation types, i.e., C3- vs. C4-plant type. These δ13C values are compared with those of bulk organic matter and higher plant derived n-alkanes from the same soils. With average δ13C values of -28‰, branched GDGTs in C3 soils are only slightly depleted (ca. 1‰) relative to bulk organic carbon and on average 8.5‰ enriched relative to plant wax-derived long-chain n-alkanes ( nC29-nC33). In an Australian soil dominantly covered with C4 type vegetation, the branched GDGTs have a δ13C value of -18‰, clearly higher than observed in soils with C3 type vegetation. As with C3 vegetated soils, branched GDGT δ13C values are slightly depleted (1‰) relative to bulk organic carbon and enriched (ca. 5‰) relative to n-alkanes in this soil. The δ13C values of branched GDGT lipids being similar to bulk organic carbon and their co-variation with those of bulk organic carbon and plant waxes, suggest a heterotrophic life style and assimilation of relatively heavy and likely labile substrates for the as yet unknown soil bacteria that synthesise the branched GDGT lipids. However, a chemoautotrophic lifestyle, i.e. consuming respired CO2, could not be fully excluded based on these data alone. Based on a natural labelling experiment of a C3/C4 crop change introduced on one of the soils 23 years before sampling and based on a free-air CO2 enrichment experiment with labelled CO2 on another soil, a turnover time of ca. 18 years has been estimated for branched GDGTs in these arable soils.

  16. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s

    Directory of Open Access Journals (Sweden)

    J. W. H. Weijers

    2010-09-01

    Full Text Available Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs are membrane spanning lipids synthesised by as yet unknown bacteria that thrive in soils and peat. In order to obtain more information on their ecological niche, the stable carbon isotopic composition of branched GDGT-derived alkanes, obtained upon ether bond cleavage, has been determined in a peat and various soils, i.e. forest, grassland and cropland, covered by various vegetation types, i.e., C3- vs. C4-plant type. These δ13C values are compared with those of bulk organic matter and higher plant derived n-alkanes from the same soils. With average δ13C values of −28‰, branched GDGTs in C3 soils are only slightly depleted (ca. 1‰ relative to bulk organic carbon and on average 8.5‰ enriched relative to plant wax-derived long-chain n-alkanes ( nC29nC33. In an Australian soil dominantly covered with C4 type vegetation, the branched GDGTs have a δ13C value of −18‰, clearly higher than observed in soils with C3 type vegetation. As with C3 vegetated soils, branched GDGT δ13C values are slightly depleted (1‰ relative to bulk organic carbon and enriched (ca. 5‰ relative to n-alkanes in this soil. The δ13C values of branched GDGT lipids being similar to bulk organic carbon and their co-variation with those of bulk organic carbon and plant waxes, suggest a heterotrophic life style and assimilation of relatively heavy and likely labile substrates for the as yet unknown soil bacteria that synthesise the branched GDGT lipids. However, a chemoautotrophic lifestyle, i.e. consuming respired CO2, could not be fully excluded based on these data alone. Based on a natural labelling experiment of a C3/C4 crop change introduced on one of the soils 23 years before sampling and based

  17. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s

    Directory of Open Access Journals (Sweden)

    J. W. H. Weijers

    2010-05-01

    Full Text Available Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs are membrane spanning lipids synthesised by as yet unknown bacteria that thrive in soils and peat. In order to obtain more information on their ecological niche, the stable carbon isotopic composition of branched GDGT-derived alkanes, obtained upon ether bond cleavage, has been determined in various soils, i.e. peat, forest, grassland and cropland, covered by various vegetation types, i.e., C3- vs. C4-plant type. These δ13C values are compared with those of bulk organic matter and higher plant derived n-alkanes from the same soils. With average δ13C values of −28‰, branched GDGTs in C3 soils are only slightly depleted (ca. 1‰ relative to bulk organic carbon and on average 8.5‰ enriched relative to plant wax-derived long-chain n-alkanes (nC29nC33. In an Australian soil covered with C4 type vegetation, the branched GDGTs have a δ13C value of −18‰, clearly higher than observed in soils with C3 type vegetation. As with C3 vegetated soils, branched GDGT δ13C values are slightly depleted (1‰ relative to bulk organic carbon and enriched (ca. 5‰ relative to n-alkanes in this soil. The δ13C values of branched GDGT lipids being similar to bulk organic carbon and their co-variation with those of bulk organic carbon and plant waxes, suggest a heterotrophic life style and assimilation of relatively heavy and likely labile substrates for the as yet unknown soil bacteria that synthesise the branched GDGT lipids. However, a chemoautotrophic lifestyle, i.e. consuming respired CO2, could not be fully excluded based on these data alone. Based on a natural labelling experiment of a C3/C4 crop change introduced on one of the soils 23 years before sampling and based on a free air CO

  18. Carbon and nitrogen isotopic composition of suspended particulate organic matter in Zuari Estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bardhan, P.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Sarkar, A.; Maya, M.V.; Naik, H.; Varik, S.; Naqvi, S.W.A.

    . Similarly, the relatively higher δ15N may be due to phytoplankton uptake of nitrate from the isotopically heavier pool in oxygen depleted waters that arises from denitrification (Wada et al., 1975, Liu and Kaplan, 1989; Brandes et al., 1998). Post... during high-discharge events in other estuaries such as the Tay Estuary in Scotland (Thornton and McManus, 1994) , and the Lanyang-Hsi watershed in Taiwan (Kao and Liu, 2000). While it is not possible to pinpoint the exact cause of the low C:N values...

  19. Carbon isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  20. Carbon Isotope Composition of Carbohydrates and Polyols in Leaf and Phloem Sap of Phaseolus vulgaris L. Influences Predictions of Plant Water Use Efficiency.

    Science.gov (United States)

    Smith, Millicent; Wild, Birgit; Richter, Andreas; Simonin, Kevin; Merchant, Andrew

    2016-08-01

    The use of carbon isotope abundance (δ(13)C) to assess plant carbon acquisition and water use has significant potential for use in crop management and plant improvement programs. Utilizing Phaseolus vulgaris L. as a model system, this study demonstrates the occurrence and sensitivity of carbon isotope fractionation during the onset of abiotic stresses between leaf and phloem carbon pools. In addition to gas exchange data, compound-specific measures of carbon isotope abundance and concentrations of soluble components of phloem sap were compared with major carbohydrate and sugar alcohol pools in leaf tissue. Differences in both δ(13)C and concentration of metabolites were found in leaf and phloem tissues, the magnitude of which responded to changing environmental conditions. These changes have inplications for the modeling of leaf-level gas exchange based upon δ(13)C natural abundance. Estimates of δ(13)C of low molecular weight carbohydrates and polyols increased the precision of predictions of water use efficiency compared with those based on bulk soluble carbon. The use of this technique requires consideration of the dynamics of the δ(13)C pool under investigation. Understanding the dynamics of changes in δ(13)C during movement and incorporation into heterotrophic tissues is vital for the continued development of tools that provide information on plant physiological performance relating to water use. PMID:27335348

  1. Interaction between ultrapotassic magmas and carbonate rocks: Evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy

    Science.gov (United States)

    Peccerillo, Angelo; Federico, Marcella; Barbieri, Mario; Brilli, Mauro; Wu, Tsai-Wan

    2010-05-01

    Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts ( ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (˜30 to 40 wt%) and δ 18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO 2 and enriched in CaO with respect to Group-3. The analysed ejecta have similar 143Nd/ 144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/ 86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ 18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks. Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a

  2. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  3. Morphology Composition Isotopes: Recent Results from Observations

    Science.gov (United States)

    Schulz, R.

    2008-07-01

    This article presents some recent imaging and spectroscopic observations that led to results which are significant for understanding the properties of comet nuclei. The coma morphology and/or composition were investigated for 12 comets belonging to different dynamical classes. The data analysis showed that the coma morphology of three non-periodic comets is not consistent with the general assumption that dynamically new comets still have a relatively uniform nucleus surface and therefore do not exhibit gas and/or dust jets in their coma. The determination of carbon and nitrogen isotopic ratios revealed the same values for all comets investigated at various heliocentric distances. However, the relative abundance of the rare nitrogen isotope 15N is about twice as high as in the Earth’s atmosphere. Observations of comets at splitting events and during outbursts led to indications for differences between material from the nucleus surface and the interior. The monitoring of the induced outburst of 9P/Temple revealed that under non-steady state conditions the fast disintegration of species is detectable.

  4. Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies

    OpenAIRE

    Cachier, Héléne; BUAT-MÉNARD, PATRICK; Fontugne, Michel; Chesselet, Roger

    2011-01-01

    Since 1979, we have investigated marine and non-marine sources of particulate carbon in the marine atmosphere from measurements of carbon concentration and isotopic composition 13C/12C). Aerosol samples were collected, mostly during the Sea/Air Exchange (SEAREX) Program experiments, in the northern and southern hemispheres (Sargasso Sea, Enewetak Atoll, Peru upwelling, American Samoa, New Zealand, Amsterdam Island). The concentration and the isotopic composition of particulate carbon of marin...

  5. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  6. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production

    OpenAIRE

    Weber, Y.; De Jonge, C.; Rijpstra, W.I.C.; Hopmans, E. C.; Stadnitskaia, A.; Schubert, C J; Lehmann, M.F.; Sinninghe Damsté, J. S.; Niemann, H.

    2015-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that occur ubiquitously in soils and lacustrine sediments and have great potential as proxy indicators for paleotemperature and pH reconstructions. Initially, brGDGTs in lakes were thought to originate from soils of the watershed. The composition of the lacustrine brGDGT pool, however, often differs substantially from that in catchment soils, complicating the application of the brGDGT paleothermometer to la...

  7. The Lithium Isotope Composition of Planktonic Foraminifera

    Science.gov (United States)

    Hathorne, E. C.; James, R. H.; Harris, N. B.

    2003-12-01

    The temporal record of the lithium isotopic composition of seawater has the potential to provide an important proxy of the relative rates of weathering and hydrothermal processes. One of the most powerful types of evidence for changes in ocean chemistry comes from analyses of foraminiferal calcium carbonate. Here, we explore the utility of foraminifera as recorders of the Li isotopic composition of seawater. The Li isotopic composition of foraminifera tests has been determined by multicollector inductively coupled plasma mass spectrometry (Nu Instruments) using a sample-standard bracketing technique. The external precision of this technique is +/- 0.3 ‰ (2σ ), based on fifteen analyses of seawater over a period of 9 months. Planktonic foraminifera ( ˜10 mg) have been picked from surface sediments of the equatorial Pacific and the North Atlantic. Samples from the equatorial Pacific are Holocene/Pleistocene in age; those from the North Atlantic are from the Holocene. The foraminifera were subject to; cleaning in methanol and water, oxidation (hydrogen peroxide and sodium hydroxide), and leaching in weak acid (0.001M nitric acid). Additional reductive and refractory-phase cleaning steps (respectively, hydrous hydrazine/ammonia and DTPA solutions) had no effect on δ 7Li or Li/Ca. The δ 7Li value of the foraminifera ranges from 27 to 31‰ ; slightly lighter than modern-day seawater (31.1 ‰ ). Different species have consistently different δ 7Li values; O. universa have δ 7Li values within error of seawater, while Gr. truncatulinoides record the lightest δ 7Li (27.1+/- 0.3‰ ). This indicates that there are species specific vital effects on foraminiferal δ 7Li. Samples of the same species from different latitudes in the North Atlantic have the same δ 7Li, suggesting that there is no temperature effect on foraminiferal δ 7Li. Furthermore, with the exception of G. sacculifer, there appears to be no variability in foraminiferal δ 7Li with test size

  8. High-Resolution Records of the Holocene Paleoenvironmental Variation Reflected by Carbonate and Its Isotopic Compositions in Bosten Lake and Response to Glacial Activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengjun; ZHENG Mianping; Alexander PROKOPENKO; Steffen MISCHKE; GOU Xiaohui; YANG Qili; ZHANG Wanyi; FENG Zhaodong

    2009-01-01

    The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple proxies of this core, including the mineral components of carbonate, carbonate content, stable isotopic compositions of carbonate, Ca/Sr, TOC and C/N and C/S of organic matter, are used to reconstruct the climatic change since 8500 a B.P. The chronology model is made by nine AMS ~(14)C ages of leaves, seeds and organic matter contained in two parallel cores. The climate was cold and wet during 8500 to 8100 a B.P. Temperature increased from 8100 to 6400 a B.P., the climate was warm and humid, and the lake expanded. The lake level was highest during this stage. Then from 6400 to 5100 a B.P., the climate became cold and the lake level decreased slightly. During the late mid-Holocene, the climate was hot and dry from 5100 to 3100 a B.P., but there was a short cold period during 4400 to 3800 a B.P. At this temporal interval, a mass of ice and snow melting water supplied the lake at the early time and made the lake level rise. The second highest lake level stage occurred during 5200 to 3800 a B.P. The climate was cool and wet during 3100 to 2200 a B.P., when the lake expanded with decreasing evaporation. The lake had the last short-term high level during 3100 to 2800 a B.P. After this short high lake level period, the lake shrank because of the long-term lower temperature and reduced water supply. From 2200 to 1200 a B.P., the climate was hot and dry, and the lake shrank greatly. Although the temperature decreased somewhat from 1200 a B.P. to the present, the climate was warm and dry. The lake level began to rise a little again, but it did not reach the river bed altitude of the Konqi River, an outflow river of the Bosten Lake.

  9. The relationship between the isotopic composition of lake and inflow waters and the limnology of a small carbonate lake in NW England

    International Nuclear Information System (INIS)

    Hawes Water is a carbonate-precipitating, monomictic, oligotrophic lake typical of many temperate, maritime, hard water lakes in NW Europe. Geochemical and isotopic studies show that lake hydrology is dominated by the local meteoric groundwater system, with little evidence of evaporative modification. The δ18O of calcite precipitating from lake waters is consistent with temperature-dependent isotope fractionation relationships established by laboratory experiment. Minor differences between observed and predicted δ18Ocalcite result from a pH-dependent kinetic contribution to oxygen isotope fractionation in the natural lake environment. These observations show that: (a) climate information, in the form of summer water temperature and δ18O of meteoric precipitation, is transferred quantitatively to the sediment record; and (b) ancient lake sediments preserve a recoverable record of past climate change. (author)

  10. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    Science.gov (United States)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  11. A Holocene record of endogenic iron and manganese precipitation, isotopic composition of endogenic carbonate, and vegetation history in a lake-fen complex in northwestern Minnesota

    Science.gov (United States)

    Dean, Walter E.; Doner, Lisa A.

    2011-01-01

    percent in the LSL-B core and 15.5 percent in the LSF-10 core. Values of delta18O in mollusk (Pisidium) and ostracode shells increase by only about 20 per mil from the bottom to the top of the LSL-B core (about 12600-2200 calendar years). The remarkably constant oxygen-isotope composition throughout the Holocene suggests that environmental conditions affecting values of delta18O (temperature, salinity, composition of the water, composition of precipitation) did not change greatly. Values of delta13C in carbonate shells generally decreased by about 2 per mil from 9000 calendar years to 6000 calendar years, but they did not increase in organic carbon. This mid-Holocene increase in delta13C in shells but not in organic carbon is likely due to an increase in residence time. A late Pleistocene forest dominated by spruce was replaced in the early Holocene by a pine forest. The pine forest migrated east during the middle Holocene and was replaced by an open sagebrush-oak savanna. The western migration of forests into northwestern Minnesota is marked first by a hardwood forest and finally a pine forest.

  12. Effects of air pollutants on the composition of stable carbon isotopes δ13C, of leaves and wood, and on leaf injury

    International Nuclear Information System (INIS)

    Air pollutants are known to cause visible leaf injury as well as impairment of photosynthetic CO2 fixation. Here we evaluate whether the effects on photosynthesis are large enough to cause changes in the relative composition of stable carbon isotopes, δ13C, of plant tissue samples, and, if so, how the changes relate to visual leaf injury. For that purpose, several woody and herbaceous plant species were exposed to SO2 + O3 and SO2 + O3 + NO2 for one month. At the end of the fumigations, the plants were evaluated for visual leaf lesions, and δ13C of leaf tissue was determined. Woody plants generally showed less visual leaf injury and smaller effects on δ13C of pollutant exposure than did herbaceous plants. If δ13C was affected by pollutants, it became, with few exceptions, less negative. The data from the fumigation experiments were consistent with δ13C analyses of whole wood of annual growth rings from two conifer tree species, Pseudotsuga menziesii and Pinus strobus. These trees had been exposed until 1977 to exhaust gases from a gas plant at Lacq, France. Wood of both conifer species formed in the polluted air of 1972 to 1976 had less negative δ13C values than had wood formed in the much cleaner air in 1982 to 1986. No similar, time-dependent differences in δ13C of wood were observed in trees which had been continuously growing in clean air. Our δ13C data from both relatively short-term artificial exposures and long-term natural exposure are consistent with greater stomatal limitation of photosynthesis in polluted air than in clean air

  13. n-alkane distribution coupled with organic carbon isotope composition in the shell bar section, Qarhan paleolake, Qaidam basin, NE Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    Yang PU; Hucai ZHANG; Guoliang LEI; Fengqin CHANG; Mingsheng YANG; Xianyu HUANG

    2009-01-01

    Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triter-penoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21 n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.

  14. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  15. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NARCIS (Netherlands)

    Pathirana, S. L.; Van Der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique.

  16. Lithium and strontium isotope compositions of serpentinite-hosted carbonate veins from the MAR (ODP Leg 209): Records of different stages of seafloor metamorphism

    Science.gov (United States)

    Rosner, M.; Bach, W.; Paulick, H.; Erzinger, J.

    2004-12-01

    Geochemical investigations of carbonate veins hosted in serpentinized peridotites drilled from the Mid-Atlantic Ridge 14° -16° N (ODP Leg 209) were conducted to gain insights into temperature and composition of the alteration fluids from which carbonates were precipitated. We have examined carbonate veins that can be grouped into low-T (kinetics, variations in fluid chemistry (e.g., strongly variable Mg/Ca), or combination of these effects. Calcite veins from Sites 1271 and 1275 display at least two compositional groups. Low T calcites range δ 7Li from 22 to 27 ‰ and precipitated at Tleached from the peridotite basement.

  17. Transformation of soil organic matter in a Japanese larch forest. Radiocarbon and stable carbon isotope compositions versus soil depth

    International Nuclear Information System (INIS)

    Soil organic matter at a depth of 0-55 cm, collected from a Japanese larch forest area, was separated into particulate organic matter (size >53 μm), particulate organic matter (size 14C and δ13C values were determined. The Δ14C values of particulate matters decreased greatly from 128 per mille to -278 per mille, indicating a relative increase of resistant organic components in particulate matters. That of humic acid matter decreased from 183 per mille to -139 per mille. For these of organic matter fractions at the same depth, the Δ14C values of particulate matter (size >53μm) are smallest and those of humic acid matter are the largest. That indicates that a high contribution of young organic matter to the humic acid matter exists and transformation tendency of particulate matter may be from coarse to small in the particulate size. Positive Δ14C values appeared at a depth of 10 cm, 25 cm, and 35 cm for the particulate organic matter (size >53μm), particulate organic matter (size 14C values of the humic acid matter also infects that the bomb carbon has reached the depth of 35 cm. Additionally, the Δ14C values of these three kinds of organic matters ranged from 50 per mille to 183 per mille at a depth of 0-7 cm, which were not smaller than that of litter in the forest area, indicating high proportion of modern, plants-derived soil organic matter in this depth ranges. The δ13C values increased from -28 per mille to -23 per mille with the increase depth of 0-55 cm. The δ13C values of humic acid matter are approximately less than that of particulate matters at the same depth, which may be explained as a high contribution of young organic matter to the humic acid matter. (author)

  18. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production

    Science.gov (United States)

    Weber, Yuki; De Jonge, Cindy; Rijpstra, W. Irene C.; Hopmans, Ellen C.; Stadnitskaia, Alina; Schubert, Carsten J.; Lehmann, Moritz F.; Sinninghe Damsté, Jaap S.; Niemann, Helge

    2015-04-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that occur ubiquitously in soils and lacustrine sediments and have great potential as proxy indicators for paleotemperature and pH reconstructions. Initially, brGDGTs in lakes were thought to originate from soils of the watershed. The composition of the lacustrine brGDGT pool, however, often differs substantially from that in catchment soils, complicating the application of the brGDGT paleothermometer to lake sediments. This suggests that terrigenous brGDGT signals in lacustrine sedimentary archives may be affected by aquatic in situ production. In sediments of a Swiss mountain lake, we detected a novel hexamethylated brGDGT, which elutes between the known 5- and 6-methyl brGDGT isomers during HPLC-MS analysis. This novel isomer accounted for 8.5% of the total brGDGTs. Most remarkably, this brGDGT was not detected in soils collected from the catchment of the lake, providing circumstantial evidence for an in situ brGDGT source in the lake's water column or sediments. Isolation of the compound by preparative HPLC and subsequent GC-MS analysis of the alkyl chains revealed that the novel brGDGT comprises two structural isomers. One possesses a 5,13,16- and a 6,13,16-trimethyloctacosanyl moiety and constitutes 84% of the new brGDGT; the second contains a 13,16-dimethyloctacosanyl and a 5,13,16,23-tetramethyloctacosanyl moiety. The δ13C values of both the alkyl chains derived from the novel brGDGT (-46‰) and all other major brGDGTs (-43‰ to -44‰) were significantly lower than those of brGDGT-derived alkanes in catchment soils (-27‰ to -28‰) further attesting to in situ production of brGDGTs in the studied lake.

