WorldWideScience

Sample records for carbon isotope discrimination

  1. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    The 13C/12C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13C and CO2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  2. Carbon Isotope Discrimination and Salinity Tolerance in Rice

    International Nuclear Information System (INIS)

    The relationship between carbon isotope discrimination (CID, Δ13C, Δ) and salinity tolerance in rice was investigated in six experiments during 2004-09. In Experiment 1, quantitative trait loci (QTLs) for Δ were analyzed in an IR29 / Pokkali mapping population of 79 recombinant inbred lines (RILs) grown under salt stress imposed at the seedling stage. Three QTLs for flag leaf-Δ were detected on chromosomes 1, 3, and 11 with R2 values ranging from 18 to 33%, and all three co-located with mapped QTLs for salinity tolerance and Na+: K+ ratio. In Experiment 2, a set of 80 breeding lines and varieties were evaluated at the seedling stage for Δ and salinity tolerance using visual standard evaluation system (SES) scores, growth, salt uptake, and δ13C composition of leaves. While the first experiment using a mixture of sensitive and tolerant RILs showed strong correlations between Δ and salt-stress traits, the data from the breeding lines showed relatively weaker correlation, possibly due to the low genetic variability within this set and the high tolerance level of most of the lines. The correlation between Δ and salinity tolerance at the reproductive stage was tested in Experiment 3 using flag leaf and grain samples across a set of 80 tolerant and sensitive lines, including 46 breeding lines and 34 varieties and landraces. The flag leaf-Δ values correlated well with grain-Δ, and both correlated positively with grain yield of single plants, suggesting that flag leaf-Δ can potentially be used to select for salinity tolerance during the reproductive stage, which agreed with results obtained at the early vegetative stage. While the varieties and landraces showed larger variation across the different traits, the breeding lines were much more uniform. This data was found useful to select contrasting parental lines used for the development of new populations for subsequent studies. In Experiment 4, the same set of 80 tolerant and sensitive lines were evaluated at the

  3. Stable carbon isotope discrimination in the smut fungus Ustilago violacea

    International Nuclear Information System (INIS)

    Haploid strains 15.10, I.C429, and I.C2y and diploid strain JK2 of Ustilago Piolacea were grown on one or more of the following carbon sources: glucose, sucrose, maltose, inulin, starch, inositol, glycerol, casein, and yeast extract. The media, both before and after fungal growth, and the fungal cells were analyzed for 13C/12C content (δ13 values) using an isotope ratio mass spectrometer after combustion to CO2. In all cases, the used and unused media had identical δ13C values. Strain 15.10 had significantly less 13C than the media when grown on glucose, sucrose, maltose, and inositol; significantly more 13C when grown on inulin, starch, and glycerol; and no significant difference in δ13C values when grown on casein and yeast extract media. Other haploid strains responded similarly to 15.10. Diploid strain JK2 was also depleted in 13C when grown on glucose and enriched in 13C when grown on glycerol; however, JK2 was slightly depleted in 13C when grown on casein, whereas all the tested haploid strains were enriched in 13C

  4. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis.

    Science.gov (United States)

    Poss, J A; Grattan, S R; Suarez, D L; Grieve, C M

    2000-10-01

    Saplings of Eucalyptus camaldulensis Dehn. Clone 4544, irrigated with water of differing salinities (2 to 28 dS m-1) and boron concentrations (1 to 30 mg l-1), integrated the history of these stresses through the discrimination of stable isotopes of carbon in leaf and woody tissues. Carbon isotope discrimination (delta) was reduced primarily by salinity. Decreases in discrimination in response to boron stress were detected in the absence of salinity stress, but the decreases were significant only in leaf tissues with visible boron injury. Sapwood core samples indicated that salinity- and boron-induced reductions in delta increased with increasing tree age. Absolute values of delta varied with location of leaf or wood tissue, but relative effects of salinity on the relationship between delta and transpiration efficiency (W) were similar. In response to increasing salinity stress, relative decreases in delta paralleled relative decreases in biomass and both indices yielded similar salt tolerance model parameters. The strong correlations between delta, tree fresh weight, leaf area and W suggest that delta is a useful parameter for evaluating salt tolerance of eucalyptus PMID:11269964

  5. Temporal Dynamics and Environmental Controls on Carbon Isotope Discrimination at the Canopy Scale

    Science.gov (United States)

    Billmark, K. A.; Griffis, T. J.; Lee, X.; Welp, L. R.; Baker, J. M.

    2007-12-01

    Much is currently known about 13C isotopic discrimination by C3 plants at the leaf scale. Multidisciplinary techniques from micrometeorology and the stable isotope community have exploited this knowledge to better understand the dynamic processes and environmental controls on atmosphere/biosphere exchange. Unfortunately, there remains a dearth of measurements relating carbon isotope discrimination at the canopy scale (Δcanopy) with the net carbon ecosystem flux. Our goals here are to evaluate temporal fluctuations in Δcanopy as a result of variable environmental conditions and to critically assess the efficacy of leaf-level assumptions applied at the canopy scale. At the University of Minnesota's Rosemount Research and Outreach Center (RROC), the exchange of 12CO2 and 13CO2 isotopologues are continuously measured using tunable diode laser (TDL) and micrometeorological techniques (eddy covariance-TDL and gradient-TDL methods). We utilize these data in conjunction with eddy flux and ancillary meteorological measurements to estimate Δcanopy, a key parameter for understanding ecosystem carbon source/sink behavior. Traditionally, Δcanopy is estimated using stomatal conductance models and leaf level isotopic discrimination parameters. In this study, we similarly calculated Δcanopy (Big-Leaf approach), where stomatal conductance was obtained through inversion of the Penman-Monteith equation. Additionally, given the high resolution of eddy flux and isoflux measurements at the RROC site, we were able to calculate Δcanopy using an inverse flux approach. For this approach, we partitioned the net ecosystem flux using eddy covariance measurements and a nighttime temperature regression method, and then calculated Δcanopy from the isoflux mass balance. Both calculations of Δcanopy emphasized the diurnal, daily and seasonal variability of this important parameter. In particular, atypically hot weather strongly influenced canopy isotope discrimination. Trends in the two

  6. Carbon isotope discrimination in leaf juice of Acacia mangium and its relationship to water-use efficiency

    Institute of Scientific and Technical Information of China (English)

    lvliu ZOU; Guchou SUN; Ping ZHAO; Xian CAI; Xiaoping ZENG; Xiaojing LIU

    2009-01-01

    Using the PMS pressure chamber and isotope mass spectrometer (MAT-252), the leaf juice of Acacia mangium was obtained, and the carbon isotope discrimination (△) representing the most recently fixed carbon in the juice was determined. At the same time, the water-use efficiency of A. mangium was estimated. The results indicated that the carbon isotope ratio in the air of forest canopy (δa), 10m high above ground averaged -7.57 1.41‰ in cloudy days, and - 8.54±0.67 ‰ in sunny days, respectively. The diurnal change of the carbon isotope ratio in the photosynthetic products of the leaf juice (δp) was of saddle type in cloudy days, but dropped down from morning to later afternoon in sunny days. A strong negative correlation betweenδp and leaf-to-air vapor pressure deficit (D) was observed in sunny days, but a slight change inδp, was found in cloudy days. Theδp also decreased with decreasing leaf water potential (ψ), reflecting that water stress could cause the decrease ofδp. The carbon isotope discrimination of the leaf juice was positively correlated with the ratio between intercellular (Pi) and atmospheric (Pa) partial pressure of CO2. For A. mangium, the isotope effect on diffusion of atmospheric CO2 via stomata was denoted by a = 4.6 %>, and that in net C3 diffusion with respect to Pi was indicated by b = 28.2 ‰. The results were in reasonable accord with the theoretically diffusive and biochemical fractionation of carbon isotope. It was defined that carbon isotope discrimination of photosynthetic products in A. mangium leaf juice was in proportion to that from photosynthetic products in dry material. The water-use efficiency estimated by the carbon isotope discrimination in leaf juice, fit well with that measured by gas exchange system (R2 = 0.86, p< 0.0001). The application of leaf juice in measuring the stable carbon isotope discrimination would reduce the effects of fluctuating environmental factors during the synthesis of dry matter, and improve

  7. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    Science.gov (United States)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  8. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco.

    Science.gov (United States)

    Evans, John R; von Caemmerer, Susanne

    2013-04-01

    The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (gm ). We investigated the temperature response of gm in tobacco (Nicotiana tabacum) by combining gas exchange in high light, ambient CO2 in either 2 or 21% O2 with carbon isotope measurements using tuneable diode laser spectroscopy. The gm increased linearly with temperature in 2 or 21% O2 . In 21% O2 , isotope discrimination associated with gm decreased from 5.0 ± 0.2 to 1.8 ± 0.2‰ as temperature increased from 15 to 40 °C, but the photorespiratory contribution to the isotopic signal is significant. While the fractionation factor for photorespiration (f = 16.2 ± 0.7‰) was independent of temperature between 20 and 35 °C, discrimination associated with photorespiration increased from 1.1 ± 0.01 to 2.7 ± 0.02‰ from 15 to 40 °C. Other mitochondrial respiration contributed around 0.2 ± 0.03‰. The drawdown in CO2 partial pressure from ambient air to intercellular airspaces was nearly independent of leaf temperature. By contrast, the increase in gm with increasing leaf temperature resulted in the drawdown in CO2 partial pressure between intercellular airspaces and the sites of carboxylation decreasing substantially at high temperature. PMID:22882584

  9. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    Science.gov (United States)

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. PMID:26358051

  10. Responses of carbon isotope discrimination in C4 plant to variable N and water supply

    Science.gov (United States)

    Yang, Hao; Li, Shenggong

    2016-04-01

    Understanding variations and underlying mechanisms of carbon isotope discrimination (Δ) in C4 species is critical for predicting the effects of change in C3/C4 ratio of plant community on ecosystem processes and functionning. However, little is known about the effects of soil resource gradients on Δ of C4 plants. To address Δ responses to drought and nitrogen supply, the leaf carbon isotope composition, bundle sheath leakiness (BLS), and leaf gas exchange (A, gs, Ci/Ca) were measured on Cleistogenes squarrosa, a dominant C4 species in the Inner Mongolia grassland. C. squarrosa were grown in controlled-environment pots from seed under a combination of water and N supply. High N availability and drought stimulated photosynthetic rate (A) and further decreased the ratio of internal and ambient CO2 concentrations (Ci/Ca) through increasing leaf N content. BLS was higher under high N supply and was unchanged by drought. There was significant interaction between N and water supply to affect BLS and Ci/Ca. Δ was negatively related to Ci/Ca and was positively related to BLS. Tradeoff between the responses of BLS and Ci/Ca to changing environmental conditions kept leaf Δ relatively stable, which was also supported by a field N addition experiment. Our results suggested leaf Δ of C4 plant was unchanged under variable water and N environment conditions although the operating efficiency of C4 pathway and CO2 concentration in photosynthesis were changed. Our findings have implications for predicting the change of C3/C4 ratio of plant community and understanding ecosystem processes and functionning.

  11. Carbon isotope discrimination and water stress in trembling aspen following variable retention harvesting.

    Science.gov (United States)

    Bladon, Kevin D; Silins, Uldis; Landhäusser, Simon M; Messier, Christian; Lieffers, Victor J

    2007-07-01

    Variable retention harvesting (VRH) has been proposed as a silvicultural practice to maintain biodiversity and ecosystem integrity. No previous study has examined tree carbon isotope discrimination to provide insights into water stress that could lead to dieback and mortality of trees following VRH. We measured and compared the carbon isotope ratios (delta(13)C) in stem wood of trembling aspen (Populus tremuloides Michx.) before and after VRH. Eight trees were sampled from isolated residual, edge and control (interior of unharvested stand) positions from each of seven plots in three regions (Calling Lake and Drayton Valley, Alberta and Lac Duparquet, Québec). After VRH, the general trend in mean delta(13)C was residual > edge > control trees. Although this trend is indicative of water stress in residual trees, it also suggests that edge trees received some sheltering effect, reducing their stress compared with that of residuals. A strong inverse relationship was found between the delta(13)C values and the mean annual precipitation in each region. The trend in mean delta(13)C signature was Calling Lake > Drayton Valley > Lac Duparquet trees. These results suggest that residual or edge trees in drier regions are more likely to suffer water stress following VRH. We also observed a trend of greater delta(13)C in stout trees compared with slender trees, both before and after VRH. The evidence of greater water stress in stout trees likely occurred because of a positive relationship between stem diameter and crown volume per basal area. Our results provide evidence that water stress could be the driving mechanism leading to dieback and mortality of residual trees shortly after VRH. Additionally, the results from edge trees indicate that leaving hardwood residuals in larger patches or more sheltered landscape positions could reduce the water stress to which these trees are subjected, thereby reducing dieback and mortality. PMID:17403660

  12. Relationship between Carbon Isotope Discrimination and Grain Yield in Spring Wheat Cultivated under Different Water Regimes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In C3 plants, carbon isotope discrimination (△) has been proposed as an indirect selection criterion for grain yield. Reported correlations between △ and grain yield however, differ highly according to the analyzed organ or tissue, the stage of sampling, and the environment and water regime. In a first experiment carried out in spring wheat during two consecutive seasons in the dry conditions of northwest Mexico (Ciudad Obregon, Sonora), different water treatments were applied,corresponding to the main water regimes available to spring wheat worldwide, and the relationships between △ values of different organs and grain yield were examined. Under terminal (post-anthesis) water stress, grain yield was positively associated with △ in grain at maturity and in leaf at anthesis, confirming results previously obtained under Mediterranean environments. Under early (pre-anthesis) water stress and residual moisture stress, the association between grain △ and yield was weaker and highly depended on the quantity of water stored in the soil at sowing. No correlation was found between △ and grain yield under optimal irrigation. The relationship between △ and grain yield was also studied during two consecutive seasons in 20 bread wheat cultivars in the Ningxia region (Northern China), characterized by winter drought(pre-anthesis water stress). Wheat was grown under rainfed conditions in two locations (Guyuan and Pengyang) and under irrigated conditions in another two (Yinchuan and Huinong). In Huinong, the crop was also exposed to salt stress.Highly significant positive associations were found between leaf and grain △ and grain yields across the environments.The relationship between △ and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, the presence of salt in the soil, and the occurrence of irrigation before anthesis. These two experiments

  13. Growth, Nitrogen Uptake and Carbon Isotope Discrimination in Barley Genotypes Grown under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Kurdali Fawaz

    2012-08-01

    Full Text Available The effect of different salinity levels of irrigation water (ECw range 1-12 dS/m on dry matter yield, nitrogen uptake, fertilizer nitrogen use efficiency (%NUE, stomatal conductance and carbon isotope discrimination (Δ13C‰ in three barley genotypes originating from different geographic areas (Arabi.Abiad, Syria; Pk-30-136, Pakistan and WI-2291, Australia was investigated in a pot experiment. An increase in salinity resulted in a decrease in Δ13C in all the genotypes. Increasing salinity reduced leaf stomatal conductance which was less pronounced in WI-2291 comparing to other genotypes. At high salinity level, the reduction in Δ13C corresponded to a considerable decrease in the ratio (Ci/Ca of intercellular (Ci and atmospheric (Ca partial pressures of CO2 in all the genotypes indicating that such a decrease was mainly due to the stomatal closure. Moreover, since the reduction in dry matter yield in all the genotypes grown at 12 dS/m did not exceed 50% in comparison with their controls, the photosynthetic apparatus of all studied genotypes seemed to be quit tolerant to salinity. At the moderate salinity level (8 dS/m, the enhancement of leaf dry matter yield in the WI2291 genotype might have been due to positive nutritional effects of the salt as indicated by a significant increase in nitrogen uptake and NUE. Thus, the lower Ci/Ca ratio could result mainly from higher rates of photosynthetic capacity rather than stomatal closure. On the other hand, relationships between dry matter yield or NUE and Δ13C seemed to be depending on plant genotype, plant organ and salinity level. Based on growth, nutritional and Δ13C data, selection of barley genotypes for saline environments was affected by salinity level. Therefore, such a selection must be achieved for each salinity level under which the plants have been grown.

  14. Photosynthetic efficiency, temperature induction response, carbon isotope discrimination correlate with expression profiling in Indian wheat cultivars.

    Science.gov (United States)

    Hairat, Suboot; Khurana, Paramjit

    2016-09-01

    In the backdrop of global warming and increase in temperatures, wheat productivity worldwide would be limited. This study was therefore undertaken to analyze the heat stress response in 12 different cultivars of Indian wheat. Three developmental stages were used i.e. germination stage, seedling stage and anthesis stage, to characterize thermotolerant and thermosusceptible cultivars on the basis of different physiological and molecular parameters. Lethal temperature stress on germinating seeds showed a clear reduction in percentage germination. At the seedling stage, higher decrease in Fv/Fm, total chlorophyll content, membrane injury and carbon isotope discrimination was observed in thermosusceptible cultivars. Results similar to seedling stage were obtained at anthesis stage. PSII efficiency of late-sown cultivars and timely-sown cultivars also indicated that thermosusceptible cultivars are more prone to terminal heat stress than thermotolerant cultivars. Heat Susceptibility Index (HSI) was calculated on the basis of physiological parameters. Based on HSI, thermotolerant and thermosusceptible cultivars were identified. HSI revealed comparatively low heat susceptibility in K7903, CBW12 and C306 and high heat susceptibility in PBW343, HD2329 and HD2428. On the basis of HSI, expression analysis of stress induced genes was performed between 2 tolerant cultivars C306 and K7903 along with 2 susceptible cultivars, HD2329 and PBW343. Higher expression of stress induced genes was observed in the 2 thermotolerant cultivars C306 and K7903 as compared to the 2 thermosusceptible cultivars HD2329 and PBW343. Thus further reconfirms that stress inducible genes can be employed for categorizing cultivars into susceptible and tolerant groups. PMID:27247028

  15. Greater Agronomic Water Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination

    International Nuclear Information System (INIS)

    Wheat and rice are the two most important cereal crops worldwide. The potential yield of a cereal crop may be constrained by many factors, both biotic and abiotic, which may be related to the physical, chemical and biological properties of the soil itself (edaphic factors) or to the environmental conditions pertaining during the growth of the crop. Foremost among the abiotic factors is the availability of water, which is governed by climatic conditions and the ability of the soil to store available water. Together with drought, soil salinity is becoming a major stress factor limiting cereal yields globally. Soil salinization is accelerated by anthropogenic activities, including various forms of land and water mismanagement, which allow salts in geological strata to rise to the surface soil or seawater to encroach on low-lying coastal paddy soils. National programmes in crop improvement generally focus on local production problems through selection of stress resistant germplasm and traditional breeding methods, aided by modern molecular techniques. Traditional approaches are labour intensive and time consuming, with grain yield being the final arbiter of success or failure. Thus any technique that can predict yield well in advance of harvest has the potential to save considerable time, effort and money. The objective of this coordinated research project (CRP) was to evaluate carbon isotope discrimination (CID, or Δ13C) as a selection tool for yield and biomass of wheat under drought stress and rice under salt stress. This CRP was implemented following the recommendations of a consultants meeting of international experts. The research network included 11 contract holders from Algeria, Australia, Bangladesh, China (2), India, Morocco, Pakistan, Philippines, Syrian Arab Republic and Yemen, and two agreement holders from Mexico and the United States of America. The CRP was conducted in collaboration with national agricultural research systems (NARS) in Africa and Asia

  16. Stable Carbon Isotope Discrimination by Form IC Rubisco Enzymes of the Extremely Metabolically Versatile Rhodobacter sphaeroides and Ralstonia eutropha}

    Science.gov (United States)

    Thomas, P. J.; Boller, A. J.; Zhao, Z.; Tabita, F. R.; Cavanaugh, C. M.; Scott, K. M.

    2006-12-01

    Variations in the relative amounts of 12C and 13C in microbial biomass can be used to infer the pathway(s) autotrophs use to fix and assimilate dissolved inorganic carbon. Discrimination against 13C by the enzymes catalyzing autotrophic carbon fixation is a major factor dictating biomass stable carbon isotopic compositions (δ13C = {[13C/12Csample/13C/12Cstandard] - 1} × 1000). Five different forms of RubisCO (IA, IB, IC, ID, and II) are utilized by algae and autotrophic bacteria reliant on the Calvin-Benson cycle for carbon fixation. To date, isotope discrimination has been measured for form IA, IB, and II RubisCOs, and their ɛ values (={[12k/13k] - 1} × 1000; 12k and 13k = rates of 12C and 13C fixation) range from 18 to 29‰, explaining the variation in biomass δ13C values of autotrophs utilizing these enzymes. Isotope discrimination by form IC RubisCO has not been measured, despite the presence of this enzyme in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides and Ralstonia eutropha. The purpose of this work was to determine the ɛ values for form IC RubisCO enzymes from R. sphaeroides and R. eutropha. Recombinant form IC RubisCOs were purified by conventional column chromatography procedures. Assay conditions (pH, dissolved inorganic carbon concentration) were tested to determine which parameters were conducive to the high rates of carbon fixation necessary for ɛ determination. Under standard conditions (pH 8.5 and 5 mM DIC), form IC RubisCO activities were sufficient for ɛ determination. Experiments are currently being conducted to measure the ɛ values of these enzymes. Sampling the full phylogenetic breadth of RubisCO enzymes for isotopic discrimination makes it possible to constrain the range of δ13C values of organisms fixing carbon via the Calvin-Benson cycle. These results are

  17. Carbon and nitrogen stable isotope turnover rates and diet-tissue discrimination in Florida manatees (Trichechus manatus latirostris).

    Science.gov (United States)

    Alves-Stanley, Christy D; Worthy, Graham A J

    2009-08-01

    The Florida manatee (Trichechus manatus latirostris) is a herbivorous marine mammal that occupies freshwater, estuarine and marine habitats. Despite being considered endangered, relatively little is known about its feeding ecology. The present study expands on previous work on manatee feeding ecology by providing critical baseline parameters for accurate isotopic data interpretation. Stable carbon and nitrogen isotope ratios were examined over a period of more than 1 year in the epidermis of rescued Florida manatees that were transitioning from a diet of aquatic forage to terrestrial forage (lettuce). The mean half-life for (13)C turnover was 53 and 59 days for skin from manatees rescued from coastal and riverine regions, respectively. The mean half-life for (15)N turnover was 27 and 58 days, respectively. Because of these slow turnover rates, carbon and nitrogen stable isotope analysis in manatee epidermis is useful in summarizing average dietary intake over a long period of time rather than assessing recent diet. In addition to turnover rate, a diet-tissue discrimination value of 2.8 per thousand for (13)C was calculated for long-term captive manatees on a lettuce diet. Determining both turnover rate and diet-tissue discrimination is essential in order to accurately interpret stable isotope data. PMID:19617427

  18. Carbon and nitrogen stable isotope turnover rates and diet-tissue discrimination in Florida manatees (Trichechus manatus latirostris).

    Science.gov (United States)

    Alves-Stanley, Christy D; Worthy, Graham A J

    2009-08-01

    The Florida manatee (Trichechus manatus latirostris) is a herbivorous marine mammal that occupies freshwater, estuarine and marine habitats. Despite being considered endangered, relatively little is known about its feeding ecology. The present study expands on previous work on manatee feeding ecology by providing critical baseline parameters for accurate isotopic data interpretation. Stable carbon and nitrogen isotope ratios were examined over a period of more than 1 year in the epidermis of rescued Florida manatees that were transitioning from a diet of aquatic forage to terrestrial forage (lettuce). The mean half-life for (13)C turnover was 53 and 59 days for skin from manatees rescued from coastal and riverine regions, respectively. The mean half-life for (15)N turnover was 27 and 58 days, respectively. Because of these slow turnover rates, carbon and nitrogen stable isotope analysis in manatee epidermis is useful in summarizing average dietary intake over a long period of time rather than assessing recent diet. In addition to turnover rate, a diet-tissue discrimination value of 2.8 per thousand for (13)C was calculated for long-term captive manatees on a lettuce diet. Determining both turnover rate and diet-tissue discrimination is essential in order to accurately interpret stable isotope data.

  19. Use of Carbon Isotope Discrimination as Tool for Improving Drought Tolerance of Wheat

    International Nuclear Information System (INIS)

    As in many countries of the region, agriculture in Yemen has been strongly affected by drought conditions, and cereal production is the most concerned. So to this regard, two approaches could be adopted to solve this problem; enhancement of irrigated areas, but negative effects can also be noted as salinity (e.g. Marib, area) and development of foliar diseases. The second approaches is improvement of water use and drought resistance of wheat cultivars: this long-term strategy, which is a part of a general approach giving more attention to the sustainability of farming systems, is at the basis of the present study. Several morphophysiological mechanisms of drought tolerance involved in dehydration tolerance, As for other morphophysiological traits, the possibility of using carbon isotope discrimination (Δ) in breeding for water use efficiency (WUE) in drought prone environments is related to i) the facility of measurement, ii) the existence of variability, iii) high values of heritability, and iv) a good knowledge of eventual associations between Δ and other phenological or morphophysiological traits. The use of stable isotopes has until recently been limited because of the cost of mass spectrometers designed and the requirements for sample preparation. However, the recent linkage of an automatic gas sample preparation apparatus with a dual-inlet mass spectrometer has made the technique more convenient for fast and accurate analysis of stable isotope composition of the most important elements. The present study has been conducted to evaluate the interest of (Δ) in mature kernels as a criterion for the improvement of water use efficiency and yield under drought in tetraploid wheat species. For this purpose, T. durum Om Rabi 5 was crossed by T. polonicum 9 (Tp9) which had been found to be more droughts tolerant and to have a lower □ value of the grain. The F2 population showed a wide segregation for this last trait. Further, divergent selections were made among

  20. The use of carbon-isotope discrimination to screen wheat cultivars for tolerance of salinity and drought

    International Nuclear Information System (INIS)

    Stable carbon isotope determinations provide time-integrated measures of plant physiological activities and plant interactions with the environment. In these experiments the effects of soil salinity on carbon isotope discrimination were studied. The classical method of selection of wheat cultivars based on yield performance under saline conditions has been largely unsuccessful. Also, physiological traits such as dry matter (DM), water use efficiency (WUE), and harvest index (HI) have been used as alternatives to screening for yield. Carbon-13 discrimination (Δ) is an integrated measure of the response of photosynthetic gas exchange to environmental variables such as water availability, light, humidity, and salinity, and has been shown to be a useful tool in the selection of cultivars for drought tolerance. Despite similarities between the effects of water and salt stresses on plant growth, few attempts have been made to quantify the effect of salinity on Δ, and its potential as a breeding selection characteristic, aimed at increasing grain yield under saline conditions. The objectives of this experiment were to study the effect of soil salinity on Δ in salt- and drought-tolerant wheat cultivars under well watered and water-limiting conditions, and to evaluate the relationship between DM, WUE, and HI under the two levels of moisture

  1. Application of carbon isotope for discriminating sources of soil CO2 in karst area, Guizhou

    Institute of Scientific and Technical Information of China (English)

    黎廷宇; 王世杰

    2001-01-01

    Using carbon isotope of soil CO2 this paper discussed the sources of soil CO2 in karst area, Guizhou Province, China. Oxidation-decomposition of organic matter, respiration of plant root and activity of microbe are thought to be the major sources of soil CO2. However, in karst area, the contribution of dissolution of underlying carbonate rock to soil CO2 should be considered as in acidic environment. Atmospheric CO2 is the major composition of soil CO2 in surface layer of soil profiles and its proportion in soil CO2 decreases with increase of soil depth. CO2 produced by dissolution of carbonate rock contributes 34%-46% to soil CO2 below the depth of 10cm in the studied soil profiles covered by grass.

