WorldWideScience

Sample records for carbon isotope ratio

  1. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  2. Carbon and Oxygen Isotope Ratios in Rona Limestone, Romania

    Directory of Open Access Journals (Sweden)

    Stela Cuna

    2001-04-01

    Full Text Available The carbon and oxygen isotopic compositions of limestones provide criteria for the evaluation of the depositional environment. For Jurassic and younger samples, the best discrimination between marine and fresh-water limestones is given by Z parameter, calculated as a linear correlation between δ13C and δ18O (‰ PDB. Rona Limestone (Upper Paleocene - Lower Eocene, outcropping on a small area in NW Transylvania (Meseş area is a local lacustrine facies. There, it divides Jibou Formation into the Lower Red Member and the Upper Variegated Member, respectively. Recently, a sequence containing a marine nannoplankton assemblage was identified in the base of Rona deposits. The main goal of our study was to characterize, based on the isotopic record, the primary environment of formation of the deposit, as well as that in which some diagenetic processes (the formation of dolomite and of green clay around the siliceous chert nodules took place. Ten samples representing limestones, dolomitic limestone, marls and the green carbonate-rich clay were studied from petrographical and mineralogical points of view, and the carbon and oxygen isotopic ratios from the carbonate (calcite component were measured. In conclusion, it was found that the procedure of extraction of CO2 we used enabled the discrimination between the isotopic prints of calcite vs. dolomite. This pleads for considering our results as a primary isotopic pattern in the bulk rock. The oxygen and carbon isotope data indicate a fresh-water depositional environment with Z<120. The δ13C mean value (-4.96 ‰ PDB is, generally, representative for fresh-water carbonates of the Tertiary period. The same environment characterized also the formation of carbonates within the green clay.

  3. Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing.

    Science.gov (United States)

    Piper, Thomas; Emery, Caroline; Thomas, Andreas; Saugy, Martial; Thevis, Mario

    2013-06-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical

  4. A supercritical oxidation system for the determination of carbon isotope ratios in marine dissolved organic carbon

    NARCIS (Netherlands)

    Le Clercq, Martijn; Van der Plicht, Johannes; Meijer, Harro A.J.

    1998-01-01

    An analytical oxidation system employing supercritical oxidation has been developed. It is designed to measure concentration and the natural carbon isotope ratios (C-13, C-14) Of dissolved organic carbon (DOC) and is especially suited for marine samples. The oxidation takes place in a ceramic tube a

  5. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    Science.gov (United States)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration-rotation first and second-overtone CO lines in 1.5-2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2-2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected for

  6. BOREAS TE-5 Tree Ring and Carbon Isotope Ratio Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data include tree ring widths and cellulose carbon isotope data from coniferous trees collected at the BOREAS NSA and SSA in 1993 and 1994 by the BOREAS TE-5 team. Ring width data are provided for both Picea mariana and Pinus banksiana. The carbon isotope data are provided only for Pinus banksiana. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Effects of carbonate leaching on foraminifer stable isotopes ratios

    Science.gov (United States)

    Obrochta, S.; Yokoyama, Y.; Sakai, S.; Ishimura, T.

    2011-12-01

    Stable carbon and oxygen isotope ratios were measured on 125 individual epifaunal and infaunal benthic foraminifers from two discrete Holocene intervals in a shallow-water sediment core (~ 450 m) from the Timor Sea. Methane seeps are common in the area, resulting in significant precipitation of secondary calcite that is confirmed by SEM photomicrographs and has likely resulted in inconsistent downcore results. To assess the degree of removal of contaminants, individual Uvigerina peregrina were subjected to varying degrees of pretreatment prior to analysis. All foraminifers received standard cleaning with ethanol and brief sonication. A subset were further cleaned and sonicated in a dilute HCl solution (~ 0.003 M). Foraminifer tests were photographed using both reflected light and scanning electron microscopes during the course of treatment to monitor the changing degree of contaminant removal as increasingly aggressive cleaning methods were employed. Visible contamination remained on individuals not subjected to HCl treatment. The leached individuals exhibit a lower overall relative standard deviation and consistent results within morphotype groups. Based on these results, a 2% value is expected to be typical of the Holocene, though further downcore analyses are pending restoration of equipment adversely effected by the Eastern Japan 3/11 earthquake.

  8. Investigating controls on boron isotope ratios in shallow marine carbonates

    Science.gov (United States)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives

  9. Carbon and oxygen isotopic ratios for nearby miras

    CERN Document Server

    Hinkle, K H; Straniero, O

    2016-01-01

    C and O isotopic ratios are reported for a sample of 46 Mira and SRa-type variable AGB stars. Vibration-rotation 1st and 2nd overtone CO lines in 1.5 to 2.5 $\\mu$m spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of the M stars had main sequence masses < 2 Msun and have not experienced sizable third dredge-up episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the 6 C stars in the sample three have clear evidence relating their origin to the occurrence of the third dredge-up. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars...

  10. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NARCIS (Netherlands)

    Pathirana, S. L.; Van Der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique.

  11. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    Science.gov (United States)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  12. A Test of Carbon and Oxygen Stable Isotope Ratio Process Models in Tree Rings.

    Science.gov (United States)

    Roden, J. S.; Farquhar, G. D.

    2008-12-01

    Stable isotopes ratios of carbon and oxygen in tree ring cellulose have been used to infer environmental change. Process-based models have been developed to clarify the potential of historic tree ring records for meaningful paleoclimatic reconstructions. However, isotopic variation can be influenced by multiple environmental factors making simplistic interpretations problematic. Recently, the dual isotope approach, where the variation in one stable isotope ratio (e.g. oxygen) is used to constrain the interpretation of variation in another (e.g. carbon), has been shown to have the potential to de-convolute isotopic analysis. However, this approach requires further testing to determine its applicability for paleo-reconstructions using tree-ring time series. We present a study where the information needed to parameterize mechanistic models for both carbon and oxygen stable isotope ratios were collected in controlled environment chambers for two species (Pinus radiata and Eucalyptus globulus). The seedlings were exposed to treatments designed to modify leaf temperature, transpiration rates, stomatal conductance and photosynthetic capacity. Both species were grown for over 100 days under two humidity regimes that differed by 20%. Stomatal conductance was significantly different between species and for seedlings under drought conditions but not between other treatments or humidity regimes. The treatments produced large differences in transpiration rate and photosynthesis. Treatments that effected photosynthetic rates but not stomatal conductance influenced carbon isotope discrimination more than those that influenced primarily conductance. The various treatments produced a range in oxygen isotope ratios of 7 ‰. Process models predicted greater oxygen isotope enrichment in tree ring cellulose than observed. The oxygen isotope ratios of bulk leaf water were reasonably well predicted by current steady-state models. However, the fractional difference between models that

  13. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    Science.gov (United States)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  14. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tagami, Keiko [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)], E-mail: k_tagami@nirs.go.jp; Uchida, Shigeo [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2008-05-05

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of {delta}{sup 13}C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH{sub 2}PO{sub 4} at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR{sup TM} column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH{sub 2}PO{sub 4} aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical.

  15. Stable Carbon Isotope Ratios of Phenolic Compounds in Secondary Particulate Organic Matter Formed by Photooxidation of Toluene

    CERN Document Server

    Irei, Satoshi; Huang, Lin; Auld, Janeen; Collin, Fabrice; Hastie, Donald

    2014-01-01

    Compound-specific stable carbon isotope ratios for phenolic compounds in secondary particulate organic matter (POM) formed by photooxidation of toluene were studied. Secondary POM generated by photooxidation of toluene using a continuous-flow reactor and an 8 cubic meter indoor smog chamber was collected, and then extracted with acetonitrile. Eight phenolic compounds were identified in the extracts by a gas chromatograph coupled with a mass spectrometer, and their compound-specific stable carbon isotope ratios were determined by a gas chromatograph coupled with a combustion furnace followed by an isotope ratio mass spectrometer. The majority of the products, including methylnitrophenols and methylnitrocatechols, were isotopically depleted by 5 to 6 permil compared to the initial isotope ratio for toluene, whereas the isotope ratio for 4_nitrophenol remained the same as the initial isotope ratio for toluene. Based on the reaction mechanisms postulated in literature, stable carbon isotope ratios of these produc...

  16. The thermal history of char as disclosed by carbon isotope ratios

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ambus, Per; Ahrenfeldt, Jesper

    In laboratory experiments, biomass char was produced under controlled conditions using wood chips from French pinewood. Different char qualities were obtained by pyrolysing the biomass at similar heating rates with end-temperatures ranging from 250 to 1000 o C. The char was analysed by flash...... pyrolysis and isotope ratio mass spectrometry. The results demonstrate that the temperature history of the char is reflected in the fine variation of carbon isotopes. The compound classes responsible for the variation were identified. Key words: Isotope ratio, flash pyrolysis, hot gas cleaning...

  17. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    Science.gov (United States)

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework.

  18. The puzzle of the CNO isotope ratios in AGB carbon stars

    CERN Document Server

    Abia, Carlos; Domínguez, Inma; Straniero, Oscar

    2016-01-01

    Previous determinations of the oxygen isotopic ratios in AGB carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in LTE with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M_o) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the FDU a...

  19. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-02-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  20. Anomalous carbon-isotope ratios in nonvolatile organic material.

    Science.gov (United States)

    Kaplan, I R; Nissenbaum, A

    1966-08-12

    Organic mats are associated with sulfur deposits in Upper Pleistocene sand ridges of the coastal plain of southern Israel; black, brittle, and non-volatile, they show parallel layering but no other apparent cellular structure. Two independent carbon-14 determinations yielded ages of 27,750+/-500 and 31,370+/-1400 years. Four carbon-13:carbon-12 determinations fell within the range deltaC(13) =-82.5 to -89.3 per mille relative to the PDB standard; these appear to be the lowest values yet reported for naturally occurring high-molecular-weight organic material. The origin of the carbon is probably complex; it must have passed through at least one biologic cycle before final deposition.

  1. Determination of the geographical origin of Chinese teas based on stable carbon and nitrogen isotope ratios

    Institute of Scientific and Technical Information of China (English)

    Long ZHANG; Jia-rong PAN; Cheng ZHU

    2012-01-01

    The objective of this study was to investigate the geographical origin of Chinese teas using carbon and nitrogen stable isotope ratio technology.The results showed that inter-provincial dispersion of teas in Guangdong (GD),Guangxi (GX),Hainan (HA),Fujian (F J),Shandong (SD),Sichuan (SC),Chongqing (CQ),and Henan (HN) provinces was high,while in Zhejiang (ZJ),Hubei (HB),Yunnan (YN),and Anhui (AH) provinces,it was low.Tea samples from GD,GX,HA,and FJ provinces were clustered in one group and separated from those from AH and HB provinces.Thus,carbon and nitrogen stable isotope ratio technology could discriminate teas from among some provinces of China,but not from among others.Better separation might be obtained with a combination of isotopic ratios and other indexes,such as elemental data and organic components.

  2. Carbon isotope ratios and isotopic correlations between components in fruit juices

    Science.gov (United States)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  3. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  4. Tunable Diode Laser Measurements of Leaf-scale Carbon Isotope Discrimination and Ecosystem Respired Carbon and Oxygen Isotope Ratios in a Semi-arid Woodland

    Science.gov (United States)

    McDowell, N.; Chris, B.; Hanson, D.; Kern, S.; Meyer, C.; Pockman, W.; Powers, H.

    2005-12-01

    We present results and speculative interpretation of leaf-level carbon isotope discrimination and ecosystem respired carbon and oxygen isotope ratios from a semi-arid, C3/C4 woodland located in northern New Mexico, USA. Overstory leaf area index (LAI) is dominated by live juniper (Juniperus monosperma) trees with an LAI value of approximately 1.0 m2 per m2 ground area, and has a seasonally dynamic understory of mixed C3 forbs and C4 grasses and cacti, with a maximum LAI of 0.30 m2 per m2 ground area. Ecosystem respired carbon isotope ratios showed values characteristic of C3 dominated photosynthesis (Keeling plot intercepts of -35 to -22 per mil). Seasonal variation was typical of that found in wetter, C3 dominated forests, as was the dependence on climate (e.g. relationships with vapor pressure deficit, soil water content, and canopy conductance). Leaf-level carbon isotope discrimination of the junipers, measured by coupling a Li-Cor 6400 photosynthesis system to the TDL, provided discrimination-Ci and discrimination-vpd relationships consistent with measured ecosystem respired carbon isotope ratios. The oxygen isotope ratio of ecosystem respiration was dependent on rain water isotope composition, but was correlated with soil water content during rain-free periods. The cumulative effect of vapor pressure deficit after a rain event was tightly correlated with the oxygen isotope ratio of ecosystem respiration, suggesting the primary drivers are evaporative enrichment of soil water and perhaps nocturnal leaf enrichment. Instrument precision for carbon and oxygen isotope ratios of carbon dioxide is 0.06 to 0.18 per mil; however, overall precision is somewhat lower due to pressure and sampling effects.

  5. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    Science.gov (United States)

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  6. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates

    Science.gov (United States)

    Hippler, Dorothee; Buhl, Dieter; Witbaard, Rob; Richter, Detlev K.; Immenhauser, Adrian

    2009-10-01

    This study presents magnesium stable-isotope compositions of various biogenic carbonates of several marine calcifying organisms and an algae species, seawater samples collected from the western Dutch Wadden Sea, and reference materials. The aim of this study is to explore the influence of mineralogy, taxonomy and environmental factors (e.g., seawater isotopic composition, temperature, salinity) on magnesium-isotopic (δ 26Mg) ratios of skeletal carbonates. Using high-precision multi-collector inductively coupled plasma mass spectrometry, we observed that the magnesium-isotopic composition of seawater from the semi-enclosed Dutch Wadden Sea is identical to that of open marine seawater. We further found that a considerable component of the observed variability in δ 26Mg values of marine skeletal carbonates can be attributed to differences in mineralogy. Furthermore, magnesium-isotope fractionation is species-dependent, with all skeletal carbonates being isotopically lighter than seawater. While δ 26Mg values of skeletal aragonite and high-magnesium calcite of coralline red algae indicate the absence or negligibility of metabolic influences, the δ 26Mg values of echinoids, brachiopods and bivalves likely result from a taxon-specific level of control on Mg-isotope incorporation during biocalcification. Moreover, no resolvable salinity and temperature effect were observed for coralline red algae and echinoids. In contrast, Mg-isotope data of bivalves yield ambiguous results, which require further validation. The data presented here, point to a limited use of Mg isotopes as temperature proxy, but highlight the method's potential as tracer of seawater chemistry through Earth's history.

  7. Forensic utility of carbon isotope ratio variations in PVC tape backings.

    Science.gov (United States)

    Dietz, Marianne E; Stern, Libby A; Mehltretter, Andria Hobbs; Parish, Ashley; McLasky, Velvet; Aranda, Roman

    2012-03-01

    Forensic interest in adhesive tapes with polyvinyl chloride (PVC) backings (electrical tape) derives from their use in a variety of illicit activities. Due to the range of physical characteristics, chemical compositions, and homogeneity within a single roll of tape, traditional microscopic and chemical analyses can offer a high degree of discrimination between tapes, permitting the assessment of potential associations between evidentiary tape samples. The carbon isotope ratios of tapes could provide additional discrimination among tape samples. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different rolls of tape of the same product, we assessed the δ(13)C values of backings from 87 rolls of PVC-based black electrical tape (~20 brands, >60 products) Prior to analysis, adhesives were removed to prevent contamination by adhering debris, and plasticizers were extracted because of concern over their potential mobility. This result is consistent with each of these tapes having approximately the same plasticizer δ(13)C value and proportion of carbon in these plasticizers. The δ(13)C values of the 87 PVC tape backings ranged between -23.5 and -41.3 (‰, V-PDB), with negligible carbon isotopic variation within single rolls of tape, yet large variations among tape brands and tape products. Within this tape population, carbon isotope ratios permitted an average exclusion power of 93.7%, using a window of +/-0.3‰; the combination of carbon isotope ratio measurement with additional chemical and physical analyses raises the discrimination power to over 98.9%, with only 41 out of a possible 3741 pairs of tape samples being indistinguishable. There was a linear relationship between the δ(13)C value of tape backings and the change in δ(13)C value with the extraction of plasticizers. Analyses of pre- and post-blast tape sample pairs show that carbon isotope signatures are within 0.3‰ of

  8. CCQM-K140: carbon stable isotope ratio delta values in honey

    Science.gov (United States)

    Dunn, P. J. H.; Goenaga-Infante, H.; Goren, A. C.; Şimşek, A.; Bilsel, M.; Ogrinc, N.; Armishaw, P.; Hai, L.

    2017-01-01

    As there can be small but measureable differences in isotope ratios between different sources of the same element/compound/material, isotope ratio measurements are applied in a number of different fields including archaeology, environmental science, geochemistry, forensic science and ecology. Isotope ratios for the light elements (H, C, N, O and S) are typically reported as δ-values which are isotope ratios expressed relative to an internationally agreed standard (this standard is the zero-point on the scale), although absolute isotope ratios which are traceable to the SI have also been reported. The IAWG has been granted a traceability exception for the use of arbitrary delta scales until SI traceability can be established at the required level of uncertainty but this goal is some years away. While the CCQM IAWG has previously organised several pilot studies on isotope ratio determination (CCQM-P75: Stable isotope delta values in methionine, 2006; CCQM-P105: Sr isotope ratios in wine, 2008; CCQM-K98: Pb isotope ratios in bronze with additional delta values in CCQM-P134, 2011), it has been a number of years since delta values of light elements have been considered and there has been no key comparison (KC). Therefore, the IAWG has included the need for a KC (CCQM-K140) based on an arbitrary delta scale in its program to support ongoing requirements to demonstrate core capabilities as well as specific claims of measurement capability (CMCs) in this area. The performance of all five of the CCQM-K140 participants was very good, illustrating their ability to obtain accurate results for carbon isotope ratios, within the calibration range afforded by internationally agreed reference materials (δ13CVPDB-LSVEC between ‑47.32 % and +535.3 %) with measurement uncertainties of between 0.08 and 0.28 %. This was despite the fact that no two participants used exactly the same approach in terms of instrumentation or data treatment. Main text To reach the main text of this

  9. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric PM

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-05-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter (PM is presented. It has been found in numerous laboratory studies that these compounds are photooxidation products of toluene in PM. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. PM was collected on quartz fibre filters using dichotomous high volume air samplers for PM 2.5. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography (HPLC and solid phase extraction (SPE. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide (BSTFA, was added to the solution for Gas Chromatography/Mass Spectroscopy (GC/MS analysis. The second half of the sample was stored at low temperature. When GC/MS analysis showed high enough concentrations the remaining sample was derivatized with BSTFA and analysed for stable isotope ratio using a Gas Chromatography/Isotope Ratio Mass Spectrometry (GC-IRMS.

    In all atmospheric PM samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol. Nevertheless, due to low pollution levels occurring in the rural area, no samples had concentrations high enough to perform stable carbon isotope composition measurements of the methylnitrophenols. Samples collected in the suburban area could be analysed for carbon stable isotope ratio using GC-IRMS.

    The procedure described in this paper provides a very sensitive and selective method for the analysis of methylnitrophenols in atmospheric PM at concentrations as low as 1 pg m−3. For accurate (within ±0.5‰ stable isotope ratio analysis significantly higher concentrations in the range of 100 pg m−3 or more are required.

  10. Carbon isotope ratios of Phanerozoic marine cements: Re-evaluating the global carbon and sulfur systems

    Science.gov (United States)

    Carpenter, Scott J.; Lohmann, Kyger C.

    1997-11-01

    Original δ 13C values of abiotically precipitated marine cements from a variety of stratigraphic intervals have been used to document secular variations in the δ 13C values of Phanerozoic oceans. These, together with the ° 34S values of coeval marine sulfates, are used to examine the global cycling of carbon and sulfur. It is generally accepted that secular variation in δ 13C and δ 34S values of marine carbonates and sulfates is controlled by balanced oxidation-reduction reactions and that their long-term, steady-state variation can be predicted from the present-day isotopic fractionation ratio (Δ c/Δ s) the ratio of the riverine flux of sulfur and carbon ( Fs/ Fc). The predicted slope of the linear relation between δ 13C carb and δ 34S sulfate values is approximately -0.10 to -0.14. However, temporal variation observed in marine cement δ 13C values and the 6345 values of coeval marine sulfates produces a highly significant linear relation ( r2 = 0.80; α > 95%) with a slope of -0.24; approximately twice the predicted value. This discordance suggests that either the Phanerozoic average riverine Fs/ Fc was 1.6-3.3 times greater than today's estimates or that an additional source of 34S-depleted sulfur or 13C-enriched carbon, other than continental reservoirs, was active during the Phanerozoic. This new relation between marine δ 13C and δ 34S values suggests that the flux of reduced sulfur, iron, and manganese from seafloor hydrothermal systems affects oceanic O2 levels which, in turn, control the oxidation or burial of organic matter, and thus the δ 13C value of marine DIC. Therefore, the sulfur system (driven by seafloor hydrothermal systems) controls the carbon system rather than organic carbon burial controlling the response of δ 34S values (via formation of sedimentary pyrite). Secular variation of marine 87Sr/86Sr ratios and δ 13C values argues for a coupling of δ 34S and δ 34S values to variation in the relative contribution of seafloor

  11. Carbon isotopic ratio analysis by gas chromatography/combustion/isotope ratio mass spectrometry for the detection of gamma-hydroxybutyric acid (GHB) administration to humans.

    Science.gov (United States)

    Saudan, Christophe; Augsburger, Marc; Mangin, Patrice; Saugy, Martial

    2007-01-01

    Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.

  12. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with BIOCHLOR-ISO

    Science.gov (United States)

    Höhener, Patrick

    2016-12-01

    BIOCHLOR is a well-known simple tool for evaluating the transport of dissolved chlorinated solvents in groundwater, ideal for rapid screening and teaching. This work extends the BIOCHLOR model for the calculation of stable isotope ratios of carbon and chlorine isotopes in chloroethenes. An exact solution for the three-dimensional reactive transport of a chain of degrading compounds including sorption is provided in a spreadsheet and applied for modeling the transport of individual isotopes 12C, 13C, 35Cl, 37Cl from a constant source. The model can consider secondary isotope effects that can occur in the breaking of Csbnd Cl bonds. The model is correctly reproducing results for δ13C and δ37Cl modeled by a previously published 1-D numerical model without secondary isotope effects, and is also reproducing results from a microcosm experiment with secondary chlorine isotope effects. Two applications of the model using field data from literature are further given and discussed. The new BIOCHLOR-ISO model is distributed as a spreadsheet (MS EXCEL) along with this publication.

  13. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    Science.gov (United States)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  14. Environmental and biosynthetic influences on carbon and hydrogen isotope ratios of leaf wax n-alkanes

    Science.gov (United States)

    McInerney, F. A.; Freeman, K. H.; Polissar, P. J.; Feakins, S. J.

    2013-12-01

    Both carbon and hydrogen isotope ratios of leaf-wax n-alkanes are influenced by the availability of water in a plant's growth environment. Carbon isotope ratios of bulk tissues in C3 plants demonstrate a strong inverse relationship with measures of available moisture (e.g. mean annual precipitation and precipitation/evaporation). Similarly, hydrogen isotope ratios of leaf wax n-alkanes (δDl) can be enriched relative to precipitation (δDw) by transpiration, which is related to relative humidity and the leaf-to-air vapor pressure deficit. Thus, D-enrichment of leaf-wax n-alkanes relative to precipitation, termed the apparent fractionation (2ɛl/w), becomes more positive with increasing aridity. In theory, more positive values of leaf-wax δ13C (δ13Cl) and 2ɛl/w of leaf-wax n-alkanes should both correspond to more arid conditions in C3 plants. Here we review published and unpublished data on over 100 plants to examine this relationship. Contrary to expectations, C3 dicots show no clear relationship between δ13Cl and 2ɛl/w. This global lack of correlation is surprising given our understanding of aridity related isotopic effects in C3 plants. One possibility is that the implicit assumption of constant fractionation between lipid and bulk tissue is flawed due to the effects of different biosynthetic carriers and reaction pathways. We explore this possibility by examining the offset of leaf-wax carbon isotopes from the bulk leaf tissue (13ɛl/bulk). Different offsets would indicate additional biosynthetic processes are affecting δ13Cl in addition to any direct effects from aridity. We find that 13ɛl/bulk is highly variable, ranging from -1 to -16‰, which could explain the lack of correlation between δ13Cl and 2ɛl/w. In addition, 13ɛl/bulk values for C3 and C4 monocots (averages of -10.6 and -11.4‰ respectively) represent significantly greater offset between leaf wax and bulk tissue than in C3 dicots (average of -4.3‰), which is consistent with previous

  15. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Boschker, H.T.S.; Moerdijk-Poortvliet, T.C.W.; Van Breugel, P.; Houtekamer, M.J.; Middelburg, J.J.

    2008-01-01

    We have developed a method to analyze stable carbon isotope (13C/12C) ratios in a variety of carbohydrates using high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS). The chromatography is based on strong anion-exchange columns with low strength NaOH eluents. An eluent

  16. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALE Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (13C/12C) in biological metabolites, at their natural abundance. However, until now this technique coul

  17. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALELiquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (C-13/C-12) in biological metabolites, at their natural abundance. However, until now this technique cou

  18. Authenticity of carbon dioxide bubbles in French ciders through multiflow-isotope ratio mass spectrometry measurements.

    Science.gov (United States)

    Gaillard, Laetitia; Guyon, Francois; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-01

    A procedure to detect whether carbon dioxide was added to French ciders has been developed. For this purpose, an optimised and simplified method is proposed to determine (13)C/(12)C isotope ratio of carbon dioxide (δ(13)C) in ciders. Three critical steps were checked: (1) influence of atmospheric CO2 remaining in the loaded vial, (2) impact of helium flush, (3) sampling speed. This study showed that atmospheric CO2 does not impact the measurement, that helium flush can lead to isotopic fractionation and finally, that a fractionation occurs only 5h after bottle opening. The method, without any other preparation, consists in sampling 0.2 mL of cold (4 °C) cider in a vial that is passed in an ultrasonic bath for 10 min at room temperature to enhance cider de-carbonation. The headspace CO2 is then analysed using the link Multiflow®-isotope ratio mass spectrometer. Each year, a data bank is developed by fermenting authentic apples juices in order to control cider authenticity. Over a four year span (2008-2011), the CO2 produced during the fermentation step was studied. This set of 61 authentic ciders, from various French production areas, was used to determine a δ(13)C value range of -22.59±0.92‰ for authentic ciders CO2 bubbles. 75 commercial ciders were analysed with this method. Most of the samples analysed present a gas δ(13)C value in the expected range. Nevertheless, some ciders have δ(13)C values outside the 3σ limit, revealing carbonation by technical CO2. This practice is not allowed for organic, "Controlled Appellation of Origin" ciders and ciders specifying natural carbonation on the label.

  19. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰).

  20. Carbon isotope ratio (delta13C) values of urinary steroids for doping control in sport.

    Science.gov (United States)

    Cawley, Adam T; Trout, Graham J; Kazlauskas, Rymantas; Howe, Christopher J; George, Adrian V

    2009-03-01

    The detection of steroids originating from synthetic precursors in relation to their chemically identical natural analogues has proven to be a significant challenge for doping control laboratories accredited by the World Anti-Doping Agency (WADA). Endogenous steroid abuse may be confirmed by utilising the atomic specificity of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) that enables the precise measurement of differences in stable isotope ratios that arise as a result of fractionation patterns inherent in the source of steroids. A comprehensive carbon isotope ratio (delta(13)C) profiling study (n=1262) of urinary ketosteroids is reported that demonstrates the inter-individual variation that can be expected from factors such as diet, ethnicity, gender and age within and between different populations (13 countries). This delta(13)C distribution is shown by principal component analysis (PCA) to provide a statistical comparison to delta(13)C values observed following administration of testosterone enanthate. A limited collection of steroid diol data (n=100; consisting of three countries) is also presented with comparison to delta(13)C values of excreted testosterone to validate criteria for WADA accredited laboratories to prove doping offences.

  1. Carbon isotope ratios of C4 plants in loess areas of North China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Carbon isotope ratios (δ13C) of 89 C4 plant samples were determined from the loess area in North China. δ13C values vary between -10.5‰ and -14.6‰ with a mean of -12.6‰. Along a precipitation gradient from the semi-moist area to the semiarid area, then to the arid area, the δ13C values of C4 plants show a slight decreasing trend. The δ13C values of C4 plants in the dry season are found lower than those in the wet season. These trends are opposite to those observed for C3 species.

  2. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  3. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    Science.gov (United States)

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration.

  4. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  5. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.; Prokopiou, M.; Sowers, T.; Röckmann, T.; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentra

  6. New manuscript guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-01

    To eliminate possible confusion in the reporting of isotopic abundances on non-corresponding scales, the Commission on Atomic Weights and Isotopic Abundances recommended at the 37{sup th} General Assembly at Lisbon, Portugal that (i) {sup 2}H/{sup 1}H relative ratios of all substances be expressed relative to VSMOW (Vienna Standard Mean Ocean Water) on a scale such that {sup 2}H/{sup 1}H of SLAP (Standard Light Antartic Precipitation) is 0.572 times that of VSMOW, (ii) {sup 13}C/{sup 12}C relative ratios of all substances be expressed relative to VPDB (Vienna Peedee belemnite) on a scale such that {sup 13}C/{sup 12}C of NBS 19 carbonate is 1.00195 times that of VPDB, and (iii) {sup 18}O/{sup 16}O ratios of all substances be expressed relative to either VSMOW or VPDB on scales such that {sup 18}O/{sup 16}O of SLAP is 0.9445 times that of VSMOW. (Author)

  7. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere

    Science.gov (United States)

    Beerling, D. J.; Lake, J. A.; Berner, R. A.; Hickey, L. J.; Taylor, D. W.; Royer, D. L.

    2002-11-01

    Theoretical models predict a marked increase in atmospheric O2 to ∼35% during the Permo-Carboniferous (∼300 Ma) occurring against a low (∼0.03%) CO2 level. An upper O2 value of 35%, however, remains disputed because ignition data indicate that excessive global forest fires would have ensued. This uncertainty limits interpretation of the role played by atmospheric oxygen in Late Paleozoic biotic evolution. Here, we describe new results from laboratory experiments with vascular land plants that establish that a rise in O2 to 35% increases isotopic fractionation (Δ13C) during growth relative to control plants grown at 21% O2. Despite some effect of the background atmospheric CO2 level on the magnitude of the increase, we hypothesize that a substantial Permo-Carboniferous rise in O2 could have imprinted a detectable geochemical signature in the plant fossil record. Over 50 carbon isotope measurements on intact carbon from four fossil plant clades with differing physiological ecologies and ranging in age from Devonian to Cretaceous reveal a substantial Δ13C anomaly (5‰) occurring between 300 and 250 Ma. The timing and direction of the Δ13C excursion is consistent with the effects of a high O2 atmosphere on plants, as predicted from photosynthetic theory and observed in our experiments. Preliminary calibration of the fossil Δ13C record against experimental data yields a predicted O2/CO2 mixing ratio of the ancient atmosphere consistent with that calculated from long-term models of the global carbon and oxygen cycles. We conclude that further work on the effects of O2 in the combustion of plant materials and the spread of wildfire is necessary before existing data can be used to reliably set the upper limit for paleo-O2 levels.

  8. Estimation of food composition of Hodotermes mossambicus (Isoptera: Hodotermitidae) based on observations and stable carbon isotope ratios

    Institute of Scientific and Technical Information of China (English)

    Craig T. Symes; Stephan Woodborne

    2011-01-01

    The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13 C isotope values, -13.8‰to -14.0‰) and C3 plants (δ13C isotope values, -25.6‰ to -27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H, mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.

  9. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    Science.gov (United States)

    Sturchio, N. C.; Keith, T. E. C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface ( in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The δ 18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰ . About one third of the silica 7samples have δ 18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7‰) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have δ 18O values higher (by 3.5 to 7.9‰) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with

  10. Influences of β-HCG administration on carbon isotope ratios of endogenous urinary steroids.

    Science.gov (United States)

    Piper, Thomas; Baume, Norbert; Strahm, Emanuel; Emery, Caroline; Saugy, Martial

    2012-05-01

    Several factors influencing the carbon isotope ratios (CIR) of endogenous urinary steroids have been identified in recent years. One of these should be the metabolism of steroids inside the body involving numerous different enzymes. A detailed look at this metabolism taking into account differences found between steroids excreted as glucuronides or as sulphates and hydrogen isotope ratios of different steroids pointed out possibility of unequal CIR at the main production sites inside the male body - the testes and the adrenal glands. By administration of β-HCG it is possible to strongly stimulate the steroid production within the testes without influencing the production at the adrenal glands. Therefore, this treatment should result in changed CIR of urinary androgens in contrast to the undisturbed pre-treatment values. Four male volunteers received three injections of β-HCG over a time course of 5 days and collected their urine samples at defined intervals after the last administration. Those samples showing the largest response in contrast to the pre-administration urines were identified by steroid profile measurements and subsequent analysed by GC/C/IRMS. CIR of androsterone, etiocholanolone, testosterone, 5α- and 5β-androstanediol and pregnanediol were compared. While pregnanediol was not influenced, most of the investigated androgens showed depleted values after treatment. The majority of differences were found to be statistically significant and nearly all showed the expected trend towards more depleted δ(13)C-values. These results support the hypothesis of different CIR at different production sites inside the human body. The impact of these findings on doping control analysis will be discussed.

  11. Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA

    CERN Document Server

    Serigano, Joseph; Cordiner, Martin A; Irwin, Patrick G J; Teanby, Nicholas A; Charnley, Steven B; Lindberg, Johan E

    2016-01-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan's atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), $^{13}$CO (J = 2-1, 3-2, 6-5), C$^{18}$O (J = 2-1, 3-2), and C$^{17}$O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of $^{17}$O in the outer solar system with C$^{17}$O detected at > 8$\\sigma$ confidence. The abundance of CO was determined to be 49.6 ${\\pm}$ 1.8 ppm, assumed to be constant with altitude, with isotopic ratios $^{12}$C/$^{13}$C = 89.9 ${\\pm}$ 3.4, $^{16}$O/$^{18}$O = 486 ${\\pm}$ 22, and $^{16}$O/$^{17}$O = 2917${\\pm}$359. The measurements of $^{12}$C/$^{13}$C and $^{16}$O/$^{18}$O ratios are the most precise values obtained in Titan's atmospheric CO to date. Our res...

  12. Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces

    Directory of Open Access Journals (Sweden)

    D. Codron

    2005-06-01

    Full Text Available In African savannas, browse-based resources (@3 plants are isotopically distinct from grasses (@4 plants. The carbon isotopic composition of the basic plant diet is recorded in animal tissues. Mammal faeces are a readily accessible, non-invasive, sample material for temporally resolved dietary reconstructions. Faeces, however, include both undigested plant matter and waste, hence accuracy of dietary calculations could potentially be compromised by shifts in plant isotopic values related to seasonal or spatial differences, or by variability in the isotopic differences between faeces and diet. A controlled feeding study of four ungulate species showed a small, consistent difference between diet and faeces of-0.9 o, irrespective of whether the diet was @3 or C4-based. Results from faeces oftaxa known to be pure grazers, pure browsers, and mixed-feeders from the Kruger National Park were entirely consistent with their diets, but the accuracy of dietary reconstructions is enhanced with data from local plant communities.

  13. Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

    NARCIS (Netherlands)

    Brass, M.; Roeckmann, T.

    2010-01-01

    We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS) technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve

  14. Iodine-to-calcium ratios in carbonates suggest a primary origin for the Precambrian Lomagundi and Shuram carbon isotope excursions

    Science.gov (United States)

    Hardisty, D. S.; Lu, Z.; Planavsky, N. J.; Osburn, M. R.; Bekker, A.; Lyons, T. W.

    2013-12-01

    Systematic increases in iodine-to-calcium ratios (I/Ca) in carbonates from both the Precambrian Lomagundi and Shuram carbonate carbon isotope (δ13Ccarb) excursion intervals suggest primary origins for these events. Iodate (IO3-), the oxidized iodine species, is the exclusive species incorporated into carbonates. The high redox sensitivity of IO3- to deoxygenation requires highly oxidizing fluids for IO3- production, making I/Ca in platform carbonates a simple indicator of the presence of oxidizing fluids in the surface ocean. Similarly, redox sensitivity makes the proxy host susceptible to diagenetic iodine loss during carbonate recrystallization in reducing pore fluids. Recent work has shown carbonates to experience near-complete iodine loss during dolomitization in the Permian, and work from our group evaluating modern and recent carbonates demonstrate the potential for diagenetic iodine loss during carbonate recrystallization. In some cases, however, such as meteoric aragonite-to-calcite transitions, oxidizing pore fluids have the potential to buffer IO3- concentrations, causing negligible alteration to primary I/Ca despite negative shifts in δ13Ccarb. These results highlight that diagenetic alterations to I/Ca and δ13Ccarb need not always be coupled, but importantly, no observed scenario promotes post-depositional addition of iodine to carbonates. This means that, independent of δ13Ccarb, systematic, stratigraphic increases in I/Ca ratios observed in the carbonate record are most easily interpreted as resulting from depositional controls such as surface ocean redox or shifts in the total marine iodine reservoir. From this, increasing I/Ca ratios coincident with rising and falling δ13Ccarb trends for the Paleoproterozic Lomagundi and Neoproterozoic Shuram events, respectively, support suggestions of a primary origin for the δ13Ccarb excursions. Significant increase in I/Ca in dolomites deposited during the Lomagundi excursion, rising from blank values in

  15. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  16. Utility of 5A molecular sieves to measure carbon isotope ratios in lipid biomarkers.

    Science.gov (United States)

    Tolosa, Imma; Ogrinc, Nives

    2007-09-21

    A procedure using 5A zeolite sorption to separate cyclic/branched organic compounds from the linear ones was developed and carbon isotopic fractionation effects were investigated in different families of compounds, e.g. within the hydrocarbon and alcohol compounds. The 5A sieve has a pore size such that only linear components can be incorporated into the pores whereas the cyclic/branched compounds are remaining free in the organic solution. The sorbed compounds were released from the molecular sieve with HF and solvent extracted with hexane. The method enables the isolation of linear saturated classes, such as n-alkanes and n-fatty alcohols from branched/cyclic compounds without isotopic fractionation for compound-specific isotope analysis (CSIA) of delta(13)C. However, alkene hydrocarbons, sterols and some aromatics were completely or partly degraded with the molecular sieve.

  17. Poster 9: Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA

    Science.gov (United States)

    Serigano, Joseph; Nixion, Conor A.; Cordiner, Martin A.; Irwin, Patrick G. J.; Teanby, Nick A.; Charnley, Steven B.; Lindberg, Johan E.

    2016-06-01

    The advent of the Atacama Large Millimeter/Submillimeter Array (ALMA) has provided a new and powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the complex atmosphere of Titan, photochemical processes dissociate and ionize molecular nitrogen and methane in the upper atmosphere, creating a complex inventory of trace hydrocarbons and nitriles. Additionally, the existence of oxygen on Titan facilitates the synthesis of molecules of potential astrobiological importance. Utilization of ground-based submillimeter observations of Titan has proven to be a powerful tool to complement results from spacecraft observations. ALMA provides the ability to probe this region in greater detail with unprecedented spectral and spatial resolution at high sensitivity, allowing for the derivation of vertical mixing profiles, molecular detections, and observations of latitudinal and seasonal variations. Recent ALMA studies of Titan have presented spectrally and spatially-resolved maps of HNC and HC3N emission (Cordiner et al. 2014), as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan's atmosphere (Cordiner et al. 2015). This poster will focus on ALMA observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C 17O in Titan's atmosphere. Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code (Irwin et al. 2008). This study reports the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundances of these molecules and isotopic ratios of 12C/13C, 16O/18O, and 16O/17O will be presented. General implications for the history of Titan from these measurements will be discussed.

  18. Technical Note: Calcium and carbon stable isotope ratios as paleodietary indicators.

    Science.gov (United States)

    Melin, Amanda D; Crowley, Brooke E; Brown, Shaun T; Wheatley, Patrick V; Moritz, Gillian L; Yit Yu, Fred Tuh; Bernard, Henry; DePaolo, Donald J; Jacobson, Andrew D; Dominy, Nathaniel J

    2014-08-01

    Calcium stable isotope ratios are hypothesized to vary as a function of trophic level. This premise raises the possibility of using calcium stable isotope ratios to study the dietary behaviors of fossil taxa and to test competing hypotheses on the adaptive origins of euprimates. To explore this concept, we measured the stable isotope composition of contemporary mammals in northern Borneo and northwestern Costa Rica, two communities with functional or phylogenetic relevance to primate origins. We found that bone collagen δ(13) C and δ(15) N values could differentiate trophic levels in each assemblage, a result that justifies the use of these systems to test the predicted inverse relationship between bioapatite δ(13) C and δ(44) Ca values. As expected, taxonomic carnivores (felids) showed a combination of high δ(13) C and low δ(44) Ca values; however, the δ(44) Ca values of other faunivores were indistinguishable from those of primary consumers. We suggest that the trophic insensitivity of most bioapatite δ(44) Ca values is attributable to the negligible calcium content of arthropod prey. Although the present results are inconclusive, the tandem analysis of δ(44) Ca and δ(13) C values in fossils continues to hold promise for informing paleodietary studies and we highlight this potential by drawing attention to the stable isotope composition of the Early Eocene primate Cantius.

  19. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia.

    Science.gov (United States)

    Rinne, K T; Saurer, M; Kirdyanov, A V; Loader, N J; Bryukhanova, M V; Werner, R A; Siegwolf, R T W

    2015-11-01

    Significant gaps still exist in our knowledge about post-photosynthetic leaf level and downstream metabolic processes and isotopic fractionations. This includes their impact on the isotopic climate signal stored in the carbon isotope composition (δ(13)C) of leaf assimilates and tree rings. For the first time, we compared the seasonal δ(13)C variability of leaf sucrose with intra-annual, high-resolution δ(13)C signature of tree rings from larch (Larix gmelinii Rupr.). The trees were growing at two sites in the continuous permafrost zone of Siberia with different growth conditions. Our results indicate very similar low-frequency intra-seasonal trends of the sucrose and tree ring δ(13)C records with little or no indication for the use of 'old' photosynthates formed during the previous year(s). The comparison of leaf sucrose δ(13)C values with that in other leaf sugars and in tree rings elucidates the cause for the reported (13)C-enrichment of sink organs compared with leaves. We observed that while the average δ(13)C of all needle sugars was 1.2‰ more negative than δ(13)C value of wood, the δ(13)C value of the transport sugar sucrose was on an average 1.0‰ more positive than that of wood. Our study shows a high potential of the combined use of compound-specific isotope analysis of sugars (leaf and phloem) with intra-annual tree ring δ(13)C measurements for deepening our understanding about the mechanisms controlling the isotope variability in tree rings under different environmental conditions.