  19. Exotic structure of carbon isotopes

    International Nuclear Information System (INIS)

    Ground state properties of C isotopes, deformation and electromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parties of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12∼15% of the Thomas-Reiche-Kuhn sum rule value and 50∼ 80% of the cluster sum rule value. (author)

  20. Changes to Lignin Phenol and Hydroxy Alkanoic Acid yStable Carbon Isotope Composition and Concentration in ySoil Fractions from a Grassland/Woodland Conversion in ya Subtropical Savannay

    Science.gov (United States)

    Filley, T.; Gamblin, D.; Boutton, T.; Liao, J.; Jastrow, J.

    2005-12-01

    The response of soil organic carbon (SOC) pools to changes in land cover during woody yplant encroachment is an issue of great importance to soil carbon modeling as grassland ysoils represent a major Earth C stock. Bulk assessments of carbon turn over in soils can ybe obtained in systems where C4 plants are being replaced by C3 trees using stable yisotope modeling along a chronosequence. Few SOC studies, however, approach the yquestion of carbon storage and turn over at the compound specific level even though ybiopolymers turnover at vastly different rates and have selective affinities for long term ypreservation. Defining what compound classes represent relatively recalcitrant or labile ypools can be made in such systems where intrinsic differences in stable isotope ycomposition and molecular chemistry are very large. We quantified changes in lignin yphenol and hydroxyl alkanoic acid chemistry and stable carbon isotope composition of ysize and density fractionated soil from the Rio Grande Plains of Texas where C4 ygrasslands (δ13C = -14%) have undergone succession to subtropical thorn woodland ydominated by C3 trees/shrubs (δ13C = -27%) over an 80 year chronosequence. yComparison of the extant of conversion of the grassland SOM to C3 carbon by bulk SOC yisotope modeling to that obtained using compound specific isotope analysis of lignin yphenols in the microaggreagate (53-250 microns), macroaggregates (>250 microns), and ythe microaggregated particulate organic matter (phenol pools reflecting both ydifferences in input rate and ease by which the different pools can be degraded by ymicrobes. The relative extent of turn over between the physical fractions remained the ysame in the two analyses with macroaggrgates>microaggregated pom>microaggregates. yThis work adds to a growing body of the importance of compound specific isotope yanalyses to record ecosystem shifts in soils in compounds that have the potential for long yterm storage.y

  1. Isotopic composition of past precipitation

    International Nuclear Information System (INIS)

    The distribution of stable isotopes in precipitation provides critical quantitative information about the global water cycle. The first PAGES/IAEA ISOMAP workshop was held at the IAEA headquarters in Vienna, 24-26 August 1998, which gathered 32 participants. The presentation and discussions demonstrated that a high level of sophistication already exists in the development of transfer functions between measured parameters and precipitation, as a result of the extensive use of water isotope tracers in paleo-environmental investigations, but a major challenge facing both producers and users of paleo-isotope data is the effective management of data and meta-data, to permit ready retrieval of raw and inferred data for comparison and reinterpretation. This will be in important goal of future ISOMAP activities. The critical need for more paleo-data from low latitudes was clearly recognized

  2. Stable isotope composition and volume of Early Archaean oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    low-δ18O values of Precambrian sedimentary cherts and carbonates are not a consequence of isotope variability of seawater or extreme ocean temperatures [3,4], but rather are due to isotopic exchange with shallow hydrothermal fluids on the ocean floor or during diagenesis [5]. [1] Lécuyer et al. (1998......Oxygen and hydrogen isotope compositions of seawater are controlled by volatile fluxes between mantle, lithospheric (oceanic and continental crust) and atmospheric reservoirs. Throughout geologic time oxygen was likely conserved within these Earth system reservoirs, but hydrogen was not, as it can...... escape to space [1]. Hydrogen isotope ratios of serpentinites from the ~3.8Ga Isua Supracrustal Belt in West Greenland are between -53 and -99‰; the highest values are in antigorite ± lizardite serpentinites from a low-strain lithologic domain where hydrothermal reaction of Archaean seawater with oceanic...

  3. Carbon isotope analysis of fossil bone apatite

    International Nuclear Information System (INIS)

    The feasibility of using bone apatite for stable carbon isotope analysis of ancient bone for palaeodietary studies has been the subject of much controversy, and attempts to determine whether isotopic signatures are stable over time have produced contradictory results. We have tested this stability by measuring the δ13C values of chemically treated bone or tooth mineral of herbivores of known diet (browsers), in a temporal series. The results indicate that diagenesis of biogenic carbonates in the mineral over time is unexpectedly limited, and that chemical pretreatment further reduces diagenetic alteration of the biogenic signal. Enough biogenic carbonate remains to distinguish clearly between browsers and grazers, even after 3 million years

  4. Pressure-dependent isotopic composition of iron alloys.

    Science.gov (United States)

    Shahar, A; Schauble, E A; Caracas, R; Gleason, A E; Reagan, M M; Xiao, Y; Shu, J; Mao, W

    2016-04-29

    Our current understanding of Earth's core formation is limited by the fact that this profound event is far removed from us physically and temporally. The composition of the iron metal in the core was a result of the conditions of its formation, which has important implications for our planet's geochemical evolution and physical history. We present experimental and theoretical evidence for the effect of pressure on iron isotopic composition, which we found to vary according to the alloy tested (FeO, FeH(x), or Fe3C versus pure Fe). These results suggest that hydrogen or carbon is not the major light-element component in the core. The pressure dependence of iron isotopic composition provides an independent constraint on Earth's core composition. PMID:27126042

  5. Carbon Fiber Composites

    Science.gov (United States)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  6. Stable isotope composition of Earth's large lakes

    Science.gov (United States)

    Jasechko, S.; Gibson, J. J.; YI, Y.; Birks, S. J.; Sharp, Z. D.

    2011-12-01

    Lakes cover about three percent of Earth's continental area. Large lakes can significantly influence lake shore and regional climates by increasing specific humidity during evaporation and by moderating air temperatures. Stable isotopes of oxygen and hydrogen can be used to quantify lake evaporation, providing a supplementary and often cost-advantageous alternative to conventional hydrologic approaches that require over lake monitoring. Further, stable isotopes in lake sediments are an established tool in paleolimnology; however, interpreting changes to a lake's past isotope composition requires a comprehensive understanding of contemporary controls. Here, δ18O and δ2H values of water in modern lakes exceeding roughly five hundred square kilometres are compiled (n > 35). Voluminous and seasonally mixed lakes - such as the North American Great Lakes - have the most homogenous stable isotope compositions, while perennially-stratified and shallow lakes show greater variability. A rudimentary stable isotope mass balance is used to assess evaporation fluxes from large lakes on Earth. The approach taken simultaneously constrains evaporation outputs for both oxygen and hydrogen stable isotopes by accounting for lake effects on the overlying atmosphere. Model development highlights important considerations such as isotopic stratification (Tanganyika), disequilibrium isotopic mass balances (Baikal), and non-steady hydrologic balances. Further, the isotope composition of Earth's continental surface water reservoir is calculated. This value - weighted to volume - is δ18O = -7.5±1.7 per mille relative to standard mean ocean water. The compiled data may be a useful tracer of continental evaporate in global atmospheric water cycle studies and could be coupled to climate models capable of incorporating oxygen-18 and deuterium tracers to improve or validate calculations of lake effects on regional water cycling.

  7. Carbon-isotopic analysis of dissolved acetate

    International Nuclear Information System (INIS)

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degree C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4 per-thousand for acetate samples larger than 5 μmol. A full treatment of uncertainties is outlined

  8. Seasonal variations in the carbon isotope composition of soil-respired CO2 and the dominance of root/rhizsophere respiration in desert soils (Invited)

    Science.gov (United States)

    Breecker, D.; Driese, S. G.; Nordt, L. C.; Beverly, E.; Huntington, K. W.

    2013-12-01

    Quantifying the sources of CO2 produced in soils is important for closing ecosystem scale carbon (C) budgets and predicting the response of soil C pools to global change. Sourcing soil-respired CO2 is also important for accurately using paleosol carbonates as paleoenvironmental indicators. Here we present ten records of seasonal change in C isotope compositions of soil-respired CO2 (δ13Cr) and examine their implications for soil respiration. Measured concentrations and δ13C values of soil CO2 below 30 cm were used to calculate all δ13Cr values reported here. Distinct seasonal cycles occur in all records and the lowest/highest δ13Cr values occur during the winter/summer in 9 of the 10 records. The magnitude of seasonal δ13Cr fluctuations varies inversely with mean annual precipitation (MAP), increasing from 3‰ at 500 mm to 8‰ at 200 mm. Values for two Vertisols in subhumid climates plot off the trend, perhaps in part because winter ponding induces a closed system resulting in calculated winter δ13Cr values that are lower than actual and therefore overestimated seasonal δ13Cr amplitudes. The large seasonal variation in desert soil δ13Cr values has been attributed to seasonal variation in the magnitude of photosynthetic discrimination expressed in soil-respired CO2. Seasonal changes in C3 versus C4 productivity do not explain the observations as some of the largest δ13Cr variations occur in nearly monospecific C3 shrublands (creosotebush). A number of other explanations involving heterotrophic respiration, including soil temperature- and moisture- induced changes in respiration depth and substrate, are also rejected based on observed soil temperatures and average depths of respiration, which frequently exceed 50 cm in the driest soils studied. The observed decrease of seasonal amplitude with increasing precipitation is consistent with a stomatal control on desert soil δ13Cr values and may be caused by 1) MAP-driven increase in the component of

  9. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ13C and δ15N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13C and 15N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ13C and δ15N values. These data were compared to previously published δ13C and δ15N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ13C and δ15N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  10. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  11. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    Science.gov (United States)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  12. Isotopic composition of carbon and oxygen in platform/reef carbonates of the Moravian Karst: The vertical section shows characteristic patterns related ro sedimentary sequences

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Hladíková, J.

    Frankfurt am Main : European Palaeontological Association, 2000 - (Oschmann, W.; Steininger, F.; Fürsich, F.), s. 51-53 + 1 nečíslovaná [European Palaeontological Association Workshop 2000 - Biomarkes and Stable Isotopes in Palaeontology. Frankfurt am Main (DE), 30.06.2000-02.07.2000] R&D Projects: GA AV ČR IAA3013809 Grant ostatní: XX(XX) IGCP386; XX(XC) IGCP421 Institutional research plan: CEZ:AV0Z3013912 Subject RIV: DB - Geology ; Mineralogy

  13. Seasonal Variation in Stable Carbon and Nitrogen Isotope Values of Bats Reflect Environmental Baselines

    OpenAIRE

    Popa-Lisseanu, Ana G.; Kramer-Schadt, Stephanie; Quetglas, Juan; Delgado Huertas, Antonio; Kelm, Detlev H.; Ibáñez, Carlos

    2015-01-01

    The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal’s isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic varia-tion in consumers may a...

  14. Exotic Structure of Carbon Isotopes

    CERN Document Server

    Suzuki, T; Hagino, K; Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2002-01-01

    We studied firstly the ground state properties of C-isotopes using a deformed Hartree-Fock (HF)+ BCS model with Skyrme interactions. Shallow deformation minima are found in several neutron$-$rich C-isotopes. It is shown also that the deformation minima appear in both the oblate and the prolate sides in $^{17}$C and $^{19}$C having almost the same binding energies. Secondly, we carried out shell model calculations to study electromagnetic moments and electric dipole transitions of the C-isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C-isotopes, which will be useful to find out the deformations and the spin-parities of the ground states of these nuclei. We studied electric dipole states of C-isotopes focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Reasonable agreement is obtained with available experimental data for the photoreaction cross sections both in the low energy region below $\\hbar \\omega $=14 MeV and ...

  15. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  16. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils.

    Science.gov (United States)

    Chiocchini, Francesca; Portarena, Silvia; Ciolfi, Marco; Brugnoli, Enrico; Lauteri, Marco

    2016-07-01

    The authentication and verification of the geographical origin of food commodities are important topics in the food sector. This study shows the spatial variability in δ(13)C and δ(18)O of 387 samples of Italian extra-virgin olive oil (EVOO) collected from 2009 to 2011. EVOOs' δ(13)C and δ(18)O values were related to GIS (Geographic Information System) layers of source water δ(18)O and climate data (mean monthly temperature and precipitation, altitude, xerothermic index) to evaluate the impact of the most significant large-scale drivers for the isotopic composition of Italian EVOOs. A geospatial model of δ(18)O and δ(13)C was developed for the authentication and verification of the geographical origin of EVOOs. The geospatial model identified EVOOs from four distinct areas: north, south-central Tyrrhenian, central Adriatic and islands, highlighting the zonation of the expected isotopic signatures. This geospatial approach can be used to define a protocol for analyzing the isotopic composition of EVOOs in order to certify their origin and prevent food fraud. Limits and perspectives of the model are discussed. PMID:26920297

  17. Carbon isotope separation by absorptive distillation

    International Nuclear Information System (INIS)

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole percent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HETP's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  18. Carbon isotope separation by absorptive distillation

    International Nuclear Information System (INIS)

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole per cent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HTU's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  19. The Strontium Isotope Record of Zavkhan Terrane Carbonates: Strontium Isotope Stability Through the Ediacaran-Cambrian Transition

    OpenAIRE

    Petach, Tanya N.

    2015-01-01

    First order trends in the strontium isotopic (87Sr/86Sr) composition of seawater are controlled by radiogenic inputs from the continent and non-radiogenic inputs from exchange at mid-ocean ridges. Carbonates precipitated in seawater preserve trace amounts of strontium that record this isotope ratio and therefore record the relative importance of mid-ocean ridge and weathering chemical inputs to sea water composition. It has been proposed that environmental changes during the Ediacaran-Cambria...

  20. Measurements of the isotopic composition of galactic cosmic rays

    International Nuclear Information System (INIS)

    The galactic cosmic-ray boron and carbon isotopic composition has been measured. The boron measurement is the first ever made in nuclear emulsion. The carbon measurement has substantially improved the statistical assuracy in the determination of the 13C abundance as compared to an earlier measurement using the same technique. Mass-spectra of cosmic-ray carbon and oxygen in different zenith angle intervals have been compared with calculated spectra. The method makes it possible to study experimentally the atmospheric influence on the primary cosmic-ray isotopic composition. Photometric measurements on fragments from oxygen-induced interactions in nuclear emulsion have been made. Accurate charge assignments have been made on all heavy fragments which has made it possible to study the interaction exclusively event-by-event. Measurements on the isotopic composition of primary cosmic-ray neom have been made. The data are from the Danish-French instrument on the HEAO-3 satellite. The rigidity dependent filtering of the cosmic rays by the Earth's magnetic field has been used. The energy dependence of the 22Ne/20Ne-ratio and its astrophysical implications are discussed. (Author)

  1. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, Northeastern Pacific Ocean

    Science.gov (United States)

    Simoneit, B.R.T.; Schoell, M.; Kvenvolden, K.A.

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7 per mill, respectively) reflect a primarily terrestrial organic matter source.

  2. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species.

    Science.gov (United States)

    Lehmann, M M; Wegener, F; Werner, R A; Werner, C

    2016-09-01

    Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 . PMID:27086877

  3. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large ∆44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  4. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  5. New Data on Food Consumption in Pre-Hispanic Populations from Northwest Argentina (ca. 1000–1550 A.D.): The Contribution of Carbon and Nitrogen Isotopic Composition of Human Bones

    OpenAIRE

    Verónica Isabel Williams; María Soledad Gheggi

    2013-01-01

    We present data on carbon and nitrogen isotopic composition of human bones from Tolombón (Calchaqui Valley, Salta) and Esquina de Huajra (Quebrada de Humahuaca, Jujuy) sites located in Northwest Argentina (NWA). Both are complex archaeological residential settlements ascribed to the Regional Development Period (ca. 900–1430 A.D.), the Inca Period (ca. 1430–1536 A.D.), and the Early Colonial Period (ca. 1536–1600 A.D.). Twelve samples of human bones were collected and analyzed, including remai...

  6. Effective technique for numerical kinetics calculations in a system of anharmonic oscillators. Application to study of the influence of the isotopic composition of molecules on the properties of a carbon monoxide active medium

    International Nuclear Information System (INIS)

    A technique is described for numerical analysis of kinetic processes in a system of anharmonic oscillators, based on using implicit numerical integration and replacement of derivatives by means of backward differentiation expressions. A comparison is made with calculations by the Runge--Kutta method, and it is shown that the computer time is reduced by a factor of more than 10 when the backward differentiation method is used. The influence of the natural isotopic composition of carbon monoxide molecules on the gain and lasing properties is investigated and shown to be only slight

  7. Isotope-based Fluvial Organic Carbon (ISOFLOC) Model: Model formulation, sensitivity, and evaluation

    Science.gov (United States)

    Ford, William I.; Fox, James F.

    2015-06-01

    Watershed-scale carbon budgets remain poorly understood, in part due to inadequate simulation tools to assess in-stream carbon fate and transport. A new numerical model termed ISOtope-based FLuvial Organic Carbon (ISOFLOC) is formulated to simulate the fluvial organic carbon budget in watersheds where hydrologic, sediment transport, and biogeochemical processes are coupled to control benthic and transported carbon composition and flux. One ISOFLOC innovation is the formulation of new stable carbon isotope model subroutines that include isotope fractionation processes in order to estimate carbon isotope source, fate, and transport. A second innovation is the coupling of transfers between carbon pools, including algal particulate organic carbon, fine particulate and dissolved organic carbon, and particulate and dissolved inorganic carbon, to simulate the carbon cycle in a comprehensive manner beyond that of existing watershed water quality models. ISOFLOC was tested and verified in a low-gradient, agriculturally impacted stream. Results of a global sensitivity analysis suggested the isotope response variable had unique sensitivity to the coupled interaction between fluvial shear resistance of algal biomass and the concentration of dissolved inorganic carbon. Model calibration and validation suggested good agreement at event, seasonal, and annual timescales. Multiobjective uncertainty analysis suggested inclusion of the carbon stable isotope routine reduced uncertainty by 80% for algal particulate organic carbon flux estimates.

  8. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  9. Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean?

    Science.gov (United States)

    Thomazo, Christophe; Nisbet, Euan G.; Grassineau, Nathalie V.; Peters, Marc; Strauss, Harald

    2013-11-01

    To explore the linkage between mass-independent sulfur isotope fractionation (MIF-S) and δ13Corg excursions during the Neoarchean, as well as the contemporary redox state and biogeochemical cycling of carbon and sulfur, we report the results of a detailed carbon and multiple sulfur (δ34S, δ33S, δ36S) isotopic study of the ∼2.7 Ga Manjeri and ∼2.65 Ga Cheshire formations of the Ngezi Group (Belingwe Greenstone Belt, Zimbabwe). Multiple sulfur isotope data show non-zero Δ33S and Δ36S values for sediments older than 2.4 Ga (i.e. prior to the Great Oxidation Event, GOE), indicating MIF-S thought to be associated with low atmospheric oxygen concentration. However, in several 2.7-2.5 Ga Neoarchean localities, small-scale variations in MIF-S signal (magnitude) seem to correlate with negative excursion in δ13Corg, possibly reflecting a global connection between the relative reaction rate of different MIF-S source reaction and sulfur exit channels and the biogenic flux of methane into the atmosphere during periods of localized, microbiologically mediated, shallow surface-water oxygenation. The Manjeri Formation black shales studied here display a wide range of δ13Corg between -35.4‰ and -16.2‰ (average of -30.3 ± 6.0‰, 1σ), while the Cheshire Formation shales have δ13Corg between -47.7‰ and -35.1‰ (average -41.3 ± 3‰, 1σ). The δ34S values of sedimentary sulfides from Manjeri Formation vary between -15.15‰ and +2.37‰ (average -1.71 ± 4.76‰, 1σ), showing very small and mostly negative Δ33S values varying from -0.58‰ to 0.87‰ (average 0.02 ± 0.43‰, 1σ). Cheshire Formation black shale sulfide samples measured in this study have δ34S values ranging from -2.11‰ to 2.39‰ (average 0.25 ± 1.08‰, 1σ) and near zero and solely positive Δ33S anomalies between 0.14‰ and 1.17‰ (average 0.56 ± 0.29‰, 1σ). Moreover, Δ36S/Δ33S in the two formations are comparable with a slope of -1.38 (Manjeri Formation) and -1.67 (Cheshire

  10. Investigating the Formation of Pedogenic Carbonate Using Stable Isotopes

    Science.gov (United States)

    Breecker, D. O.; Sharp, Z. D.; McFadden, L.