  2. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N2 fixation potential. 13C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees to

  3. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination

    Science.gov (United States)

    Xu, Meng; Wang, Guoan; Li, Xiaoliang; Cai, Xiaobu; Li, Xiaolin; Christie, Peter; Zhang, Junling

    2015-01-01

    Many environmental factors affect carbon isotope discrimination in plants, yet the predominant factor influencing this process is generally assumed to be the key growth-limiting factor. However, to our knowledge this hypothesis has not been confirmed. We therefore determined the carbon isotope composition (δ13C) of plants growing in two cold and humid mountain regions where temperature is considered to be the key growth-limiting factor. Mean annual temperature (MAT) showed a significant impact on variation in carbon isotope discrimination value (Δ) irrespective of study area or plant functional type with either partial correlation or regression analysis, but the correlation between Δ and soil water content (SWC) was usually not significant. In multiple stepwise regression analysis, MAT was either the first or the only variable selected into the prediction model of Δ against MAT and SWC, indicating that the effect of temperature on carbon isotope discrimination was predominant. The results therefore provide evidence that the key growth-limiting factor is also crucial for plant carbon isotope discrimination. Changes in leaf morphology, water viscosity and carboxylation efficiency with temperature may be responsible for the observed positive correlation between Δ and temperature. PMID:26579188

  4. Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings

    International Nuclear Information System (INIS)

    The ratio of carbon accumulation to transpiration, W, of wheat (Triticum aestivum L.) seedlings increased with increasing soil strength, measured as soil penetrometer resistance, and this was already apparent at the two leaf stage. The ratio was negatively correlated with carbon isotope discrimination, in accord with theory. This means that decrease in intercellular partial pressure of CO2 accounted for an important part of the increase in W with increasing soil strength. Despite a lower CO2 concentration in the leaves at high soil strength, assimilation rate per unit leaf area was enhanced. Greater ribulose 1,5-bisphosphate carboxylase activity confirmed that photosynthetic capacity was actually increased. This pattern of opposite variation of assimilation rate and of stomatal conductance is unusual. The ratio of plant carbon mass to leaf area increased markedly with increasing soil strength, mainly because of a greater investment of carbon into roots than into shoots. A strong negative correlation was found between this ratio and carbon isotope discrimination. For a given increase in discrimination, decrease in carbon mass per leaf area was proportionally larger than decrease in assimilation rate, so that relative growth rate was positively correlated to carbon isotope discrimination

  5. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species.

    Science.gov (United States)

    Alonso-Cantabrana, Hugo; von Caemmerer, Susanne

    2016-05-01

    The presence and activity of the C4 cycle in C3-C4 intermediate species have proven difficult to analyze, especially when such activity is low. This study proposes a strategy to detect C4 activity and estimate its contribution to overall photosynthesis in intermediate plants, by using tunable diode laser absorption spectroscopy (TDLAS) coupled to gas exchange systems to simultaneously measure the CO2 responses of CO2 assimilation (A) and carbon isotope discrimination (Δ) under low O2 partial pressure. Mathematical models of C3-C4 photosynthesis and Δ are then fitted concurrently to both responses using the same set of constants. This strategy was applied to the intermediate species Flaveria floridana and F. brownii, and to F. pringlei and F. bidentis as C3 and C4 controls, respectively. Our results support the presence of a functional C4 cycle in F. floridana, that can fix 12-21% of carbon. In F. brownii, 75-100% of carbon is fixed via the C4 cycle, and the contribution of mesophyll Rubisco to overall carbon assimilation increases with CO2 partial pressure in both intermediate plants. Combined gas exchange and Δ measurement and modeling is a powerful diagnostic tool for C4 photosynthesis. PMID:26862154

  6. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

    Science.gov (United States)

    Conrad, R.; Noll, M.; Claus, P.; Klose, M.; Bastos, W. R.; Enrich-Prast, A.

    2011-03-01

    Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate, CO2, and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰) for conversion of Corg to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰), which generally accounted for >50% of total CH4 production. Canonical correspondence analysis did not reveal an effect of microbial community composition, despite the fact that it exhibited a pronounced variability among the different sediments.

  7. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

    Directory of Open Access Journals (Sweden)

    R. Conrad

    2010-11-01

    Full Text Available Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰ for conversion of Corg to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰, which generally accounted for >50% of total CH4 production. Canonical correspondence analysis did not

  8. Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments

    Directory of Open Access Journals (Sweden)

    R. Conrad

    2011-03-01

    Full Text Available Methane is an important end product of degradation of organic matter in anoxic lake sediments. Methane is mainly produced by either reduction of CO2 or cleavage of acetate involving different methanogenic archaea. The contribution of the different methanogenic paths and of the diverse bacteria and archaea involved in CH4 production exhibits a large variability that is not well understood. Lakes in tropical areas, e.g. in Brazil, are wetlands with high potential impact on the global CH4 budget. However, they have hardly been studied with respect to methanogenesis. Therefore, we used samples from 16 different lake sediments in the Pantanal and Amazon region of Brazil to measure production of CH4, CO2, analyze the content of 13C in the products and in intermediately formed acetate, determine the abundance of bacterial and archaeal microorgansisms and their community composition and diversity by targeting the genes of bacterial and archaeal ribosomal RNA and of methyl coenzyme M reductase, the key enzyme of methanogenic archaea. These experiments were done in the presence and absence of methyl fluoride, an inhibitor of acetoclastic methanogenesis. While production rates of CH4 and CO2 were correlated to the content of organic matter and the abundance of archaea in the sediment, values of 13C in acetate, CO2, and CH4 were related to the 13C content of organic matter and to the path of CH4 production with its intrinsic carbon isotope fractionation. Isotope fractionation was small (average 10‰ for conversion of Corg to acetate-methyl, which was hardly further fractionated during CH4 production. However, fractionation was strong for CO2 conversion to CH4 (average 75‰, which generally accounted for >50% of total CH4 production. Canonical correspondence

  9. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment.

    Science.gov (United States)

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  10. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    Science.gov (United States)

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  11. Carbon Isotope Discrimination is not Correlated with Transpiration Efficiency in Three Cool-Season Grain Legumes (Pulses)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The carbon Isotope discrimination (δ13C) of leaves has been shown to be correlated with the transpiration efficiency of leaves in a wide range of species. This has led to δ13C being used in breeding programs to select for improved transpiration efficiency. The correlation between δ13C and transpiration efficiency was determined under well-watered conditions during the vegetative phase In six genotypes of lentil (Lens culinaris Medikus), six genotypes of chickpea (Cicer arietinum L.) and 10 cultivars of narrow-leafed lupin (Lupinus angustifolius L.). Biomass (dry matter) accumulation and water use (transpiration)varied among the genotypes in all three species and transpiration efficiency was 40% to 75% higher In the most efficient compared with the least efficient genotypes. However, δ13C and transpiration efficiency were not significantly correlated in any of the species. This suggests that the δ13C technique cannot be used In selection for transpiration efficiency in the three grain legumes (pulses) studied.

  12. Wheat genotypic variability in grain yield and carbon isotope discrimination under Mediterranean conditions assessed by spectral reflectance

    Institute of Scientific and Technical Information of China (English)

    Gustavo A. Lobos; Ivn Matus; Alejandra Rodriguez; Sebastin Romero-Bravo; Jos Luis Araus; Alejandro del Pozo

    2014-01-01

    A col ection of 368 advanced lines and cultivars of spring wheat (Triticum aestivum L.) from Chile, Uruguay, and CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo), with good agronomic characteristics were evaluated under the Mediterranean conditions of central Chile. Three different water regimes were assayed: severe water stress (SWS, rain fed), mild water stress (MWS;one irrigation around booting), and ful irrigation (FI; four irrigations: at til ering, flag leaf appearance, heading, and middle grain fil ing). Traits evaluated were grain yield (GY), agronomical yield components, days from sowing to heading, carbon isotope discrimination (D13C) in kernels, and canopy spectral reflectance. Correlation analyses were performed for 70 spectral reflectance indices (SRI) and the other traits evaluated in the three trials. GY and D13C were the traits best correlated with SRI, particularly when these indices were measured during grain fil ing. However, only GY could be predicted using a single regression, with Normalized Difference Moisture Index (NDMI2: 2,200; 1,100) having the best fit to the data for the three trials. For D13C, only individual regressions could be forecast under FI (r2: 0.25-0.37) and MWS (r2: 0.45-0.59) but not under SWS (r2: 0.03-0.09). NIR-based SRI proved to be better predictors than those that combine visible and NIR wavelengths.

  13. Genetic Analysis of Carbon Isotope Discrimination and its Relation to Yield in a Wheat Doubled Haploid Population

    Institute of Scientific and Technical Information of China (English)

    Xianshan Wu; Xiaoping Chang; Ruilian Jing

    2011-01-01

    Carbon isotope discrimination (△13C) is considered a useful indicator for indirect selection of grain yield (GY) in cereals.Therefore,it is important to evaluate the genetic variation in △13C and its relationship with GY.A doubled haploid (DH) population derived from a cross of two common wheat varieties,Hanxuan 10 (H10) and Lumai 14 (L14),was phenotyped for △13C in the flag leaf,GY and yield associated traits in two trials contrasted by water availability,specifically,rain-fed and irrigated.Quantitative trait loci (QTLs) were identified by single locus and two locus QTL analyses.QTLs for △13C were located on chromosomes 1A,2B,3B,5A,7A and 7B,and QTLs for other traits on all chromosomes except 1A,4D,5A,5B and 6D.The population selected for high △13C had an increased frequency of QTL for high △13C,GY and number of spikes per plant (NSP) when grown under rain-fed conditions and only for high △13C and NSP when grown under irrigated conditions,which was consistent with agronomic performance of the corresponding trait values in the high △13C progeny; that is,significantly greater than that in the low △13C.Therefore,selection for △13C was beneficial in increasing grain yield in rain-fed environments.

  14. Discrimination of carbon and nitrogen isotopes from milk to serum and vibrissae in Alaska Steller sea lions (Eumetopias jubatus)

    Science.gov (United States)

    Stegall, V.K.; Farley, Sean D.; Rea, Lorrie D.; Pitcher, K.W.; Rye, R.O.; Kester, C.L.; Stricker, C.A.; Bern, C.R.

    2008-01-01

    Knowledge of diet-tissue stable isotope discrimination is required to properly interpret stable isotope values and to identify possible diet shifts, such as might be expected from nursing through weaning. This study compared ??13C and ??15N of paired serum and vibrissal roots with those of ingested milk (n = 52) from free-ranging Steller sea lion (Eumetopias jubatus (Schreber, 1776)) pups (1-11 months) and juveniles (14-27 months) to estimate diet-tissue discrimination. Mean 15N enrichment from ingested milk to serum was 2.1??? ?? 0.6%??? and ??15N at the root of the vibrissae (representing current growth) were not significantly different from serum values. Milk was enriched for mean 13C by 5.0??? ?? 1.0%??? and 7.3??? ?? 1.2??? relative to serum and vibrissal roots, respectively, which was due to the presence of 13C-depleted lipids in milk. This was confirmed by lipid extraction from a subset of milk and serum samples, resulting in a 5.8??? ?? 1.0??? change only in milk. This study established that vibrissal roots and serum are reflective of a milk diet with approximately 2.0??? 15N enrichment, and vibrissal roots reflect serum and lipid-extracted milk values with approximately 2.0??? 13C enrichment. These discrimination factors are important to establish for stable isotope studies assessing diet shifts. ?? 2008 NRC.

  15. Diurnal, seasonal and interannual variability of carbon isotope discrimination at the canopy level in response to environmental factors in a boreal forest ecosystem.

    Science.gov (United States)

    Chen, Baozhang; Chen, Jing M

    2007-10-01

    Accurate estimation of temporal and spatial variations in photosynthetic discrimination of 13C is critical to carbon cycle research. In this study, a combined ecosystem-boundary layer isotope model, which was satisfactorily validated against intensive campaign data, was used to explore the temporal variability of carbon discrimination in response to environmental driving factors in a boreal ecosystem in the vicinity of Fraserdale Tower, Ontario, Canada (49 degrees 52'30''N, 81 degrees 34'12''W). A 14 year (1990-1996 and 1998-2004) hourly CO2 concentration and meteorological record measured on this tower was used for this purpose. The 14 year mean yearly diurnal amplitude of canopy-level discrimination Delta(canopy) was computed to be 2.8 +/- 0.5 per thousand, and the overall diurnal cycle showed that the greatest Delta(canopy) values occurred at dawn and dusk, while the minima generally appeared in mid-afternoon. The average annual Delta(canopy) varied from 18.3 to 19.7 per thousand with the 14 year average of 19 +/- 0.4 per thousand. The overall seasonality of Delta(canopy) showed a gradually increasing trend from leaf emergence in May-September and with a slight decrease at the end of the growing season in October. Delta(canopy) was negatively correlated to vapour pressure deficit and air temperature across hourly to decadal timescales. A strong climatic control on stomatal regulation of ecosystem isotope discrimination was found in this study.

  16. Use of carbon isotope discrimination (δ) as a potential tool for salt tolerance selection in plant breeding

    International Nuclear Information System (INIS)

    Δ value of the wheat grown in the green house at 16 dSm-1 and field yield of cultivars grown under saline conditions, suggesting that the simple early-non-destructive hole punch technique and carbon isotope discrimination could be used as screening tools for salinity tolerance. Work is being performed to develop plant sample preparation techniques for 13C analysis using the FANci breath test analyser. This is a low cost, simple apparatus, which requires minimal training and expertise. Initial results from the tests are promising suggesting that the FANci could be used in discrimination type studies, however, further development and testing is required. In conclusion there was a significant correlation between Δ and the field yields δ decreased with increasing salinity concentration. It appears that salinity tolerance is a trait that is correlated to Δ and thus Δ could be used as a screening tool for plant breeding. Sampling techniques using the soil water samplers allowed simple monitoring and adjustment of salinity levels. Plant sap analysis could provide us with a rapid tool for determining plant tolerance to short term drought stress. The hole punch techniques proved to be a simple and effective non-destructive sampling strategy. With some development the FANci apparatus may be used as a simple method for 13C analysis. (author)

  17. Carbon Isotope discrimination in acacia auriculiformis - can it be used to select for higher water-use-efficiency in trees?

    International Nuclear Information System (INIS)

    Full text: Determining the water-use-efficiency of trees in relation lo wood production is problematic due to the sheer size of the plant and the number of years taken to produce the wood. Indirect measures of water-use-efficiency, such as carbon isotope discrimination (Δ), are therefore attractive to tree breeders wishing to select for increased water-use-efficiency. To begin to evaluate the usefulness of Δ as a selection parameter for the tropical tree Acacia auriculiformis we addressed the following questions: 1. Within the tree canopy, how variable is Δ? 2. Is there any genotypic variation in Δ? and 3. Does water availability affect genotypic variation? To address these questions we sampled foliage from pot trials and field trials of A. auriculiformis ranging in age from 3 months lo 8 years in Australia and Thailand. In 16-18m high 8-year-old trees, canopy variation in Δ was large (P>0.01). Foliage Δ values increased down the tree from 22.0 %o at the top to 24.7 %o at the base. The decrease was rapid in the lop 3 m of the canopy thus considerable care must be taken to sampling foliage from the same position in the canopy. Genotype variations in Δ was observed in seedlings and 2 year-old trees (P>0.01) but not in 8 year-old trees (P=0.60). Where genotypic variation were observed the differences between the lowest and highest values were 2.2 - 3.6 %o. Reduced water availability decreased Δ values in both pot and field studies but not in a consistent way across seedlots. Thus it would appear that the Δ of trees grown under favourable conditions does not give an indication of the Δ value which will be obtained under water-limited conditions. This complicates the use of Δ as a screening method. We have clearly shown that genotype variation occurs in A. auriculiformis in both seedlings and young field-grown trees. Considerable care is required when sampling large trees, as variation in Δ within the tree can be as large as between genotypes. The challenge

  18. Trophic experiments to estimate isotope discrimination factors

    OpenAIRE

    Caut, Stéphane; Angulo, Elena; Courchamp, Franck; Figuerola, Jordi

    2010-01-01

    : 1. In Caut, Angulo & Courchamp (2008a) rats were fed with experimental diets of distinct isotopic values (_13C and _15N) in order to infer the discrimination factors. We showed negative relationships between discrimination factors and diet isotopic values. In Caut, Angulo & Courchamp (2009), our aim was to generalise these relationships to other taxonomic groups with a view to providing ecologists with a general and flexible method to obtain discrimination factors for diet reconstruction st...

  19. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans.

    Directory of Open Access Journals (Sweden)

    Maya S deVries

    Full Text Available Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0-1 ‰ and 3-4 ‰, respectively. Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days was over 8 times longer than that of carbon (3.4 ± 1.4 days. In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively. We compared the mantis shrimps' incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals.

  20. Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotype differences in durum wheat yield in Spain

    International Nuclear Information System (INIS)

    The relationships between carbon isotope discrimination (Δ ) in mature kernels, canopy temperature depression (CTD) during anthesis and grain filling, 1000-kernel weight (TKW), total carbon content of mature kernels, and yield were studied in durum wheat (Triticum turgidum L. var. durum) grown in Spain (western Mediterranean basin). Twenty-five durum wheat genotypes were grown in 2 regions (NE and SE Spain) and under 2 water regimes (rainfed versus support irrigation) from 1997 to 1999, in a total of 12 trials. Principal component analysis placed yield and Δ on the same axis. Pearson's correlation and stepwise analysis confirmed that Δ was the trait that best assessed genotype differences in yield within trials, and was followed, at a considerable distance, by TKW. Our results also demonstrated the extremely poor performance of CTD throughout the wide range of growing conditions in this study. Copyright (2002) CSIRO Publishing

  1. Influence of Reproduction on Stable-Isotope Ratios: Nitrogen and Carbon Isotope Discrimination between Mothers, Fetuses, and Milk in the Fin Whale, a Capital Breeder.

    Science.gov (United States)

    Borrell, A; Gómez-Campos, E; Aguilar, A

    2016-01-01

    In mammals, the influence of gestation and lactation on the tissue stable-isotope ratios of females, fetuses, and milk remains poorly understood. Here we investigate the incidence of these events on δ(13)C and δ(15)N values in fin whales sampled off northwestern Spain between 1983 and 1985. The effect of gestation on tissue stable-isotope ratios was examined in the muscle of pregnant females (n = 13) and their fetuses (n = 10) and that of lactation in the muscle of nursing females (n = 21) and their milk (n = 25). Results suggest that fetuses are enriched compared to their mothers in both (15)N (Δ(15)N = 1.5‰) and (13)C (Δ(13)C =1.1‰), while, compared to muscle, milk is enriched in (15)N (Δ(15)N = 0.3‰) but depleted in (13)C (Δ(13)C = -0.62‰). This pattern is consistent with that previously observed for other species that, like the fin whale, rely on endogenous energy during reproduction, and it substantiates a general difference in the physiological processing of nitrogen and carbon balances between income and capital breeders. These findings are relevant to the understanding of the energetic balance of mammals during gestation and lactation and are central when inferences on trophic ecology are drawn from isotopic values of reproductive females. PMID:27082523

  2. Bringing hope to marginal and harsh environments: The use of carbon-13 isotope discrimination technique to evaluate and select food crops adapted to water and salt stress environments

    International Nuclear Information System (INIS)

    Many countries have weather patterns and soil characteristics that place major constraints on food production systems over large tracts of land. Thus a major challenge for making better use of these marginal lands is not only to select appropriate crops but also to evaluate and optimize their adaptability and crop productivity under extreme climatic conditions (high temperatures and low rainfall) or where soils suffer from salinity, acidity or low plant nutrient status. The carbon isotope discrimination technique (using the ratios of different carbon isotopes [12C/13C] in plants) commonly referred to as CID, has been proposed as a possible selection criterion for greater water use efficiency in breeding programmes for water limited and salt stress environments because it provides an integrative assessment of genotypic variation in leaf transpiration efficiency. Although the relationship between CID and water and/or salt stress have been well studied and documented for many crop plants, few studies have looked at the combined effects of salt, water and nutrient stresses on the potential use of this technique to select and evaluate crop plants adapted to harsh environments

  3. Genetic variation in seedling water-use efficiency of Patagonian Cypress populations from contrasting precipitation regimes assessed through carbon isotope discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, M. J.; Aparicio, A. G.; Marchelli, P.; Gallo, L. A.

    2012-11-01

    Water-use efficiency (WUE) is a physiological parameter that plays a significant role in the evolutionary dynamics of many forest tree species. It can be estimated indirectly through carbon isotope discrimination (A). In general, plants of more arid origins have lower values of A. In order to study the degree of genetic control of this parameter and the genetic variation in A of Patagonian Cypress seedlings, three Argentinean natural populations chosen to represent two contrasting precipitation regimes were sampled in a common garden trial. The dry situation was represented by two neighboring marginal forest patches from the steppe, while the humid condition was represented by a population with 1,200 mm higher mean annual precipitation. Height (H) and A were measured in 246 five-year-old seedlings from 41 open-pollinated families. The factor family had a significant effect on both variables; however heritability for A was found not to be significant in two out of the three populations. This could be explained by low sample size in one of them and by a real evolutionary effect in the other. An inverse association between H and A was verified, which is interpreted as evidence of an adaptation process at the intra-population level. The studied populations were not shown to discriminate carbon isotopes differently; hence evidence of adaptation to current environmental conditions could not be obtained. On the other hand, the arid populations proved to be quite different in terms of genetic variation, which seems to be the consequence of genetic drift and isolation. (Author) 49 refs.

  4. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

    Science.gov (United States)

    Soolanayakanahally, Raju Y; Guy, Robert D; Street, Nathaniel R; Robinson, Kathryn M; Silim, Salim N; Albrectsen, Benedicte R; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects. PMID:26236324

  5. Comparative physiology of allopatric Populus species: Geographic clines in photosynthesis, height growth and carbon isotope discrimination in common gardens

    Directory of Open Access Journals (Sweden)

    Raju Yaranna Soolanayakanahally

    2015-07-01

    Full Text Available Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both P. tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A, whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06. Stomatal conductance (gs and chlorophyll content index (CCI follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ13C were observed for both species; but, intrinsic water-use efficiency (WUEi was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED, which was well approximated by the number of days available for free growth between bud flush and bud set. In doing so, we highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.

  6. Land-use and Erosion Source Discrimination of Soil and Carbon Sources to the Logan and Albert Rivers in Australia using Compound Specific Isotope Analysis

    International Nuclear Information System (INIS)

    Full text: The compound specific isotope analysis (CSIA) technique has been used to identify the sources of soil erosion contributing sediment to the Logan-Albert catchment. Soil samples were collected in January 2010 and used to assess the ability of the CSIA technique to discriminate probable sources of soil erosion. Fatty acid and bulk carbon isotope signature (δ13C) were measured. This study has built on a previous sediment tracing study undertaken in 2008 using fallout radionuclides and major/minor element geochemistry. It was found that surface soils from forest, pasture and cultivated land uses are well discriminated using CSIA. Furthermore, sub-surface soil sources associated with channel bank erosion and exposed subsoils (gullies and hillslope scalds) occurring specifically in the mid-western Logan catchment could also be discriminated. The CSIA and bulk carbon δ13C data were used in the IsoSource mixing model to estimate the erosion sources of sediment collected during the January 2008 flood. The results of this analysis were compared with results obtained using other sediment tracers. For the lower Logan River, the CSIA tracing results are consistent with fallout and element geochemistry tracing, with channel bank erosion being confirmed as the major sediment source. However, the significant contribution to Logan River sediment of exposed subsoils originating on hillslopes and drainage lines from the mid-western region of the Logan catchment has also been confirmed by CSIA. This erosion source was not quantified by catchment modelling. In the Albert River catchment about 50% of soil comes from forest land use, although more than half of this soil comes from sub-surface sources. These results have demonstrated that the CSIA technique has the potential to significantly enhance the ability of CSIRO Land and Water sediment tracing studies to determine the extent that different land uses are contributing eroded soil to rivers, thus providing a check on

  7. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.

    Science.gov (United States)

    Pellizzari, Elena; Camarero, J Julio; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Carrer, Marco

    2016-06-01

    Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long-lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2-5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long-term capacity of trees to withstand drought-induced dieback.

  8. Zinc isotope discrimination effect in inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICPMS) has recently been used for isotope ratio analysis. The isotope discrimination effect in the mass spectrometer is a primary factor contributing to loss of precision and accuracy in isotope ratio analysis. The discrimination effect of zinc isotopes was investigated by comparing the results obtained using a quadrupole type ICPMS with those obtained using a thermal ionization mass spectrometer

  9. Intraspecific variability of carbon isotope discrimination and its correlation with grain yield in safflower: prospects for selection in a Mediterranean climate.

    Science.gov (United States)

    Mihoub, Imane; Ghashghaie, Jaleh; Badeck, Franz W; Robert, Thierry; Lamothe-Sibold, Marlène; Aid, Fatiha

    2016-12-01

    The goals of the present study were to obtain a first estimate of intraspecific variability of carbon isotope discrimination (Δ) in safflower, a thistle-like herbaceous plant, and to determine the statistical relationship between Δ and grain yield as well as its components in a collection of 45 accessions of different origins. Grain yield and aboveground biomass, harvest index, average grain weight, and Δ (measured on the bulk leaf organic matter) were investigated in experimental field conditions. A large variability was noted for all traits but a principal component analysis (PCA) allowed to identify several homogeneous groups of accessions. Average grain yield per plant varied between 1 and 39 g. Δ varied between 21.3 and 25.2 ‰, i.e. a large variation of 3.9 ‰. In our experiment, the variation of Δ was not significantly related to that of grain yield in the whole accession sample. However, we found contrasting trends for this relation within accession groups. These initial results motivate further experiments to assess more in depth correlation between Δ and yield in safflower and are encouraging regarding the possibility of using Δ as an effective selection index in safflower to obtain genotypes that efficiently consume water. This study also highlighted one accession that combines the two characters required in the Mediterranean regions, i.e. high yield performance and high water-use efficiency. PMID:26982084

  10. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  11. Intraspecific variability of carbon isotope discrimination and its correlation with grain yield in safflower: prospects for selection in a Mediterranean climate.