  20. The carbon isotopes ratio and trace metals content determinations in some Transylvanian fruit juices

    Science.gov (United States)

    Dehelean, A.; Magdas, D. A.; Cristea, G.

    2012-02-01

    This work presents a preliminary study on the carbon isotope signature and trace metal content investigated on the soil-plant-fruit pulp chain. The samples were collected from two Transylvanian areas namely Alba and Salaj. The average value of the δ13C at the soil surface was around δ13C ≈ -27%° and important differences of the δ13C values between the two studied areas were not observed. Meanwhile, differences between fruit pulp of grape juice and the pulp of pear juice relived a difference of about 1.5%° for δ13C values.

  1. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    CERN Document Server

    Tautvaisiene, Grazina; Bragaglia, Angela; Randich, Sofia; Zenoviene, Renata

    2016-01-01

    Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 Msun, and to compare them with predictions of theoretical models. High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0,1) band heads at 5135 and 5635.5 A. The wavelength interval 7940-8130 A with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [Oi] line at 6300 A. The mean values of the CNO abundances are [C/Fe]=-0.35+-0.06 (s.d.), [N/Fe]=0.28+-0.05, and [O/Fe]=-0.02+-0.10 in seven stars of NGC 2324; [C/Fe]=-0.26+-0.02, [N/Fe]=0.39+-0.04, and [O/Fe]=-0.11+-0.06 in six stars of NGC 2477; and [C/Fe]=-0.39+-0.04, [N/Fe]=0.32+-0.05, and [O/Fe]=-0.19+-0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92+-0.12, 0.91+-0.09, and 0.80+-0.13, resp...

  2. Riparian forest potential to retain sediment and carbon evaluated by the {sup 137}Cs fallout and carbon isotopic ratio techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiz F. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Lab. de Fisica Aplicada a Solos e Ciencias Ambientais], e-mail: lfpires@uepg.br, e-mail: luizfpires@gmail.com; Bacchi, Osny O.S.; Reichardt, Klaus; Filippe, Joseline [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fisica dos Solos; Correchel, Vladia [Universidade Federal de Goias (UFG), Goiania, GO (Brazil)

    2009-07-01

    Riparian forests can provide an important service for aquatic ecosystems by sequestering hill slope-derived sediments. However, the width of a riparian buffer zone required to filter sediments is not yet well-understood. Here are used two complementary tracers to measure sediment retention. The {sup 137}Cs technique and the soil carbon isotopic ratios ({delta} {sup 13}C) are utilized to investigate sediment deposition and erosion rates on a slope transect cultivated with sugarcane followed by a secondary riparian forest zone in Iracemapolis, State of Sao Paulo, Brazil. The {sup 137}Cs technique and the {delta} {sup 13}C analysis showed that the width of a riparian vegetation in accordance to a Brazilian Environmental Law (N. 4.771/65) was not sufficient in trapping sediments coming from agricultural lands, but indicated the importance of these forests as a conservation measure at the watershed scale. The complementary {delta} {sup 13}C analysis together with soil morphology aspects allowed a better interpretation of the sediment redistribution along the sugarcane and riparian forest transect. (author)

  3. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    Science.gov (United States)

    Tautvaišienė, Gražina; Drazdauskas, Arnas; Bragaglia, Angela; Randich, Sofia; Ženovienė, Renata

    2016-10-01

    Aims: Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 M⊙, and to compare them with predictions of theoretical models. Methods: High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0, 1) band heads at 5135 and 5635.5 Å. The wavelength interval 7940-8130 Å with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Results: The mean values of the CNO abundances are [C/Fe] = -0.35 ± 0.06 (s.d.), [N/Fe] = 0.28 ± 0.05, and [O/Fe] = -0.02 ± 0.10 in seven stars of NGC 2324; [C/Fe] = -0.26 ± 0.02, [N/Fe] = 0.39 ± 0.04, and [O/Fe] = -0.11 ± 0.06 in six stars of NGC 2477; and [C/Fe] = -0.39 ± 0.04, [N/Fe] = 0.32 ± 0.05, and [O/Fe] = -0.19 ± 0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92 ± 0.12, 0.91 ± 0.09, and 0.80 ± 0.13, respectively. The mean 12C /13C ratio is equal to 21 ± 1, 20 ± 1, and 16 ± 4, respectively. The 12C /13C and C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolution models. Conclusions: The mean values of the 12C /13C and C/N ratios in NGC 2324 and NGC 2477 agree well with the first dredge-up and thermohaline-induced extra-mixing models, which are similar for intermediate turn-off mass stars. The 12C /13C ratios in the investigated clump stars of NGC 3960 span from 10 to 20. The mean carbon isotope and C/N ratios in NGC 3960 are close to predictions of the model in which the thermohaline- and rotation-induced (if rotation velocity at the zero-age main sequence was 30% of the critical velocity) extra-mixing act together. Based on observations collected at ESO telescopes under programmes 072.D-0550 and 074.D-0571.

  4. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    Science.gov (United States)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  5. Congener-specific carbon isotopic analysis of technical PCB and PCN mixtures using two-dimensional gas chromatography-isotope ratio mass spectrometry.

    Science.gov (United States)

    Horii, Yuichi; Kannan, Kurunthachalam; Petrick, Gert; Gamo, Toshitaka; Falandysz, Jerzy; Yamashita, Nobuyoshi

    2005-06-01

    Analysis of stable carbon isotope fractionation is a useful method to study the sources and fate of anthropogenic organic contaminants such as polychlorinated biphenyls (PCBs) in the environment. To evaluate the utility of carbon isotopes, determination of isotopic ratios of 13C/12C in source materials, for example, technical PCB preparations, is needed. In this study, we determined delta13C values of 31 chlorobiphenyl (CB) congeners in 18 technical PCB preparations and 15 chloronaphthalene (CN) congeners in 6 polychlorinated naphthalene preparations using two-dimensional gas chromatography-combustion furnace-isotope ratio mass spectrometry (2DGC-C-IRMS). Development of 2DGC-IRMS enabled improved resolution and sensitivity of compound-specific carbon isotope analysis (CSIA) of CB or CN congeners. Delta13C values of PCB congeners ranged from -34.4 (Delors) to -22.0/1000 (Sovol). Analogous PCB preparations with similar chlorine content, but different geographical origin, had different delta13C values. PCB preparations from Eastern European countries--Delors, Sovol, Trichlorodiphenyl, and Chlorofen--had distinct delta13C values. PCB mixtures showed increased 13C depletion with increasing chlorine content. Delta13C values for individual CB congeners varied depending on the degree of chlorination in technical mixtures. Delta13C values of CN congeners in Halowaxes ranged from -26.3 to -21.7/1000 and these values are within the ranges observed for PCBs. This study establishes the range of delta13C values in technical PCB and PCN preparations, which may prove to be useful in the determination of sources of these compounds in the environment. This is the first study to employ 2DGC-IRMS analysis of delta13C values in technical PCB and PCN preparations.

  6. Use of stable carbon and nitrogen isotope ratios in size segregated aerosol particles for the O/I penetration evaluation

    Science.gov (United States)

    Garbaras, Andrius; Garbariene, Inga; Masalaite, Agne; Ceburnis, Darius; Krugly, Edvinas; Kvietkus, Kestutis; Remeikis, Vidmantas; Martuzevicius, Dainius

    2015-04-01

    Stable carbon and nitrogen isotope ratio are successfully used in the atmospheric aerosol particle source identification [1, 2], transformation, pollution [3] research. The main purpose of this study was to evaluate the penetration of atmospheric aerosol particles from outdoor to indoor using stable carbon and nitrogen isotope ratios. Six houses in Kaunas (Lithuania) were investigated during February and March 2013. Electrical low pressure impactor was used to measure in real time concentration and size distribution of outdoor aerosol particles. ELPI+ includes 15 channels covering the size range from 0.017 to 10.0 µm. The 25 mm diameter aluminium foils were used to collect aerosol particles. Gravimetric analysis of samples was made using microbalance. In parallel, indoor aerosol samples were collected with a micro-orifice uniform deposition impactor (MOUDI model 110), where the aerosol particles were separated with the nominal D50 cut-off sizes of 0.056, 0.1, 0.18,0.32,0.56, 1.0, 1.8, 3.2, 5.6, 10, 18 μm for impactor stages 1-11, respectively. The impactor was run at a flow rate of 30 L/min. Air quality meters were used to record meteorological conditions (temperature, relative humidity) during the investigated period. All aerosol samples were analyzed for total carbon (TC) and total nitrogen (TN) contents and their isotopic compositions using elemental analyzer (EA) connected to the stable isotope ratio mass spectrometer (IRMS). TC concentration in indoors ranged from 1.5 to 247.5 µg/m3. During the sampling period outdoors TN levels ranged from 0.1 to 10.9 µg/m3. The obtained outdoor δ13C(PM2.5) values varied from -24.21 to -26.3‰, while the δ15N values varied from 2.4 to 11.1 ‰ (average 7.2±2.5 ‰). Indoors carbonaceous aerosol particles were depleted in 13C compared to outdoors in all sampling sites. This depletion in δ13C varied from 0.1 to 3.2 ‰. We think that this depletion occurs due ongoing chemical reactions (oxidation) when aerosol

  7. Complementary stable carbon isotope ratio and amount of substance measurements in sports anti-doping.

    Science.gov (United States)

    Cawley, Adam T; George, Adrian V

    2012-12-01

    The detection of steroids originating from synthetic precursors against a background of their chemically identical natural analogues has proven to be a significant challenge for doping control laboratories accredited by the World Anti-Doping Agency (WADA). The complementary application of gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) has been demonstrated to provide specific detection of endogenous steroid misuse for improved anti-doping analysis. Markers of synthetically derived steroids are reviewed on the basis of abnormal urinary excretions and low (13)C content. A combinatorial approach is presented for the interpretation of GC-MS and GC-C-IRMS data in the anti-doping context. This methodology can allow all relevant information concerning an individual's metabolism to be assessed in order to make an informed decision with respect to a doping violation.

  8. Carbon isotope ratio mass spectrometry for detection of endogenous steroid use: a testing strategy.

    Science.gov (United States)

    Ahrens, Brian D; Butch, Anthony W

    2013-07-01

    Isotope ratio mass spectrometry (IRMS) testing is performed to determine if an atypical steroid profile is due to administration of an endogenous steroid. Androsterone (Andro) and etiocholanolone (Etio), and/or the androstanediols (5α- and 5β-androstane-3α,17β-diol) are typically analyzed by IRMS to determine the (13) C/(12) C ratio. The ratios of these target compounds are compared to the (13) C/(12) C ratio of an endogenous reference compound (ERC) such as 5β-pregnane-3α,20α-diol (Pdiol). Concentrations of Andro and Etio are high so (13) C/(12) C ratios can easily be measured in most urine samples. Despite the potentially improved sensitivity of the androstanediols for detecting the use of some testosterone formulations, additional processing steps are often required that increase labour costs and turnaround times. Since this can be problematic when performing large numbers of IRMS measurements, we established thresholds for Andro and Etio that can be used to determine the need for additional androstanediol testing. Using these criteria, 105 out of 2639 urine samples exceeded the Andro and/or Etio thresholds, with 52 of these samples being positive based on Andro and Etio IRMS testing alone. The remaining 53 urine samples had androstanediol IRMS testing performed and 3 samples were positive based on the androstanediol results. A similar strategy was used to establish a threshold for Pdiol to identify athletes with relatively (13) C-depleted values so that an alternative ERC can be used to confirm or establish a true endogenous reference value. Adoption of a similar strategy by other laboratories can significantly reduce IRMS sample processing and analysis times, thereby increasing testing capacity.

  9. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements : Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils

    NARCIS (Netherlands)

    Schimmelrnann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T.; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Groeing, Manfred; Helie, Jean-Francois; Herrero-Martin, Sara; Meijer, Harro A. J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.

    2016-01-01

    An international project developed, quality-tested, and determined isotope-delta values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-60

  10. Carbon isotope ratio monitoring-gas chromatography mass spectrometric measurements in the marine environment: biomarker sources and paleoclimate applications.

    Science.gov (United States)

    Tolosa, I; Lopez, J F; Bentaleb, I; Fontugne, M; Grimalt, J O

    1999-09-30

    Some applications in the use of compound-specific isotopic analyses (CSIA) for biomarker source elucidation in the marine environment and its potential applications to paleoclimatology are evaluated in the present study. The potential use of the carbon isotope ratios of marine biomarkers as recorders of CO2 levels has been considered. A significant correlation between delta 13C cholesterol of suspended particulates and seawater CO2 concentrations from the south Indian Ocean has been found. delta 13C composition in biomarkers of different functionalities from three photosynthetic organisms has been examined. Small variations within and between biosynthetically related compound classes have been observed in cyanobacteria. In algae, e.g. diatoms and dinoflagellates, significant differences between the average delta 13C composition of fatty acids and sterols were observed (7.5/1000 and 2/1000, respectively). These differences can be attributed to diverse isotope effects associated with different biosynthetic reactions. Isotopic variations among homologues of the same lipid class have also been observed. In diatoms, variations were up to 5/1000 within each class of fatty acids and sterols and in the dinoflagellate species, these variations were lower than 3/1000. These differences, and particularly the intra-specific shifts in delta 13C lipid composition, must be considered for the correct interpretation of changes in delta 13C molecular signatures in the marine environment.

  11. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    Directory of Open Access Journals (Sweden)

    P. Ziveri

    2012-03-01

    Full Text Available The oxygen isotopic composition (δ18O of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO32−] effect on δ18O is universal for unicellular calcifying planktonic organisms. The slopes of the δ18O/[CO32−] relationships range between –0.0243‰ (μmol kg−1−1 (calcareous dinoflagellate T. heimii and the previously published –0.0022‰ (μmol kg−1−1 (non-symbiotic planktonic foramifera Orbulina universa, while C. leptoporus has a slope of –0.0048 ‰ (μmol kg−1−1. We present a simple conceptual model, based on the contribution of δ18O-enriched HCO3 to the CO32− pool in the calcifying vesicle, which can explain the [CO32−] effect on δ18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms

  12. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    Directory of Open Access Journals (Sweden)

    P. Ziveri

    2011-08-01

    Full Text Available The oxygen isotopic composition (δ18O of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy and possibly for developing new biomarkers. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, suggesting that the [CO32−] effect on δ18O is universal for unicellular calcifying planktonic organisms. The slopes of the δ18O/[CO32−] relationships range between −0.0243 (μmol kg−1−1 (calcareous dinoflagellate T. heimii and the previously published 0.0022 (μmol kg−1−1 (non-symbiotic planktonic foramifera Orbulina universa, while C. leptoporus has a slope of 0.0048 (μmol kg−1−1. We present a simple conceptual model, based on the contribution of δ18O-enriched HCO3 to the CO32− pool in the calcifying vesicle, which can explain the [CO32−] effect on δ18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in

  13. The influences of cultivation setting on inflorescence lipid distributions, concentrations, and carbon isotope ratios of Cannabis sp.

    Science.gov (United States)

    Tipple, Brett J; Hambach, Bastian; Barnette, Janet E; Chesson, Lesley A; Ehleringer, James R

    2016-05-01

    While much is known about how the growth environment influences many aspects of floral morphology and physiology, little is known about how the growth setting influences floral lipid composition. We explored variations in paraffin wax composition in Cannabis sp., a cash crop grown both indoors and outdoors across the United States today. Given an increased focus on regulation of this crop, there are additional incentives to certify the setting of Cannabis cultivation. To understand the impacts of the growth environment, we studied distributions, concentrations, and carbon isotope ratios of n-alkanes isolated from Cannabis sp. inflorescences to assess if variations within these lipid parameters were related to known growth settings of specimens seized by federal agents. We found that Cannabis plants cultivated under open-field settings had increased inflorescence paraffin wax abundances and greater production of lower molecular weight n-alkanes relative to plants grown in enclosed environments. Further, the carbon isotope ratios of n-C29 from Cannabis plants grown in enclosed environments had relatively lower carbon isotope (δ(13)C) values compared to plants from open-field environments. While this set of observations on seized plant specimens cannot address the particular driver behind these observations, we posit that (a) variations in irradiance and/or photoperiod may influence the distribution and concentration of inflorescence lipids, and (b) the δ(13)C value of source CO2 and lipid concentration regulates the δ(13)C values of inflorescence n-C29 and bulk Cannabis plant materials. Nonetheless, by using a cultivation model based on δ(13)C values of n-C29, the model correctly identified the growth environment 90% of time. We suggest that these lipid markers may be used to trace cultivation methods of Cannabis sp. now and become a more powerful marker in the future, once the mechanism(s) behind these patterns is uncovered.

  14. Stable isotope ratios of carbon and hydrogen to distinguish olive oil from shark squalene-squalane.

    Science.gov (United States)

    Camin, Federica; Bontempo, Luana; Ziller, Luca; Piangiolino, Cristiana; Morchio, Gianni

    2010-06-30

    Squalene and its hydrogenated derivate squalane are widely used in the pharmaceutical and cosmetic fields. The two compounds are mainly produced from the liver oil of deep sea sharks and from olive oil distillates. Squalene and squalane from shark cost less than the same compounds derived from olive oil, and the use of these shark-derived compounds is unethical in cosmetic formulations. In this work we investigate whether (13)C/(12)C and (2)H/(1)H ratios can distinguish olive oil from shark squalene/squalane and can detect the presence of shark derivates in olive oil based products. The (13)C/(12)C ratios (expressed as delta(13)C values) of bulk samples and of pure compounds measured using isotope ratio mass spectrometry (IRMS) were significantly lower in authentic olive oil squalene/squalane (N: 13; -28.4 +/- 0.5 per thousand; -28.3 +/- 0.8 per thousand) than in shark squalene/squalane samples (N: 15; -20.5 +/- 0.7 per thousand; -20.4 +/- 0.6 per thousand). By defining delta(13)C threshold values of -27.4 per thousand and -26.6 per thousand for olive oil bulk and pure squalene/squalane, respectively, illegal addition of shark products can be identified starting from a minimum of 10%. (2)H/(1)H analysis is not useful for distinguishing the two different origins. Delta(13)C analysis is proposed as a suitable tool for detecting the authenticity of commercial olive oil squalene and squalane samples, using IRMS interfaced to an elemental analyser if the purity is higher than 80% and IRMS interfaced to a gas chromatography/combustion system for samples with lower purity, including solutions of squalane extracted from cosmetic products.

  15. Carbon Isotope Ratios Of Carbon Dioxide In The Urban Salt Lake Valley, Utah USA: Source And Long-Term Monitoring Observations

    Science.gov (United States)

    Ehleringer, J.; Lai, C.; Strong, C.; Pataki, D. E.; Bowling, D. R.; Schauer, A. J.; Bush, S.

    2011-12-01

    A high-precision, decadal record of carbon isotope ratios in atmospheric carbon dioxide has been produced for the urbanized Salt Lake Valley, Utah USA. These data complement a similar time series of atmospheric carbon dioxide concentrations for different locations in the same urban region. This isotopic record includes diurnal and nocturnal observations based on flask (IRMS-based) and continuous (TDL-based) measurement systems. These data reveal repeatable diurnal and seasonal variations in the anthropogenic and biogenic carbon sources that can be used to reconstruct different source inputs. As the Salt Lake Valley is an isolated urban region, the impacts of local anthropogenic inputs can be distinguished from regional patterns as measured by NOAA at the rural Wendover monitoring station 200 km to the west of the Salt Lake Valley. Complementary data, such as vehicle exhaust, emission from power plants and household furnaces, plant and soil organic matter, are also provided to quantify the carbon isotope ratios of the predominant anthropogenic and biogenic sources within the Salt Lake Valley. The combined source and long-term observational values will be made freely available and their utility is discussed for modeling efforts including urban metabolism modeling and atmospheric trace gas modeling.

  16. Near infrared spectroscopy of M dwarfs. IV. A preliminary survey on the carbon isotopic ratios in M dwarfs

    CERN Document Server

    Tsuji, Takashi

    2016-01-01

    Based on the medium resolution near infrared spectra of 13CO (3,1) band, carbon isotopic ratios are estimated in 48 M dwarfs, for which we had determined the carbon and oxygen abundances from CO and H2O lines, respectively. We find clear evidence for the presence of a 13CO feature for the first time in the spectra of M dwarfs. The spectral resolution of our observed data, however, is not high enough to analyze the 13CO feature directly. Instead, we compare observed spectrum with synthetic spectra assuming 12C/13C = 10, 25, 50, 100, and 200 for each of 48 M dwarfs and estimate the best possible 12C/13C ratio by the chi-square analysis. The resulting 12C/13C ratios in M dwarfs distribute from 39 to a lower limit of 200. The mean value of 31 M dwarfs for which 12C/13C ratios are determined is 12C/13C = 87 +- 21 (p.e.), and that of 48 M dwarfs including those with the lower limit of 200 is 12C/13C > 127 +- 41 (p.e.). These results are somewhat larger than the 12C/13C ratio of the present interstellar matter (ISM)...

  17. Stable Nitrogen and Carbon Isotope Ratios Indicate Traditional and Market Food Intake in an Indigenous Circumpolar Population123

    Science.gov (United States)

    Nash, Sarah H.; Bersamin, Andrea; Kristal, Alan R.; Hopkins, Scarlett E.; Church, Rebecca S.; Pasker, Renee L.; Luick, Bret R.; Mohatt, Gerald V.; Boyer, Bert B.; O’Brien, Diane M.

    2012-01-01

    The transition of a society from traditional to market-based diets (termed the nutrition transition) has been associated with profound changes in culture and health. We are developing biomarkers to track the nutrition transition in the Yup’ik Eskimo population of Southwest Alaska based on naturally occurring variations in the relative abundances of carbon and nitrogen stable isotopes (δ15N and δ13C values). Here, we provide three pieces of evidence toward the validation of these biomarkers. First, we analyzed the δ15N and δ13C values of a comprehensive sample of Yup’ik foods. We found that δ15N values were elevated in fish and marine mammals and that δ13C values were elevated in market foods containing corn or sugar cane carbon. Second, we evaluated the associations between RBC δ15N and δ13C values and self-reported measures of traditional and market food intake (n = 230). RBC δ15N values were correlated with intake of fish and marine mammals (r = 0.52; P < 0.0001). RBC δ13C values were correlated with intake of market foods made from corn and sugar cane (r = 0.46; P < 0.0001) and total market food intake (r = 0.46; P < 0.0001). Finally, we assessed whether stable isotope ratios captured population-level patterns of traditional and market intake (n = 1003). Isotopic biomarkers of traditional and market intake were associated with age, community location, sex, and cultural identity. Self-report methods showed variations by age and cultural identity only. Thus, stable isotopes show potential as biomarkers for monitoring dietary change in indigenous circumpolar populations. PMID:22157543

  18. Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata

    OpenAIRE

    Verheyden, A.; Gerhard Helle; G. H. Schleser; F. Dehairs; BEECKMAN, H.; Koedam, N.;  

    2004-01-01

    In the present study, the high-resolution stable carbon (13C/12C) and oxygen (18O/16O) isotope ratio profiles in the wood of the mangrove Rhizophora mucronata Lam., a tropical tree species lacking distinct growth rings, were investigated. Variations of both isotope ratios revealed a remarkable annual cyclicity with lowest values occurring at the latewood/earlywood boundary (April–May) and highest values during the transition from earlywood to latewood (October–November). Based on the current ...

  19. Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata

    OpenAIRE

    Verheyden, A.; Helle, G.; G. H. Schleser; F. Dehairs; BEECKMAN, H.; Koedam, N.

    2004-01-01

    In the present study, the high-resolution stable carbon ((13)C/(12)C) and oxygen ((18)O/(16)O) isotope ratio profiles in the wood of the mangrove Rhizophora mucronata Lam., a tropical tree species lacking distinct growth rings, were investigated. Variations of both isotope ratios revealed a remarkable annual cyclicity with lowest values occurring at the latewood/earlywood boundary (April-May) and highest values during the transition from earlywood to latewood (October-November). Based on the ...

  20. Using the Carbon Isotope Ratios of Bison Tooth Enamel and Bone Collagen as a Quantitative Proxy for Reconstructing Grassland Vegetation and Paleotemperatures

    Science.gov (United States)

    Hoppe, K. A.; Paytan, A.; Chamberlain, P.

    2005-12-01

    The carbon isotope ratios of tissues from grazing herbivores reflect the average carbon isotope ratios of local grasslands, which vary with the abundance of cool-season (C-3) versus warm-season (C-4) grasses. Since the C-3/C-4 ratios of grasslands correlate with climate, the carbon isotope ratios of fossil grazers may serve as a proxy for reconstructing paleovegetation and paleoclimatic conditions. Analyses of fossil and subfossil bison hold particular promise for use as a proxy for paleoenvironmental conditions in North America because bison remains are abundant in Holocene and Pleistocene deposits across most of the continent. However, the accuracy and precision of paleoenvironmental reconstructions based on bison is currently uncertain because the relationship between bison isotope and the abundance of C-3 and C-4 grasses has not been precisely quantified across different environments. We have analyzed the carbon isotope ratios of tooth enamel carbonate and bone collagen from 88 modern free ranging bison ( Bison bison) from ten locations in the Central United States. The C-4 biomass at these locations ranged from less than 1 percent to 95 percent of the total grass biomass. The mean carbon isotope ratios of enamel for each population correlated well with the local abundance of C-4 grasses (R2 = 0.93, p = 0.0001) and with variations in mean annual temperatures (R2 = 0.83, p = 0.001). The mean carbon isotope ratios of collagen for each population also correlated well with the C-4 grass abundance (R2 = 0.97, p = 0.0001) and mean annual temperature (R2 = 0.84, p = 0.0002). Enamel and collagen display similar variability (mean standard deviation = 0.7 per mil), and the variability does not change with climate, habitat, or C-4 abundance. These results demonstrate that analyses of the carbon isotope ratios of fossil bison can be used as a quantitative proxy for reconstructing grassland C-3/C-4 ratios and paleotemperatures, and they will serve as a baseline for

  1. Seasonal Variation in the Carbon Isotope Ratio of Ecosystem Respiration in Two Coniferous Forests

    Science.gov (United States)

    McDowell, N. G.; Bowling, D.; Schauer, A.; Irvine, J.; Bond, B. J.; Law, B.; Ehleringer, J. R.

    2003-12-01

    We examined weekly variation in the stable carbon isotope signature of ecosystem respiration (δ 13CR) using the Keeling plot approach at two forests in Oregon USA: a wet (>2300 mm annual precipitation) 20-year-old Pseudotsuga menziesii plantation located in the Coast Range near the Pacific Ocean, and a dry ( ˜520 mm annual precipitation) 250-year-old Pinus ponderosa forest located on the eastern slope of the Cascade Mountains. The two forests experience similar regional weather patterns with wet winters and dry summers, but the coastal site has milder temperatures and greater soil and atmospheric water content. Air was sampled on 51 and 42 separate nights at the Pinus and Pseudotsuga forests, respectively, between 2001 and 2002. Both forests exhibited greater intra-annual variation in δ 13CR than has been previously observed in C3 ecosystems (>8.0 ‰ over the year). Mean annual δ 13CR matched that expected based on annual precipitation, averaging -25.4 ‰ at the Pinus forest and -26.2 ‰ at the Pseudotsuga forest. Variability in δ 13CR at both sites was highest during seasons when rainfall was abundant (autumn, winter and spring) and lowest during summer drought. During the period of drought, soil temperature was positively correlated with δ 13CR at both forests. When all seasons were analyzed, δ 13CR was negatively correlated with soil water content at both forests. The Pseudotsuga forest was more strongly coupled to soil and atmospheric water content than the Pinus forest. This difference could be related to availability of a deep water source at the Pinus forest that buffers it from drought effects. δ 13CR at the Pinus forest was significantly but weakly related to canopy conductance suggesting that δ 13CR is coupled to canopy gas exchange. δ 13CR was significantly correlated between the two forests after removal of outliers associated with extreme, site-specific meteorological events (i.e. local freezes), demonstrating that δ 13CR is coupled

  2. Carbon isotope ratios in logged and unlogged boreal forests: Examination of the potential for determining wildlife habitat use

    Science.gov (United States)

    France, Robert

    1996-03-01

    Due to assimilation of recycled CO2 from litter decomposition and photosynthetic changes in carbon fractionation at low light levels, the foliage at the base of a forest is often more depleted in13C compared to that exposed to the atmosphere in either the canopy or in open clearings. This is referred to as the canopy effect. African research has indicated that these habitat differences in foliar δ13C can be substantial enough to affect the carbon isotope ratios of resident fauna. Previous work documenting a 30-year chronology on moose teeth from Isle Royale National Park indicated a progressive depletion in13C and suggested that this could be due to forest regrowth following extensive burning. The present study examined the assumption implicit in this hypothesis that foliar δ13C varies between open and closed boreal forest sites. I found a marginal canopy effect of 2‰ δ13C difference between upper canopy and ground flora for a forest in northwestern Ontario and an average difference of 1.2‰ in under- and mid-story vegetation between closed forests and open clear-cuts. Because of these small differences, the utility of carbon isotope analysis in quantifying temporally integrated exploitation of deforested habitats will be low for northern boreal locations. In denser forests, such as those in the tropics or western North American where the canopy effect can be expected to be much greater, δ13C analysis may still offer some promise for determining selection by wildlife of disturbed habitats.

  3. On the interference of 86Kr2+ during carbon isotope analysis of atmospheric methane using continuous flow combustion – isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2013-02-01

    Full Text Available Stable carbon isotope analysis of methane (δ13C of CH4 on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography isotope ratio mass spectrometry coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton can severely interfere during the mass spectrometric measurement leading to significant biases in δ13C of CH4 if krypton is not sufficiently separated during the analysis. The effect comes about by the lateral tailing of the peak of doubly charged 86Kr in the neighbouring m/z, 44, 45, and 46 Faraday cups. Accordingly, the introduced bias is dependent on the chromatographic separation, the Kr to CH4 mixing ratio in the sample, the mass spectrometer source tuning as well as the detector configuration and can amount to up to several permil in δ13C. Apart from technical solutions to avoid this interference we present correction routines to a posteriori remove the bias.

  4. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  5. Congener-specific concentrations and carbon stable isotope ratios (delta13C) of two technical toxaphene products (Toxaphene and Melipax).

    Science.gov (United States)

    Vetter, Walter; Gleixner, Gerd; Armbruster, Wolfgang; Ruppe, Steffen; Stern, Gary A; Braekevelt, Eric

    2005-01-01

    In this study we compared the contribution of individual congeners and the ratios of stable carbon isotopes of two technical toxaphene products. The former US-American product Toxaphene was from 1978 and the East-German product Melipax from 1979. Both technical products showed the known complexity in GC/ECD measurements. Contributions of 24 peaks to each of the technical products were determined by gas chromatography in combination high resolution electron capture negative ion mass spectrometry (GC/ECNI-HRMS). The percentages of the compounds studied in the technical mixtures ranged from approximately 0.05% to approximately 2.5% but showed some individual differences. 2,2,5,5,8,9,9,10,10-nonachlorobornane (B9-1025 or P-62) was identified as a major congener in both mixtures. 2-Endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (B8-1413 or P26) and 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (B9-1679 or P-50) were found at similar concentration in both technical products. Identical amounts of Melipax or Toxaphene were combusted to CO2 in an element analyzer and their delta13C values were determined relative to the international standard Vienna PeeDee belemnite (VPDB). The mean delta13C values of both products varied by 2.8% (determined at two different locations) which is roughly one order of magnitude more than the precision obtained in repetitive analyses of the individual products. Thus, both investigated products could be unequivocally distinguished by stable isotope ratio mass spectrometry (IRMS). IRMS analyses may thus be a suitable tool for tracing back toxaphene residues in environmental and food samples to the one or both of the products.

  6. Compound-specific stable carbon isotope ratios of phenols and nitrophenols derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide

    Energy Technology Data Exchange (ETDEWEB)

    Irei, Satoshi, E-mail: irei.satoshi@nies.go.jp [Centre for Atmospheric Chemistry, Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3 (Canada); Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada); Rudolph, Jochen [Centre for Atmospheric Chemistry, Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3 (Canada); Huang, Lin [Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4 (Canada)

    2013-07-05

    Graphical abstract: -- Highlights: •For GCC–IRMS analysis, an approach avoiding impact of NO{sub 2} on δ{sup 13}C was demonstrated. •Carbon isotope fractionations during derivatizing reactions here were negligible. •Except some labile compounds, the overall bias of the method here was −0.21‰. •Even for the labile compounds, measurement biases ranged +1.2‰ to −1.4‰. •Real sample analysis demonstrates usefulness of the method for fractionation study. -- Abstract: We developed an analytical method for measuring compound-specific stable carbon isotope ratios (δ{sup 13}C) of phenols and nitrophenols in filter samples of particulate organic matter. The method was tested on 13 phenols derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), together with four nonphenolic compounds. The data obtained by our method required two specific corrections for the determination of valid δ{sup 13}C values: (1) for nitro compounds, the routine correction with use of m/z 46 for the contribution of {sup 12}C{sup 17}O{sup 16}O molecules) to m/z 45 was modified due to impact of NO{sub 2} on the m/z 46 trace, and (2) for the derivatized phenols, measured δ{sup 13}C values were corrected for the shift in δ{sup 13}C due to the addition of carbon atoms from the BSTFA moiety. Analysis of standard-spiked filters showed that overall there was a small compound-dependent bias in the δ{sup 13}C values: the average bias ± the standard error of the mean of −0.21 ± 0.1‰ for the standard compounds tested, except 3-methylcatechol, methylhydroquinone, 4-methyl-2-nitrophenol, and 2,6-dimethyl-4-nitrophenol, whereas the average biases ± the standard errors of the mean for those were +1.2 ± 0.3‰, +1.2 ± 0.2‰, −1.2 ± 0.2‰, and −1.4 ± 0.5‰, respectively, when the injected mass of a derivatized compound exceeded 15 ngC. In situations where such small biases and uncertainties are acceptable, the method described here could be used to obtain valuable

  7. Near-infrared spectroscopy of M dwarfs. IV. A preliminary survey on the carbon isotopic ratio in M dwarfs*

    Science.gov (United States)

    Tsuji, Takashi

    2016-10-01

    Carbon isotopic ratios are estimated in 48 M dwarfs based on the medium resolution near infrared spectra (λ/Δ λ ≈ 20000) of the 13CO (3,1) band. We find clear evidence for the presence of a 13CO feature for the first time in the spectra of M dwarfs. Spectral resolution of our observed data, however, is not high enough to analyze the 13CO feature directly. Instead, we compare the observed spectrum with synthetic spectra assuming 12C/13C = 10, 25, 50, 100, and 200 for each of 48 M dwarfs and estimate the best possible 12C/13C ratio by chi-square analysis. The resulting 12C/13C ratios in M dwarfs distribute from 39 to a lower limit of 200. The mean value of 31 M dwarfs for which 12C/13C ratios are determined (i.e., excluding those with the lower limit only) is (12C/13C)dM = 87 ± 21 (p.e.), and that of 48 M dwarfs including those with the lower limit of 200 is (12C/13C)dM > 127 ± 41 (p.e.). These results are somewhat larger than the 12C/13C ratio of the present interstellar matter (ISM) determined from the molecular lines observed in the millimeter and optical wavelength regions. Since the amount of 13C in the ISM has increased with time due to mass loss from evolved stars, the 12C/13C ratios in M dwarfs, reflecting those of the past ISM, should be larger than those of the present ISM. In M dwarfs, log 13C/12C plotted against log AC shows a large scatter without clear dependence on the metallicity. This result shows a marked contrast to log 16O/12C (= log AO/AC) plotted against log AC, which shows a rather tight correlation with a larger value at the lower metallicity. Such a contrast can be a natural consequence of 16O and 12C being primary products in stellar nuclear synthesis while 13C is a secondary product, at least partly.

  8. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. (Univ. of Idaho, Moscow, ID (United States))

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  9. Measurements of concentrations of chlorofluoromethanes (CFMs) carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems

    Science.gov (United States)

    Itoh, T.; Kubo, H.; Honda, H.; Tominaga, T.; Makide, Y.; Yakohata, A.; Sakai, H.

    1985-01-01

    Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems are reported. The balloon-borne grab-sampling system has been launched from Sanriku Balloon Center three times since 1981. It consists of: (1) six sampling cylinders, (2) eight motor driven values, (3) control and monitor circuits, and (4) pressurized housing. Particular consideration is paid to the problem of contamination. Strict requirements are placed on the choice of materials and components, construction methods, cleaning techniques, vacuum integrity, and sampling procedures. An aluminum pressurized housing and a 4-m long inlet line are employed to prevent the sampling air from contamination by outgassing of sampling and control devices. The sampling is performed during the descent of the system. Vertical profiles of mixing ratios of CF2Cl2, CFCl3 and CH4 are given. Mixing ratios of CF2Cl2 and CFCl3 in the stratosphere do not show the discernible effect of the increase of those in the ground level background, and decrease with altitude. Decreasing rate of CFCl3 is larger than that of CF2Cl2. CH4 mixing ratio, on the other hand, shows diffusive equilibrium, as the photodissociation cross section of CH4 is small and concentrations of OH radical and 0(sup I D) are low.

  10. Compound-specific stable carbon isotope ratios of phenols and nitrophenols derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide.

    Science.gov (United States)

    Irei, Satoshi; Rudolph, Jochen; Huang, Lin

    2013-07-01

    We developed an analytical method for measuring compound-specific stable carbon isotope ratios (δ(13)C) of phenols and nitrophenols in filter samples of particulate organic matter. The method was tested on 13 phenols derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), together with four nonphenolic compounds. The data obtained by our method required two specific corrections for the determination of valid δ(13)C values: (1) for nitro compounds, the routine correction with use of m/z 46 for the contribution of (12)C(17)O(16)O molecules) to m/z 45 was modified due to impact of NO2 on the m/z 46 trace, and (2) for the derivatized phenols, measured δ(13)C values were corrected for the shift in δ(13)C due to the addition of carbon atoms from the BSTFA moiety. Analysis of standard-spiked filters showed that overall there was a small compound-dependent bias in the δ(13)C values: the average bias±the standard error of the mean of -0.21±0.1‰ for the standard compounds tested, except 3-methylcatechol, methylhydroquinone, 4-methyl-2-nitrophenol, and 2,6-dimethyl-4-nitrophenol, whereas the average biases±the standard errors of the mean for those were +1.2±0.3‰, +1.2±0.2‰, -1.2±0.2‰, and -1.4±0.5‰, respectively, when the injected mass of a derivatized compound exceeded 15 ngC. In situations where such small biases and uncertainties are acceptable, the method described here could be used to obtain valuable information about δ(13)C values. We also analyzed a real filter sample to demonstrate the practical applicability of the method.

  11. Source identification of particulate organic matter in view of land uses in Shingil Creek using carbon, nitrogen and oxygen isotope ratios.

    Science.gov (United States)

    Kim, Dahae; Lee, Yeonjung; Ock, Giyoung; Kang, Sujin; Kim, Minseob; Choi, Jongwoo; Shin, Kyung-Hoon

    2016-04-01

    Anthropogenic inputs influence the quality and quantity of organic matter, which is important for recycling of nutrients and chemical elements. Stable isotope techniques are useful for distinguishing the origin of organic matter by using the characteristics that are distinctive between sources. Artificial Lake Shihwa, especially the Shingil creek is typically under the strong anthropogenic pressure with continuous continental inputs from various sources. Hence in this study, the characteristics and sources of organic matter in water and surface sediment of the Shingil creeks in the rural, urban, and industrial areas were evaluated by using carbon, nitrogen and oxygen isotope ratios, by analyzing samples collected during the rainy season and dry season. Among the input sources, the organic matter derived from industrial regions showed distinct nitrogen isotope values compared to other sites. Further studies including other techniques such as hydrogen isotope will provide an insight into the development of a strategy for effective water quality management in Lake Shihwa

  12. Measuring Isotope Ratios Across the Solar System

    Science.gov (United States)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  13. An assessment of geochemical preparation methods prior to organic carbon concentration and carbon isotope ratio analyses of fine-grained sedimentary rocks

    Science.gov (United States)

    KöNitzer, Sven F.; Leng, Melanie J.; Davies, Sarah J.; Stephenson, Michael H.

    2012-09-01

    This study summarizes organic carbon isotope (δ13C) and total organic carbon (TOC) data from a series of tests undertaken to provide an appropriate methodology for pre-analysis treatment of mudstones from an Upper Carboniferous sedimentary succession, in order to develop a consistent preparation procedure. The main treatments involved removing both inorganic carbonate and hydrocarbons (which might be extraneous) before δ13C and TOC analysis. The results show that decarbonating using hydrochloric acid causes significant reduction in δ13C and total carbon (TC) of the bulk material due to the removal of inorganic carbonate. These changes are most pronounced where soluble calcium carbonate (rather than Ca-Mg-Fe carbonate) is present. Deoiled samples show only slightly higher mean δ13C where visible bitumen was extracted from the bulk sample. Moreover, the isotopic signatures of the extracts are closely correlated to those of their respective bulk samples, suggesting that small yields of hydrocarbons were generated in situ with no isotopic fractionation. In addition, further δ13C and TC analyses were performed on samples where mixing of oil-based drilling mud with brecciated core material had been undertaken. Brecciated mudstone material did not display distinct isotopic signals compared to the surrounding fine-grained material. Overall we show that the most accurate assessment of bulk organic carbon isotopes and concentration in these samples can be achieved through decarbonating the material prior to measurement via the `rinse method'. However, our results support recent findings that pre-analysis acid treatments can cause variable and unpredictable errors in δ13C and TOC values. We believe that, despite these uncertainties, the findings presented here can be applied to paleoenvironmental studies on organic matter contained within sedimentary rocks over a range of geological ages and compositions.

  14. Inferences on Late Holocene climate from stable carbon and oxygen isotope ratio variability in soil and land snail shells from archaeological site 41KM69 in Texas, USA

    Science.gov (United States)

    Paul, D.; Mauldin, R.; Munoz, C. M.