    2006-12-01

    The stable isotope composition of pedogenic carbonate has been used as a paleoenvironmental proxy because it is thought to form in isotopic equilibrium with soil CO2 and soil water, which are influenced by vegetation type and atmospheric circulation patterns, respectively. However, the isotopic composition of soil CO2 and soil water change seasonally and it is not known what portion of this variability is recorded by the isotopic composition of pedogenic carbonate. It is generally believed that carbonate precipitation in soils is driven by evaporative concentration of Ca ions and/or decreasing soil pCO2. We seek to improve the proxy by determining the seasonality of pedogenic carbonate formation, in particular whether pedogenic carbonate forms during the wet season after individual rainstorms or during seasonal drying following the wet season. This was done by comparing the variations in carbon and oxygen isotope composition of soil CO2 with the isotopic composition of proximally located, newly-formed carbonates. Soil CO2 and incipient pedogenic carbonate coatings were collected in a very young (soil developing in an inset terrace on the piedmont of the Sandia Mountains, central New Mexico. We also measure soil temperatures at the same site. In May 2006, at the end of the driest 6-month period on record in central New Mexico, soil CO2 profiles displayed a 2‰ decrease in δ13C values with depth from 9 to 100 cm. In August 2006, the shapes of the profiles were similar, but the δ13C values were 3-4‰ lower at each depth than in May. These results can be explained by an increase in respiration rate during the latter half of the summer (the wettest on record) when monsoon rainfall maintained high moisture contents in soils across New Mexico. Calculated δ13C values of calcite in equilibrium with May (but not August) soil CO2 agree with measured carbonate δ13C values below 20 cm depth. Very shallow carbonate has anomalously high δ13C values. Measurements of the

  11. Carbon isotope fractionation of methyl bromide during agricultural soil fumigations

    Science.gov (United States)

    Bill, M.; Miller, L.G.; Goldstein, Allen H.

    2002-01-01

    The isotopic composition of methyl bromide (CH3Br) has been suggested to be a potentially useful tracer for constraining the global CH3Br budget. In order to determine the carbon isotopic composition of CH3Br emitted from the most significant anthropogenic application (pre-plant fumigation) we directly measured the ??13C of CH3Br released during commercial fumigation. We also measured the isotopic fractionation associated with degradation in agricultural soil under typical field fumigation conditions. The isotopic composition of CH3Br collected in soil several hours after injection of the fumigant was -44.5??? and this value increased to -20.7??? over the following three days. The mean kinetic isotope effect (KIE) associated with degradation of CH3Br in agricultural soil (12???) was smaller than the reported value for methylotrophic bacterial strain IMB-1, isolated from previously fumigated agricultural soil, but was similar to methylotrophic bacterial strain CC495, isolated from a pristine forest litter zone. Using this fractionation associated with the degradation of CH3Br in agricultural soil and the mean ??13C of the industrially manufactured CH3Br (-54.4???), we calculate that the agricultural soil fumigation source has a carbon isotope signature that ranges from -52.8??? to -42.0???. Roughly 65% of industrially manufactured CH3Br is used for field fumigations. The remaining 35% is used for structural and post-harvest fumigations with a minor amount used during industrial chemical manufacturing. Assuming that the structural and post-harvest fumigation sources of CH3Br are emitted without substantial fractionation, we calculate that the ??13C of anthropogenically emitted CH3Br ranges from -53.2??? to -47.5???.

  12. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  13. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    Science.gov (United States)

    Cabral-Tena, R. A.; Sánchez, A.; Reyes-Bonilla, H.; Ruvalcaba-Díaz, A. H.; Balart, E. F.

    2015-11-01

    Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09 ‰ °C-1, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our

  14. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    Directory of Open Access Journals (Sweden)

    C. Blodau

    2008-10-01

    Full Text Available Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been removed. Net production of CH4 was calculated from mass balances in the peat and emission using static chamber measurements. Results were compared to 13C isotope budgets of CO2 and CH4 and energy yields of acetoclastic and hydrogenotrophic methanogenesis. Drought retarded methane production after rewetting for days to weeks and promoted methanotrophic activity. Based on isotope and flux budgets, aerobic soil respiration contributed 32–96% in the wet treatment and 86–99% in the other treatments. Drying and rewetting did not shift methanogenic pathways according to δ13C ratios of CH4 and CO2. Although δ13C ratios indicated a prevalence of hydrogenotrophic methanogenesis, free energies of this process were small and often positive on the horizon scale. This suggests that methane was produced very locally. Fresh plant-derived carbon input apparently supported respiration in the rhizosphere and sustained methanogenesis in the unsaturated zone, according to a 13C-CO2 labelling experiment. The study documents that drying and rewetting in a rich fen soil may have little effect on methanogenic pathways, but result in rapid shifts between methanogenesis and methanotrophy. Such shifts may be promoted by roots and soil heterogeneity, as hydrogenotrophic methanogenesis occurred locally even when conditions were not conducive for this process in the bulk peat.

  15. Clumped Isotopes Applied to Carbonate Diagenesis and High Temperature Systems

    Science.gov (United States)

    John, C. M.; Jourdan, A.; Kluge, T.; Dale, A.; Davis, S.; Vandeginste, V.

    2012-12-01

    The field of clumped isotopes is concerned with the state of ordering of natural substances and aims at constraining the abundance of 18O-13C bonds (i.e. a 'clump') within the lattice of carbonate minerals. Measuring the difference between the abundance of 18O-13C bonds in a sample relative to a stochastic distribution of isotopologues offers a single-phase paleothermometer applicable to all carbonate phases. Most of the applications of clumped isotopes to date have been in the field of paleoclimate, but applications to diagenetic systems are becoming more common. The independence of clumped isotopes from the isotopic composition of the diagenetic fluid reduces ambiguities when interpreting paragenesis, fluid flow history, and thermal history of basins. This presentation will synthesize the results of several projects within our group that collectively aim at understanding and applying clumped isotopes to diagenetic systems. One example of project including diagenesis and clumped isotope is a study of low-temperature diagenetic calcite in a salt dome in Oman (Jebel Madar). Jebel Madar is an ideal case study as large fracture-related crystals can be sampled for both clumped isotopes and fluid inclusions. Results show a good match between single-phase fluid inclusions suggesting temperature of precipitations below 90-50°C, and clumped isotope data measured on the same crystals. The low-temperature study reveals the history of gradual cooling and progressive mixing between two sources of diagenetic fluids in the fracture of Jebel Madar, and highlights the potential of clumped isotope for diagenetic studies. However, applications at high-temperatures are currently more challenging because of the lack of empirical calibrations above 50°C. A second project is thus focused on a series of high-temperature lab precipitation experiments for calibrations at high temperature, while a third project explores applicability of clumped isotopes to cemented siliciclastic units

  16. Laser ablation molecular isotopic spectrometry of carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bol' shakov, Alexander A. [Applied Spectra, Inc., Fremont, CA (United States); Jain, Jinesh [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Russo, Richard E. [Applied Spectra, Inc., Fremont, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McIntyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Mao, Xianglei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  17. Laser ablation molecular isotopic spectrometry of carbon isotopes

    Science.gov (United States)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  18. Photosynthetic isotope fractionation: oxygen and carbon

    International Nuclear Information System (INIS)

    Isotopic carbon analyses of plant tissue and carbon dioxide from air samples and plant and soil respiration were made. Soil respiratory CO2 is about 150/00 lighter than atmospheric CO2. Plant isotopic ratios were found to be influenced by (1) plant photosynthetic efficiency, (2) source CO2, (3) airflow, and (4) CO2 concentrations. Etiolated bean plants have nearly the same delta13C value as seed carbon and seed dark respiratory CO2. Mature leaves from greenhouse grown beans, however, are some 5 0/00 lighter than seed carbon. This is a result of CO2 source, i.e., plant or soil respiratory CO2. Leaves which are generally lighter than other plant organs becomes still lighter during the growing season. As a consequence of increasingly light leaf carbon, photorespired CO2 also becomes lighter during the growing season. Oxygen isotopic values were measured for (1) photorespiratory CO2, which reflects equilibration with leaf water, and (2) photosynthetic O2, which is enriched in 18O, perhaps due to respiratory or photorespiratory 16O preference

  19. Biomineralization and the carbon isotope record

    International Nuclear Information System (INIS)

    The advent of biomineralization at the turn of the Precambrian/Cambrian boundary has been a major event in the Earth's evolutionary history. With this there has been a major shift from abiotic to biotic formation of minerals such as phosphates and carbonates and, subsequently, silica. The dominant factor which effected this shift is a change in ocean's chemistry with respect to its Ca2+ and mineral nutrient contents. Mechanism controlling the biotic mineral formation is different from that controlling the abiotic one in that the former is enzymically controlled. It is suggested that this difference is also manifested in the stable carbon isotope fractionation between the two processes and has implication for the interpretation of stable carbon isotope record. (Author)

  20. Stable Isotope Studies of Crop Carbon and Water Relations: A Review

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cong-zhi; ZHANG Jia-bao; ZHAO Bing-zi; ZHANG Hui; HUANG Ping

    2009-01-01

    Crop carbon and water relations research is important in the studies of water saving agriculture,breeding program,and energy and material cycles in soil plant atmosphere continuum (SPAC).The purpose of this paper is to review the current state of knowledge on stable isotopes of carbon,oxygen,and hydrogen in the research of crop carbon and water relations,such as carbon isotope discrimination (△13C) during carbon fixation process by photosynthesis,application of △13C in crop water use efficiency (WUE) and breeding programs,oxygen isotope enrichment during leaf water transpiration,CO2 fixation by photosynthesis and release by respiration,application of hydrogen isotope composition (δD) and oxygen isotope composition (δ18O) for determination of water source used by a crop,stable isotope coupling Keeling plot for investigating the carbon and water flux in ecosystem,energy and material cycle in SPAC and correlative integrative models on stable isotope.These aspects contain most of the stable isotope researches on crop carbon and water relations which have been widely explored internationally while less referred in China.Based on the reviewed literatures,some needs for future research are suggested.

  1. The use of carbon stable isotope ratios in drugs characterization

    Science.gov (United States)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  2. The use of carbon stable isotope ratios in drugs characterization

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro; Mirel, V., E-mail: gabriela.cristea@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  3. The use of carbon stable isotope ratios in drugs characterization

    International Nuclear Information System (INIS)

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures

  4. [Carbon isotope fractionation in plants]: Annual technical progress report

    International Nuclear Information System (INIS)

    Plants fractionate carbon isotopes during photosynthesis in ways which reflect photosynthetic pathway and environment. The fractionation is product of contributions from diffusion, carboxylation and other factors which can be understood using models which have been developed in our work. The object of our work is to use this fractionation to learn about the factors which control the efficiency of photosynthesis. Unlike previous studies, we do not rely principally on combustion methods, but instead develop more specific methods with substantially higher resolving power. We have recently developed a new short-term method for studying carbon isotope fractionation which promises to provide a level of detail about temperature, species, and light intensity effects on photosynthesis which has not been available until now. We are studying the isotopic compositions of metabolites (particularly aspartic acid) in C3 plants in order to determine the role of phosphoenolpyruvate carboxylase in C3 photosynthesis. We are studying the relative roles of diffusion and carboxylation in nocturnal CO2 fixation in CAM plants. We are studying the use of isotopic content as an index of water-use efficiency in C3 plants. We are developing new methods for studying carbon metabolism in plants. 3 refs

  5. 湖相碳酸盐岩有机质热演化产物及其碳同位素组成特征%Thermolysis Production of Lake Carbonatite Organic Matter and its Carbon Isotopic Composition Characteristic

    Institute of Scientific and Technical Information of China (English)

    张成君; 孙柏年; 崔彦立

    2001-01-01

    通过泌阳凹陷第三系核桃园组核三段湖相碳酸盐岩的热模拟实验,对有机质热演化特征、释放气体组分及含碳气体碳同位素组成特征获得了以下认识:(1)释放气体主要以二氧化碳和烷烃类气为主,含有少量烯烃气体,在300~400℃时达到气体释放峰,随温度的升高,C4~C6较重烷烃气含量增加.二氧化碳随温度的升高释放量增大,主要为碳酸盐分解贡献;(2)含碳气体碳同位素随温度的升高增重,在气体释放峰温度段350℃左右时发生明显“转折”,碳同位素组成明显变重,结果造成在不同的热演化阶段碳同位素值有较大范围的变化.%In this paper, lake carbonatite in Hei 3 section of TertiaryHeitaoyua n Formation of Biyang depression has been pyrolysised and t he thermal evolution of organic matter,gas component releasing and carbon isoto pic composition of carbon-bearing gas is better comprehended. We understan d that (1) releasing gase s are mainly made up of CO2 and alkane gases, and have a little ethylenic gase s. There is a gas releasing peak at the temperature of 300~400℃ and the c ontent of C4~C6 increases with temperature rise. The content of CO2 inc reases too, with temperature rising and comes mainly from carbonatite; (2) The higher t he temperature increases, the higher weight the carbon isotopic composition of c arbon-bearing gas is. At the gas releasing peak of temperature about 350℃ the c arbon isotopic composition apparently“changes greatly” and becomes w eight. Hence the carbon isotopic composition changes in a large rang e at different pyrolysis stages.

  6. Light element isotopic compositions of cometary matter returned by the STARDUST mission

    Energy Technology Data Exchange (ETDEWEB)

    McKeegan, K D; Aleon, J; Bradley, J; Brownlee, D; Busemann, H; Butterworth, A; Chaussidon, M; Fallon, S; Floss, C; Gilmour, J; Gounelle, M; Graham, G; Guan, Y; Heck, P R; Hoppe, P; Hutcheon, I D; Huth, J; Ishii, H; Ito, M; Jacobsen, S B; Kearsley, A; Leshin, L A; Liu, M; Lyon, I; Marhas, K; Marty, B; Matrajt, G; Meibom, A; Messenger, S; Mostefaoui, S; Nakamura-Messenger, K; Nittler, L; Palma, R; Pepin, R O; Papanastassiou, D A; Robert, F; Schlutter, D; Snead, C J; Stadermann, F J; Stroud, R; Tsou, P; Westphal, A; Young, E D; Ziegler, K; Zimmermann, L; Zinner, E

    2006-10-10

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild2 particle fragments, however extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Non-terrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is {sup 16}O-enriched like refractory inclusions in meteorites, suggesting formation in the hot inner solar nebula and large-scale radial transport prior to comet accretion in the outer solar system.

  7. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, northeastern Pacific Ocean.

    Science.gov (United States)

    Simoneit, B R; Schoell, M; Kvenvolden, K A

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source. PMID:11541391

  8. Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology?

    NARCIS (Netherlands)

    Poole, I.J.; Dolezych, M.; Kool, J.; Burgh, J. van der; Bergen, P.F. van

    2006-01-01

    Stable carbon isotope ratios of fossil wood from the Miocene brown coal deposits in former East Germany are compared with palaeobotanical and sedimentological data to test the use of stable isotopes in determining palaeoenvironment. Significant differences in the chemical composition of samples from

  9. Triple oxygen isotopes in biogenic and sedimentary carbonates

    Science.gov (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  10. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Owen, T. C.; Raaen, E.; Steele, A.; Webster, C. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  11. Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions

    International Nuclear Information System (INIS)

    We analyzed the major elements and stable isotopes of oxygen, hydrogen, and carbon (dissolved inorganic carbon: DIC) in various types of bottled water (domestic and foreign) commercially available in South Korea to classify the water types and to identify their origins. Only marine waters and some sparkling waters could be discriminated by their physicochemical compositions. Oxygen and hydrogen isotopes made marine waters more distinguishable from other water types. The determination of the carbon isotope composition of DIC was clearly useful for distinguishing between naturally and artificially sparkling waters. In addition, statistical analysis also appeared to aid in the discrimination of bottled water types. Our results indicate that a method that combines chemical and stable isotope composition analysis with statistical analysis is the most useful for discriminating water types and characterizing the origins of bottled water

  12. Carbon isotopic studies of individual lipids in organisms from the Nansha sea area, China

    Institute of Scientific and Technical Information of China (English)

    DUAN; Yi; SONG; Jinming; ZHANG; Hui

    2004-01-01

    Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. δ13C values of saturated fatty acids in different organisms examined are from -25.6‰ to -29.7‰ with the average values ranging from -26.4‰ to -28.2‰ and the variance range of 1.8‰ between different organisms is also observed.Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9‰-6.8‰ compared to the same carbon number saturated fatty acids. δ13C values of n-alkanes range from -27.5‰ to -29.7‰ and their mean values, ranging from -28.6‰ to -28.9‰, are very close in different organisms. The mean difference in δ13C between the saturated fatty acids and n-alkanes is only 1.5‰, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within ±2.0‰, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.

  13. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    Science.gov (United States)

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.

    2016-05-01

    Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of ≈ 1.0 to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental

  14. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  15. Cadmium isotopic composition in the ocean

    International Nuclear Information System (INIS)

    Full text: Recent developments in mass spectrometric techniques are allowing the systematic study of metal isotope fractionation in the environment. Cd isotopes have, as yet, received little attention, notwithstanding the well-documented involvement of Cd in biological cycling and its wide range of isotopic masses, which make it a prime candidate for fractionation. We will present the first data in the ocean. A seawater profile from the North Pacific Ocean shows little yet probably significant variations. The later could result from water mass advection or biological processes or both. We will also present a seawater profile from the Mediterranean (Dyfamed site) and measurements in phytoplankton cultures. In addition we will present measurements carried out in a sewage treatment plant (where high bacterial degradation occurs). If confirmed, Cd isotopic fractionation could have wide-ranging biogeochemical and paleoceanographic applications. In particular, it could lead to the development of a paleoceanographic tracer for bottom water oxygen concentration, a parameter that would provide important new constraints on the marine carbon cycle and deep ocean circulation during glacial periods. (author)

  16. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  17. Isotopic and chemical composition of submarine geothermal gases from the Bay of Plenty, New Zealand

    International Nuclear Information System (INIS)

    Gas samples collected from the ocean floor near Whale Island, Bay of Plenty, New Zealand, are composed of carbon dioxide, methane, hydrogen, and air. The methane has an isotopic composition of delta13C(PDB) = -280/00 and deltaD(SMOW) = -1250/00. The isotopic and chemical composition show that the gases are of geothermal origin and similar to gas evolved from Whale Island hot springs

  18. The use of stable isotope compositions of selected elements in food origin control

    International Nuclear Information System (INIS)

    Stable isotope ratios have been used widely for authentication of foodstuffs especially for detection of added water and sugar in fruit juices and wines. Hydrogen and oxygen composition are particularly interesting probes for geographical origin and authenticity identification. Carbon and nitrogen composition of fruits contains the finger-print of their metabolism and growing condition. Exemplary data are presented which demonstrated the usefulness of the Isotope Ratio Mass Spectrometry (IRMS) methods for authenticating wines and fruits (juice and pulp). (author)

  19. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.)

  20. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  1. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    Science.gov (United States)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  2. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    Science.gov (United States)

    Popa-Lisseanu, Ana G; Kramer-Schadt, Stephanie; Quetglas, Juan; Delgado-Huertas, Antonio; Kelm, Detlev H; Ibáñez, Carlos

    2015-01-01

    The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers. PMID:25700080

  3. Clumped isotope composition of cold-water corals: A role for vital effects?

    Science.gov (United States)

    Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.

    2016-04-01

    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope 'vital effects' are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.