    Science.gov (United States)

    Mihoub, Imane; Ghashghaie, Jaleh; Badeck, Franz W; Robert, Thierry; Lamothe-Sibold, Marlène; Aid, Fatiha

    2016-12-01

    The goals of the present study were to obtain a first estimate of intraspecific variability of carbon isotope discrimination (Δ) in safflower, a thistle-like herbaceous plant, and to determine the statistical relationship between Δ and grain yield as well as its components in a collection of 45 accessions of different origins. Grain yield and aboveground biomass, harvest index, average grain weight, and Δ (measured on the bulk leaf organic matter) were investigated in experimental field conditions. A large variability was noted for all traits but a principal component analysis (PCA) allowed to identify several homogeneous groups of accessions. Average grain yield per plant varied between 1 and 39 g. Δ varied between 21.3 and 25.2 ‰, i.e. a large variation of 3.9 ‰. In our experiment, the variation of Δ was not significantly related to that of grain yield in the whole accession sample. However, we found contrasting trends for this relation within accession groups. These initial results motivate further experiments to assess more in depth correlation between Δ and yield in safflower and are encouraging regarding the possibility of using Δ as an effective selection index in safflower to obtain genotypes that efficiently consume water. This study also highlighted one accession that combines the two characters required in the Mediterranean regions, i.e. high yield performance and high water-use efficiency.

  12. Utilisation of carbon isotope discrimination in the genetic improvement of drought tolerance and yield potential in wheat

    International Nuclear Information System (INIS)

    Improvement of drought tolerance in cereals is an important aim for cereal breeders. Drought tolerance related traits have been extensively described in cereals. Their study, however, is based on instantaneous measurements (e.g., gas exchange, fluorescence or water status parameters) which association with yield highly depends on the environmental conditions at the moment of assessment. Realizing these measurements on high numbers of plants, what is a prerequisite for genetic or molecular studies, is tedious and often unrealistic. As a consequence, little is known about the genetics of these traits, and they are not used or even taken into serious consideration in breeding programs. The emergence of isotopic methods may substantially modify the situation. The tremendous advantages of this criterion in breeding programs are related to i) its integrative value, ii) its low genotype x environment interactions and high heritability values, and iii) the easiness of sample preparation and automatization of isotopic analysis. Researches carried out at ENSA-INRA Montpellier (1993-2000) have essentially concerned durum wheat adaptation to Mediterranean conditions. They were carried out in closed collaboration with the CIMMYT/ICARDA Durum Wheat Program and breeding programs of Algeria, Tunisia and Yemen. Studies realized at CIMMYT mainly concerned yield potential and bread wheat

  13. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    Directory of Open Access Journals (Sweden)

    Kurdali, Fawaz

    2013-02-01

    Full Text Available The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si and/or potassium (K applications on growth and nitrogen uptake in barley plants grown under water (FC1 and non water (FC2 stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. Dry matter (DM and N yield (NY in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the watering regime level under which the plants have been grown. Solely added K or in combination with adequate rate of Si (Si 100 were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely added Si or in combination with K significantly reduced leaves ∆13 C reflecting their bifacial effects on water use efficiency (WUE, particularly in plants grown under well watering regime. This result indicated that Si might be involved in saving water loss through reducing transpiration rate and facilitating water uptake; consequently, increasing WUE. Although the rising of soil humidity generally increased fertilizer nitrogen uptake (Ndff and its use efficiency (%NUE in barley plants, applications of K or Si fertilizers to water stressed plants resulted in significant increments of these parameters as compared with the control. Our results highlight that Si or K is not only involved in amelioration of growth of barley plants, but can also improve nitrogen uptake and fertilizer nitrogen use efficiency particularly under water deficit conditions.

  14. Relationship between Carbon Isotope Discrimination (Δ13C) and Water Use Efficiency of Durum Wheat int the Syrian Arab Republic. 2. Glasshouse Evaluation

    International Nuclear Information System (INIS)

    A greenhouse pot experiment was conducted to compare transpiration rates of six durum wheat genotypes grown in two soil types, a clay (Tel Hadya) and a sandy clay loam (Breda). Six durum wheat genotypes varying in grain carbon isotope discrimination (Δ), an index to transpiration efficiency, were used. Pots were subjected to controlled and gradual dehydration, with a wet treatment as a control. The transpiration ratio (TR) was calculated as the ratio between daily water loss for each of the pots undergoing gradual dehydration, and the average daily water loss in the wet pots. Then the data were further normalized. The daily fraction of transpirable soil water (FTSW) for each pot was calculated by dividing the difference between daily pot weight and final weight by the overall transpirable soil water (difference between initial and final pot weight). The data were analyzed by plotting normalized transpiration ratio (NTR) against the FTSW using logistic, linear plateau and exponential models. Genotypes differed in transpiration rates during gradual dehydration and between the two soil types for pooled data. A significant relationship was found between dry matter production and threshold values (the point when the transpiration rate starts to be less in the gradual dehydration treatment than in the control treatment). The cultivar Brachoua (which had low grain Δ) recorded the highest dry matter production and the highest threshold value. Significant differences in threshold values were evident between the two soil types. The lowest threshold value was for the cultivar Waha (which had high grain Δ, and consequently had a potentially high transpiration efficiency), indicating a superior ability to extract water at high soil water potentials (when soil is dry). On the other hand, the genotype Brachoua was very sensitive to low soil moisture, and transpiration rates decreased at the beginning of the gradual dehydration. (author)

  15. Estimating tissue-specific discrimination factors and turnover rates of stable isotopes of nitrogen and carbon in the smallnose fanskate Sympterygia bonapartii (Rajidae).

    Science.gov (United States)

    Galván, D E; Jañez, J; Irigoyen, A J

    2016-08-01

    This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ(13) C or δ(15) N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood  = 150 days, N t95%blood  = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ(13) C and Δ(15) N values in blood and muscle using all individuals were Δ(13) Cblood = 1·7‰, Δ(13) Cmuscle = 1·3‰, Δ(15) Nblood = 2·5‰ and Δ(15) Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ(13) C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long-term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ(13) C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ(13) C = 1·5‰). For Δ(15) N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ(15) N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ(15) N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more

  16. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13C in water stressed (FC1) and well watered (FC2) chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si100K+ (FC1) and Si50K+ (FC2) treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si50K- and Si100K-) is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si100) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely

  17. Isotopic Discrimination of Some Solutes in Liquid Ammonia

    Science.gov (United States)

    Taube, H.; Viste, A.

    1966-01-01

    The nitrogen isotopic discrimination of some salts and metals, studies in liquid ammonia solution at -50�C, decreases in magnitude in the order Pb{sup ++}, Ca{sup ++}, Li{sup +}, AG{sup +}, Na{sup +}, Li, K{sup +}, Na, K. The isotopic discrimination appears to provide qualitative information about the strength of the cation-solvent interaction in liquid ammonia.

  18. Carbon isotope geochemistry and geobiology

    Science.gov (United States)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  19. Application of isotope discrimination techniques to evaluate the functional response of Mediterranean coppices to high-forest conversion cut

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Discrimination of stable isotopes of carbon and hydrogen provides an effective tool for interpreting time-integrated responses of plants to environmental conditions and delineate sources of plant water uptake. In this work, isotopic analyses were carried out in two Mediterranean oak forests in which a thinning experiment on replicated plots has been performed. Changes in carbon isotope discrimination suggests an increase of water use efficiency soon after thinning. Together with changes in the hydrogen isotopic composition in xylem sap, this may suggest that trees are able of a rather prompt physiological acclimation to cope effectively to new environmental conditions and changes in resource availability.

  20. Stable carbon isotope discrimination on water use efficiency of field tomato under furrow irrigation%利用碳同位素分辨率表征沟灌番茄水分利用效率

    Institute of Scientific and Technical Information of China (English)

    魏镇华; 杜太生; 张娟; 徐淑君

    2013-01-01

    Carbon isotope discrimination value (Δ13C) was an integrative reflection to the rate of intercellular CO2 concentration(Ci) and air CO2 concentration (Ca) in a period, and Ci/Ca suggested a relative amount of photosynthetic rate (Pn) and stomatal conductance (gs) corresponding to CO2 demand and supply respectively, and then Ci/Ca would change significantly and affect the water use efficiency (WUE) ultimately with the variation of Pn or gs, which had the same impact factor with stable carbon isotope composition in crops.Δ13C and carbon isotope ratio (δ13C) could characterize the WUE during the entire life period of crops. Furthermore, the measurement for δ13C of different parts in crops could reflect cumulative WUE at different time scales, thus overcoming the limit of any other methods that could just measure instantaneous WUE at a time scale only. Therefore, Δ13C could well reflect water use efficiency at yield level (WUEET), and be used to infer instantaneous water use efficiency (WUEi) and intrinsic water use efficiency(WUEn) at leaf level, which was recognized as a reliable way to estimate the crop WUE at a long term. The current research on indicating the relationship betweenΔ13C of crop tissue and crop WUE were mainly focused on crops such as wheat, rice, sugar beet and maize under a water deficit, and less on tomatos under alternate partial root-zone furrow irrigation (AFI) and conventional furrow irrigation (CFI). In order to further investigate the water use mechanism on different parts of crops under different furrow irrigation, this research combined theoretical analysis with field experiments, integrating WUE research on different scales through carbon isotope’s instruction on WUE, then analyzed the relationship between different parts ofΔ13C in tomato with WUE at different scales to further explain the water use process and transferring rule in crop’s different parts under partial root-zone irrigation. The experiment was carried out at the

  1. Report on the consultants meeting on identification of crop species/cultivars for drought and salinity tolerance for sustained crop yields by using nuclear techniques, in particular the carbon isotope discrimination

    International Nuclear Information System (INIS)

    A Consultants Meeting on Identification of Crop Species/Cultivars for Drought and Salinity Tolerance for Sustained Crop Yields by Using Nuclear Techniques, in Particular the Carbon Isotope Discrimination. was held in Vienna at the IAEA Headquarters from 12-16 November 2001. This meeting was conducted in conjunction with a Group Meeting on Novel Approaches for Improving Crop Tolerance to Salinity and Drought. Five consultants from Australia, Mexico, Pakistan, UK and the USA and one representative from FAO attended the Consultant Meeting and nine participants from Australia, Canada, China, Germany, India, Israel, Pakistan, South Africa and the USA attended the Group Meeting. First two days of the meeting consisted of five technical sessions during which the participants presented papers on various approaches for improving crop tolerance to salinity and drought and the role of nuclear techniques in identification of plants tolerant to the above abiotic stresses. After the presentations, two working groups were formed: one consisting of the participants of the Consultants Meeting and the other the participants of the Group Meeting. The consultants proposed various strategies for using the carbon isotope discrimination technique as a selection tool for identifying higher yielding crop genotypes especially in wheat and rice cropping systems under drought and saline conditions. A proposal was formulated to address the above issues in a framework of a CRP. The participants of the Group Meeting reviewed conventional and molecular approaches for improving crop tolerance to salinity and drought and research priorities were identified for future work on crop productivity improvement under the above stress factors. Recommendations of both working groups were presented at the final session of the meeting. This report provides the details of the proposal formulated by the consultants. Refs

  2. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  3. Carbon isotope fractionation for cotton genotype selection

    Directory of Open Access Journals (Sweden)

    Giovani Greigh de Brito

    2014-09-01

    Full Text Available The objective of this work was to evaluate the carbon isotope fractionation as a phenomic facility for cotton selection in contrasting environments and to assess its relationship with yield components. The experiments were carried out in a randomized block design, with four replicates, in the municipalities of Santa Helena de Goiás (SHGO and Montividiu (MONT, in the state of Goiás, Brazil. The analysis of carbon isotope discrimination (Δ was performed in 15 breeding lines and three cultivars. Subsequently, the root growth kinetic and root system architecture from the selected genotypes were determined. In both locations, Δ analyses were suitable to discriminate cotton genotypes. There was a positive correlation between Δ and seed-cotton yield in SHGO, where water deficit was more severe. In this site, the negative correlations found between Δ and fiber percentage indicate an integrative effect of gas exchange on Δ and its association with yield components. As for root robustness and growth kinetic, the GO 05 809 genotype performance contributes to sustain the highest values of Δ found in MONT, where edaphoclimatic conditions were more suitable for cotton. The use of Δ analysis as a phenomic facility can help to select cotton genotypes, in order to obtain plants with higher efficiency for gas exchange and water use.

  4. Data mining for isotope discrimination in atom probe tomography

    International Nuclear Information System (INIS)

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified

  5. Carbon and oxygen isotope microanalysis of carbonate.

    Science.gov (United States)

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  6. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation.......The redox changes of past surface environments can be explored using the Cr isotope composition of ancient marine carbonates, where a marginal offset compared to contemporaneous seawater δ53Cr is expected and the degree of contamination and later diagenetic alteration can be evaluated. Improved...

  7. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  8. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  9. Carbon isotope effects in carbonate systems

    Science.gov (United States)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  10. Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon.

    Science.gov (United States)

    Guy, R. D.; Fogel, M. L.; Berry, J. A.

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. PMID:12231663

  11. Low stable carbon isotope fractionation by coccolithophore RubisCO

    Science.gov (United States)

    Boller, Amanda J.; Thomas, Phaedra J.; Cavanaugh, Colleen M.; Scott, Kathleen M.

    2011-11-01

    The 13C/ 12C ratio of carbon compounds is used to identify sources and sinks in the global carbon cycle. However, the relatively enriched 13C content observed for marine organic carbon remains enigmatic. The majority of oceanic carbon is fixed by algae and cyanobacteria via the Calvin-Benson-Bassham cycle, yet isotopic discrimination by the CO 2 fixation enzyme, RubisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase), has only been measured for a single marine cyanobacterium. Different forms of RubisCO occur in different phytoplankton species (overall amino acid identity varying by as much as ˜75%) and thus may vary in the degree to which they fractionate carbon. Here we measured isotope discrimination by RubisCO from the coccolithophore Emiliania huxleyi, a cosmopolitan species used as a marine algal model .E. huxleyi RubisCO discriminated substantially less ( ɛ = 11.1‰) against 13CO 2 than other RubisCO enzymes (18-29‰), despite having Michaelis-Menten kinetic parameters ( K = 72 μM; Vmax = 0.66 μmol min -1 mg -1 protein) similar to those measured for RubisCO enzymes from different organisms. If widespread, decreased isotope discrimination of 13C by phytoplankton RubisCO may be a major factor influencing the enriched 13C content of marine organic carbon. This finding emphasizes the necessity of (a) determining ɛ values for RubisCOs of other marine phytoplankton and (b) re-evaluation of δ13C values from physiological, environmental, and geological studies.

  12. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guy, R.D. (Carnegie Institution of Washington, Stanford, CA (United States)); Fogel, M.L.; Berry, J.A. (Carnegie Inst. of Washington, Washington, DC (United States))

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  13. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system

    Science.gov (United States)

    Peters, Jacob M.; Wolf, Nathan; Stricker, Craig A.; Collier, Timothy R.; del Rio, Martinez Carlos

    2012-01-01

    The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ~45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult.

  14. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  15. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, pacific bluefin tuna (Thunnus orientalis.

    Directory of Open Access Journals (Sweden)

    Daniel J Madigan

    Full Text Available Stable isotope analysis (SIA of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver and isotope- (nitrogen and carbon specific turnover rates and trophic discrimination factors (TDFs using archived tissues from captive Pacific bluefin tuna (PBFT, Thunnus orientalis, 1-2914 days after a diet shift in captivity. Half-life values for (15N turnover in white muscle and liver were 167 and 86 days, and for (13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ(15N and 1.8 and 1.2‰ for δ(13C, respectively. Our results demonstrate that turnover of (15N and (13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. (15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ(15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.

  16. Exotic structure of carbon isotopes

    International Nuclear Information System (INIS)

    Ground state properties of C isotopes, deformation and electromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parties of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12∼15% of the Thomas-Reiche-Kuhn sum rule value and 50∼ 80% of the cluster sum rule value. (author)

  17. Carbon isotope geochemistry in the Yalujiang estuary

    Institute of Scientific and Technical Information of China (English)

    吴莹; 张经

    2001-01-01

    The distribution of particulate organic carbon (POC) along the lower reaches is similar between the dry season and the flood season in the Yalujiang Estuary, North China. However, the values of particulate organic carbon of the upperstream in the dry season are one magnitude lower than the concentrations in the flood season. Stable carbon isotope ratios have been used to study the sources of particulate organic carbon in the Yalujiang Estuary. The isotopic composition of POC shows a range from -23.1‰ to -29.4‰ with a little seasonal variation. The isotopic evidence indicates that the POC in the Yalujiang Estuary is predominantly of terrestrial origin rather than a result of in situ plankton. The study of the ratio of POC: Chla shows that the turbidity maximum plays an important role in POC cycle in the Yalujiang Estuary. Organic detritus and soil erosion are the main contributions to POC in the turbidity maximum, especially in the flood season.

  18. Pb and Sr isotopic compositions of ancient pottery: a method to discriminate production sites

    International Nuclear Information System (INIS)

    The discriminating of production sites of ancient pottery samples using multi-isotopic systematics was described. Previous work has proven that Pb isotopic ratios can be used for discriminating the production sites of ancient pottery under certain conditions. The present work suggests that although Nd isotopic ratios are not sensitive to the production sites of ancient pottery, Sr isotopic ratios are important for the purpose. Pb isotopic ratios are indistinguishable for the pottery excavated from the Jiahu relict, Wuyang, Henan Province and for famous Qin Terra-cotta Figures. But, the 87Sr/86Sr ratios for the former (about 0.715) are significantly lower than that of the latter (0.717-0.718). The authors concluded that a combined use of Pb and Sr isotopes would be a more powerful method for discriminating the production site of ancient pottery. (authors)

  19. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  20. Stable carbon isotope analysis of heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Fixari, B.; Le Perchec, P.; Bigois, M.; Casabianca, H.; Jame, P. [CNRS, Vernaison (France). Lab. des Materiaux Organiques

    1994-03-01

    Stable carbon isotope analysis of various heavy oils and some thermo-catalytically converted products was performed with a thermal analyser coupled with an isotopic ratio mass spectrometer. The temperature-programmed oxidative pyroanalysis technique subdivides the classical {sup 13}C/{sup 12}C ratio, affording new insights into the structural composition of heavy oils such as the contribution of naphthenoaromatics, and appears to be of interest for following their thermal refining. 24 refs., 11 figs., 2 tabs.

  1. Carbon isotope separation by absorptive distillation

    International Nuclear Information System (INIS)

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole percent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HETP's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  2. Carbon isotope separation by absorptive distillation

    International Nuclear Information System (INIS)

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole per cent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HTU's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  3. Exotic Structure of Carbon Isotopes

    CERN Document Server

    Suzuki, T; Hagino, K; Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2002-01-01

    We studied firstly the ground state properties of C-isotopes using a deformed Hartree-Fock (HF)+ BCS model with Skyrme interactions. Shallow deformation minima are found in several neutron$-$rich C-isotopes. It is shown also that the deformation minima appear in both the oblate and the prolate sides in $^{17}$C and $^{19}$C having almost the same binding energies. Secondly, we carried out shell model calculations to study electromagnetic moments and electric dipole transitions of the C-isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C-isotopes, which will be useful to find out the deformations and the spin-parities of the ground states of these nuclei. We studied electric dipole states of C-isotopes focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Reasonable agreement is obtained with available experimental data for the photoreaction cross sections both in the low energy region below $\\hbar \\omega $=14 MeV and ...

  4. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  5. Stable Isotope Studies of Crop Carbon and Water Relations: A Review

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cong-zhi; ZHANG Jia-bao; ZHAO Bing-zi; ZHANG Hui; HUANG Ping

    2009-01-01

    Crop carbon and water relations research is important in the studies of water saving agriculture,breeding program,and energy and material cycles in soil plant atmosphere continuum (SPAC).The purpose of this paper is to review the current state of knowledge on stable isotopes of carbon,oxygen,and hydrogen in the research of crop carbon and water relations,such as carbon isotope discrimination (△13C) during carbon fixation process by photosynthesis,application of △13C in crop water use efficiency (WUE) and breeding programs,oxygen isotope enrichment during leaf water transpiration,CO2 fixation by photosynthesis and release by respiration,application of hydrogen isotope composition (δD) and oxygen isotope composition (δ18O) for determination of water source used by a crop,stable isotope coupling Keeling plot for investigating the carbon and water flux in ecosystem,energy and material cycle in SPAC and correlative integrative models on stable isotope.These aspects contain most of the stable isotope researches on crop carbon and water relations which have been widely explored internationally while less referred in China.Based on the reviewed literatures,some needs for future research are suggested.

  6. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  7. Deciphering Carbon Isotope Excursions in Separated Biogenic and Diagenetic Carbonates

    Science.gov (United States)

    Hermoso, M.; Minoletti, F.; Hesselbo, S.; Jenkyns, H.; Rickaby, R.; Diester-Haass, L.; Delsate, D.

    2008-12-01

    The long-term evolution of the carbon-isotope ratio in the sedimentary archive is classically linked with changes in primary productivity and organic matter burial. There have been sudden and pronounced shifts, so-called Carbon Isotope Excursions (CIEs) in the long-term trends as evidenced by synchronous shifts from various basins. These geochemical perturbations may have various explanations such as changes of the efficiency of the carbon sink; sudden infusion of isotopically-light carbon into the Ocean-Atmosphere system; or advection of 12C-rich source from bottom water in a stratified water column. Beside the record of primary changes in seawater chemistry, a possible diagenetic overprint may also mime such CIEs in the sedimentary record. The aim of this contribution is to illustrate through three critical intervals (the Early Toarcian, the K-P boundary and the Mid-Miocene Montery Event) how the various micron-sized sedimentary particles specifically record these CIEs, which are respectively associated with major paleoceanographical events. New techniques for getting monotaxic calcareous nannofossil assemblages from the sediment (Minoletti et al., accepted) enable the isotopic measurement at various depths within the surface water and from bottom water by analyzing early diagenetic precipitations (rhombs and micarbs). The integration of these high-resolution isotopic signals in terms of amplitudes affords to recognize diagenetic artifacts in some sections displaying coeval decrease in the carbonate content. For both Early Toarcian and K-P events, corroborative records of CIE records in both primary calcite and bottom water carbonate indicate a global C-isotope perturbation of the water column. For the Monterey event, the evolution of calcareous nannoplankton and the foraminifera isotopic records are in overall agreement, but in detail, the coccolith-discoaster and foraminifer ratio in the sediment, related to environmental changes, is likely to produce isotopic

  8. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  9. Laser ablation molecular isotopic spectrometry of carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bol' shakov, Alexander A. [Applied Spectra, Inc., Fremont, CA (United States); Jain, Jinesh [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Russo, Richard E. [Applied Spectra, Inc., Fremont, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McIntyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Mao, Xianglei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  10. Laser ablation molecular isotopic spectrometry of carbon isotopes

    Science.gov (United States)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  11. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  12. Carbon isotopes and water use efficiency in C4 plants.

    Science.gov (United States)

    Ellsworth, Patrick Z; Cousins, Asaph B

    2016-06-01

    Drought is a major agricultural problem worldwide. Therefore, selection for increased water use efficiency (WUE) in food and biofuel crop species will be an important trait in plant breeding programs. The leaf carbon isotopic composition (δ(13)Cleaf) has been suggested to serve as a rapid and effective high throughput phenotyping method for WUE in both C3 and C4 species. This is because WUE, leaf carbon discrimination (Δ(13)Cleaf), and δ(13)Cleaf are correlated through their relationships with intercellular to ambient CO2 partial pressures (Ci/Ca). However, in C4 plants, changing environmental conditions may influence photosynthetic efficiency (bundle-sheath leakiness) and post-photosynthetic fractionation that will potentially alter the relationship between δ(13)Cleaf and Ci/Ca. Here we discuss how these factors influence the relationship between δ(13)Cleaf and WUE, and the potential of using δ(13)Cleaf as a meaningful proxy for WUE.

  13. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    Science.gov (United States)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  14. Carbon isotopic composition of individual Precambrian microfossils

    Science.gov (United States)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  15. Carbon isotopic composition of individual Precambrian microfossils.

    Science.gov (United States)

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  16. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    Science.gov (United States)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  17. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    Directory of Open Access Journals (Sweden)

    H. A. Abels

    2015-05-01

    use sensitivity testing of experimentally determined photosynthetic isotope discrimination relationships to show that factors other than the recently demonstrated pCO2 sensitivity of C3 plants carbon isotope fractionation are required to explain this anomaly.

  18. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  19. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  20. Carbonate clumped isotope bond reordering and geospeedometry

    Science.gov (United States)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  1. Isotopic discrimination and kinetic parameters of RubisCO from the marine bloom-forming diatom, Skeletonema costatum.

    Science.gov (United States)

    Boller, A J; Thomas, P J; Cavanaugh, C M; Scott, K M

    2015-01-01

    The cosmopolitan, bloom-forming diatom, Skeletonema costatum, is a prominent primary producer in coastal oceans, fixing CO2 with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) that is phylogenetically distinct from terrestrial plant RubisCO. RubisCOs are subdivided into groups based on sequence similarity of their large subunits (IA-ID, II, and III). ID is present in several major oceanic primary producers, including diatoms such as S. costatum, coccolithophores, and some dinoflagellates, and differs substantially in amino acid sequence from the well-studied IB enzymes present in most cyanobacteria and in green algae and plants. Despite this sequence divergence, and differences in isotopic discrimination apparent in other RubisCO enzymes, stable carbon isotope compositions of diatoms and other marine phytoplankton are generally interpreted assuming enzymatic isotopic discrimination similar to spinach RubisCO (IB). To interpret phytoplankton δ(13) C values, S. costatum RubisCO was characterized via sequence analysis, and measurement of its KCO2 and Vmax , and degree of isotopic discrimination. The sequence of this enzyme placed it among other diatom ID RubisCOs. Michaelis-Menten parameters were similar to other ID enzymes (KCO2 = 48.9 ± 2.8 μm; Vmax = 165.1 ± 6.3 nmol min(-1 ) mg(-1) ). However, isotopic discrimination (ε = [(12) k/(13) k - 1] × 1000) was low (18.5‰; 17.0-19.9, 95% CI) when compared to IA and IB RubisCOs (22-29‰), though not as low as ID from coccolithophore, Emiliania huxleyi (11.1‰). Variability in ε-values among RubisCOs from primary producers is likely reflected in δ(13) C values of oceanic biomass. Currently, δ(13) C variability is ascribed to physical or chemical factors (e.g. illumination, nutrient availability) and physiological responses to these factors (e.g. carbon-concentrating mechanisms). Estimating the importance of these factors from δ(13) C measurements requires an accurate ε-value, and a mass

  2. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals.