    2011-12-01

    Well-preserved land snail shell excavate from archaeological site 41KM69 in Texas, USA, span the past 2200 years and provide an opportunity to explore the paleoclimate implications of isotopic variability in archaeological shell carbonates, bulk soil carbonates and soil organic matter. Terrestrial snail shells belonging to three genera (Polygyra, Rabdotus, and Helicina) were hand-picked from the 120 cm thick soil profile, for stable isotopic analyses. A wood charcoal radiocarbon date constrains samples below 100 cm depth in our soil profile to be ~2200 14C yr BP. Isotopic composition of modern adult snail specimens (n=24) and plants (n=18), collected from the study area, were determined for comparison with the archaeological data sets. All isotopic analyses were performed at the University of Texas at San Antonio using a Thermo Finnigan Gasbench II and a Costech Elemental Analyzer (EA) attached online to a DeltaPlus XP Stable Isotope Ratio Mass Spectrometer in continuous flow mode. Carbon isotopic compositions of both modern (-12.72 to -5.49%) and archaeological (-5.34 to -8.99%) adult snail shell carbonates suggest significant (> 60%) input of C3 plants into the diet of the snails over the past 2200 yrs. Oxygen isotopic compositions of archaeological and modern shells vary from -2.21% to -0.71% and -2.88 to +0.99%), respectively. This suggests that isotopic composition of environmental water (mainly rainwater) available at the time of shell growth was similar to that of the present day. A linearly decreasing trend in δ13C of soil organic matter from -22.83% at 2200 14C yr BP to -25.61% for modern samples imply progressively increasing abundance of C3 plants up to the present day. This implies a progressively wetter climate, or decreasing summer rainfall and less severe water stress conditions, in agreement with other studies on Holocene climate change in the southern Great Plains of USA. The studies, in general, document warm/arid conditions at ~ 2000 BP and

  15. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    Science.gov (United States)

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas

    2016-11-01

    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  16. Assessing the Origins of Aliphatic Amines in the Murchison Meteorite from their Compound-Specific Carbon Isotopic Ratios and Enantiomeric Composition

    Science.gov (United States)

    Aponte, Jose; Dworkin, Jason; Elsila, Jamie E.

    2014-01-01

    The study of meteoritic organic compounds provides a unique window into the chemical inventory of the early Solar System and prebiotic chemistry that may have been important for the origin of life on Earth. Multiple families of organic compounds have been extracted from the Murchison meteorite, which is one of the most thoroughly studied carbonaceous chondrites. The amino acids extracted from Murchison have been extensively analyzed, including measurements of non-terrestrial stable isotopic ratios and discoveries of L-enantiomeric excesses for alpha-dialkyl amino acids, notably isovaline. However, although the isotopic signatures of bulk amine-containing fractions have been measured, the isotopic ratios and enantiomeric composition of individual aliphatic amines, compounds that are chemically related to amino acids, remain unknown. Here, we report a novel method for the extraction, separation, identification and quantitation of aliphatic monoamines extracted from the Murchison meteorite. Our results show a complete suite of structural isomers, with a larger concentration of methylamine and ethylamine and decreasing amine concentrations with increasing carbon number. The carbon isotopic compositions of fourteen meteoritic aliphatic monoamines were measured, with delta C-13 values ranging from +21% to +129%, showing a decrease in C-13 with increasing carbon number, a relationship that may be consistent with the chain elongation mechanism under kinetic control previously proposed for meteoritic amino acids. We also found the enantiomeric composition of sec-butylamine, a structural analog to isovaline, was racemic within error, while the isovaline extracted from the same Murchison piece showed an L-enantiomeric excess of 9.7; this result suggested that processes leading to enantiomeric excess in the amino acid did not affect the amine. We used these collective data to assess the primordial synthetic origins of these meteoritic aliphatic amines and their potential

  17. Source inference of exogenous gamma-hydroxybutyric acid (GHB) administered to humans by means of carbon isotopic ratio analysis: novel perspectives regarding forensic investigation and intelligence issues.

    Science.gov (United States)

    Marclay, François; Saudan, Christophe; Vienne, Julie; Tafti, Mehdi; Saugy, Martial

    2011-05-01

    γ-Hydroxybutyric acid (GHB) is an endogenous short-chain fatty acid popular as a recreational drug due to sedative and euphoric effects, but also often implicated in drug-facilitated sexual assaults owing to disinhibition and amnesic properties. Whilst discrimination between endogenous and exogenous GHB as required in intoxication cases may be achieved by the determination of the carbon isotope content, such information has not yet been exploited to answer source inference questions of forensic investigation and intelligence interests. However, potential isotopic fractionation effects occurring through the whole metabolism of GHB may be a major concern in this regard. Thus, urine specimens from six healthy male volunteers who ingested prescription GHB sodium salt, marketed as Xyrem(®), were analysed by means of gas chromatography/combustion/isotope ratio mass spectrometry to assess this particular topic. A very narrow range of δ(13)C values, spreading from -24.81‰ to -25.06‰, was observed, whilst mean δ(13)C value of Xyrem(®) corresponded to -24.99‰. Since urine samples and prescription drug could not be distinguished by means of statistical analysis, carbon isotopic effects and subsequent influence on δ(13)C values through GHB metabolism as a whole could be ruled out. Thus, a link between GHB as a raw matrix and found in a biological fluid may be established, bringing relevant information regarding source inference evaluation. Therefore, this study supports a diversified scope of exploitation for stable isotopes characterized in biological matrices from investigations on intoxication cases to drug intelligence programmes.

  18. New organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements : caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils

    NARCIS (Netherlands)

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen Felicity; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim A; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Groening, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex Lee; Werner, Roland A

    2016-01-01

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (c

  19. Changes of Leaf Morphological, Anatomical Structure and Carbon Isotope Ratio with the Height of the Wangtian Tree (Parashorea chinensis) in Xishuangbanna, China

    Institute of Scientific and Technical Information of China (English)

    Chun-Xia He; Ji-Yue Li; Ping Zhou; Ming Guo; Quan-Shui Zheng

    2008-01-01

    Leaf morphological and anatomical structure and carbon isotope ratio (δ13C) change with increasing tree height. To determine how tree height affects leaf characteristics, we measured the leaf area, specific leaf mass (ratio of leaf mass to leaf area [LMA]), thickness of the total leaf, cuticle, epidermis, palisade and sponge mesophyll, stomata traits and δ13C at different heights of Parashorea chinensis with methods of light and scanning electron microscopy (SEM) and isotope-ratio mass spectrometry. The correlation and stepwise regression between tree height and leaf structure traits were carried out with SPSS software. The results showed that leaf structures and δ13C differed significantly along the tree height gradient. The leaf area, thickness of sponge mesophyll and size of stomata decreased with increasing height, whereas the thickness of lamina, palisade mesophyll, epidermis, and cuticle, ratios of palisade to spongy thickness, density of stomata and vascular bundles, LMA and δ13C increased with tree height. Tree height showed a significant relationship with all leaf Indices and the most significant relationship was with epidermis thickness, leaf area, cuticle thickness, δ13C. The δ13C value showed a significantly positive relationship with LMA (R = 0.934). Our results supported the hypothesis that the leaf structures exhibited more xeromorphic characteristics with the increasing gradient of tree height.

  20. Changes of leaf morphological, anatomical structure and carbon isotope ratio with the height of the Wangtian tree (Parashorea chinensis) in Xishuangbanna, China.

    Science.gov (United States)

    He, Chun-Xia; Li, Ji-Yue; Zhou, Ping; Guo, Ming; Zheng, Quan-Shui

    2008-02-01

    Leaf morphological and anatomical structure and carbon isotope ratio (delta13C) change with increasing tree height. To determine how tree height affects leaf characteristics, we measured the leaf area, specific leaf mass (ratio of leaf mass to leaf area [LMA]), thickness of the total leaf, cuticle, epidermis, palisade and sponge mesophyll, stomata traits and delta13C at different heights of Parashorea chinensis with methods of light and scanning electron microscopy (SEM) and isotope-ratio mass spectrometry. The correlation and stepwise regression between tree height and leaf structure traits were carried out with SPSS software. The results showed that leaf structures and delta13C differed significantly along the tree height gradient. The leaf area, thickness of sponge mesophyll and size of stomata decreased with increasing height, whereas the thickness of lamina, palisade mesophyll, epidermis, and cuticle, ratios of palisade to spongy thickness, density of stomata and vascular bundles, LMA and delta13C increased with tree height. Tree height showed a significant relationship with all leaf indices and the most significant relationship was with epidermis thickness, leaf area, cuticle thickness, delta13C. The delta13C value showed a significantly positive relationship with LMA (R = 0.934). Our results supported the hypothesis that the leaf structures exhibited more xeromorphic characteristics with the increasing gradient of tree height.

  1. Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea

    KAUST Repository

    Kürten, Benjamin

    2015-11-10

    Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: a) monsoon-related intrusions of nutrient-rich Indian Ocean water; b) basin scale thermohaline circulation; c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and e) the deposition of aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28’ to 26°57’N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of POM in the South

  2. Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea

    Science.gov (United States)

    Kürten, Benjamin; Al-Aidaroos, Ali M.; Kürten, Saskia; El-Sherbiny, Mohsen M.; Devassy, Reny P.; Struck, Ulrich; Zarokanellos, Nikolaos; Jones, Burton H.; Hansen, Thomas; Bruss, Gerd; Sommer, Ulrich

    2016-01-01

    Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation. Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: (a) monsoon-related intrusions of nutrient-rich Indian Ocean water; (b) basin scale thermohaline circulation; (c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; (d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and (e) the deposition of dust and aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28‧ to 26°57‧N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of

  3. Diet and habitat of the saiga antelope during the late Quaternary using stable carbon and nitrogen isotope ratios

    Science.gov (United States)

    Jürgensen, Jonathan; Drucker, Dorothée G.; Stuart, Anthony J.; Schneider, Matthias; Buuveibaatar, Bayarbaatar; Bocherens, Hervé

    2017-03-01

    Saiga antelope (Saiga tatarica) is one of the typical late Pleistocene species of the cold and arid mammoth steppe that covered a large area of northern hemisphere. The species is currently endangered and persists only in small areas of Central Asian steppe and desert ecosystems. The investigation of the ecology of the Pleistocene saiga using stable isotope ratios (δ13C, δ15N) aimed to decipher how different their diet and habitat were from those observed nowadays in relict populations. Up to 76 samples of bone collagen of ancient saiga from Western Europe, Siberia and Eastern Beringia were analysed and compared with 52 samples of hair and bone collagen of modern specimens from Kazahkstan, Russia and Mongolia. The δ13C values of the ancient saiga do not exhibit a clear trend over time. They cover the same range of values as the modern ones, from a C3-dominated to a C3-C4-dominated mixed diet (including probably Chenopodiaceae). In contrast, the δ15N values of fossil saigas are more variable and lower on average than the extant ones. The lowest δ15N values of ancient saiga are found around the Last Glacial Maximum, reflecting the influence of the cold conditions at that time. On the other hand, fossil saiga occupying the same regions as the historical and modern populations exhibit high δ15N values similar to the modern ones, confirming ecological continuity over time. Modern saiga is thus occupying just one of its potential diverse habitats they used in the past. Therefore, the extant saiga is not a refugee species confined to a suboptimal habitat. During the late Pleistocene, the saiga occupied a separate niche compared with the other ungulates of the mammoth steppe. However, this species could also adapt to a lichen-dominated diet normally seen in reindeer, leading to an isotopic overlap between the two species in south-western France and Alaska around the Last Glacial Maximum. This adaptation allowed a geographical expansion that does not correspond to a

  4. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    Science.gov (United States)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  5. Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C/N ratio

    Science.gov (United States)

    Li, Yuan; Zhang, Haibo; Tu, Chen; Fu, Chuancheng; Xue, Yong; Luo, Yongming

    2016-11-01

    The transport of organic matter in coastal areas plays an important role in global biogeochemical cycles. The present study used stable isotopes including carbon (δ13C) and nitrogen (δ15N) and C/N ratio to assess the sources and fate of organic carbon and nitrogen in soils and sediments of a coastal plain-river plume-bay system. Changes of the δ13C and δ15N values from natural to agricultural soils in the Yellow River coastal plain reflected the contribution of C4 carbon, decomposition of organic matter and application of nitrogen fertilizer. The organic carbon in the marine sediments adjacent to the coastal plain mainly originated from C3-dominated terrestrial systems. The spatial heterogeneity of both δ13C and δ15N values indicated that Yellow River sediment transport and anthropogenic wastewater discharge were two driving forces for the sedimentary organic carbon and nitrogen dynamics in large river plume and inner bay areas. Meanwhile, the marine primary production and denitrification process as affected by excessive nutrient input also contributed to the cycling of organic matter. Wetland soils, cropland soils, vegetable soils, coastal and deep-sea sediments were the five systems controlling the cycle of organic carbon and nitrogen in the study area. A significant positive correlation between δ13C and δ15N in the Yellow River coastal plain-plume-bay region was observed, which implied the flux of organic matter from a labile pool in source regions into a more recalcitrant pool in sink regions. These findings would provide a better understanding of carbon sequestration in the coastal soil and sediment.

  6. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    Science.gov (United States)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  7. Variations in carbon isotope ratios of C_3 plants and distribution of C_4 plants along an altitudinal transect on the eastern slope of Mount Gongga

    Institute of Scientific and Technical Information of China (English)

    LI JiaZhu; WANG GuoAn; LIU XianZhao; HAN JiaMao; LIU Min; LIU XiaoJuan

    2009-01-01

    Variations in carbon isotopic ratios (δ~(13)C) of C_3 plants and distribution of C_4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga,and the environmental effects on them were discussed,it is shown that plants with C_4 photosynthetic pathway mainly occur at altitudes below 2100 m a.a.l.,suggesting that the low summer temperature is responsible for the distributional pattern.In addition,δ~(13)C of C_3 plants increases with elevation at the region above 2000 m a.s.l,with the characteristics of humid climate,and the increase rate in δ~(13)C for C_3 plants is about 1.3‰ per kilometer.Temperature determines the altitudinal trend of δ~(13)C.

  8. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    Science.gov (United States)

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.

  9. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    Science.gov (United States)

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  10. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; Jones, J. H.; Franz, H.

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  11. Quantifying sediment source contributions in coastal catchments impacted by the Fukushima nuclear accident with carbon and nitrogen elemental concentrations and stable isotope ratios

    Science.gov (United States)

    Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier

    2016-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are

  12. Carbon isotope geochemistry in the Yalujiang estuary

    Institute of Scientific and Technical Information of China (English)

    吴莹; 张经

    2001-01-01

    The distribution of particulate organic carbon (POC) along the lower reaches is similar between the dry season and the flood season in the Yalujiang Estuary, North China. However, the values of particulate organic carbon of the upperstream in the dry season are one magnitude lower than the concentrations in the flood season. Stable carbon isotope ratios have been used to study the sources of particulate organic carbon in the Yalujiang Estuary. The isotopic composition of POC shows a range from -23.1‰ to -29.4‰ with a little seasonal variation. The isotopic evidence indicates that the POC in the Yalujiang Estuary is predominantly of terrestrial origin rather than a result of in situ plankton. The study of the ratio of POC: Chla shows that the turbidity maximum plays an important role in POC cycle in the Yalujiang Estuary. Organic detritus and soil erosion are the main contributions to POC in the turbidity maximum, especially in the flood season.

  13. 气相色谱-燃烧-同位素比值质谱法测定单体氨基酸的碳稳定同位素组成%Analysis of Stable Carbon Isotope Composition of Individual N-Trifluoroacetyl-Isopropyl Amino Acid Esters by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    蔡德陵; 刘金钟; 刘海珍

    2004-01-01

    A combined gas chromatography combustion-isotope ratio mass spectrometry method(GC-C IRMS) for stable carbon isotope analysis of amino acids is presented. Unlike hydrocarbons, amino acids require derivatization prior to GC-C-IRMS analysis. Replicate carbon isotope analyses of trifluoroacetyl isopropyl ester derivatives of 17 amino acids by IRMS revealed that the derivatization process is reproducible. Due to a reproducible isotopic fractionation an empirical correction factor for each individual amino acid is derived separately for derivatives and the original δ13C value of the underivatized amino acid is calculated.

  14. Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures.

    Science.gov (United States)

    Jautzy, Josué; Ahad, Jason M E; Gobeil, Charles; Savard, Martine M

    2013-06-18

    Evaluating the impact that airborne contamination associated with Athabasca oil sands (AOS) mining operations has on the surrounding boreal forest ecosystem requires a rigorous approach to source discrimination. This study presents a century-long historical record of source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dated sediments from two headwater lakes located approximately 40 and 55 km east from the main area of open pit mining activities. Concentrations of the 16 Environmental Protection Agency (EPA) priority PAHs in addition to retene, dibenzothiophene (DBT), and six alkylated groups were measured, and both PAH molecular diagnostic ratios and carbon isotopic signatures (δ(13)C) of individual PAHs were used to differentiate natural from anthropogenic inputs. Although concentrations of PAHs in these lakes were low and below the Canadian Council of Ministers of the Environment (CCME) guidelines, diagnostic ratios pointed to an increasingly larger input of petroleum-derived (i.e., petrogenic) PAHs over the past 30 years concomitant with δ(13)C values progressively shifting to the value of unprocessed AOS bitumen. This petrogenic source is attributed to the deposition of bitumen in dust particles associated with wind erosion from open pit mines.

  15. Environmental controls on stable isotope ratios in New Zealand Podocarpaceae : implications for palaeoclimate reconstruction.

    OpenAIRE

    Brett, M.J.; Baldini, J. U. L.; Gröcke, D. R.

    2014-01-01

    Stable isotope ratios of various proxies are widely used for palaeoclimate reconstruction, and it is often assumed that isotope ratios reflect vegetation abundance or type. However, very little research exists on the isotopic equilibration of extant biomes under variable environmental conditions. In this study, carbon and oxygen isotope ratios from leaves of various Podocarpaceae genera, endemic to New Zealand, are linked to environmental parameters from the Land Environments New Zealand mode...

  16. New organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils.

    NARCIS (Netherlands)

    Bijma, Anita

    2016-01-01

    An international project developed, quality-tested, and determined isotope–δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (c

  17. The role of synoptic, seasonal, and inter-annual climate on the carbon isotope ratio of ecosystem respiration in a semi-arid woodland

    Science.gov (United States)

    Shim, J.; Powers, H. H.; Meyer, C.; Pockman, W.; McDowell, N.

    2010-12-01

    The terrestrial carbon cycle is influenced by environmental variability at time scales ranging from synoptic to inter-annual. Here we present five-years of nightly growing season (day 100-300) observations of the carbon isotope ratio of ecosystem respiration (δ 13CR) from a semi-arid, Juniperus monosperma dominated woodland. This ecosystem experienced large environmental changes, including variable frequency and intensity of precipitation-pulses and timing and intensity of droughts and monsoon seasons. Mean δ 13CR was remarkably invariant (-23.57 + 0.4 ‰), with the only exception being particularly enriched δ 13CR in 2006 following a winter with anomalously low snowfall and during other seasonal periods of low soil water content (SWC). δ 13CR was strongly coupled to climate and physiology during the dry pre-monsoon periods (typically May-June), including fast (≤2 days) responses to changes in juniper canopy conductance (Gc) and vapor pressure deficit (VPD) following rain pulses. In contrast, δ 13CR was relatively de-coupled from Gc and environmental drivers during monsoon and post-monsoon periods (July-August and September, respectively). During these latter two seasons, δ 13CR values approached the δ 13C of soil organic matter and response times to VPD and SWC were lagged significantly longer than for pre-monsoon periods (eight days average). Rainfall events caused clear immediate depletions in δ13CR,followed by progressive hourly δ 13CR enrichment. Rates of soil respiration were elevated during wet periods and had values similar to δ 13CR. These results are consistent with the source of ecosystem respiration shifting from autotrophic dominance utilizing recently assimilated C substrates in the pre-monsoon drought to an increasing heterotrophic decomposition of older carbon during the wetter monsoon and post-monsoon periods.

  18. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in marine zooplankton

    Energy Technology Data Exchange (ETDEWEB)

    Pomerleau, Corinne, E-mail: corinne.pomerleau@umanitoba.ca [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Greenland Institute of Natural Resources, Kivioq 2, Nuuk 3900, Greenland (Denmark); Stern, Gary A.; Pućko, Monika [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Foster, Karen L. [Foster Environmental, Peterborough, ON K9J 8L2 (Canada); Macdonald, Robie W. [Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2 (Canada); Fortier, Louis [Québec-Océan, Département de Biologie, Université Laval, Québec, QC G1V 0A6 (Canada)

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as “keystone” species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ{sup 15}N and lower δ{sup 13}C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. - Highlights: • Assessment of Pan-Arctic variability in zooplankton Hg concentrations • Increased exposure to Hg in the marine food chain of the southern Beaufort Sea • Zooplankton plays a central role in the Hg pathway within Arctic marine food webs.

  19. Source apportionment of environmental PAHs using compound-specific stable carbon isotope ratio measurements combined with molecular approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chao Li; Mick Cooper; Chenggong Sun [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2007-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are a series of highly toxic and/or carcinogenic pollutants in the environment. They are widely distributed in various environmental sedimentary systems, airborne particulates and other environmental elements. The sources of PAHs are manifold, including coal utilisation (combustion, carbonisation and gasification), biomass burning, public transportation, and natural gas utilisation. In order to control emissions and to understand the transformation, environmental pathways and therefore the impact of PAHs from individual emission sources, it is necessary to develop techniques to facilitate these needs. The traditional method of source apportionment is through molecular methods, such as via molecular biomarkers or by the utilisation of specific ratios of certain PAHs diagnostic of their origins. However, this often proves ambiguous, because of the large variety of emission sources and by molecular alteration caused by a combination of any numbers of environmental factors e.g. biodegradation, transformation, sorption/desorption, leaching and photo-oxidation. 17 refs., 5 figs., 6 tabs.

  20. Spatial variability of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in an Arctic marine food web

    DEFF Research Database (Denmark)

    Hansen, Joan Holst; Hedeholm, Rasmus Berg; Sünksen, Kaj;

    2012-01-01

    Stable isotopes of carbon (δ13C) and nitrogen (δ15N) were used to examine trophic structures in an arctic marine food web at small and large spatial scales. Twelve species, from primary consumers to Greenland shark, were sampled at a large spatial scale near the west and east coasts of Greenland...

  1. Carbon isotope ratio analysis of organic moieties from fossil mummified wood: establishing optimum conditions for off-line pyrolysis extraction using gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Poole, I.J.; Bergen, P.F. van

    2002-01-01

    Mummified fossil wood was studied using off-line pyrolysis-gas chromatography/mass spectrometry to reveal detailed insights into the pyrolysis conditions that are needed to obtain simultaneously sufficient amounts of both cellulose and lignin markers for stable carbon isotope analyses. The off-line

  2. Carbon isotope geochemistry and geobiology

    Science.gov (United States)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  3. Seasonal variations of stable carbon isotopic ratios and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2011-11-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a~deciduous forest in Northern Japan during 2009–2010. Stable carbon isotopic ratios of WSOC (δ13CWSOC in aerosols exhibited a distinct seasonal cycle, with lower values from June through September (−25.5 ± 0.5‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~ 40% of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~ 57% to the WSOC near the canopy floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the canopy floor. Together with the similar vertical gradients found for WSOC and δ13CWSOCas well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of the WSOC within a~forest canopy at the study site.

  4. Soil Carbon: Compositional and Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Alexander, M. L.; Laskin, Alexander

    2016-11-01

    This is a short chapter to be included in the next edition of the Encyclopedia of Soil Science. The work here describes techniques being developed at PNNL for investigating organic carbon in soils. Techniques discussed include: laser ablation isotope ratio mass spectrometry, laser ablation aerosol mass spectrometry, and nanospray desorption electrospray ionization mass spectrometry.

  5. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  6. Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: Patterns and climatic signals

    Science.gov (United States)

    Gebrekirstos, Aster; Worbes, Martin; Teketay, Demel; Fetene, Masresha; Mitlöhner, Ralph

    2009-04-01

    Although several proxies have been proposed to trace the course of environmental and climatological fluctuations, precise paleoclimate records from the tropics, notably from Africa are still sorely lacking today. Stable carbon isotopes ( δ13C) in tree rings are an attractive record of climate. In this study, the patterns and climatic signals of δ13C ratios were determined on tree rings of deciduous ( Acacia senegal, Acacia tortilis, Acacia seyal) and an evergreen ( Balanites aegyptiaca) species, from a semi-arid Acacia Woodland in Ethiopia. δ13C inter-annual patterns are synchronous among the co-occurring species. A declining trend with time was observed in δ13C, notably for B. aegyptiaca, which could be due to anthropogenic increases in atmospheric CO 2 concentration and decrease in atmospheric δ13C. Tree ring δ13C values of all the species revealed significant negative correlation with precipitation amount but not with temperature and relative humidity. The δ13C series of the deciduous species shows a higher correlation ( r = - 0.70 to - 0.78) with precipitation than the evergreen species ( r = - 0.55). A master δ13C series, composed of the average of the three Acacia species, displayed stronger significant correlation ( r = - 0.82) than any of the individual species δ13C series. The weak relationship between temperature and δ13C in this study indicates that photosynthetic rate is not a significant factor. Moisture stress, however, may have a direct impact on the stomatal conductance and explain the strong negative relationship between δ13C and precipitation. The results demonstrate the potential of δ13C in tree rings to reflect physiological responses to environmental changes as a vehicle for paleoclimatic reconstruction, which is important to understand tree response to past and future climate change.

  7. Pacific Ocean–Wide Profile of CYP1A1 Expression, Stable Carbon and Nitrogen Isotope Ratios, and Organic Contaminant Burden in Sperm Whale Skin Biopsies

    Science.gov (United States)

    Godard-Codding, Céline A.J.; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G.; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C.; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L.; Cox, Stephen B.; Kerr, Iain; Payne, Roger; Stegeman, John J.

    2011-01-01

    Background Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. Objective We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. Methods We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Results Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales’ sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Conclusions Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically

  8. Carbon Monoxide Mixing Ratio System

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) Carbon Monoxide (CO) system provides high-precision atmospheric concentration measurements of CO mixing ratio (ppbv dry air) every 10...

  9. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  10. [On-line method for measurement of the carbon isotope ratio of atmospheric methane and its application to atmosphere of Yakela condensed gas field].

    Science.gov (United States)

    Tang, Jun-Hong; Bao, Zheng-Yu; Xiang, Wu; Qiao, Sheng-Ying; Li, Bing

    2006-01-01

    An on-line method for measurement of the 13C/12C ratio of methane by a gas chromatography/high-temperature conversion/ isotope ratio mass spectrometry (GC/C/MS) technique was developed. This method is less laborious, more rapid (45 min), of high precision (+/- 0.4 x 10(-3)) and by using a small amount of sample (about 200 mL of atmosphere). Its application to isotopic characterization, and hence methane source identification, was demonstrated by examination of atmosphere sample collected in Yakela condensed gas field, China. The average 13C/12C ratio of atmospheric methane in Yakela field was -45.0 x 10(-3) heavier by 1.2 x 10(-3) -2.0 x 10(-3) than the global average. This is caused by seepage and diffusing of methane from Yakela condensed gas reservoir. The concentrations of atmospheric methane in daytimes are found to be lower than those in nighttimes, and the corresponding 13C/12C ratios in daytimes are lighter compared to those in nighttimes, a phenomena probably caused by the fact that a small part of methane from Yakela condensate reservoir is consumed in soil's surface under sunlight.

  11. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa

    Science.gov (United States)

    Garcin, Yannick; Schefuß, Enno; Schwab, Valérie F.; Garreta, Vincent; Gleixner, Gerd; Vincens, Annie; Todou, Gilbert; Séné, Olivier; Onana, Jean-Michel; Achoundong, Gaston; Sachse, Dirk

    2014-10-01

    Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane δ13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the δ13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary δ13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4‰ to -26.5‰) were generally within the range of δ13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the δ13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using δ13C values from both C3 and C4

  12. Deciphering Carbon Isotope Excursions in Separated Biogenic and Diagenetic Carbonates

    Science.gov (United States)

    Hermoso, M.; Minoletti, F.; Hesselbo, S.; Jenkyns, H.; Rickaby, R.; Diester-Haass, L.; Delsate, D.

    2008-12-01

    The long-term evolution of the carbon-isotope ratio in the sedimentary archive is classically linked with changes in primary productivity and organic matter burial. There have been sudden and pronounced shifts, so-called Carbon Isotope Excursions (CIEs) in the long-term trends as evidenced by synchronous shifts from various basins. These geochemical perturbations may have various explanations such as changes of the efficiency of the carbon sink; sudden infusion of isotopically-light carbon into the Ocean-Atmosphere system; or advection of 12C-rich source from bottom water in a stratified water column. Beside the record of primary changes in seawater chemistry, a possible diagenetic overprint may also mime such CIEs in the sedimentary record. The aim of this contribution is to illustrate through three critical intervals (the Early Toarcian, the K-P boundary and the Mid-Miocene Montery Event) how the various micron-sized sedimentary particles specifically record these CIEs, which are respectively associated with major paleoceanographical events. New techniques for getting monotaxic calcareous nannofossil assemblages from the sediment (Minoletti et al., accepted) enable the isotopic measurement at various depths within the surface water and from bottom water by analyzing early diagenetic precipitations (rhombs and micarbs). The integration of these high-resolution isotopic signals in terms of amplitudes affords to recognize diagenetic artifacts in some sections displaying coeval decrease in the carbonate content. For both Early Toarcian and K-P events, corroborative records of CIE records in both primary calcite and bottom water carbonate indicate a global C-isotope perturbation of the water column. For the Monterey event, the evolution of calcareous nannoplankton and the foraminifera isotopic records are in overall agreement, but in detail, the coccolith-discoaster and foraminifer ratio in the sediment, related to environmental changes, is likely to produce isotopic

  13. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments

    DEFF Research Database (Denmark)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert;

    2015-01-01

    . However, experimental verification of the subtle isotopic shifts associated with SOC turnover under field conditions is scarce. We determined δ13C and SOC in soil sampled during 1929–2009 in the Ap-horizon of five European long-term bare fallow experiments kept without C inputs for 27–80 years...... not disclosed in our study, but the very similar kinetics measured across our five experimental sites suggest that overall site-specific factors (including climate) had a marginal influence and that it may be possible to isolate a general mechanism causing the enrichment, although pre-fallow land use may have...... examined. The overall estimate of the fractionation coefficient (ε) was −1.2 ± 0.3 ‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in 13C natural abundance. The variance of ε may be ascribed to site characteristics...

  14. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    Science.gov (United States)

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  15. Estimating the Isotope Ratio of Ecosystem Respiration Using the Keeling Plot and the Flux Ratio Method

    Science.gov (United States)

    Zhang, J.; Griffis, T. J.; Baker, J. M.

    2004-12-01

    Stable carbon isotope analyses have been used in identifying global carbon sources and sinks and in partitioning ecosystem CO2 exchange into component fluxes. The isotope ratio of ecosystem respiration (δ 13Cr) is a critical parameter in applying stable isotope techniques to carbon cycle problems. The commonly used Keeling plot method in estimating δ 13Cr has limitations related to: 1) insufficient range of CO2 mixing ratio; 2) high sensitivity to curve-fitting techniques; and 3) extrapolation of CO2 mixing ratio beyond observations. In this study, the Keeling plot method was examined and compared with the flux ratio approach using continuous measurements of the mixing ratios of 12CO2 and 13CO2 over an extensive corn canopy during the 2003 growing season. The seasonal variation of δ 13Cr estimated from both methods harmonized with the ecosystem phenology. The δ 13Cr started to increase (became more positive) from mid June and peaked in early August, followed by a decrease into October. The Keeling plot method agreed well with the flux ratio method in the seasonal pattern of δ 13Cr, but tended to give lower values (more negative). The discrepancy between the two approaches was significant in July and August (about 5 per mil) and relatively small in June and September (about 1 to 2 per mil). We examined this discrepancy with respect to wind direction/advection and measurement footprints. In addition, our analysis of high-frequency data (every two minutes) using the flux ratio method indicates that δ 13Cr may vary significantly at short time-scales (e.g., hourly), which could have significant implications for flux partitioning studies.

  16. Trans-boundary secondary organic aerosol in western Japan indicated by stable carbon isotope ratio of low volatile water-soluble organic carbon and signal at m/z 44 in organic aerosol mass spectra

    CERN Document Server

    Irei, Satoshi; Hayashi, Masahiko; Hara, Keiichiro; Kaneyasu, Naoki; Sato, Kei; Arakaki, Takemitsu; Hatakeyama, Shiro; Hikida, Toshihide; Shimono, Akio

    2013-01-01

    Field studies were conducted in the winter of 2010 at two rural sites and an urban site in western Japan, and filter samples of total suspended particulate matter were collected every 24-h and analyzed for concentration and stable carbon isotope ratio (delta13C) of low volatile water-soluble organic carbon (LV-WSOC). Concentration of major chemical species in fine aerosol (<1.0 micron) was also measured in real time by Aerodyne aerosol mass spectrometers. Oxidation state of organic aerosol was evaluated using the proportion of signal at m/z 44 (fragment ions of carboxyl group) to the sum of all m/z signals of organic mass spectra (f44). Analyses show a high correlation between LV-WSOC and m/z 44 concentrations, suggesting that the LV-WSOC is substantially composed of water soluble carboxylic acids in the fine aerosol. Plots of delta13C of LV-WSOC versus f44 exhibit systematic trends at the rural sites and random variation at the urban site. The systematic trends qualitatively agree with a simple binary mix...

  17. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  18. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  19. The separation of stable isotopes of carbon

    Science.gov (United States)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  20. Isotopic ratios at z=0.68 from molecular absorption lines toward B 0218+357

    CERN Document Server

    Wallstrom, S H J; Guelin, M

    2016-01-01

    Isotopic ratios of heavy elements are a key signature of the nucleosynthesis processes in stellar interiors. The contribution of successive generations of stars to the metal enrichment of the Universe is imprinted on the evolution of isotopic ratios over time. We investigate the isotopic ratios of carbon, nitrogen, oxygen, and sulfur through millimeter molecular absorption lines arising in the z=0.68 absorber toward the blazar B 0218+357. We find that these ratios differ from those observed in the Galactic interstellar medium, but are remarkably close to those in the only other source at intermediate redshift for which isotopic ratios have been measured to date, the z=0.89 absorber in front of PKS1830-211. The isotopic ratios in these two absorbers should reflect enrichment mostly from massive stars, and they are indeed close to the values observed toward local starburst galaxies. Our measurements set constraints on nucleosynthesis and chemical evolution models.

  1. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  2. Carbon isotopic composition of individual Precambrian microfossils.

    Science.gov (United States)

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  3. Carbon isotopic composition of individual Precambrian microfossils

    Science.gov (United States)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  4. Environmental controls on stable isotope ratios in New Zealand Podocarpaceae: Implications for palaeoclimate reconstruction

    Science.gov (United States)

    Brett, Marianne J.; Baldini, James U. L.; Gröcke, Darren R.

    2014-09-01

    Stable isotope ratios of various proxies are widely used for palaeoclimate reconstruction, and it is often assumed that isotope ratios reflect vegetation abundance or type. However, very little research exists on the isotopic equilibration of extant biomes under variable environmental conditions. In this study, carbon and oxygen isotope ratios from leaves of various Podocarpaceae genera, endemic to New Zealand, are linked to environmental parameters from the Land Environments New Zealand model. The dominant influence on stable isotope ratios within the majority of Podocarpaceae studied here is vapour pressure deficit (VPD). A simple latitudinal trend does not exist, and neither temperature nor rainfall (decoupled from VPD) controls the stable isotope ratios. The results suggest that modern spatial heterogeneity in VPD affects the stable isotope values of vegetation, and that historic VPD variability would change the stable isotope ratios of Podocarpaceae without necessitating a change in vegetation type, density, or productivity. This represents an alternative model for temporal isotope change within geochemical proxies and reinforces the need for increased stable isotopic research in modern plant ecosystems to better understand modern, and eventually palaeoclimatic processes affecting the terrestrial biosphere.

  5. Investigations of the ratios of stable carbon isotopes in atmospheric relevant VOC using simulation and field experiments; Untersuchungen der Verhaeltnisse stabiler Kohlenstoffisotope in atmosphaerisch relevanten VOC in Simulations- und Feldexperimenten

    Energy Technology Data Exchange (ETDEWEB)

    Spahn, Holger

    2010-07-01

    Volatile organic compounds (VOC) play an important role in the regional and global atmospheric chemistry. The author of the contribution under consideration reports on the analysis of the ratios of stable carbon isotopes ({delta}({sup 13}C) analysis) in atmospheric VOCs. At first, the state of the art of this analytical technique is described. For the first time {delta}({sup 13}C) values of different monoterpenes have been determined in the investigation of vegetable emissions at a plant chamber. By means of the oxidation of {beta}-pinene by ozone in an aerosol chamber, the kinetic isotope effect of this reaction was determined. In southern Germany, air samples for the {delta}({sup 13}C) analysis were collected using a zeppelin. This enables a height-resolved measurement of {delta}({sup 13}C) values. Based on these measurements, the average photochemical age for methanol, toluene and p-xylene at different heights was calculated.

  6. Intramolecular carbon isotope distribution of acetic acid in vinegar.

    Science.gov (United States)

    Hattori, Ryota; Yamada, Keita; Kikuchi, Makiko; Hirano, Satoshi; Yoshida, Naohiro

    2011-09-14

    Compound-specific carbon isotope analysis of acetic acid is useful for origin discrimination and quality control of vinegar. Intramolecular carbon isotope distributions, which are each carbon isotope ratios of the methyl and carboxyl carbons in the acetic acid molecule, may be required to obtain more detailed information to discriminate such origin. In this study, improved gas chromatography-pyrolysis-gas chromatography-combustion-isotope ratio mass spectrometry (GC-Py-GC-C-IRMS) combined with headspace solid-phase microextraction (HS-SPME) was used to measure the intramolecular carbon isotope distributions of acetic acid in 14 Japanese vinegars. The results demonstrated that the methyl carbons of acetic acid molecules in vinegars produced from plants were mostly isotopically depleted in (13)C relative to the carboxyl carbon. Moreover, isotopic differences (δ(13)C(carboxyl) - δ(13)C(methyl)) had a wide range from -0.3 to 18.2‰, and these values differed among botanical origins, C3, C4, and CAM plants.

  7. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  8. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    Science.gov (United States)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  9. Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals.

    Science.gov (United States)

    Jaouen, Klervia; Szpak, Paul; Richards, Michael P

    2016-01-01

    Carbon and nitrogen stable isotope ratios of bone collagen are an established method for dietary reconstruction, but this method is limited by the protein preservation. Zinc (Zn) is found in bioapatite and the isotopic compositions of this element constitute a very promising dietary indicator. The extent of fractionation of Zn isotopes in marine environments, however, remains unknown. We report here on the measurement of zinc, carbon and nitrogen isotopes in 47 marine mammals from the archaeological site of Arvik in the Canadian Arctic. We undertook this study to test and demonstrate the utility of Zn isotopes in recent mammal bone minerals as a dietary indicator by comparing them to other isotopic dietary tracers. We found a correlation between δ66Zn values and trophic level for most species, with the exception of walruses, which may be caused by their large seasonal movements. δ6Zn values can therefore be used as a dietary indicator in marine ecosystems for both modern and recent mammals.

  10. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation......Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past...... related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...

  11. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  12. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  13. Advances in laser-based isotope ratio measurements: selected applications

    OpenAIRE

    Kerstel, E; Gianfrani, L.

    2008-01-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are be...

  14. Stable isotope ratio method for the characterisation of the poultry house environment.

    Science.gov (United States)

    Skipitytė, Raminta; Mašalaitė, Agnė; Garbaras, Andrius; Mickienė, Rūta; Ragažinskienė, Ona; Baliukonienė, Violeta; Bakutis, Bronius; Šiugždaitė, Jūratė; Petkevičius, Saulius; Maruška, Audrius Sigitas; Remeikis, Vidmantas

    2017-06-01

    Stable isotope analysis was applied to describe the poultry house environment. The poultry house indoor environment was selected for this study due to the relevant health problems in animals and their caretakers. Air quality parameters including temperature, relative humidity, airflow rate, NH3, CO2 and total suspended particles, as well as mean levels of total airborne bacteria and fungi count, were measured. Carbon isotope ratios ((13)C/(12)C) were obtained in size-segregated aerosol particles. The carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotope ratios were measured in feed, litter, scrapings from the ventilation system, feathers and eggs. Additionally, the distribution of δ(13)C and δ(15)N values in different tissues of the chicken was examined. The airborne bacteria and fungi extracted from the air filters collected from poultry farms were grown in the laboratory in media with known isotope values and measured for stable isotope ratios. Analysis of isotope fractionation between microorganisms and their media indicated the applicability of stable isotope analysis in bulk samples for the identification of source material. The analysed examples imply that stable isotope analysis can be used to examine the indoor environment along with its biology and ecology, and serve as an informative bioanalytical tool.

  15. Isotope analytics for the evaluation of the feeding influence on the isotope ratio in beef samples; Isotopenanalytik zur Bestimmung des Einflusses der Ernaehrung auf die Isotopenzusammensetzung in Rinderproben

    Energy Technology Data Exchange (ETDEWEB)

    Herwig, Nadine

    2010-11-17

    Information about the origin of food and associated production systems has a high significance for food control. An extremely promising approach to obtain such information is the determination of isotope ratios of different elements. In this study the correlation of the isotope ratios C-13/C-12, N-15/N-14, Mg-25/Mg-24, and Sr-87/Sr-86 in bovine samples (milk and urine) and the corresponding isotope ratios in feed was investigated. It was shown that in the bovine samples all four isotope ratios correlate with the isotope composition of the feed. The isotope ratios of strontium and magnesium have the advantage that they directly reflect the isotope ratios of the ingested feed since there is no isotope fractionation in the bovine organism which is in contrast to the case of carbon and nitrogen isotope ratios. From the present feeding study it is evident, that a feed change leads to a significant change in the delta C-13 values in milk and urine within 10 days already. For the deltaN-15 values the feed change was only visible in the bovine urine after 49 days. Investigations of cows from two different regions (Berlin/Germany and Goestling/Austria) kept at different feeding regimes revealed no differences in the N-15/N-14 and Mg-26/Mg-24 isotope ratios. The strongest correlation between the isotope ratio of the bovine samples and the kind of ingested feed was observed for the carbon isotope ratio. With this ratio even smallest differences in the feed composition were traceable in the bovine samples. Since different regions usually coincide with different feeding regimes, carbon isotope ratios can be used to distinguish bovine samples from different regions if the delta C-13 values of the ingested feed are different. Furthermore, the determination of strontium isotope ratios revealed significant differences between bovine and feed samples of Berlin and Goestling due to the different geologic realities. Hence the carbon and strontium isotope ratios allow the best

  16. Metal Concentrations in the Liver and Stable Isotope Ratios of Carbon and Nitrogen in the Muscle of Silvertip Shark (Carcharhinus albimarginatus) Culled off Ishigaki Island, Japan: Changes with Growth.