  4. Oxygen isotope composition of trinitite postdetonation materials.

    Science.gov (United States)

    Koeman, Elizabeth C; Simonetti, Antonio; Chen, Wei; Burns, Peter C

    2013-12-17

    Trinitite is the melt glass produced subsequent the first nuclear bomb test conducted on July 16, 1945, at White Sands Range (Alamagordo, NM). The geological background of the latter consists of arkosic sand that was fused with radioactive debris and anthropogenic materials at ground zero subsequent detonation of the device. Postdetonation materials from historic nuclear weapon test sites provide ideal samples for development of novel forensic methods for attribution and studying the chemical/isotopic effects of the explosion on the natural geological environment. In particular, the latter effects can be evaluated relative to their spatial distribution from ground zero. We report here δ(18)O(‰) values for nonmelted, precursor minerals phases (quartz, feldspar, calcite), "feldspathic-rich" glass, "average" melt glass, and bulk (natural) unmelted sand from the Trinity site. Prior to oxygen isotope analysis, grains/crystals were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine their corresponding major element composition. δ(18)O values for bulk trinitite samples exhibit a large range (11.2-15.5‰) and do not correlate with activity levels for activation product (152)Eu; the latter levels are a function of their spatial distribution relative to ground zero. Therefore, the slow neutron flux associated with the nuclear explosion did not perturb the (18)O/(16)O isotope systematics. The oxygen isotope values do correlate with the abundances of major elements derived from precursor minerals present within the arkosic sand. Hence, the O isotope ratios documented here for trinitite melt glass can be attributed to a mixture of the respective signatures for precursor minerals at the Trinity site prior to the nuclear explosion. PMID:24304329

  5. Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition

    International Nuclear Information System (INIS)

    Time series of δ-14C, δ13C, and concentration of atmospheric CO2 covering the last 12 years are available at the Krakow sampling site (southern Poland) representing an urban area exposed to anthropogenic pollution of both local and regional origin. Observations covering the time period 1983-1994 show a linear decrease of the C-13/C-12 ratio. The decreasing tendency in the case of C- 14 (δ14C, 227 parts per thousand in January 1983) is weaker with a broad minimum in 1991 (δ14C = 124 parts per thousand) and subsequent gradual increase by about 10 parts per thousand, coinciding with a substantial reduction of coal consumption in Poland (26% reduction in 1991-1994 for heat and electricity production), partly compensated in agglomerations by increased gas consumption. The 12-year record of the CO2 concentration in Krakow points to a constant value fluctuating at a higher level (average: 373 ppm) reaching a maximum yearly average of 376 ppm. These carbon isotope signatures were used for the separation of fossils from biogenic and 'background' components, reflecting the strength of relevant sources

  6. Tunable Diode Laser Measurements of Leaf-scale Carbon Isotope Discrimination and Ecosystem Respired Carbon and Oxygen Isotope Ratios in a Semi-arid Woodland

    Science.gov (United States)

    McDowell, N.; Chris, B.; Hanson, D.; Kern, S.; Meyer, C.; Pockman, W.; Powers, H.

    2005-12-01

    We present results and speculative interpretation of leaf-level carbon isotope discrimination and ecosystem respired carbon and oxygen isotope ratios from a semi-arid, C3/C4 woodland located in northern New Mexico, USA. Overstory leaf area index (LAI) is dominated by live juniper (Juniperus monosperma) trees with an LAI value of approximately 1.0 m2 per m2 ground area, and has a seasonally dynamic understory of mixed C3 forbs and C4 grasses and cacti, with a maximum LAI of 0.30 m2 per m2 ground area. Ecosystem respired carbon isotope ratios showed values characteristic of C3 dominated photosynthesis (Keeling plot intercepts of -35 to -22 per mil). Seasonal variation was typical of that found in wetter, C3 dominated forests, as was the dependence on climate (e.g. relationships with vapor pressure deficit, soil water content, and canopy conductance). Leaf-level carbon isotope discrimination of the junipers, measured by coupling a Li-Cor 6400 photosynthesis system to the TDL, provided discrimination-Ci and discrimination-vpd relationships consistent with measured ecosystem respired carbon isotope ratios. The oxygen isotope ratio of ecosystem respiration was dependent on rain water isotope composition, but was correlated with soil water content during rain-free periods. The cumulative effect of vapor pressure deficit after a rain event was tightly correlated with the oxygen isotope ratio of ecosystem respiration, suggesting the primary drivers are evaporative enrichment of soil water and perhaps nocturnal leaf enrichment. Instrument precision for carbon and oxygen isotope ratios of carbon dioxide is 0.06 to 0.18 per mil; however, overall precision is somewhat lower due to pressure and sampling effects.

  7. Ice core-based isotopic constraints on past carbon cycle changes

    OpenAIRE

    Fischer, H.; J. Schmitt; Eggleston, S.; Schneider, R.; Elsig, J.; F. Joos; Leuenberger, M.; T. F. Stocker; P. Köhler; J. Chappellaz

    2015-01-01

    High-precision ice core data on both atmospheric CO2 concentrations and their carbon isotopic composition (δ13Catm) provide improved constraints on the marine and terrestrial processes responsible for carbon cycle changes during the last two interglacials and the preceding glacial/interglacial transitions.

  8. Evaluation of bioremediation systems utilizing stable carbon isotope analysis

    International Nuclear Information System (INIS)

    Carbon, whether in an organic or inorganic form, is composed primarily of two stable isotopes, carbon-12 and carbon-13. The ratio of carbon-12 to carbon-13 is approximately 99:1. The stable carbon isotope ratios of most natural carbon materials of biological interest range from approximately 0 to -110 per mil (per-thousand) versus the PDB standard. Utilizing stable carbon isotope analysis, it is often possible to determine the source(s) of the liberated carbon dioxide, thereby confirming successful mineralization of the targeted carbon compound(s) and, if the carbon dioxide results from multiple carbon compounds, in what ratio the carbon compounds are mineralized. Basic stable isotope 'theory' recommended sampling procedures and analysis protocols are reviewed. A case study involving fuel oil presented on the application of stable carbon isotope analysis for the monitoring and evaluation of in situ bioremediation. At the site, where a field bioventing study was being conducted, multiple potential sources of carbon dioxide production existed. Additional potential applications of stable carbon isotope analysis for bioremediation evaluation and monitoring are discussed

  9. Oxygen isotope fractionation in divalent metal carbonates

    Science.gov (United States)

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  10. Irradiation-induced structure and property changes in tokamak plasma-facing, carbon-carbon composites

    International Nuclear Information System (INIS)

    Carbon-carbon composites are an attractive choice for fusion reactor plasma-facing components because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce large neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from two irradiation experiments are reported and discussed here. Carbon-carbon composite materials were irradiated in target capsules in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 4.7 displacements per atom (dpa) at 600 degree C was attained. The carbon materials irradiated included uni-directional, two-directional, and three-directional carbon-carbon composites. Dimensional changes are reported for the composite materials and are related to single crystal dimensional changes through fiber and composite structural models. Moreover, the irradiation-induced dimensional changes are reported and discussed in terms of their architecture, fiber type, and graphitization temperature. The effect of neutron irradiation on thermal conductivity of two three-directional, carbon-carbon composites is reported and the recovery of thermal conductivity due to thermal annealing is discussed

  11. Changes of stable isotopes carbon-13 and nitrogen-15 in different tissues of cattle

    International Nuclear Information System (INIS)

    Stable isotope analysis is a potential tool for tracing food origin. The stable carbon and nitrogen isotope composition in different tissues of two varieties of cattle under the same culture condition were investigated. δ 13C and δ15N values of different defatted muscle and crude fat, cattle tail hair, blood, liver and feed were determined by isotope ratio mass spectrometry, and statistical analysis was carried out. The results showed that stable isotopes of carbon and nitrogen composition was not affected by cattle variety; the δ 13C values between different defatted muscle, blood, liver and cattle hair were not significantly different, but δ 15N value in the liver was much higher than other muscle and the δ 13C values didn't show difference among all the crude fat samples. So these results indicated that isotope fractionation in the various tissue was discrepant. (authors)

  12. Isotopic composition of Riyadh rainfall, Saudi Arabia

    Science.gov (United States)

    Michelsen, Nils; Reshid, Mustefa; Siebert, Christian; Schulz, Stephan; Rausch, Randolf; Knöller, Kay; Weise, Stephan; Al-Saud, Mohammed; Schüth, Christoph

    2015-04-01

    Arid countries like Saudi Arabia often depend on fossil groundwater. Hence, thorough studies of the available resources are crucial. In the course of such investigations, analyses of δ18O and δD are frequently applied to constrain the provenance of the waters and to reconstruct the (paleo)climatic conditions during their recharge. Yet, to be able to evaluate the isotopic signature of the groundwater, one also has to know the isotopic composition of current precipitation. Although a few rain water analyses are available for Central Saudi Arabia in the literature - mostly in unpublished consultant reports - a Local Meteoric Water Line has never been established. To complement the available data, 28 rain events occurring in Riyadh between 2009 and 2013 were studied for their stable isotope composition. Samples were collected as integral samples, i.e., they represent the entire precipitation event. Moreover, one event was sampled several times, aiming at an evaluation of intra-storm variability. During selected storms, a grab sample was taken for 3H analysis. The event samples showed δ18O and δD values scattering between -6.5 and +9.5 and between -30 and +50 ‰ V-SMOW, respectively. In the course of the event that was sequentially sampled, a proceeding isotopic depletion was observed with respect to both isotopes. The relatively large ranges of δ-values for 18O and D of approximately 7 and 38 ‰ V-SMOW highlight the general need for integral sampling. The obtained grab samples are characterized by moderate 3H concentrations of a few Tritium Units. Further results will be presented and discussed in view of associated weather data (e.g. rain amount and temperature) and the probable moisture sources derived from back-trajectories, which were calculated using HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory Model; Draxler & Rolph, 2003). References Draxler, R.R. & Rolph, G.D. (2013): HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory

  13. The clumped isotope geothermometer in soil and paleosol carbonate

    Science.gov (United States)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  14. Technical Note: Constraining stable carbon isotope values of microphytobenthos (C3 photosynthesis) in the Arctic for application to food web studies

    OpenAIRE

    Oxtoby, L. E.; Mathis, J. T.; Juranek, L. W.; M. J. Wooller

    2013-01-01

    Microphytobenthos (MPB) tends to be omitted as a possible carbon source to higher trophic level consumers in high latitude marine food web models that use stable isotopes. Here, we used previously published relationships relating the concentration of aqueous carbon dioxide ([CO2]aq), the stable carbon isotopic composition of dissolved inorganic carbon (DIC) (δ13CDIC), and algal growth rates (μ) to estimate the stable carbon isotop...

  15. High performance carbon-carbon composites

    Indian Academy of Sciences (India)

    Lalit M Manocha

    2003-02-01

    Carbon-carbon composites rank first among ceramic composite materials with a spectrum of properties and applications in various sectors. These composites are made of fibres in various directions and carbonaceous polymers and hydrocarbons as matrix precursors. Their density and properties depend on the type and volume fraction of reinforcement, matrix precursor used and end heat treatment temperature. Composites made with thermosetting resins as matrix precursors possess low densities (1.55–1.75 g/cm3) and well-distributed microporosity whereas those made with pitch as the matrix precursor, after densification exhibit densities of 1.8–2.0 g/cm3 with some mesopores, and those made by the CVD technique with hydrocarbon gases, possess intermediate densities and matrices with close porosities. The former (resin-based) composites exhibit high flexural strength, low toughness and low thermal conductivity, whereas the latter (pitch- and CVD-based) can be made with very high thermal conductivity (400–700 W/MK) in the fibre direction. Carbon-carbon composites are used in a variety of sectors requiring high mechanical properties at elevated temperatures, good frictional properties for brake pads in high speed vehicles or high thermal conductivity for thermal management applications. However, for extended life applications, these composites need to be protected against oxidation either through matrix modification with Si, Zr, Hf etc. or by multilayer oxidation protection coatings consisting of SiC, silica, zircon etc.

  16. Lithium Isotopic Composition of Aleutian Arc Magmas

    Science.gov (United States)

    Rudnick, R. L.; Park, Y.; Liu, X.; Kay, S. M.; Kay, R. W.

    2012-12-01

    The lithium isotopic compositions of inputs to subduction zones can be highly variable. For example, altered oceanic crust is isotopically heavy (δ7Li = 4 to 22, Chan et al., 1996; Bouman et al., 2004) due to uptake of seawater Li (32). Sea floor sediments can have highly variable compositions, ranging from isotopically heavy pelagic sediments (6 to 14) to isotopically light terrigneous clays (-1.5 to 5), derived from highly weathered continental crust (Chan et al., 2006). Despite this variability in inputs, arc outputs (magmatic rocks) typically have mantle-like δ7Li (e.g., 2 to 6; Tomascak et al., 2002; Walker et al., 2009). To explore the behavior of lithium and its isotopes in arcs, we have analyzed [Li] and δ7Li in 48 lavas and plutons from the Aleutian island arc, which span the temporal (0 to 38 Ma), geographical (165-184oW) and compositional variations (SiO2 = 46-70 wt.%) seen in this arc. Previous studies have indicated a systematic geographic change in lava chemistry related to changing sediment composition along the arc (terrigneous in the east, pelagic in the west, e.g., Kay and Kay, 1994; Yogodinski et al., 2010), as well as temporal changes that may also reflect changes in sedimentary input (Kay and Kay, 1994), and we wished to determine if Li isotopes also reflect such changes. Lithium concentration [Li] shows a generally positive correlation with SiO2, consistent with the expected incompatible behavior of Li during magmatic differentiation. Intrusive rocks (all from the Adak region) show more scatter than lavas on this plot, suggesting the influence of cumulate processes. The δ7Li of the rocks span an immense range from -1 to +29, well outside the values considered typical for the MORB-source mantle (e.g., 2-6). However, the majority of the samples (28 out of 48) have δ7Li falling within the range of typical mantle values. There is a general tendency for the lavas (all but one are adakite (~11 Ma, Kay, 1978) has a δ7Li of 3.7. There is no

  17. Stable Isotopic Evidence for a Pedogenic Origin of Carbonates in Trench 14 near Yucca Mountain, Nevada.

    Science.gov (United States)

    Quade, J; Cerling, T E

    1990-12-14

    Layered carbonate and silica encrust fault fractures exposed in Trench 14 near Yucca Mountain, site of the proposed high-level nuclear waste repository in southern Nevada. Comparison of the stable carbon and oxygen isotopic compositions of the fracture carbonates with those of modern soil carbonates in the area shows that the fracture carbonates are pedogenic in origin and that they likely formed in the presence of vegetation and rainfall typical of a glacial climate. Their isotopic composition differs markedly from that of carbonate associated with nearby springs. The regional water table therefore remained below the level of Trench 14 during the time that the carbonates and silica precipitated, a period probably covering parts of at least the last 300,000 years. PMID:17818282

  18. Carbon-14 kinetic isotope effect in the decarbonylation of lactic acid [1-14C

    International Nuclear Information System (INIS)

    The carbon-14 kinetic isotope effect for the decarbonation of lactic acid[1-14C] in sulfuric acid has been measured in the temperature interval of 20-90 deg C. The experimental values of (k12C/k14C) are compared with the theoretical 14C kinetic isotope effect calculated assuming that one carbon-oxygen stretching vibration is lost in the rate-determining step. The discrepancy between experimentally observed temperature dependence of the 14C kinetic isotope effect and the theoretical one is explained by the possible side reactions wich change the apparent degrees of decarbonylation and isotopic composition of CH3CHOHCOOH[1-14C] used in experiments aiming at the determination of carbon-14 kinetic isotope effect in the decarbonylation process itself. (author) 6 refs.; 1 tab

  19. Composition and fate of terrigenous organic matter along the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes

    Science.gov (United States)

    Tesi, Tommaso; Semiletov, Igor; Hugelius, Gustaf; Dudarev, Oleg; Kuhry, Peter; Gustafsson, Örjan

    2014-05-01

    Climate warming is predicted to translocate terrigenous organic carbon (TerrOC) to the Arctic Ocean and affect the marine biogeochemistry at high latitudes. The magnitude of this translocation is currently unknown, so is the climate response. The fate of the remobilized TerrOC across the Arctic shelves represents an unconstrained component of this feedback. The present study investigated the fate of permafrost carbon along the land-ocean continuum by characterizing the TerrOC composition in three different terrestrial carbon pools from Siberian permafrost (surface organic rich horizon, mineral soil active layer, and Ice Complex deposit) and marine sediments collected on the extensive East Siberian Arctic Shelf (ESAS). High levels of lignin phenols and cutin acids were measured in all terrestrial samples analyzed indicating that these compounds can be used to trace the heterogeneous terrigenous material entering the Arctic Ocean. In ESAS sediments, comparison of these terrigenous biomarkers with other TerrOC proxies (bulk δ13C/Δ14C and HMW lipid biomarkers) highlighted contrasting across-shelf trends. These differences could indicate that TerrOC in the ESAS is made up of several pools that exhibit contrasting reactivity toward oxidation during the transport. In this reactive spectrum, lignin is the most reactive, decreasing up to three orders of magnitude from the inner- to the outer-shelf while the decrease of HMW wax lipid biomarkers was considerably less pronounced. Alternatively, degradation might be negligible while sediment sorting during the across-shelf transport could be the major physical forcing that redistributes different TerrOC pools characterized by different matrix-association.

  20. Stable Carbon and Oxygen Isotopes of Pedogenic Carbonates in Ustic Vertisols: Implications for Paleoenvironmental Change

    Institute of Scientific and Technical Information of China (English)

    HUANG Cheng-Min; WANG Cheng-Shan; TANG Ya

    2005-01-01

    Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n= 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.

  1. Carbon and hydrogen isotope composition of plant biomarkers from lake sediments as proxies for precipitation changes across Heinrich Events in the subtropics

    Science.gov (United States)

    Arnold, T. E.; Diefendorf, A. F.; Brenner, M.; Freeman, K. H.; Curtis, J. H.

    2015-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  2. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition

    Science.gov (United States)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2016-02-01

    The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator

  3. Stable-isotope composition of the water of apple juice

    International Nuclear Information System (INIS)

    By deuterium and oxygen 18 analysis, it was shown that apples' water is enriched in heavier isotopes as compared to rain water. The isotopic composition of the water of reconstituted apple juice is closed to the isotopic content of the rain water used for dilution. Thus, deuterium and oxyden 18 analysis allows a good analytical distinction between natural apple juice and reconstituted juices

  4. Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon.

    Science.gov (United States)

    Guy, R. D.; Fogel, M. L.; Berry, J. A.

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. PMID:12231663

  5. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces and wool

    DEFF Research Database (Denmark)

    Kristensen, Ditte; Kristensen, Erik; Forchhammer, Mads C.; Michelsen, Anders; Schmidt, Niels Martin

    2011-01-01

    The use of stable isotopes in diet analysis usually relies on the different photosynthetic pathways of C3 and C4 plants, and the resulting difference in carbon isotope signature. In the Arctic, however, plant species are exclusively C3, and carbon isotopes alone are therefore not suitable for...... studying arctic herbivore diets. In this study, we examined the potential of both stable carbon and nitrogen isotopes to reconstruct the diet of an arctic herbivore, here the muskox (Ovibos moschatus (Zimmermann, 1780)), in northeast Greenland. The isotope composition of plant communities and functional...... distinct. As a result, our examination mainly relied on stable nitrogen isotopes. The interpretation of stable isotopes from faeces was difficult because of the large uncertainty in diet–faeces fractionation, whereas isotope signatures from wool suggested that the muskox summer diet consists of around 80...

  6. Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals

    OpenAIRE

    Hill, PS; Tripati, AK; Schauble, EA

    2014-01-01

    The use of carbonate 'clumped isotope' thermometry as a geochemical technique to determine temperature of formation of a carbonate mineral is predicated on the assumption that the mineral has attained an internal thermodynamic equilibrium. If true, then the clumped isotope signature is dependent solely upon the temperature of formation of the mineral without the need to know the isotopic or elemental composition of coeval fluids. However, anomalous signatures can arise under disequilibrium co...

  7. Reassessing the stable isotope composition assigned to methane flux from natural wetlands in isotope-constrained budgets

    Science.gov (United States)

    Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew

    2013-04-01

    Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.

  8. The Global Hydrologic Cycle Contribution to Polar Warmth During the mid-Cretaceous Revealed by Oxygen Isotopic Compositions of Pedogenic Carbonates (Invited)

    Science.gov (United States)

    Suarez, M. B.; Gonzalez, L. A.; Ludvigson, G. A.