    Science.gov (United States)

    Rode, K D; Stricker, C A; Erlenbach, J; Robbins, C T; Cherry, S G; Newsome, S D; Cutting, A; Jensen, S; Stenhouse, G; Brooks, M; Hash, A; Nicassio, N

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆(13)Ctissue-bulk diet) and slightly decreasing differences between plasma δ(13)C and lipid-extracted diet. Plasma Δ(15)Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ(15)N values that changed by carnivores has minimal effects on δ(13)C and δ(15)N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ(13)C discrimination and indirectly affecting δ(15)N discrimination via the inverse relationship with dietary protein content. PMID:27153128

  3. Oxygen isotope fractionation in divalent metal carbonates

    Science.gov (United States)

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  4. The Precambrian marine carbonate isotope database: version 1.1.

    OpenAIRE

    G. A. Shields; Veizer, J.

    2002-01-01

    We present a compilation of strontium, carbon, and oxygen isotope compositions of roughly 10,000 marine carbonate rocks of Archean - Ordovician age (3800 Ma – 450 Ma). The Precambrian Marine Carbonate Isotope Database (PMCID) has been compiled from 152 published and 3 unpublished articles and books of the past 40 years. Also included are 30 categories of relevant “metadata” that allow detailed comparisons and quality assessments of the isotope data to be made. The PMCID will be updated period...

  5. From food to offspring down: tissue-specific discrimination and turn-over of stable isotopes in herbivorous waterbirds and other avian foraging guilds.

    Directory of Open Access Journals (Sweden)

    Steffen Hahn

    Full Text Available Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (δ¹³C and nitrogen stable isotope ratios (δ¹⁵N showed little variation across species but varied between tissues. Apparent discrimination factors ranged between -0.5 to 2.5‰ for δ¹³C and 2.8 to 5.2‰ for δ¹⁵N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors.Turn-over of δ¹³C in tissues was most rapid in blood plasma, with a half-life of 4.3 d, whereas δ¹³C in blood cells had a half-life of approximately 32 d. Turn-over times for albumen and yolk in laying females were similar to those of blood plasma, at 3.2 and 6.0 d respectively. Within yolk, we found decreasing half-life times of δ¹³C from inner yolk (13.3 d to outer yolk (3.1 d, related to the temporal pattern of tissue formation.We found similarities in tissue-specific turn-over times across all avian species studied to date. Yet, while generalities regarding discrimination factors and tissue turn-over times can be made, a large amount of variation remains unexplained.

  6. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O16 than the patterns from marine environments. The C12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.)

  7. Discrimination of the production sites of ancient pottery by using lead isotopic composition

    International Nuclear Information System (INIS)

    Discrimination of the production sites of ancient pottery by using lead isotopic composition is discussed in this paper. The authors have determined the lead isotopic compositions of ancient pottery from the Jiahu and Xishan sites, Henan Province. Most of Jiahu pottery show 206Pb/204Pb of 18.0 to 18.4 and 208Pb/204Pb of 38.4 to 38.8, while most of Xishan pottery show 20'6Pb/204Pb of 18.6 to 18.8 and 208Pb/204Pb of 38.7 to 39.1. Therefore, the lead isotopes are useful in discriminating the production sites of the ancient pottery in some cases

  8. 超高产杂交稻剑叶中C4途径酶活性和稳定碳同位素分异作用的变化%Changes in the Activities of C4 Pathway Enzymes and Stable Carbon Isotope Discrimination in Flag Leaves of Super High-yield Hybrid Rice

    Institute of Scientific and Technical Information of China (English)

    阳成伟; 林桂珠; 彭长连; 陈贻竹; 欧志英

    2003-01-01

    以超高产杂交水稻(Oryza sativa L.)"培矮64S/E32"和多年来大面积推广的杂交稻"汕优63"为材料,研究孕穗后剑叶中C4途径酶和对稳定碳同位素分异作用的变化.结果表明,籽粒灌浆期(移栽后68~75 d)的两个品种剑叶中NADP-MDH活性最高,随后下降;超高产杂交水稻"培矮64S/E32"的NADP-MDH的活性明显高于"汕优63";PEPCase和NADP-ME活性在黄熟期之前的叶片中持续上升.不同生育期的叶片与籽粒的△1aC值相近(19.49‰~19.82‰),在成熟期时较高.超高产水稻"培矮64S/E32"叶片的平均△13C值比"汕优63"高0.43‰.%Activities of several key enzymes of C4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (△13C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average △13C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43‰ more than that in cv. Shanyou 63.

  9. The application of isotope ratio mass spectrometry for discrimination and comparison of adhesive tapes.

    Science.gov (United States)

    Horacek, Micha; Min, Ji-Sook; Heo, Sangcheol; Park, Jongseo; Papesch, Wolfgang

    2008-06-01

    Forensic scientists are frequently requested to differentiate between, or compare, adhesive tapes from a suspect or a crime scene. The most common polymers used to back packaging tape are polypropylene and polyvinyl chloride. Much of the oriented polypropylene (OPP) needed to produce packaging tapes, regardless of the tape brand, is supplied by just a few polymer manufacturers. Consequently, the composition of the backing material varies little. Therefore, the discriminating power of classical methods (physical fit, tape dimensions, colour, morphology, FTIR, PyGC/MS, etc.) is limited. Analysis of stable isotopes using isotope ratio mass spectrometry (IRMS) has been applied in the broad area of forensics and it has been reported that isotope analysis is a valuable tool for the identification of adhesive tapes. We have tested the usefulness of this method by distinguishing different South Korean adhesive tapes produced by just a few manufacturers in the small South Korean market. Korean adhesive tapes were collected and analysed for their isotope signatures. The glue of the tapes was separated from the backing material and these sub-samples were analysed for their H- and C-isotope composition. The result shows the possibility for discriminating most tape samples, even from the same brand. Variations within single rolls have also been investigated, where no variations in H- and C-isotope composition significantly exceeding the standard deviation were found.

  10. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  11. Carbon isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  12. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  13. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  14. Phanerozoic and Neoproterozoic Negative Carbon Isotope Excursions, Diagenesis and Terrestrialization

    Science.gov (United States)

    Paul, K.; Kennedy, M. J.

    2008-12-01

    Comprehensive data sets of Phanerozoic and late Precambrian carbon isotope data derived from carbonate rocks show a similar positive relation when cross-plotted with oxygen isotope values. The range and slope between the time periods is identical and the processes responsible for the relation have been well documented in Quaternary sediments. These processes include the stabilization of isotope values to ambient meteoric water values during shallow burial and flushing of carbonate sediments. Both data sets show strongly depleted carbon (-9 per mil PDB) and oxygen isotope values that retain seemingly systematic stratigraphic patterns with the Quaternary and Phanerozoic examples that demonstrably record meteroric water values. Similar values and patterns in the Precambrian are interpreted as primary marine in origin with significant implications for an ocean carbon mass balance not possible in the Phanerozoic carbon cycle. A similar compilation of carbonates older than one billion years do not show a relation between carbon and oxygen isotopes, lacking the negative carbon values evident in the younger record. We hypothesize that this difference records the onset of significant organic carbon on the land surface and the alteration of meteoric waters toward Phanerozoic values. We demonstrate the meteoric affinities of Neoproterozoic carbonates containing prominent negative isotope excursions recorded in the Shuram and Wonoka Formations of Oman and South Australia commonly attributed to whole ocean isotope variation. The conspicuous absence of negative carbon isotope values with normal marine oxygenisotope values in the Phanerozoic and Neoproterozic identifies a consistent relation between these time intervals and suggests that, as well accepted in the Phanerozoic, negative carbon isotope excursions less than -3 per mil are not a record of marine processes, but rather the later terrestrial biotic influence on meteoric water values.

  15. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    Science.gov (United States)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  16. Carbonate isotopic records of paleoclimate changes in Chinese loess

    Institute of Scientific and Technical Information of China (English)

    韩家懋; 姜文英; 刘东生; 吕厚远; 郭正堂; 吴乃琴

    1996-01-01

    Oxygen and carbon isotopes of carbonate in concretion and bulk samples collected from Xifeng. Luochuan and Weinan loess sections, China, have been analyzed. It has been found that carbon and oxygen isotopic ratios of concretion in paleosol, as useful paleodimatic indicators, recorded temperature and humidity variation during their formation. Comparison of isotopic data from different locations may offer a spatial picture of past environmental changes. Isotopic data from carbonate of bulk sample also include useful environmental information. Carbon and oxygen isotopic curves of past 150ka in Weinan completely reflect the fluctuations of the paleodimate with different stratigraphical units. The curves can correlate well with those of other dimatic proxies and of the deep sea sediments.

  17. Determination of the geographical origin of Chinese teas based on stable carbon and nitrogen isotope ratios

    Institute of Scientific and Technical Information of China (English)

    Long ZHANG; Jia-rong PAN; Cheng ZHU

    2012-01-01

    The objective of this study was to investigate the geographical origin of Chinese teas using carbon and nitrogen stable isotope ratio technology.The results showed that inter-provincial dispersion of teas in Guangdong (GD),Guangxi (GX),Hainan (HA),Fujian (F J),Shandong (SD),Sichuan (SC),Chongqing (CQ),and Henan (HN) provinces was high,while in Zhejiang (ZJ),Hubei (HB),Yunnan (YN),and Anhui (AH) provinces,it was low.Tea samples from GD,GX,HA,and FJ provinces were clustered in one group and separated from those from AH and HB provinces.Thus,carbon and nitrogen stable isotope ratio technology could discriminate teas from among some provinces of China,but not from among others.Better separation might be obtained with a combination of isotopic ratios and other indexes,such as elemental data and organic components.

  18. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  19. Progressive extraction method applied to isotopic exchange of carbon-14

    International Nuclear Information System (INIS)

    Isotopic exchange in natural settings is essentially an irreversible process, so that it progresses continuously until there is complete isotopic equilibrium. In soils, this process involves interaction between isotopes in the liquid and solid phases, and complete isotopic equilibrium may take a very long time. Measurements after partial isotopic exchange have been used to characterize the labile fraction of elements in soils. We describe a method to characterize the extent of isotopic exchange, with application here to incorporation of inorganic carbon-14 (14C) into mineral carbonates and organic matter in soils. The procedure uses a continuous addition of extractant, acid, or H2O2in the examples presented here, coupled with sequential sampling. The method has been applied to demonstrate the degree of isotopic exchange in soil. The same strategy could be applied to many other elements, including plant nutrients. (author)

  20. Bryophytes as Climate Indicators: moss and liverwort photosynthetic limitations and carbon isotope signals in organic material and peat deposits

    Science.gov (United States)

    Griffiths, H.; Royles, J.; Horwath, A.; Hodell, D. A.; Convey, P.; Hodgson, D.; Wingate, L.; Ogeé, J.

    2011-12-01

    Bryophytes make a significant contribution to carbon sequestration and storage in polar, boreal, temperate and tropical biomes, and yet there is limited understanding of the determinants of carbon isotope composition. Bryophytes are poikilohydric and lack stomata in the vegetative (gametophyte) stage, and lack of roots and reliance on liquid water to maintain hydration status also imposes diffusional limitations on CO2 uptake and extent of carbon isotope discrimination. Real-time gas exchange and instantaneous discrimination studies can be used to quantify responses to liquid phase limitation. Thus, wetted tissues show less negative δ13C signals due to liquid phase conductance and, as the thallus surface dries, maximum CO2 assimilation and discrimination are attained when the limitation is primarily the internal (mesophyll) conductance. Continued desiccation then leads to additional biochemical limitation in drought tolerant species, and low discrimination, although the carbon gain is low at this time. In this paper we explore the extent of carbon isotope discrimination in bulk organic material and cellulose as a function of climatic and environmental conditions, in temperate, tropical and Antarctic bryophytes. Field studies have been used to investigate seasonal variations in precipitation and water vapour inputs for cloud forest formations as a function of bryophyte biomass, diversity and isotope composition in epiphytes (particularly leafy liverworts) along an altitudinal gradient in Peru. In the Antarctic, moss banks sampled on Signy Island consisted of only two species, primarily Chorisodontium aciphyllum and some Polytrichum strictum, allowing the collection of shallow and deep cores representative of growth over the past 200 to 2000 years. The well-preserved peat has provided data on growth (14C) and stable isotopic proxies (13C, 18O) for material contemporary with recent anthropogenic climate forcing (over the past 200 years), for comparison with longer

  1. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  2. Regional variations in the lead isotopic composition of galena from southern Korea with implications for the discrimination of lead provenance

    Science.gov (United States)

    Jeong, Youn-Joong; Cheong, Chang-sik; Shin, Dongbok; Lee, Kwang-Sik; Jo, Hui Je; Gautam, Mukesh Kumar; Lee, Insung

    2012-11-01

    This study presents a comprehensive database (n = 215) of lead isotopes in galena from the southern Korean peninsula using new and published data. Of the 69 metal mines examined, predominantly skarn- and hydrothermal-type Pb-Zn-Au-Ag-Cu deposits were observed and were associated with Mesozoic magmatic activities. Galena samples from each geotectonic unit showed discrete lead isotopic signatures. The Gyeongsang basin samples were characteristically unradiogenic and had restricted variations in lead isotopic composition (206Pb/204Pb = 18.16-18.59, 207Pb/204Pb = 15.48-15.64, 208Pb/204Pb = 37.87-38.77). Their 208Pb/204Pb range indicated an involvement of source materials less thorogenic than the associated granites. The galena samples from Cambro-Ordovician carbonate rocks of the northeastern Yeongnam massif and eastern Taebaeksan basin had the most radiogenic 206Pb/204Pb (19.28 ± 0.14) and 207Pb/204Pb (15.833 ± 0.027) ratios. Their lead isotopic trend indicated a combined contribution of ore lead from granitic magmas, Precambrian basements, and overlain host rocks. Less radiogenic galena samples from the middle to southwestern parts of the Yeongnam massif and Okcheon belt showed limited lead isotopic variations (206Pb/204Pb = 18.332 ± 0.065, 207Pb/204Pb = 15.693 ± 0.012, 208Pb/204Pb = 38.93 ± 0.07 on average), probably resulted from mixing with a common crustal basement. The differences in lead isotopes between the radiogenic and unradiogenic groups from the Yeongnam massif and Okcheon belt may reflect the spatial dissimilarity of involved crustal rocks. The old crust appears to have significantly contributed ore lead to galenas from the western Gyeonggi massif, but the geochronological meaning of their steep 207Pb/204Pb-206Pb/204Pb trend is not clear. The comprehensive database constructed by the present study suggests that lead province in the southern Korean peninsula may be subdivided into four discrete zones. Linear discriminant analysis showed that more

  3. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around &ldq...

  4. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  5. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    Science.gov (United States)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  6. Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest. Final Report and Conference Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Maureen H

    2008-04-10

    Carbon dioxide is the major “greenhouse” gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

  7. Oxygen isotope composition of evapotranspiration and its relation to C4 photosynthetic discrimination

    Science.gov (United States)

    The oxygen isotope ratio of water (18 O-H2O) and carbon dioxide (18 O-CO2) is an important signal of global change and can provide constraints on the coupled carbon-water cycle. Here, simultaneous observations of 18O-H2O (liquid and vapor phases) and 18 O-CO2 were used to investigate the relation be...

  8. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...

  9. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    Science.gov (United States)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb isotopically extreme carbonates in Neoproterozoic successions remain poorly understood. Little is also known about organisms and metabolisms that cycled carbon in these carbonate strata, because they rarely contain well-preserved organic-rich fossils. To better understand the cycling of carbon during the deposition of the 715-635 Ma Tayshir member of the Tsagaan Oloom Formation, Mongolia, we analyzed δ13Cfossil of two types of organic fossils that occur in 13C- enriched carbonates (+ 5 to 9.9 per mil) and within 13C-depleted carbonates of the Tayshir anomaly (-3 to -6 per mil). Because these organic microfossils are remarkably similar to the tests of modern planktonic, herbivorous tintinnid ciliates and benthic macroscopic red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The isotopic difference between δ13Cfossil and 13C-enriched carbonates is 28 to 30 per mil, suggesting maximal isotopic fractionation by primary producers, and little environmental (or diagenetic

  10. Study of neutron rich carbon isotopes

    Science.gov (United States)

    Fallon, Paul

    2012-03-01

    Electric quadrupole (E2) matrix elements are important quantities in nuclear structure. In particular they are sensitive to nuclear deformation, the decoupling of proton and neutron degrees of freedom, and are often affected by small components of the nuclear wave function. Neutron-rich carbon isotopes have attracted a great deal of attention recently, both experimentally and theoretically, with regards to the question of spatially extended (halo-like) and decoupled valence neutrons. For example, 19C and the drip-line nucleus 22C are proposed to have ground-state neutron halo structures. Electric quadrupole transition rates in 16C 18C and 20C are among the lowest found throughout the nuclear chart and this fact has been cited by some as evidence for a reduced coupling between the valence neutrons and the core nucleons. In this talk I will present the results from our experiments to measure the transition rates in 16,18,20C and discuss the evidence for a ``decoupling'' of valence neutrons from the core that goes beyond the usual shell model approach. Data will be compared to shell model and no-core (ab-initio) shell model calculations with NN and NN+NNN interactions.

  11. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    Science.gov (United States)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  12. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    This study documents variation of stable-carbon isotope ratios (13C/12C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  13. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope

  14. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    OpenAIRE

    H. A. Abels; Lauretano, V.; A. van Yperen; T. Hopman; Zachos, J.C.; L. J. Lourens; Gingerich, P. D.; G. J. Bowen

    2015-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically-light carbon to the exogenic atmosphere–ocean carbon pool, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event, as well as to correlate marine and terrestrial records with high precision. The ...

  15. Carbon isotopes in oil and gas exploration. Examples of applications

    International Nuclear Information System (INIS)

    The use of carbon isotopes in hydrocarbon exploration is reviewed. Examples of the application of stable carbon isotopes are discussed in the fields of: (1) gas exploration, where source rocks of gas deposits or gas shows can be identified by 13C/12C analyses of methane and the exploration efforts redirected; (2) wildcat drilling, in which the carbon isotope composition of methane from the head space of canned cuttings characterizes autochthonous methane and gives information on the maturity of organic matter in relation to depth; (3) oil/oil and source-rock/oil correlation, where the 'isotopic type curve technique', a recently developed sensitive oil/oil and source-rock/oil correlation method, is discussed and applied to correlation problems in the British North Sea region. (author)

  16. Variations in carbon and nitrogen stable isotopes of cryoconite

    Science.gov (United States)

    Takeuchi, N.

    2012-12-01

    Cryoconite is biogenic surface dust on snow and ice, and is commoly observed on glaciers worldwide. Because of their dark coloration, cryoconite substantially reduce surface albedo and accelerate melting of glaciers. Therefore, it is important to understand formation process of cryoconite to evaluate its effect on glacier melting. Although cryoconite consists of mineral particles and organic matter, organic fraction is more important in terms of albedo effect because it is usually darker color and accounts for major part of cryoconite in volume. The organic matter is derived from photosynthetic microbes such as cyanobacteria, and/or from windblown organic matter from ground soil around glaciers. Carbon (C) and nitrogen (N) stable isotopes of the organic matter could be useful to know their sources and to understand their cycles on glaciers. In this study, I analyzed carbon and nitrogen stable isotopes of cryoconite collected from 6 sites of different elevation from May to September on an Alaska glacier (Gulkana Glacier) to know their spatial and seasonal variations. I also analyze those collected from glaciers in Asia and Arctic to compare them among different geographical locations. Results on the Alaska glacier show that C and N stable isotopes of cryoconite organic mater significantly varied among elevations and seasons. C isotope was generally higher in lower elevation, probably due to higher photosynthetic activity in the lower elevation. In contrast, N isotope was constant on the ice area, but was lower in the snow area where the red snow algae were blooming. N isotope may be reflective of nitrogen availavility on the glacier surface. Geograpical comparison shows large variations in C and N isotopes among regions: higher C and N isotopes on Asian glaciers, lower C and N isotopes in Alaska, and lower C and higher N isotopes on Arctic glaciers. The isotope values suggest that algal production is a major carbon source on most of glaciers, but their productivity

  17. Biogeochemistry of the stable carbon isotopes in carboxylic acids

    International Nuclear Information System (INIS)

    The carbon isotopic compositions of the carboxyl carbons of fatty acids were determined by measuring the isotopic composition of the carbon dioxide quantitatively released from the acid. A modified version of the Schmidt decarboxylation developed and tested in this work was employed. A study of the evolution of CO2 at 5 +- 20C from the Schmidt decarboxylation of octanoic acid during the developmental program revealed two kinetic phases, each characterized by different rate constants and carbon isotope effects. The first, slower reaction phase displayed overall first-order kinetics, its rate being independent of HN3 concentration. Both pre-equilibration of the HN3-CHCl3 decarboxylation reagent with H2SO4 and saturation of the catalytic H2SO4 phase with KHSO4 drastically altered the rate of evolution and isotopic composition of the product CO2. The mechanistic implications of these results were discussed. A review of the metabolism of saturated fatty acids was made in which the impact of potential isotope fractionations in the various chemical reactions comprising the biosynthetic pathways on the intramolecular carbon isotope distribution within fatty acids was discussed

  18. Carbon and oxygen isotope fractionation in dense interstellar clouds

    Science.gov (United States)

    Langer, W. D.; Graedel, T. E.; Frerking, M. A.; Armentrout, P. B.

    1984-01-01

    It is pointed out that isotope fractionation as a result of chemical reactions is due to the small zero-point energy differences between reactants and products of isotopically distinct species. Only at temperatures near absolute zero does this energy difference become significant. Favorable conditions for isotope fractionation on the considered basis exist in space within dense interstellar clouds. Temperatures of approximately 10 K may occur in these clouds. Under such conditions, ion-molecule reactions have the potential to distribute isotopes of hydrogen, carbon, oxygen unequally among the interstellar molecules. The present investigation makes use of a detailed model of the time-dependent chemistry of dense interstellar clouds to study cosmological isotope fractionation. Attention is given to fractionation chemistry and the calculation of rate parameters, the isotope fractionation results, and a comparison of theoretical results with observational data.

  19. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as p

  20. Carbon isotopic studies of organic matter in Precambrian rocks.

    Science.gov (United States)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  1. Carbon isotopic study of individual alcohol compounds in modern sediments from Nansha Islands sea area, China

    Institute of Scientific and Technical Information of China (English)

    段毅; 文启彬; 郑国东; 罗斌杰

    1997-01-01

    Carbon isotopic compositions of individual n-alkanols and sterols in modern sediments from the Nan-sha Islands sea area are measured after derivatization to trimethylsilyl ethers by the new isotopic analytical technique of GC/C/IRMS. The effects of the three added silyl carbon atoms in every alcohol molecule on these compound isotopic compositions and the characteristics of their carbon isotopic compositions are studied. Then their biological sources are discussed using their carbon isotopic compositions.

  2. Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India

    Indian Academy of Sciences (India)

    S Banerjee; S K Bhattacharya; S Sarkar

    2006-02-01

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the subtle controls of facies variation,depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood.The Vindhyan Super- group hosts four carbonate units,exhibiting a wide variability in depositional processes and paleogeography.A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values.It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis.The effect of diagenetic alteration is,however,more pronounced in case of oxygen isotopes than carbon isotopes.Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed.Major alteration of original isotope ratios was observed in case of shallow marine carbonates,which became exposed to meteoric fluids during early diagenetic stage.Duration of exposure possibly determined the magnitude of alteration and shift from the original values.Moreover,dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates.The present study suggests that variations in sediment depositional settings,in particular the possibility of subaerial exposure,need to be considered while extracting chronostratigraphic signi ficance from 13C data.

  3. Discrimination between ginseng from Korea and China by light stable isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Horacek, Micha, E-mail: micha.horacek@ait.ac.at [Department of Environmental Resources and Technology, Austrian Institute of Technology, 2444 Seibersdorf (Austria); Min, Ji-Sook; Heo, Sang-Cheol [National Institute of Scientific Investigation, 331-1 Shinwol-7dong, Yangcheon-ku, Seoul 158-707 (Korea, Republic of); Soja, Gerhard [Department of Environmental Resources and Technology, Austrian Institute of Technology, 2444 Seibersdorf (Austria)

    2010-12-03

    Ginseng is a health food and traditional medicine highly valued in Asia. Ginseng from certain origins is higher valued than from other origins, so that a reliable method for differentiation of geographical origin is important for the economics of ginseng production. To discriminate between ginseng samples from South Korea and PR China, 29 samples have been analyzed for the isotopic composition of the elements H, C and N. The results showed {delta}{sup 2}H values between -94 and -79 per mille , for {delta}{sup 13}C -27.9 to -23.7 per mille and for {delta}{sup 15}N 1.3-5.4 per mille for Chinese ginseng. Korean ginseng gave {delta}{sup 2}H ratios between -91 and -69 per mille , {delta}{sup 13}C ratios between -31.2 and -22.4 per mille and {delta}{sup 15}N ratios between -2.4 and +7 per mille . Despite the overlap between the values for individual isotopes, a combination of the isotope systems gave a reasonable differentiation between the two geographic origins. Especially the statistically significant difference in {delta}{sup 2}H ratios facilitated the differentiation between Korean and Chinese ginseng samples.

  4. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  5. Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?

    Science.gov (United States)

    Frei, R.; Gaucher, C.

    2010-12-01

    Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr

  6. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  7. Aptian Carbon Isotope Stratigraphy in Sierra del Rosario, Northeastern Mexico

    Science.gov (United States)

    Barragan-Manzo, R.; Moreno-Bedmar, J.; Nuñez, F.; Company, M.

    2013-05-01

    In most recent years Aptian carbon isotope stratigraphy has been widely studied in Europe where isotopic stages have been developed to correlate global events. Two negative excursions have been recorded in the Lower Aptian, the older is OAE 1a in the middle part, and a younger negative excursion labeled "Aparein level", which occurs in the uppermost part of the Lower Aptian. In Mexico previous works reported a carbon isotope negative excursion in the lowermost part of the La Peña Formation that was assigned to the onset of Oceanic Anoxic Event 1a (=OAE 1a). In this work we study the isotopic record of the δ13Ccarb of 32 bulk rock samples of limestone from the uppermost part of the Cupido Formation and the lower part of the La Peña Formation at the Francisco Zarco Dam Section (=FZD), Durango State, northeastern Mexico. The isotopic data are calibrated using the latest ammonite biostratigraphic biozonation of the Aptian. This age calibration allows us to make a precise correlation between the carbon isotopic record of Mexico and several European sections (e.g. Spain and France). In the studied Francisco Zarco Dam section we recognize a negative carbon isotopic excursion in the Dufrenoyia justinae ammonite Zone that corresponds to the "Aparein level", which we correlate using the ammonite zonation of others European sections (Figure 1). This correlation allows us to see how the negative excursion that characterizes the "Aparein level" is consistent with the C7 segment. Thus, our recent stratigraphic study allows us to conclude that the ammonite record in the lowermost part of the La Peña Formation is regionally isochronous, and correlates with the Dufrenoyia justinae Zone and Lower Aptian isotope interval C7. In agreement to these biostratigraphic data, the supposed record of the OAE 1a in the lowermost part of the La Peña Formation is not correct, and the carbon isotope negative excursion must be assigned to the younger event "Aparein level". Taking this into

  8. The clumped isotopic record of Neoproterozoic carbonates, Sultanate of Oman

    Science.gov (United States)

    Bergmann, K. D.; Eiler, J. M.; Fischer, W. W.; Osburn, M. R.; Grotzinger, J. P.