    Science.gov (United States)

    Endo, Tetsuya; Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Kato, Yoshihisa; Fujii, Yukiko; Haraguchi, Koichi

    2016-01-01

    We analyzed Hg, Cd, Zn, Cu and Fe concentrations in liver samples as well as the Hg concentration and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle samples from silvertip sharks (Carcharhinus albimarginatus) in Japan. Muscular and hepatic Hg concentrations increased with increased body length. However, these increases were more prominent in the liver than in the muscle samples, and appeared to occur after maturation. Hepatic Zn and Cu concentrations decreased during the growth stage, and then increased concomitantly thereafter with increases in Cd burden. Hepatic Fe concentration from males increased proportionally with increases in body length, whereas no increase was observed in samples from females, probably due to the mother-to-embryo transfer of Fe. The δ13C values tended to decrease with increases in body length, whereas no decrease in the δ15N values was observed.

  17. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  18. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  19. Reconstruction of floral changes during deposition of the Miocene Embalut coal from Kutai Basin, Mahakam Delta, East Kalimantan, Indonesia by use of aromatic hydrocarbon composition and stable carbon isotope ratios of organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, S.; Bechtel, A.; Anggayana, K.; Puttmann, W. [University of Frankfurt, Frankfurt (Germany)

    2009-02-15

    The distribution of aromatic hydrocarbons and stable carbon isotope ratios of organic matter in a series of nine Miocene Embalut coal samples obtained from nine coal seams of Kutai Basin, East Kalimantan, Indonesia were studied. The rank of the Embalut coals ranged from lignites to low rank sub-bituminous coals (0.36-0.50% Rr), based on measurements of huminite reflectance. The aromatic hydrocarbon fractions of all coal samples were dominated by cadalene in the lower boiling point range and picene derivatives in the higher boiling point range of the gas chromatograms. Cadalene can be attributed to the contribution of Dipterocarpaceae and various hydrated picenes to the contribution of additional angiosperms to the coal forming vegetation. The picenes originate from {alpha}- and {beta}-amyrin. However, in some coal samples minor amounts of simonellite and retene were also detected which argues for an additional contribution of gymnosperms (conifers) to coal forming vegetation preferentially in the Middle Miocene and at the beginning of the Late Miocene. The results of stable carbon isotope ratios ({delta}{sup 13}C in most of the coal samples are consistent with their origin from angiosperms {delta}{sup 13}C between -27.09, and -28.0%). During the Miocene the climate of Mahakam Delta was not uniformly moist and cooler than the present day climate. This would have been favourable for the growth of conifers, especially in the montane forests. The contribution of conifers to the Embalut coals might be a result of the cool Middle/Late Miocene climate during peat accumulation in the Kutai Basin.

  20. Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India

    Indian Academy of Sciences (India)

    S Banerjee; S K Bhattacharya; S Sarkar

    2006-02-01

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the subtle controls of facies variation,depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood.The Vindhyan Super- group hosts four carbonate units,exhibiting a wide variability in depositional processes and paleogeography.A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values.It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis.The effect of diagenetic alteration is,however,more pronounced in case of oxygen isotopes than carbon isotopes.Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed.Major alteration of original isotope ratios was observed in case of shallow marine carbonates,which became exposed to meteoric fluids during early diagenetic stage.Duration of exposure possibly determined the magnitude of alteration and shift from the original values.Moreover,dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates.The present study suggests that variations in sediment depositional settings,in particular the possibility of subaerial exposure,need to be considered while extracting chronostratigraphic signi ficance from 13C data.

  1. Direct path integral estimators for isotope fractionation ratios

    CERN Document Server

    Cheng, Bingqing

    2014-01-01

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  2. Methods and limitations of 'clumped' CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry.

    Science.gov (United States)

    Huntington, K W; Eiler, J M; Affek, H P; Guo, W; Bonifacie, M; Yeung, L Y; Thiagarajan, N; Passey, B; Tripati, A; Daëron, M; Came, R

    2009-09-01

    The geochemistry of multiply substituted isotopologues ('clumped-isotope' geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. (13)C(18)O(16)O, (18)O(18)O, (15)N(2), (13)C(18)O(16)O(2) (2-)). Such species form the basis of carbonate clumped-isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped-isotope analysis by dual-inlet gas-source isotope ratio mass spectrometry (IRMS). We demonstrate long-term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 10(12) ohm resistor on three Thermo-Finnigan 253 IRMS systems. Based on the analyses of heated CO(2) gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO(2) molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of approximately 0.01 per thousand are routinely achieved for measurements of the mass-47 anomaly (a measure mostly of the abundance anomaly of (13)C-(18)O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is approximately 5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically approximately 10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped-isotope thermometry of +/-1.2 degrees C and +/-2.4 degrees C, respectively.

  3. Worldwide lead-isotope ratio in bivalves and sediments

    DEFF Research Database (Denmark)

    Larsen, Martin Mørk; Jacobsen, Gitte; Strand, Jakob;

    The lead-isotope ratio have been used to assess and identify impact of leaded gasoline, coal combustion and  mineral activities[ref 1] due to the difference in 206Pb (~52%), 207Pb (~24%) and 208Pb (~23%) isotope ratios. The source of these differences is the decaying of the parent isotopes of 238U...... to 206Pb, 235U to 207Pb and 232Th to 208Pb. 204Pb is the only stable Pb isotope usually contributing 1% of the total Pb. Differences in 206Pb/207Pb ratio ranges from 1.06 to 1.10 in old Pb ores (e.g. the time of the roman empire), whereas recent mining from radiogenic (high U and Th contents) ores can...

  4. Application of Organic Carbon and Nitrogen Stable Isotope and C/N Ratios as Source Indicators of Organic Matter Provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland

    Science.gov (United States)

    Thornton, S. F.; McManus, J.

    1994-03-01

    The source of particulate organic matter (POM) in lacustrine and estuarine sediments from the Tay River catchment has been evaluated using stable carbon and nitrogen isotope and elemental C/N ratios. The δ 13C, δ 15N and C/N compositions of POM from the two environments (respectively -25·4 to -28·0%, 0·2 to 4·0%, 12·17 to 19·5 and -23·2 to -26·6%, 2·6 to 10·6%, 9·03 to 15·71) were statistically distinct, enabling, by use of a simple two component mixing equation, assessment of the ability of each tracer to estimate the terrigenous flux to the estuarine organic matter pool. Estuarial mixing of terrigenous, indigenous estuarine and marine derived organics, recorded by δ 13C data, was only partly confirmed by equivalent δ 15N and C/N compositions which reflected greater control by organic matter diagenesis and biological processing. Limited data indicate sewage derived contributions are insignificant. Of the three tracers employed, only δ 13C ratios are reliable as provenance indicators. Both δ 15N and C/N ratios are limited because the original POM source signature may be lost or overprinted by biochemical alteration prior to and/or soon after deposition. The simultaneous application of these tracers provides substantially more information regarding the source, quality and turnover of sedimentary POM in these contrasting systems than could be achieved using one technique alone.

  5. Recent developments in the use of isotope ratio mass spectrometry in sports drug testing.

    Science.gov (United States)

    Piper, Thomas; Emery, Caroline; Saugy, Martial

    2011-08-01

    According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.

  6. Plutonium isotope ratio variations in North America

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory; Eisele, William F [Los Alamos National Laboratory; Fresquez, Philip R [Los Alamos National Laboratory; Mc Naughton, Michael [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  7. Measurement of Stable Carbon and Hydrogen Isotope in White Massive Natural Gas Hydrate by Gas Chromatography-Isotope Ratio Mass Spectrometry%GC-IRMS测定白色块状天然气水合物气体中的碳氢同位素

    Institute of Scientific and Technical Information of China (English)

    雷知生; 曹珺; 刘坚; 程思海; 陈道华

    2015-01-01

    Gas chromatography–isotope ratio mass spectrometry (GC–IRMS)method for measurement of carbon and hydrogen isotope in hydrocarbon gases was established.The hydrocarbon gases were separated by GC and turned to CO2 and H2 in high temperature,then determined by MAT–253 stable isotope spectrometry.The test results of carbon and hydrogen isotope in methane was consitent with its calibration standard value.The standard deviation of detection results of carbon and hydrogen were 0.222‰and 0.950‰,repectively.The method was used to determine the carbon and hydrogen isotope of natural gas hydrate bound gas drilled from Eastern Pearl River Mouth Basin ,theδ13C value was–69.78‰(VPDB),theδD value was–184.4‰(VSMOW).The GC–IRMS method has high accuracy, precision and wide range,it is suitable for determining carbon and hydrogen isotope in marine gas hydrate.%研究了GC–IRMS联用技术测定烃类气体碳氢稳定同位素的方法。利用气相色谱仪将烃类气体各组分分开,通过高温燃烧/裂解转化为CO2和H2,然后导入MAT–253稳定同位素质谱仪进行测试。用该方法测试的标准甲烷气体碳、氢同位素值和其标定值一致,测定结果的相对标准偏差分别为0.222‰和0.950‰。用该法测定了广东沿海珠江口盆地东部海域首次钻获的高纯度天然气水合物样品所释放的烃类气体碳氢稳定同位素值,其中δ13C为–69.78‰(VPDB),δD为–184.4‰(VSMOW)。GC–IRMS法精确度高,可用范围广,适用于海洋天然气水合物样品所释放烃类气体碳氢同位素的测定。

  8. D/H Isotope Ratio Measurements of Atmospheric Volatile Organic Compounds

    Science.gov (United States)

    Meisehen, Thomas; Bühler, Fred; Koppmann, Ralf; Krebsbach, Marc

    2015-04-01

    Analysis of isotope ratios in atmospheric volatile organic compounds (VOC) is a reliable method to allocate their sources, to estimate atmospheric residence times and investigate physical and chemical processes on various temporal and spatial scales. Most investigations yet focus on carbon isotope ratios. Certainly more detailed information can be gained by the ratio of deuterium (D) to hydrogen (H) in VOC, especially due to the high mass ratio. Combining measurements of carbon and hydrogen isotopes could lead to considerable improvement in our understanding of atmospheric processes. For this purpose we set up and thoroughly characterised a gas chromatograph pyrolysis isotope ratio mass spectrometer to measure the D/H ratio in atmospheric VOC. From a custom-made gas standard mixture VOC were adsorbed on Tenax®TA which has the advantage that CO2 is not preconcentrated when measuring ambient air samples. Our results show that the pyrolysis method has significant impact on the D/H ratios. A pyrolysis temperature of at least 1723 K and conditioning of the ceramic tube on a regular basis is essential to obtain reproducible D/H isotope ratios. For an independent comparison D/H ratios of the pure VOC used in the gas standard were determined using elemental analysis by Agroisolab (Jülich, Germany). Comparisons of 10 VOC show perfect agreement within the standard deviations of our measurements and the errors given by Agroisolab, e.g. for n-pentane, toluene, 4-methyl-2-pentanone and n-octane. A slight mean difference of 5.1 o was obtained for n-heptane while significant mean differences of 15.5 o and 20.3 o arose for 1,2,4-trimethylbenzene and isoprene, respectively. We further demonstrate the stability of our system and show that the sample preparation does not affect the isotope ratios. Moreover the applicability of our system to ambient air samples is demonstrated.

  9. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  10. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  11. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN, N.E.

    2005-08-13

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

  12. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  13. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures.

    Science.gov (United States)

    Gao, Xuelu; Yang, Yuwei; Wang, Chuanyuan

    2012-06-01

    Total organic carbon (TOC), total nitrogen (TN) and their δ(13)C and δ(15)N values were determined for 42 surface sediments from coastal Bohai Bay in order to determine the concentration and identify the source of organic matter. The sampling sites covered both the marine region of coastal Bohai Bay and the major rivers it connects with. More abundant TOC and TN in sediments from rivers than from the marine region reflect the situation that most of the terrestrial organic matter is deposited before it meets the sea. The spatial variation in δ(13)C and δ(15)N signatures implies that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Taking the area as a whole, surface sediments in the marine region of coastal Bohai Bay are dominated by marine derived organic carbon, which on average accounts for 62±11% of TOC.

  14. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  15. Oxygen isotopic ratios in intermediate-mass red giants

    CERN Document Server

    Lebzelter, Thomas; Hinkle, Kenneth; Nowotny, Walter; Aringer, Bernhard

    2015-01-01

    Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do ...

  16. Isotopic ratios at z = 0.68 from molecular absorption lines toward B 0218+357

    Science.gov (United States)

    Wallström, S. H. J.; Muller, S.; Guélin, M.

    2016-11-01

    Isotopic ratios of heavy elements are a key signature of the nucleosynthesis processes in stellar interiors. The contribution of successive generations of stars to the metal enrichment of the Universe is imprinted on the evolution of isotopic ratios over time. We investigate the isotopic ratios of carbon, nitrogen, oxygen, and sulfur through millimeter molecular absorption lines arising in the z = 0.68 absorber toward the blazar B 0218+357. We find that these ratios differ from those observed in the Galactic interstellar medium, but are remarkably close to those in the only other source at intermediate redshift for which isotopic ratios have been measured to date, the z = 0.89 absorber in front of PKS 1830-211. The isotopic ratios in these two absorbers should reflect enrichment mostly from massive stars, and they are indeed close to the values observed toward local starburst galaxies. Our measurements set constraints on nucleosynthesis and chemical evolution models. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A96

  17. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere

    NARCIS (Netherlands)

    Webster, C.R.; Mahaffy, P.R.; Flesch, G.J.; Niles, P.B.; Jones, J.H.; Leshin, L.A.; Atreya, S.K.; Stern, J.C.; Christensen, L.E.; Owen, T.; Franz, H.; Pepin, R.O.; Steele, A.; MSL Science Team, the

    2013-01-01

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ra

  18. Homogeneous diet of contemporary Japanese inferred from stable isotope ratios of hair

    Science.gov (United States)

    Kusaka, Soichiro; Ishimaru, Eriko; Hyodo, Fujio; Gakuhari, Takashi; Yoneda, Minoru; Yumoto, Takakazu; Tayasu, Ichiro

    2016-09-01

    The globalization of food production and distribution has homogenized human dietary patterns irrespective of geography, but it is uncertain how far this homogenization has progressed. This study investigated the carbon and nitrogen isotope ratios in the scalp hair of 1305 contemporary Japanese and found values of ‑19.4 ± 0.6‰ and 9.4 ± 0.6‰ (mean ± SD), respectively. Within Japan, the inter-regional differences for both isotope ratios was less than 1‰, which indicates low dietary heterogeneity among prefectural divisions. The carbon and nitrogen isotope ratios of the hair showed a significant correlation with the results of questionnaires on self-reported dietary habits. The carbon isotope ratios from Japan were lower than those in samples from the USA but higher than those in samples from Europe. These differences stem from the varying dietary proportions of food products originally derived from C3 and C4 plants. The dietary variation of Japan is as small as those of Europe and USA and smaller than those of some Asian countries. These results indicate that dietary homogeneity has progressed in Japan, which may indicate the influence from the spread of the Western-style diet and food globalization, although dietary heterogeneity among countries is still preserved.

  19. Heavy element stable isotope ratios: analytical approaches and applications.

    Science.gov (United States)

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  20. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C₃ and C₄ plants) syrups by the carbon isotope ratio analysis.

    Science.gov (United States)

    Guler, Ahmet; Kocaokutgen, Hasan; Garipoglu, Ali V; Onder, Hasan; Ekinci, Deniz; Biyik, Selim

    2014-07-15

    In the present study, one hundred pure and adulterated honey samples obtained from feeding honeybee colonies with different levels (5, 20 and 100 L/colony) of various commercial sugar syrups including High Fructose Corn Syrup 85 (HFCS-85), High Fructose Corn Syrup 55 (HFCS-55), Bee Feeding Syrup (BFS), Glucose Monohydrate Sugar (GMS) and Sucrose Sugar (SS) were evaluated in terms of the δ(13)C value of honey and its protein, difference between the δ(13)C value of protein and honey (Δδ(13)C), and C4% sugar ratio. Sugar type, sugar level and the sugar type*sugar level interaction were found to be significant (Phoney, Δδ(13)C (protein-honey), and C4% sugar ratio were used as criteria according to the AOAC standards. However, it was possible to detect the adulteration by using the same criteria in the honeys taken from the 20 and 100 L/colony of HFCS-85 and the 100L/colony of HFCS-55. Adulteration at low syrup level (20 L/colony) was more easily detected when the fructose content of HFCS syrup increased. As a result, the official methods (AOAC, 978.17, 1995; AOAC, 991.41, 1995; AOAC 998.12, 2005) and Internal Standard Carbon Isotope Ratio Analysis could not efficiently detect the indirect adulteration of honey obtained by feeding the bee colonies with the syrups produced from C3 plants such as sugar beet (Beta vulgaris) and wheat (Triticium vulgare). For this reason, it is strongly needed to develop novel methods and standards that can detect the presence and the level of indirect adulterations.

  1. Isotopic Ratios in Titan's Methane: Measurements and Modeling

    Science.gov (United States)

    Nixon, C. A.; Temelso, B.; Vinatier, S.; Teanby, N. A.; Bezard, B.; Achterberg, R. K.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G.; Jennings, D. E.; Romani, P. N.; Coustenis, A.; Flasar, F. M.

    2012-01-01

    The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  2. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  3. Exotic Structure of Carbon Isotopes

    CERN Document Server

    Suzuki, T; Hagino, K; Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2002-01-01

    We studied firstly the ground state properties of C-isotopes using a deformed Hartree-Fock (HF)+ BCS model with Skyrme interactions. Shallow deformation minima are found in several neutron$-$rich C-isotopes. It is shown also that the deformation minima appear in both the oblate and the prolate sides in $^{17}$C and $^{19}$C having almost the same binding energies. Secondly, we carried out shell model calculations to study electromagnetic moments and electric dipole transitions of the C-isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C-isotopes, which will be useful to find out the deformations and the spin-parities of the ground states of these nuclei. We studied electric dipole states of C-isotopes focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Reasonable agreement is obtained with available experimental data for the photoreaction cross sections both in the low energy region below $\\hbar \\omega $=14 MeV and ...

  4. Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?

    Science.gov (United States)

    Frei, R.; Gaucher, C.

    2010-12-01

    Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr

  5. The origin of carbon isotope vital effects in coccolith calcite

    Science.gov (United States)

    McClelland, H. L. O.; Bruggeman, J.; Hermoso, M.; Rickaby, R. E. M.

    2017-01-01

    Calcite microfossils are widely used to study climate and oceanography in Earth's geological past. Coccoliths, readily preserved calcite plates produced by a group of single-celled surface-ocean dwelling algae called coccolithophores, have formed a significant fraction of marine sediments since the Late Triassic. However, unlike the shells of foraminifera, their zooplankton counterparts, coccoliths remain underused in palaeo-reconstructions. Precipitated in an intracellular chemical and isotopic microenvironment, coccolith calcite exhibits large and enigmatic departures from the isotopic composition of abiogenic calcite, known as vital effects. Here we show that the calcification to carbon fixation ratio determines whether coccolith calcite is isotopically heavier or lighter than abiogenic calcite, and that the size of the deviation is determined by the degree of carbon utilization. We discuss the theoretical potential for, and current limitations of, coccolith-based CO2 paleobarometry, that may eventually facilitate use of the ubiquitous and geologically extensive sedimentary archive. PMID:28262764

  6. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    Dissolved gas ratios and isotopic compositions provide essential information about the biological and physical mechanisms influencing N-2, O-2, and Ar in aquatic systems. Current methods available are either limited by overall cost, labor-intensive sample collection and analysis, or insufficient ...

  7. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    Science.gov (United States)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  8. Development and application of liquid chromatography coupled to isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijun

    2014-02-19

    Stable isotope analysis has found widespread applications in various disciplines such as archaeology, geochemistry, biology, food authenticity, and forensic science. Coupling chromatography to isotope ratio mass spectrometry for compound-specific isotope analysis (CSIA) is a trend, as it provides several advantages over bulk isotope analysis, e.g., relatively simple sample preparation, the ability to measure individual compounds in a complex mixture in one run, and the reduced sample size required for precise isotope analysis. Gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS) has been well-established for compound-specific isotope analysis of volatile organic compounds within the last two decades. However, an interface combining liquid chromatography with isotope ratio mass spectrometry (LC/IRMS) was not commercially available until 2004. The current design of the interface requires using a carbon-free eluent in chromatographic separation. This requirement limits the application of the most frequently used reversed-phase liquid chromatography in CSIA, because the elution strength of water at room temperature is too low to serve as mobile phase in reversed-phase separations. In order to increase the elution strength of water, we propose using high temperature water for chromatographic elution. The polarity of water decreases with an increase of temperature, yielding increased elution strength in reversed-phase columns. Therefore, high temperature water can be used as eluent instead of organic solvent for combining reversed-phase liquid chromatography with isotope ratio mass spectrometry (RPLC/IRMS). Additionally, temperature gradients can replace organic solvent gradients to increase chromatographic resolution. This is very important for LC/IRMS analysis, as precise isotope analysis requires baseline separation of analytes. In this thesis, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully

  9. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    Science.gov (United States)

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly

    2008-12-15

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  10. 特定化合物碳同位素分析系统中的氧化反应装置的研制%Combustion Reactor for Compound Specific of Carbon Isotope Ratio Analysis

    Institute of Scientific and Technical Information of China (English)

    李中平; 李立武; 陶明信; 杜丽; 曹春辉; 王广; 徐义

    2012-01-01

    A combustion reactor, the intermediate junction part between the gas chromatography(GC) and the isotope ratio mass spectrometry (IRMS), was developed by self-designing the major parts (including heating systems, temperature-control unit, the reaction systems and the connector). Between 600℃ and 950℃ , several working temperature was adopted to test the oxidizing efficiency of the newly-developed oxidation reactor by using the most representative chemically-stable hydrocarbon compounds (CH4, C2H6 and C3H8)) the results showed that the oxidation working temperature can be controlled with a high accuracy (± 1℃) and the carbon isotope ratio of hydrocarbons (δ13 C1, δ13 C2 and δ13 C3 ) gradually became stable with the reaction temperature increased, which conforms to the regular pattern of δ13Calkane analysis. Through the δ13Calkane analysis of hydrocarbon samples of different carbon number (l≤n ≤31), including the standard multi-components gaseous hydrocarbons, liquid hydrocarbon compounds (international reference standard) and the geological oil and gas samples, the δ13 Calkane accuracy is better than ± (0.2 - 0.5)%o> which can fully meet the related research needs. For the low-cost design and construction, this newly-developed oxidation reactor device can effectively reduce the analysis cost and it had made a good application in the δ13Calkane analysis.%通过对比实验,研制了特定化合物碳同位素在线分析系统中连接气相色谱与同位素比质谱的核心部分——氧化反应装置,包括加热系统、氧化反应系统及接口系统,并以特定化合物的碳同位素分析为例,选用天然气工作标准样品,在600~950℃之间选择8个温度点进行了氧化反应实验,表明其碳同位素测定值(δ13C1,δ13C2,δ13C3)随反应温度升高而逐渐趋于稳定,符合氧化反应过程的一般规律.通过对不同碳数(1≤n≤31)烃类样品(工作标准、国际参考标准、天然气及原油样品)

  11. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  12. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    Science.gov (United States)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  13. Isotopic ratio of nitrogen on Titan: Photochemical interpretation

    Science.gov (United States)

    Krasnopolsky, Vladimir A.

    2016-12-01

    Nitrogen isotope fractionation in predissociation of N2 (Liang et al., 2007) is combined with production of N(4S), N(2D), and N+ in dissociation and dissociative ionization by the solar EUV photons, photoelectrons, magnetospheric electrons and protons, and cosmic rays from the photochemical model. The calculated 14N/15N ratio in nitriles is 57, in excellent agreement with the observed ratio in HCN. Loss of nitrogen in condensation and polymerization of nitriles is 392 g cm-2 Byr-1 with nitrogen isotope fractionation factor of 2.8. Loss of nitrogen by sputtering is 57 g cm-2 Byr-1 (De La Haye et al., 2007) with fractionation factor of 0.73 (Mandt et al., 2014). If the current loss was constant throughout the age of the Solar System, then the initial 14N/15N ratio on Titan is 129, similar to 127±32 for ammonia in comets (Rousselot et al., 2014). However, the solar EUV and wind were stronger from the young Sun, and this tends to further reduce the initial 14N/15N ratio. Nevertheless uncertainties of the problem and of the ratio in comets support the idea that nitrogen on Titan appeared as ammonia ice with 14N/15N similar to that in comets.

  14. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  15. Stable isotope ratios and uric acid preservation in termites belonging to three feeding habits in Thailand.

    Science.gov (United States)

    Tayasu, I; Hyodo, F; Takematsu, Y; Sugimoto, A; Inoue, T; Kirtibutr, N; Abe, T

    2000-01-01

    Nitrogen and carbon stable isotope ratios and uric acid concentrations in termites sampled from a dry evergreen forest in Thailand, were determined across three kinds of feeding habits. Feeding habits of Microcerotermes crassus, which is an abundant wood-feeder, and Dicuspiditermes makhamensis, a common soil-feeding termite, were confirmed by isotopic signatures. Lichen feeding termites (Hospitalitermes birmanicus, H. bicolor and H. ataramensis) were characterized by low delta15N values, suggesting that they assimilated nitrogen deposited from the atmosphere. There was also a significant difference in uric acid concentrations between termites representing different feeding habits. No significant relationships were found between uric acid concentrations and delta15N or delta13C in Hospitalitermes. However, delta15N values were correlated with C/N ratios in H. birmanicus, except in one colony of H. ataramensis. delta13C values in both species were negatively correlated with C/N ratios.

  16. TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES

    Energy Technology Data Exchange (ETDEWEB)

    Rousselot, Philippe; Cordier, Daniel; Mousis, Olivier [Institut UTINAM-UMR CNRS 6213, Observatoire des Sciences de l' Univers THETA, University of Franche-Comté, BP 1615, F-25010 Besançon Cedex (France); Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline; Gruet, Sébastien [Synchrotron SOLEIL, ligne AILES, UMR 8214 CNRS, L' orme des Merisiers, Saint-Aubin, F-91192 Gif-Sur-Yvette (France); Jehin, Emmanuël; Hutsemékers, Damien; Manfroid, Jean; Arpigny, Claude; Decock, Alice, E-mail: rousselot@obs-besancon.fr [Département d' Astrophysique, de Géophysique et d' Océanographie, Université de Liège, Allée du Six Août, B-4000 Liège (Belgium)

    2014-01-10

    Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the {sup 15}NH{sub 2} radical produced by the photodissociation of {sup 15}NH{sub 3}. Analysis of our data has permitted us to measure the {sup 14}N/{sup 15}N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N{sub 2} and NH{sub 3} result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N{sub 2}, supporting the hypothesis that, if the latter is representative of its primordial value in NH{sub 3}, these bodies were assembled from building blocks sharing a common formation location.

  17. Biomedical and Forensic Applications of Combined Catalytic Hydrogenation-Stable Isotope Ratio Analysis

    Directory of Open Access Journals (Sweden)

    Mark A. Sephton

    2007-01-01

    Full Text Available Studies of biological molecules such as fatty acids and the steroid hormones have the potential to benefit enormously from stable carbon isotope ratio measurements of individual molecules. In their natural form, however, the body’s molecules interact too readily with laboratory equipment designed to separate them for accurate measurements to be made.Some methods overcome this problem by adding carbon to the target molecule, but this can irreversibly overprint the carbon source ‘signal’. Hydropyrolysis is a newly-applied catalytic technique that delicately strips molecules of their functional groups but retains their carbon skeletons and stereochemistries intact, allowing precise determination of the carbon source. By solving analytical problems, the new technique is increasing the ability of scientists to pinpoint molecular indicators of disease, elucidate metabolic pathways and recognise administered substances in forensic investigations.

  18. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: Methane and hydrogen from the mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.R. (Univ. of Houston, University Park, TX (USA)); Taviani, M. (Instituto di Geologia Marina, del C.N.R., Bologna (Italy))

    1988-08-01

    D/H ratios in the pore waters of the sediments from the Norwegian Sea decrease as a function of depth to values as low as {minus}14{per thousand}. Oxygen isotope ratios in the pore waters and carbon and oxygen isotope ratios in carbonates both in the sediments and basalts are low. Extensive alteration of basalt has been given as the explanation for the low oxygen isotope ratios. Material balance calculations suggest that alteration of volcanic material and oxidation of organic matter cannot explain the hydrogen and carbon isotope anomalies. Arguments are presented suggesting that methane and hydrogen from the mantle are oxidized to carbon dioxide and water by sulfate and ferric iron in the basaltic crust to yield the low hydrogen and carbon isotope ratios.

  19. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela;

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  20. On-line determination of oxygen isotope ratios of water or ice by mass spectrometry.

    Science.gov (United States)

    Leuenberger, M; Huber, C

    2002-09-15

    Oxygen isotope ratio determination on any of the water phases (water vapor, water, ice) is of great relevance in different research fields such as climate and paleoclimate studies, geological surveys, and hydrological studies. The conventional technique for oxygen isotope measurement involves equilibration with carbon dioxide gas for a given time with a subsequent isotope determination. The equilibration technique is available in different layouts, but all of them are rather time-consuming. Here we report a new on-line technique that processes water samples as well as ice samples. The same principal, CO2 hydration, is used but speeded up by (i) a direct injection and full dissolution of CO2 in the water, (ii) an increased isotope exchange temperature at 50 degrees C, and (iii) a rapid gas extraction by means of an air-permeable membrane into a continuous helium flux supplying the isotope ratio mass spectrometer with the sample gas. The precision is better than 0.1/1000 which is only slightly larger than with the conventional equilibration technique. This on-line technique allows analysis of 1 m of ice with a resolution of 1-3 cm, depending on the meltwater flux, within 1 h. Similarly, continuous and fast analysis can be performed for aqueous samples for hydrological, geological, and perhaps medical applications.

  1. Emerging Techniques in Vegetable Oil Analysis Using Stable Isotope Ratio Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S. D.; Rhodes, C.

    2002-07-01

    As the practice of vegetable oil adulteration becomes more sophisticated, the possibility to subvert detection using established techniques such as capillary gas chromatography is increasing. One of the most powerful techniques to be used in food authenticity studies is stable isotope ratio mass spectrometry (SIRMS) which utilises differences in the natural abundance of the stable isotopes of the light bio elements hydrogen, nitrogen, carbon, oxygen and sulfur to detect food fraud. SIRMS has found application in the authentication of a wide range of foodstuffs, including fruit juices, wines, spirits, honey and to detect the adulteration of flavour compounds with synthetic analogues. This papers reviews the current state-of-the-art for the authentication of vegetable oils using SIRMS and highlights emergent techniques such as compound-an position specific-isotope mass spectrometry. These latter developments offer the potential to provide more rapid and improved detection of the economic adulteration of vegetable oils. (Author) 38 refs.

  2. The Effect of Aerosol Formation on Stable Isotopes Ratio in Titan's Atmosphere

    Science.gov (United States)

    Gautier, Thomas; Trainer, Melissa G.; Sebree, Joshua; Wold, Allison; Stern, Jennifer

    2016-10-01

    The formation of large amounts of aerosol in Titan atmosphere induces a significant sink for carbon and nitrogen in the atmosphere. Due to the high complexity of the chemistry leading to aerosol formation, there may be isotopic fractionation along the formation pathways of the aerosol. So far several stable isotopes have been measured in Titan atmosphere including the 13C/12C, 15N/14N and D/H ratios for different gaseous species. However, the fractionation effect of the aerosol formation and its impact on atmospheric stable isotope ratios has yet to be fully understood. Two experimental studies were recently published on the stable carbon [1] and nitrogen [1,2] isotope fractionation during aerosol formation in N2-CH4 reactant mixture. To better constrain the fractionation effect of aerosol formation on the Titan atmosphere we have measured the isotopic fractionation induced in laboratory aerosol analogues produced exploring the space of parameters that are expected to have an effect on fractionation processes. Parameters studied include pressure and temperature of aerosol formation and the reactant gas phase composition, including the standard "Titan" mixture of CH4/N2 as well as other trace species such as benzene (C6H6).[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: C and N Fractionation of CH /N Mixtures during Photochemical Aerosol Formation: Relevance to Titan, (2016) Icarus 270:421-428[2] Kuga, M., Carrasco, N., Marty, B., Marrochi, Y., Bernard, S., Rigaudier, T., Fleury, B., Tissandier, L.: Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles, (2014) EPSL 393:2-13

  3. Identifying the Presence of AMD-Derived Soil CO2 in Field Investigations Using Isotope Ratios

    Directory of Open Access Journals (Sweden)

    Kwame Awuah-Offei

    2016-03-01

    Full Text Available Recent incidents of hazardous accumulations of CO2 in homes on or adjacent to reclaimed mine land have been shown to be linked to neutralization reactions between acidic mine drainage and carbonate material. An efficient and economic method is necessary to identify the presence of acid mine drainage- (AMD- derived CO2 on reclaimed mine land, prior to construction. One approach to identify the presence of AMD-derived CO2 is to characterize stable carbon isotope ratios of soil CO2. To do so, a viable method is necessary to acquire soil gas samples for isotope ratio analysis. This paper presents preliminary investigations of the effectiveness of two methods of acquiring gas samples (sampling during soil flux measurements and using slam bar for isotope analysis. The results indicate that direct soil gas sampling is cheaper and provides better results. Neither method is adequate without accounting for temporal effects due to changing gas transport mechanisms. These results have significant implications for safe post-mining land uses and future investigations of leakages from geologic carbon sequestration sites.

  4. Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology?

    NARCIS (Netherlands)

    Poole, I.J.; Dolezych, M.; Kool, J.; Burgh, J. van der; Bergen, P.F. van

    2006-01-01

    Stable carbon isotope ratios of fossil wood from the Miocene brown coal deposits in former East Germany are compared with palaeobotanical and sedimentological data to test the use of stable isotopes in determining palaeoenvironment. Significant differences in the chemical composition of samples from

  5. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    Science.gov (United States)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for

  6. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    Science.gov (United States)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  7. The use of δ13C isotope ratio mass spectrometry for methamphetamine profiling: comparison of ephedrine and pseudoephedrine-based samples to P2P-based samples.

    Science.gov (United States)

    Toske, Steven G; Morello, David R; Berger, Jennifer M; Vazquez, Etienne R

    2014-01-01

    Differentiating methamphetamine samples produced from ephedrine and pseudoephedrine from phenyl-2-propanone precursors is critical for assigning synthetic route information for methamphetamine profiling. The use of isotope ratio mass spectrometry data is now a key component for tracking precursor information. Recent carbon (δ(13)C) isotope results from the analysis of numerous methamphetamine samples show clear differentiation for ephedrine and pseudoephedrine-produced samples compared to P2P-produced samples. The carbon isotope differences were confirmed from synthetic route precursor studies.

  8. The lithium isotopic ratio in very metal-poor stars

    CERN Document Server

    Lind, Karin; Asplund, Martin; Collet, Remo; Magic, Zazralt

    2013-01-01

    Un-evolved, very metal-poor stars are the most important tracers of the cosmic abundance of lithium in the early universe. Combining the standard Big Bang nucleosynthesis model with Galactic production through cosmic ray spallation, these stars at [Fe/H]<-2 are expected to show an undetectably small 6Li/7Li isotopic signature. Evidence to the contrary may necessitate an additional pre-galactic production source or a revision of the standard model of Big Bang nucleosynthesis. We revisit the isotopic analysis of four halo stars, two with claimed 6Li-detections in the literature, to investigate the influence of improved model atmospheres and line formation treatment. For the first time, a combined 3D, NLTE (non-local thermodynamic equilibrium) modelling technique for Li, Na, and Ca lines is utilised to constrain the intrinsic line-broadening and to determine the Li isotopic ratio. We discuss the influence of 3D NLTE effects on line profile shapes and assess the realism of our modelling using the Ca excitation...

  9. The relationship between carbon and oxygen isotopic composition characteristics of carbonates in loess sediments and paleoclimate

    Institute of Scientific and Technical Information of China (English)

    李春园; 王先彬; 文启彬; 邵波

    1995-01-01

    Based on the carbon and oxygen isotopic compositions of carbonates in loess sediments meas-ured by the methods of stepwise heating and phosphoric acid decomposition from five pieces of samples ofpaleosol,loess and eolian sand,respectively,the distributive characteristics in different temperature steps andthe fractionation mechanisms of carbon and oxygen isotope and their relation to the paleoclirnate are discussed.The preliminary results show that,by means of stepwise heating,different carbon and oxygen isotopiccompositions are obtained in different temperature steps and carbon and oxygen isotopic compositions ofpaleosol,loess and eolian sand are in a different distributive pattern in the range of studied temperaturesteps.The results also show that the δ13C ratios in 700-800℃ are more sensitive tracers of paleoclimatethan those measured by the method of phosphoric acid decomposition.The susceptibility to climatic changesof δ18O ratios analysed by the method of phosphoric acid decomposition is higher than those analysed by themethod of stepwise heating,but the δ18O ratios measured by these two methods do not effectively reflect cli-matic changes.

  10. Dietary heterogeneity among Western industrialized countries reflected in the stable isotope ratios of human hair.

    Directory of Open Access Journals (Sweden)

    Luciano O Valenzuela

    Full Text Available Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization. Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ(13C values (-22.7 to -18.3‰, and significantly higher δ(15N (7.8 to 10.3‰ and δ(34S (4.8 to 8.3‰ values than samples from the USA (δ(13C: -21.9 to -15.0‰, δ(15N: 6.7 to 9.9‰, δ(34S: -1.2 to 9.9‰. Within Europe, we detected differences in hair δ(13C and δ(34S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments.

  11. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  12. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  13. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  14. On the pros and cons of the IRMS technique of data processing: uncertainty in results, a case study for determining carbon and oxygen isotopic abundance ratios as CO_2^+

    CERN Document Server

    Datta, B P

    2011-01-01

    The properties of different relationships, representing the basic evaluation as well as its inputs and outputs shaping processes in the CO_2^+ isotope ratio mass spectrometry (IRMS), are studied. It is thus shown that the input generation by using only one auxiliary reference CO2 gas (ARCG) is an accuracy enhancing process, and clarified how the input-by-measurement uncertainty-ratio(s) could be ensured to be tens of folds less than unity. However, the known relationship for using two ARCGs appears to be neither of a logistical base nor better by application. A mathematically correct means for involving two or more than two ARCGs is worked out. However, the same is observed to be worse by behavior, i.e. causes the scale converted data to be more inaccurate than the measured data. The basic evaluation requires solving a set of equations. Using a typical set, it is exemplified that, and explained why, the solutions (determined elemental isotopic abundance ratios (EIARs)) are generally as representative as the i...

  15. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    Science.gov (United States)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  16. Forensic applications of light-element stable isotope ratios of Ricinus communis seeds and ricin preparations.

    Science.gov (United States)

    Kreuzer, Helen W; West, Jason B; Ehleringer, James R

    2013-01-01

    Seeds of the castor plant Ricinus communis are of forensic interest because they are the source of the poison ricin. We tested whether stable isotope ratios of castor seeds and ricin preparations can be used as a forensic signature. We collected over 300 castor seed samples worldwide and measured the C, N, O, and H isotope ratios of the whole seeds and oil. We prepared ricin by three different procedures, acetone extraction, salt precipitation, and affinity chromatography, and compared their isotope ratios to those of the source seeds. The N isotope ratios of the ricin samples and source seeds were virtually identical. Therefore, N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pairwise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  17. Maintaining high precision of isotope ratio analysis over extended periods of time.

    Science.gov (United States)

    Brand, Willi A

    2009-06-01

    Stable isotope ratios are reliable and long lasting process tracers. In order to compare data from different locations or different sampling times at a high level of precision, a measurement strategy must include reliable traceability to an international stable isotope scale via a reference material (RM). Since these international RMs are available in low quantities only, we have developed our own analysis schemes involving laboratory working RM. In addition, quality assurance RMs are used to control the long-term performance of the delta-value assignments. The analysis schemes allow the construction of quality assurance performance charts over years of operation. In this contribution, the performance of three typical techniques established in IsoLab at the MPI-BGC in Jena is discussed. The techniques are (1) isotope ratio mass spectrometry with an elemental analyser for delta(15)N and delta(13)C analysis of bulk (organic) material, (2) high precision delta(13)C and delta(18)O analysis of CO(2) in clean-air samples, and (3) stable isotope analysis of water samples using a high-temperature reaction with carbon. In addition, reference strategies on a laser ablation system for high spatial resolution delta(13)C analysis in tree rings is exemplified briefly.

  18. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  19. Helium and carbon isotopes in Indian diamonds

    Science.gov (United States)

    Wiens, R.; Lal, D.; Craig, H.

    1990-09-01

    Helium and carbon isotope measurements in Indian diamonds (from Andhra Pradesh) were carried out using samples that included mined diamonds from primary kimberlite source rocks and alluvial diamonds from river gravel. The He and C isotope concentrations in diamonds from these two sources were compared, and the Indian diamonds were compared to those from other regions. Results indicate that most of the He-3 in the alluvial diamonds is of cosmogenic origin and that the alluvial diamonds may also have a significant He-4 component due to alpha particles implanted during storage in a secondary matrix. One diamond, a mined kimberlite specimen, was found to have the lowest He-4 content (0.018 microcc/g) so far recorded in diamonds.

  20. The Precambrian marine carbonate isotope database: version 1.1.

    OpenAIRE

    G. A. Shields; Veizer, J.

    2002-01-01

    We present a compilation of strontium, carbon, and oxygen isotope compositions of roughly 10,000 marine carbonate rocks of Archean - Ordovician age (3800 Ma – 450 Ma). The Precambrian Marine Carbonate Isotope Database (PMCID) has been compiled from 152 published and 3 unpublished articles and books of the past 40 years. Also included are 30 categories of relevant “metadata” that allow detailed comparisons and quality assessments of the isotope data to be made. The PMCID will be updated period...

  1. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.; Puscas, R.; Radu, S.; Mirel, V. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania); Cordea, D. V.; Mihaiu, M. [University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca (Romania)

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  2. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    Science.gov (United States)

    Magdas, D. A.; Cristea, G.; Cordea, D. V.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Mihaiu, M.

    2013-11-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ18O and δ2H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ18O and δ2H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  3. Allochthonous carbon hypothesis for bulk OM and n-alkane PETM carbon isotope discrepancies

    Science.gov (United States)

    Baczynski, A. A.; McInerney, F. A.; Wing, S. L.; Kraus, M. J.; Fricke, H. C.