    2010-12-01

    The role of the global hydrologic cycle in contributing to equable climates (low equator to pole temperature gradients) such as the Cretaceous greenhouse has become widely recognized. This study builds on an Aptian-Albian sphaerosiderite δ18O data set from the North American Cretaceous Western Interior Basin. Additional low latitude data, including pedogenic and early meteoric diagenetic calcite δ18O, are compiled with the sphaerosiderite data to generate four latitudinal groundwater δ18O gradients based on four different Cretaceous latitudinal temperature gradients (warm and cool estimates of Barron [1], leaf physiognomy-based gradient [2], and model based estimates [3]). Ufnar et al. [4] developed a mass balance model to determine the precipitation and evaporation fluxes necessary to produce precipitation δ18O compositions that are consistent with the sphaerosiderite δ18O. We modify this mass balance model to include the low latitude data and adjust precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback to generate model derived groundwater δ18O compositions (proxy for precipitation δ18O) that match the empirically-derived (from sphaerosiderite and calcite) groundwater δ18O compositions to within ± 0.5‰. Precipitation fluxes for all the Cretaceous temperature gradients utilized in the model are greater than modern precipitation fluxes. Calculated global average precipitation rates range from 371 mm/year to 1196 mm/year greater than modern precipitation rates. Evaporation fluxes are also greater, especially at latitudes below 30°N. Using precipitation-evaporation flux and calculated precipitation rates, average latent heat flux was calculated at each paleolatitude. These calculations suggest that below 30°N, heat is lost through evaporation with a maximum heat loss of -103 W/m2 at about 9°N. Heat is gained in the mid to high latitudes with a maximum gain of 174 W/m2 at 56°N. These values are only

  9. Isotopic composition of precipitation and groundwater in Sicily, Italy

    International Nuclear Information System (INIS)

    Highlights: • Isotopic composition of precipitation and groundwater in Sicily (Italy). • Isotopic data processing for hydrogeological purpose. • GIS mapping of isotopic data. - Abstract: The isotopic composition of meteoric water in Sicily, Italy was investigated from May 2004 until June 2006. Samples were sampled monthly from a network of 50 rain gauges. During the same period 580 groundwater samples were collected from springs and wells to obtain insight into the isotopic composition of the water circulating in the main aquifers of the area. The mean weighted precipitation values were used to define the weighted local meteoric water line for five different sectors of Sicily. The use of Geographical Information System tools, coupled with isotopic vertical gradients, allowed designing an isotopic contour map of precipitation in Sicily. The defined meteoric compositions were highly consistent with most of the groundwater samples in each sector. However, in some areas fractionation processes occurring during and after rainfall slightly modify the isotopic composition of the groundwater. The obtained data set defines the present day isotopic composition of meteoric water in the central Mediterranean area and provides baseline values for future climatic and/or isotope-based hydrology studies

  10. Investigating the Source, Transport, and Isotope Composition of Water in the Atmospheric Boundary Layer

    Science.gov (United States)

    Griffis, T. J.; Schultz, N. M.; Lee, X.

    2011-12-01

    The isotope composition of water (liquid and vapor phases) can provide important insights regarding the source of water used by plants, the origins of atmospheric water vapor, and the sources of carbon dioxide. In recent years there have been significant advances in the ability to quantify the isotope composition of water and water vapor using optical isotope techniques. We have used and helped develop some of these techniques to determine the isotope composition of soil and plant waters, to measure the isoflux of water vapor between the land surface and atmosphere, and to examine the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. In this presentation we will discuss three related issues: 1) Identification and correction of spectral contamination in soil and plant water samples using optical techniques; 2) The benefits and practical limitations of quantifying the isotope composition of evapotranspiration using the eddy covariance approach; and 3) The scientific value and feasibility of tracking the long-term (seasonal and interannual) behavior of the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. A few short stories will be provided from experiments conducted in the lab, at the field scale, and from a very tall tower at the University of Minnesota from 2008 to 2011.

  11. Carbon isotope analysis in apple nectar beverages

    Directory of Open Access Journals (Sweden)

    Ricardo Figueira

    2013-03-01

    Full Text Available The aims of this study were to use the isotope analysis method to quantify the carbon of C3 photosynthetic cycle in commercial apple nectars and to determine the legal limit to identify the beverages that do not conform to the safety standards established by the Brazilian Ministry of Agriculture, Livestock and Food Supply. These beverages (apple nectars were produced in the laboratory according to the Brazilian legislation. Adulterated nectars were also produced with an amount of pulp juice below the permitted threshold limit value. The δ13C values of the apple nectars and their fractions (pulp and purified sugar were measured to quantify the C3 source percentage. In order to demonstrate the existence of adulteration, the values found were compared to the limit values established by the Brazilian Law. All commercial apple nectars analyzed were within the legal limits, which enabled to identify the nectars that were in conformity with the Brazilian Law. The isotopic methodology developed proved efficient to quantify the carbon of C3 origin in commercial apple nectars.

  12. Diurnal and Seasonal Variation in the Carbon Isotope Composition of Leaf- and Root- respired CO2 in C3 and C4 Species

    Science.gov (United States)

    Sun, W.; Resco, V.; Chen, S.; Williams, D. G.

    2008-12-01

    The carbon isotope signature of leaf (δ13Cl) and root (δ13Cr) dark- respired CO2 records and integrates short-term metabolic changes. Plants with C3 and C4 photosynthetic metabolism are expected to differ in diurnal and seasonal patterns in δ13Cl and δ13Cr because of differences in photorespiration, isotopic fractionation at metabolic branch points and allocation patterns. A thorough understanding of the environmental and metabolic controls on δ13Cl and δ13Cr is necessary to interpret the δ13C of ecosystem respired CO2 and partition the CO2 efflux into autotrophic and heterotrophic respiration sources. We measured δ13Cl in two C3 tree species (Prosopis velutina and Celtis reticulata), a C3 herb (Viguiera dentata) and a C4 grass (Sporobolus wrightii), and δ13Cr in P. velutina and S. wrightii in a semiarid savanna in southeastern Arizona, USA. δ13Cl during the dry pre-monsoon period was relatively enriched in 13C during daytime periods and became depleted in 13C at night relative to daytime values for all species with the exception of S. wrightii, the C4 grass. δ13Cl in S. wrightii was strongly influenced by seasonal differences in water availability with a larger diurnal amplitude in δ13Cl (8.2 +/- 0.6‰) during the wet monsoon period compared to that in the dry pre-monsoon period (4.4 +/- 0.4‰). The δ13C values of starch and lipid fractions remained constant over diurnal periods within the pre-monsoon and monsoon seasons. For C3 species, δ13Cl and δ13C of the cumulative, flux-weighted photosynthate pool estimated from gas exchange were strongly positively correlated, suggesting that progressive 13C-enrichment of leaf-respired CO2 during the daytime period resulted from changes in the δ13C signature of respiratory substrates associated with short-term changes in photosynthetic 13C discrimination. Rapid decreases in δ13Cl following the daytime period was likely caused by decreases in the ratio of PDH:acetyl-CoA oxidation rather than by a shift in

  13. On anomalous isotope composition of lithium in commercial reagents used as standards in isotope analysis

    International Nuclear Information System (INIS)

    Using the spectral method the isotope analysis of lithium is carried out to specify the value of anomalies of lithium isotope composition in salts. Accuracy of the results obtained has been checked according to standard mixtures, prepared of isotopically enriched lithium chlorides (lithium-6 chloride-90.5% 6Li and 9.5% 7Li; lithium-7 chloride-0.02% 6Li and 99.98% 7Li). The analysis has shown that commercial salts of lithium can have considerably shifted isotope composition, which must be taken into account when calibrating the instruments and applying salts as standards of isotope ratio

  14. Climatic significance of the stable carbon isotope composition of tree-ring cellulose:Comparison of Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast) in a temperate-moist region of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the reconstruction of past climate using stable carbon isotope composition (δ13C) in tree ring,the responses of the stable carbon composition (δ13C) of multiple tree species to environmental factors must be known detailedly. This study presented two δ13C series in annual tree rings for Chinese hem-lock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast),and investigated the relationships between climatic parameters and stable carbon discrimination (△13C) series,and evaluated the poten-tial of climatic reconstruction using △13C in both species,in a temperate-moist region of Chuanxi Pla-teau,China. The raw δ13C series of the two species was inconsistent,which may be a result of different responses caused by tree’s inherent physiological differences. After removing the low-frequency ef-fects of CO2 concentration,the high-frequency (year-to-year) inter-series correlation of △13C was strong,indicating that △13C of the two tree species were controlled by common environmental conditions. The △13C series of the species were most significantly correlated with temperature and moisture stress,but in different periods and intensity between the species. During the physiological year,the impacts of temperature and moisture stress on △13C occur earlier for Chinese hemlock (previous December to February for moisture stress and February to April for temperature,respectively) than for alpine pine (March to May for moisture stress and April to July for temperature,respectively). In addition,in temperate-moist regions,the control on △13C of single climatic parameter was not strongly dominant and the op-timal multiple regressions functions just explained the 38.5% variance of the total. Therefore,there is limited potential for using δ13C alone to identify clear,reliable climatic signals from two species.

  15. Climatic significance of the stable carbon isotope composition of tree-ring cellulose: Comparison of Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast) in a temperate-moist region of China

    Institute of Scientific and Technical Information of China (English)

    LIU XiaoHong; SHAO XueMei; WANG LiLi; ZHAO LiangJu; WU Pu; CHEN Tuo; QIN DaHe; REN JiaWen

    2007-01-01

    In the reconstruction of past climate using stable carbon isotope composition (δ13C) in tree ring, the responses of the stable carbon composition (δ13C) of multiple tree species to environmental factors must be known detailedly. This study presented two δ13C series in annual tree rings for Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast), and investigated the relationships between climatic parameters and stable carbon discrimination (Δ13C) series, and evaluated the potential of climatic reconstruction using Δ13C in both species, in a temperate-moist region of Chuanxi Plateau, China. The raw δ13C series of the two species was inconsistent, which may be a result of different responses caused by tree's inherent physiological differences. After removing the low-frequency effects of CO2 concentration, the high-frequency (year-to-year) inter-series correlation of Δ13C was strong, indicating that Δ13C of the two tree species were controlled by common environmental conditions. The Δ13C series of the species were most significantly correlated with temperature and moisture stress, but in different periods and intensity between the species. During the physiological year, the impacts of temperature and moisture stress on Δ13C occur earlier for Chinese hemlock (previous December to February for moisture stress and February to April for temperature, respectively) than for alpine pine (March to May for moisture stress and April to July for temperature, respectively). In addition, in temperatemoist regions, the control on Δ13C of single climatic parameter was not strongly dominant and the optimal multiple regressions functions just explained the 38.5% variance of the total. Therefore, there is limited potential for using δ13C alone to identify clear, reliable climatic signals from two species.

  16. Carbon and strontium isotope variations and responses tosea-level fluctuations in the Ordovician of the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Abstract In the Ordovician, a carbonate platform system grading from the platformal interioreastwards to basin was developed in the Tazhong area of the Tarim Basin, and the study column islocated in the place where the paleoslope occurred. The isotope compositions of the carbonatesthere are thus considered as having reflected those of simultaneous sea waters in view of its goodconnection with the open seas. The carbon and strontium isotope compositions of the Ordoviciancarbonates in the Tazhong area are analyzed, and their relationships to the sea-level fluctuationsare discussed as well. Studies have revealed that the carbon isotope composition is related posi-tively with the sea-level fluctuations, whereas an opposing situation occurs to the strontium isotopevariation. Similar responses of carbon and strontium isotope compositions to the sea-level fluctua-tions are reported elsewhere in the world, suggesting that the Ordovician sea-level fluctuations ofthe Tarim Basin were of eustatic implication.

  17. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  18. Systematic AMD+GCM Study of Structure of Carbon Isotopes

    International Nuclear Information System (INIS)

    The structure of low-lying states of the carbon isotopes is investigated using the extended version of the Antisymmetrized Molecular Dynamics (AMD) Multi-Slater Determinant model. We can reproduce reasonably well many experimental data for carbon isotopes 12C-22C. A special approach is adopted for 15C to better describe the tail of the wave function

  19. Development of carbon composites cured by radiation

    International Nuclear Information System (INIS)

    -Developments of the new process in the manufacture of composites - Developments of a necessary technics for the manufacture of an export embargo components - Developments of the green process in the manufacture of composites - Developments and applications of the radiation curing technics in the manufacture of various composites - Developments of the manufacturing process for carbon/carbon(carbon/silicon carbide) composites

  20. The stable isotope composition of vanadium, nickel, and molybdenum in crude oils

    International Nuclear Information System (INIS)

    Highlights: • First precise stable isotope measurements of V, Ni and Mo in crude oils. • First order constraints are placed on the magnitude of isotope variability. • Isotope compositions are unaffected by generation, expulsion, and migration. • V and Ni stable isotope compositions are likely source dependent. • V, Ni, and Mo isotope compositions are likely affected by paleoredox chemistry. - Abstract: Crude oils often have high concentrations of transition metals including vanadium (V), nickel (Ni), iron (Fe), and to a lesser extent molybdenum (Mo). Determining the conditions under which these metals enter into crude oil is of interest for the understanding of biogeochemical cycles and the pathways leading to oil formation. This study presents the first high precision measurements of V, Ni, and Mo stable isotopes determined for a set of globally distributed crude oils as a first examination of the magnitude of potential stable isotope fractionation. Vanadium stable isotope compositions are presented for crude oils formed from different source rocks spanning a range of geologic ages (Paleozoic–Tertiary) and are complemented by Ni and Mo stable isotope compositions on a subset of crude oils produced from lacustrine source rocks in the Campos Basin, Brazil. The crude oils span a wide range of V and Mo isotope compositions, and display more restricted Ni stable isotope signatures. Overall, the stable isotope composition of all three systems overlaps with previously determined values for igneous and inorganic sedimentary materials. Comparisons between vanadium concentration and stable isotope composition yield distinct clusters associated with crude oils predominantly derived from terrestrial/lacustrine or marine/carbonate source rocks. The Ni stable isotope signatures of studied crude oils are similar to that of carbonaceous shales. The Mo stable isotope signatures of the lacustrine sourced crude oils are similar to what is observed for rivers. This

  1. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates

    Science.gov (United States)

    Hippler, Dorothee; Buhl, Dieter; Witbaard, Rob; Richter, Detlev K.; Immenhauser, Adrian

    2009-10-01

    This study presents magnesium stable-isotope compositions of various biogenic carbonates of several marine calcifying organisms and an algae species, seawater samples collected from the western Dutch Wadden Sea, and reference materials. The aim of this study is to explore the influence of mineralogy, taxonomy and environmental factors (e.g., seawater isotopic composition, temperature, salinity) on magnesium-isotopic (δ 26Mg) ratios of skeletal carbonates. Using high-precision multi-collector inductively coupled plasma mass spectrometry, we observed that the magnesium-isotopic composition of seawater from the semi-enclosed Dutch Wadden Sea is identical to that of open marine seawater. We further found that a considerable component of the observed variability in δ 26Mg values of marine skeletal carbonates can be attributed to differences in mineralogy. Furthermore, magnesium-isotope fractionation is species-dependent, with all skeletal carbonates being isotopically lighter than seawater. While δ 26Mg values of skeletal aragonite and high-magnesium calcite of coralline red algae indicate the absence or negligibility of metabolic influences, the δ 26Mg values of echinoids, brachiopods and bivalves likely result from a taxon-specific level of control on Mg-isotope incorporation during biocalcification. Moreover, no resolvable salinity and temperature effect were observed for coralline red algae and echinoids. In contrast, Mg-isotope data of bivalves yield ambiguous results, which require further validation. The data presented here, point to a limited use of Mg isotopes as temperature proxy, but highlight the method's potential as tracer of seawater chemistry through Earth's history.

  2. Stable carbon isotope analysis of bone apatite

    International Nuclear Information System (INIS)

    The application of stable carbon isotope analysis to bone apatite is investigated. Bone apatite was prepared from 28 samples of 5 species of modern browsing herbivores, and their 13C/12C ratios measured. The δ13C values for bone apatite of the modern specimens shows a mean enrichment of +12 o/oo relative to the C3 dietary mean of -26.5o/oo. The values for T. strepsiceros (kudu) suggest that it is not a consistent browzer, as was formerly believed. Seven fossil bone apatite browzer samples gave δ13C values which fell within the range for the modern samples. It is concluded that the 13C/12C ratio in modern bone apatite accurately reflects diet, but data for fossil samples was insufficient to allow a firm conclusion about the reliability of bone apatite dietary tracing in archaeological contexts

  3. Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001

    Science.gov (United States)

    Leshin, Laurie A.; McKeegan, Kevin D.; Harvey, Ralph P.

    1997-03-01

    With a crystallization age of 4.5 Ga, ALH84001 is unique among the Martian meteorites. It is also the only Martian meteorite that contains an appreciable amount of carbonate, and significantly, this carbonate occurs without associated secondary hydrated minerals. Moreover, McKay et al. (1996) have suggested that ALH84001 contains evidence of past Martian life in the form of nanofossils, biogenic minerals, and polycyclic aromatic hydrocarbons. The presence of carbonate in ALH84001 is especially significant. The early Martian environment is thought to have been more hospitable to life than todays cold, dry climate. In order to better assess the true delta-O-18 values, as well as the isotopic diversity and complexity of the ALH84001 carbonates, direct measurements of the oxygen and carbon isotopic compositions of individual carbonate phases are needed. Here we report in situ analyses of delta-O-18 values in carbonates from two polished thin sections of ALH84001.

  4. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  5. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  6. Double inlet system with viscous gas flow for high precision mass spectrometric analysis of small isotopic composition variations of carbon and oxygen

    International Nuclear Information System (INIS)

    A double inlet system with viscous gas flow, built at the Institute for Stable Isotope, to fit up the Atlas M-86 mass spectrometer, is described. The pressure dependence of delta values and the various factors producing it are discussed and experimentally determined. Other corrections to improve the accuracy of the measurements are given. (author)

  7. Progressive extraction method applied to isotopic exchange of carbon-14

    International Nuclear Information System (INIS)

    Isotopic exchange in natural settings is essentially an irreversible process, so that it progresses continuously until there is complete isotopic equilibrium. In soils, this process involves interaction between isotopes in the liquid and solid phases, and complete isotopic equilibrium may take a very long time. Measurements after partial isotopic exchange have been used to characterize the labile fraction of elements in soils. We describe a method to characterize the extent of isotopic exchange, with application here to incorporation of inorganic carbon-14 (14C) into mineral carbonates and organic matter in soils. The procedure uses a continuous addition of extractant, acid, or H2O2in the examples presented here, coupled with sequential sampling. The method has been applied to demonstrate the degree of isotopic exchange in soil. The same strategy could be applied to many other elements, including plant nutrients. (author)

  8. The stable isotope composition of some East Coast natural gases

    International Nuclear Information System (INIS)

    The carbon and hydrogen isotopic ratios of methane from 17 natural gas seeps on the East Coast of the North Island, New Zealand, show a diversity of values. All isotopic ratios are consistent with overseas values for gases associated with oil. Chemical compositions and geological settings are used to make further interpretations, and to relate the gases to possible source rocks. Isotopic compositions suggest that mature source rocks have produced the gases from Otopotehetehe, Waitangi, Tukituki, Wairakau, Weber, Te Hoe and Langdale. The Rotokautuku gas appears to have been altered by secondary processes such as oxidation. Some of the cases are associated with oil seeps. Waimata gas may be from a less mature source than the above. All these gases have methane delta/sup 13/C values more positive than -45 per thousand implying, probable R/sub o/, values greater than 1% if the source matter is of marine origin. Kaikopu and Te Pohue gas seeps have more negative delta/sup 13/C values implying, they have been buried and/or heated to a lesser degree than the other gases. The warm springs at Te Puia also evolve a mature methane-rich gas with saline water. A warm spring in the greywacke ranges at Mangatainoka is suggestive of a reasonable degree of thermal maturity, but is nitrogen-rich and identical to other springs on the same fault. Morere warm springs and nearby seeps and mud volcanoes at Kopuawhara and Tiromoana suggest variable mixtures of thermogenic gas with a microbial gas although their /sup 3/He//sup 4/He values suggest a deeper gas contribution. (author). 26 refs.; 7 figs.; 2 tabs

  9. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    OpenAIRE

    S. L. Pathirana; C. van der Veen; Popa, M. E.; T. Röckmann

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol−1, or 1–3 % of the typical sam...