    2011-12-01

    The Huqf Supergroup of the Sultanate of Oman records several important events in latest Precambrian time, including two glaciations in the Abu Mahara Group (ca. 725 - isotope excursion in the Nafun Group (ca. Precambrian-Cambrian boundary in the Ara Group (ca. 547-540 Ma). This interval contains several extreme isotopic excursions, hypothesized to record perturbations of the surficial Earth carbon cycle or post-depositional diagenetic processes. Rigorous interpretation of these records requires a more thorough assessment of diagenetic processes. To better understand the significance and cause of these large amplitude isotopic excursions, we employed carbonate clumped isotope thermometry. This method allows us to estimate the absolute temperature of carbonate precipitation, including recrystallization, based on the temperature dependent abundance of carbonate ions containing both 13C and 18O. These estimates are accompanied by a measurement of carbonate δ18O, which in conjunction with temperature, can be used to calculate the oxygen isotopic composition of the fluid from which the carbonate precipitated. We analyzed stratigraphically constrained samples from a range of paleoenvironments with differing burial histories (1 - >10km maximum burial depth) to constrain the temperature and fluid composition of recrystallization. Clumped isotope temperatures from Huqf Supergroup samples range from 35-175°C. The isotopic composition of the fluid these rocks equilibrated with ranges from -3.7 to 15.7% VSMOW. This large range in temperature and fluid composition separates into distinct populations that differ systematically with independent constraints on petrography, stratigraphy and burial history. The data indicate the Abu Mahara, Nafun and Ara groups have unique diagenetic histories. In central Oman, the post-glacial Abu Mahara cap dolostone shows high temperature, rock buffered diagenesis (Tavg = 176°C; δ18Ofluid = 15% VSMOW), the Nafun Group generally experienced

  9. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    Science.gov (United States)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10‰ below 500° C, 5-6‰ between 500-700° C, and 8-10‰ above 700° C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675° C, compared with much larger changes in oxygen isotopic composition, especially above 300° C. On average, original

  10. High Resolution Carbon and Oxygen Isotope Measurements of Laminations in Pedogenic Carbonate

    Science.gov (United States)

    Breecker, D.; Sharp, Z.

    2005-12-01

    Stable carbon and oxygen isotope ratios in pedogenic carbonate from buried soils provide a proxy for low-resolution Quaternary climate and environmental conditions. Samples of carbonate are taken from clast rinds, nodules or filaments in calcic soils. Most clast rinds exhibit micro-laminations that may preserve isotopic ratios of formation. The techniques typically utilized to sample pedogenic carbonate, however, are too coarse to sample individual laminations and likely result in time averages and therefore limit temporal resolution. We investigated the heterogeneity of both carbon and oxygen isotopes ratios in clast rinds at a 100 μm scale using a rapid CO2 laser extraction technique (Sharp and Cerling, 1996). A single 20 msec burst at low power releases CO2 from polished carbonate slabs and the CO2 is then analyzed using continuous flow GC-IRMS. Analyses take less than 5 minutes with a reproducibility of better than ±0.3‰ (δ13C) and ±0.4‰ (δ18O). We have made a two dimensional map of a thick carbonate rind on a limestone clast from a stage V soil to explore the potential for preservation of isotopic ratios in well developed soils and plan to analyze additional rinds from less well developed calcic horizons for comparison. The isotopic map reveals heterogeneities in δ13C of up to 4‰ at a sub-millimeter scale, possibly corresponding to 30% changes in the fraction of C4 plants. Also imaged are abrupt changes in δ13C of approximately 2‰ across sub-100 μm scale boundaries. One well-defined carbon isotope boundary is sub parallel to, but crosses, the lamination boundaries. Oxygen isotope compositions do not change systematically across the same boundary and generally appear more random. These observations are most easily explained by alteration of initial isotopic compositions. Alteration may preferentially affect oxygen isotope ratios leaving carbon isotope distributions relatively intact. It is also possible that both carbon and oxygen isotopes

  11. Is it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants

    DEFF Research Database (Denmark)

    Laursen, K.H.; Mihailova, A.; Kelly, S.D.;

    2013-01-01

    Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate...

  12. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    OpenAIRE

    Waite, Mashuri; Sack, Lawren

    2011-01-01

    The carbon isotope ratio (δ13C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ13C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ13C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO2 diff...

  13. Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals

    NARCIS (Netherlands)

    Abels, H.A.; Clyde, W.C.; Gingerich, P.D.; Hilgen, F.J.; Fricke, H.C.; Bowen, G.J.; Lourens, L.J.

    2012-01-01

    Pronounced transient global warming events between 60 and 50 million years ago have been linked to rapid injection of isotopically-light carbon to the ocean–atmosphere system1,2. It is, however, unclear whether the largest of the hyperthermals, the Palaeocene–Eocene Thermal Maximum (PETM; ref. 3), h

  14. Applications of optical spectroscopy and stable isotope analyses to organic aerosol source discrimination in an urban area

    Science.gov (United States)

    Mladenov, N.; Alados-Arboledas, L.; Olmo, F. J.; Lyamani, H.; Delgado, A.; Molina, A.; Reche, I.

    2011-02-01

    Understanding the chemical character of organic aerosols is extremely important for evaluating their role in climate forcing and human respiratory health. Aerosol columnar properties retrieved by sun photometry represent a large dataset of information about the physical and light absorbing and scattering properties of the total aerosol, but lack more detailed chemical information about the organic fraction of atmospheric particulate matter. To obtain additional information about relationships between organic aerosol sources and columnar properties, we simultaneously examined stable isotope properties of PM 10 aerosols from urban (Granada, Spain) and remote (Sierra Nevada, Spain) sites and diesel exhaust, spectroscopic properties of water soluble organic carbon (WSOC) of PM 10 aerosols, and sun photometry measurements. We demonstrated that C and N stable isotopes and parameters from UV-vis and fluorescence spectroscopy are able to discriminate between aerosols receiving substantial fossil fuel pollution and those influenced by Saharan dust in an urban area. More depleted δ 13C was associated with low asymmetry parameter, g λ, and high values of the spectral slope ratio, S R, were associated with high effective radius, typical of pollution situations. The humification index (HIX), used predominantly to evaluate the degree of organic matter humification, was significantly related to g λ and the radius of fine mode particles, r f, and may reflect aging of the Saharan dust-influenced aerosols. Parallel factor analysis (PARAFAC) modeling identified a fluorescent component (C3) with a spectrum similar to that of naphthalene, which was significantly related to g λ and r f. The diesel exhaust sample represented a pollution end-member, with the lightest δ 13C value (-26.4‰), lowest S R (0.95), lowest HIX (2.77) and highest %C3 (20%) of all samples.

  15. Stable carbon isotope fractionation in pollen of Atlas cedar: first steps towards a new palaeoecological proxy for Northwest Africa

    Science.gov (United States)

    Bell, Benjamin; Fletcher, William; Ryan, Peter; Grant, Helen; Ilmen, Rachid

    2016-04-01

    Analysis of stable carbon isotopes can provide information on climate and the environmental conditions at different growth stages of the plant, both past and present. Carbon isotope discrimination in plant tissue is already well understood, and can be used as a drought stress indicator for semi-arid regions. Stable carbon isotope ratios measured directly on pollen provides the potential for the development of long-term environmental proxies (spanning thousands of years), as pollen is well preserved in the environment. Atlas Cedar (Cedrus atlantica Endl. Manetti ex Carrière), is an ideal test case to develop a pollen stable carbon isotope proxy. The tree grows across a wide altitudinal and climatic range and is extremely sensitive to moisture availability. The pollen is abundant, and easily identifiable to the species level in pollen analysis because different cedar species are geographically confined to different regions of the world. In 2015 we sampled 76 individual cedar trees across latitudinal, altitudinal and environmental gradients, highly focused on the Middle Atlas region of Morocco, with 25 additional samples from botanical gardens across Europe and the US to extend these gradients. Here, we report new stable carbon isotope data from pollen, leaf and stem wood from these samples with a view to assessing and quantifying species-specific fractionation effects associated with pollen production. The isotopic response of individual trees at local and wider geographical scales to altitude and climatic conditions is presented. This research forms part of an ongoing PhD project working to develop and calibrate a modern carbon isotope proxy in Atlas cedar pollen, which can ultimately be applied to fossil sequences and complement existing multi-proxy records (e.g. pollen analysis in lake sediments, tree-rings).

  16. Carbon dioxide gasification of carbon black: isotope study of carbonate catalysis

    International Nuclear Information System (INIS)

    Temperature-programmed reaction was used with labeled isotopes (13C and 18O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO2/90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 and 950 K, and in the presence of gaseous CO2, the complexes participated in C and O exchange with the gas phase while oxygen atoms within the complexes also exchanged with those on the carbon surface. As the temperature rose, the complexes decomposed, with CO2 the initial product. Decomposition started around 500 K in pure He, and around 950 K in CO2/He. Catalytic gasification began only after decomposition of significant portions of the complexes. Elemental potassium formed, and the active catalyst appears to alternate between being potassium metal and a potassium-oxygen-carbon complex. Potassium carbonate is not part of the catalytic cycle. 20 references, 10 figures

  17. Isotopic composition of carbon-13 and oxygen-18 from authigenic carbonates, Black Sea region

    Science.gov (United States)

    Logvina, E.; Mazurenko, L.; Prasolov, E.

    2004-05-01

    Several types of authigenic carbonates related to the fluid discharge zones were sampled during the international expeditions onboard R/V "Professor Vodyanitskiy" (56th cruise) and R/V "Professor Logachev" (11th cruise of UNESCO-TTR) in the northwest part of the Black sea. These carbonates are represented as mounds, build-ups and chimney-like structures, cemented sediments, crusts and concretions. The isotope analyses of carbonates were conducted using mass-spectrometer MS-20 in the Laboratory of Isotope Geology (St.Petersburg State University). The obtained values of oxygen-18 varied from +0,6 to -1,9 per mille (up to C0.8 per mille on average). This value is corresponding to normal seawater oxygen-18 value (about 0 per mille); we suspect, that the source of oxygen for carbonate formation is the seawater. The carbonates are characterized by low carbon-13 (from -35,4 to -42,6 per mille) in comparison with normal marine carbonates (about 0 per mille). We have reason to suppose that carbonates associated with fluid venting were formed by light isotopic composition of carbon dioxide (carbon-13 -45 to -52 per mille), which forming under methane microbiologic oxidation with such isotopic composition. This is because of crossing fluid process of carbon dioxide to carbonate with 8~10 degrees temperature carbon became heaver to 10- 11 per mille. The isotopic composition study of carbonate build-ups is of interest because its association with the gas hydrate accumulations is quite often in the gas seeps. This work is financially supported by Russian Foundation for Basic Research, grant 02-05-64346.

  18. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (plentils produced in these two different geographic areas, except for δ(15)N. Applying principal component analysis, grouping of samples was observed on the basis of origin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. PMID:26041202

  19. Modeling stable isotope and organic carbon in hillslope stormflow

    Science.gov (United States)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  20. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil

    Directory of Open Access Journals (Sweden)

    SIAL ALCIDES N.

    2000-01-01

    Full Text Available Carbon isotope fluctuations in Precambrian sedimentary carbonates between 2.8 Ga and 0.60 Ga in Brazil are examined in this study. The carbonate facies of the BIF of the 2.8 Ga-old Carajás Formation, state of Pará in northern Brazil, has rather homogeneous delta13C (-5 o/ooPDB, compatible with carbonatization of a silicate protolith by a CO2-rich fluid from mantle degassing. The Paleoproterozoic Gandarela Formation, state of Minas Gerais, displays a narrow delta13C variation (-1.5 to +0.5 o/oo compatible with carbon isotope signatures of carbonates deposited around 2.4 Ga worldwide. The Fecho do Funil Formation has probably recorded the Lomagundi delta13C positive anomaly (+6.4 to +7.1 o/ooPDB. The magnesite-bearing carbonates of the Orós mobile belt, state of Ceará, exhibit carbon isotope fluctuation within the range for carbonates deposited at 1.8 Ga. The C-isotope record of the Frecheirinha Formation, northwestern state of Ceará, shows negative delta13C values in its lower portion (-2 o/oo and positive values up section (+1 to +3 o/oo, which suggests this sequence is a cap carbonate deposited after a glacial event around 0.95 Ga. The Jacoca and Acauã sedimentary carbonate Formations, state of Sergipe, NE Brazil, show carbon isotope fluctuations very similar to each other (average around -5 o/oo, compatible with a deposition around 0.76 Ga. The younger Olho D'Água carbonate Formation, however, also in the state of Sergipe, displays negative delta13C values at the lower portion of the Formation, changing dramatically up section to positive values as high as +10 o/oo, a characteristic compatible with a Sturtian cap carbonate deposited around 0.69 Ga. On the light of the C isotope data discussed in this study, it seems that delta13C fluctuations in Paleoproterozoic carbonates in Brazil are within the range found globally for metasedimentary carbonates of this age. Carbon isotope data proved to be very useful in establishing relative

  1. Carbon abundances and isotope ratios in 70 bright M giants

    International Nuclear Information System (INIS)

    Approximate carbon abundances and 12C/13C isotope ratios are obtained for 70 M giant stars from intermediate-resolution spectrophotometry of the CO bands near 2.3 μm. A low mean carbon abundance ([C/H]=-0.64±0.29) is obtained, suggesting that standard mixing is insufficient to explain atmospheric abundances in M giants. HR 8795 appears to be exceptionally carbon deficient, and is worthy of further study as a possible weak G-band star descendant. (author)

  2. Carbon abundances and isotope ratios in 70 bright M giants

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, C. (Inst. de Astrofisica de Canarias, Tenerife (Spain)); Lynas-Gray, A.E. (University Coll., London (UK). Dept. of Physics and Astronomy); Clegg, R.E.S. (Royal Greenwich Observatory, Cambridge (UK)); Mountain, C.M.; Zadrozny, A. (Imperial Coll. of Science and Technology, London (UK))

    1991-03-01

    Approximate carbon abundances and {sup 12}C/{sup 13}C isotope ratios are obtained for 70 M giant stars from intermediate-resolution spectrophotometry of the CO bands near 2.3 {mu}m. A low mean carbon abundance ((C/H)=-0.64+-0.29) is obtained, suggesting that standard mixing is insufficient to explain atmospheric abundances in M giants. HR 8795 appears to be exceptionally carbon deficient, and is worthy of further study as a possible weak G-band star descendant. (author).

  3. Carbon and oxygen isotope separation by plasma chemical reactions in carbon monoxide glow discharge

    International Nuclear Information System (INIS)

    The separation of carbon and oxygen isotopes in CO glow discharge has been studied. The isotope enrichment in the products was measured by quadru-pole mass spectrometer. The reaction yield and empirical formula of solid phase products were determined by the gas-volumetric analysis. The stable products obtained in our experiment are CO2 and solid polymers formed on the discharge wall. The polymer consists of both carbon and oxygen and the oxygen/carbon mole ratio in the polymer is 0.35±0.05. Thi isotope enrichment coefficients show a strong negative dependence on discharge current though the relative reaction yields have an opposite tendency. Consequently, the maximum isotope enrichment coefficients for 13C in wall deposit of 2.31 and for 18O in CO2 of 1.37 are obtained when the discharge current and the reaction yields are minimum in our experimental range. The experimental results of isotope enrichment have been compared with theoretical values estimated by an analytical model of literature. The dilution mechanism of the isotope enrichment of stable products is inferred from the isotopic distributions of 13C and 18O in products and theoretical predictions for isotope enrichment. (author)

  4. Lead isotopic analyses of NIST standard reference materials using multiple collector inductively coupled plasma mass spectrometry coupled with a modified external correction method for mass discrimination effect

    International Nuclear Information System (INIS)

    A correction method for the mass discrimination effect was developed for isotopic analyses using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For Pb isotopic analysis using MC-ICP-MS, the correction factor for the mass discrimination effect on Pb is based on the addition of Tl to the sample solution and measurement of Tl isotopic ratios; the correction factor obtained using Tl is directly applied to the Pb isotopes (conventional external correction). However, the series of measurements of discrimination factors for several elements, including Rb, Sr, Ru, Nd, Hf, Re, Os, Tl and Pb (mass range 80-210 u), clearly reveal that the mass discrimination factors observed using MC-ICP-MS were a linear function of mass, suggesting that the correction factors observed using Tl isotopes were not exactly identical with those for Pb isotopes. Therefore, the correction factors obtained with Tl isotopes should be corrected for mass, and then applied to the Pb isotopes. The resultant Pb isotopic ratios for NIST Standard Reference Materials show excellent agreement (within 0.3% for 206Pb/204Pb and 20 ppm for 207Pb/206Pb) with the data obtained by the thermal ionization mass spectrometry. The correction method presented clearly demonstrates the wide versatility of the external correction technique for the precise isotopic analysis using MC-ICP-MS. The possible cause of the 'exceptionally large' mass discrimination effect observed for Ru and Os is discussed. (author)

  5. Characteristics of carbon and hydrogen isotopic compositions of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    沈平

    1995-01-01

    Light hydrocarbons named in the present paper refer to the natural gas-associated light oil and condensate 46 light oil and condensate samples from 11 oil-bearing basins of China were collected and their carbon and hydrogen isotopic compositions were analysed in terms of their total hydrocarbons, saturated hydrocarbons and a part of aromatic fractions, and gas-source materials and their sedimentary environments were discussed based on the above-mentioned data and the geological background of each area. From the view of carbon and hydrogen isotopic composition of total hydrocarbons and saturated hydrocarbons, it is revealed that the condensate related to coal-bearing strata is enriched in 13C and D while that related to the source material of type I-II is enriched in 12C. In general, the isotopic composition of carbon is mainly attributed to the inheriting effect of their source materials, whereas that of hydrogen principally reflects the correlationship between hydrogen isotopes and the sedimentary envi

  6. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  7. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  8. Comparative assessment of air quality in two health resorts using carbon isotopes and palynological analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, M.; Jedrysek, M.O.; Maj, J.; Worobiec, A.; Buczynska, A.; Stefaniak, E.; Krata, A.; Van Grieken, R.; Zwozdziak, A.; Sowka, I.; Zwozdziak, J.; Lewicka-Szczebak, D. [University of Wroclaw, Wroclaw (Poland). Inst. of Geological Science

    2009-01-15

    This paper describes results of applying the palynological and carbon isotopic analysis of the organic fraction of Total Suspended Particles (TSP) to discriminate distinct pollution sources and assess the anthropogenic impact for the investigated areas. The samples of atmospheric particles were collected in Czerniawa and Cieplice (two health resorts in Lower Silesia, SW Poland) twice a year in summer and winter season (from July 2006 to February 2008). The palynological spectra represent in the vast majority local plant communities without a noticeable contribution of long-transported plant particles. Palynological analysis revealed also differences in the specificity of the two sampling areas, i.e. the higher contribution of identified organic material in Czerniawa stands for more natural character of this site, but is also responsible for the higher allergic pressure when compared to Cieplice. The carbon isotopic composition of TSP varied seasonally ({delta}{sup 13}C value from -27.09 parts per thousand in summer to -25.47 parts per thousand in winter). The increased {delta} {sup 13}C value in winter (heating period) is most probably caused by uncontrolled contribution of coal soot. On the basis of isotopic mass balance the calculated contribution of anthropogenic organic particles in the atmosphere reached in winter season 72% in Czerniawa and 79% in Cieplice.

  9. Isotopic Hg in an Allende carbon-rich residue

    Science.gov (United States)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  10. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  11. Impact of flood events on lacustrine carbonate isotope records

    Science.gov (United States)

    Kämpf, Lucas; Plessen, Birgit; Lauterbach, Stefan; Nantke, Carla; Meyer, Hanno; Chapligin, Bernhard; Höllerer, Hannes; Brauer, Achim

    2016-04-01

    Stable oxygen (δ 18O) and carbon (δ 13C) isotope compositions of lacustrine carbonates are among the most frequently used proxies in palaeolimnological / -environmental studies. Stable isotope analyses are often carried out on bulk carbonate samples, which are prone to contamination with detrital carbonates, transported into the lake by runoff processes and carrying the isotopic signal of catchment rocks, thus hampering the interpretation of the data in terms of past climatic and/or environmental changes. Despite the awareness of a likely detrital bias, the degree of contamination in most cases remains unknown and discrete contaminated samples undetected due to a lack of methods to disentangle endogenic and detrital carbonates in sediment records. To address this issue and provide more comprehensive insights into effects of flood-related detrital input on the bulk carbonate isotopic composition, we conducted stable isotope measurements on sediments trapped on a 3-12 day basis over a three-year period (January 2011 to November 2013) at two locations in pre-Alpine Lake Mondsee, close to the inflow of the main tributary and in the deepest part of the lake basin. Lake Mondsee was chosen for the monitoring since the pelagic sediments are annually laminated consisting of couplets of light calcite layers and dark layers made up by a mixture of detrital clastic and organic matter. Maximum calcite flux rates >1.5 g m2 d-1 were trapped between May and September, indicating the seasonal endogenic precipitation of calcite crystals. The comparison of the δ 18O composition of trapped carbonates, rain and epilimnion lake water revealed equilibrium calcite precipitation, allowing us to infer purely endogenic δ 18O (-9 to -11.3‰ VPDB) and δ 13C values (-6 to -9‰ VPDB) throughout the summer season. The endogenic calcite precipitation was interrupted by 14 peaks in carbonate flux (4 to 175 g m2 d-1) triggered by runoff events of different magnitudes (10-110 m3 s-1 peak

  12. Investigating the Formation of Pedogenic Carbonate Using Stable Isotopes

    Science.gov (United States)

    Breecker, D. O.; Sharp, Z. D.; McFadden, L.

    2006-12-01

    The stable isotope composition of pedogenic carbonate has been used as a paleoenvironmental proxy because it is thought to form in isotopic equilibrium with soil CO2 and soil water, which are influenced by vegetation type and atmospheric circulation patterns, respectively. However, the isotopic composition of soil CO2 and soil water change seasonally and it is not known what portion of this variability is recorded by the isotopic composition of pedogenic carbonate. It is generally believed that carbonate precipitation in soils is driven by evaporative concentration of Ca ions and/or decreasing soil pCO2. We seek to improve the proxy by determining the seasonality of pedogenic carbonate formation, in particular whether pedogenic carbonate forms during the wet season after individual rainstorms or during seasonal drying following the wet season. This was done by comparing the variations in carbon and oxygen isotope composition of soil CO2 with the isotopic composition of proximally located, newly-formed carbonates. Soil CO2 and incipient pedogenic carbonate coatings were collected in a very young (soil developing in an inset terrace on the piedmont of the Sandia Mountains, central New Mexico. We also measure soil temperatures at the same site. In May 2006, at the end of the driest 6-month period on record in central New Mexico, soil CO2 profiles displayed a 2‰ decrease in δ13C values with depth from 9 to 100 cm. In August 2006, the shapes of the profiles were similar, but the δ13C values were 3-4‰ lower at each depth than in May. These results can be explained by an increase in respiration rate during the latter half of the summer (the wettest on record) when monsoon rainfall maintained high moisture contents in soils across New Mexico. Calculated δ13C values of calcite in equilibrium with May (but not August) soil CO2 agree with measured carbonate δ13C values below 20 cm depth. Very shallow carbonate has anomalously high δ13C values. Measurements of the

  13. Economically important applications of carbon isotope data of natural gases and crude oil: a brief review

    International Nuclear Information System (INIS)

    Carbon isotope fractionations in hydrocarbons are briefly reviewed and examples of practical applications in the exploration of crude oil are given. Carbon isotope fractionations of natural gases are discussed. It is shown that the carbon isotope ratio of methane is predominantly determined by the environment (humic or sapropelic) and the maturity of its organic source material. In this way, isotope analyses of natural gases can be quantitatively used to characterize the maturity of their source rocks. (author)

  14. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    Science.gov (United States)

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease.

  15. Carbon Isotope and Isotopomer Fractionation in Cold Dense Cloud Cores

    CERN Document Server

    Furuya, Kenji; Sakai, Nami; Yamamoto, Satoshi

    2011-01-01

    We construct the gas-grain chemical network model which includes carbon isotopes (12C and 13C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have the CX/13CX ratios greater than the elemental abundance ratio of [12C/13C]. On the other hand, molecules formed from CO molecules have the CX/13CX ratios smaller than the [12C/13C] ratio. We reproduce the observed C13CH/13CCH ratio in TMC-1, if the isotopomer exchange reaction, 13CCH + H C13CH + H + 8.1 K, proceeds with the forward rate coefficient kf > 10^-11 cm3 s-1. However, the C13CS/13CCS ratio is lower tha...

  16. Triple oxygen isotopes in biogenic and sedimentary carbonates

    Science.gov (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  17. Carbon and Oxygen Isotope Stratigraphy of the Oxfordian Carbonate Rocks in Amu Darya Basin

    Institute of Scientific and Technical Information of China (English)

    Rongcai Zheng; Yanghui Pan; Can Zhao; Lei Wu; Renjin Chen; Rui Yang

    2013-01-01

    Based on the detailed research on petrologic and geochemical characteristics of deposition and diagenesis of Oxfordian carbonate rocks in Amu Darya Basin,Turkmenistan,carbon and oxygen isotopes were analyzed.The results show that the paleoenvironmental evolution reflected by the samples with well-preserved original carbon isotopes coincides with the carbon-isotope stratigraphic carve and is almost consistent with the global sea-level curve,the Mid-Oxfordian wide transgression,and the positive carbon-isotope excursion event.The Mid-Oxfordian continuing transgression not only laid the foundation for the development of the Oxfordian reef and shoal reservoirs in Amu Darya Basin but also provided an example for the Oxfordian global transgression and the resulting development of reefs and banks and high-speed organic carbon burial events.The response of oxygen isotopes in diagenetic environment showed that micrite limestones and granular limestones underwent weak diagenetic alteration,and the samples largely retained the original seawater features.Dolomitization and the precipitation of hydrothermal calcites tilling solution vugs and fractures before hydrocarbon accumulation occurred in a closed diagenetic environment where the main controlling factor is the temperature,and the diagenetic fluids were from the deep hot brine.The chalkification of the limestones after hydrocarbon accumulation occurred in the oiltield water systems.