    2011-12-01

    correspond to the highest grain sizes and lowest weight percent carbon. We hypothesize that the difference between the n-alkane and DOC δ13C records is due to contamination of the DOC δ13C signal by weathering of older, refractory Jurassic-Cretaceous carbon. According to this hypothesis, before and after the CIE the difference in the isotopic composition of autochthonous (Cenozoic) and allochthonous (Jurassic-Cretaceous) organic matter would have been small because C3 plants in the Jurassic-Cretaceous and pre- and post-PETM had relatively similar values. Thus, the ratio of autochthonous: allochthonous organic matter would be uncorrelated with isotopic composition. During the CIE, the isotopic composition of autochthonous organic carbon decreased dramatically. Therefore, autochthonous and allochthonous carbon pools were isotopically distinct and a correlation between weight percent carbon and isotopic composition is expected: the lower the weight percent carbon, the higher the proportion of allochthonous carbon, the larger the anomaly.

  4. Estudo de adulteração em méis brasileiros através de razão isotópica do carbono A study of adulteration in brazilian honeys by carbon isotope ratio

    Directory of Open Access Journals (Sweden)

    Cibele Regina de Souza-Kruliski

    2010-04-01

    Full Text Available Neste trabalho, objetivou-se analisar isotopicamente méis comercializados nas regiões Sul e Sudeste do Brasil, para a detecção de fraude. Foram colhidas amostras comerciais com registro no Serviço de Inspeção Federal, Estadual ou Municipal. As amostras foram submetidas à combustão no Analisador Elementar EA 1108 CHN e analisadas no espectrômetro de massas de razão isotópica DELTA-S (Finningan Mat. Os valores isotópicos (δ13C dos méis in natura foram comparados aos de suas respectivas proteínas (padrão interno. Foram consideradas adulteradas as amostras cuja diferença entre o valor isotópico da proteína e do mel foi igual ou inferior a -1‰. As amostras consideradas adulteradas pela análise isotópica foram submetidas a testes químicos qualitativos que não foram capazes de indicar adulteração para algumas delas. Das 61 amostras analisadas, 18,0% encontram-se adulteradas, sendo 11,5% na Região Sudeste e 6,5% na Região Sul. Ao contrário dos testes químicos, a análise isotópica mostrou-se eficaz em identificar e quantificar a adulteração de méis comerciais.The aim of this study was the isotopic evaluation of honey traded in the Southern and Southeastern Brazilian regions, to detect fraud. Commercial samples, registered in the municipal, State or Federal Inspection Service, were collected and submitted to combustion in the EA 1108 CHN Elemental Analyzer and analyzed in the DELTA-S (Finningan Mat. isotope ratio mass spectrometer. The isotopic values (δ13C of in natura honey were compared to their respective proteins (internal standard. Samples whose difference between the isotopic value of protein and honey was equal or inferior to -1‰ were considered adulterated. The samples considered adulterated were submitted to qualitative chemical tests which were unable to show adulteration for some of them. Among the 61 samples analyzed, 18.0% were adulterated; 11.5% in the Southeastern and 6.5% in the Southern region

  5. Water isotopic ratios from a continuously melted ice core sample

    Directory of Open Access Journals (Sweden)

    V. Gkinis

    2011-06-01

    Full Text Available A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS and a Continuous Flow Analysis (CFA system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the

  6. Water isotopic ratios from a continuously melted ice core sample

    Directory of Open Access Journals (Sweden)

    V. Gkinis

    2011-11-01

    Full Text Available A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS purchased from Picarro Inc. and a Continuous Flow Analysis (CFA system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW–SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to

  7. Is my C isotope excursion global, local, or both? Insights from the Mg and Ca isotopic composition of primary, diagenetic, and authigenic carbonates

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Husson, J. M.

    2014-12-01

    The C isotopic composition of ancient limestones and dolomites is a widely used proxy for the global geochemical cycles of carbon and oxygen in the ocean-atmosphere system and a critical tool for chemostratigraphy in Precambrian rocks. Although relatively robust to diagenesis, the C isotopic composition of bulk carbonates can be reset when conditions favor high water-to-rock ratios or fluids with high C concentrations and distinct isotopic compositions. Authigenic carbonates and different pools of primary carbonate (e.g. calcite vs. aragonite) may also bias the C isotopic composition of bulk carbonates if they are both abundant and isotopically distinct. New approaches to quantifying contributions from diagenesis, authigenesis, and mixing of primary carbonates to the C isotopic composition of bulk sedimentary carbonates are needed. Here we present preliminary Mg and Ca isotope data sets of primary, diagenetic, and authigenic carbonates, both modern and ancient. We show that recrystallization, dolomitization, and authigenesis produce Mg and Ca isotope fingerprints that may be used to identify and characterize these processes in ancient carbonate sediments.

  8. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite

    Science.gov (United States)

    Epstein, S.; Krishnamurthy, R. V.; Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1987-01-01

    The isotopic composition of hydrogen, nitrogen, and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite has been determined. The unusually high D/H and N-15/N-14 ratios in the amino acid fraction are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound and provide the first evidence suggesting a direct relationship between the massive organosynthesis occurring in interstellar clouds and the presence of prebiotic compounds in primitive planetary bodies.

  9. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  10. Carbon to oxygen ratios in extrasolar planetesimals

    CERN Document Server

    Wilson, David J; Farihi, Jay; Koester, Detlev

    2016-01-01

    Observations of small extrasolar planets with a wide range of densities imply a variety of planetary compositions and structures. Currently, the only technique to measure the bulk composition of extrasolar planetary systems is the analysis of planetary debris accreting onto white dwarfs, analogous to abundance studies of meteorites. We present measurements of the carbon and oxygen abundances in the debris of planetesimals at ten white dwarfs observed with the Hubble Space Telescope, along with C/O ratios of debris in six systems with previously reported abundances. We find no evidence for carbon-rich planetesimals, with C/O)=-0.92, and oxygen-rich objects with C/O less than or equal to that of the bulk Earth. The latter group may have a higher mass fraction of water than the Earth, increasing their relative oxygen abundance.

  11. Gas Compositions and He-C Isotopic Ratios of Fumarolic Samples from Negros Island, Central Philippines

    Science.gov (United States)

    Lee, Hsiao-Fen; Yang, Tsanyao Frank; Faith Lan, Tefang; Chen, Yue-Gau; Sincioco, Jaime S.; Solidum, Renato U., Jr.

    2010-05-01

    Four volcanoes that are distributed in the Negros Island, Central Philippines, include Kanlaon Volcano which is considered as one of the most active volcanoes in Philippines. All of these volcanoes are related to subduction system of Negros trench and form the Negros volcanic arc. Besides Kanlaon, from north to south, the volcanoes in Negros Island are Silay Volcano, Mandalagan Volcano and Cuernos de Negros Volcano. Although there is no eruption record of these three volcanoes in last 10,000 years, due to the ongoing solfataric/fumarolic activities, the Philippine Institute of Volcanology and Seismology (PHIVOLCS) classifies these as 'potentially active' volcanoes. It means that there is still a considerable threat and risk of eruption. Fumarolic gas samples and bubbling gas samples of hot spring were collected in February 2007 and April 2008 to compare the compositions with others in the world. We analyzed the gas composition, carbon isotopes of CO2, and helium isotopes of these samples. The results of these samples show a similar composition as those of low-temperature fumaroles in other parts of the world, i.e., temperature 1. H2O is the major species of these gas samples, and CO2 is the dominant component after de-watering. Minor components include H2S, N2 and CH4. The gas composition of most of these samples falls in the range of affinity with convergent plate gases associated with groundwater based on the plot of N2-He-Ar diagram. The high 3He/4He ratios indicate a mantle-derived degassing source in origin, i.e., magma chambers could still exist beneath these volcanoes. Helium isotopes ratios show a decreasing trend from north to south, such distribution could be due to more crustal contamination caused by the collision event which happened in the northern part of the island. The carbon isotopic values of CO2 are far less negative than the values from a magma source. There are other carbon sources of CO2, most likely a thick sequence of limestone formation in

  12. Carbon-isotopic analysis of dissolved acetate.

    Science.gov (United States)

    Gelwicks, J T; Hayes, J M

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  13. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Science.gov (United States)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  14. Analytical system for stable carbon isotope measurements of low molecular weight (C2-C6) hydrocarbons

    NARCIS (Netherlands)

    Zuiderweg, A.T.; Holzinger, R.; Roeckmann, T.

    2011-01-01

    We present setup, testing and initial results from a new automated system for stable carbon isotope ratio measurements on C2 to C6 atmospheric hydrocarbons. The inlet system allows analysis of trace gases from air samples ranging from a few liters for urban samples and samples with high mixing ratio

  15. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  16. The modeling of carbon isotope kinetics and its application to the evaluation of natural gas

    Institute of Scientific and Technical Information of China (English)

    Xianqing LI; Xianming XIAO; Yongchun TANG; Hui TIAN; Qiang ZHOU; Yunfeng YANG; Peng DONG; Yan WANG; Zhihong SONG

    2008-01-01

    The modeling of carbon isotope kinetics of natural gas is an issue driving pioneering research in the oil and gas geochemistry in China and internationally.Combined with the sedimentary burial history and basin geothermal history,the modeling of carbon isotope kinetics provides a new and effective means for the determination of the origin and accumulation history of natural gas pools.In this paper,we introduce the modeling of carbon isotope kinetics of natural gas formation and its applications to the assessment of natural gas maturity,the determination of the gas source,the history of gas accumulation,and the oil-gas ratio.It is shown that this approach is of great value for these applications.The carbon isotopic characteristics of natural gas are not only affected by the gas source and maturity of the source rock,but also are related to the accumulation condition and geothermal gradient in a basin.There are obvious differences in the characteristics of carbon isotope ratios between instantaneous gas and cumulative gas.Different basins have different kinetic models of carbon isotope fractionation,which depends on the gas source condition,the accumulation history and the sedimentary-tectonic history.Since the origin of natural gas in the superimposed basin in China is very complicated,and the natural gas pool is characterized by multiphase and variable gas-sources,this paper may provide a new perspective on the study and evaluation of natural gas.

  17. A Clumped Isotope Calibration for Lacustrine Carbonates

    Science.gov (United States)

    Mitsunaga, B. A.; Mering, J. A.; Petryshyn, V. A.; Dunbar, R. B.; Cohen, A. S.; Liu, X.; Kaufman, D. S.; Eagle, R.; Tripati, A.

    2014-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of past climate reconstructions. Unfortunately, many terrestrial proxies—tree rings, speleothems, leaf margin analyses, etc.—are influenced by the effects of both temperature and precipitation. Methods that can isolate the effects of temperature alone are needed, and clumped isotope thermometry has the potential to be a useful tool for determining terrestrial climates. Multiple studies have shown that the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed and may be a useful proxy for reconstructing temperatures on land. An in-depth survey of lacustrine carbonates, however, has not yet been published. Therefore we have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of modern lake samples' carbonate minerals in phosphoric acid and comparing results to independently known estimates of lake water temperature and air temperature. Some of the sample types we have investigated include endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  18. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    Science.gov (United States)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  19. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  20. Phanerozoic and Neoproterozoic Negative Carbon Isotope Excursions, Diagenesis and Terrestrialization

    Science.gov (United States)

    Paul, K.; Kennedy, M. J.

    2008-12-01

    Comprehensive data sets of Phanerozoic and late Precambrian carbon isotope data derived from carbonate rocks show a similar positive relation when cross-plotted with oxygen isotope values. The range and slope between the time periods is identical and the processes responsible for the relation have been well documented in Quaternary sediments. These processes include the stabilization of isotope values to ambient meteoric water values during shallow burial and flushing of carbonate sediments. Both data sets show strongly depleted carbon (-9 per mil PDB) and oxygen isotope values that retain seemingly systematic stratigraphic patterns with the Quaternary and Phanerozoic examples that demonstrably record meteroric water values. Similar values and patterns in the Precambrian are interpreted as primary marine in origin with significant implications for an ocean carbon mass balance not possible in the Phanerozoic carbon cycle. A similar compilation of carbonates older than one billion years do not show a relation between carbon and oxygen isotopes, lacking the negative carbon values evident in the younger record. We hypothesize that this difference records the onset of significant organic carbon on the land surface and the alteration of meteoric waters toward Phanerozoic values. We demonstrate the meteoric affinities of Neoproterozoic carbonates containing prominent negative isotope excursions recorded in the Shuram and Wonoka Formations of Oman and South Australia commonly attributed to whole ocean isotope variation. The conspicuous absence of negative carbon isotope values with normal marine oxygenisotope values in the Phanerozoic and Neoproterozic identifies a consistent relation between these time intervals and suggests that, as well accepted in the Phanerozoic, negative carbon isotope excursions less than -3 per mil are not a record of marine processes, but rather the later terrestrial biotic influence on meteoric water values.

  1. Trophic ecology of small yellow croaker (Larimichthys polyactis Bleeker): stable carbon and nitrogen isotope evidence

    Institute of Scientific and Technical Information of China (English)

    JI Weiwei; CHEN Xuezhong; JIANG Yazhou; LI Shengfa

    2011-01-01

    The trophic ecology of the small yellow croaker (Larimichthys polyactis) was studied using stable isotope analyses.Samples were collected from July to September 2009 and 34 individuals from eight sites were examined for stable carbon and nitrogen isotopes.Stable carbon isotope ratios (δ13C)ranged from -20.67 to -15.43,while stable nitrogen isotope ratios (δ15N) ranged 9.18-12.23.The relationship between δ13C and δ15N suggested high resource partitioning in the sampling area.Significant differences in stable isotope values among the eight sampling sites may be linked to environmental diversities involving various physical processes (such as ocean current,wind and tide) and different carbon sources.Furthermore,the stable isotope ratios may also explain the ontogenetic variability in diet and feeding,because δ13C and δ15N varied significantly with increasing body size.The findings are consistent with other studies on diet analyses in small yellow croaker.It was also demonstrated that stable isotope analysis could be used to estimate the trophic characters of small yellow croaker in feeding patterns and migrating habits.

  2. Development, optimisation, and application of ICP-SFMS methods for the measurement of isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Stuerup, S

    2000-07-01

    The measurement of isotopic composition and isotope ratios in biological and environmental samples requires sensitive, precise, and accurate analytical techniques. The analytical techniques used are traditionally based on mass spectrometry, among these techniques is the ICP-SFMS technique, which became commercially available in the mid 1990s. This technique is characterised by high sensitivity, low background, and the ability to separate analyte signals from spectral interferences. These features are beneficial for the measurement of isotope ratios and enable the measurement of isotope ratios of elements, which it has not previously been possible to measure due to either spectral interferences or poor sensitivity. The overall purpose of the project was to investigate the potential of the single detector ICP-SFMS technique for the measurement of isotope ratios in biological and environmental samples. One part of the work has focused on the fundamental aspects of the ICP-SFMS technique with special emphasize on the features important to the measurement of isotope ratios, while another part has focused on the development, optimisation and application of specific methods for the measurement of isotope ratios of elements of nutritional interest and radionuclides. The fundamental aspects of the ICP-SFMS technique were investigated theoretically and experimentally by the measurement of isotope ratios applying different experimental conditions. It was demonstrated that isotope ratios could be measured reliably using ICP-SFMS by educated choice of acquisition parameters, scanning mode, mass discrimination correction, and by eliminating the influence of detector dead time. Applying the knowledge gained through the fundamental study, ICP-SFMS methods for the measurement of isotope ratios of calcium, zinc, molybdenum and iron in human samples and a method for the measurement of plutonium isotope ratios and ultratrace levels of plutonium and neptunium in environmental samples

  3. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes.

    Science.gov (United States)

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    2016-08-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

  4. Big Bang Nucleosynthesis and the Helium Isotope Ratio

    CERN Document Server

    Cooke, Ryan

    2015-01-01

    The conventional approach to search for departures from the standard model of physics during Big Bang Nucleosynthesis involves a careful, and subtle measurement of the mass fraction of baryons consisting of helium. Recent measurements of this quantity tentatively support new physics beyond the standard model but, historically, this method has suffered from hidden systematic uncertainties. In this letter, I show that a combined measurement of the primordial deuterium abundance and the primordial helium isotope ratio has the potential to provide a complementary and reliable probe of new physics beyond the standard model. Using the recent determination of the primordial deuterium abundance and assuming that the measured pre-solar 3He/4He meteoritic abundance reflects the primordial value, a bound can be placed on the effective number of neutrino species, Neff(BBN) = 3.01 (+0.95 -0.76, with 95 per cent confidence). Although this value of Neff supports the standard model, it is presently unclear if the pre-solar 3...

  5. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research

    Science.gov (United States)

    Zobitz, J. M.; Keener, J. P.; Bowling, D. R.

    2004-12-01

    Quantifying and understanding the uncertainty in isotopic mixing relationships is critical to isotopic applications in carbon cycle studies at all spatial and temporal scales. Studies associated with the North American Carbon Program will depend on stable isotope approaches and quantification of isotopic uncertainty. An important application of isotopic mixing relationships is determination of the isotopic content of large-scale respiration (δ 13CR) via an inverse relationship (a Keeling plot) between atmospheric CO2 concentrations ([CO2]) and carbon isotope ratios of CO2 (δ 13C). Alternatively, a linear relationship between [CO2] and the product of [CO2] and δ 13C (a Miller/Tans plot) can also be applied. We used an extensive dataset from the Niwot Ridge Ameriflux Site of [CO2] and δ 13C in forest air to examine contrasting approaches to determine δ 13CR and its uncertainty. These included Keeling plots, Miller/Tans plots, Model I, and Model II regressions Our analysis confirms previous observations that increasing the range of measurements ([CO2] range) reduces the uncertainty associated with δ 13CR. For carbon isotope studies, uncertainty in the isotopic measurements has a greater effect on the uncertainty of δ 13CR than the uncertainty in [CO2]. Reducing the uncertainty of isotopic measurements reduces the uncertainty of δ 13CR even when the [CO2] range of samples is small (13CR. We also find for carbon isotope studies no inherent advantage to using either a Keeling or a Miller/Tans approach to determine δ 13CR.

  6. Advances in laser-based isotope ratio measurements : selected applications

    NARCIS (Netherlands)

    Kerstel, E.; Gianfrani, L.

    2008-01-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseou

  7. Variability in carbon and nitrogen isotope fractionation associated with bacterial hydrolysis of atrazine

    Science.gov (United States)

    Meyer, A.; Penning, H.; Elsner, M.

    2009-04-01

    Even after legislative prohibition in 1991 by the European Union, the pesticide atrazine and its metabolites are still detected in surface and ground water frequently exceeding the permitted drinking water concentration limit of 0,1 g/L. Despite much recent research on atrazine, its risk assessment in the environment is still a major challenge because of the difficulty of establishing mass balances in the subsurface. To obtain a better insight into the fate of atrazine, we developed compound-specific stable isotope analysis (CSIA) for atrazine. CSIA has proven valuable for assessing organic contaminants in subsurface environments, on the one hand for source identification and on the other hand to trace (bio)chemical degradation reactions through isotope fractionation in the compounds. Such assessment is based on the Rayleigh equation and therein on the isotope enrichment factor ɛ, which must be determined experimentally beforehand. In ongoing work, we therefore measured carbon and nitrogen isotope fractionation associated with biotic hydrolsis of atrazine. C and N isotope enrichment factors were determined in resting cell experiments for Pseudomonas sp. ADP, Chelatobacter heintzii and Arthrobacter aurescens TC1, strains that hydrolyse atrazine in the initial transformation reaction. Carbon and nitrogen isotope enrichment factors were distinctly different between the bacterial strains. However, when plotting shifts in carbon isotope ratios versus shifts in nitrogen isotope ratios the slopes of the different degradation experiments coincided well. These results give evidence that all bacterial strains were carrying out the same initial biochemical degradation reaction, but that the associated isotope fractionation, as represented by the enrichment factors, was masked to a different extent owing to different rate determining steps prior to the isotopically sensitive bond cleavage (commitment to catalysis). Our study therefore illustrates the benefit of multi

  8. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates

    NARCIS (Netherlands)

    Krajko, J.; Varga, Z.; Yalcintas, E.; Wallenius, M.; Mayer, K.

    2014-01-01

    A novel procedure has been developed for the measurement of 143Nd/144Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of 143Nd/144Nd isotope ratio for provenance assessment in nu

  9. Mass transfer and carbon isotope evolution in natural water systems

    Science.gov (United States)

    Wigley, T.M.L.; Plummer, L.N.; Pearson, F.J.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  10. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    Science.gov (United States)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  11. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... as a proxy for bone collagen at the amino acid level, this validates compound-specific isotope studies using hair as a model for palaeodietary reconstruction. Our results suggest that a small offset observed in the bulk delta(13)C values of the hair and bone samples may be attributed to two factors: (i...

  12. Quantification and isotope ratio determination of uranium in particles of environmental samples using isotope dilution thermal ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Eun-Ju [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Highly accurate and precise quantitative and qualitative analysis of nuclear materials in environmental samples plays essential roles in monitoring undeclared nuclear activities of corresponding facilities. The former focuses on the quantification of uranium (U) and plutonium (Pu) contained in a whole sample, while the latter enables us to acquire the isotopic ratios, which serve as the crucial basis to trace the nuclear histories of a facility. However, the quantity of nuclear materials in a single-particle has not been acquired from the particle analysis, but has been estimated by the size of the particles. This report is to describe the method developed to determine the quantity and the isotopic ratios of uranium in a micro-particle simultaneously. Complete dissolution of particle-spike mixture by repeated addition of nitric acid on a rhenium filament was performed to ensure the homogeneity of the mixture. Thermal ionization mass spectrometry (TIMS) was utilized to measure the U isotope ratios of the mixture with high accuracy. The isotopic ratios of the uranium in the particle sample were determined by mathematical deconvolution of U isotopic ratios of the mixture. Verification using particles of a certified reference material showed that the newly developed method can be used to quantify and to determine the isotopic ratios of U in a particle simultaneously. The development of a method for simultaneous determination of the quantity and the isotope ratios of uranium contained in particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS) was described. For homogeneity of the mixture of particles and spike, repeated dissolution using nitric acid for five times was performed.

  13. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite

    Science.gov (United States)

    Yuen, G.; Blair, N.; Des Marais, D. J.; Chang, S.

    1984-01-01

    Carbon isotopic compositions have been measured for individual hydrocarbons and monocarboxylic acids from the Murchison meteorite, a C2 carbonaceous chondrite which fell in Australia in 1969. With few exceptions, notably benzene, the volatile products are substantially isotopically heavier than their terrestrial counterparts, signifying their extraterrestrial origin. For both classes of compounds, the ratio of C-13 to C-12 decreases with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic ratio than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with the kinetically controlled synthesis of higher homologues from lower ones. The results suggest the possibility that the production mechanisms for hydrocarbons and carboxylic acids may be similar, and impose constraints on the identity of the reactant species.

  14. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  15. MS fragment isotope ratio analysis for evaluation of citrus essential oils by HRGC-MS.

    Science.gov (United States)

    Satake, Atsushi; Furukawa, Kiyoshi; Ueno, Takao; Ukeda, Hiroyuki; Sawamura, Masayoshi

    2004-02-01

    To evaluate the origin of citrus essential oils, the isotope ratio of fragment peaks on HRGC-MS of the volatile compounds from various citrus oils was measured. The MS fragment ratio was found by the ratio of fragment peak intensity, m+1/m (m/z). This ratio reflects the isotope effect of volatile compounds, that is, it provides information about locality, quality, and species for essential oils. Multivariate analysis based on the MS fragment ratio of monoterpene hydrocarbons clearly distinguished three citrus species, yuzu, lemon, and lime. The carbonyl fractions were also extracted from citrus essential oils by the sodium hydrogensulfite method. The isotope ratio of MS fragments of octanal, nonanal, and decanal was also examined. The results suggest that there was no significant difference in the individual fragment isotope ratios of the three aldehydes.

  16. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    Science.gov (United States)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  17. Recent measurements of 234U/238U isotope ratio in spring waters from the Hadzici area.

    Science.gov (United States)

    Vidic, Alfred; Ilić, Zorana; Benedik, Ljudmila

    2013-06-01

    The Hadzici area has become interesting for investigation since depleted uranium ammunition had been employed in 1995 during the NATO air strike campaign in Bosnia and Herzegovina. The purpose of this study is to determine uranium concentration and (234)U/(238)U activity ratio in the spring waters of this area and to investigate their relationship, as well as spatial variations. The spring water samples were taken at 18 sites in total. For the determination of uranium radioisotopes, radiochemical separation procedure followed by alpha-particle spectrometry was applied. Uranium concentration in analyzed waters range from 0.15 to 1.12 μg/L. Spring waters from carbonate based sediments have a lower uranium concentration of between 0.15 and 0.43 μg/L, in comparison to waters sampled within sandstone-based sediments ranging from 0.53 to 1.12 μg/L. Dissolved uranium shows significant spatial variability and correlation with bedrock type confirmed by Principal Component Analysis and Hierarchical Cluster Analysis. The majority of the analyzed waters have a (234)U/(238)U activity ratio ranging from 1.02 to 1.90, of which half of the results range between 1.02 and 1.16. No apparent depleted uranium (DU) contamination was observed, as (234)U/(238)U activity ratio is dependent on geochemical conditions in the environment. Even though the tested spring waters demonstrate significant variability in uranium concentration, (234)U/(238)U activity ratio and (234)U excess, waters with similar uranium isotopic signatures are observable within the region. The guidelines on the spatial redistribution of dissolved uranium (corresponding to (238)U mass concentration), along with (234)U/(238)U activity ratios were provided by the Inverse Distance Weighting (IDW) method. Waters having similar isotopic signature have been delineated.

  18. Uranium Isotope Ratios in Modern and Precambrian Soils

    Science.gov (United States)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  19. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS.

    Science.gov (United States)

    Hattori, Ryota; Yamada, Keita; Shibata, Hiroki; Hirano, Satoshi; Tajima, Osamu; Yoshida, Naohiro

    2010-06-23

    Acetic acid is the main ingredient of vinegar, and the worth of vinegar often depends on the fermentation of raw materials. In this study, we have developed a simple and rapid method for discriminating the fermentation of the raw materials of vinegar by measuring the hydrogen and carbon isotope ratio of acetic acid using head space solid-phase microextraction (HS-SPME) combined with gas chromatography-high temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS). The measurement of acetic acid in vinegar by this method was possible with repeatabilities (1sigma) of +/-5.0 per thousand for hydrogen and +/-0.4 per thousand for carbon, which are sufficient to discriminate the origin of acetic acid. The fermentation of raw materials of several vinegars was evaluated by this method.

  20. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    Science.gov (United States)

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Molina Jurado, Antonio; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Navarro López, Sara; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nixon, Brian; Noe Dobrea, Eldar; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; de Pablo Hernández, Miguel Ángel; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; Romeral-Planelló, Julio J; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Sebastian Martinez, Eduardo; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sobrón Sánchez, Pablo; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Stein, Thomas; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

  1. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results.

    Science.gov (United States)

    Coplen, Tyler B

    2011-09-15

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  2. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results

    Science.gov (United States)

    Coplen, Tyler B.

    2011-01-01

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  3. The quality control of fruit juices by using the stable isotope ratios and trace metal elements concentrations

    Science.gov (United States)

    Magdas, D. A.; Dehelean, A.; Puscas, R.; Cristea, G.; Tusa, F.; Voica, C.

    2012-02-01

    In the last years, a growing number of research articles detailing the use of natural abundance light stable isotopes variations and trace metal elements concentration as geographic "tracers" to determine the provenance of food have been published. These investigations exploit the systematic global variations of stable hydrogen, oxygen and carbon isotope ratios in (combination) relation with trace metal element concentrations. The trace metal elements content of plants and also their light stable isotopic ratios are mainly related to the geological and pedoclimatic characteristics of the site of growth. The interpretation of such analysis requires an important number of data for authentic natural juices regarding the same seasonal and regional origin, because the isotopic analysis parameters of fruit juices show remarkable variability depending on climatologically factors. In this work was mesured H, C, O stable isotope ratios and the concentrations of 16 elements (P, K, Mg, Na, Ca, Cu, Cr, Ni, Zn, Pb, Co, As, Cd, Mn, Fe and Hg) from 12 single strength juices. The natural variations that appear due to different environmental and climatic conditions are presented and discussed.

  4. Stable isotope ratios of atmospheric CO_{2} and CH_{4} over Siberia measured at ZOTTO

    Science.gov (United States)

    Timokhina, Anastasiya; Prokushkin, Anatily; Lavric, Jost; Heimann, Martin

    2016-04-01

    The boreal and arctic zones of Siberia housing the large amounts of carbon stored in the living biomass of forests and wetlands, as well as in soils and specifically permafrost, play a crucial role in earth's global carbon cycle. The long-term studies of greenhouse gases (GHG) concentrations are important instruments to analyze the response of these systems to climate warming. In parallel to GHG observations, the measurements of their stable isotopic composition can provide useful information for distinguishing contribution of individual GHG source to their atmospheric variations, since each source has its own isotopic signature. In this study we report first results of laboratory analyses of the CO2 and CH4 concentrations, the stable isotope ratio of δ13C-CO2, δ18O-CO2, δ13C-CH4, δD-CH4 measured in one-liter glass flasks which were obtained from 301 height of ZOTTO (Zotino Tall Tower Observatory, near 60° N, 90° E, about 20 km west of the Yenisei River) during 2008 - 2013 and 2010 - 2013 for stable isotope composition of CO2 and CH4. The magnitudes of δ13C-CO2 and δ18O-CO2 in a seasonal cycle are -1.4±0.1‰ (-7.6 - -9.0‰) and -2.2±0.2‰ (-0.1 - -2.3‰), respectively. The δ13C-CO2 seasonal pattern opposes the CO2 concentrations, with a gradual enrichment in heavy isotope occurring during May - July, reflecting its discrimination in photosynthesis, and further depletion in August - September as photosynthetic activity decreases comparatively to ecosystem respiration. Relationship between the CO2 concentrations and respective δ13C-CO2 (Keeling plot) reveals isotopic source signature for growing season (May - September) -27.3±1.4‰ and -30.4±2.5‰ for winter (January - March). The behavior of δ18O-CO2 associated with both high photosynthetic rate in the June (enrichment of atmospheric CO2 by 18O as consequence of CO2 equilibrium with "heavy" leaf water) and respiratory activity of forest floor in June - October (depletion of respired CO2 by 18O

  5. Stable hydrogen and oxygen isotope ratios of bottled waters of the world.

    Science.gov (United States)

    Bowen, Gabriel J; Winter, David A; Spero, Howard J; Zierenberg, Robert A; Reeder, Mathew D; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    Bottled and packaged waters are an increasingly significant component of the human diet. These products are regulated at the regional, national, and international levels, and determining the authenticity of marketing and labeling claims represents a challenge to regulatory agencies. Here, we present a dataset of stable isotope ratios for bottled waters sampled worldwide, and consider potential applications of such data for regulatory, forensic and geochemical standardization applications. The hydrogen and oxygen isotope ratios of 234 samples of bottled water range from -147 per thousand to +15 per thousand and from -19.1 per thousand to +3.0 per thousand, respectively. These values fall within and span most of the normal range for meteoric waters, indicating that these commercially available products represent a source of waters for use as laboratory working standards in applications requiring standardization over a large range of isotope ratios. The measured values of bottled water samples cluster along the global meteoric water line, suggesting that bottled water isotope ratios preserve information about the water sources from which they were derived. Using the dataset, we demonstrate how bottled water isotope ratios provide evidence for substantial evaporative enrichment of water sources prior to bottling and for the marketing of waters derived from mountain and lowland sources under the same name. Comparison of bottled water isotope ratios with natural environmental water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, suggesting that in many cases bottled water need not be considered as an isotopically distinct component of the human diet. Our findings suggest that stable isotope ratios of bottled water have the power to distinguish ultimate (e.g., recharge) and proximal (e.g., reservoir) sources of bottled water and constitute a potential

  6. Constraints on Weathering from Riverine Magnesium Isotope Ratios

    DEFF Research Database (Denmark)

    Wiechert, Uwe; Ullmann, Clemens Vinzenz; Meixner, Anette;

    of the carbonate endmember, which indeed entails some uncertainty. There is now some evidence that magnesium fractionation during carbonate precipitation is close to -2.5 ‰, giving a d26Mg of -3.3 ‰ for carbonates that precipitated from seawater of -0.8 ‰ relative to DSM3, but dolomite has substantially heavier...

  7. Specific Carbon Isotopic Analysis of n-Alkanes in Soils by Gas Chromatography-Isotope Ratio Mass Spectrometry with 5A Molecular Sieve Adsorption and Mixed Solvent Elution%5A分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素

    Institute of Scientific and Technical Information of China (English)

    张逐月; 刘美美; 谢曼曼; 王道聪; 凌媛; 尚文郁; 刘舒波; 岑况; 孙青

    2012-01-01

    利用5A分子筛吸附,环己烷-正戊烷混合溶剂洗脱分离富集正构烷烃,用气相色谱法测定正构烷烃含量,气相色谱-气体同位素质谱( GC -C- IRMS)测定土壤样品中正构烷烃单体碳同位素.实验优化了5A分子筛用量和洗脱剂的比例,需要络合的正构烷烃的量与分子筛加入量呈线性关系,络合xmg的正构烷烃,需加入2.75xg分子筛,络合环己烷-正戊烷最佳比例为9∶91.探讨了络合过程中5A分子筛对不同链长正构烷烃的络合规律,短链正构烷烃被5A分子筛优先吸附,长链正构烷烃的络合相对滞后.正构烷烃的络合洗脱回收率为44% ~ 72%,精密度(RSD,n=6)为4%~8%;正构烷烃单体碳同位素分析精度为0.04‰~0.38‰( 1σ).采用5A分子筛净化混合溶剂洗脱方法,分析加油站附近的实际土壤样品,未分峰基本消除,获得良好的净化效果,满足正构烷烃单体碳同位素分析的要求.%n-alkanes were concentrated after separating by a 5A molecular sieve and extracted by a mixture solvent of cyclohexane and n-pentane. In this study, the amount of 5A molecular sieve and the ratios of cyclohexane and n-pentane were optimized as 2.76 g and 9 : 91, respectively. It was discovered that short carbon chain n-alkanes were readily absorbed by a.5A molecular sieve, compared to the long carbon chain n-alkanes. The complexation efficiency is higher for long carbon chain n-alkanes than that of short carbon chain n-alkanes with enough 5A molecular material at higher temperature. In this study, n-alkanes contents were determined by Gas Chromatography ( CC) and compound specific carbon isotope ratios of individual n-alkanes in soil were measured by Gas Chromatography-lsotope Ratio Mass Spectrometry ( GC-IRMS). The recoveries of n-alkanes ranged from44% to 72%c with a precision of 4% - 8%. The accuracies of compound specific carbon isotopes of n-alkanes ranged from 0.04%e to 0. 38%e (1σ). The 5A molecular sieve

  8. Tracing lead pollution sources in abandoned mine areas using stable Pb isotope ratios.

    Science.gov (United States)

    Yoo, Eun-Jin; Lee, Jung-A; Park, Jae-Seon; Lee, Khanghyun; Lee, Won-Seok; Han, Jin-Seok; Choi, Jong-Woo

    2014-02-01

    This study focused on Pb isotope ratios of sediments in areas around an abandoned mine to determine if the ratios can be used as a source tracer. For pretreatment, sediment samples were dissolved with mixed acids, and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu plasma II) was used to investigate the Pb isotopic composition of the samples. The measured isotope ratios were then corrected for instrumental mass fractionation by measuring the (203)Tl/(205)Tl ratio. Repeated measurements with the NIST SRM 981 reference material showed that the precision of all ratios was below 104 ppm (±2σ) for 50 ng/g. The isotope ratios ((207)Pb/(206)Pb) found were 0.85073 ± 0.0004~0.85373 ± 0.0003 for the main stream, while they were 0.83736 ± 0.0010 for the tributary and 0.84393 ± 0.0002 for the confluence. A binary mixing equation for isotope ratios showed that the contributions of mine lead to neighboring areas were up to 60%. Therefore, Pb isotope ratios can be a good source tracer for areas around abandoned mines.

  9. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  10. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope

  11. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS

    DEFF Research Database (Denmark)

    Creech, J.; Baker, J.; Handler, M.

    2013-01-01

    We present a new technique for the precise determination of platinum (Pt) stable isotope ratios by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using two different Pt double-spikes ( Pt-Pt and Pt-Pt). Results are expressed relative to the IRMM-010 Pt isotope standard...

  12. A novel high-temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. : I development and validation

    NARCIS (Netherlands)

    Federherr, E.; Cerli, C.; Kirkels, F. M. S. A.; Kalbitz, K.; Kupka, H. J.; Dunsbach, R.; Lange, L.; Schmidt, T. C.

    2014-01-01

    RATIONALE: Traditionally, dissolved organic carbon (DOC) stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analyzer/isotope ratiomass spectrometry (EA/IRMS) or a wet chemical oxidation (WCO)-based device coupled to an isotope ratio mass spectrom

  13. Determination of organic milk authenticity using carbon and nitrogen natural isotopes.

    Science.gov (United States)

    Chung, Ill-Min; Park, Inmyoung; Yoon, Jae-Yeon; Yang, Ye-Seul; Kim, Seung-Hyun

    2014-10-01

    Natural stable isotopes of carbon and nitrogen ((12)C, (13)C, (14)N, (15)N) have abundances unique to each living creature. Therefore, measurement of the stable isotope ratio of carbon and nitrogen (δ(13)C=(13)C/(12)C, δ(15)N=(15)N/(14)N) in milk provides a reliable method to determine organic milk (OM) authenticity. In the present study, the mean δ(13)C value of OM was higher than that of conventional milk (CM), whereas the mean δ(15)N value of OM was lower than that of CM; nonetheless both δ(13)C and δ(15)N values were statistically different for the OM and CM (Pauthenticity using stable isotopes of carbon and nitrogen.

  14. Multi-collector Isotope Ratio Mass Spectrometer -- Operational Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony D; Olson, John E; Watrous, Matthew G; Ward, Michael B.; Dahl, David A.

    2010-12-01

    This report describes the operational testing of a new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously. The instrument includes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently to allow a full-sized discrete dynode pulse counting multiplier to be used to measure each isotope beam. The performance of the instrument was measured using SRM 996 (244Pu spike) at loadings of 2.4 and 12 fg on resin beads and with SRM 4350B Columbia River Sediment samples. The measured limit of detection (3s) for 240Pu was 3.4 attograms for SRM 996. The limit of quantitation (LOQ), defined as 10 s, was 11.2 attograms. The measured concentration of 239Pu in the CRS standard was 152 ± 6 fg/g.

  15. An automated method for 'clumped-isotope' measurements on small carbonate samples.

    Science.gov (United States)

    Schmid, Thomas W; Bernasconi, Stefano M

    2010-07-30

    Clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of earth sciences. Clumped-isotope thermometry allows reconstructing the temperature of formation of carbonate minerals without knowing the isotopic composition of the water from which they were formed. This feature enables new approaches in paleothermometry. The currently published method is, however, limited by sample weight requirements of 10-15 mg and because measurements are performed manually. In this paper we present a new method using an automated sample preparation device coupled to an isotope ratio mass spectrometer. The method is based on the repeated analysis (n = 6-8) of 200 microg aliquots of sample material and completely automated measurements. In addition, we propose to use precisely calibrated carbonates spanning a wide range in Delta(47) instead of heated gases to correct for isotope effects caused by the source of the mass spectrometer, following the principle of equal treatment of the samples and standards. We present data for international standards (NBS 19 and LSVEC) and different carbonates formed at temperatures exceeding 600 degrees C to show that precisions in the range of 10 to 15 ppm (1 SE) can be reached for repeated analyses of a single sample. Finally, we discuss and validate the correction procedure based on high-temperature carbonates instead of heated gases.

  16. Lead isotope ratios as a tracer for lead contamination sources: A lake Andong case study

    Directory of Open Access Journals (Sweden)

    Kim Y. H

    2013-04-01

    Full Text Available The objective of this study was to evaluate stable Pb isotope signatures as a tracer for Pb contamination in Lake Andong. For Pb isotope analysis, we collected water and sediment from Lake Andong, particles in the air, soils, and stream water, mine tailings, sludge and wastewater from zinc smelting around lake Andong watershed. The results showed that Pb isotope ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb for zinc concentrate were 18.809 ± 0.322, 15.650 ± 0.062, and 38.728 ± 0.421, respectively. In wastewater, isotopic ratio values (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb were 17.363 ± 0.133, 15.550 ± 0.025, and 37.217 ± 0.092, respectively. Additionally, isotopic ratio values (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb for sludge were 17.515 ± 0.155, 15.537 ± 0.018, and 37.357 ± 0.173, respectively. These values were similar to those in zinc and lead concentrate originated from Canada and South America. In contrast, Pb isotope ratios of soil, tailings and sediment from Lake Andong were similar to those of Korean ore. Atmospheric particles showed different patterns of Pb isotope ratios from sediments, soils, and zinc smelting and this needs further investigation in order to identify atmospheric Pb sources.

  17. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Science.gov (United States)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  18. Heavy with child? Pregnancy status and stable isotope ratios as determined from biopsies of humpback whales

    Science.gov (United States)

    Clark, Casey T.; Fleming, Alyson H.; Calambokidis, John; Kellar, Nicholas M.; Allen, Camryn D.; Catelani, Krista N.; Robbins, Michelle; Beaulieu, Nicole E.; Steel, Debbie; Harvey, James T.

    2016-01-01

    Understanding reproductive rates of wild animal populations is crucially important for management and conservation. Assessing pregnancy status of free-ranging cetaceans has historically been difficult; however, recent advances in analytical techniques have allowed the diagnosis of pregnancy from small samples of blubber tissue. The primary objectives of this study were as follows: (i) to test the efficacy of blubber progesterone assays as a tool for diagnosing pregnancy in humpback whales (Megaptera novaeangliae); (ii) to estimate the pregnancy rate of humpback whales in Monterey Bay, California; and (iii) to investigate the relationship between stable isotopes and reproductive status of these whales. Progesterone concentrations of female whales fell into two distinct groups, allowing for diagnostic separation of pregnant and non-pregnant individuals. Pregnancy rate varied between years of the study (48.4%% in 2011 and 18.5% in 2012), but fell within the range of other estimates of reproductive success for this population. Stable carbon and nitrogen isotope ratios were examined to investigate the impacts of pregnancy on these values. Neither δ15N nor δ13C varied in a consistent way among animals of different sex or reproductive status. The relationship between δ15N and δ13C was strongly positive for male and non-pregnant female humpbacks; however, no relationship existed for pregnant whales. This difference may be indicative of the effects of pregnancy on δ15N, resulting from tissue synthesis and reduced excretion of nitrogenous waste, as well as on δ13C through increased mobilization of lipid stores to meet the energetic demands of pregnancy. Ultimately, our results support the use of blubber progesterone assays for diagnosing pregnancy in humpback whales and indicate that, when paired with other approaches (e.g. stable isotope analysis), pregnancy status can be an informative tool for addressing questions about animal physiology, ecology and population

  19. Implications of the Nitrogen Isotope Ratio in Titan's Atmosphere for the Nitrogen Ratio in Ammonia in Comets

    Science.gov (United States)

    Mandt, K.; Mousis, O.