  10. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  11. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13C content of soil CO2, CaCO3, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13C content with depth decreasing 13C with altitude and reduced 13C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  12. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph [UCSD-SIO

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  13. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    Science.gov (United States)

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  14. Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures

    International Nuclear Information System (INIS)

    The temperature dependence of carbon isotopic fractionations between calcite and graphite, and between dolomite and graphite are calibrated by the calcite-dolomite solvus geothermometry using marbles collected from the contact metamorphic aureole in the Kasuga area, central Japan. The carbon isotopic fractionations systematically decrease with increasing metamorphic temperature. The concordant relationships between the fractionations and solvus temperatures which are presented, are approximately linear with T-2 over the temperature range, 400 deg to 680 deg C. They suggest that carbon isotopic equilibria between carbonates and graphite were attained in many cases. The equation for the calcite-graphite system has a slope steeper than Bottinga's (1969) results. It is, however, in good agreement with that of Valley and O'Neil (1981) in the temperature range from 600 deg to 800 deg C. Because of the relatively high sensitivity to temperature, these isotopic geothermometers are useful for determining the temperatures in moderate- to high-grade metamorphosed carbonate rocks. (author)

  15. Isotopic composition of precipitation in Ljubljana (Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Vreča

    2008-12-01

    Full Text Available The stable isotopic composition of hydrogen and oxygen (δ2H and δ18O and tritium activity (3H are monitored in monthly precipitation at Ljubljana since 1981. Here we present complete set of numerical data and the statistical analysis for period 1981–2006. Seasonal variations of δ2H and δ18O are observed and are typical for continental stations of the Northern Hemisphere. The weighted mean δ2H and δ18O values are –59 ‰ and –8.6 ‰, respectively.The orthogonal Local Meteoric Water Line is δ2H = (8.06 ± 0.08δ18O + (9.84 ± 0.71, and the temperature coefficient of δ18O is 0.29 ‰/°C. Deuterium excess weighted mean value is 9.5 ‰ and indicates the prevailing influence of the Atlantic air masses. Tritium activity in monthly precipitation shows also seasonal variations which are superposed to the decreasing trend of mean annual activity.

  16. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  17. Carbon isotope stratigraphy of an ancient (Ordovician) Bahamian-type carbonate platform: Implications for preservation of global seawater trends

    Science.gov (United States)

    Saltzman, M.; Leslie, S. A.; Edwards, C. T.; Diamond, C. W.; Trigg, C. R.; Sedlacek, A. R.

    2013-12-01

    Carbon isotope stratigraphy has a unique role in the interpretation of Earth history as one of the few geochemical proxies that have been widely applied throughout the geologic time scale, from the Precambrian to the Recent, as both a global correlation tool and proxy for the carbon cycle. However, in addition to consideration of the role of diagenesis, numerous studies have raised awareness of the fact that C-isotope trends derived from ancient carbonate platforms may not be representative of dissolved inorganic carbon from a well-mixed global ocean reservoir. Furthermore, the larger carbon isotopic fractionation in the formation of aragonite versus calcite from seawater must be taken into account. All three of these variables (diagenesis, water mass residence time, % aragonite) may change in response to sea level, producing trends in C-isotopes on ancient carbonate platforms that are unrelated to the global carbon cycle. Global carbon cycle fluxes may also have a cause-effect relationship with sea level changes, further complicating interpretations of stratigraphic trends in carbon isotopes from ancient platform environments. Studies of C-isotopes in modern carbonate platform settings such as the Great Bahama Bank (GBB) provide important analogues in addressing whether or not ancient platforms are likely to preserve a record of carbon cycling in the global ocean. Swart et al. (2009) found that waters of the GBB had generally the same or elevated values (ranging from +0.5‰ to +2.5‰) compared to the global oceans, interpreted as reflecting differential photosynthetic fractionation and precipitation of calcium carbonate (which lowers pH and converts bicarbonate into 12-C enriched carbon dioxide, leaving residual bicarbonate heavier). Carbonate sediments of the GBB have elevated C-isotopes, not only because of the high C-isotope composition of the overlying waters, but also due to the greater fractionation associated with precipitation of aragonite versus calcite

  18. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    OpenAIRE

    Knorr, K.-H.; Glaser, B.; C. Blodau

    2008-01-01

    Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been remove...

  19. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    OpenAIRE

    C. Blodau; Glaser, B.; K.-H. Knorr

    2008-01-01

    Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been removed. Net production ...

  20. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne;

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  1. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne; Sorensen, B.; Wille, J.

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation of...... methane was suggested....

  2. Carbon isotope effects in plants related to photosynthesis

    International Nuclear Information System (INIS)

    Plants contain less 13C than the atmosphere due to both enzymatic and physical processes that discriminate against the heavier isotope in favour of the lighter one. These differences have allowed us to use isotopic signature to identify photosynthetic pathways of many plant species. The purpose of this study is to present a method for measuring the carbon isotope discrimination in the leaf of the plant. We carried out conversion of organic sample from two species (Prunus amygdalus and Rosa) to CO2 by dry combustion in an excess of oxygen. The stable carbon isotope ratio (13C/12C) was measured with high precision by a mass spectrometer. This isotopic discrimination was used to assess the ratio of intercellular to atmospheric CO2 concentration, ci/ca. We plan to use the isotopic discrimination to estimate plant water-use efficiency, a relevant parameter for conferring tolerance of the plant to environmental stress. (authors)

  3. Evolution of Silurian and Devonian sedimentary environments in the Prague basin: evidence from isotopic compositions of carbon and oxygen and trace element contents in brachiopod shells

    Czech Academy of Sciences Publication Activity Database

    Hladíková, J.; Hladil, Jindřich; Košler, J.; Jačková, I.

    Frankfurt am Main : European Palaeontological Association, 2000 - (Oschmann, W.; Steininger, F.; Fürsich, F.), s. 43- 45+ 1 nečíslovaná [European Palaeontological Association Workshop 2000 - Biomarkes and Stable Isotopes in Palaeontology. Frankfurt am Main (DE), 30.06.2000-02.07.2000] R&D Projects: GA ČR GA205/98/0454 Grant ostatní: XX(XX) IGCP386; XX(XC) IGCP421 Institutional research plan: CEZ:AV0Z3013912 Subject RIV: DB - Geology ; Mineralogy

  4. Carbon isotope ratios and impurities in diamonds from Southern Africa

    Science.gov (United States)

    Kidane, Abiel; Koch-Müller, Monika; Morales, Luiz; Wiedenbeck, Michael; De Wit, Maarten

    2015-04-01

    We are investigating the sources of diamonds from southern Africa by studying both their carbon isotopic composition and chemical impurities. Our samples include macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Helam and Klipspringer kimberlitic deposits from South Africa, as well as micro-sized diamonds from Klipspringer and Premier kimberlites in South Africa. We have characterized the samples for their structurally bounded nitrogen, hydrogen and platelets defect using a Fourier Transmission Infrared Spectroscopy (FTIR). Using the DiaMap routine, open source software (Howell et al., 2012), IR spectra were deconvulated and quantified for their nitrogen (A, B and D components) and hydrogen contents. High to moderate nitrogen concentrations (1810 to 400 µg/g; 400 to 50 µg/g respectively) were found in diamonds from Klipspringer and Helam. Moderate to low (isotope studies is the development of calibration materials for SIMS carbon isotopic analyses. We have investigated candidate materials both from a polycrystalline synthetic diamond sheet and two natural gem quality diamonds from Juina (Brazil). Electron-based images of the synthetic diamond sheet, obtained using GFZ Potsdam's dual beam FIB instrument, show many diamond grains with diameters greater than 35 µm. SIMS testing of the isotopic homogeneity of the back and front sides of the synthetic sheets reveal similar 13C/12C ratio within a RSD of isotopic analyses of the two natural diamond RMs yield a constant 13C/12C ratio with RSD of better than 0.5 ‰ . Using the natural diamond as calibratrant, a preliminary result on a selected diamond from the four kimberlitic sample suites yields a δ13C in range between -3 to -7 ‰ . Reference: Howell, D., O'Neill, C. J., Grant, K. J., Griffin, W. L., Pearson, N. J., & O'Reilly, S. Y. (2012). μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diamond and Related Materials, 29, 29-36. doi:10.1016/j.diamond.2012.06.003.

  5. The Chlorine Isotopic Composition of Lunar urKREEP

    Science.gov (United States)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-05-01

    We have measured the Cl isotopic composition of apatite in a range of lunar rocks using NanoSIMS. We find a correlation between Cl isotopes and bulk rock chemistry which strongly suggesting urKREEP was characterized by heavy Cl.

  6. SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Olivier Chapleur

    Full Text Available In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH and nanoscale secondary ion mass spectrometry (nanoSIMS imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13C uptake during labelled methanol anaerobic degradation.

  7. Morphology-Composition-Isotopes: Recent Results from Observations

    Science.gov (United States)

    Schulz, R.

    This article presents some recent imaging and spectroscopic observations that led to results which are significant for understanding the properties of comet nuclei. The coma morphology and/or composition were investigated for 12 comets belonging to different dynamical classes. The data analysis showed that the coma morphology of three non-periodic comets is not consistent with the general assumption that dynamically new comets still have a relatively uniform nucleus surface and therefore do not exhibit gas and/or dust jets in their coma. The determination of carbon and nitrogen isotopic ratios revealed the same values for all comets investigated at various heliocentric distances. However, the relative abundance of the rare nitrogen isotope 15N is about twice as high as in the Earth's atmosphere. Observations of comets at splitting events and during outbursts led to indications for differences between material from the nucleus surface and the interior. The monitoring of the induced outburst of 9P/Temple revealed that under non-steady state conditions the fast disintegration of species is detectable.

  8. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  9. Ruthenium Isotopic Composition of Terrestrial Materials, Iron Meteorites and Chondrites

    Science.gov (United States)

    Becker, H.; Walker, R. J.

    2002-01-01

    Ru isotopic compositions of magmatic iron meteorites and chondrites overlap with terrestrial Ru at the 0.3 to 0.9 (epsilon) level. Additional information is contained in the original extended abstract.

  10. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria;

    2015-01-01

    An integrated study of the litho-, bio-, and isotope stratigraphy of carbonates in the Southern Alps was undertaken in order to better constrain δ13C variations during the Late Carboniferous to Late Permian. The presented high resolution isotope curves are based on 1299 δ13Ccarb and 396 δ13Corg...

  11. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    Science.gov (United States)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  12. Application of carbon isotope analyses in food technology

    International Nuclear Information System (INIS)

    The vast economic size of the food market offers great temptations for the production and sale of fraudulent products, adulterated products and synthetic products that are labeled as natural ones. Conventional techniques of chemical analyses have served the food industry well for many years but are limited in their ability to detect certain types of fraudulent or mislabelled products. The aversion to added sugar and the demand for 'all natural' food products among consumers has led to a great deal of mislabelling on the part of food processors in order to achieve greater economic gain. The nature of deceptions detectable by carbon Stable Isotope Ratio Analysis (SIRA) in food technology falls into three broad categories. The most common is the adulteration of an expensive natural product, such as apple juice, with a much cheaper natural product such as cane sugar or high fructose corn syrup (HFCS). The second is outright falsification of a food. An example is maple syrup produced by simple addition of maple flavoring to a sugar syrup or HFCS. The third general category is the sale of synthetic materials as natural ones or the addition of synthetic materials to natural ones in order to increase the volume of the product. The procedure for using carbon SIRA in monitoring food products involves two stages. It must first be established that the product to be analyzed, or some specific component of it, has a particular isotopic composition that can be distinguished from that of the materials that might be used to adulterate it. Potential adulterating components are then analyzed to establish their isotopic identity. The carbon SIRA method cannot, in general, be used to establish purity unequivocally but it can be used to establish impurity or adulteration with a high degree of success. The overall process of carbon SIRA consists of three stages: selection of the sample or the isolation of the particular compound to be analyzed, conversion of this compound into CO2 gas

  13. Food sources for the mangrove tree crab aratus pisonii: a carbon isotopic study

    International Nuclear Information System (INIS)

    Muscle tissues from the mangrove tree crab Aratus pisonii was analysed for carbon isotopic composition, in order to trace its major food sources. Potential food sources: mangrove leaves epi phytic green algae, mangrove sediments and open water and mangrove suspended matter; were also analysed. The results show that A. pisonii is basically omnivorous, with major food sources from marine origin. However, mangrove carbon can contribute with 16% to 42% in the crab's diet. (author)

  14. Lead isotopic compositions of ash sourced from Australian bushfires

    International Nuclear Information System (INIS)

    This study identifies natural and industrial lead remobilized in ash deposits from three bushfires in relatively pristine areas of Australia in 2011 using lead isotopic compositions (208Pb/207Pb; 206Pb/207Pb). Lead concentrations in the ash ranged from 1 to 36 mg/kg, bracketing the range of lead (4–23 mg/kg) in surface soils (0–2 cm), subsurface (40–50 cm) soils and rocks. The lead isotopic compositions of ash and surface soil samples were compared to subsurface soils and local bedrock samples. The data show that many of the ash and surface soil lead isotopic compositions were a mixture of natural lead and legacy industrial lead depositions (such as leaded petrol combustion). However, some of the ash samples at each of the sites had lead isotopic compositions that did not fit a simple two end-member mixing model, indicating other, unidentified sources. - Highlights: • Lead isotopic compositions of ash deposits from wildfires in Australia were measured. • Not all ash lead isotopic compositions matched those of local soil and rock. • Ash lead was sourced from a mixture of natural and industrial sources. • The major industrial source was identified as depositions from historic leaded petrol. - This study shows that industrial lead is remobilized from large old trees in ash deposits following wildfires

  15. Sulfide isotopic compositions in shergottites and ALH84001, and possible implications for life on Mars

    International Nuclear Information System (INIS)

    The shergottite and ALH84001 meteorites hold keys for understanding geologic and possibly biologic processes on Mars. Recently, it has been proposed that carbonates in ALH84001, and the Fe-sulfides they contain, are products of extraterrestrial biogenic activity. Here we report ion microprobe analyses of sulfides in shergottites and ALH84001. The sulfur isotope ratios of igneous pyrrhotites in shergottites (mean δ34SCDT: Shergotty = -0.4 per-thousand, Zagami = +2.7 per-thousand, EETA79001A = 1.9 per-thousand, EETA79001B = -1.7 per-thousand, LEW88516 = -1.9 per-thousand, QUE94201 = +0.8 per-thousand) are similar to those of terrestrial ocean-floor basalts, suggesting that the sulfur isotopic composition of the Martian mantle may be similar to that of the mantle of the Earth. The sulfur isotopic systematics of ALH84001 sulfides are distinct from the shergottites. Measured sulfur isotope ratios of eight pyrite grains (δ34SCDT = +2.0 to +7.3 per-thousand) in crushed zones confirm previously reported analyses of isotopically heavy sulfides and are indistinguishable from an Fe-sulfide zone within a carbonate globule (δ34SCDT = +6.0 per-thousand). Analyses of synthesized, fine-grained mixtures of sulfide, carbonate, and magnetite indicate than the measured sulfur isotope ratio is independent of the presence of carbonate and magnetite in the sputtered volume, confirming the accuracy of the analysis of the fine-grained sulfide in the carbonate globule. Terrestrial biogenic sulfate reduction typically results in light isotopic enrichments. The similarity of δ34S values of the sulfides in ALH84001 imply that the Fe-sulfide zones within ALH84001 carbonates are probably not the result of bacterial reduction of sulfate. 38 refs., 3 figs., 1 tab

  16. Constraints on the formation and diagenesis of phosphorites using carbonate clumped isotopes

    Science.gov (United States)

    Stolper, Daniel A.; Eiler, John M.

    2016-05-01

    The isotopic composition of apatites from sedimentary phosphorite deposits has been used previously to reconstruct ancient conditions on the surface of the Earth. However, questions remain as to whether these minerals retain their original isotopic composition or are modified during burial and lithification. To better understand how apatites in phosphorites form and are diagenetically modified, we present new isotopic measurements of δ18O values and clumped-isotope-based (Δ47) temperatures of carbonate groups in apatites from phosphorites from the past 265 million years. We compare these measurements to previously measured δ18O values of phosphate groups from the same apatites. These results indicate that the isotopic composition of many of the apatites do not record environmental conditions during formation but instead diagenetic conditions. To understand these results, we construct a model that describes the consequences of diagenetic modification of phosphorites as functions of the environmental conditions (i.e., temperature and δ18O values of the fluids) during initial precipitation and subsequent diagenesis. This model captures the basic features of the dataset and indicates that clumped-isotope-based temperatures provide additional quantitative constraints on both the formational environment of the apatites and subsequent diagenetic modification. Importantly, the combination of the model with the data indicates that the δ18O values and clumped-isotope temperatures recorded by phosphorites do not record either formation or diagenetic temperatures, but rather represent an integrated history that includes both the formation and diagenetic modification of the apatites.

  17. Isotope analysis of carbon by C2 molecule spectrum

    International Nuclear Information System (INIS)

    A study was made on inert gas mixture (He, Ne, Ar) with carbon-containing components (CO, CO2, CH4) under conditions of variation of mixture pressure in discharge tube, of carbon-containing components contents and the rate of gas flow through the discharge tube. The use of C2 molecule spectrum enabled to develope the spectroscopic techniques for determination of carbon isotope ratio. The method is universal with respect to molecular form of carbon-containing substance

  18. Organic Carbon Isotope Geochemistry of the Neoproterozoic Doushantuo Formation, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG; ZHU Maoyan; PI Daohui; WANG Jian

    2006-01-01

    The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China,documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata,exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ13Corg = -35.0%) from the uppermost Nantuo Formation are followed by an overall increase in δ13C up-section. Carbon isotope values vary between -9.9% and 3.6% for carbonate and between -35.6% and -21.5% for organic carbon, respectively. Heavier δ13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin,reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.

  19. Coordinated In Situ Nanosims Analyses of H-C-O Isotopes in ALH 84001 Carbonates

    Science.gov (United States)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2016-01-01

    The surface geology and geomorphology of Mars indicate that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. This study reports the hydrogen, carbon, and oxygen isotope compositions of the ancient atmosphere/hydrosphere of Mars based on in situ ion microprobe analyses of approximately 4 Ga-old carbonates in Allan Hills (ALH) 84001. The ALH 84001 carbonates are the most promising targets because they are thought to have formed from fluid that was closely associated with the Noachian atmosphere. While there are a number of carbon and oxygen isotope studies of the ALH 84001 carbonates, in situ hydrogen isotope analyses of these carbonates are limited and were reported more than a decade ago. Well-documented coordinated in situ analyses of carbon, oxygen and hydrogen isotopes provide an internally consistent dataset that can be used to constrain the nature of the Noachian atmosphere/hydrosphere and may eventually shed light on the hypothesis of ancient watery Mars.

  20. Whole water column distribution and carbon isotopic composition of bulk particulate organic carbon, cholesterol and brassicasterol from the Cape Basin to the northern Weddell Gyre in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A.-J. Cavagna

    2012-02-01

    Full Text Available The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC and sterols provides a powerful approach to study ecological and environmental changes both in the modern and ancient ocean, but its application has so far been restricted to the surface area. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (Feb–Mar 2008 from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature.

    We document depth distributions of concentrations (relative to bulk POC and δ13C signatures of cholesterol and brassicasterol from the Cape Basin to the northern Weddell Gyre combined with CO2 aq. surface concentration variation. While relationships between surface water CO2 aq. and δ13C of bulk POC and biomarkers have been previously established for surface waters, our data show that these remain valid in deeper waters, suggesting that δ13C signatures of certain biomarkers could be developed as proxies for surface water CO2 aq. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects Additionally, in the southern part of the transect south of the Polar Front (PF, the release of sea-ice algae is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, combined use of δ13C and concentrations measurements of both bulk organic C and specific sterol markers throughout the water

  1. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...... no Cr isotope fractionation in the oceans. These experiments represent a first step toward understanding the Cr isotope signal of carbonates where fractionations will likely be ≤ 0.3 ‰ and as such, pave the way for future work to enable a reliable application of the Cr isotope proxy. References: [1...

  2. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    This study documents variation of stable-carbon isotope ratios (13C/12C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  3. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter

    Science.gov (United States)

    von Fischer, J.C.; Tieszen, L.L.; Schimel, D.S.