  18. Shear heating and clumped isotope reordering in carbonate faults

    Science.gov (United States)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  19. Method for the isolation of citric acid and malic acid in Japanese apricot liqueur for carbon stable isotope analysis.

    Science.gov (United States)

    Akamatsu, Fumikazu; Hashiguchi, Tomokazu; Hisatsune, Yuri; Oe, Takaaki; Kawao, Takafumi; Fujii, Tsutomu

    2017-02-15

    A method for detecting the undeclared addition of acidic ingredients is required to control the authenticity of Japanese apricot liqueur. We developed an analytical procedure that minimizes carbon isotope discrimination for measurement of the δ(13)C values of citric and malic acid isolated from Japanese apricot liqueur. Our results demonstrated that freeze-drying is preferable to nitrogen spray-drying, because it does not significantly affect the δ(13)C values of citric acid and results in smaller isotope discrimination for malic acid. Both 0.1% formic acid and 0.2% phosphoric acid are acceptable HPLC mobile phases for the isolation of citric and malic acid, although the δ(13)C values of malic acid exhibited relatively large variation compared with citric acid following isolation using either mobile phase. The developed procedure allows precise δ(13)C measurements of citric and malic acid isolated from Japanese apricot liqueur. PMID:27664615

  20. Diet quality influences isotopic discrimination among amino acids in an aquatic vertebrate.

    Science.gov (United States)

    Chikaraishi, Yoshito; Steffan, Shawn A; Takano, Yoshinori; Ohkouchi, Naohiko

    2015-05-01

    Stable nitrogen isotopic composition of amino acids (δ (15)NAA) has recently been employed as a powerful tool in ecological food web studies, particularly for estimating the trophic position (TP) of animal species in food webs. However, the validity of these estimates depends on the consistency of the trophic discrimination factor (TDF; - Δδ (15)NAA at each shift of trophic level) among a suite of amino acids within the tissues of consumer species. In this study, we determined the TDF values of amino acids in tadpoles (the Japanese toad, Bufo japonicus) reared exclusively on one of three diets that differed in nutritional quality. The diets were commercial fish-food pellets (plant and animal biomass), bloodworms (animal biomass), and boiled white rice (plant carbohydrate), representing a balanced, protein-rich, and protein-poor diet, respectively. The TDF values of two "source amino acids" (Src-AAs), methionine and phenylalanine, were close to zero (0.3-0.5‰) among the three diets, typifying the values reported in the literature (∼0.5‰ and ∼0.4‰, respectively). However, TDF values of "trophic amino acids" (Tr-AAs) including alanine, valine, leucine, isoleucine, and glutamic acid varied by diet: for example, the glutamic acid TDF was similar to the standard value (∼8.0‰) when tadpoles were fed either the commercial pellets (8.0‰) or bloodworms (7.9‰), but when they were fed boiled rice, the TDF was significantly reduced (0.6‰). These results suggest that a profound lack of dietary protein may alter the TDF values of glutamic acid (and other Tr-AAs and glycine) within consumer species, but not the two Src-AAs (i.e., methionine and phenylalanine). Knowledge of how a nutritionally poor diet can influence the TDF of Tr- and Src-AAs will allow amino acid isotopic analyses to better estimate TP among free-roaming animals.

  1. Respiration and assimilation processes reflected in the carbon isotopic composition of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    The paper presents diurnal variations of concentration and carbon isotopic composition of atmospheric carbon dioxide caused by respiration and assimilation processes. Air samples were collected during early and late summer in 1998 in unpolluted area (village Guciow located near Roztocze National Park, SE Poland) in three different environments: uncultivated field on a hill, a meadow in the Wieprz river valley and a forest. The effect is very strong during intensive vegetation growth on a sunny day and clear night. The largest diurnal variations in atmospheric CO2 concentration and its carbon isotopic composition in June above the meadow were about 480 ppm and 10 pro mille, respectively. (author)

  2. STABLE CARBON ISOTOPE ANALYSIS OF SUBFOSSIL WOOD FROM AUSTRIAN ALPS

    Science.gov (United States)

    KŁUSEK, MARZENA; PAWEŁCZYK, SŁAWOMIRA

    2015-01-01

    The presented studies were carried out in order to check the usefulness of subfossil wood for stable isotope analysis. The aim of research was also to define the optimal method of subfossil samples preparation. Subfossil samples used during the presented studies are a part of the multi-century dendrochronological scale. This chronology originates in an area situated around a small mountain lake — Schwarzersee, in Austria. The obtained results of stable carbon isotope measurements confirmed that the method of α-cellulose extraction by the application of acidic sodium chlorite and sodium hydroxide solutions removes resins and other mobile compounds from wood. Therefore, in the case of the analysed samples, the additional chemical process of extractives removing was found to be unnecessary. Studied wood samples contained an adequate proportion of α-cellulose similar to the values characteristic for the contemporary trees. This proved an adequate wood preservation which is essential for the conduction of isotopic research. PMID:26346297

  3. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  4. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  5. Hirnantian Isotope Carbon Excursion in Gorny Altai, southwestern Siberia

    Directory of Open Access Journals (Sweden)

    Nikolay V. Sennikov

    2015-08-01

    Full Text Available The Hirnantian Isotope Carbon Excursion (HICE, a glaciation-induced positive δ13C shift in the end-Ordovician successions, has been widely used in chemostratigraphic correlation of the Ordovician–Silurian boundary beds in many areas of the world. However, large regions with Ordovician sediments in Siberia are almost unstudied for stable isotope chemostratigraphy. The Burovlyanka section in the Altai area is one of the rare Hirnantian–Rhuddanian sections with both carbonates and graptolitiferous shales occurring in the succession. Here we report the discovery of the HICE in the uppermost beds of the Tekhten¢ Formation, the Dalmanitina Beds in the Burovlyanka section. The Dalmanitina limestone Member between the graptolitiferous shales may correspond to the mid-Hirnantian glacial episode, which led to a global sea level drop and major extinction of marine fauna.

  6. Descriptions of carbon isotopes within the energy density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  7. The use of carbon stable isotope ratios in drugs characterization

    International Nuclear Information System (INIS)

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures

  8. The use of carbon stable isotope ratios in drugs characterization

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro; Mirel, V., E-mail: gabriela.cristea@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  9. Constraining the global bromomethane budget from carbon stable isotopes

    Science.gov (United States)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition

  10. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Directory of Open Access Journals (Sweden)

    N. Zhang

    2014-05-01

    Full Text Available The carbon isotopic composition (δ13C of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone. However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66–80%, 16–24%, and 0–13%. For corn (C4 plant fed groups, because of the possible food stress (lower consumption ability of C4 plant, the values vary respectively as 56–64%, 18–20%, and 16–26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite–HCO3−–aragonite equilibrium.

  11. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-05-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant) fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66-80%, 16-24%, and 0-13%. For corn (C4 plant) fed groups, because of the possible food stress (lower consumption ability of C4 plant), the values vary respectively as 56-64%, 18-20%, and 16-26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite-HCO3--aragonite equilibrium.

  12. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria;

    2015-01-01

    . Negative δ13C excursions are related to low-stand deposits and caused by diagenetic processes during subaerial exposure. The comparison with δ13C records from other parts of the world demonstrate that δ13C values are high in most unaltered samples, an overall negative trend during the Permian, as recently...... published, is not obvious and negative excursions related to changes in the carbon isotope composition of the global oceanic carbon pool cannot be confirmed, except for the Permian–Triassic boundary interval....

  13. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    Science.gov (United States)

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide.

  14. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    NARCIS (Netherlands)

    Abels, H.A.; Lauretano, V.; van Yperen, Anna E.; Hopman, Tarek; Zachos, J.C.; Lourens, L.J.; Gingerich, P.D.; Bowen, G.J.

    2016-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere–ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can b

  15. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    Science.gov (United States)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0

  16. The Li isotope composition of modern biogenic carbonates

    Science.gov (United States)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  17. Isotopic investigations of carbonate growth on concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, R.V.; Schmitt, D.; Atekwana, E.A.; Baskaran, M

    2003-03-01

    Stable C and O isotope ratios were measured in carbonate minerals, growing under concrete structures from two locations in the United States. These locations were under a bridge in Michigan and under an overpass in New York. The {delta}{sup 13}C of the carbonate samples ranged from -21.6 to -31.4 per mille (with respect to V-PDB) and clearly indicated precipitation under non-equilibrium conditions. Indeed, the values in some cases were more negative than could be accounted for by existing models that invoke 4 stages of kinetic fractionation. There have been suggestions that microbial activity involving C from gasoline and other fossil fuel sources might be responsible for the relatively low C isotope ratios measured in these carbonates. To explore this possibility, {sup 14}C measurements were made in some of the samples. All samples measured for {sup 14}C contained bomb C. The range of {sup 14}C concentrations suggested a non-uniform growth rate, although possible fossil fuel-derived carbon in the system needs future investigation. The {delta}{sup 18}O values of the carbonates analyzed from Michigan range from 12.5 to 15.7 per mille (with respect to V-SMOW), with a mean value of 13.7 per mille. The {delta}{sup 18}O values of the NY samples range from 11.8 to 15.2 per mille, with a mean value of 13.1 per mille. The nearly identical mean values at both locations favors incorporation of O from atmospheric CO{sub 2} in carbonate precipitation. Additionally, the {sup 210}Pb radiometric technique was also attempted to explore the applicability of this technique in dating concrete derived carbonates as well as recent carbonates forming in a wide variety of environments. The results gave ages between 64 and 3.8 a and are consistent when compared with the date the bridge was constructed.

  18. The clumped isotope geothermometer in soil and paleosol carbonate

    Science.gov (United States)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  19. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  20. Allochthonous carbon hypothesis for bulk OM and n-alkane PETM carbon isotope discrepancies

    Science.gov (United States)

    Baczynski, A. A.; McInerney, F. A.; Wing, S. L.; Kraus, M. J.; Fricke, H. C.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM), a period of abrupt, transient, and large-scale global warming fueled by a large release of isotopically light carbon, is a relevant analogue for episodes of rapid global warming and recovery. The PETM is recorded in pedogenic carbonate, bulk organic matter, and n-alkanes as a prominent negative carbon isotope excursion (CIE) in paleosols exposed in the Bighorn Basin, WY. Here we present a composite stable carbon isotope record from n-alkanes and dispersed soil organic δ13C records from five individual sections that span the PETM in the southeastern Bighorn Basin. Four sections are from a 10km transect in the Cabin Fork area and one section was collected at Sand Creek Divide. These five new dispersed organic carbon (DOC) isotope records are compared to the previously published Polecat Bench (Magioncalda et al. 2004) and Honeycombs (Yans et al. 2006) isotope records. The high-resolution n-alkane curve shows an abrupt, negative shift in δ13C values, an extended CIE body, and a rapid recovery to more positive δ13C values. Although the five DOC records show similarly abrupt negative shifts in δ13C values, the DOC CIEs are compressed, smaller in magnitude, and return to more positive δ13C values more gradually relative to the n-alkane record. Moreover, the stratigraphic thickness of the body of the excursion and the pattern of the recovery phase are not consistent among the five DOC records. We modeled predicted DOC δ13C values from the n-alkane record by applying enrichment factors based on modern plants to the n-alkane δ13C values. The anomaly, difference between the expected and observed DOC δ13C values, was calculated for the PETM records and compared to weight percent carbon and grain size. There is no correlation between pre- and post-PETM anomaly values and grain size or weight percent carbon. PETM anomaly values, however, do trend with both grain size and weight percent carbon. The largest PETM anomaly values

  1. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  2. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    OpenAIRE

    A. Jahn; Lindsay, K; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; E. C. Brady

    2014-01-01

    Carbon isotopes in the ocean are frequently used as paleo climate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized dataset, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "ab...

  3. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    OpenAIRE

    A. Jahn; Lindsay, K; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; E. C. Brady

    2015-01-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "ab...

  4. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    V Parthasarathy; A K Nayak; S K Sarkar

    2002-12-01

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the throughput. The achievement is quite significant especially for carbon isotope separation wherein macroscopic operating scales have been realized. We report our studies on the IR laser chemistry of two promising systems, viz. neat CF2HCl and CF3Br/Cl2. We have investigated conditions for optimizing the dissociation yield and selectivity using natural samples containing 1.1 % C-13. We also highlight our current efforts for scaling up the process. These include the design aspects of a photochemical reactor with multipass refocusing Herriott optics for efficient photon utilization, development of a cryogenic distillation set up and a preparative gas chromatograph for large scale separation/collection of the isotopically enriched photoproduct in the post-irradiation stage.

  5. Carbon and oxygen isotopes in apatite CO2 and co-existing calcite

    International Nuclear Information System (INIS)

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO2 and in co-existing calcite. Both C and O in apatite CO2 are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure

  6. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface

  7. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NARCIS (Netherlands)

    Pathirana, S. L.; Van Der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique.

  8. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  9. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    OpenAIRE

    Abels, Hemmo A.; Lauretano, Vittoria; van Yperen, Anna E.; Hopman, Tarek; Zachos, James C.; Lourens, Lucas J.; Gingerich, Philip D.; Gabriel J Bowen

    2016-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere–ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event and also to correlate marine and terrestrial records with high precision. The Paleocene–Eocene ...

  10. A global deglacial negative carbon isotope excursion in speleothem calcite

    Science.gov (United States)

    Breecker, D.

    2015-12-01

    δ13C values of speleothem calcite decreased globally during the last deglaciation defining a carbon isotope excursion (CIE) despite relatively constant δ13C values of carbon in the ocean-atmosphere system. The magnitude of the CIE varied with latitude, increasing poleward from ~2‰ in the tropics to as much as 7‰ at high latitudes. This recent CIE provides an interesting comparison with CIEs observed in deep time. A substantial portion of this CIE can be explained by the increase in atmospheric pCO2 that accompanied deglaciation. The dependence of C3 plant δ13C values on atmospheric pCO2 predicts a 2‰ δ13C decrease driven by the deglacial pCO2 increase. I propose that this signal was transferred to caves and thus explains nearly 100% of the CIE magnitude observed in the tropics and no less than 30% at the highest latitudes in the compilation. An atmospheric pCO2 control on speleothem δ13C values, if real, will need to be corrected for using ice core data before δ13C records can be interpreted in a paleoclimate context. The decrease in the magnitude of the equilibrium calcite-CO2 carbon isotope fractionation factor explains a maximum of 1‰ of the CIE at the highest northern latitude in the compilation, which experienced the largest deglacial warming. Much of the residual extratropical CIE was likely driven by increasing belowground respiration rates, which were presumably pronounced at high latitudes as glacial retreat exposed fresh surfaces and/or vegetation density increased. The largest increases in belowground respiration would have therefore occurred at the highest latitudes, explaining the meridional trend. This work supports the notion that increases in atmospheric pCO2 and belowground respiration rates can result in large CIEs recorded in terrestrial carbonates, which, as previously suggested, may explain the magnitude of the PETM CIE as recorded by paleosol carbonates.

  11. A molecular organic carbon isotope record of Miocene climate changes

    OpenAIRE

    Schoell, M.; Schouten, S.; Sinninghe Damsté, J.S.; J. W. de Leeuw; Summons, R. E.

    1994-01-01

    The difference in carbon-13 (13C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in 18O (δ18O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters) in the Pacific. Steranes (δ13C = 25.4 ± 0.7 per mil versus the Pee Dee belemnite standard) from shallow photic-zone organisms do not change isotopically throughout the Miocene. In contrast, sulfu...

  12. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Both gradual and sharp decrease in organic and carbonate carbon isotope values were detected across the Permian-Triassic boundary in the Meishan section, Changxing, Zhejiang Province, China. The gradual decrease in organic carbon isotope values started at the bottom of Bed 23, coinciding with the strong oscillations of total organic carbon (TOC) contents, indicates increasing fluxes from carbonate to organic carbon reservoir during this interval. A 2.3‰ sharp drop of inorganic carbon isotope values occurred at the uppermost part of Bed 24e. A 3.7‰ sharp drop of organic carbon isotope values occurred in Bed 26. The dramatic drop of inorganic carbon isotope value of 8‰ reported previously is not confirmed from the unweathered carbonate samples in Bed 27. The large-scale fluctuation of organic carbon isotope values in the Yinkeng Formation reflects different extent of mixing of marine and terrestrial organic matters. The gradual depletion and subsequent sharp drop of carbon isotopes near the Permian-Triassic boundary might indicate complex causes of the end-Permian mass extinction.

  13. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    OpenAIRE

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of ^(13)C and ^(18)O isotopes bound to each other within carbonate minerals in ^(13)C^(18)O^(16)O_2^(2−) groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solutio...

  14. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    Science.gov (United States)

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  15. Mantle Degassing and Diamond Genesis:A Carbon Isotope Perspective

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1994-01-01

    The effect of Co2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation.Assuming the δ13 C value of -5‰ for the mantle,the outgassing of CO2 can result in the large negative δ13 C values of diamond,whereas the outgassing of CH4 can drive the δ13C values of diamond in the positive direction.The theoretical expectations can be used to explain the full range of δ13 C values from-34.4‰5 to+5‰ observed for natural diamonds.It is possible that diamond formation was triggered by the degassing of Co2 and/or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.

  16. A molecular organic carbon isotope record of miocene climate changes.

    Science.gov (United States)

    Schoell, M; Schouten, S; Damsté, J S; de Leeuw, J W; Summons, R E

    1994-02-25

    The difference in carbon-13 ((13)C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in (18)O (delta(18)O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters) in the Pacific. Steranes (delta(13)C = 25.4 +/- 0.7 per mil versus the Pee Dee belemnite standard) from shallow photic-zone organisms do not change isotopically throughout the Miocene. In contrast, sulfur-bound C(35) hopanes (likely derived from bacterial plankton living at the base of the photic zone) have systematically decreasing (13)C concentrations in Middle and Late Miocene samples (delta(13)C = -29.5 to -31.5 per mil), consistent with the Middle Miocene formation of a carbon dioxide-rich cold water mass at the base of the photic zone. PMID:17831625

  17. Application of carbon isotope analyses in food technology

    International Nuclear Information System (INIS)

    The vast economic size of the food market offers great temptations for the production and sale of fraudulent products, adulterated products and synthetic products that are labeled as natural ones. Conventional techniques of chemical analyses have served the food industry well for many years but are limited in their ability to detect certain types of fraudulent or mislabelled products. The aversion to added sugar and the demand for 'all natural' food products among consumers has led to a great deal of mislabelling on the part of food processors in order to achieve greater economic gain. The nature of deceptions detectable by carbon Stable Isotope Ratio Analysis (SIRA) in food technology falls into three broad categories. The most common is the adulteration of an expensive natural product, such as apple juice, with a much cheaper natural product such as cane sugar or high fructose corn syrup (HFCS). The second is outright falsification of a food. An example is maple syrup produced by simple addition of maple flavoring to a sugar syrup or HFCS. The third general category is the sale of synthetic materials as natural ones or the addition of synthetic materials to natural ones in order to increase the volume of the product. The procedure for using carbon SIRA in monitoring food products involves two stages. It must first be established that the product to be analyzed, or some specific component of it, has a particular isotopic composition that can be distinguished from that of the materials that might be used to adulterate it. Potential adulterating components are then analyzed to establish their isotopic identity. The carbon SIRA method cannot, in general, be used to establish purity unequivocally but it can be used to establish impurity or adulteration with a high degree of success. The overall process of carbon SIRA consists of three stages: selection of the sample or the isolation of the particular compound to be analyzed, conversion of this compound into CO2 gas

  18. Price Discrimination with Asymmetric Firms: The Case of the U.S. Carbonated Soft Drinks Market

    OpenAIRE

    Liu, Yizao; Shen, Shu

    2012-01-01

    This paper investigates the relationship between price discrimination and vertical product differentiation, using National Brands and Private Labels in the Carbonated Soft Drink market as a case study. We decompose prices difference into quantity dis- count and cost difference across packagings and recover marginal cost by a structural demand model of consumer preference and firm behavior. Our results suggest that in the carbonated soft drinks market, both national brands and private labels o...

  19. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil

    OpenAIRE

    SIAL ALCIDES N.; FERREIRA VALDEREZ P.; DEALMEIDA AFONSO R.; ROMANO ANTONIO W.; PARENTE CLOVIS V.; DACOSTA MARCONDES L.; SANTOS VICTOR H.

    2000-01-01

    Carbon isotope fluctuations in Precambrian sedimentary carbonates between 2.8 Ga and 0.60 Ga in Brazil are examined in this study. The carbonate facies of the BIF of the 2.8 Ga-old Carajás Formation, state of Pará in northern Brazil, has rather homogeneous delta13C (-5 o/ooPDB), compatible with carbonatization of a silicate protolith by a CO2-rich fluid from mantle degassing. The Paleoproterozoic Gandarela Formation, state of Minas Gerais, displays a narrow delta13C variation (-1.5 to +0.5 o/...

  20. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    Science.gov (United States)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  1. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    Science.gov (United States)

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  2. The thermal history of char as disclosed by carbon isotope ratios

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ambus, Per; Ahrenfeldt, Jesper;

    pyrolysis and isotope ratio mass spectrometry. The results demonstrate that the temperature history of the char is reflected in the fine variation of carbon isotopes. The compound classes responsible for the variation were identified. Key words: Isotope ratio, flash pyrolysis, hot gas cleaning...

  3. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Science.gov (United States)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  4. Carbon and oxygen isotopic ratios of carbon dioxide of a stratospheric profile over Japan

    OpenAIRE

    GAMO, Toshitaka; Tsutsumi, Makoto; SAKAI, Hitoshi; NAKAZAWA, Takakiyo; Tanaka, Masayuki; Honda, Hideyuki; Kubo, Haruya; ITOH, Tomizo

    2011-01-01

    Four stratospheric air samples from 19 to 25 km altitudes over Japan were collected by using a balloon-borne cryogenic sampling system to measure the vertical profiles of carbon and oxygen stable isotopic ratios of the lower stratospheric CO2. The δ13C value of the stratospheric CO2 increased with increasing altitude, while the CO2 mixing ratios decreased, in accordance with anthropogenic input of the isotopically light, fuel CO2 into the atmosphere. However, the relationship between δ13C an...

  5. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  6. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    Science.gov (United States)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  7. Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies

    OpenAIRE

    Cachier, Héléne; BUAT-MÉNARD, PATRICK; Fontugne, Michel; Chesselet, Roger

    2011-01-01

    Since 1979, we have investigated marine and non-marine sources of particulate carbon in the marine atmosphere from measurements of carbon concentration and isotopic composition 13C/12C). Aerosol samples were collected, mostly during the Sea/Air Exchange (SEAREX) Program experiments, in the northern and southern hemispheres (Sargasso Sea, Enewetak Atoll, Peru upwelling, American Samoa, New Zealand, Amsterdam Island). The concentration and the isotopic composition of particulate carbon of marin...

  8. Variability in the carbon isotope composition of individual amino acids in plant proteins from different sources: 1 Leaves.

    Science.gov (United States)

    Lynch, Anthony H; Kruger, Nicholas J; Hedges, Robert E M; McCullagh, James S O

    2016-05-01

    The natural carbon isotope composition of individual amino acids from plant leaf proteins has been measured to establish potential sources of variability. The plant leaves studied, taken from a range of plant groups (forbs, trees, grasses, and freshwater aquatic plants), showed no significant influence of either season or environment (water and light availability) on their Δδ(13)C values. Plant groups did, however, differ in carbon isotope composition, although no consistent differences were identified at the species level. A discriminant analysis model was constructed which allowed leaves from (1) nettles, (2) Pooideae, (3) other Poales, (4) trees and (5) freshwater higher plants to be distinguished from each other on the basis of their natural abundance (13)C/(12)C ratios of individual amino acids. Differences in carbon isotope composition are known to be retained, to some extent, in the tissues of their consumers, and hence an understanding of compound-specific variation in (13)C/(12)C fractional abundance in plants has the potential to provide dietary insights of value in archaeological and ecological studies. PMID:26948983

  9. Using Carbon Isotopes in Cenozoic Soil Carbonates to Quantify Primary Productivity from Mid-Latitude Regions

    Science.gov (United States)

    Caves, J. K.; Kramer, S. H.; Ibarra, D. E.; Chamberlain, C. P.

    2015-12-01

    The carbon isotope composition of pedogenic carbonates (δ13Ccarb) from paleosols has been extensively used as a proxy to estimate atmospheric pCO2 over the Phanerozoic. However, a number of other factors - including the concentration of plant-respired CO2 and the isotopic composition of both atmospheric and plant-respired carbon - influence the δ13C of pedogenic carbonates. For example, δ13Ccarb records from the mid-latitudes in central Asia and western North America show increasing trends in δ13Ccarb despite decreasing pCO2 during the late Cenozoic, which suggests that other factors play an important role in determining the isotopic composition of pedogenic carbonates. Instead, we suggest that these records are primarily recording changes in primary productivity rather than changes in atmospheric pCO2 and therefore propose a novel use of paleosol carbonate records to understand paleo-ecosystem dynamics. Here, we compile existing paleosol carbonate records, and present three new records from Wyoming, to estimate soil respiration and primary productivity in western North America during the Paleogene and early Neogene. We observe both an overall increase in δ13Ccarb after the early Eocene, and spatially heterogeneous δ13Ccarb values across western US basins. We combine this δ13Ccarb data with compilations of atmospheric pCO2 to estimate soil respiration and plant productivity. The long-term increase in δ13Ccarb indicates a decrease in plant productivity as conditions became more arid across much of the western US, congruent with both records of regional uplift and of global cooling. Furthermore, significant spatial heterogeneity in δ13Ccarb indicates that regional factors, such as the presence of paleolakes and/or local paleotopography may have provided a second-order control on local and regional productivity. Thus, our results provide a first-order estimate linking changes in primary productivity with regional tectonics and global climatic change.

  10. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia.

    Directory of Open Access Journals (Sweden)

    Michael P Wallace

    Full Text Available In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp. was regularly grown in wetter conditions than barley (Hordeum sp., indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices.

  11. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    Science.gov (United States)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  12. Stable Carbon and Oxygen Isotopes of Pedogenic Carbonates in Ustic Vertisols: Implications for Paleoenvironmental Change

    Institute of Scientific and Technical Information of China (English)

    HUANG Cheng-Min; WANG Cheng-Shan; TANG Ya

    2005-01-01

    Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n= 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.

  13. Temperature and Oxygen Isotope Composition of The Ediacaran Ocean: Constraints From Clumped Isotope Carbonate Thermometry

    Science.gov (United States)

    Bonifacie, M.; Eiler, J. M.; Fike, D. A.