    2013-12-01

    The D/H ratio of water measured in solar system bodies has been established as a tool for determining the conditions under which bodies such as comets or icy moons formed. This ratio varies significantly and indicates complex thermal and chemical evolution of the solar nebula during solar system and planetary formation. Nitrogen isotope ratios also vary significantly, and in some but not all cases correlate to D/H ratios, but are poorly understood. Nitrogen in the solar nebula was primarily in the form of atomic and molecular nitrogen. The isotope ratio (14N/15N) of this reservoir is expected to be ~435 based on the ratio measured in Jupiter's atmosphere, because the atmosphere of Jupiter is made up of gas captured from the solar nebula (Owen et al., 2001). The terrestrial atmospheric ratio is 272, which is close to the ratio measured in the Earth's mantle. This may be the primordial ratio for nitrogen delivered to Earth depending on the amount of exchange between the atmosphere and the mantle and any atmospheric fractionation processes that may have influenced the ratio over time. Comets are a possible source of nitrogen in the Earth's atmosphere (Hutsmekers et al., 2009), although chondrites have also been suggested as a source (Marty, 2012). In the case of comets, nitrogen would have been essentially retained in the form of ammonia (Mousis et al., 2012), which is the most abundant form of nitrogen in comets. The nitrogen in Titan's atmosphere is expected to have originated as ammonia hydrates and converted to N2 early in Titan's history (Atreya et al., 1978). The nitrogen ratio in Titan's atmosphere is ~170, which is significantly enriched in the heavy isotope compared to the terrestrial value. We will discuss the evolution of the nitrogen ratio in Titan's atmosphere (Mandt et al., 2009), the limits of the primordial ratio in ammonia, and the implications for this ratio for the isotope ratio in ammonia in comets that should be measured by the ROSINA instrument

  20. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Sergey S.

    2014-11-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ{sup 13}C, δ{sup 18}O and Δ{sup 17}O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated {sup 13}CO/{sup 12}CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in {sup 13}C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH{sub 4}) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH{sub 4} to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in {sup 13}C, were found significant

  1. Carbon isotopic studies of organic matter in Precambrian rocks.

    Science.gov (United States)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  2. Seasonal dynamics of stable isotopes and element ratios in authigenic calcites during their precipitation and dissolution, Sacrower See (northeastern Germany

    Directory of Open Access Journals (Sweden)

    Bernd ZOLITSCHKA

    2009-08-01

    Full Text Available The seasonal evolution of chemical and physical water properties as well as particle fluxes was monitored in Sacrower See (northeastern Germany during two consecutive years (Oct 2003 - Oct 2005. Additonally, we measured δ18O and δ13C as well as Sr:Ca and Mg:Ca ratios of authigenic calcites that were collected in sequencing sediment traps in order to disentangle environmental and climatic factors controlling these parameters. In particular, our aim was to find out if element ratios and the isotopic composition of calcites reflect changes in water and air temperatures. Lake water is highly enriched in 18O (-1.3 to -2.5‰ VSMOW with an evaporative increase of 0.6‰ during summer. Values are 5-6‰ more positive than groundwater values and 4-5‰ more positive than long-term weighted annual means of precipitation. During spring and summer, high amounts of dissolved phosphate cause eutrophic conditions and calcite precipitation in isotopic disequilibrium. Measured values are depleted in 18O by 2 to 10‰ compared to calculated equilibrium values. Resuspension and partial dissolution of calcite in the water column contribute to this isotopic divergence in summer and autumn as δ18Oca and δ13C values increased in the hypolimnion during this time. Mg:Ca and Sr:Ca ratios are altered by dissolution as well. In the hypolimnion these ratios were higher than in the epilimnion. Another reason for the huge deviation between measured and theoretical δ18Oca values during summer is the occurrence of large amounts of Phacotus lenticularis in the carbonate fraction. High amounts of Phacotus lead to more negative δ18Oca and more positive δ13C values. Several characteristics of δ18Oca and δ13C are also reflected by Mg:Ca and Sr:Ca ratios and isotopic composition of oxygen and carbon were influenced by the onset and stability of stratification. Especially the earlier onset of stratification in 2005 caused higher sediment fluxes and more positive carbon and

  3. Mare basalt genesis - Modeling trace elements and isotopic ratios

    Science.gov (United States)

    Binder, A. B.

    1985-11-01

    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  4. Carbon isotopic study of individual alcohol compounds in modern sediments from Nansha Islands sea area, China

    Institute of Scientific and Technical Information of China (English)

    段毅; 文启彬; 郑国东; 罗斌杰

    1997-01-01

    Carbon isotopic compositions of individual n-alkanols and sterols in modern sediments from the Nan-sha Islands sea area are measured after derivatization to trimethylsilyl ethers by the new isotopic analytical technique of GC/C/IRMS. The effects of the three added silyl carbon atoms in every alcohol molecule on these compound isotopic compositions and the characteristics of their carbon isotopic compositions are studied. Then their biological sources are discussed using their carbon isotopic compositions.

  5. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  6. [Carbon isotope (13C/12C) effect of photorespiration in photosynthetic organisms. Evidence for existence, probable mechanism].

    Science.gov (United States)

    Ivlev, A A

    2002-01-01

    Experimental evidence in favor of the new phenomenon predicted for photosynthesizing organisms, the fractionation of carbon isotopes in photorespiration is presented. A possible mechanism of this process is discussed. The fractionation of carbon in isotopes photorespiration occurs in the oxygenase phase of the functioning of ribulosebisphosphate carboxylase/oxygenase (rubisco), the key enzyme of photosynthesis, which is capable to act as carboxylase and oxygenase. Which function of the enzyme is active depends on CO2/O2 concentration ratio, which periodically changes in a cell. The key reaction in the mechanism of carbon isotope fractionation in photorespiration is glycine decarboxylation, which results in the splitting and removal from the cell of CO2 enriched with 12C and the accumulation of 13C photorespiratory carbon flow. The coupling of photorespiration and CO2 photoassimilation gives rise to two isotopically different carbon flows, which fill up separate carbohydrate pools, which are the sources of carbon in the following syntheses in the dark phase of photosynthesis. This enables one to identify, from the carbon isotope ratio of metabolites, their involvement in the photorespiratory and assimilatory carbon flows, to investigate the pathways of carbon metabolism, and to estimate more thoroughly the biosynthetic role of photorespiration.

  7. Water isotopic ratios from a continuously melted ice core sample

    CERN Document Server

    Gkinis, V; Blunier, T; Bigler, M; Schüpbach, S; Kettner, E; Johnsen, S J

    2014-01-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneous water isotopic analysis of $\\delta^{18}$O and $\\delta$D on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub ${\\mu}$l amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a home made oven. A calibration procedure allows for proper reporting of the data on the VSMOW--SLAP scale. Application of spectral methods yields the combined uncertainty of the system at below 0.1 permil and 0.5 permil for $\\delta^{18}$O and $\\delta$D, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sampl...

  8. Oxygen-isotopic composition and high-resolution secondary ion mass spectrometry imaging of Martian carbonate in Lafayette meteorite

    OpenAIRE

    Vicenzi, E. P.; Eiler, J.

    1998-01-01

    Carbonate from SNC meteorites gives insight into a variety of processes on and/or beneath the surface of Mars. In Lafayette, carbonate occurs in unusually intimate association with hydrous phases when compared with other carbonate-bearing SNCs [1]. We have measured the ^(18)O/^(16)O ratio of carbonate in the alteration veins of Lafayette using the magnetic sector ion microprobe. In addition, we obtained isotope images of major- and minor-element cations in veinlets with the ...

  9. Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.; Ehleringer, James; West, Jason B.; Gill, Gary A.; Duckworth, Douglas C.

    2012-08-15

    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.

  10. Isotope ratio analysis by HRGC-MS of monoterpene hydrocarbons from citrus essential oils.

    Science.gov (United States)

    Satake, Atsushi; Une, Akitoshi; Ueno, Takao; Ukeda, Hiroyuki; Sawamura, Masayoshi

    2003-03-01

    The isotope ratio of monoterpene hydrocarbons in citrus essential oils of different origins was measured by ordinary high-resolution gas chromatography-mass spectrometry (HRGC-MS). The isotope ratio (Ir) was determined by the ratio of the isotope peak intensity (m/z 137) to the molecular mass peak intensity (m/z 136) of the monoterpene hydrocarbons. The accuracy of Ir was examined by measuring monoterpene hydrocarbon standards and 13C-labeled compounds. The isotope fingerprints based on the values of monoterpene hydrocarbons from lemon, lime and yuzu essential oils were determined. These citrus essential oils were also discriminated by a principal component analysis of their Ir data. The characteristic vectors showed that alpha-terpinene, beta-pinene and beta-phellandrene were important components for distinguishing between the citrus species. It is suggested that this technique will be applicable to evaluate the quality, genuineness and origin of citrus fruits and their products.

  11. Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    Science.gov (United States)

    Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Keegan, Elizabeth; Millet, Sylvain

    2009-10-15

    Lead and strontium isotope ratios were used for the origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. A simple and low-background sample preparation method was developed for the simultaneous separation of the analytes followed by the measurement of the isotope ratios by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The lead isotopic composition of the ore concentrates suggests applicability for the verification of the source of the nuclear material and by the use of the radiogenic (207)Pb/(206)Pb ratio the age of the raw ore material can be calculated. However, during data interpretation, the relatively high variation of the lead isotopic composition within the mine site and the generally high contribution of natural lead as technological contamination have to be carefully taken into account. The (87)Sr/(86)Sr isotope ratio is less prone to the variation within one mine site and less affected by the production process, thus it was found to be a more purposeful indicator for the origin assessment and source verification than the lead. The lead and strontium isotope ratios measured and the methodology developed provide information on the initial raw uranium ore used, and thus they can be used for source attribution of the uranium ore concentrates.

  12. STABLE CARBON ISOTOPE EVIDENCE FOR COUPLING BETWEEN SEDIMENTARY BACTERIA AND SEAGRASSES IN A SUB-TROPICAL LAGOON

    Science.gov (United States)

    We measured stable carbon isotope ratios (d13C) in phospholipid fatty acids (PLFAs) to identify the primary carbon source utilized by sedimentary bacteria in Lower Laguna Madre, Texas, which is a seagrass dominated lagoon. Comparisons were made between three differing habitat ty...

  13. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-11-01

    Full Text Available Here we explore the potential of magnesium (δ26Mg isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰, and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰ but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰ suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰ are affected by glacial versus interglacial climate change with outside air temperature

  14. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-05-01

    Full Text Available Here we explore the potential of time-series magnesium (δ26Mg isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07 ‰ and HK3: −4.17 ± 0.15 ‰ and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: −3.96 ± 0.04 ‰ but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07 ‰; BU 4 mean δ26Mg: −4.20 ± 0.10 ‰ record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73 ‰; SPA 59: −3.70 ± 0.43 ‰ are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity

  15. The application of inductively coupled plasma dynamic reaction cell mass spectrometry for measurement of selenium isotopes, isotope ratios and chromatographic detection of selenoamino acids

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt

    2000-01-01

    orders of magnitude by using methane as reactive cell gas in the DRC. By using 3% v/v methanol in water for carbon-enhanced ionisation of selenium, the sensitivity of Se-80 was 10(4) counts s(-1) per ng ml(-1) of selenium, and the estimated limit of detection was 6 pg ml(-1). The precision of the isotope...... ratios. Deuterated methane used as the DRC gas showed that hydrogen transfer from methane was not involved in the formation of SeH as SeD was absent in the mass spectrum. The almost interference-free detection of selenium by ICP-DRC-MS made the detection of the Se-80 isotope possible for detection...

  16. Study on temperature dependence of the greenhouse gases and carbon isotope ratio spectral analysis%温室气体及碳同位素比值傅里叶变换红外光谱分析的温度依赖关系研究

    Institute of Scientific and Technical Information of China (English)

    李相贤; 王振; 徐亮; 高闽光; 童晶晶; 冯明春; 刘建国

    2015-01-01

    To study the influence of temperature change on the spectrum quantitative analysis of greenhouse gases and carbon isotope ratio,at first, the view that the quantitative analysis of greenhouse gases and δ13CO2 value was mainly determined by the absorption coefficient was analyzed theoretically, and the calculation method of the absorption coefficient was also studied. Then referring to the HITRAN database, the temperature dependence of line intensity, FWHM and absorption coefficient were studied, the results show that the effect of line intensity is stronger than the FWHM on the absorption coefficient when the pressure is constant at 1 atm while the temperature changes. At last, the temperature dependence of greenhouse gases and carbon isotope ratio quantitative analysis based on Fourier transform infrared spectroscopy (FTIR) method was confirmed through a series of experiment, and these experiments also present that the variation of carbon isotope is more serious than the greenhouse gases variation when the temperature changes, the δ13CO2 value will change 14.37‰ while the temperature changes 1 ℃. This study is the theoretical basis for the design of the temperature monitoring and controlling system of greenhouse gases and carbon isotope ration monitoring instrument based on FTIR with high-precision.%为了研究温度变化对温室气体及碳同位素比值光谱定量分析的影响,首先从理论上分析得出温室气体浓度及δ13CO2值的定量反演主要取决于吸收系数,并研究了吸收系数的计算方法。其次结合HITRAN数据库,研究了温度对线强、展宽以及吸收系数的影响规律,结果表明:压强为1 atm(1 atm=1.013×105 Pa)恒定条件下,温度变化时,吸收系数受线强变化的影响强于受展宽变化的影响。最后通过实验验证了温室气体和碳同位素比值傅里叶变换红外光谱( FTIR )反演的温度依赖关系,其中碳同位素比值受温度变化影响幅度

  17. Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with "multiple ion counting" and filament carburization

    Science.gov (United States)

    Jakopic, Rozle; Richter, Stephan; Kühn, Heinz; Benedik, Ljudmila; Pihlar, Boris; Aregbe, Yetunde

    2009-01-01

    A sample preparation procedure for isotopic measurements using thermal ionization mass spectrometry (TIMS) was developed which employs the technique of carburization of rhenium filaments. Carburized filaments were prepared in a special vacuum chamber in which the filaments were exposed to benzene vapour as a carbon supply and carburized electrothermally. To find the optimal conditions for the carburization and isotopic measurements using TIMS, the influence of various parameters such as benzene pressure, carburization current and the exposure time were tested. As a result, carburization of the filaments improved the overall efficiency by one order of magnitude. Additionally, a new "multi-dynamic" measurement technique was developed for Pu isotope ratio measurements using a "multiple ion counting" (MIC) system. This technique was combined with filament carburization and applied to the NBL-137 isotopic standard and samples of the NUSIMEP 5 inter-laboratory comparison campaign, which included certified plutonium materials at the ppt-level. The multi-dynamic measurement technique for plutonium, in combination with filament carburization, has been shown to significantly improve the precision and accuracy for isotopic analysis of environmental samples with low-levels of plutonium.

  18. Stable isotope ratio mass spectrometry and physical comparison for the forensic examination of grip-seal plastic bags.

    Science.gov (United States)

    Taylor, Erica; Carter, James F; Hill, Jenny C; Morton, Carolyn; Daeid, Niamh Nic; Sleeman, Richard

    2008-05-20

    Plastic bags are frequently used to package drugs, explosives and other contraband. There exists, therefore, a requirement in forensic casework to compare bags found at different locations. This is currently achieved almost exclusively by the use of physical comparisons such as birefringence patterns. This paper discusses some of the advantages and shortcomings of this approach, and presents stable isotope ratio mass spectrometry (IRMS) as a supplementary tool for effecting comparisons of this nature. Carbon and hydrogen isotopic data are presented for sixteen grip-seal plastic bags from a wide range of sources, in order to demonstrate the range of values which is likely to be encountered. Both isotopic and physical comparison (specifically birefringence) techniques are then applied to the analysis of rolls of bags from different manufacturing lots from a leading manufacturer. Both approaches are able to associate bags from a common production batch. IRMS can be applied to small fragments which are not amenable to physical comparisons, and is able to discriminate bags which could be confused using birefringence patterns alone. Similarly, in certain cases birefringence patterns discriminate bags with similar isotopic compositions. The two approaches are therefore complementary. When more than one isotopically distinct region exists within a bag (e.g. the grip-seal is distinct from the body) the ability to discriminate and associate bags is greatly increased.

  19. Stable Carbon Isotope Record in a Palau Sclerosponge

    Science.gov (United States)

    Grottoli, A. G.

    2002-12-01

    The ratio of stable carbon isotopes (δ13C) deposited in the calcium carbonate skeleton of marine sclerosponges appears to record the carbon isotopic composition of seawater mixed-layer dissolved inorganic carbon (δ13CDIC). Thus the δ13C signature chronicled in sclerosponge skeletons offers a promising multi-century proxy record of seawater mixed-layer δ13CDIC throughout the tropics. Here, a high-resolution (0.1 mm) δ13C record for a 7.7 cm Acanthocheatetes wellsi sclerosponge from Palau (7N, 134W) is presented. At a published growth rate of 0.45 mm per year, this record spans ~s170 years beginning in July 2001 and going back to 1831. The δ13C values for a definitive 10-year A. wellsi record spanning 1989-1998 were similar to δ13C values here for the first 4.7 mm of the record providing supporting evidence for the growth rate. The sclerosponge δ13C shows a distinct Seuss Effect. At the time this abstract was submitted, the analysis of the first 16 mm of the sclerosponge revealed a significant decrease in δ13C with time [δ13C = 0.02 (distance) + 2.64, r2 = 0.73, p < 0.0001, where time is marked by distance in millimeters from the growing edge] corresponding to a decrease in δ13C of 0.076‰ per decade. For comparison, published low-frequency measurements in Australian, New Caledonian and Jamaican sclerosponges have yielded decreases in δ13C of ~s0.05 to 0.08 ‰ per decade over the past 40 years. Preliminary interpretation of the data indicates that the amount of atmospheric CO2 contributing to the seawater δ13CDIC at Palau is intermediate to Australia and Jamaica. In addition, visual examination of the δ13C record reveals regular fluctuation in δ13C that may correspond to annual variability in δ13CDIC. This research presents the first century or longer sclerosponge δ13C record from the northwester equatorial Pacific.

  20. Oxygen isotopic composition of carbon dioxide in the middle atmosphere

    OpenAIRE

    Liang, Mao-Chang; Blake, Geoffrey A.; Lewis, Brenton R.; Yung, Yuk L.

    2007-01-01

    The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO2 in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO2 can be satisfactorily explained by the exchange reaction with...

  1. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    Science.gov (United States)

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  2. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Murray, A.P.; Edwards, D.; Hope, J.M.; Boreham, C.J. [Australian Geological Survey Organisation, Canberra (Australia)] [and others

    1998-12-31

    Hydrocarbons derived from plant resins are major components of some terrigenous oils and bitumens. These compounds are structurally distinct and this makes then useful biomarkers applicable in petroleum exploration as well as sources of biogeochemical information about palaeoenvironment and palaeobotany. Although recent studies have elucidated the molecular structure of resinites, very little information has been available for the carbon isotope composition of resinites and no studies of resin-derived compounds in oils had been performed prior to the present study. Hence, carbon stable isotope analyses were carried out on a suite of modern and fossil resins of diverse origins, including compound specific isotope analysis of individual hydrocarbons produced during resin pyrolysis. Oils derived from resinite source organic matter were also analysed. The results showed that ``Class I`` resinites derived from gymnosperms were enriched in the heavy carbon isotope compared with those from angiosperms (``Class I`` resinites). Furthermore, both fossil resinites themselves and individual hydrocarbons derived from them were isotopically heavy compared with modern plant resins. The isotopic signatures of diterpanes and triterpanes in various early Tertiary oils from Australasia and Southeast Asia reflect their origins from gymnosperms and angiosperms, respectively. (author)

  3. High precision measurement by mass spectrometry of isotopic ratios {delta} {sup 13}C and {delta}{sup 18}O of carbon dioxide; Mesure haute precision par spectrometrie de masse des rapports isotopiques {delta} {sup 13}C et {delta}{sup 18}O du dioxyde de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, Chr.; Ciais, Ph.

    1998-02-01

    Carbon dioxide (CO{sub 2}) is the second natural greenhouse gas in the Earth's atmosphere, after vapor water. Its concentration levels have been increasing by 25% due to human activities over the past 200 years, thus increasing the radiative forcing at the surface and potentially including major climate change for the next centuries. It is of primary importance to better quantify the role of carbon contained into the oceans and the land biota in moderating the anthropic perturbation. To do so, {sup 13}C and {sup 18}O isotopes are unique tools which allow to estimate indirectly the terrestrial CO{sub 2} fluxes based on atmospheric measurements. The present reports describes the experimental set-up used at the CFR-LMCE laboratory to measure the {sup 13}C and {sup 18}O natural abundance in atmospheric carbon dioxide. This technique requires high levels of both precision and accuracy because the geochemical signal nevertheless consists of very small changes in isotopic composition (on the order of 0.01 permits). Also, given the large number of samples to analyses routinely, it must be run in an automatic mode. Our experiment design consists of 'extraction line' where CO{sub 2} is separated cryogenically from the air, which is coupled to a (Finnigan MAT 252) mass spectrometer. (authors)

  4. Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions

    Directory of Open Access Journals (Sweden)

    A. M. Snelling

    2014-05-01

    Full Text Available Oxygen isotope analyses of different size fractions of Pliocene diatoms (δ18Odiatom from the Bering Sea show no evidence of an isotope offset and support the use of bulk diatom species samples for palaeoceanographic reconstructions. Additional samples containing concentrations of sponge spicules produce δ18O values several per mille lower than δ18Odiatom with a calculated mean offset of 3.6‰ ± 0.7. This difference is significantly greater than modern day variations in water δ18O through the regional water column. Despite the potential for oxygen isotope disequilibrium within δ18Osponge, there appears to be some similarity between δ18Osponge and a global stacked benthic δ18Oforam record. This highlights the potential for δ18Osponge in palaeoenvironmental research at sites where carbonates are not readily preserved.

  5. Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze

    Science.gov (United States)

    Vogl, Jochen; Yim, Yong-Hyeon; Lee, Kyoung-Seok; Goenaga-Infante, Heidi; Malinowskiy, Dmitriy; Ren, Tongxiang; Wang, Jun; Vocke, Robert D., Jr.; Murphy, Karen; Nonose, Naoko; Rienitz, Olaf; Noordmann, Janine; Näykki, Teemu; Sara-Aho, Timo; Ari, Betül; Cankur, Oktay

    2014-01-01

    Isotope amount ratios are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement results. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. While the requirements for isotope ratio accuracy and precision in the case of IDMS are generally quite modest, 'absolute' Pb isotope ratio measurements for geochemical applications as well as forensic provenance studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a key comparison was urgently needed and therefore initiated at the IAWG meeting in Paris in April 2011. The analytical task within such a comparison was decided to be the measurement of Pb isotope amount ratios in water and bronze. Measuring Pb isotope amount ratios in an aqueous Pb solution tested the ability of analysts to correct for any instrumental effects on the measured ratios, while the measurement of Pb isotope amount ratios in a metal matrix sample provided a real world test of the whole chemical and instrumental procedure. A suitable bronze material with a Pb mass fraction between 10 and 100 mg•kg-1 and a high purity solution of Pb with a mass fraction of approximately 100 mg•kg-1 was available at the pilot laboratory (BAM), both offering a natural-like Pb isotopic composition. The mandatory measurands, the isotope amount ratios n(206Pb)/n(204Pb), n(207Pb)/n(204Pb) and n(208Pb)/n(204Pb

  6. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  7. Diode laser absorption spectrometry for (CO2)-C-13/(CO2)-C-12 isotope ratio analysis : Investigation on precision and accuracy levels

    NARCIS (Netherlands)

    Castrillo, A; Casa, G; Kerstel, E; Gianfrani, L

    2005-01-01

    Near-infrared laser spectroscopy is used to measure the C-13/C-12 isotope abundance ratio in gas phase carbon dioxide. The spectrometer, developed expressly for field applications, is based on a 2 mu m distributed feedback diode laser in combination with sensitive wavelength modulation detection. It

  8. Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry.

    Science.gov (United States)

    Ireland, Trevor R

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  9. Drought indicated in carbon-13/carbon-12 ratios of southwestern tree rings

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, S.W. (Univ. of Wisconsin-Parkside, Kenosha (United States)); Long, A. (Univ. of Arizona, Tucson (United States))

    1989-04-01

    Stomatal closure during periods of moisture deficiency should theoretically lead to elevated {sup 13}C/{sup 12}C ratios as reduction of available CO{sub 2} leads to diminished photosynthetic discrimination against {sup 13}C in favor of {sup 12}C. Stable-carbon isotope ratio chronologies developed from 5-yr tree-ring groups at 17 sites in six southwestern states were tested for a drought relationship by first fitting a spline curve to each chronology to remove the long-term trend and calculating indices as the ratio of actual to spline curve value. The time series of Del Indices so developed are significantly correlated with 5-yr mean Palmer Hydrological Drought Indices and reconstructed July Palmer Drought Severity Indices from respective areas. Overall, in the period since 1790, and driest pentads were 1900-04 and 1960-64, whereas the wettest were 1980-84 and 1915-19. Maps of drought represented for two pentads seem to be reasonable representations, although spatial correlations of Del Indices with PHDI were generally not significant. These Del Index drought reconstructions may provide a useful measure of past physiological response to drought, although the present cost of analysis would prevent this from being a routine method.

  10. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  11. Beyond carbon and nitrogen: guidelines for estimating three-dimensional isotopic niche space.

    Science.gov (United States)

    Rossman, Sam; Ostrom, Peggy H; Gordon, Forrest; Zipkin, Elise F

    2016-04-01

    Isotopic niche has typically been characterized through carbon and nitrogen ratios and most modeling approaches are limited to two dimensions. Yet, other stable isotopes can provide additional power to resolve questions associated with foraging, migration, dispersal and variations in resource use. The ellipse niche model was recently generalized to n-dimensions. We present an analogous methodology which incorporates variation across three stable dimensions to estimate the significant features of a population's isotopic niche space including: 1) niche volume (referred to as standard ellipsoid volume, SEV), 2) relative centroid location (CL), 3) shape and 4) area of overlap between multiple ellipsoids and 5) distance between two CLs. We conducted a simulation study showing the accuracy and precision of three dimensional niche models across a range of values. Importantly, the model correctly identifies differences in SEV and CL among populations, even with small sample sizes and in cases where the absolute values cannot precisely be recovered. We use these results to provide guidelines for sample size in conducting multivariate isotopic niche modeling. We demonstrate the utility of our approach with a case study of three bottlenose dolphin populations which appear to possess largely overlapping niches when analyzed with only carbon and nitrogen isotopes. Upon inclusion of sulfur, we see that the three dolphin ecotypes are in fact segregated on the basis of salinity and find the stable isotope niche of inshore bottlenose dolphins significantly larger than coastal and offshore populations.

  12. Atmospheric circulation controls on the inter-annual variability in precipitation isotope ratio in Japan

    Directory of Open Access Journals (Sweden)

    N. Kurita

    2014-10-01

    Full Text Available This study explored the primary driver of variations of precipitation isotopes at multiple temporal scales (event, seasonal and inter-annual scales to provide a greater depth of interpretation for isotope proxy records in Japan. A one-year record of the isotopic composition of event-based precipitation at Nagoya in central Japan showed less seasonal variation, but there is large isotopic variability on a storm-to-storm basis. In the summer, southerly flows transport isotopically enriched moisture from subtropical marine regions with the result that the rainfall produced by the subtropical air, or warm rainfall, was relatively enriched in heavy isotopes in comparison with the other rainfall events. In the winter, storm tracks are the dominant driver of storm-to-storm isotopic variation, and relatively lower isotopic values occurred when northerly winds in association with extratropical cyclones passing off the south coast of Japan (Nangan cyclone brings cold precipitation. Using the historical 17 year record of monthly isotopes in precipitation at Tokyo station, we explored if the factors controlling event-scale isotopic variability can account for inter-annual isotopic variability. The relatively higher isotopes in summer precipitation were attributed to the higher contribution of the warm rainfall to the total summer precipitation. On the other hand, year-to-year variation of isotopic values in winter precipitation was negatively correlated with the relative ratio of the Nangan cyclone rainfall to the total winter precipitation. The 17 year precipitation history demonstrates that event-scale isotopic variability related to changes in meridional moisture transport is the primary driver of inter-annual isotopic variability in winter and summer precipitation. The meridional moisture transport to central Japan is likely linked to the activity of the western North Pacific subtropical high in summer and the intensity of the East Asian winter monsoon

  13. Research Progress of Series of Uranium Isotope Ratios Measured by AMS

    Institute of Scientific and Technical Information of China (English)

    LIN; De-yu; WANG; Chen; HUANG; Guo-rui; DONG; Ke-jun; HE; Ming; RUAN; Xiang-dong; WU; Shao-yong; ZHAO; Yong-gang; LI; Li-li; DOU; Liang; XIE; Lin-bo; WANG; Xiao-bo; YANG; Xu-ran; WANG; Xiao-ming; LAN; Xiao-xi; JIANG; Shan

    2012-01-01

    <正>The nuclear safeguards system which is used to monitor compliance with the Nuclear Non-proliferation Treaty relies to a significant degree on the analysis of environmental samples. Undeclared nuclear activities can be detected through determination of the isotopic ratios of uranium and plutonium in such samples. It is necessary to be able to measure the full suite of uranium isotopes (234U,

  14. Stable carbon isotopes in tree rings: the failure of uniformitarianism

    Science.gov (United States)

    McCarroll, Danny

    2010-05-01

    When tree rings are used to reconstruct past climate we rely on the uniformitarian principle that ‘the present is the key to the past'. Relationships between measured parameters and climate that can be calibrated and verified over the instrumental period are assumed to be applicable at longer timescales. In the case of δ13C, however, the uniformitarian principle fails for two reasons. (1) The instrumental calibration period is also the period of anthropogenic increase in atmospheric CO2. δ13C is a function of the ratio of internal to ambient CO2, so maintaining constant δ13C over the industrial period requires an active plastic response, either restricting stomatal conductance or increasing assimilation rate. In some areas trees may have reached the limits of their plasticity so that over the last few decades δ13C values have been declining, independent of any changes in climate. If no correction is made, the recent response to climate will be a poor indicator of behaviour in the past. (2) Tree ring δ13C is often used to reconstruct past temperatures even though temperature rarely has a strong direct control over fractionation. The link is therefore via either sunshine or humidity, which over the calibration period may be very strongly correlated with temperature. Long isotope chronologies, when compared with independent evidence of past temperatures, however, can show periods of marked divergence. The strong covariance of temperature, sunshine and humidity over the last century may not have persisted over longer timescales with larger climatic perturbations. In the case of carbon isotopes the key to the past is not statistical inference based on recent behaviour, but a clear mechanistic understanding of the influence of climate and other factors on fractionation.

  15. Helium Isotopic Ratios of Core Samples from IODP Exp. 319 (NanTroSEIZE Stage 2)

    Science.gov (United States)

    Horiguchi, K.; Matsuda, J.; Wiersberg, T.; Shimo, Y.; Tamura, H.; Kumagai, H.; Suzuki, K.; Saito, S.; Kinoshita, M.; Araki, E.; Byrne, T.; McNeill, L. C.; Saffer, D.; Takahashi, K.; Eguchi, N. O.; Toczko, S.

    2009-12-01

    IODP Exp.319 of Nankai Trough Seismogenic Zone Drilling Program Stage 2 started at May 2009. Various advanced technologies including first riser-based scientific ocean drilling were carried out at this cruise. The Hole C0009A (Site C0009/ Hole A) recovered cutting and partly core samples from 703.9-1604 mbsf by riser-drilling. The core samples were collected between the depth of 1510.5 and 1593.9 mbsf. Here we report preliminary helium isotopic ratios of these cores. We collected three types of samples for our study: (1) gas of cores, (2) whole round cores (100 cc) and (3) small whole round cores (10 cc). The gas samples were taken immediately after the core recovery. The gas samples were collected from each core section by using a syringe, and it was transferred to the glass bottle using the water displacement method. The glass bottle was made by Pyrex glass with vacuum valve at each end. We collected two sizes of whole round core samples (100 cc and 10 cc) The 100 cc cores were collected from the bottom and top sections of coring. The 10 cc cores were taken from the other sections. The outer parts of these samples were carefully removed to avoid contaminations from drilling fluid. After the removal of contamination, we immediately stored the 100 cc samples into vacuum container and 10 cc samples into plastic bag under a dry condition, respectively. The gas samples were measured for helium isotopic ratios. The noble gas measurement was carried out at Osaka University by using VG5400 mass spectrometer. We measured helium isotopic ratio and 4He/20Ne ratio. The latter is useful for making correction of the air contamination. The obtained result of helium isotopic ratios shows that the radiogenic helium is prominent in all samples. In addition, the helium isotope ratios show a trend that the ratio at shallower part is slightly higher than that at deeper part. It is conceivable that this trend is due to the larger radiogenic ingrowths at the deeper part. However, the

  16. Origin of graphite, and temperature of metamorphism in Precambrian Eastern Ghats Mobile Belt, Orissa, India: A carbon isotope approach

    Science.gov (United States)

    Sanyal, Prasanta; Acharya, B. C.; Bhattacharya, S. K.; Sarkar, A.; Agrawal, S.; Bera, M. K.

    2009-09-01

    The carbon isotope composition of graphite and carbon and oxygen isotope composition of associated calcite from different locations of the Eastern Ghats Mobile Belt (EGMB) of Orissa have been measured in order to understand the origin of graphite. The δ 13C values of graphite range from -2.4‰ to -26.6‰. Forty-four of sixty-one samples have δ 13C values less than -20‰. Most of these low δ 13C values graphite corresponds to schists and disseminations in khondalite and calc-silicate granulites, thus indicating graphitization of organic matter. The remaining light-carbon-graphite occurs as veins which is the result of graphitization of transported organic matter. The graphite with intermediate δ 13C value (-13‰ to -19‰) indicates carbon contributions from both organic and carbonates sources and/or mantle sources. The higher δ 13C values graphite (-2.4‰ to -8.8‰) represent mantle carbon and/or carbonate sources without significant contribution from organic carbon. The temperatures of metamorphism have been estimated using carbon isotope ratios of graphite and associated calcite of calc-silicate granulites, where typical cation exchange thermometer assemblages are lacking and significant mineral reaction textures used to calculate pressure-temperature of metamorphic events are absent. Metamorphic temperatures obtained 945 °C are close to the ultrahigh-temperature reported from the EGMB. The minimum temperature estimated using the graphite-carbonate carbon isotope ratio is 90 °C. The lower estimates of temperatures probably indicate changes in the carbon isotope ratio of calcite by decarbonation reaction or armoring of carbonaceous matter in silicates during metamorphism preventing continuous exchange with calcite.

  17. The clumped isotopic record of Neoproterozoic carbonates, Sultanate of Oman

    Science.gov (United States)

    Bergmann, K. D.; Eiler, J. M.; Fischer, W. W.; Osburn, M. R.; Grotzinger, J. P.

    2011-12-01

    The Huqf Supergroup of the Sultanate of Oman records several important events in latest Precambrian time, including two glaciations in the Abu Mahara Group (ca. 725 - isotope excursion in the Nafun Group (ca. isotopic excursions, hypothesized to record perturbations of the surficial Earth carbon cycle or post-depositional diagenetic processes. Rigorous interpretation of these records requires a more thorough assessment of diagenetic processes. To better understand the significance and cause of these large amplitude isotopic excursions, we employed carbonate clumped isotope thermometry. This method allows us to estimate the absolute temperature of carbonate precipitation, including recrystallization, based on the temperature dependent abundance of carbonate ions containing both 13C and 18O. These estimates are accompanied by a measurement of carbonate δ18O, which in conjunction with temperature, can be used to calculate the oxygen isotopic composition of the fluid from which the carbonate precipitated. We analyzed stratigraphically constrained samples from a range of paleoenvironments with differing burial histories (1 - >10km maximum burial depth) to constrain the temperature and fluid composition of recrystallization. Clumped isotope temperatures from Huqf Supergroup samples range from 35-175°C. The isotopic composition of the fluid these rocks equilibrated with ranges from -3.7 to 15.7% VSMOW. This large range in temperature and fluid composition separates into distinct populations that differ systematically with independent constraints on petrography, stratigraphy and burial history. The data indicate the Abu Mahara, Nafun and Ara groups have unique diagenetic histories. In central Oman, the post-glacial Abu Mahara cap dolostone shows high temperature, rock buffered diagenesis (Tavg = 176°C; δ18Ofluid = 15% VSMOW), the Nafun Group generally experienced lower temperature, fluid buffered diagenesis (Tavg = 69°C; δ18Ofluid = 1% VSMOW) and the Ara Group

  18. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  19. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    Science.gov (United States)

    Guillon, S.; Pili, E.; Agrinier, P.

    2012-05-01

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of δ 13C in CO2. Using a set of reference gases of known CO2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO2 concentration, and 0.05 ‰ for δ 13C at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of δ 13C on CO2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO2 concentration and 1.3 ‰ for δ 13C, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source.

  20. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration.

    Science.gov (United States)

    Wingate, Lisa; Ogée, Jérôme; Burlett, Régis; Bosc, Alexandre; Devaux, Marion; Grace, John; Loustau, Denis; Gessler, Arthur

    2010-10-01

    • Photosynthetic carbon (C) isotope discrimination (Δ(Α)) labels photosynthates (δ(A) ) and atmospheric CO(2) (δ(a)) with variable C isotope compositions during fluctuating environmental conditions. In this context, the C isotope composition of respired CO(2) within ecosystems is often hypothesized to vary temporally with Δ(Α). • We investigated the relationship between Δ(Α) and the C isotope signals from stem (δ(W)), soil (δ(S)) and ecosystem (δ(E)) respired CO(2) to environmental fluctuations, using novel tuneable diode laser absorption spectrometer instrumentation in a mature maritime pine forest. • Broad seasonal changes in Δ(Α) were reflected in δ(W,) δ(S) and δ(E). However, respired CO(2) signals had smaller short-term variations than Δ(A) and were offset and delayed by 2-10 d, indicating fractionation and isotopic mixing in a large C pool. Variations in δ(S) did not follow Δ(A) at all times, especially during rainy periods and when there is a strong demand for C allocation above ground. • It is likely that future isotope-enabled vegetation models will need to develop transfer functions that can account for these phenomena in order to interpret and predict the isotopic impact of biosphere gas exchange on the C isotope composition of atmospheric CO(2).

  1. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes

    NARCIS (Netherlands)

    Hoins, M.; Eberlein, T.; Van de Waal, D.B.; Sluijs, A.|info:eu-repo/dai/nl/311474748; Reichart, G.-J.|info:eu-repo/dai/nl/165599081; Rost, B.

    2016-01-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scri

  2. Abundances in red giant stars - Nitrogen isotopes in carbon-rich molecular envelopes

    Science.gov (United States)

    Wannier, P. G.; Andersson, B.-G.; Olofsson, H.; Ukita, N.; Young, K.

    1991-01-01

    Results are presented of millimeter- and submillimeter-wave observations of HCN and HCCCN that were made of the circmustellar envelopes of eight carbon stars, including the two protoplanetary nebulae CRL 618 and CRL 2688. The observations yield a measure of the double ratio (N-14)(C-13)/(N-15)(C-12). Measured C-12/C-13 ratios are used to estimate the N-14/N-15 abundance ratio, with the resulting lower limits in all eight envelopes and possible direct determinations in two envelopes. The two determinations and four of the remaining six lower limits are found to be in excess of the terrestrial value of N-14/N-15 = 272, indicating an evolution of the nitrogen isotope ratio, which is consistent with stellar CNO processing. Observations of thermal SiO (v = 0, J = 2-1) emission show that the Si-29/Si-28 ratio can be determined in carbon stars, and further observations are indicated.

  3. Stable isotope ratios in Cape gannets around the southern coasts of Africa reveal penetration of biogeographic patterns in oceanic signatures

    Science.gov (United States)

    Jaquemet, Sébastien; McQuaid, Christopher

    2008-11-01

    The southern coasts of Africa are influenced by two major oceanic currents, leading to biogeographic patterns in inshore and offshore species assemblages, and in the stable isotope signatures of suspended particulate matter and filter-feeding mussels. We used the stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N) from the blood and feathers of adult and chick Cape gannets ( Morus capensis) to investigate whether the geographic differences observed at the lower levels in the marine communities are deep penetrating effects that reach top predators. Additionally, we evaluated whether trophic segregation occurs between adult and reared chick gannets, and whether a shift to wintering habitat occurs in adults. The study was conducted during the 2006 breeding season on Bird Island in the Agulhas system, and on Malgas and Ichaboe Islands, in the south and north Benguela respectively. Our results showed significant differences in the isotope ratios of members of different colonies, but no intra-colony differences between tissues or age groups. These results indicate that there is neither age-related nor temporal segregation in the diet of members of the same colony. Feather isotopic values suggest that adults remain all year round in the same habitats, and do not undertake long migration after reproduction. Since all gannets tend to target similar prey, we attributed among-colony differences in isotope signatures mostly to the oceanic conditions experienced by the main prey of birds rather than substantial differences in diet composition. Overall, isotopic signatures segregate the two current systems, with depleted carbon values in the Agulhas and enriched nitrogen values in the upwelled waters of the Benguela. Within the Benguela birds from Ichaboe in the north had higher δ 15N values than those from Malgas in the south, which we attributed to differences in the functioning of the upwelling cells in the vicinity of the two colonies. Finally, slight

  4. Martian carbon dioxide: Clues from isotopes in SNC meteorites

    Science.gov (United States)

    Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.

    1993-01-01

    Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.

  5. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    Science.gov (United States)

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore.

  6. Analysis on the Isotopic Ratio of Picogram Pu by TIMS%皮克量级钚同位素丰度比的TIMS分析

    Institute of Scientific and Technical Information of China (English)

    杨天丽; 龙开明; 刘雪梅; 刘钊; 汤磊

    2005-01-01

    The isotopic abundance ratios for Pu at 6.7 pg level were measured by thermal surface ionization mass spectrometry (TIMS). During the preparation of Pu samples carbon power was used as an emitting and stabilizing reagent, which increase the collection efficiency, the ion current intense and the ion emission stability for Pu. The measurment results indicate that the relative standard deviation of 2.7% for the isotopic abundance ratios of 240Pu to 239Pu is achieved when the 240Pu ion current is 8-20 cps.

  7. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  8. On the isotopic composition of magmatic carbon in SNC meteorites

    Science.gov (United States)

    Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1992-01-01

    SNC meteorites are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC meteorites. In order to establish a firm basis for studying the isotopic systematics of carbon in the martian surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC meteorites, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC meteorites are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC meteorites to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of martian surface materials does have the necessary information with which to proceed.