    2008-01-01

    We analyzed the ??13 C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root ??13 C increased about 1??? between the A and B horizon, suggesting that C 4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  4. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  5. Source identification of Malaysian atmosphere polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Tomoaki; Takada, Hideshige [Tokyo Univ. of Agriculture and Technology (Japan). Faculty of Agriculture; Kumata, Hidetoshi [Tokyo Univ. of Pharmacy and Life Sciences (Japan); Zakaria, M.P. [Universiti Putra Malaysia, Selangor (Malaysia). Dept. of Environmental Sciences; Naraoka, Hiroshi; Ishiwatari, Ryoshi [Tokyo Metropolitan Univ., Hachioji (Japan). Graduate School of Science

    2002-07-01

    We report measurements of molecular and carbon isotopic compositions of Malaysian atmospheric polycyclic aromatic hydrocarbons (PAHs) in smoke haze from the 1997 Indonesian forest fire. Comparison of the carbon isotopic compositions ({sup {delta}}1{sup 3C}) of individual PAHs from the smoke haze, with those from other PAHs sources (soot collected from gasoline and diesel vehicle muffler, woodburning smoke), enables us to discriminate among the diverse sources of atmospheric PAHs. Soot PAHs extracted from gasoline and diesel vehicles show heavy isotopic signatures with a large inter-species {sup {delta}}1{sup 3C} variation from {sup -}12.9 per mille to {sup -}26.6 per mille, compared to soot PAHs extracted from woodburning smoke which are isotopically light, and have a small inter-species {sup {delta}}{sup 13}C variation from {sup -}26.8 per mille to -31.6 per mille. Values from -17.7 per mille to -27.9 per mille were obtained for the corresponding PAHs extracted from the smoke haze, indicating that they are derived mainly from automotive exhaust. Molecular and isotopic compositions of PAHs extracted from smoke haze were similar to those extracted from non-haze aerosol. Quantitative estimation shows that woodburning contribution to Malaysian atmospheric PAHs ranges from 25% to 35% with no relation to haze intensity, while automotive contribution ranges from 65% to 75%. These results suggest that the major contributor of PAHs in Malaysian air is automotive exhaust whether smoke haze is observed or not. (Author)

  6. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    OpenAIRE

    H. A. Abels; Lauretano, V.; A. van Yperen; T. Hopman; Zachos, J.C.; L. J. Lourens; Gingerich, P. D.; G. J. Bowen

    2015-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically-light carbon to the exogenic atmosphere–ocean carbon pool, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event, as well as to correlate marine and terrestrial records with high precision. The ...

  7. Short-term measurement of carbon isotope fractionation in plants

    International Nuclear Information System (INIS)

    Combustion-based studies of the carbon-13 content of plants give only an integrated, long-term value for the isotope fractionation associated with photosynthesis. A method is described here which permits determination of this isotope fractionation in 2 to 3 hours. To accomplish this, the plant is enclosed in a glass chamber, and the quantity and isotopic content of the CO2 remaining in the atmosphere are monitored during photosynthesis. Isotope fractionation studies by this method give results consistent with what is expected from combustion studies of C3, C4, and Crassulacean acid metabolism plants. This method will make possible a variety of new studies of environmental and species effects in carbon isotope fractionation

  8. The Palladium Isotopic Composition in Iron Meteorites

    Science.gov (United States)

    Chen, J. H.; Papanastassiou, D. A.

    2005-01-01

    Ru, Mo and Pd are very useful indicators for the identification of nucleosynthetic components. We have developed techniques for Pd isotopes, in an effort to check the extent of isotopic effects in this mass region and for a Pt-group element which is less refractory than Ru. Stable Pd isotopes are produced by the process only (102Pd), the s-process only (104Pd), the process only (Pd-110) and by both the r- and s-processes (Pd-105, Pd-106, Pd-108). Kelly and Wasserburg reported a hint of a shift in 102Pd (approx. 25(epsilon)u; 1(epsilon)u (triple bonds) 0.01%) in Santa Clara. Earlier searches for Mo and Ru isotopic anomalies were either positive or negative.

  9. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean

    Science.gov (United States)

    Prasanna, K.; Ghosh, Prosenjit; Bhattacharya, S. K.; Mohan, K.; Anilkumar, N.

    2016-02-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ18O and δ13C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ18O and δ13C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a ‘vital effect’ or a higher calcification rate. An interesting pattern of increase in the δ13C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ13C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.

  10. Evidence from carbon isotope measurements for biological origins of individual longchain n-alkanes in sediments from the Nansha Sea, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon isotopes are measured for individual long-chain n-alkanes in sediments from the Nansha Sea. The features of carbon isotopic compositions of individual n-alkanes and their origins are studied. The results show that the long-chain n-aikanes have a light carbon isotopic composition and a genetic feature of mixing sources, and low-latitude higher plants and microbes are considered to be their main end member sources. Based on the abundances and carbon isotopic compositions of individual n-alkanes, the fractional contributions of the two end member sources to individual n-aikanes are quantitatively calculated by using a mixing model. The obtained data indicate that the fractional contributions of the two biological sources are different in the three samples. A trend is that the contribution of microbes increases with the depth. These results provide the theory basis and quantitatively studied method for carbon isotopic applied research of individual n-alkanes.

  11. Variations in carbon and nitrogen stable isotopes of cryoconite

    Science.gov (United States)

    Takeuchi, N.

    2012-12-01

    Cryoconite is biogenic surface dust on snow and ice, and is commoly observed on glaciers worldwide. Because of their dark coloration, cryoconite substantially reduce surface albedo and accelerate melting of glaciers. Therefore, it is important to understand formation process of cryoconite to evaluate its effect on glacier melting. Although cryoconite consists of mineral particles and organic matter, organic fraction is more important in terms of albedo effect because it is usually darker color and accounts for major part of cryoconite in volume. The organic matter is derived from photosynthetic microbes such as cyanobacteria, and/or from windblown organic matter from ground soil around glaciers. Carbon (C) and nitrogen (N) stable isotopes of the organic matter could be useful to know their sources and to understand their cycles on glaciers. In this study, I analyzed carbon and nitrogen stable isotopes of cryoconite collected from 6 sites of different elevation from May to September on an Alaska glacier (Gulkana Glacier) to know their spatial and seasonal variations. I also analyze those collected from glaciers in Asia and Arctic to compare them among different geographical locations. Results on the Alaska glacier show that C and N stable isotopes of cryoconite organic mater significantly varied among elevations and seasons. C isotope was generally higher in lower elevation, probably due to higher photosynthetic activity in the lower elevation. In contrast, N isotope was constant on the ice area, but was lower in the snow area where the red snow algae were blooming. N isotope may be reflective of nitrogen availavility on the glacier surface. Geograpical comparison shows large variations in C and N isotopes among regions: higher C and N isotopes on Asian glaciers, lower C and N isotopes in Alaska, and lower C and higher N isotopes on Arctic glaciers. The isotope values suggest that algal production is a major carbon source on most of glaciers, but their productivity

  12. Stable carbon isotopic characterization of hydrocarbons in contaminated soils

    International Nuclear Information System (INIS)

    Effective management of risks at sites featuring refractory hydrocarbon wastes is often constrained by the limitations of conventional analytical methodologies. Stable carbon isotope analysis was therefore evaluated as an alternative means of characterizing the composition, source and weathering of hydrocarbon contaminants. Bulk δ13C of selected heavy oils (boiling range 50 to 500 C) of varying component class distribution decreased from -28.9 to -27.4 per-thousand as oil saturate class content decreased (from 70.6 to 31.7%w/w) and polar/asphaltene content increased (from 7.4 to 50.5%w/w). Class δ13C increased by up to 2.5 per-thousand as follows: saturates (ca. -29 per-thousand) 13C. Plots of oil δ13C vs. saturate and polar/asphaltene content confirmed this relationship, returning linear correlation coefficients (r2) of 0.93 and 0.99, respectively. Characteristic isotopic fingerprints of heavy oils, crude oils and acid tar wastes may also provide a valuable means of differentiating between possible source terms. Unweathered, 25%, 50% and 75% weathered reference oils were analyzed by compound specific isotope analysis (CSIA). n-Alkane (C13-C23) δ13C were often 1--2 per-thousand lower in the weathered samples (e.g., δ13C of C15 = -27.14 per-thousand (fresh), -26.86 per-thousand at 25%, -25.36 per-thousand at 50%, undetected at 75%). CSIA of established oil biomarkers, detected by GC/MS, facilitated the creation of a index for quantifying the extent of weathering undergone. Subsequent work investigating the effects of biotransformation on selected oil δ13C is underway

  13. Carbon and oxygen isotope fractionation in dense interstellar clouds

    Science.gov (United States)

    Langer, W. D.; Graedel, T. E.; Frerking, M. A.; Armentrout, P. B.

    1984-01-01

    It is pointed out that isotope fractionation as a result of chemical reactions is due to the small zero-point energy differences between reactants and products of isotopically distinct species. Only at temperatures near absolute zero does this energy difference become significant. Favorable conditions for isotope fractionation on the considered basis exist in space within dense interstellar clouds. Temperatures of approximately 10 K may occur in these clouds. Under such conditions, ion-molecule reactions have the potential to distribute isotopes of hydrogen, carbon, oxygen unequally among the interstellar molecules. The present investigation makes use of a detailed model of the time-dependent chemistry of dense interstellar clouds to study cosmological isotope fractionation. Attention is given to fractionation chemistry and the calculation of rate parameters, the isotope fractionation results, and a comparison of theoretical results with observational data.

  14. Variability (in time) of the isotopic composition of precipitation: consequences regarding the isotopic composition of hydrologic systems

    International Nuclear Information System (INIS)

    The stable isotopic signature in precipitation is primarily imposed by the synoptic history of the air masses, namely, by the vapour origin and the rainout history en route. Mixing patterns in the cloud and rain intensity affect the isotopic composition of rain to some extent. During the recharge to groundwaters, additional isotopic change may occur due to isotope fractionation which accompanies evaporative water loss from the surface or soil (mainly in arid zones), or selection of part of the rainfall by run off or transpiration. Changes in the meteorological pattern and climate express themselves 'isotopically' both due to the changing synoptic patterns and the secondary isotope fractionation and selection which accompany the rain forming and the groundwater recharge process. For the latter case, the rain intensities and the intervals between individual rain events are of major importance. (author). 23 refs, 6 figs

  15. [Carbon isotope fractionation inplants]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    O`Leary, M.H.

    1990-12-31

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  16. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as p

  17. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and paleohydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13C content of soil CO2, CaCO3 precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: decreasing 13C content with depth (due mainly to increased importance of respired CO2), decreasing 13C with altitude (partially due to relatively more C-3 vegetation), and reduced 13C during spring (due again to higher rates of respiration, and reduced gas permeability of wet soils). These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  18. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of C-13 in CO2. Using a set of reference gases of known CO2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO2 concentration, and 0.05 per thousand for δC-13 at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of C-13 on CO2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO2 concentration and 1.3 per thousand for δC-13, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source. (authors)

  19. The molybdenum isotope composition of the modern ocean

    International Nuclear Information System (INIS)

    Natural variations in the isotopic composition of molybdenum (Mo) are showing increasing potential as a tool in geochemistry. Although the ocean is an important reservoir of Mo, data on the isotopic composition of Mo in seawater are scarce. We have recently developed a new method for the precise determination of Mo isotope ratios on the basis of preconcentration using a chelating resin and measurement by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), which allows us to measure every stable Mo isotope (Nakagawa et al., 2008). In this study, 172 seawater samples obtained from 9 stations in the Pacific, Atlantic, and Southern Oceans were analyzed, giving global coverage and the first full depth-profiles. The average isotope composition in δA/95Mo (relative to a Johnson Matthey Mo standard solution) was as follows: δ92/95Mo=-2.54 ±0.16 per mille (2SD), δ94/95Mo=-0.73±0.19 per mille, δ96/95Mo=0.85±0.07 per mille, δ97/95Mo=1.68±0.08 per mille, δ98/95Mo=2.48±0.10 per mille, and δ100/95Mo=4.07±0.18 per mille. The δ values showed an excellent linear correlation with atomic mass of AMo (R2=0.999). Three-isotope plots for the Mo isotopes were fitted with straight lines whose slopes agreed with theoretical values for mass-dependent isotope fractionation. These results demonstrate that Mo isotopes are both uniformly distributed and follow a mass-dependent fractionation law in the modern oxic ocean. In addition, Mo isotopic analysis revealed that δ98/95Mo of the standard used in this study was 0.117±0.009 per mille lighter than the Mo standard that was used by Archer and Vance (2008). A common Mo standard is urgently required for the precise comparison of Mo isotopic compositions measured in different laboratories. On the other hand, our results strongly support the possibility of seawater as an international reference material for Mo isotopic composition. (author)

  20. Organic Carbon Isotopic Evolution during the Ediacaran-Cambrian Transition Interval in Eastern Guizhou, South China: Paleoenvironmental and Stratigraphic Implications

    Institute of Scientific and Technical Information of China (English)

    YANG Xinglian; ZHU Maoyan; GUO Qingjun; ZHAO Yuanlong

    2007-01-01

    Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Guizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow shelf to deep basin of the Yangtze Platform.

  1. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  2. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    International Nuclear Information System (INIS)

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ13CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ13CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in

  3. Holocene precipitation in the subtropical Pacific inferred from the carbon isotope composition of Melaleuca quinquenervia (The Broad-leaved Paper Bark tree) leaves

    Science.gov (United States)

    Tibby, John; Barr, Cameron; Henderson, Andrew; Leng, Melanie; Marshall, Jon; McGregor, Glenn

    2013-04-01

    Holocene records of the amounts of subtropical precipitation are rare, particularly in the Southern Hemisphere. Yet such information is vital for a comprehensive understanding of global climate system dynamics. We present a precipitation record inferred from the δ13C composition of Melaleuca quinquenervia leaves retrieved from the Holocene sediments of Swallow Lagoon, North Stradbroke Island, in the subtropics of Australia. The modern relationship between rainfall and δ13C was quantified using a collection of monthly leaf falls between 1992 and 2003 and climate data. We then used the calibration to reconstruct precipitation variability from 7500 to 600 cal. yr BP. Dry phases at Swallow Lagoon in the early to mid Holocene are correlated with cooling in the North Atlantic Ocean (i.e. "Bond" events). This relationship breaks down after ~3500 cal. yr BP. From 3500 cal. yr BP there is increased aridity (and variability) associated with the mid- to late Holocene establishment of modern El Niño Southern Oscillation conditions. Overall, these data show linkages between precipitation in the low latitudes of the Southern Hemisphere and Northern Hemisphere cooling events, with a shift to internal forcing of subtropical climate via the Pacific Ocean in the late Holocene.

  4. Correlation between the carbon isotope composition (δ13 C) of puccinellia ciliata and balansa clover in duel stresses of water logging and salinity (Nacl)

    International Nuclear Information System (INIS)

    Theoretically, plants growing under stress conditions, such as in saline or waterlogged conditions, should behave with 13C02 discrimination and have different δ13C values. Therefore, this experiment was conducted to evaluate the effect of factors such as salinity and hypoxia in affecting delta values of Puccinellia ciliata and Balansa clover (Trifolium michelianum Savi. Var balansae boiss). This study reveals that these two species (C3 plants) behave differently and B. clover has more positive δ13C values (7.6%) compared to P. ciliata. The overall average of δI3C were -28.85 and -26.66 0/00, respectively, for P. ciliata and B. clover. The δI3C values for the shoots and roots of the two species also have different values (more positive values in roots compared to shoots). Water logging and salinity have a significant affect on 13C02 discrimination and, statistically, these effects on δ13C values are significant (ρ I3C would be changed (less discrimination for hypoxia and more for salinity conditions). The combined effects on species and plant parts of water logging and salinity are not statistically insignificant on δ13C values, however, each factor separately has a significant effect on δ13C values. P. ciliata was grown in different seasons (summer and winter) and showed significant differences in δ13C values (by almost 4%). The carbon content (%) of the two species was different, but, were not related to δ13C, respectively

  5. Method for the determination of concentration and stable carbon isotope ratios of atmospheric phenols

    Directory of Open Access Journals (Sweden)

    M. Saccon

    2013-05-01

    Full Text Available A method for the determination of the stable carbon isotopic composition of atmospheric nitrophenols in the gas and particulate phases is presented. It has been proposed to use the combination of concentration and isotope ratio measurements of precursor and product to test the applicability of results of laboratory studies to the atmosphere. Nitrophenols are suspected to be secondary products formed specifically from the photooxidation of volatile organic compounds. XAD-4™ resin was used as an adsorbent on quartz filters to sample ambient phenols using conventional high-volume air samplers at York University in Toronto, Canada. Filters were extracted in acetonitrile, with a HPLC clean-up step and a solid phase extraction step prior to derivatization with BSTFA. Concentration measurements were done with gas chromatography-mass spectrometry and gas chromatography-isotope ratio mass spectrometry was used for isotope ratio analysis. The technique presented allows for atmospheric compound-specific isotopic composition measurements for five semi-volatile phenols with an estimated accuracy of 0.3‰ to 0.5‰ at atmospheric concentrations exceeding 0.1 ng m−3 while the detection limits for concentration measurements are in the pg m−3 range. Isotopic fractionation throughout the entire extraction procedure and analysis was proven to be below the precision of the isotope ratio measurements. The method was tested by conducting ambient measurements from September to December 2011.

  6. Monitoring carbon dioxide injection and storage in aquifers and depleted oilfields using carbon and sulfur isotope techniques

    International Nuclear Information System (INIS)

    Fluid and gas monitoring can be used to confirm the security and integrity of geological CO2 storage. The distinct carbon isotopic composition of CO2 from many industrial sources that process or combust hydrocarbons allows the use of isotopic and chemical analyses of produced fluids and gases to trace the injected CO2 and quantify CO2 storage processes in the subsurface. Our four year monitoring programme at the International Energy Agency Weyburn CO2 Monitoring and Storage Project in Saskatchewan, Canada, featured frequent chemical and isotopic measurements of produced fluids and gases from around forty wells. Over the four year period, over four million tonnes of CO2 were injected for storage and enhanced hydrocarbon recovery in the Weyburn oilfield. CO2 concentration and carbon isotopic measurements of produced fluids and gases trace CO2, and confirm that the order of magnitude increase in the amount of CO2 in the subsurface resulted from CO2 injection. The amount of CO2 stored as HCO3- can be quantified using HCO3- concentration and carbon isotopic measurements, while concentration and isotope data for SO42- and H2S indicate that bacterial sulfate reduction was not a major source of HCO3- . To allow widespread application of geological CO2 storage, reliable, cost effective monitoring of storage integrity will be essential. The produced fluid and gas monitoring techniques described here are based on chemical and isotopic techniques that are already widely employed and well understood by environmental isotope hydrologists, and have the potential to play an essential role in future geological CO2 storage monitoring programmes. (author)

  7. Monitoring carbon dioxide injection and storage in aquifers and depleted oilfields using carbon and sulfur isotope techniques

    International Nuclear Information System (INIS)

    Fluid and gas monitoring can be used to confirm the security and integrity of geological CO2 storage. The distinct carbon isotopic composition of CO2 from many industrial sources that process or combust hydrocarbons allows the use of isotopic and chemical analyses of produced fluids and gases to trace the injected CO2 and quantify CO2 storage processes in the subsurface. Our four year monitoring programme at the International Energy Agency Weyburn CO2 Monitoring and Storage Project in Saskatchewan, Canada, featured frequent chemical and isotopic measurements of produced fluids and gases from around forty wells. Over the four year period, over four million tonnes of CO2 were injected for storage and enhanced hydrocarbon recovery in the Weyburn Oilfield. CO2 concentration and carbon isotopic measurements of produced fluids and gases trace CO2, and confirm that the order of magnitude increase in the amount of CO2 in the subsurface resulted from CO2 injection. The amount of CO2 stored as HCO3- can be quantified using HCO3- concentration and carbon isotopic measurements, while concentration and isotope data for SO42- and H2S indicate that bacterial sulfate reduction was not a major source of HCO3-. To allow widespread application of geological CO2 storage, reliable, cost effective monitoring of storage integrity will be essential. The produced fluid and gas monitoring techniques described here are based on chemical and isotopic techniques that are already widely employed and well understood by environmental isotope hydrologists, and have the potential to play an essential role in future geological CO2 storage monitoring programmes. (author)

  8. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    OpenAIRE

    Mehran Tehrani; Ayoub Yari Boroujeni; Claudia Luhrs; Jonathan Phillips; Al-Haik, Marwan S.

    2014-01-01

    Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers emplo...