    2008-12-01

    The temperature and chemical variations of the early oceans on Earth are highly debated, particularly for periods associated with significant evolutionary change and/or extinction. The temperature of past oceans has been estimated based on conventional carbonate-water and/or silicate-water stable oxygen isotope thermometry. Precambrian carbonates and silicates both exhibit a long-term secular trend of increasing δ18O values with decreasing age. This trend has been used to support two opposite - though related - interpretations: the Earth's oceans gradually cooled over the course of the Proterozoic eon, from a maximum of ~ 60-90°C at ~ 2.5Ga (and were, on average, relatively warm during much of the Paleozoic era) [1]. This interpretation has been supported by Si-isotope proxies and the thermal tolerances of proteins in various classes of microbial organisms [2-3]. Alternatively, the δ18O value of the oceans has gradually increased through time [4-5], and mean Earth surface temperatures varied over a narrow range similar to modern conditions. In other terms, one either assumes an ocean of constant δ18O and infers that climate varied dramatically, or vise versa. Finally, it is possible that post- depositional processes (e.g., diagenesis, burial metamorphism, weathering) has modified the δ18O values of all or most Precambrian sedimentary carbonates and silicates, overprinting any paleoclimatic variations. Carbonate 'clumped isotope' thermometry provides a new way to independently test these hypotheses because it allows one to determine the apparent growth temperatures of carbonate minerals based on their abundances of 13C-18O bonds, as reflected by the 'Δ47' value of CO2 extracted by phosphoric acid digestion [6]. This method is thermodynamically based and independent of the δ18O of water from which the carbonate grew. We will report the initial results of measurements of 'Δ47 for a suite of carbonates from the Sultanate of Oman. This Ediacaran age (~ 635 to

  14. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    Science.gov (United States)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  15. Carbon and Oxygen Isotopic Composition of Surface-Sediment Carbonate in Bosten Lake (Xinjiang, China) and its Controlling Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengjun; Steffen MISCHKE; ZHENG Mianping; Alexander PROKOPENKO; GUO Fangqin; FENG Zhaodong

    2009-01-01

    Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity

  16. Discriminating the source of elements in travertine and tufa deposits: new perspectives from trace elements and isotopes

    Science.gov (United States)

    Teboul, Pierre-Alexandre; Durlet, Christophe; Adam, Maïté; Lopez, Benjamin; Gaucher, Eric C.; Virgone, Aurélien; Girard, Jean-Pierre; Camoin, Gilbert F.

    2015-04-01

    Calcitic or aragonitic travertine and tufa deposits (CATT) are frequently associated to former limestone dissolution in epigean or hypogean hydrogeological reservoirs. However, a large variety of other rocks can also occur as substratum and potential source of elements building these continental carbonates. In modern and recent environments, many studies have suggested that igneous rocks (basalts, rhyolites, carbonatites, ultramafics, syenites, granites) and other sedimentary rocks (dolomites, evaporites) may constitute "exotic" sources for calcium and other elements. Unfortunately in drilled fossil CATT, a wide array of rocks forming palaeo-hydrogeological reservoirs are generally unknown. Because CATT microfacies bring only little information to this issue, a geochemical database has been established by compiling major, minor, trace elements and stable isotopes. This database includes data from published literature and a new data acquired as part of an on-going research work. The later includes analyzed Modern and Recent non-marine CATT from the Ligurian Ophiolites (Italy), the Chaine des Puys (France), the Limagne graben (France), the Paris Basin (France) and the Reunion Island (Indian Ocean). Each of these case studies is located on a relatively well-constrained hydrogeological reservoir. Among the geochemical tracers investigated in this dataset, particular emphasis is placed on (1) barium and strontium concentrations and (2) stable isotopes (δ13C and δ18O). Barium and strontium concentrations allow the definition of three distinct geochemical fields. The first field is characterized by Ba and Sr concentrations respectively below 80 and 500 ppm, and corresponds to CATT associated with epigean karst system in limestone. The second field, in which CATT exhibits high Ba concentration (>80 ppm) but consistently low Sr content, is indicative of either ultramafic reservoirs or epigean reservoirs with a mixture of dolomite, evaporite and limestone. The third field

  17. Discriminative study of a potato (Solanum tuberosum L.) cultivation region by measuring the stable isotope ratios of bio-elements.

    Science.gov (United States)

    Chung, Ill-Min; Kim, Jae-Kwang; Jin, Yong-Ik; Oh, Yong-Taek; Prabakaran, Mayakrishnan; Youn, Kyoung-Jin; Kim, Seung-Hyun

    2016-12-01

    Compared to other foods, the use of common bio-elements to identify the geographical origin of potato remains limited. Thus, this study aimed to verify whether the cultivation regions of raw potato tubers could be determined by the stable isotope composition analysis of bio-elements. δ(13)CVPDB and δ(15)NAIR in potato were influenced by region and cultivar, whereas δ(18)OVSMOW and δ(34)SVCDT were only influenced by region (p<0.0001). A two-dimensional plot of δ(18)OVSMOW and δ(34)SVCDT effectively distinguished between high and low altitude regions, and also reliably discriminated Wanju, Haenam, and Boseong cultivars in low altitude regions. δ(34)SVCDT was the main component that was responsible for the separation of samples in the principal component analysis (eigenvector of -0.6209) and orthogonal projection to latent structure-discriminant analysis (VIP value of 1.0566). In conclusion, this study improves our understanding of how the isotope composition of potato tubers varies with respect to cultivation regions and cultivars. PMID:27374505

  18. Biomarker and molecular isotope approaches to deconvolve the terrestrial carbon isotope record: modern and Eocene calibrations

    Science.gov (United States)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S.; Currano, E. D.

    2010-12-01

    Climate, biome, and plant community are important predictors of carbon isotope patterns recorded in leaves and leaf waxes. However, signatures recorded by terrestrial organic carbon and lipids that have mixed floral sources (e.g., n-alkanes) potentially reflect both plant community changes and climate. More taxonomically specific proxies for plants (i.e., di- and tri-terpenoids for conifers and angiosperms, respectively), can help to resolve the relative influences of changing community and climate, provided differences in biomarker production and lipid biosynthetic fractionation among plants can be better constrained. We present biomarker abundance and carbon isotope values for lipids from leaves, branches and bark of 44 tree species, representing 21 families including deciduous and evergreen conifers and angiosperms. n-alkane production differs greatly between conifer and angiosperm leaves. Both deciduous and evergreen angiosperms make significantly more n-alkanes than conifers, with n-alkanes not detected in over half of the conifers in our study. Terpenoid abundances scale strongly with leaf habit: evergreen species have significantly higher abundances. We combine these relative differences in lipid production with published estimates of fluxes for leaf litter from conifer and angiosperm trees to develop a new proxy approach for estimating paleo plant community inputs to ancient soils and sediments. To test our modern calibration results, we have evaluated n-alkanes and terpenoids from laterally extensive (~18 km) carbonaceous shales and mudstones in Eocene sediments (52.6 Ma) at Fifteenmile Creek in the Bighorn Basin (WY, USA). Our terpenoid-based proxy predicts on average a 40% conifer community, which is remarkably close in agreement with a fossil-based estimate of 36%. n-alkane carbon isotope fractionation (leaf-lipid) differs among plant types, with conifer n-alkanes about 2-3‰ 13C enriched relative to those in angiosperms. Since conifer leaves are

  19. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    Directory of Open Access Journals (Sweden)

    Ana G Popa-Lisseanu

    Full Text Available The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers.

  20. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    Science.gov (United States)

    Popa-Lisseanu, Ana G; Kramer-Schadt, Stephanie; Quetglas, Juan; Delgado-Huertas, Antonio; Kelm, Detlev H; Ibáñez, Carlos

    2015-01-01

    The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers. PMID:25700080

  1. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-11-01

    Full Text Available Here we explore the potential of magnesium (δ26Mg isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰, and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰ but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰ suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰ are affected by glacial versus interglacial climate change with outside air temperature

  2. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-05-01

    Full Text Available Here we explore the potential of time-series magnesium (δ26Mg isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07 ‰ and HK3: −4.17 ± 0.15 ‰ and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: −3.96 ± 0.04 ‰ but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07 ‰; BU 4 mean δ26Mg: −4.20 ± 0.10 ‰ record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73 ‰; SPA 59: −3.70 ± 0.43 ‰ are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity

  3. The Strontium Isotope Record of Zavkhan Terrane Carbonates: Strontium Isotope Stability Through the Ediacaran-Cambrian Transition

    OpenAIRE

    Petach, Tanya N.

    2015-01-01

    First order trends in the strontium isotopic (87Sr/86Sr) composition of seawater are controlled by radiogenic inputs from the continent and non-radiogenic inputs from exchange at mid-ocean ridges. Carbonates precipitated in seawater preserve trace amounts of strontium that record this isotope ratio and therefore record the relative importance of mid-ocean ridge and weathering chemical inputs to sea water composition. It has been proposed that environmental changes during the Ediacaran-Cambria...

  4. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    Science.gov (United States)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  5. Observation of Large Enhancement of Charge Exchange Cross Sections with Neutron-Rich Carbon Isotopes

    CERN Document Server

    Tanihata, I; Kanungo, R; Ameil, F; Atkinson, J; Ayyad, Y; Cortina-Gil, D; Dillmann, I; Estradé, A; Evdokimov, A; Farinon, F; Geissel, H; Guastalla, G; Janik, R; Knoebel, R; Kurcewicz, J; Litvinov, Yu A; Marta, M; Mostazo, M; Mukha, I; Nociforo, C; Ong, H J; Pietri, S; Prochazka, A; Scheidenberger, C; Sitar, B; Strmen, P; Takechi, M; Tanaka, J; Toki, H; Vargas, J; Winfield, J S; Weick, H

    2015-01-01

    Production cross sections of nitrogen isotopes from high-energy carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes. The fragment separator FRS at GSI was used to deliver C isotope beams. The cross sections of the production of N isotopes were determined by charge measurements of forward going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge exchange reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and Fermi transition strength at low excitation energies for neutron-rich isotopes. It was also observed that the cross sections were enhanced much more strongly for neutron rich isotopes in the C-target data.

  6. Measurement of isotopic uranium in water for compliance monitoring by liquid scintillation counting with alpha/beta discrimination

    International Nuclear Information System (INIS)

    A simple and inexpensive method is described for analysis of uranium (U) activity and mass in water by liquid scintillation counting using α/β discrimination. This method appears to offer a solution to the need for an inexpensive protocol for monitoring U activity and mass simultaneously and an alternative to the potential inaccuracy involved when depending on the mass-to-activity conversion factor or activity screen. U is extracted virtually quantitatively into 20 ml extractive scintillator from a 1-ell aliquot of water acidified to less than pH 2. After phase separation, the sample is counted for a 20-minute screening count with a minimum detection level of 0.27 pCi ell -1. α-particle emissions from the extracted U are counted with close to 100% efficiency with a Beckman LS6000 LL liquid scintillation counter equipped with pulse-shape discrimination electronics. Samples with activities higher than 10 pCi ell -1 are recounted for 500-1000 minutes for isotopic analysis. Isotopic analysis uses events that are automatically stored in spectral files and transferred to a computer during assay. The data can be transferred to a commercially available spreadsheet and retrieved for examination or data manipulation. Values for three readily observable spectral features can be rapidly identified by data examination and substituted into a simple formula to obtain 234U/238U ratio for most samples. U mass is calculated by substituting the isotopic ratio value into a simple equation. The utility of this method for the proposed compliance monitoring of U in public drinking water supplies was field tested with a survey of drinking water from Texas supplies that had previously been known to contain elevated levels of gross α activity. U concentrations in 32 samples from 27 drinking water supplies ranged from 0.26 to 65.5 pCi ell -1, with seven samples exceeding the proposed Maximum Contaminant Level

  7. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean

    Science.gov (United States)

    Prasanna, K.; Ghosh, Prosenjit; Bhattacharya, S. K.; Mohan, K.; Anilkumar, N.

    2016-02-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ18O and δ13C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ18O and δ13C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a ‘vital effect’ or a higher calcification rate. An interesting pattern of increase in the δ13C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ13C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.

  8. Stable Carbon Isotope Record in a Palau Sclerosponge

    Science.gov (United States)

    Grottoli, A. G.

    2002-12-01

    The ratio of stable carbon isotopes (δ13C) deposited in the calcium carbonate skeleton of marine sclerosponges appears to record the carbon isotopic composition of seawater mixed-layer dissolved inorganic carbon (δ13CDIC). Thus the δ13C signature chronicled in sclerosponge skeletons offers a promising multi-century proxy record of seawater mixed-layer δ13CDIC throughout the tropics. Here, a high-resolution (0.1 mm) δ13C record for a 7.7 cm Acanthocheatetes wellsi sclerosponge from Palau (7N, 134W) is presented. At a published growth rate of 0.45 mm per year, this record spans ~s170 years beginning in July 2001 and going back to 1831. The δ13C values for a definitive 10-year A. wellsi record spanning 1989-1998 were similar to δ13C values here for the first 4.7 mm of the record providing supporting evidence for the growth rate. The sclerosponge δ13C shows a distinct Seuss Effect. At the time this abstract was submitted, the analysis of the first 16 mm of the sclerosponge revealed a significant decrease in δ13C with time [δ13C = 0.02 (distance) + 2.64, r2 = 0.73, p < 0.0001, where time is marked by distance in millimeters from the growing edge] corresponding to a decrease in δ13C of 0.076‰ per decade. For comparison, published low-frequency measurements in Australian, New Caledonian and Jamaican sclerosponges have yielded decreases in δ13C of ~s0.05 to 0.08 ‰ per decade over the past 40 years. Preliminary interpretation of the data indicates that the amount of atmospheric CO2 contributing to the seawater δ13CDIC at Palau is intermediate to Australia and Jamaica. In addition, visual examination of the δ13C record reveals regular fluctuation in δ13C that may correspond to annual variability in δ13CDIC. This research presents the first century or longer sclerosponge δ13C record from the northwester equatorial Pacific.

  9. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.)

  10. Molecular and carbon isotopic compositions of gas inclusions of deep carbonate rocks in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shixin; WANG Xianbin; MENG Zifang; LI Yuan; Paul Farrimond; LI Liwu; DUAN Yi

    2004-01-01

    Gaseous components of gas inclusions in deep carbonate rocks (>5700 m) from the Tacan 1 well were analyzed by online mass spectrometry by means of either the stepwise heating technique or vacuum electromagnetism crushing. The carbon isotopic compositions of gases released by vacuum electromagnetism crushing were also measured. Although the molecular compositions of gas inclusions show differences between the two methods, the overall characteristics are that gas inclusions mainly contain CO2, whilst hydrocarbon gases, such as CH4, C2H6 and C3H8, are less abundant. The content of CO is higher in the stepwise heating experiment than that in the method of vacuum electromagnetism crushing, and there are only minor amounts of N2, H2 and O2 in gas inclusions. Methane δ13C values of gas inclusions in Lower Ordovician and Upper Cambrian rocks (from 5713.7 to 6422 m; -52‰-63‰) are similar to those of bacterial methane, but their chemical compositions do not exhibit the dry character in comparison with biogenic gases. These characteristics of deep gas inclusions may be related to the migration fractionation. Some deep natural gases with light carbon isotopic characteristics in the Tazhong Uplift may have a similar origin. The δ13C1 values of gas inclusions in Lower Cambrian rocks (7117-7124 m) are heavier (-39‰), consistent with highly mature natural gases. Carbon isotopic compositions of CO2 in the gas inclusions of deep carbonate rocks are similar (from -4‰ to -13‰) to those of deep natural gases, indicating predominantly an inorganic origin.

  11. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, Northeastern Pacific Ocean

    Science.gov (United States)

    Simoneit, B.R.T.; Schoell, M.; Kvenvolden, K.A.

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7 per mill, respectively) reflect a primarily terrestrial organic matter source.

  12. Magnitude of the carbon isotope excursion at the Paleocene Eocene thermal maximum: The role of plant community change

    Science.gov (United States)

    Smith, Francesca A.; Wing, Scott L.; Freeman, Katherine H.

    2007-10-01

    Carbon-isotope measurements ( δ13C) of leaf-wax n-alkanes from the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, reveal a negative carbon isotope excursion (CIE) of 4-5‰, which is 1-2‰ larger than that observed in marine carbonate δ13C records. Reconciling these records requires either that marine carbonates fail to record the full magnitude of the CIE or that the CIE in plants has been amplified relative to the marine. Amplification of the CIE has been proposed to result from an increase in available moisture that allowed terrestrial plants to increase 13C-discrimination during the PETM. Leaf physiognomy, paleopedology and hydrogen isotope ratios of leaf-wax lipids from the Bighorn Basin, however, all suggest that rather than a simple increase in available moisture, climate alternated between wet and dry during the PETM. Here we consider two other explanations and test them quantitatively with the carbon isotopic record of plant lipids. The "marine modification" hypothesis is that the marine carbonate record was modified by chemical changes at the PETM and that plant lipids record the true magnitude of the CIE. Using atmospheric CO 2δ13C values estimated from the lipid record, and equilibrium fractionation between CO 2 and carbonate, we estimate the expected CIE for planktonic foraminifera to be 6‰. Instead, the largest excursion observed is about 4‰. No mechanism for altering marine carbonate by 2‰ has been identified and we thus reject this explanation. The "plant community change" hypothesis is that major changes in floral composition during the PETM amplified the CIE observed in n-alkanes by 1-2‰ relative to marine carbonate. This effect could have been caused by a rapid transition from a mixed angiosperm/conifer flora to a purely angiosperm flora. The plant community change hypothesis is consistent with both the magnitude and pattern of CIE amplification among the different n-alkanes, and with data from fossil plants

  13. Carbon isotopic studies of individual lipids in organisms from the Nansha sea area, China

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; SONG Jinming; ZHANG Hui

    2004-01-01

    Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. δ13C values of saturated fatty acids in different organisms examined are from -25.6‰ to -29.7‰ with the average values ranging from -26.4‰ to -28.2‰ and the variance range of 1.8‰ between different organisms is also observed.Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9‰-6.8‰ compared to the same carbon number saturated fatty acids. δ13C values of n-alkanes range from -27.5‰ to -29.7‰ and their mean values, ranging from -28.6‰ to -28.9‰, are very close in different organisms. The mean difference in δ13C between the saturated fatty acids and n-alkanes is only 1.5‰, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within ±2.0‰, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.

  14. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    Science.gov (United States)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  15. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  16. Distribution and fractionation mechanism of stable carbon isotope of coalbed methane

    Institute of Scientific and Technical Information of China (English)

    QIN; Shengfei; TANG; Xiuyi; SONG; Yan; WANG; Hongyan

    2006-01-01

    The stable carbon isotope values of coalbed methane range widely,and also are generally lighter than that of gases in normal coal-formed gas fields with similar coal rank.There exists strong carbon isotope fractionation in coalbed methane and it makes the carbon isotope value lighter.The correlation between the carbon isotope value and Ro in coalbed methane is less obvious.The coaly source rock maturity cannot be judged by coalbed methane carbon isotope value.The carbon isotopes of coalbed methane become lighter in much different degree due to the hydrodynamics.The stronger the hydrodynamics is,the lighter the CBM carbon isotopic value becomes.Many previous investigations indicated that the desorption-diffusion effects make the carbon isotope value of coalbed methane lighter.However,the explanation has encountered many problems.The authors of this article suggest that the flowing groundwater dissolution to free methane in coal seams and the free methane exchange with absorbed one is the carbon isotope fractionation mechanism in coalbed methane.The flowing groundwater in coal can easily take more 13CH4 away from free gas and comparatively leave more 12CH4.This will make 12CH4 density in free gas comparatively higher than that in absorbed gas.The remaining 12CH4 in free gas then exchanges with the adsorbed methane in coal matrix.Some absorbed 13CH4 can be replaced and become free gas.Some free 12CH4 can be absorbed again into coal matrix and become absorbed gas.Part of the newly replaced 13CH4 in free gas will also be taken away by water,leaving preferentially more 12CH4.The remaining 12CH4 in free gas will exchange again with adsorbed methane in the coal matrix.These processes occur all the time.Through accumulative effect,the 12CH4 will be greatly concentrated in coal.Thus,the stable carbon isotope of coalbed methane becomes dramatically lighter.Through simulation experiment on water-dissolved methane,it had been proved that the flowing water could fractionate the

  17. Paleogene plants fractionated carbon isotopes similar to modern plants

    Science.gov (United States)

    Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Currano, Ellen D.; Mueller, Kevin E.

    2015-11-01

    The carbon isotope composition (δ13 C) of terrestrial plant biomarkers, such as leaf waxes and terpenoids, provides insights into past carbon cycling. The δ13 C values of modern plant biomarkers are known to be sensitive to climate and vegetation type, both of which influence fractionation during lipid biosynthesis by altering plant carbon supply and its biochemical allocation. It is not known if fractionation observed in living plants can be used to interpret fossil lipids because plant biochemical characteristics may have evolved during the Cenozoic in response to changes in global climate and atmospheric CO2. The goal of this study was to determine if fractionation during photosynthesis (Δleaf) in the Paleogene was consistent with expectations based on living plants. To study plant fractionation during the Paleogene, we collected samples from eight stratigraphic beds in the Bighorn Basin (Wyoming, USA) that ranged in age from 63 to 53 Ma. For each sample, we measured the δ13 C of angiosperm biomarkers (triterpenoids and n-alkanes) and, abundance permitting, conifer biomarkers (diterpenoids). Leaf δ13 C values estimated from different angiosperms biomarkers were consistently 2‰ lower than leaf δ13 C values for conifers calculated from diterpenoids. This difference is consistent with observations of living conifers and angiosperms and the consistency among different biomarkers suggests ancient εlipid values were similar to those in living plants. From these biomarker-based δ13Cleaf values and independent records of atmospheric δ13 C values, we calculated Δleaf. These calculated Δleaf values were then compared to Δleaf values modeled by applying the effects that precipitation and major taxonomic group in living plants have on Δleaf values. Calculated and modeled Δleaf values were offset by less than a permil. This similarity suggests that carbon fractionation in Paleogene plants changed with water availability and major taxonomic group to about the

  18. Transfer of carbon isotope in human and animal bodies

    International Nuclear Information System (INIS)

    For realistic estimation of internal dose due to 14C released from nuclear facilities, the one compartment model for 14C metabolism in the human body which ICRP recommends may be too simple to be applied, and precise information on metabolism of radioactive nuclides in the human body is essential. In this study, the exhalation rate of carbon from human and livestock animal bodies was investigated using stable carbon isotope 13C. A 13C amount of 200 mg was administered as 13C-labeled rice to 5 human subjects, and 13C ratios in expiration of the subjects were measured during 2 weeks after the administration. From 2 days prior to the administration to the end of the experiment, meals with a slightly controlled 13C ratio of carbon were offered to the subjects to reduce the fluctuation of background 13C ratio in their breath air. The averaged background 13C ratio in expiration among the subjects was -24.7±0.7 per mille before the ingestion of 13C enriched rice. The highest 13C ratio of 73.0±6.6 per mille was observed 350 min after the ingestion. In the temporal changes in 13C ratio in breath air, three components were observed to have decreasing half times of 3.8, 14.4 and 52.8 h, which may indicate the existence of three compartments in carbon metabolism in the human body. In addition, in order to investigate the transfer of 14C from plants to animal milk, which is one of the important pathways for the assessment of radiation dose due to radionuclides, an experiment to measure the excretion rate of carbon from goats which were given 13C labeled feed (1.174 13C atom%), as representative livestock ruminant, was carried out. The 13C ratio of milk was 1.191% when it reached a plateau, whereas the 13C ratio of serum continued to increase during the feeding period. (author)

  19. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1

    Directory of Open Access Journals (Sweden)

    A. Jahn

    2015-08-01

    Full Text Available Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM, containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  20. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    Science.gov (United States)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2015-08-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  1. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1

    Directory of Open Access Journals (Sweden)

    A. Jahn

    2014-11-01

    Full Text Available Carbon isotopes in the ocean are frequently used as paleo climate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized dataset, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM, containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly less computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example a too sluggish ventilation of the deep Pacific Ocean.

  2. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  3. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  4. Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing.

    Science.gov (United States)

    Piper, Thomas; Emery, Caroline; Thomas, Andreas; Saugy, Martial; Thevis, Mario

    2013-06-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical

  5. On the isotope ratio of hydrogen, oxygen, carbon, nitrogen, and sulfur in man

    International Nuclear Information System (INIS)

    Experimental investigations of the isotope ratio of hydrogen, oxygen, carbon, nitrogen and sulfur in urine of persons living at different locations show considerable variations. A distinct relation to the isotope ratio of the local drinking water has only been observed in the case of hydrogen. The variations are far from being within the experimental limits of error. Therefore, they are decisive in selecting the relative abundance of the labelling isotope in tracer experiments on human metabolism. (author)

  6. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research

    Science.gov (United States)

    Zobitz, J. M.; Keener, J. P.; Bowling, D. R.

    2004-12-01

    Quantifying and understanding the uncertainty in isotopic mixing relationships is critical to isotopic applications in carbon cycle studies at all spatial and temporal scales. Studies associated with the North American Carbon Program will depend on stable isotope approaches and quantification of isotopic uncertainty. An important application of isotopic mixing relationships is determination of the isotopic content of large-scale respiration (δ 13CR) via an inverse relationship (a Keeling plot) between atmospheric CO2 concentrations ([CO2]) and carbon isotope ratios of CO2 (δ 13C). Alternatively, a linear relationship between [CO2] and the product of [CO2] and δ 13C (a Miller/Tans plot) can also be applied. We used an extensive dataset from the Niwot Ridge Ameriflux Site of [CO2] and δ 13C in forest air to examine contrasting approaches to determine δ 13CR and its uncertainty. These included Keeling plots, Miller/Tans plots, Model I, and Model II regressions Our analysis confirms previous observations that increasing the range of measurements ([CO2] range) reduces the uncertainty associated with δ 13CR. For carbon isotope studies, uncertainty in the isotopic measurements has a greater effect on the uncertainty of δ 13CR than the uncertainty in [CO2]. Reducing the uncertainty of isotopic measurements reduces the uncertainty of δ 13CR even when the [CO2] range of samples is small (13CR. We also find for carbon isotope studies no inherent advantage to using either a Keeling or a Miller/Tans approach to determine δ 13CR.

  7. Radioactive Carbon Isotope Monitoring System Based on Cavity Ring-down Laser Spectroscopy for Decommissioning Process of Nuclear Facilities

    Science.gov (United States)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    In decommissioning process of nuclear facilities, large amount of radioactive isotopes are discharged as waste. Radioactive carbon isotope (14C) is one of the key nuclides to determine the upper limit of concentration in the waste disposal. In particular, 14C on the graphite reactor decommissioning should be separated from stable carbon isotopes (12C and 13C) and monitored for the public health and safety. We propose an isotope analysis system based on cavity ring-down laser spectroscopy (CRDS) to monitor the carbon isotopes (12C, 13C and 14C) in the isotope separation process for the graphite reactor decommissioning. This system is compact and suitable for a continuous monitoring, because the concentration of molecules including the carbon isotope is derived from its photo absorbance with ultra high sensitive laser absorption spectroscopy. Here are presented the necessary conditions of CRDS system for 14C isotope analysis through the preliminary experimental results of 13C isotope analysis with a prototype system.