  9. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios

    Science.gov (United States)

    Erel, Yigal; Veron, Alain; Halicz, Ludwik

    1997-11-01

    The isotopic composition of lead in aerosols and soils in Israel is used to characterize the sources of anthropogenic lead in the region, to ascertain the isotopic composition of natural, rock-derived lead in specific areas, and to determine rates of anthropogenic lead migration in soils. The isotopic composition of lead currently emitted from cars in Israel ( 206Pb /207Pb = 1.115 ± 2 ) is controlled by alkyl-lead produced in France and Germany. In addition to petrol-lead, two more sources of anthropogenic lead can be detected in sampled aerosols: the first one has low concentrations of lead (˜4 ng/m 3) and 206Pb /207Pb ˜ 1.157 , and is most likely lead, emitted in Turkey, that traveled across the eastern Mediterranean basin; the second type of aerosols contains a mixture of lead emitted in several countries including Turkey, Greece, and Ukraine ( 206Pb /207Pb value of 1.155-1.160; [Pb] ˜ 20-30 ng/m 3). Anthropogenic lead is more accessible for acid leaching than natural lead, therefore, it is more labile in the soil. The isotopic composition of lead in the acid-leached fraction of near-road soil profiles record the histor of alkyl-lead emission in the country. Based on changes in the isotopic composition of lead with soil depth, it is estimated that anthropogenic lead migrates into the soil at approximately 0.5 cm/y. A soil profile from a relatively remote area is less contaminated by anthropogenic lead and displays a different distribution of lead isotopic values with depth. The isotopic composition of lead suggests that natural lead in soils developed on carbonate bedrock is derived from clays, either from the rock-esidue (the clay fraction in the carbonate bedrock), or from airborne clay, but not from lead released from the carbonate fraction in the rock.

  10. Patterns in stable isotope ratios of particulate material from the eastern US continental shelf

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (δ15N, δ13C) in estuarine, nearshore, and open ocean ecosystems are often utilized in order to characterize human influences, elucidate food web dynamics, or better understand nitrogen cycling. Reliable information a...

  11. Intergroup variation in stable isotope ratios reflects anthropogenic impact on the Barbary macaques (Macaca sylvanus) of Gibraltar.

    Science.gov (United States)

    Schurr, Mark R; Fuentes, Agustín; Luecke, Ellen; Cortes, John; Shaw, Eric

    2012-01-01

    Interactions with humans impact many aspects of behavior and ecology in nonhuman primates. Because of the complexities of the human-nonhuman primate interface, methods are needed to quantify the effects of anthropogenic interactions, including their intensity and differential impacts between nonhuman primate groups. Stable isotopes can be used to quickly and economically assess intergroup dietary variation, and provide a framework for the development of specific hypotheses about anthropogenic impact. This study uses stable carbon and nitrogen isotope analysis to examine intraspecific variation in diet between five groups of Barbary macaques, Macaca sylvanus, in the Upper Rock Nature Reserve, Gibraltar. Analysis of hair from 135 macaques showed significant differences in δ(13)C and δ(15)N values between a group with minimal tourist contact and groups that were main tourist attractions. Because we observed no overt physiological or substantial behavioral differences between the groups, feeding ecology is the most likely cause of any differences in stable isotope ratios. Haphazard provisioning by tourists and Gibraltarians is a likely source of dietary variation between groups. Stable isotope analysis and observational data facilitate a deeper understanding of the feeding ecology of the Barbary macaques relevant to the role of an anthropogenic ecology for the species.

  12. Limits and possibilities in the geolocation of humans using multiple isotope ratios (H, O, N, C) of hair from east coast cities of the USA.

    Science.gov (United States)

    Reynard, Linda M; Burt, Nicole; Koon, Hannah E C; Tuross, Noreen

    2016-01-01

    We examined multiple natural abundance isotope ratios of human hair to assess biological variability within and between geographic locations and, further, to determine how well these isotope values predict location of origin. Sampling locations feature differing seasonality and mobile populations as a robust test of the method. Serially-sampled hair from Cambridge, MA, USA, shows lower δ(2)H and δ(18)O variability over a one-year time course than model-predicted precipitation isotope ratios, but exhibits considerable differences between individuals. Along a ∼13° north-south transect in the eastern USA (Brookline, MA, 42.3 ° N, College Park, MD, 39.0 ° N, and Gainesville, FL, 29.7 ° N) δ(18)O in human hair shows relatively greater differences and tracks changes in drinking water isotope ratios more sensitively than δ(2)H. Determining the domicile of humans using isotope ratios of hair can be confounded by differing variability in hair δ(18)O and δ(2)H between locations, differential incorporation of H and O into this protein and, in some cases, by tap water δ(18)O and δ(2)H that differ significantly from predicted precipitation values. With these caveats, randomly chosen people in Florida are separated from those in the two more northerly sites on the basis of the natural abundance isotopes of carbon, nitrogen, hydrogen, and oxygen.

  13. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  14. Modeling stable isotope and organic carbon in hillslope stormflow

    Science.gov (United States)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  15. Irradiated Xenon Isotopic Ratio Measurement for Failed Fuel Detection and Location in Fast Reactor

    Science.gov (United States)

    Ito, Chikara; Iguchi, Tetsuo; Harano, Hideki

    2009-08-01

    The accuracy of xenon isotopic ratio burn-up calculations used for failed fuel identification was evaluated by an irradiation test of xenon tag gas samples in the Joyo test reactor. The experiment was carried out using pressurized steel capsules containing unique blend ratios of stable xenon tag gases in an on-line creep rupture experiment in Joyo. The tag gas samples were irradiated to total neutron fluences of 1.6 to 4.8 × 1026 n/m2. Laser resonance ionization mass spectrometry was used to analyze the cover gas containing released tag gas diluted to isotopic ratios of 100 to 102 ppb. The isotopic ratios of xenon tag gases after irradiation were calculated using the ORIGEN2 code. The neutron cross sections of xenon nuclides were based on the JENDL-3.3 library. These cross sections were collapsed into one group using the neutron spectra of Joyo. The comparison of measured and calculated xenon isotopic ratios provided C/E values that ranged from 0.92 to 1.10. The differences between calculation and measurement were considered to be mainly due to the measurement errors and the xenon nuclide cross section uncertainties.

  16. Carbon and Nitrogen Isotope Systematics in a Sector-Zoned Diamond from the Mir Kimberlite, Yakutia

    Science.gov (United States)

    Hauri, E.; Bulanova, G.; Pearson, G.; Griffin, B.

    2002-05-01

    A single Yakutian octahedral diamond, displaying striking cubic and octahedral growth sectors surrounded by an octahedral rim, has been analysed for carbon and nitrogen isotopic compositions by SIMS and for nitrogen concentration (by SIMS and FTIR) and nitrogen aggregation state (FTIR). A graphite "seed" inclusion identified within the diamond, enriched in K, Ca, Ti, Rb and Sr, provides evidence that the diamond may have grown from a carbonate melt/fluid interacting with upper mantle rocks. Carbon and nitrogen isotope compositions become progressively heavier from the core region (d13C = -7 to -5 and d15N= -3) towards the inner rim zones (d13C = -3 and d15N = +8.9 to +5) of the diamond. Nitrogen concentration and aggregation measurements show corresponding decreases that generally correlate with the isotopic variations. These systematic variations within the core and intermediate regions of the diamond are consistent with their formation during diamond growth from CO2-rich fluids as a continuous event, accompanied by slight progressive isotopic fractionation of carbon and nitrogen. However, the observed isotope and nitrogen abundance trends are not those predicted from thermodynamic modelling of fluid-solid equilibria in a C-N-O-H-bearing system due to changes in parameters such as fO2 (Deines, 1980; Deines et al 1989). Within the finely-zoned octahedral rim region, non-systematic variations in nitrogen abundance, nitrogen aggregation, and nitrogen and carbon isotope ratios were observed. Several interpretations are given for this phenomenon, including kinetic effects during growth of the diamond rim under different conditions from those of the core-intermediate regions, or rapidly changing fluid sources during the growth. No fractionation of nitrogen isotopes between cubic and octahedral growth zones was identified within the studied diamond, in contrast with the fractionation phenomena found in synthetic diamonds of mixed growth. Our results illustrate the

  17. Proportions of convective and stratiform precipitation revealed in water isotope ratios

    Science.gov (United States)

    Aggarwal, Pradeep K.; Romatschke, Ulrike; Araguas-Araguas, Luis; Belachew, Dagnachew; Longstaffe, Frederick J.; Berg, Peter; Schumacher, Courtney; Funk, Aaron

    2016-08-01

    Tropical and midlatitude precipitation is fundamentally of two types, spatially limited and high-intensity convective or widespread and lower-intensity stratiform, owing to differences in vertical air motions and microphysical processes governing rain formation. These processes are difficult to observe or model and precipitation partitioning into rain types is critical for understanding how the water cycle responds to changes in climate. Here, we combine two independent data sets--convective and stratiform precipitation fractions, derived from the Tropical Rainfall Measuring Mission satellite or synoptic cloud observations, and stable isotope and tritium compositions of surface precipitation, derived from a global network--to show that isotope ratios reflect rain type proportions and are negatively correlated with stratiform fractions. Condensation and riming associated with boundary layer moisture produces higher isotope ratios in convective rain, along with higher tritium when riming in deep convection occurs with entrained air at higher altitudes. On the basis of our data, stable isotope ratios can be used to monitor changes in the character of precipitation in response to periodic variability or changes in climate. Our results also provide observational constraints for an improved simulation of convection in climate models and a better understanding of isotope variations in proxy archives, such as speleothems and tropical ice.

  18. Tracing contamination sources in soils with Cu and Zn isotopic ratios.

    Science.gov (United States)

    Fekiacova, Z; Cornu, S; Pichat, S

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ(65)Cu values vary from -0.15 to 0.44‰ and the δ(66)Zn from -0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from -0.95 to 0.44‰ for δ(65)Cu and from -0.53 to 0.64‰ for δ(66)Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case.

  19. Preliminary Nanosims Analysis of Carbon Isotope of Carbonates in Calcium-Aluminum-Rich Inclusions

    OpenAIRE

    Guan, Y.; Paque, J. M.; Burnett, D.S.; Eiler, J. M.

    2009-01-01

    Carbonate minerals observed in primitive meteorites are products of either terrestrial weathering or aqueous alteration in the early solar system. Most of the carbonate minerals in carbonaceous chondrites occur primarily as isolated grains in matrix, as crosscutting veins, or as replacement minerals in chondrules [e.g., 1, 2]. A few calcium-aluminum-rich inclusions (CAIs) have been reported containing carbonate minerals as well [2, 3]. The C and O isotopes of carbonates in c...

  20. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    Science.gov (United States)

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference.

  1. Variation in strontium isotope ratios of archaeological fauna in the Midwestern United States: a preliminary study

    Science.gov (United States)

    Hedman, Kristin M.; Curry, B. Brandon; Johnson, Thomas M.; Fullagar, Paul D.; Emerson, Thomas E.

    2009-01-01

    Strontium isotope values (87Sr/86Sr) in bone and tooth enamel have been used increasingly to identify non-local individuals within prehistoric human populations worldwide. Archaeological research in the Midwestern United States has increasingly highlighted the role of population movement in affecting interregional cultural change. However, the comparatively low level of geologic variation in the Midwestern United States might suggest a corresponding low level of strontium variation, and calls into question the sensitivity of strontium isotopes to identify non-local individuals in this region. Using strontium isotopes of archaeological fauna, we explore the degree of variability in strontium ratios across this region. Our results demonstrate measurable variation in strontium ratios and indicate the potential of strontium analysis for addressing questions of origin and population movement in the Midwestern United States.

  2. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil

    Directory of Open Access Journals (Sweden)

    SIAL ALCIDES N.

    2000-01-01

    Full Text Available Carbon isotope fluctuations in Precambrian sedimentary carbonates between 2.8 Ga and 0.60 Ga in Brazil are examined in this study. The carbonate facies of the BIF of the 2.8 Ga-old Carajás Formation, state of Pará in northern Brazil, has rather homogeneous delta13C (-5 o/ooPDB, compatible with carbonatization of a silicate protolith by a CO2-rich fluid from mantle degassing. The Paleoproterozoic Gandarela Formation, state of Minas Gerais, displays a narrow delta13C variation (-1.5 to +0.5 o/oo compatible with carbon isotope signatures of carbonates deposited around 2.4 Ga worldwide. The Fecho do Funil Formation has probably recorded the Lomagundi delta13C positive anomaly (+6.4 to +7.1 o/ooPDB. The magnesite-bearing carbonates of the Orós mobile belt, state of Ceará, exhibit carbon isotope fluctuation within the range for carbonates deposited at 1.8 Ga. The C-isotope record of the Frecheirinha Formation, northwestern state of Ceará, shows negative delta13C values in its lower portion (-2 o/oo and positive values up section (+1 to +3 o/oo, which suggests this sequence is a cap carbonate deposited after a glacial event around 0.95 Ga. The Jacoca and Acauã sedimentary carbonate Formations, state of Sergipe, NE Brazil, show carbon isotope fluctuations very similar to each other (average around -5 o/oo, compatible with a deposition around 0.76 Ga. The younger Olho D'Água carbonate Formation, however, also in the state of Sergipe, displays negative delta13C values at the lower portion of the Formation, changing dramatically up section to positive values as high as +10 o/oo, a characteristic compatible with a Sturtian cap carbonate deposited around 0.69 Ga. On the light of the C isotope data discussed in this study, it seems that delta13C fluctuations in Paleoproterozoic carbonates in Brazil are within the range found globally for metasedimentary carbonates of this age. Carbon isotope data proved to be very useful in establishing relative

  3. Carbon isotopic composition of fossil leaves from the Early Cretaceous sediments of western India

    Indian Academy of Sciences (India)

    S Chakraborty; B N Jana; S K Bhattacharya; I Robertson

    2011-08-01

    Stable carbon isotope analysis of fossil leaves from the Bhuj Formation, western India was carried out to infer the prevailing environmental conditions. Compression fossil leaves such as Pachypteris indica, Otozamite kachchhensis, Brachyphyllum royii and Dictyozamites sp. were recovered from three sedimentary successions of the Bhuj Formation, Early Cretaceous in age. A chronology was established based on faunal assemblage and palyno-stratigraphy and further constrained by carbon isotope stratigraphy. The three sampling sites were the Karawadi river bank near Dharesi; the Chawad river bank near Mathal; and the Pur river section near Trambau village in Gujarat. The Dharesi sample was also analyzed to investigate intra-leaf 13C variability. The mean 13C of the leaf was −24.6 ± 0.4‰ which implied negligible systematic change along the leaf axis. The Mathal sample was fragmented in nature and showed considerable variation in carbon isotopic composition. The Trambau sample considered to be the oldest, dating to the middle of Aptian (ca. 116 Ma), shows the most depleted value in 13C among all of them. The overall 13C trend ranging from mid Aptian (ca. 116 Ma) to early Albian (ca. 110 Ma) shows a progressive increase in 13C from −26.8 to −20.5‰. Based on these measurements the carbon isotopic composition of atmospheric carbon dioxide of the Aptian–Albian period is estimated to be between −7.4 and −1.7‰. The ratio of the partial pressure of carbon dioxide in leaf to that of the ambient atmosphere calculated based on a model is estimated to be similar to that of the modern plants. This indicates that the Early-Cretaceous plants adapted to the prevailing high carbon dioxide regime by increasing their photosynthetic uptake.

  4. Characteristics of carbon and hydrogen isotopic compositions of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    沈平

    1995-01-01

    Light hydrocarbons named in the present paper refer to the natural gas-associated light oil and condensate 46 light oil and condensate samples from 11 oil-bearing basins of China were collected and their carbon and hydrogen isotopic compositions were analysed in terms of their total hydrocarbons, saturated hydrocarbons and a part of aromatic fractions, and gas-source materials and their sedimentary environments were discussed based on the above-mentioned data and the geological background of each area. From the view of carbon and hydrogen isotopic composition of total hydrocarbons and saturated hydrocarbons, it is revealed that the condensate related to coal-bearing strata is enriched in 13C and D while that related to the source material of type I-II is enriched in 12C. In general, the isotopic composition of carbon is mainly attributed to the inheriting effect of their source materials, whereas that of hydrogen principally reflects the correlationship between hydrogen isotopes and the sedimentary envi

  5. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  6. Carbon isotope constraints on the deglacial CO₂ rise from ice cores.

    Science.gov (United States)

    Schmitt, Jochen; Schneider, Robert; Elsig, Joachim; Leuenberger, Daiana; Lourantou, Anna; Chappellaz, Jérôme; Köhler, Peter; Joos, Fortunat; Stocker, Thomas F; Leuenberger, Markus; Fischer, Hubertus

    2012-05-11

    The stable carbon isotope ratio of atmospheric CO(2) (δ(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present δ(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in δ(13)C(atm) during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the δ(13)C(atm) evolution. During the Last Glacial Maximum, δ(13)C(atm) and atmospheric CO(2) concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.

  7. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  8. Lithologically inherited variation in Pb isotope ratios in sedimentary soils in The Netherlands

    NARCIS (Netherlands)

    Walraven, N.; Gaans, P.F.M. van; Veer, G. van der; Os, B.J.H. van; Klaver, G.T.; Vriend, S.P.; Middelburg, J.J.; Davies, G.R.

    2013-01-01

    Knowledge on the lithologically inherited variation in present day Pb isotope ratios in soils is remarkably limited. Such information is essential to determine the anthropogenic Pb fraction and anthropogenic Pb sources in Pb-polluted soils. This study presents results of a survey of subsoil samples

  9. Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China

    Institute of Scientific and Technical Information of China (English)

    ZUO; Jingxun; TONG; Jinnan; QIU; Haiou; ZHAO; Laishi

    2006-01-01

    Studies on three Lower Triassic sections located on the shallow water platform, the deep water slope and in the deep water basin in the Lower Yangtze Region, South China, show the similar trend of carbon isotope evolution. Biostratigraphic correlations among the Lower Triassic sections on the basis of standard conodont zones indicate that three negative shifts occurred in the Griesbachian, the Smithian and the late Spathian stages respectively, and one distinctly positive shift occurred in the early Spathian stage. Trend of carbon isotope evolution of the Lower Triassic reflects some significant changes in the global carbon cycle. Moreover, δ13C background values are intensively controlled by palaeogeographic environment. In general, δ13C values from deep-water slope carbonates are lighter than those from carbonate platform and heavier than those from deep-water basin carbonates. The positive carbon isotope excursion may be induced by a significant amount of organic carbon burial in marine sediments and increase in primary productivity. The large negative carbon isotope excursions during the Early Triassic in Lower Yangtze Region are interpreted to relate to volcano eruptions based on tuffaceous claystone interlayers observed near the Permian-Triassic boundary, the Induan- Olenekian boundary and the Lower Triassic-Middle Triassic boundary.

  10. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  11. Measurement of delta13C and delta18O Isotopic Ratios of CaCO3 by a Thermoquest Finnigan GasBench II Delta Plus XL Continous Flow Isotope Ratio Mass Spectrometer with Application to Devils Hole Core DH-11 Calcite

    Science.gov (United States)

    Revesz, Kinga M.; Landwehr, Jurate Maciunas; Keybl, Jaroslav Edward

    2001-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400?20 ?g) of calcium carbonate. This new method streamlines the classical phosphoric acid - calcium carbonate (H3PO4 - CaCO3) reaction method by making use of a Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. To obtain reproducible and accurate results, optimal conditions for the H3PO4 - CaCO3 reaction had to be determined. At the acid-carbonate reaction temperature suggested by the equipment manufacturer, the oxygen isotope ratio results were unsatisfactory (standard deviation () greater than 1.5 per mill), probably because of a secondary reaction. When the acid-carbonate reaction temperature was lowered to 26?C and the reaction time was increased to 24 hours, the precision of the carbon and oxygen isotope ratios for duplicate analyses improved to 0.1 and 0.2 per mill, respectively. The method was tested by analyzing calcite from Devils Hole, Nevada, which was formed by precipitation from ground water onto the walls of a sub-aqueous cavern during the last 500,000 years. Isotope-ratio values previously had been obtained by the classical method for Devils Hole core DH-11. The DH-11 core had been recently re-sampled, and isotope-ratio values were obtained using this new method. The results were comparable to those obtained by the classical method. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, a cutting error that was then independently confirmed. The reproducibility of the isotopic values is demonstrated by a correlation of approximately 0.96 for both isotopes, after correcting for an alignment offset. This result indicates that the new method is a viable alternative to the classical method. In particular, the new method requires less sample material permitting finer resolution and allows automation of some processes

  12. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Otero, Neus; Soler, Albert [Departament de Cristal.lographia, Mineralogia i Diposits Minerals, Facultat de Geologia, Universitat de Barcelona, Barcelona, Spain 08028 (Spain)

    2013-09-15

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S{sub 2}O{sub 8}{sup 2−} was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio. •Base-catalyzed S{sub 2}O{sub 8}{sup 2−} can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S{sub 2}O{sub 8}{sup 2−}) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system.

  13. The Methane to Carbon Dioxide Ratio Produced during Peatland Decomposition and a Simple Approach for Distinguishing This Ratio

    Science.gov (United States)

    Chanton, J.; Hodgkins, S. B.; Cooper, W. T.; Glaser, P. H.; Corbett, J. E.; Crill, P. M.; Saleska, S. R.; Rich, V. I.; Holmes, B.; Hines, M. E.; Tfaily, M.; Kostka, J. E.

    2014-12-01

    Peatland organic matter is cellulose-like with an oxidation state of approximately zero. When this material decomposes by fermentation, stoichiometry dictates that CH4 and CO2 should be produced in a ratio approaching one. While this is generally the case in temperate zones, this production ratio is often departed from in boreal peatlands, where the ratio of belowground CH4/CO2 production varies between 0.1 and 1, indicating CO2 production by a mechanism in addition to fermentation. The in situ CO2/CH4 production ratio may be ascertained by analysis of the 13C isotopic composition of these products, because CO2 production unaccompanied by methane production produces CO2 with an isotopic composition similar to the parent organic matter while methanogenesis produces 13C depleted methane and 13C enriched CO2. The 13C enrichment in the subsurface CO2 pool is directly related to the amount of if formed from methane production and the isotopic composition of the methane itself. Excess CO2 production is associated with more acidic conditions, Sphagnum vegetation, high and low latitudes, methane production dominated by hydrogenotrophic methane production, 13C depleted methane, and generally, more nutrient depleted conditions. Three theories have been offered to explain these observations— 1) inhibition of acetate utilization, acetate build-up and diffusion to the surface and eventual aerobic oxidation, 2) the use of humic acids as electron acceptors, and the 3) utilization of organic oxygen to produce CO2. In support of #3, we find that 13C-NMR, Fourier transform infrared (FT IR) spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) clearly show the evolution of polysaccharides and cellulose towards more decomposed humified alkyl compounds stripped of organic oxygen utilized to form CO2. Such decomposition results in more negative carbon oxidation states varying from -1 to -2. Coincident with this reduction in oxidation state, is the

  14. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    Science.gov (United States)

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  15. The application of isotope ratio mass spectrometry for discrimination and comparison of adhesive tapes.

    Science.gov (United States)

    Horacek, Micha; Min, Ji-Sook; Heo, Sangcheol; Park, Jongseo; Papesch, Wolfgang

    2008-06-01

    Forensic scientists are frequently requested to differentiate between, or compare, adhesive tapes from a suspect or a crime scene. The most common polymers used to back packaging tape are polypropylene and polyvinyl chloride. Much of the oriented polypropylene (OPP) needed to produce packaging tapes, regardless of the tape brand, is supplied by just a few polymer manufacturers. Consequently, the composition of the backing material varies little. Therefore, the discriminating power of classical methods (physical fit, tape dimensions, colour, morphology, FTIR, PyGC/MS, etc.) is limited. Analysis of stable isotopes using isotope ratio mass spectrometry (IRMS) has been applied in the broad area of forensics and it has been reported that isotope analysis is a valuable tool for the identification of adhesive tapes. We have tested the usefulness of this method by distinguishing different South Korean adhesive tapes produced by just a few manufacturers in the small South Korean market. Korean adhesive tapes were collected and analysed for their isotope signatures. The glue of the tapes was separated from the backing material and these sub-samples were analysed for their H- and C-isotope composition. The result shows the possibility for discriminating most tape samples, even from the same brand. Variations within single rolls have also been investigated, where no variations in H- and C-isotope composition significantly exceeding the standard deviation were found.

  16. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    Science.gov (United States)

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease.

  17. Use of isotope ratio mass spectrometry to differentiate between endogenous steroids and synthetic homologues in cattle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, Geert, E-mail: Geert.janssens@favv.be [Federal Agency for the Safety of the Food Chain, Directorate General Laboratories, Kruidtuinlaan 55, 1000 Brussels (Belgium); Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Courtheyn, Dirk [Federal Agency for the Safety of the Food Chain, Directorate General Laboratories, Kruidtuinlaan 55, 1000 Brussels (Belgium); Mangelinckx, Sven [Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Prévost, Stéphanie; Bichon, Emmanuelle; Monteau, Fabrice [LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307 Nantes (France); De Poorter, Geert [Federal Agency for the Safety of the Food Chain, Directorate General Laboratories, Kruidtuinlaan 55, 1000 Brussels (Belgium); De Kimpe, Norbert [Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Le Bizec, Bruno [LUNAM Université, Oniris, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307 Nantes (France)

    2013-04-15

    Graphical abstract: Scheme: Representation of the observed isotope ratios and the relation to exogenous and endogenous natural steroids. AS stands for “amount of steroid”. Highlights: ► The difference between endogenous and exogenous steroids is thoroughly laid out. ► Factors influencing the carbon ratio and the use of Δ{sup 13}C-values are explained. ► Implementation of GC/C/IRMS to detect steroid abuse in cattle is reviewed. ► Alternative methods and upcoming techniques are discussed. ► The differences and similarities with sports doping control are highlighted. -- Abstract: Although substantial technical advances have been achieved during the past decades to extend and facilitate the analysis of growth promoters in cattle, the detection of abuse of synthetic analogs of naturally occurring hormones has remained a challenging issue. When it became clear that the exogenous origin of steroid hormones could be traced based on the {sup 13}C/{sup 12}C isotope ratio of the substances, GC/C/IRMS has been successfully implemented to this aim since the end of the past century. However, due to the costly character of the instrumental setup, the susceptibility of the equipment to errors and the complex and time consuming sample preparation, this method is up until now only applied by a limited number of laboratories. In this review, the general principles as well as the practical application of GC/C/IRMS to differentiate between endogenous steroids and exogenously synthesized homologous compounds in cattle will be discussed in detail, and will be placed next to other existing and to be developed methods based on isotope ratio mass spectrometry. Finally, the link will be made with the field of sports doping, where GC/C/IRMS has been established within the World Anti-Doping Agency (WADA) approved methods as the official technique to differentiate between exogenous and endogenous steroids over the past few years.

  18. Shear heating and clumped isotope reordering in carbonate faults

    Science.gov (United States)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  19. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    Science.gov (United States)

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  20. STABLE CARBON ISOTOPE ANALYSIS OF SUBFOSSIL WOOD FROM AUSTRIAN ALPS

    Science.gov (United States)

    KŁUSEK, MARZENA; PAWEŁCZYK, SŁAWOMIRA

    2015-01-01

    The presented studies were carried out in order to check the usefulness of subfossil wood for stable isotope analysis. The aim of research was also to define the optimal method of subfossil samples preparation. Subfossil samples used during the presented studies are a part of the multi-century dendrochronological scale. This chronology originates in an area situated around a small mountain lake — Schwarzersee, in Austria. The obtained results of stable carbon isotope measurements confirmed that the method of α-cellulose extraction by the application of acidic sodium chlorite and sodium hydroxide solutions removes resins and other mobile compounds from wood. Therefore, in the case of the analysed samples, the additional chemical process of extractives removing was found to be unnecessary. Studied wood samples contained an adequate proportion of α-cellulose similar to the values characteristic for the contemporary trees. This proved an adequate wood preservation which is essential for the conduction of isotopic research. PMID:26346297

  1. Carbon and Oxygen Isotope Stratigraphy of the Oxfordian Carbonate Rocks in Amu Darya Basin

    Institute of Scientific and Technical Information of China (English)

    Rongcai Zheng; Yanghui Pan; Can Zhao; Lei Wu; Renjin Chen; Rui Yang

    2013-01-01

    Based on the detailed research on petrologic and geochemical characteristics of deposition and diagenesis of Oxfordian carbonate rocks in Amu Darya Basin,Turkmenistan,carbon and oxygen isotopes were analyzed.The results show that the paleoenvironmental evolution reflected by the samples with well-preserved original carbon isotopes coincides with the carbon-isotope stratigraphic carve and is almost consistent with the global sea-level curve,the Mid-Oxfordian wide transgression,and the positive carbon-isotope excursion event.The Mid-Oxfordian continuing transgression not only laid the foundation for the development of the Oxfordian reef and shoal reservoirs in Amu Darya Basin but also provided an example for the Oxfordian global transgression and the resulting development of reefs and banks and high-speed organic carbon burial events.The response of oxygen isotopes in diagenetic environment showed that micrite limestones and granular limestones underwent weak diagenetic alteration,and the samples largely retained the original seawater features.Dolomitization and the precipitation of hydrothermal calcites tilling solution vugs and fractures before hydrocarbon accumulation occurred in a closed diagenetic environment where the main controlling factor is the temperature,and the diagenetic fluids were from the deep hot brine.The chalkification of the limestones after hydrocarbon accumulation occurred in the oiltield water systems.

  2. Potential of ion chromatography coupled to isotope ratio mass spectrometry via a liquid interface for beverages authentication.

    Science.gov (United States)

    Guyon, Francois; Gaillard, Laetitia; Brault, Audrey; Gaultier, Nicolas; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-27

    New tools for the determination of characteristic parameters for food authentication are requested to prevent food adulteration from which health concerns, unfair competition could follow. A new coupling in the area of compound-specific carbon 13 isotope ratio (δ(13)C) analysis was developed to simultaneously quantify δ(13)C values of sugars and organic acids. The coupling of ion chromatography (IC) together with isotope ratio mass spectrometry (IRMS) can be achieved using a liquid interface allowing a chemical oxidation (co) of organic matter. Synthetic solutions containing 1 polyol (glycerol), 3 carbohydrates (sucrose, glucose and fructose) and 12 organic acids (gluconic, lactic, malic, tartaric, oxalic, fumaric, citric and isocitric) were used to optimize chromatographic conditions (concentration gradient and 3 types of column) and the studied isotopic range (-32.28 to -10.65‰) corresponds to the values found in food products. Optimum chromatographic conditions are found using an IonPac AS15, an elution flow rate of 0.3mLmin(-1) and a linear concentration gradient from 2 to 76mM (rate 21mMmin(-1)). Comparison between δ(13)C value individually obtained for each compound with the coupling IRMS and elemental analyzer, EA-IRMS, and the ones measured on the mixture of compounds by IC-co-IRMS does not reveal any isotope fractionation. Thus, under these experimental conditions, IC-co-IRMS results are accurate and reproducible. This new coupling was tested on two food matrices, an orange juice and a sweet wine. Some optimization is necessary as the concentration range between sugars and organic acids is too large: an increase in the filament intensity of the IRMS is necessary to simultaneously detect the two compound families. These first attempts confirm the good results obtained on synthetic solutions and the strong potential of the coupling IC-co-IRMS in food authentication area.

  3. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    Science.gov (United States)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  4. Frontiers of QC Laser spectroscopy for high precision isotope ratio analysis of greenhouse gases

    Science.gov (United States)

    Emmenegger, Lukas; Mohn, Joachim; Harris, Eliza; Eyer, Simon; Ibraim, Erkan; Tuzson, Béla

    2016-04-01

    An important milestone for laser spectroscopy was achieved when isotope ratios of greenhouse gases were reported at precision levels that allow addressing research questions in environmental sciences. Real-time data with high temporal resolution at moderate cost and instrument size make the optical approach highly attractive, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. Especially appealing, in comparison to IRMS, is the inherent specificity to structural isomers having the same molecular mass. Direct absorption in the MIR in single or dual QCL configuration has proven highly reliable for the sta-ble isotopes of CO2, N2O and CH4. The longest time series of real-time measurements is currently available for δ13C and δ18O in CO2 at the high-alpine station Jung-fraujoch. At this well-equipped site, QCL based direct absorption spectroscopy (QCLAS) measurements are ongoing since 2008 1,2. Applications of QCLAS for N2O and CH4 stable isotopes are considerably more challenging because of the lower atmospheric mixing ratios, especially for the less abundant species, such as N218O and CH3D. For high precision (air, QCLAS may be combined with a fully automated preconcentration unit yielding an up to 500 times concentration increase and the capability to separate the target gas from spectral interferants by se-quential desorption 3. Here, we review our recent developments on high precision isotope ratio analysis of greenhouse gases, with special focus on the isotopic species of N2O and CH4. Furthermore, we show environ-mental applications illustrating the highly valuable information that isotope ratios of atmospheric trace gases can carry. For example, the intramolecular distribution of 15N in N2O gives important information on the geochemical cycle of N2O4-6, while the analysis of δ13C and δ D in CH4 may be applied to disentangle microbial, fossil and landfill sources 7. 1 Sturm, P., Tuzson, B., Henne, S. & Emmenegger, L. Tracking

  5. Descriptions of carbon isotopes within the energy density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  6. Development of On-Line Direct Current Glow Discharge Source for Analysis of Isotope Ratio of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The present research is focused on the analysis of isotope ratio of the hydrogen by measuring an intensity ratio of hydrogen/deuterium/tritium fluxes. The direct current glow discharge tube may provide a

  7. Comparison of the stable carbon and nitrogen isotopic values of gill and white muscle tissue of fish

    NARCIS (Netherlands)

    Svensson, E.; Freitas, V.; Schouten, S.; Middelburg, J.J.; van der Veer, H.W.; Sinninghe Damsté, J.S.

    2014-01-01

    The potential use of stable carbon and nitrogen isotope ratios (δ13C, δ15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the δ13C and δ15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the δ13C signatures

  8. Comparison of the stable carbon and nitrogen isotopic values of gill and white muscle tissue of fish

    NARCIS (Netherlands)

    Svensson, E.; Freitas, V.; Schouten, S.; Middelburg, J.J.; van der Veer, H.W.; Sinninghe Damsté, J.S.

    2014-01-01

    The potential use of stable carbon and nitrogen isotope ratios (d13C, d15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the d13C and d15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the d13C signatures

  9. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr

    NARCIS (Netherlands)

    Zhou, Bin; Wali, Guzalnur; Peterse, Francien; Bird, Michael I.

    2016-01-01

    Significant uncertainties remain regarding the temporal evolution of natural vegetation during the Quaternary, and drivers of past vegetation change, on the Chinese Loess Plateau (CLP). This study presents analyses of total organic carbon isotopic composition (TOC) and n-alkane ratios (C31/C27) from

  10. Estimating the distribution of strontium isotope ratios (87Sr/86Sr) in the Precambrian of Finland

    OpenAIRE

    Lars Kaislaniemi

    2011-01-01

    A method to estimate the 87Sr/86Sr ratio of a rock based on its age and Rb/Sr ratio is presented. This method, together with data from the Rock Geochemical Database of Finland (n=6544) is used to estimate the 87Sr/86Sr ratios in the Precambrian of Finland and in its different major units. A generalization to cover the whole area of Finland is achieved by smoothing of estimation points. The estimation method is evaluated by comparing its results to published Rb-Sr isotope analyses (n=138) obta...

  11. Geospatial modeling of plant stable isotope ratios - the development of isoscapes

    Science.gov (United States)

    West, J. B.; Ehleringer, J. R.; Hurley, J. M.; Cerling, T. E.

    2007-12-01

    Large-scale spatial variation in stable isotope ratios can yield critical insights into the spatio-temporal dynamics of biogeochemical cycles, animal movements, and shifts in climate, as well as anthropogenic activities such as commerce, resource utilization, and forensic investigation. Interpreting these signals requires that we understand and model the variation. We report progress in our development of plant stable isotope ratio landscapes (isoscapes). Our approach utilizes a GIS, gridded datasets, a range of modeling approaches, and spatially distributed observations. We synthesize findings from four studies to illustrate the general utility of the approach, its ability to represent observed spatio-temporal variability in plant stable isotope ratios, and also outline some specific areas of uncertainty. We also address two basic, but critical questions central to our ability to model plant stable isotope ratios using this approach: 1. Do the continuous precipitation isotope ratio grids represent reasonable proxies for plant source water?, and 2. Do continuous climate grids (as is or modified) represent a reasonable proxy for the climate experienced by plants? Plant components modeled include leaf water, grape water (extracted from wine), bulk leaf material ( Cannabis sativa; marijuana), and seed oil ( Ricinus communis; castor bean). Our approaches to modeling the isotope ratios of these components varied from highly sophisticated process models to simple one-step fractionation models to regression approaches. The leaf water isosocapes were produced using steady-state models of enrichment and continuous grids of annual average precipitation isotope ratios and climate. These were compared to other modeling efforts, as well as a relatively sparse, but geographically distributed dataset from the literature. The latitudinal distributions and global averages compared favorably to other modeling efforts and the observational data compared well to model predictions

  12. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    Science.gov (United States)

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.

    2008-12-01

    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  13. High-Precision Instrumentation for CO2 Isotope Ratio Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Knowing atmospheric 13CO2/12CO2 ratios precisely is important to understanding biogenic and anthroprogenic sources and sinks for carbon. Currently available field...

  14. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria;

    2015-01-01

    . Negative δ13C excursions are related to low-stand deposits and caused by diagenetic processes during subaerial exposure. The comparison with δ13C records from other parts of the world demonstrate that δ13C values are high in most unaltered samples, an overall negative trend during the Permian, as recently...... published, is not obvious and negative excursions related to changes in the carbon isotope composition of the global oceanic carbon pool cannot be confirmed, except for the Permian–Triassic boundary interval....

  15. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Directory of Open Access Journals (Sweden)

    R. Zhu

    2014-01-01

    Full Text Available Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  16. CO2 production by impact in carbonates? An ATEM and stable isotope (C,O) study

    Science.gov (United States)

    Martinez, I.; Agrinier, P.; Guyot, F.; Ildefonse, PH.; Javoy, M.; Schaerer, U.; Hornemann, U.; Deutsch, A.

    1993-01-01

    Carbonates may have been a common target for large impacts on the Earth and possible related CO2 outgassing would have important consequences for the composition of the atmosphere. To estimate volatile release during such impacts, isotopic ratios (C-13/C-12 and O-18/O-16) were determined on highly shocked carbonate samples in combination with SEM and analytical transmission electron microscopy (ATEM) investigations. The study was performed on both naturally and experimentally shocked rocks, i.e. 50-60 GPa shocked limestone-dolomite fragments from the Haughton impact crater (Canada), and carbonates shocked in shock recovery experiments. For the experiments, unshocked carbonates consisting of mixture of dolomite and calcite from the Haughton area were used. Naturally shocked samples were collected in the polymict breccia near the center of the Haughton crater.

  17. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    Science.gov (United States)

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  18. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    Science.gov (United States)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-09-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  19. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    NARCIS (Netherlands)

    Abels, H.A.|info:eu-repo/dai/nl/304848018; Lauretano, V.; van Yperen, Anna E.; Hopman, Tarek; Zachos, J.C.; Lourens, L.J.|info:eu-repo/dai/nl/125023103; Gingerich, P.D.; Bowen, G.J.

    2016-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere–ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can b

  20. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  1. S Isotope Ratios of Central Italy Waters to Assess Their Origin

    Science.gov (United States)

    Castorina, Francesca; Masi, Umberto

    2010-05-01

    Sr isotopes have so far applied only occasionally to the study of the waters from central Italy. Therefore, we have analyzed more than 30 water samples from thermal and cold springs, and from the lakes located in the Quaternary K-alkaline volcanic districts of Latium, aimed at providing significant information on the sources of Sr and the hydrologic circulation. The 87Sr/86Sr composition of the waters shows a general correlation with the aquifer rocks, resulting in the waters from older carbonatic rocks having a less radiogenic signature than those from younger K-alkaline volcanic rocks. The Sr-isotope ratios of most thermal waters range narrowly by 0.708, indicating a common source of Sr, likely represented by the Upper Triassic Burano Anhydrites, i.e. the lowermost permeable formation in the study area. Moreover, the positive correlation between Sr and Ca suggests that bulk Ca was also supplied from that source. A minor number of thermal waters as well as all the waters from the lakes and cold springs display a larger Sr isotopic range (0.7085-0.7115), suggesting a relative large spectrum of sources for Sr. In particular, some waters derive their Sr from a singular source, but the most show isotopic signatures suggestive of mixed contributions from different aquifers. As a whole, the results from this study confirm that Sr isotopes are a useful tool contributing to explain the geochemical characteristics of surficial and groundwaters.

  2. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  3. Carbon and nitrogen isotope systematics in diamond: Different sensitivities to isotopic fractionation or a decoupled origin?

    Science.gov (United States)

    Hogberg, K.; Stachel, T.; Stern, R. A.

    2016-11-01

    Using stable isotope data obtained on multiple aliquots of diamonds from worldwide sources, it has been argued that carbon and nitrogen in diamond are decoupled. Here we re-investigate the carbon-nitrogen relationship based on the most comprehensive microbeam data set to date of stable isotopes and nitrogen concentrations in diamonds (n = 94) from a single locality. Our diamond samples, derived from two kimberlites in the Chidliak Field (NE Canada), show large variability in δ13C (- 28.4 ‰ to - 1.1‰, mode at - 5.8‰), δ15N (- 5.8 to + 18.8‰, mode at - 3.0‰) and nitrogen contents ([N]; 3800 to less than 1 at.ppm). In combination, cathodoluminescence imaging and microbeam analyses reveal that the diamonds grew from multiple fluid pulses, with at least one major hiatus documented in some samples that was associated with a resorption event and an abrupt change from low δ13C and [N] to mantle-like δ13C and high [N]. Overall, δ13C appears to be uncorrelated to δ15N and [N] on both the inter- and intra-diamond levels. Co-variations of δ15N-log[N], however, result in at least two parallel, negatively correlated linear arrays, which are also present on the level of the individual diamonds falling on these two trends. These arrays emerge from the two principal data clusters, are characterized by slightly negative and slightly positive δ15N (about - 3 and + 2‰, respectively) and variable but overall high [N]. Using published values for the diamond-fluid nitrogen isotope fractionation factor and nitrogen partition coefficient, these trends are perfectly reproduced by a Rayleigh fractionation model. Overall, three key elements are identified in the formation of the diamond suite studied: (1.) a low δ13C and low [N] component that possibly is directly associated with an eclogitic diamond substrate or introduced during an early stage fluid event. (2.) Repeated influx of a variably nitrogen-rich mantle fluid (mildly negative δ13C and δ15N). (3.) In waning

  4. Analysis of hydrogen isotope ratios by SIMS, and application to determining mineral-fluid isotope fractionation factors

    Energy Technology Data Exchange (ETDEWEB)

    Riciputi, L.R.; Chacko, T.; Cole, D.R.; Horita, J.