  9. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-11-01

    Full Text Available Here we explore the potential of magnesium (δ26Mg isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰, and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰ but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰ suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰ are affected by glacial versus interglacial climate change with outside air temperature

  10. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-05-01

    Full Text Available Here we explore the potential of time-series magnesium (δ26Mg isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07 ‰ and HK3: −4.17 ± 0.15 ‰ and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: −3.96 ± 0.04 ‰ but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07 ‰; BU 4 mean δ26Mg: −4.20 ± 0.10 ‰ record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73 ‰; SPA 59: −3.70 ± 0.43 ‰ are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity

  11. Certification of the uranium hexafluoride reference materials for isotopic composition

    OpenAIRE

    MIALLE SÉBASTIEN; Richter, Stephan; HENNESSY Carmel; TRUYENS Jan; Jakobsson, Ulf; Aregbe, Yetunde

    2014-01-01

    The IRMM-019 to IRMM-029 series of uranium hexafluoride materials is certified for the isotopic composition. After conversion into uranyl nitrate solution, certification and homogeneity measurements were performed by Thermal Ionization Mass Spectrometry. Analyses were performed by Modified Total Evaporation and for some materials the major isotope amount ratio n(235U)/n(238U) was measured using a n(233U)/n(236U) double spike. Measurements were confirmed by UF6 Gas Source Mass Spectrometry. Ma...

  12. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Monson, K.D.; Hayes, J.M. (Indiana Univ., Bloomington (USA). Dept. of Chemistry; Indiana Univ., Bloomington (USA). Dept. of Geology)

    1982-02-01

    Methods for the determination of /sup 13/C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO/sub 2/ quantitatively from the carboxyl groups of the separated cleavage products; and (4) the CO/sub 2/ is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3 parts per thousand in /sup 13/C relative to the glucose. This fractionation arises in the formation of acetyl-coenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in /sup 13/C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%.

  13. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    International Nuclear Information System (INIS)

    Methods for the determination of 13C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO2 quantitatively from the carboxyl groups of the separated cleavage products; and (4) the CO2 is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3 parts per thousand in 13C relative to the glucose. This fractionation arises in the formation of acetyl-coenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in 13C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%. (author)

  14. Method for fabricating composite carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  15. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  16. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  17. Plutonium isotopic composition by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    We discuss the general approach, computerized data analysis methods, and results of measurements to determine the isotopic composition of plutonium by gamma-ray spectroscopy. The simple techniques are designed to be applicable to samples of arbitrary size, geometry, chemical and isotopic composition that have attained 241Pu-237U equilibrium. The combination of the gamma spectroscopic measurement of isotopic composition coupled with calorimetric measurement of total sample power is shown to give a totally nondestructive determination of sample Pu mass with a precision of 0.6% for 1000-g samples of PuO2 with 12% 240Pu content. The precision of isotopic measurements depends upon many factors including sample size, sample geometry, and isotopic content. Typical ranges are found to be 238Pu, 239Pu, 0.1 to 0.5%; 240Pu, 2 to 5%; 241Pu, 0.3 to 0.7%; 242Pu (determined by isotopic correlation); and 241Am, 0.2 to 10%

  18. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    Science.gov (United States)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected

  19. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  20. Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces

    Directory of Open Access Journals (Sweden)

    D. Codron

    2005-06-01

    Full Text Available In African savannas, browse-based resources (@3 plants are isotopically distinct from grasses (@4 plants. The carbon isotopic composition of the basic plant diet is recorded in animal tissues. Mammal faeces are a readily accessible, non-invasive, sample material for temporally resolved dietary reconstructions. Faeces, however, include both undigested plant matter and waste, hence accuracy of dietary calculations could potentially be compromised by shifts in plant isotopic values related to seasonal or spatial differences, or by variability in the isotopic differences between faeces and diet. A controlled feeding study of four ungulate species showed a small, consistent difference between diet and faeces of-0.9 o, irrespective of whether the diet was @3 or C4-based. Results from faeces oftaxa known to be pure grazers, pure browsers, and mixed-feeders from the Kruger National Park were entirely consistent with their diets, but the accuracy of dietary reconstructions is enhanced with data from local plant communities.

  1. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    Science.gov (United States)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  2. ­­A Clumped Isotope Calibration for Terrestrial Microbial Carbonates

    Science.gov (United States)

    Petryshyn, V. A.; Mering, J. A.; Mitsunaga, B. A.; Eagle, R.; Dunbar, R. B.; Bhattacharya, A.; Tripati, A.

    2014-12-01

    Accurate terrestrial paleotemperature records are key pieces of information in the paleoenvironmental reconstruction of Earth history. These records aid in building reliable climate models and help scientists understand the links between continental and oceanic climate data. Many different types of analyses are used to estimate terrestrial climate shifts, including leaf margin analysis, palynology, glacial deposits, elemental ratios, organic geochemistry, and stable isotopes of lacustrine deposits. Here we report a carbonate clumped isotope calibration for microbial carbonates. Application of the clumped isotope paleothermometer can potentially provide a direct temperature measurement of the water at the time of carbonate formation. Although different calibrations of the paleothermometer have been published for both inorganic and biotic carbonate minerals, the effects of clumping in microbialites (structures built under the influence of microbial activity) have not yet been quantified. Lacustrine microbialites present a potentially large, untapped archive of terrestrial climate data, however they are not strictly biotic or abiotic, but bio-induced carbonate, meaning that organisms (such as photosynthetic bacteria) influence but do not directly control precipitation. We have measured modern microbialites from multiple lacustrine sites and will report a comparison of these results to known water temperatures. Additionally we will compare lacustrine samples to marine microbialites (e.g., samples from Shark Bay) to assess potential differences between lacustrine and marine intertidal environments on clumped isotope compositions.

  3. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    Science.gov (United States)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  4. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    Science.gov (United States)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  5. Vertical Stratification Changes During the Last Deglaciation Based on Foraminiferal Neodymium and Carbon Isotopes

    Science.gov (United States)

    Piotrowski, A. M.; Noble, T. L.; Roberts, N. L.; Yu, J.

    2011-12-01

    Reorganizations of the vertical structure of the ocean are believed to have occurred during major climate transitions. Some studies utilizing nutrient tracers have suggested that North Atlantic intermediate and deep ocean circulation changed together during the last deglaciation, in a manner consistent with reorganizations of the global thermohaline circulation (Rickaby and Elderfield, 2005). A strong vertical gradient in carbon isotopes, or chemocline, existed at ~2.5 km-bsl the glacial South Atlantic sector of the Southern Ocean, which may have been due to different intermediate and deep water sourcing (Hodell et al., 2003). We present new Nd isotope records from globally-distributed intermediate sites in the North Atlantic, South Atlantic, and Pacific Ocean, comparing them to Nd isotope records from proximal deep sites to examine whether there is a global coherency to changes in intermediate and deep water mass sourcing. Comparison of Nd isotopes from vertical transects in the ocean also allows us to address an important geochemical debate about REE cycling in the ocean; whether long-distance horizontal advection or local boundary exchange from sediments plays a more important role in labelling the Nd isotopic composition of seawater. Down-slope vertical transport of sediments from the continental shelf to the deep ocean should mean that under conditions where boundary exchange is dominant, intermediate and deep waters will be labelled with similar Nd isotopic compositions and it will also cause them to covary together through time. We show that the Nd isotopic composition of intermediate depth cores in the South Atlantic and Pacific sectors of the Southern Ocean record small changes of ~1 epsilon unit or less during the deglaciation. As is the case with C isotopes, a stronger vertical Nd isotope gradient existed in the South Atlantic during the last glacial. Nd and C isotopes changed together at intermediate-depth ODP Site 1088 in the South Atlantic in a manner

  6. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    Science.gov (United States)

    de Kluijver, A.; Schoon, P. L.; Downing, J. A.; Schouten, S.; Middelburg, J. J.

    2014-11-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFAs were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed overall higher isotopic variability in eutrophic lakes (n = 11) compared to oligo-mesotrophic lakes (n = 11) because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8-25‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.

  7. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein.

    Science.gov (United States)

    McMahon, Kelton W; Fogel, Marilyn L; Elsdon, Travis S; Thorrold, Simon R

    2010-09-01

    1. Analysis of stable carbon isotopes is a valuable tool for studies of diet, habitat use and migration. However, significant variability in the degree of trophic fractionation (Delta(13)C(C-D)) between consumer (C) and diet (D) has highlighted our lack of understanding of the biochemical and physiological underpinnings of stable isotope ratios in tissues. 2. An opportunity now exists to increase the specificity of dietary studies by analyzing the delta(13)C values of amino acids (AAs). Common mummichogs (Fundulus heteroclitus, Linnaeus 1766) were reared on four isotopically distinct diets to examine individual AA Delta(13)C(C-D) variability in fish muscle. 3. Modest bulk tissue Delta(13)C(C-D) values reflected relatively large trophic fractionation for many non-essential AAs and little to no fractionation for all essential AAs. 4. Essential AA delta(13)C values were not significantly different between diet and consumer (Delta(13)C(C-D) = 0.0 +/- 0.4 per thousand), making them ideal tracers of carbon sources at the base of the food web. Stable isotope analysis of muscle essential AAs provides a promising tool for dietary reconstruction and identifying baseline delta(13)C values to track animal movement through isotopically distinct food webs. 5. Non-essential AA Delta(13)C(C-D) values showed evidence of both de novo biosynthesis and direct isotopic routing from dietary protein. We attributed patterns in Delta(13)C(C-D) to variability in protein content and AA composition of the diet as well as differential utilization of dietary constituents contributing to the bulk carbon pool. This variability illustrates the complicated nature of metabolism and suggests caution must be taken with the assumptions used to interpret bulk stable isotope data in dietary studies. 6. Our study is the first to investigate the expression of AA Delta(13)C(C-D) values for a marine vertebrate and should provide for significant refinements in studies of diet, habitat use and migration using

  8. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  9. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  10. Calibration of the carbonate `clumped isotope' paleotemperature proxy using mollusc shells and benthic foraminiferal tests

    Science.gov (United States)

    Came, R. E.; Curry, W. B.; Weidman, C. R.; Eiler, J. M.

    2007-12-01

    It has recently been shown that the carbonate `clumped isotope' thermometer can provide temperature constraints that depend only on the isotopic composition of carbonate (in particular, on the proportion of 13C and 18O that form bonds with each other), and that do not require assumptions about the isotopic composition of the water in which the carbonate formed (Ghosh et al., 2006). Furthermore, this novel method permits the calculation of seawater δ18O based on the clumped isotope temperature estimates and the simultaneously obtained δ18O of carbonate, thereby enabling the extraction of global ice volume estimates for both the recent and distant geologic past. Here we present clumped isotope analyses of several naturally occurring marine carbonates that calcified at known temperatures in the modern ocean. First, we analyzed benthic foraminiferal tests from six high-quality multicore tops collected in the Florida Strait, spanning a temperature range of 9.3-20.2 degrees C. Second, we analyzed shallow-water mollusc shells from a variety of different climate regimes, spanning a temperature range of 2.5-26.0 degrees C. We find that the calcitic foraminiferal species Cibicidoides spp. agrees well with the inorganic calcite precipitation experiments of Ghosh et al. (2006), while the aragonitic species Hoeglundina elegans is significantly offset. Similarly, clumped isotope results obtained from aragonitic mollusc shells also reveal an offset from the Ghosh et al. (2006) trend, although the offset observed in mollusc aragonite is quite different in nature from that observed in foraminiferal aragonite. Assuming our estimates of the growth temperatures of these naturally occurring organisms are correct, these results suggest that there are vital effects associated with the stable isotope compositions of the aragonite-precipitating organisms examined in this study; further work will be required to determine their cause. Nevertheless, the internal coherence of trends for

  11. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    Science.gov (United States)

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  12. Isotopic evolution of the terminal Neoproterozoic and early Cambrian carbon cycle on the northern Yangtze Platform, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG

    2003-01-01

    Profound geotectonic, climatic and biological changes occur during the terminal Neoproterozoic and its transition into the early Cambrian. These are reflected in temporal variations of the chemical and isotopic composition of seawater. We are studying a sequence of sedimentary rocks at the Shatan section, northern Yangtze Platform, Sichuan Province of China. This succession comprises, in ascending stratigraphic order, predominantly calcareous sediments of the Sinian upper Dengying Formation and black shales of the lower Cambrian Guojiaba Formation (time equivalent of Niutitang Fm.). Paleoenvironmental setting represents shallow-water shelf deposits. The objective of our study is to provide temporal records for the isotopic compositions of organic and carbonate carbon throughout this time interval. Organic carbon isotope values display a range between -35.8‰ and -30.1‰ with clear stratigraphic variations. Carbonate carbon isotope data vary between -3.5‰ and +0.5‰. These secular variations are interpreted to reflect perturbations of the global carbon cycle, specifically changes in the fractional burial of organic carbon. However, local conditions have further affected the isotopic signals.

  13. Tracing the decomposition of dissolved organic carbon in artificial recharge by carbon isotope ratios

    International Nuclear Information System (INIS)

    One of the challenges in artificial recharge for drinking water purposes is to decrease the relatively high content of dissolved organic carbon (DOC) in surface waters. Two processes have been suggested to have an effect on diminishing the concentrations of DOC in infiltrated water during artificial recharge: 1) Either organic matter is adsorbed on the surfaces of soil particles, or 2) DOC is oxidized and decomposed by bacterially mediated processes. Geochemical concentration and microbiological activity data have, however, proved to be insufficient for getting quantitative evidence for comparison of these models. We applied the isotopic composition of dissolved inorganic carbon (DIC) in the recharged water as a tracer for redox processes and decomposition of DOC. The study site is an artificial groundwater plant at Janiksenlinna in southern Finland. Surface water is artificially recharged into an unconfined shallow aquifer by pond infiltration. Infiltrated surface water is derived from Lake Paijanne, a large lake in middle Finland. Water samples were collected from infiltrated surface water and groundwater at varying distances from the infiltration plant. The samples were analysed for the contents of the major dissolved components, DOC and the isotopic composition of carbon in DIC. In addition, the 18O/16O and D/H ratios of water were determined in order to calculate mixing ratios between local groundwater and infiltrated surface water. The δ18O and δD end member compositions for mixing calculations were based on a monitoring period of two years. The δ13CDIC value in recharge waters was -10.4 per mille, which differed significantly from the composition of local groundwaters, with δ13CDIC at -20.8 per mille. The recharged water recorded a considerable decrease in δ13CDIC from -10.4 per mille in the pond to -16.3 per mille in the first observation well, at a distance of 30 metres. No admixture of local groundwater was observed in this well based on oxygen and

  14. Tracing the decomposition of dissolved organic carbon in artificial recharge by carbon isotope ratios

    International Nuclear Information System (INIS)

    One of the challenges in artificial recharge for drinking water purposes is to decrease the relatively high content of dissolved organic carbon (DOC) in surface waters. Two processes have been suggested to have an effect on diminishing the concentrations of DOC in infiltrated water during artificial recharge: 1) Either organic matter is adsorbed on the surfaces of soil particles, or 2) DOC is oxidized and decomposed by bacterially mediated processes. Geochemical concentration and microbiological activity data have, however, proved to be insufficient for getting quantitative evidence for comparison of these models. We applied the isotopic composition of dissolved inorganic carbon (DIC) in the recharged water as a tracer for redox processes and decomposition of DOC. The study site is an artificial groundwater plant at Janiksenlinna in southern Finland. Surface water is artificially recharged into an unconfined shallow aquifer by pond infiltration. Infiltrated surface water is derived from Lake Paijanne, a large lake in middle Finland. Water samples were collected from infiltrated surface water and groundwater at varying distances from the infiltration plant. The samples were analysed for the contents of the major dissolved components, DOC and the isotopic composition of carbon in DIC. In addition, the δ18O/16O and D/H ratios of water were determined in order to calculate mixing ratios between local groundwater and infiltrated surface water. The 18O and δD end member compositions for mixing calculations were based on a monitoring period of two years. The δ13CDIC value in recharge waters was -10.4 per mille, which differed significantly from the composition of local groundwaters, with δ13CDIC at -20.8 per mille. The recharged water recorded a considerable decrease in δ13CDIC from -10.4 per mille in the pond to -16.3 per mille in the first observation well, at a distance of 30 metres. No admixture of local groundwater was observed in this well based on oxygen and

  15. Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest. Final Report and Conference Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Maureen H

    2008-04-10

    Carbon dioxide is the major “greenhouse” gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

  16. Aptian Carbon Isotope Stratigraphy in Sierra del Rosario, Northeastern Mexico

    Science.gov (United States)

    Barragan-Manzo, R.; Moreno-Bedmar, J.; Nuñez, F.; Company, M.

    2013-05-01

    In most recent years Aptian carbon isotope stratigraphy has been widely studied in Europe where isotopic stages have been developed to correlate global events. Two negative excursions have been recorded in the Lower Aptian, the older is OAE 1a in the middle part, and a younger negative excursion labeled "Aparein level", which occurs in the uppermost part of the Lower Aptian. In Mexico previous works reported a carbon isotope negative excursion in the lowermost part of the La Peña Formation that was assigned to the onset of Oceanic Anoxic Event 1a (=OAE 1a). In this work we study the isotopic record of the δ13Ccarb of 32 bulk rock samples of limestone from the uppermost part of the Cupido Formation and the lower part of the La Peña Formation at the Francisco Zarco Dam Section (=FZD), Durango State, northeastern Mexico. The isotopic data are calibrated using the latest ammonite biostratigraphic biozonation of the Aptian. This age calibration allows us to make a precise correlation between the carbon isotopic record of Mexico and several European sections (e.g. Spain and France). In the studied Francisco Zarco Dam section we recognize a negative carbon isotopic excursion in the Dufrenoyia justinae ammonite Zone that corresponds to the "Aparein level", which we correlate using the ammonite zonation of others European sections (Figure 1). This correlation allows us to see how the negative excursion that characterizes the "Aparein level" is consistent with the C7 segment. Thus, our recent stratigraphic study allows us to conclude that the ammonite record in the lowermost part of the La Peña Formation is regionally isochronous, and correlates with the Dufrenoyia justinae Zone and Lower Aptian isotope interval C7. In agreement to these biostratigraphic data, the supposed record of the OAE 1a in the lowermost part of the La Peña Formation is not correct, and the carbon isotope negative excursion must be assigned to the younger event "Aparein level". Taking this into

  17. Isotopic composition of carbon in vinegars

    International Nuclear Information System (INIS)

    Measurements of delta 13C and 14C-activity were performed on vinegars from various known sources. Natural vinegar can be distinguished from petrochemical acetic acid by 14C-analysis: Natural vinegar currently gives values of greater than 112% of modern activity; petrochemical acetic acid yields values of 0% of modern activity. Apple cider vinegar can be distinguished from corn-derived vinegar by delta 13C-analysis: Cider vinegar gives delta 13C-values near -26%; corn-derived vinegars yield delta 13C-values near -10%. These techniques are applied to a series of retail vinegars

  18. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    Science.gov (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  19. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  20. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  1. Certification of uranium hexafluoride reference materials for isotopic composition

    International Nuclear Information System (INIS)

    The IRMM-019 to IRMM-029 series of uranium hexafluoride materials is certified for the isotopic composition. After conversion into uranyl nitrate solution, certification and homogeneity measurements were performed by thermal ionization mass spectrometry. Analyses were performed by Modified Total Evaporation and for some materials the major isotope amount ratio n(235U)/n(238U) was measured using a n(233U)/n(236U) double spike. Measurements were confirmed by UF6 gas source mass spectrometry. Major isotope amount ratios were certified with relative expanded uncertainties (k = 2) of 0.015-0.030 % and the minor isotope amount ratios n(234U)/n(238U) and n(236U)/n(238U) were certified with relative expanded uncertainties of 0.02-3 %. (author)

  2. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  3. Transition of the Isotopic Composition of Leaf Water to the Isotopic Steady State in Soybean and Corn

    Science.gov (United States)

    Kim, K.; Lee, X.; Welp, L. R.

    2007-12-01

    The isotope composition of leaf water (δL) plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. The objective of this study is to improve our understanding of environmental and biological controls on the transition of δL to steady state through laboratory experiments. Plants (soybean, Glycine max; corn, Zea mays) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. In the first set of experiments, humidity inside the container was saturated to mimic dew events in field conditions. In the second set, humidity was controlled at approximately 95%. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of δL in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of δL differ between the C3 and C4 photosynthesis pathways.

  4. Stable carbon isotopes of invertebrate remains: do they reveal past methane release from lakes?

    OpenAIRE

    van Hardenbroek-van Ammerstol, M. R.

    2010-01-01

    Lakes are a source of methane, an important greenhouse gas in the atmosphere. In order to understand increasing methane emissions in the present, it is important to study the variations of methane release during past periods of climate change. However, records of methane release from lakes over time scales longer than a few years are extremely rare. In this thesis a method is explored to reconstruct past methane availability in lakes based on the stable carbon isotope composition (delta 13C) ...