    1997-09-01

    Due to the large mass difference between the two isotopes, D/H ratios can be strongly affected by chemical processes. Thus, they can be sensitive monitors of fluid source, temperature, and fluid-rock interactions in geologic settings. The lack of confidence in fractionation factors has significantly hindered realization of the potential of D/H ratios in geochemical studies. The authors describe a new experimental method, relying on SIMS analysis, that allows the precise determination of mineral-water D/H fractionation factors, and the analytical considerations that are required to make both precise and accurate measurements. The development of this method is based on the fact that diffusion rates are markedly anisotropic in many hydrous minerals, varying by over five orders of magnitude depending on the crystallographic orientation. The diffusion rates can be determined by conducting controlled exchange experiments of fixed duration using isotopically labeled waters that are enriched (strongly) with D, and then measuring the depth profile by SIMS.

  5. Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis

    Science.gov (United States)

    Okumura, Tomoyo; Kawagucci, Shinsuke; Saito, Yayoi; Matsui, Yohei; Takai, Ken; Imachi, Hiroyuki

    2016-12-01

    Hydrogen and carbon isotope systematics of H2O-H2-CO2-CH4 in hydrogenotrophic methanogenesis and their relation to H2 availability were investigated. Two H2-syntrophic cocultures of fermentatively hydrogenogenic bacteria and hydrogenotrophic methanogens under conditions of cultures of hydrogenotrophic methanogens under conditions of 105 Pa-H2 were tested. Carbon isotope fractionation between CH4 and CO2 during hydrogenotrophic methanogenesis was correlated with pH2, as indicated in previous studies. The hydrogen isotope ratio of CH4 produced during rapid growth of the thermophilic methanogen Methanothermococcus okinawensis under high pH2 conditions ( 105 Pa) was affected by the isotopic composition of H2, as concluded in a previous study of Methanothermobacter thermautotrophicus. This " {δ D}_{{H}_2} effect" is a possible cause of the diversity of previously reported values for hydrogen isotope fractionation between CH4 and H2O examined in H2-enriched culture experiments. Hydrogen isotope fractionation between CH4 and H2O, defined by (1000 + {δ D}_{{CH}_4} )/(1000 + {δ D}_{{H}_2O} ), during hydrogenotrophic methanogenesis of the H2-syntrophic cocultures was in the range 0.67-0.69. The hydrogen isotope fractionation of our H2-syntrophic dataset overlaps with those obtained not only from low- pH2 experiments reported so far but also from natural samples of "young" methane reservoirs (0.66-0.74). Conversely, such hydrogen isotope fractionation is not consistent with that of "aged" methane in geological samples (≥0.79), which has been regarded as methane produced via hydrogenotrophic methanogenesis from the carbon isotope fractionation. As a possible process inducing the inconsistency in hydrogen isotope signatures between experiments and geological samples, we hypothesize that the hydrogen isotope signature of CH4 imprinted at the time of methanogenesis, as in the experiments and natural young methane, may be altered by diagenetic hydrogen isotope exchange

  6. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  7. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guy, R.D. (Carnegie Institution of Washington, Stanford, CA (United States)); Fogel, M.L.; Berry, J.A. (Carnegie Inst. of Washington, Washington, DC (United States))

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  8. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  9. Ultratrace and isotope ratios analyses of some radionuclides by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Helal, A.I.; Zahran, N.F.; Abd El-Lateef, A.M.; Mohsen, H.T. [Central Lab. for Elemental and Isotopic Analysis, N.R.C. Atomic Energy Authority, Cairo (Egypt); Amr, M.A. [Central Lab. for Elemental and Isotopic Analysis, N.R.C. Atomic Energy Authority, Cairo (Egypt); Nuclear Physics Dept., N.R.C., Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Dept., Faculty of Science, Zagazig Univ. (Egypt); Abbas, Y. [Physics Dept., Faculty of Science, Suez Canal Univ., Ismailia (Egypt)

    2004-07-01

    Extensive work is under way using high resolution-ICP-MS for {sup 90}Sr, {sup 234}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Am detection. Sample preparation procedures based on liquid-liquid extraction and ion exchange chromatography were developed. Sr, U, Pu, and Am were separated from their matrix and concentrated to improve the power of detection in the mass spectrometer. A microconcentric nebulizer with a desolvation introduction system (Ardius) is used. Instrumental limits of detection using Sr and U standard solutions are 0.01 ppt and 0.006 ppt for Sr and U, respectively. A study is presented on the mass interferences for the specified radionuclides. In the environmental samples investigated the {sup 90}Sr/{sup 86}Sr isotope ratio is 6.02 x 10{sup -9} and for {sup 240}Pu/{sup 239}Pu the isotope ratio is 0.17. (orig.)

  10. Late Miocene evolution of the Black Sea: insights from palynology and strontium isotope ratios

    Science.gov (United States)

    Grothe, Arjen; van Baak, Christiaan; Vasiliev, Iuliana; Sangiorgi, Francesca; Reichart, Gert-Jan; Stoica, Marius; Krijgsman, Wout

    2016-04-01

    During the late Miocene, the connection(s) between the Mediterranean Basin and the Atlantic Ocean deteriorated, which ultimately culminated in thick evaporite deposits and a water level drop in the Mediterranean Basin during the so-called Messinian Salinity Crisis (MSC, 5.97 - 5.33 Ma). It has been claimed that Black Sea, in response to the MSC, also desiccated but these claims have been proven incorrectly. Here we present palynological (dinoflagellate cysts and pollen) and strontium isotope ratios from two Black Sea records: the Zheleznyi Rog outcrop section and Deep Sea Drilling Project Hole 380A. Organic walled cyst-producing dinoflagellates are highly sensitive to even small changes in surface waters and strontium isotope ratios are excellent recorders of changing connectivity. Our records provide therefore more insights in the sensitivity of the Black Sea to Messinian Salinity Crisis and the general evolution of the late Miocene Black Sea.

  11. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  12. Emerging techniques in vegetable oil analysis using stable isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rhodes, Christopher

    2002-03-01

    Full Text Available As the practice of vegetable oil adulteration becomes more sophisticated, the possibility to subvert detection using established techniques such as capillary gas chromatography is increasing. One of the most powerful techniques to be used in food authenticity studies is stable isotope ratio mass spectrometry (SIRMS which utilises differences in the natural abundance of the stable isotopes of the ‘light’ bio-elements hydrogen, nitrogen, carbon, oxygen and sulfur to detect food fraud. SIRMS has found application in the authentication of a wide range of foodstuffs, including fruit juices, wines, spirits, honey and to detect the adulteration of flavour compounds with synthetic analogues. This papers reviews the current state-of-the-art for the authentication of vegetable oils using SIRMS and highlights emergent techniques such as compound- and position specific-isotope mass spectrometry. These latter developments offer the potential to provide more rapid and improved detection of the economic adulteration of vegetable oils.A medida que la práctica de la adulteración de aceites vegetales se hace más sofisticada, las posibilidades de evitar la detección utilizando técnicas tradicionales como la cromatografía de gases en columna capilar aumentan. Una de las técnicas más poderosas que más se utilizan en los estudios de autentificación de alimentos es la espectrometría de masas de relaciones isotópicas, que utiliza diferencias en la abundancia natural de isótopos estables de elementos ligeros biológicos hidrógeno, nitrógeno, carbón, oxigeno y azufre para detectar fraude en los alimentos. La espectrometría de masas de relaciones isotópicas ha encontrado aplicación en la autentificación de una amplia gama de alimentos, incluyendo zumos de frutas, vinos, bebidas alcohólicas de alta graduación, miel, y en la detección de la adulteración de los compuestos aromáticos con sus análogos de origen sintético. Este trabajo

  13. Assessment of Non-Traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities

    Science.gov (United States)

    2016-03-01

    Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities Distribution Statement A. Approved for pubic...12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...Fahrenheit ( o F) [T( o F) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [ activity of radionuclides] 3.7 × 10 10 per second (s –1 ) [becquerel (Bq

  14. Methodological Study on AMS Measurement of Ultra-trace Pu Isotope Ratios at CIAE

    Institute of Scientific and Technical Information of China (English)

    DONG; Ke-jun; ZHAO; Qing-zhang; WANG; Chen; HE; Ming; JIANG; Shan; ZHANG; Hui; PANG; Yi-jun; SHEN; Hong-tao; WANG; Xiao-ming; XU; Yong-ning; WU; Shao-yong; YANG; Xu-ran; WANG; Xiang-gao

    2015-01-01

    The determination of ultra-trace plutonium is very important in different fields.A new measurement method of plutonium isotopic ratios with accelerator mass spectrometry(AMS)was developed at China Institute of Atomic Energy(CIAE).Two laboratory reference standards of 239Pu/240 Pu(ST1)and 239Pu/242 Pu(ST2)are17.241and 10.059,a flow blank,a commercial blank and three real samples were respectively

  15. Traceability of synthetic drugs by position-specific deuterium isotope ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brenna, Elisabetta [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: elisabetta.brenna@polimi.it; Fronza, Giovanni [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Instituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)], E-mail: giovanni.fronza@polimi.it; Fuganti, Claudio [Dipartimento di Chimica, Materiali e di Ingegneria Chimica del Politecnico di Milano (Italy) and Istituto CNR per la Chimica del Riconoscimento Molecolare, Via Mancinelli 7, Milan I-20131 (Italy)

    2007-10-10

    Samples of fluoxetine of different origin were submitted to natural abundance {sup 2}H NMR spectroscopy. The deuterium content at the various sites of the molecule was found to depend on its synthetic history. Hints on the synthetic procedure can be obtained by comparison with standard compounds, whose synthesis is known. These preliminary results give an idea of the potential of site-specific isotope ratio analysis in the fight against patent infringement and drug counterfeiting.

  16. The carbon isotopic compositions of Non-methane Hydrocarbons in atmosphere

    Institute of Scientific and Technical Information of China (English)

    PENG Lin; ZHANG HuiMin; REN ZhaoFang; MU Ling; SHI RuiLiang; CHANG LiPing; LI Fan

    2009-01-01

    Carbon isotopic compositions of atmospheric Non-methane Hydrocarbons (NMHCs) in the urban areas of Taiyuan and Lanzhou in summer were reported and the sources of NMHCs are discussed.Carbon isotopic ratios (δ13C) of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust were also measured with thermal desorption-gas chromatography-isotope ratio-mass spectrometry (TD-GC-IR-MS).δ13C values of NMHCs in the urban areas of Lanzhou and Taiyuan range from -32.3‰ to -22.3‰ and from -32.8‰ to -18.1‰.δ13C values of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust are -32.5‰--21.7‰,-24.5‰--22.3‰,-32.5%--27.4‰ and -31.6‰--24.5‰,respectively.The data indicate that vehicle exhaust and cooking exhaust make a significant contribution to the atmospheric NMHCs.Therefore,to reduce emissions of vehicle exhaust and cook-ing exhaust is critical for controlling atmospheric NMHCs pollution in summer.

  17. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    Science.gov (United States)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  18. DoE optimization of a mercury isotope ratio determination method for environmental studies.

    Science.gov (United States)

    Berni, Alex; Baschieri, Carlo; Covelli, Stefano; Emili, Andrea; Marchetti, Andrea; Manzini, Daniela; Berto, Daniela; Rampazzo, Federico

    2016-05-15

    By using the experimental design (DoE) technique, we optimized an analytical method for the determination of mercury isotope ratios by means of cold-vapor multicollector ICP-MS (CV-MC-ICP-MS) to provide absolute Hg isotopic ratio measurements with a suitable internal precision. By running 32 experiments, the influence of mercury and thallium internal standard concentrations, total measuring time and sample flow rate was evaluated. Method was optimized varying Hg concentration between 2 and 20 ng g(-1). The model finds out some correlations within the parameters affect the measurements precision and predicts suitable sample measurement precisions for Hg concentrations from 5 ng g(-1) Hg upwards. The method was successfully applied to samples of Manila clams (Ruditapes philippinarum) coming from the Marano and Grado lagoon (NE Italy), a coastal environment affected by long term mercury contamination mainly due to mining activity. Results show different extents of both mass dependent fractionation (MDF) and mass independent fractionation (MIF) phenomena in clams according to their size and sampling sites in the lagoon. The method is fit for determinations on real samples, allowing for the use of Hg isotopic ratios to study mercury biogeochemical cycles in complex ecosystems.

  19. Seagrass sediments as a global carbon sink: Isotopic constraints

    Science.gov (United States)

    Kennedy, Hilary; Beggins, Jeff; Duarte, Carlos M.; Fourqurean, James W.; Holmer, Marianne; Marbã, Núria; Middelburg, Jack J.

    2010-12-01

    Seagrass meadows are highly productive habitats found along many of the world's coastline, providing important services that support the overall functioning of the coastal zone. The organic carbon that accumulates in seagrass meadows is derived not only from seagrass production but from the trapping of other particles, as the seagrass canopies facilitate sedimentation and reduce resuspension. Here we provide a comprehensive synthesis of the available data to obtain a better understanding of the relative contribution of seagrass and other possible sources of organic matter that accumulate in the sediments of seagrass meadows. The data set includes 219 paired analyses of the carbon isotopic composition of seagrass leaves and sediments from 207 seagrass sites at 88 locations worldwide. Using a three source mixing model and literature values for putative sources, we calculate that the average proportional contribution of seagrass to the surface sediment organic carbon pool is ˜50%. When using the best available estimates of carbon burial rates in seagrass meadows, our data indicate that between 41 and 66 gC m-2 yr-1 originates from seagrass production. Using our global average for allochthonous carbon trapped in seagrass sediments together with a recent estimate of global average net community production, we estimate that carbon burial in seagrass meadows is between 48 and 112 Tg yr-1, showing that seagrass meadows are natural hot spots for carbon sequestration.

  20. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    V Parthasarathy; A K Nayak; S K Sarkar

    2002-12-01

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the throughput. The achievement is quite significant especially for carbon isotope separation wherein macroscopic operating scales have been realized. We report our studies on the IR laser chemistry of two promising systems, viz. neat CF2HCl and CF3Br/Cl2. We have investigated conditions for optimizing the dissociation yield and selectivity using natural samples containing 1.1 % C-13. We also highlight our current efforts for scaling up the process. These include the design aspects of a photochemical reactor with multipass refocusing Herriott optics for efficient photon utilization, development of a cryogenic distillation set up and a preparative gas chromatograph for large scale separation/collection of the isotopically enriched photoproduct in the post-irradiation stage.

  1. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Directory of Open Access Journals (Sweden)

    Thomas Larsen

    Full Text Available Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13C patterns among amino acids (δ(13CAA could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13CAA patterns in contrast to bulk δ(13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  2. Stable carbon isotope fractionation in pollen of Atlas cedar: first steps towards a new palaeoecological proxy for Northwest Africa

    Science.gov (United States)

    Bell, Benjamin; Fletcher, William; Ryan, Peter; Grant, Helen; Ilmen, Rachid

    2016-04-01

    Analysis of stable carbon isotopes can provide information on climate and the environmental conditions at different growth stages of the plant, both past and present. Carbon isotope discrimination in plant tissue is already well understood, and can be used as a drought stress indicator for semi-arid regions. Stable carbon isotope ratios measured directly on pollen provides the potential for the development of long-term environmental proxies (spanning thousands of years), as pollen is well preserved in the environment. Atlas Cedar (Cedrus atlantica Endl. Manetti ex Carrière), is an ideal test case to develop a pollen stable carbon isotope proxy. The tree grows across a wide altitudinal and climatic range and is extremely sensitive to moisture availability. The pollen is abundant, and easily identifiable to the species level in pollen analysis because different cedar species are geographically confined to different regions of the world. In 2015 we sampled 76 individual cedar trees across latitudinal, altitudinal and environmental gradients, highly focused on the Middle Atlas region of Morocco, with 25 additional samples from botanical gardens across Europe and the US to extend these gradients. Here, we report new stable carbon isotope data from pollen, leaf and stem wood from these samples with a view to assessing and quantifying species-specific fractionation effects associated with pollen production. The isotopic response of individual trees at local and wider geographical scales to altitude and climatic conditions is presented. This research forms part of an ongoing PhD project working to develop and calibrate a modern carbon isotope proxy in Atlas cedar pollen, which can ultimately be applied to fossil sequences and complement existing multi-proxy records (e.g. pollen analysis in lake sediments, tree-rings).

  3. Mg isotope ratios in giant stars of the globular clusters M 13 and M 71

    CERN Document Server

    Yong, D; Lambert, D L; Yong, David; Aoki, Wako; Lambert, David L.

    2006-01-01

    We present Mg isotope ratios in 4 red giants of the globular cluster M 13 and 1 red giant of the globular cluster M 71 based on spectra obtained with HDS on the Subaru Telescope. We confirm earlier results by Shetrone that for M 13, the ratio varies from (25+26)Mg/24Mg = 1 in stars with the highest Al abundance to (25+26)Mg/24Mg = 0.2 in stars with the lowest Al abundance. However, we separate the contributions of all three isotopes and find a spread in the ratio 24Mg:25Mg:26Mg with values ranging from 48:13:39 to 78:11:11. As in NGC 6752, we find a positive correlation between 26Mg and Al, an anticorrelation between 24Mg and Al, and no correlation between 25Mg and Al. In M 71, our one star has a ratio 70:13:17. For both clusters, the lowest ratios of 25Mg/24Mg and 26Mg/24Mg exceed those observed in field stars at the same metallicity, a result also found in NGC 6752. The contribution of 25Mg to the total Mg abundance is constant within a given cluster and between clusters with 25Mg/(24+25+26)Mg = 0.13. For M...

  4. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Science.gov (United States)

    Jung, J.; Kawamura, K.

    2011-11-01

    In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E) in East Asia, total suspended particles (TSP) were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during pollen emission episodes (range: -26.2‰ to -23.5‰, avg. -25.2 ± 0.9‰), approaching those of the airborne pollen (-28.0‰) collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C). Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  5. Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon, Wisconsin

    Science.gov (United States)

    Alpers, C.N.; Dettman, D.L.; Lohmann, K.C.; Brabec, D.

    1990-01-01

    Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of ??13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from -12.68??? to -20.03??? (PDB). Organic carbon from the uppermost meter of soil has ??13C between -24.1 and -25.8??? (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of ??18O in soil-gas CO2 range from 32 to 38??? (SMOW). These ??18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The ??18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters. The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the ??13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the "background" area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot

  6. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    Science.gov (United States)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  7. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    Science.gov (United States)

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-28

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  8. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes.

    Science.gov (United States)

    Durante, Caterina; Baschieri, Carlo; Bertacchini, Lucia; Bertelli, Davide; Cocchi, Marina; Marchetti, Andrea; Manzini, Daniela; Papotti, Giulia; Sighinolfi, Simona

    2015-04-15

    Geographical origin and authenticity of food are topics of interest for both consumers and producers. Among the different indicators used for traceability studies, (87)Sr/(86)Sr isotopic ratio has provided excellent results. In this study, two analytical approaches for wine sample pre-treatment, microwave and low temperature mineralisation, were investigated to develop accurate and precise analytical method for (87)Sr/(86)Sr determination. The two procedures led to comparable results (paired t-test, with twine sample), processed during each sample batch (calculated Relative Standard Deviation, RSD%, equal to 0.002%. Lambrusco PDO (Protected Designation of Origin) wines coming from four different vintages (2009, 2010, 2011 and 2012) were pre-treated according to the best procedure and their isotopic values were compared with isotopic data coming from (i) soils of their territory of origin and (ii) wines obtained by same grape varieties cultivated in different districts. The obtained results have shown no significant variability among the different vintages of wines and a perfect agreement between the isotopic range of the soils and wines has been observed. Nevertheless, the investigated indicator was not enough powerful to discriminate between similar products. To this regard, it is worth to note that more soil samples as well as wines coming from different districts will be considered to obtain more trustworthy results.

  9. Authenticity and traceability of vanilla flavors by analysis of stable isotopes of carbon and hydrogen.

    Science.gov (United States)

    Hansen, Anne-Mette Sølvbjerg; Fromberg, Arvid; Frandsen, Henrik Lauritz

    2014-10-22

    Authenticity and traceability of vanilla flavors were investigated using gas chromatography-isotope ratio mass spectrometry (GC-IRMS). Vanilla flavors produced by chemical synthesis (n = 2), fermentation (n = 1), and extracted from two different species of the vanilla orchid (n = 79) were analyzed. The authenticity of the flavor compound vanillin was evaluated on the basis of measurements of ratios of carbon stable isotopes (δ(13)C). It was found that results of δ(13)C for vanillin extracted from Vanilla planifolia and Vanilla tahitensis were significantly different (t test) and that it was possible to differentiate these two groups of natural vanillin from vanillin produced otherwise. Vanilla flavors were also analyzed for ratios of hydrogen stable isotopes (δ(2)H). A graphic representation of δ(13)C versus δ(2)H revealed that vanillin extracted from pods grown in adjacent geographic origins grouped together. Accordingly, values of δ(13)C and δ(2)H can be used for studies of authenticity and traceability of vanilla flavors.

  10. The carbon-to-oxygen ratio in stars with planets

    CERN Document Server

    Nissen, Poul Erik

    2013-01-01

    In some recent works, the C/O abundance ratio in high-metallicity stars with planets is found to vary from 0.4 to about 1.0. This has led to discussions about the existence of terrestrial planets with a carbon-dominated composition that is very different from the composition of the Earth. The C/O values were obtained by determining carbon abundances from high-excitation CI lines and oxygen abundances from the forbidden [OI] line at 6300 A. This weak line is, however, strongly affected by a nickel blend at high metallicities. Aiming for more precise C/O ratios, oxygen abundances in this paper are derived from the high-excitation OI triplet at 7774 A and carbon abundances from the CI lines at 5052 and 5380 A using MARCS model atmospheres and including non-LTE corrections. The results do not confirm the high C/O ratios previously found. C/O shows a tight, slightly increasing dependence on metallicity from C/O=0.58 at [Fe/H]=0.0 to C/O=0.70 at [Fe/H] =0.4 with an rms scatter of only 0.06. Assuming that the compos...

  11. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    Science.gov (United States)

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  12. Isotopic composition of carbon and oxygen of carbonates of oil and gas-bearing deposits of Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, S.I.; Cherepnin, A.V.; Rozhnev, A.N.

    1981-01-01

    There is measured the isotopic composition of carbon and oxygen in 129 samples of carbonates and carbonate cements of oil and gas-bearing Paleozoic and Mezozoic deposits of Western Siberia. The isotopic composition of samples of marine deposits varies from -1.2 to +6.1% for carbon and from 19.8 to 29.1% for oxygen and has a mean isotopic composition of 1.9 to 24.8%. Catagenetic processes lead to lightening of the isotopic composition of secondary carbonate on the average by 5% for carbon and 9% for oxygen. The most intense lightening of isotopic composition is observed in samples disposed near oil and gas deposits.

  13. Simultaneous Analysis of Nitrogen, Carbon and Sulfur Stable Isotopes and Concentrations in Organics and Soils

    Science.gov (United States)

    Mambelli, S.; Brooks, P. D.; Sutka, R.; Hughes, S.; Finstad, K. M.; Pakes, M. J.; Dawson, T. E.

    2014-12-01

    To date, analysis of diet, food web complexities, biogeochemical cycles, and ecosystem functioning have largely focused on using variation in carbon (C) and nitrogen (N) stable isotope ratios. This is because a great deal is understood about what leads to this variation and because the dual stable isotope analysis of these two elements using continuous flow isotope ratio mass spectrometry (IRMS) is now commonplace. However, the aforementioned studies may all greatly benefit from the additional information one can get from also having sulfur (S) stable isotopes ratio data. Until very recently the analysis of δ34S has traditionally required an additional and often more difficult analytical procedure. Here, we report on the development of a new method that simultaneously analyzes the elemental and isotopic composition of N, C and S in a single sample. The new commercially available instrument includes a modified NCS elemental analyzer in line with an IRMS outfitted with 100 volt AD converters for wide dynamic range. We tested, and modified, this instrument to achieve maximum accuracy and precision for the isotopic measurements of all three elements. We found that the original design needed improvements to achieve our goals by: a) including a component (originally designed for trapping water) as buffer to reduce S memory and obtain reliable δ34S analysis; b) adding an external furnace for complete reduction of nitrogen oxides to N2 gas for accurate δ15N; c) adding a magnesium perchlorate water trap immediately after the reduction tube to minimize any water condensation that could also influence S memory. We analyzed a selection of organic materials and soils with approximately a 1:2 standards versus unknowns ratio per run. Using this NCS set-up, the precision of the N and C isotopic measurements was comparable to the one usually attained in NC mode alone (standard deviation of ± 0.13 δ15N in the range 30 to 400 µg N, and of ± 0.12 δ13C in the range 0.20 to 4 mg

  14. Isotope composition of bicarbonate carbon in bed waters of oil and gas deposits

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, S.I.; Cherepnin, A.V.; Ivanov, V.G.; Manylova, L.S.

    1981-01-01

    A study is made of the isotope composition of bicarbonate carbon in bed waters of the Jurassic water complex in southeast West Siberia. It has been established that waters of empty and transcontour structures have isotope composition of carbon 5/sup 0//oo, while in waters which contact the hydrocarbon formations, the isotope composition of carbon is lighter on the average by 5-8/sup 0//oo. The isotope composition of bicarbonate carbon in bed waters reflects both the conditions for primary sedimentation, and secondary processes associated with organic matter transformation.

  15. Development and Airborne Operation of a Compact Water Isotope Ratio Infrared Spectrometer

    Science.gov (United States)

    Iannone, Rosario Q.; Kassi, Samir; Jost, Hans-Juerg; Chenevier, Marc; Romanini, Daniele; Meijer, Harro A. J.; Dhaniyala, Suresh; Snels, Marcel; Kerstel, Erik R. T.

    2009-01-01

    A sensitive laser spectrometer, named IRIS (water isotope ratio infrared spectrometer), was developed for the in situ detection of the isotopic composition of water vapour in the upper troposphere and the lower stratosphere. Isotope ratio measurements can be used to quantify troposphere stratosphere exchange, and to study the water chemistry in the stratosphere. IRIS is based on the technique of optical feedback cavity-enhanced absorption spectroscopy. It uses a room temperature near-infrared laser, and does not require cryogenic cooling of laser or detectors. The instrument weighs 51 kg including its support structure. Airborne operation was demonstrated during three flights aboard the European M55-Geophysica stratospheric research aircraft, as part of the AMMA/SCOUT-03 (African Monsoon Multidisciplinary Analysis/Stratospheric Climate links with emphasis on the Upper Troposphere and lower stratosphere) campaign in Burkina Faso in August 2006. The data are discussed with reference to a Rayleigh distillation model. As expected, there is no indication of non-mass-dependent fractionation (also known as mass-independent fractionation) in the troposphere. Furthermore, improvements to the thermal management system and a move to a (cryogen-free) longer-wavelength laser source are discussed, which together should result in approximately two orders of magnitude improvement of the sensitivity

  16. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations

    Science.gov (United States)

    Heck, Philipp R.; Huberty, Jason M.; Kita, Noriko T.; Ushikubo, Takayuki; Kozdon, Reinhard; Valley, John W.

    2011-10-01

    Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (˜10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (˜3.8 Ga); Hamersley Group, Western Australia (˜2.5 Ga); Transvaal Group, South Africa (˜2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (˜1.9 Ga). Values of δ 18O range from +7.9‰ to +27.5‰ and include the highest reported δ 18O values for BIF quartz. Values of δ 30Si have a range of ˜5‰ from -3.7‰ to +1.2‰ and extend to the lowest δ 30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ 18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ 30Si up to 3‰, similar to the range in δ 30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ 30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ˜1 mm. We interpret differences in δ 30Si between microlaminae as preserved from primary

  17. A global deglacial negative carbon isotope excursion in speleothem calcite

    Science.gov (United States)

    Breecker, D.

    2015-12-01

    δ13C values of speleothem calcite decreased globally during the last deglaciation defining a carbon isotope excursion (CIE) despite relatively constant δ13C values of carbon in the ocean-atmosphere system. The magnitude of the CIE varied with latitude, increasing poleward from ~2‰ in the tropics to as much as 7‰ at high latitudes. This recent CIE provides an interesting comparison with CIEs observed in deep time. A substantial portion of this CIE can be explained by the increase in atmospheric pCO2 that accompanied deglaciation. The dependence of C3 plant δ13C values on atmospheric pCO2 predicts a 2‰ δ13C decrease driven by the deglacial pCO2 increase. I propose that this signal was transferred to caves and thus explains nearly 100% of the CIE magnitude observed in the tropics and no less than 30% at the highest latitudes in the compilation. An atmospheric pCO2 control on speleothem δ13C values, if real, will need to be corrected for using ice core data before δ13C records can be interpreted in a paleoclimate context. The decrease in the magnitude of the equilibrium calcite-CO2 carbon isotope fractionation factor explains a maximum of 1‰ of the CIE at the highest northern latitude in the compilation, which experienced the largest deglacial warming. Much of the residual extratropical CIE was likely driven by increasing belowground respiration rates, which were presumably pronounced at high latitudes as glacial retreat exposed fresh surfaces and/or vegetation density increased. The largest increases in belowground respiration would have therefore occurred at the highest latitudes, explaining the meridional trend. This work supports the notion that increases in atmospheric pCO2 and belowground respiration rates can result in large CIEs recorded in terrestrial carbonates, which, as previously suggested, may explain the magnitude of the PETM CIE as recorded by paleosol carbonates.

  18. Ratio of Pion Kaon Production in Proton Carbon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Andrey V. [Harvard Univ., Cambridge, MA (United States)

    2007-05-01

    The ratio of pion-kaon production by 120 GeV/c protons incident on carbon target is presented. The data was recorded with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory. Production ratios of K++, K--, K-/K+, and π-+ are measured in 24 bins in longitudinal momentum from 20 to 90 GeV/c and transverse momentum up to 2 GeV/c. The measurement is compared to existing data sets, particle production Monte Carlo results from FLUKA-06, parametrization of proton-beryllium data at 400/450 GeV/c, and ratios measured by the MINOS experiment on the NuMI target.

  19. Alteration of the carbon and nitrogen isotopic composition in the Martian surface rocks due to cosmic ray exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-06-01

    13C/12C and 15N/14N isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce 13C and 15N isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both 13C and 15N due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is Mars can explain its high-temperature heavy nitrogen isotopic composition (15N/14N). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  20. Isotopic 32S/33S ratio as a diagnostic of presolar grains from novae

    Directory of Open Access Journals (Sweden)

    A. Parikh

    2014-10-01

    Full Text Available Measurements of sulphur isotopes in presolar grains can help to identify the astrophysical sites in which these grains were formed. A more precise thermonuclear rate of the 33S(p,γ34Cl reaction is required, however, to assess the diagnostic ability of sulphur isotopic ratios. We have studied the 33S(3He,d34Cl proton-transfer reaction at 25 MeV using a high-resolution quadrupole–dipole–dipole–dipole magnetic spectrograph. Deuteron spectra were measured at ten scattering angles between 10° and 55°. Twenty-four levels in 34Cl over Ex=4.6–5.9 MeV were observed, including three levels for the first time. Proton spectroscopic factors were extracted for the first time for levels above the 33S + p threshold, spanning the energy range required for calculations of the thermonuclear 33S(p,γ34Cl rate in classical nova explosions. We have determined a new 33S(p,γ34Cl rate using a Monte Carlo method and have performed new hydrodynamic nova simulations to determine the impact on nova nucleosynthesis of remaining nuclear physics uncertainties in the reaction rate. We find that these uncertainties lead to a factor of ≤5 variation in the 33S(p,γ34Cl rate over typical nova peak temperatures, and variation in the ejected nova yields of SCa isotopes by ≤20%. In particular, the predicted 32S/33S ratio is 110–130 for the nova model considered, compared to 110–440 with previous rate uncertainties. As recent type II supernova models predict ratios of 130–200, the 32S/33S ratio may be used to distinguish between grains of nova and supernova origin.

  1. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    Directory of Open Access Journals (Sweden)

    H. A. Abels

    2015-05-01

    Full Text Available Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically-light carbon to the exogenic atmosphere–ocean carbon pool, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE can be used to constrain both the sources and amounts of carbon released during an event, as well as to correlate marine and terrestrial records with high precision. The Paleocene Eocene Thermal Maximum (PETM is well documented, but CIE records for the subsequent warming events are still rare especially from the terrestrial realm. Here, we provide new CIE records for two of the smaller hyperthermal events, I1 and I2, in paleosol carbonate, as well as two additional records of ETM2 and H2 in the Bighorn Basin. Stratigraphic comparison of this expanded, high-resolution terrestrial carbon isotope record to the deep-sea benthic foraminifera records from ODP Sites 1262 and 1263, Walvis Ridge, in the southern Atlantic Ocean corroborates that the Bighorn Basin fluvial sediments record global atmospheric change. The stratigraphic thicknesses of the eccentricity-driven hyperthermals in these archives are in line with precession-forcing of the 7 m thick fluvial overbank-avulsion sedimentary cycles. Using the CALMAG bulk oxide mean annual precipitation proxy, we reconstruct similar or slightly wetter than background soil moisture contents during the four younger hyperthermals, in contrast to drying observed during the PETM. Soil carbonate CIEs vary in magnitude proportionally with the marine CIEs for the four smaller early Eocene hyperthermals. This relationship breaks down for the PETM, with the soil carbonate CIE ~ 2–4‰ less than expected if all five linearly relate to marine CIEs. If the PETM CO2 forcing was similar but scaled to the younger hyperthermals, photosynthetic isotope fractionation or soil environmental factors are needed to explain this anomaly. We

  2. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin

    2004-01-01

    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  3. Extraction, separation, and intramolecular carbon isotope characterization of athabasca oil sands acids in environmental samples.

    Science.gov (United States)

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Simard, Marie-Christine; Smirnoff, Anna

    2012-12-04

    Here we report a novel approach to extract, isolate, and characterize high molecular weight organic acids found in the Athabasca oil sands region using preparative capillary gas chromatography (PCGC) followed by thermal conversion/elemental analysis-isotope ratio mass spectrometry (TC/EA-IRMS). A number of different "naphthenic acids" surrogate standards were analyzed as were samples from the bitumen-rich unprocessed McMurray Formation, oil sands process water, groundwater from monitoring wells, and surface water from the Athabasca River. The intramolecular carbon isotope signature generated by online pyrolysis (δ(13)C(pyr)) showed little variation (±0.6‰) within any given sample across a large range of mass fractions separated by PCGC. Oil sand, tailings ponds, and deep McMurray Formation groundwater were significantly heavier (up to ∼9‰) compared to surface water and shallow groundwater samples, demonstrating the potential use of this technique in source apportionment studies.

  4. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types-I,-II,IIS, and -III

    Science.gov (United States)

    Schimmelmann, Arndt; Lewan, Michael D.; Wintsch, Robert P.

    1999-11-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381°C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330°C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ≈ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381°C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350°C for 72 h, or 330°C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115°C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  5. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III

    Science.gov (United States)

    Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

    1999-01-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381??C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330??C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ~ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 ??C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350??C for 72 h, or 330??C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115??C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  6. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Both gradual and sharp decrease in organic and carbonate carbon isotope values were detected across the Permian-Triassic boundary in the Meishan section, Changxing, Zhejiang Province, China. The gradual decrease in organic carbon isotope values started at the bottom of Bed 23, coinciding with the strong oscillations of total organic carbon (TOC) contents, indicates increasing fluxes from carbonate to organic carbon reservoir during this interval. A 2.3‰ sharp drop of inorganic carbon isotope values occurred at the uppermost part of Bed 24e. A 3.7‰ sharp drop of organic carbon isotope values occurred in Bed 26. The dramatic drop of inorganic carbon isotope value of 8‰ reported previously is not confirmed from the unweathered carbonate samples in Bed 27. The large-scale fluctuation of organic carbon isotope values in the Yinkeng Formation reflects different extent of mixing of marine and terrestrial organic matters. The gradual depletion and subsequent sharp drop of carbon isotopes near the Permian-Triassic boundary might indicate complex causes of the end-Permian mass extinction.

  7. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, S.; Brunner, M.; Boulyga, S.F.; Galler, P.; Prohaska, T. [University of Natural Resources and Applied Life Sciences, Department of Chemistry-VIRIS Project, Vienna (Austria); Horacek, M. [Austrian Research Centers GmbH, Seibersdorf (Austria)

    2008-01-15

    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, the Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH{sub 4}NO{sub 3} extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%. (orig.)

  8. Bulk Stable Isotope Analysis of Carbon from Solids and Liquids using an Elemental Analyzer Coupled to a Wavelength-Scanned Cavity Ring-Down Spectrophotometer

    Science.gov (United States)

    Saad, N.; Rella, C.; van Pelt, A.

    2009-04-01

    We report here on the novel employment of a small footprint Wavelength-Scanned Cavity Ring-Down Spectrometer (WS-CRDS) interfaced to an elemental analyzer for the measurement of the bulk isotopic carbon signature in plants and food products. The current system provides an inexpensive alternative with unparalleled ease-of-use as compared to standard methods using the more complex analytical instrumentation of isotope ratio mass spectrometry. A precision of carbon isotopic ratio measurements of less than 1 permil was achieved in minutes of measurement time. Such precision readily distinguishes the isotopic carbon signatures of a variety of environmental and agricultural products from different origins, providing information about food authenticity and climate changes effect on plant physiology.

  9. Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference-population-based thresholds and proof-of-concept.

    Science.gov (United States)

    Piper, Thomas; Thomas, Andreas; Thevis, Mario; Saugy, Martial

    2012-09-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern

  10. Stable carbon isotope fractionation in the UV photolysis of CFC-11 and CFC-12

    Directory of Open Access Journals (Sweden)

    A. Zuiderweg

    2011-12-01

    Full Text Available The chlorofluorocarbons CFC-11 (CCl3F and CFC-12 (CCl2F2 are stable atmospheric compounds that are produced at the earth's surface, but removed only at high altitudes in the stratosphere, where their removal liberates atomic chlorine that then catalytically destroys stratospheric ozone. For such long-lived compounds, isotope effects in the stratospheric removal reactions have a large effect on their global isotope budgets. We have determined the photolytic isotope fractionation for stable carbon isotopes of CFC-11 and CFC-12 in laboratory experiments. 13C/12C isotope fractionations (ϵ range from (−23.7 ± 0.9 to (−17.5 ± 0.4‰ for CFC-11 and (−69.2 ± 3.4 to (−49.4 ± 2.3‰ for CFC-12 between 203 and 288 K, a temperature range relevant to conditions in the troposphere and stratosphere. These results suggest that CFCs should become strongly enriched in 13C with decreasing mixing ratio in the stratosphere, similar to what has been recently observed for CFC chlorine isotopes. In conjunction with the strong variations in CFC emissions before and after the Montréal Protocol, the stratospheric enrichments should also lead to a significant temporal increase in the 13C content of the CFCs at the surface over the past decades, which should be recorded in atmospheric air archives such as firn air.

  11. Mantle Degassing and Diamond Genesis:A Carbon Isotope Perspective

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1994-01-01

    The effect of Co2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation.Assuming the δ13 C value of -5‰ for the mantle,the outgassing of CO2 can result in the large negative δ13 C values of diamond,whereas the outgassing of CH4 can drive the δ13C values of diamond in the positive direction.The theoretical expectations can be used to explain the full range of δ13 C values from-34.4‰5 to+5‰ observed for natural diamonds.It is possible that diamond formation was triggered by the degassing of Co2 and/or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.

  12. Carbon isotopes and water use efficiency in C4 plants.

    Science.gov (United States)

    Ellsworth, Patrick Z; Cousins, Asaph B

    2016-06-01

    Drought is a major agricultural problem worldwide. Therefore, selection for increased water use efficiency (WUE) in food and biofuel crop species will be an important trait in plant breeding programs. The leaf carbon isotopic composition (δ(13)Cleaf) has been suggested to serve as a rapid and effective high throughput phenotyping method for WUE in both C3 and C4 species. This is because WUE, leaf carbon discrimination (Δ(13)Cleaf), and δ(13)Cleaf are correlated through their relationships with intercellular to ambient CO2 partial pressures (Ci/Ca). However, in C4 plants, changing environmental conditions may influence photosynthetic efficiency (bundle-sheath leakiness) and post-photosynthetic fractionation that will potentially alter the relationship between δ(13)Cleaf and Ci/Ca. Here we discuss how these factors influence the relationship between δ(13)Cleaf and WUE, and the potential of using δ(13)Cleaf as a meaningful proxy for WUE.

  13. Diet and mobility in Early Medieval Bavaria: a study of carbon and nitrogen stable isotopes.

    Science.gov (United States)

    Hakenbeck, Susanne; McManus, Ellen; Geisler, Hans; Grupe, Gisela; O'Connell, Tamsin

    2010-10-01

    This study investigates patterns of mobility in Early Medieval Bavaria through a combined study of diet and associated burial practice. Carbon and nitrogen isotope ratios were analyzed in human bone samples from the Late Roman cemetery of Klettham and from the Early Medieval cemeteries of Altenerding and Straubing-Bajuwarenstrasse. For dietary comparison, samples of faunal bone from one Late Roman and three Early Medieval settlement sites were also analyzed. The results indicate that the average diet was in keeping with a landlocked environment and fairly limited availability of freshwater or marine resources. The diet appears not to have changed significantly from the Late Roman to the Early Medieval period. However, in the population of Altenerding, there were significant differences in the diet of men and women, supporting a hypothesis of greater mobility among women. Furthermore, the isotopic evidence from dietary outliers is supported by "foreign" grave goods and practices, such as artificial skull modification. These results reveal the potential of carbon and nitrogen isotope analysis for questions regarding migration and mobility.

  14. He and Ne isotopic ratios along the Terceira Rift: implications for the Azores mantle source

    Science.gov (United States)

    Madureira, P.; Moreira, M. A.; Nunes, J.; Lourenco, N.; Carvalho, M.; Mata, J.; Pinto de Abreu, M.

    2010-12-01

    Noble gas data (He and Ne) on olivine phenocrysts obtained from Azores’ lavas sampled along the Terceira Rift will be presented in this work. The Terceira Rift is considered as one of the slowest spreading system in the world (Vogt & Jung, 2004). Lava samples were collected inland at S. Miguel, Terceira, Graciosa, Pico and Faial Islands as well at sea at D.