  8. [Effects of lipid extraction on stable carbon and nitrogen isotope analyses of Ommastrephes bartramii muscle].

    Science.gov (United States)

    Gong, Yi; Chen, Xin-Jun; Gao, Chun-Xia; Li, Yun-Kai

    2014-11-01

    Stable isotope analysis (SIA) has become an important tool to investigate diet shift, habitat use and trophic structure of animal population. Muscle is considered to be the most common tissue for SIA, however, lipid content in muscle causes a considerable bias to the interpretation of isotopic ratios of animals. Neon flying squid (Ommastrephes bartramii) is an important economic cephalopod of Chinese distant water fishery, and plays a major role in marine ecosystems. In this study, the effects of lipid extraction on stable isotope ratios of the muscles of 53 neon flying squids were investigated and the interference mechanism of lipid in SIA was clarified with the aim of contrasting the suitability of different lipid correction models of stable carbon isotope. Results showed that the stable carbon and nitrogen isotopic values of non-lipid extracted samples significantly increased after lipid extractions by 0.71 per thousand and 0.47 per thousand, respectively, which suggested that lipid extraction in cephalopod isotope study is needed prior to stable carbon isotope analysis but not recommended for stable nitrogen isotope analysis. The results could help remove the effects of lipid contents and standardize SIA muscle samples, thereby getting better understanding of the isotopic change of neon flying squids in the future. PMID:25898636

  9. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  10. Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology?

    NARCIS (Netherlands)

    Poole, I.J.; Dolezych, M.; Kool, J.; Burgh, J. van der; Bergen, P.F. van

    2006-01-01

    Stable carbon isotope ratios of fossil wood from the Miocene brown coal deposits in former East Germany are compared with palaeobotanical and sedimentological data to test the use of stable isotopes in determining palaeoenvironment. Significant differences in the chemical composition of samples from

  11. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    Science.gov (United States)

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  12. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, northeastern Pacific Ocean.

    Science.gov (United States)

    Simoneit, B R; Schoell, M; Kvenvolden, K A

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source. PMID:11541391

  13. Soil drying effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  14. Is my C isotope excursion global, local, or both? Insights from the Mg and Ca isotopic composition of primary, diagenetic, and authigenic carbonates

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Husson, J. M.

    2014-12-01

    The C isotopic composition of ancient limestones and dolomites is a widely used proxy for the global geochemical cycles of carbon and oxygen in the ocean-atmosphere system and a critical tool for chemostratigraphy in Precambrian rocks. Although relatively robust to diagenesis, the C isotopic composition of bulk carbonates can be reset when conditions favor high water-to-rock ratios or fluids with high C concentrations and distinct isotopic compositions. Authigenic carbonates and different pools of primary carbonate (e.g. calcite vs. aragonite) may also bias the C isotopic composition of bulk carbonates if they are both abundant and isotopically distinct. New approaches to quantifying contributions from diagenesis, authigenesis, and mixing of primary carbonates to the C isotopic composition of bulk sedimentary carbonates are needed. Here we present preliminary Mg and Ca isotope data sets of primary, diagenetic, and authigenic carbonates, both modern and ancient. We show that recrystallization, dolomitization, and authigenesis produce Mg and Ca isotope fingerprints that may be used to identify and characterize these processes in ancient carbonate sediments.

  15. Application of isotope techniques to carbonate rock aquifers: Some Indian examples

    International Nuclear Information System (INIS)

    Isotope hydrological investigations were carried out to study the origin of ground water and surface water-ground water interactions in two carbonate rock terrains - Jhamarkotra rock phosphate mine, Rajasthan and Amner river basin, Madhya Pradesh - situated in different settings

  16. Stable isotopes of carbon and nitrogen in suspended matter and sediments from the Godavari estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Arya, J.; Subbaiah, Ch.V.; Naidu, S.A.; Gawade, L.; PraveenKumar, P.; Reddy, N.P.C.

    Spatial distribution of the carbon and nitrogen content and their isotopic enrichment in suspended matter and sediments were measured in the Godavari estuary to identify the sources and transformation mechanism of organic matter. Significant...

  17. Assessment of Soil Organic Carbon Stability in Agricultural Systems by Using Natural Abundance Signals of Stable Carbon and Nitrogen Isotopes

    International Nuclear Information System (INIS)

    Information on the stability and age of soil organic matter (SOM) pools is of vital importance for assessing the impact of soil management and environmental factors on SOM, an important part of the global carbon (C) cycle. The terrestrial soil organic C pool, up to a depth of 1 m, contains about 1500 Pg C (Batjes, 1996). This is about 2.5 times more organic C than the vegetation (650 Pg C) and about twice as much as in the atmosphere (750 Pg C) (Batjes, 1998), but the assessment of the stability and age of SOM using 14C radio carbon technique are expensive. Conen et al. (2008) developed a model to estimate the SOM stability based on the isotopic discrimination of 15N natural abundance by soil micro-organisms and the change in C/N ratio during organic matter decomposition, for steady state, Alpine and permanent grasslands. In the framework of the IAEA funded coordinated research project (CRP) on Soil Quality and Nutrient Management for Sustainable Food Production in Mulch based Cropping Systems in sub-Saharan Africa, research was initiated to use this model in agricultural systems for developing a cost effective and affordable technique for Member States to determine the stability of SOM. As part of this research, soil samples were taken and analysed in four long term field experiments, established on soils with low and high SOM, in Austria and Belgium. The participating institutions are the Austrian Agency for Health and Food Safety (AGES), the University of Natural Resources and Life Sciences in Vienna (BOKU), the University of Leuven (KUL), the Soil Service of Belgium (BDB) and the Centre Wallon de Recherches Agronomiques (CRA-W)

  18. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    Science.gov (United States)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  19. Carbon isotopic record from Upper Devonian carbonates at Dongcun in Guilin, southern China, supporting the world-wide pattern of carbon isotope excursions during Frasnian-Famennian transition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two positive δ13C excursions are presented in records from the Frasnian-Famennian (F-F) marine carbonate sediments in Europe, America, Africa, and Australia, having been considered as a worldwide pattern, and attributed to enhanced organic carbon burial during the F-F biological mass extinction. However, this worldwide pattern has not been revealed from the well-deposited Late Devonian sequences in southern China. In this paper, a detailed investigation has been made on the Late Devonian section at Dongcun, Guilin, southern China to constrain perturbations in δ13C of carbonates in the F-F deposited sequence. The result from this section also indicates two positive δ13C excursions during the F-F transition. The first excursion with an amplitude of 1.5‰ occurred at the bottom of linguiformis Zone, later than the early excursion existing in the Late rhenana Zone of the Late Devonian profiles in other continents, especially, in central Europe. This difference has been expected to be a result as conodont Palmatolepis linguiformis occurred earlier in southern China than other sites. The second excursion with an amplitude of 2.1‰ is located at the F-F boundary, same as the records from other continents. This result strongly supports the view that two carbon isotope positive excursions during the F-F transition are common in carbonate sediments, resulting from worldwide increases of organic carbon burial intensity.

  20. Sulfur and carbon isotope biogeochemistry of a rewetted brackish fen

    Science.gov (United States)

    Koebsch, Franziska; Gehre, Matthias; Winkel, Matthias; Koehler, Stefan; Koch, Marian; Jurasinski, Gerald; Spitzy, Alejandro; Liebner, Susanne; Sachs, Torsten; Schmiedinger, Iris; Kretzschmann, Lisett; Saborowski, Anke; Böttcher, Michael E.

    2015-04-01

    Coastal wetlands are at the interface between terrestrial freshwater and marine and exhibit very specific biogeochemical conditions. Intermittent sea water intrusion affects metabolic pathways, i. e. anaerobic carbon metabolism is progressively dominated by sulfate reduction with lower contribution of methanogenesis whilst methane production is increasingly shifted from acetoclastic to hydrogenotrophic. Due to expanding anthropogenic impact a large proportion of coastal ecosystems is degraded with severe implications for the biogeochemical processes. We use concentration patterns and stable isotope signatures of water, sulfate, dissolved carbonate, and methane (δ2H, δ13C, δ18O, δ34S) to investigate the S and C metabolic cycle in a rewetted fen close to the southern Baltic Sea border. Such studies are crucial to better predict dynamic ecosystem feedback to global change like organic matter (OM) decomposition or greenhouse gas emissions. Yet, little is known about the metabolic pathways in such environments. The study site is part of the TERENO Observatory "Northeastern German Lowlands' and measurements of methane emissions have run since 2009. High methane fluxes up to 800 mg m-2 hr-1 indicate that methanogenesis is the dominant C metabolism pathway despite of high sulfate concentrations (up to 37 mM). The presented data are part of a comprehensive biogeochemical investigation that we conducted in autumn 2014 and that comprises 4 pore water profiles and sediment samples within a transect of 300-1500 m distance to the Baltic Sea. Depth of organic layers ranged from 25 to 140 cm with high OM contents (up to 90 dwt.%). Sulfate/chloride ratios in the pore waters were lower than in the Baltic Sea for most sites and sediment depths indicated a substantial net sulfate loss. Sulfide concentrations were negligible at the top and increased parallel to the sulfate concentrations with depth to values of up to 0.3 mM. One pore water profiles situated 1150 m from the Baltic

  1. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data

    Science.gov (United States)

    Petrelli, Maurizio; Perugini, Diego

    2016-10-01

    Machine-learning methods are evaluated to study the intriguing and debated topic of discrimination among different tectonic environments using geochemical and isotopic data. Volcanic rocks characterized by a whole geochemical signature of major elements (SiO2, TiO2, Al2O3, Fe2O3T, CaO, MgO, Na2O, K2O), selected trace elements (Sr, Ba, Rb, Zr, Nb, La, Ce, Nd, Hf, Sm, Gd, Y, Yb, Lu, Ta, Th) and isotopes (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 87Sr/86Sr and 143Nd/144Nd) have been extracted from open-access and comprehensive petrological databases (i.e., PetDB and GEOROC). The obtained dataset has been analyzed using support vector machines, a set of supervised machine-learning methods, which are considered particularly powerful in classification problems. Results from the application of the machine-learning methods show that the combined use of major, trace elements and isotopes allows associating the geochemical composition of rocks to the relative tectonic setting with high classification scores (93 %, on average). The lowest scores are recorded from volcanic rocks deriving from back-arc basins (65 %). All the other tectonic settings display higher classification scores, with oceanic islands reaching values up to 99 %. Results of this study could have a significant impact in other petrological studies potentially opening new perspectives for petrologists and geochemists. Other examples of applications include the development of more robust geothermometers and geobarometers and the recognition of volcanic sources for tephra layers in tephro-chronological studies.

  2. Decoupling of carbon isotope records between organic matter and carbonate prior to the Toarcian Oceanic Anoxic Event (Early Jurassic)

    Science.gov (United States)

    Bodin, Stephane; Kothe, Tim; Krencker, Francois-Nicolas; Suan, Guillaume; Heimhofer, Ulrich; Immenhauser, Adrian

    2014-05-01

    Across the Pliensbachian-Toarcian boundary (P-To, Early Jurassic), ca. 1 Myr before the Toarcian Oceanic Anoxic Event (T-OAE), an initial negative carbon isotope excursion has been documented in western Tethys sedimentary rocks. In carbonate, its amplitude (2-3 permil) is similar to the subsequent excursion recorded at the onset of the T-OAE. Being also associated with a rapid warming event, the significance of this first carbon isotope shift, in terms of paleoenvironmental interpretation and triggering mechanism, remains however elusive. Taking advantage of expanded and rather continuous sections in the High Atlas of Morocco, several high-resolution, paired organic-inorganic carbon isotope records have been obtained across the Upper Pliensbachian - Lower Toarcian interval. At the onset of the T-OAE, an abrupt 1-2 permil negative shift is recorded in both organic and inorganic phases, succeeded by a relatively longer term 1-2 permil negative trend and a final slow return to pre-excursion conditions. In accordance with previous interpretations, this pattern indicates a perturbation of the entire exogenic carbon isotope reservoir at the onset of the T-OAE by the sudden release of isotopically light carbon into the atmosphere. By contrast, there is no negative shift in carbon isotopes for the P-To event recorded in bulk organic matter of Morocco. Given the strong dominance of terrestrial particles in the bulk organic matter fraction, this absence indicates that massive input of 12C-rich carbon into the atmosphere is not likely to have happened during the P-To event. A pronounced (2 permil) and abrupt negative shift in carbon isotope is however recorded in the bulk carbonate phase. We suggest that this decoupling between organic and inorganic phase is due to changes in the nature of the bulk carbonate phase. Indeed, the negative shift occurs at the lithological transition between Pliensbachian-lowermost Toarcian limestone-marl alternations and the Lower Toarcian marl

  3. Modelling carbon isotope composition of dissolved inorganic carbon and methane in marine porewaters

    Science.gov (United States)

    Meister, Patrick; Liu, Bo; Khalili, Arzhang; Barker Jørgensen, Bo

    2014-05-01

    Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in marine sedimentary porewaters at near surface temperatures show extremely large variation in apparent fractionation covering a range from -100 ‰ to +30 ‰. This fractionation is essentially the result of microbial activity, but the mechanisms and factors controlling this fractionation are still incompletely understood. This study provides a reaction transport model approach to evaluate the effects of the most important processes and factors on carbon isotope distribution with the goal to better understand carbon isotope distribution in modern sediment porewaters and in the geological record. Our model results show that kinetic fractionation during methanogenesis, both through the acetoclastic and autotrophic pathways, results in a nearly symmetrical distribution of δ13C values in DIC and CH4 with respect to the isotope value of buried organic matter. An increased fractionation factor during methanogenesis leads to a larger difference between δ13CDIC and δ13CCH4. Near the sulphate methane transition zone, DIC is more depleted in 13C due to diffusive mixing with DIC produced by anaerobic oxidation of methane (AOM) and organoclastic sulphate reduction. The model also shows that an upward decrease in δ13CCH4 near the SMT can only be caused by equilibrium fractionation during AOM including a backward "leakage" of carbon from DIC to CH4 through the enzymatic pathway. However, this effect of reversibility has no influence on the DIC pool as long as methane is completely consumed at the SMT. Only a release of methane at the sediment-water interface, due to a fraction of the methane escaping re-oxidation, results in a small shift towards more positive δ13CDIC values. Methane escape at the SMT is possible if either the methane flux is too high to be entirely oxidized by AOM, or if bubbles of methane gas by-pass the sulphate reduction zone and escape episodically into the water column

  4. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  5. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  6. The modeling of carbon isotope kinetics and its application to the evaluation of natural gas

    Institute of Scientific and Technical Information of China (English)

    Xianqing LI; Xianming XIAO; Yongchun TANG; Hui TIAN; Qiang ZHOU; Yunfeng YANG; Peng DONG; Yan WANG; Zhihong SONG

    2008-01-01

    The modeling of carbon isotope kinetics of natural gas is an issue driving pioneering research in the oil and gas geochemistry in China and internationally.Combined with the sedimentary burial history and basin geothermal history,the modeling of carbon isotope kinetics provides a new and effective means for the determination of the origin and accumulation history of natural gas pools.In this paper,we introduce the modeling of carbon isotope kinetics of natural gas formation and its applications to the assessment of natural gas maturity,the determination of the gas source,the history of gas accumulation,and the oil-gas ratio.It is shown that this approach is of great value for these applications.The carbon isotopic characteristics of natural gas are not only affected by the gas source and maturity of the source rock,but also are related to the accumulation condition and geothermal gradient in a basin.There are obvious differences in the characteristics of carbon isotope ratios between instantaneous gas and cumulative gas.Different basins have different kinetic models of carbon isotope fractionation,which depends on the gas source condition,the accumulation history and the sedimentary-tectonic history.Since the origin of natural gas in the superimposed basin in China is very complicated,and the natural gas pool is characterized by multiphase and variable gas-sources,this paper may provide a new perspective on the study and evaluation of natural gas.

  7. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    Science.gov (United States)

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  8. Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the brine-seawater interface

    Directory of Open Access Journals (Sweden)

    S. R. Shah

    2012-12-01

    Full Text Available Orca Basin, an intraslope basin on the Texas–Louisiana continental slope, hosts a hypersaline, anoxic brine in its lowermost 200 m. This brine contains a large reservoir of reduced and aged carbon, and appears to be stable at decadal time scales: concentrations and the isotopic composition of dissolved inorganic (DIC and organic carbon (DOC are similar to previous reports. Both DIC and DOC are more "aged" within the brine pool than in overlying water, and the isotopic contrast between brine carbon and seawater carbon is much greater for DIC than DOC. While the stable carbon isotopic composition of brine DIC points towards a combination of methane and organic carbon re-mineralization as its source, radiocarbon and box model results point to the brine interface as the major source region for DIC with oxidation of methane diffusing upwards from sediments supplying only limited DIC to the brine. This conclusion is consistent with previous studies reporting microbial activity focused at the seawater-brine interface. Isotopic similarities between DIC and DOC suggest a different relationship between these two carbon reservoirs than is typically observed in deep ocean basins. Radiocarbon values implicate the seawater-brine interface region as the likely source region for DOC as well as DIC. Further investigations of the seawater-brine interface are needed to advance our understanding of the specific microbial processes contributing to dissolved carbon storage in the Orca Basin brine.

  9. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    Science.gov (United States)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  10. Measuring relative utilization of aerobic glycolysis in breast cancer cells by positional isotopic discrimination.

    Science.gov (United States)

    Yang, Da-Qing; Freund, Dana M; Harris, Benjamin R E; Wang, Defeng; Cleary, Margot P; Hegeman, Adrian D

    2016-09-01

    The ability of cancer cells to produce lactate through aerobic glycolysis is a hallmark of cancer. In this study, we established a positional isotopic labeling and LC-MS-based method that can specifically measure the conversion of glucose to lactate in glycolysis. We show that the rate of aerobic glycolysis is closely correlated with glucose uptake and lactate production in breast cancer cells. We also found that the production of [3-(13) C]lactate is significantly elevated in metastatic breast cancer cells and in early stage metastatic mammary tumors in mice. Our findings may enable the development of a biomarker for the diagnosis of aggressive breast cancer. PMID:27531463

  11. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  12. Isotopic composition of carbon and nitrogen in ureilitic fragments of the Almahata Sitta meteorite

    OpenAIRE

    Downes, Hilary; Abernethy, F.A.J.; Smith, C.L.; Ross, A. J.; Verchovsky, A. B.; Grady, M. M.; Jenniskens, P.; Shaddad, M.H.

    2015-01-01

    This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon-rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They co...

  13. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    Science.gov (United States)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration-rotation first and second-overtone CO lines in 1.5-2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2-2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected for

  14. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    Science.gov (United States)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected

  15. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    OpenAIRE

    S. L. Pathirana; C. van der Veen; Popa, M. E.; T. Röckmann

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol−1, or 1–3 % of the typical sam...

  16. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    Science.gov (United States)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  17. The impact of recycling of organic carbon on the stable carbon isotopic composition of dissolved inorganic carbon in a stratified marine system (Kyllaren fjord, Norway)

    NARCIS (Netherlands)

    Breugel, Y. van; Schouten, S.; Paetzel, M.; Nordeide, R.; Sinninghe Damsté, J.S.

    2005-01-01

    A negative carbon isotope shift in sedimentary organic carbon deposited in stratified marine and lacustrine systems has often been inferred to be a consequence of the process of recycling of respired and, therefore, 13C-depleted, dissolved inorganic carbon (DIC) formed from mineralization of descend

  18. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene.

    Science.gov (United States)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-05-01

    Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from -6.3±0.8 to 10±1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes. PMID:26835895

  19. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  20. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    Science.gov (United States)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of 120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic. Since Zn is a trace element in the mantle and Zn isotopic compositions of marine carbonates and the mantle differ markedly, we highlight Zn isotopes as a new and useful tool of tracing deep carbonate cycling in the Earth's mantle.

  1. Carbon isotopes: variations of their natural abundance. Application to correction of radiocarbon dates, to the study of plant metabolism and to paleoclimate

    International Nuclear Information System (INIS)

    The radiocarbon activity of contemporaneous samples shows: i) variations in the specific activity of the atmospheric C14, which varies with time and locality. ii) variations due to isotope discrimination, or fractionation, of the carbon isotope ratio during the fixation of carbon by organic or inorganic matter. The variation in the atmospheric concentration of carbon 14 as observed in tree rings are synchronous and of the same amplitude for both hemispheres (southern and northern). A curve for correction of radiocarbon dates of the southern hemisphere is given for the last 500 years. The activity of atmospheric radiocarbon as measured in tree rings varies with latitude, showing a difference of (4.5+-1) per mille between the northern and southern hemispheres, the latter having lower concentration of radiocarbon, equivalent to an age difference of about 35 years. This variation can be explained by a larger exchange of carbon 14 between the atmosphere and the sea in the southern hemisphere to a larger free ocean surface (40%) and a higher agitation by winds. The main differences of the isotope fractionation by different types of plants are correlated to their photosynthetic pathways and thus to the enzyme which effects the primary fixation of carbon. The delta C13 values can be used as basis of a paleoclimate indicator

  2. Stable Isotopic Evidence for a Pedogenic Origin of Carbonates in Trench 14 near Yucca Mountain, Nevada.

    Science.gov (United States)

    Quade, J; Cerling, T E

    1990-12-14

    Layered carbonate and silica encrust fault fractures exposed in Trench 14 near Yucca Mountain, site of the proposed high-level nuclear waste repository in southern Nevada. Comparison of the stable carbon and oxygen isotopic compositions of the fracture carbonates with those of modern soil carbonates in the area shows that the fracture carbonates are pedogenic in origin and that they likely formed in the presence of vegetation and rainfall typical of a glacial climate. Their isotopic composition differs markedly from that of carbonate associated with nearby springs. The regional water table therefore remained below the level of Trench 14 during the time that the carbonates and silica precipitated, a period probably covering parts of at least the last 300,000 years. PMID:17818282

  3. Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001

    Science.gov (United States)

    Leshin, Laurie A.; McKeegan, Kevin D.; Harvey, Ralph P.

    1997-03-01

    With a crystallization age of 4.5 Ga, ALH84001 is unique among the Martian meteorites. It is also the only Martian meteorite that contains an appreciable amount of carbonate, and significantly, this carbonate occurs without associated secondary hydrated minerals. Moreover, McKay et al. (1996) have suggested that ALH84001 contains evidence of past Martian life in the form of nanofossils, biogenic minerals, and polycyclic aromatic hydrocarbons. The presence of carbonate in ALH84001 is especially significant. The early Martian environment is thought to have been more hospitable to life than todays cold, dry climate. In order to better assess the true delta-O-18 values, as well as the isotopic diversity and complexity of the ALH84001 carbonates, direct measurements of the oxygen and carbon isotopic compositions of individual carbonate phases are needed. Here we report in situ analyses of delta-O-18 values in carbonates from two polished thin sections of ALH84001.

  4. Carbon Stable Isotopes as Indicators of Coastal Eutrophication

    Science.gov (United States)

    Coastal ecologists and managers have frequently used nitrogen stable isotopes (δ15N) to trace and monitor anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of δ15N data can often be challenging, if not confounding, as the isotope values fractionate su...

  5. Using stable isotope techniques to investigate carbon cycle dynamics of an agricultural ecosystem

    Science.gov (United States)

    Zhang, Jianmin

    2007-12-01

    In this study, continuous measurements of the mixing ratios of 12CO2 and 13CO2 with tunable diode laser (TDL) absorption spectroscopy were combined with micrometeorological observations to partition the net ecosystem CO2 exchange into photosynthesis and respiration for a corn-soybean rotation ecosystem. The dynamics of the canopy-scale isotope discrimination (DeltaA), isotope ratios of ecosystem respiration and net ecosystem CO2 exchange (delta R and deltaN), and isoflux were examined using both TDL data and a multilayer canopy model. Compared with the nighttime regression method and the multilayer model results, the isotopic flux partitioning method showed greater short-term variations. Uncertainty in the partitioning was closely related to the isotopic disequilibrium between ecosystem respiration and photosynthesis. The partitioning uncertainty was smaller for the early growing season when the isotopic disequilibrium was larger. Uncertainties in the deltaN and deltaR estimates accounted for the most of the overall partitioning uncertainty. Nightly deltaR estimated from the flux-ratio approach showed significant seasonal variation (-32‰ to -11‰), corresponding closely with canopy phenology. The multilayer model results also showed apparent diurnal deltaR variation associated with changes in the contributions of component respiration. Daytime deltaR may differ by up to 2‰ from nighttime values over the diurnal period. The extrapolation of nighttime deltaR to daytime values presented a potential limitation in the isotopic approach. The multilayer modeled isotope discrimination showed significant vertical variations within the canopy resulting from light variations and the different response to the change of ambient CO2 for sunlit and shaded leaves. The modeled values also showed pronounced diurnal changes from 3.7‰ to 4.5‰ in correspondence with the onset and cessation of photosynthesis. However, the isotopic partitioning yielded relatively constant

  6. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein.

    Science.gov (United States)

    McMahon, Kelton W; Fogel, Marilyn L; Elsdon, Travis S; Thorrold, Simon R

    2010-09-01

    1. Analysis of stable carbon isotopes is a valuable tool for studies of diet, habitat use and migration. However, significant variability in the degree of trophic fractionation (Delta(13)C(C-D)) between consumer (C) and diet (D) has highlighted our lack of understanding of the biochemical and physiological underpinnings of stable isotope ratios in tissues. 2. An opportunity now exists to increase the specificity of dietary studies by analyzing the delta(13)C values of amino acids (AAs). Common mummichogs (Fundulus heteroclitus, Linnaeus 1766) were reared on four isotopically distinct diets to examine individual AA Delta(13)C(C-D) variability in fish muscle. 3. Modest bulk tissue Delta(13)C(C-D) values reflected relatively large trophic fractionation for many non-essential AAs and little to no fractionation for all essential AAs. 4. Essential AA delta(13)C values were not significantly different between diet and consumer (Delta(13)C(C-D) = 0.0 +/- 0.4 per thousand), making them ideal tracers of carbon sources at the base of the food web. Stable isotope analysis of muscle essential AAs provides a promising tool for dietary reconstruction and identifying baseline delta(13)C values to track animal movement through isotopically distinct food webs. 5. Non-essential AA Delta(13)C(C-D) values showed evidence of both de novo biosynthesis and direct isotopic routing from dietary protein. We attributed patterns in Delta(13)C(C-D) to variability in protein content and AA composition of the diet as well as differential utilization of dietary constituents contributing to the bulk carbon pool. This variability illustrates the complicated nature of metabolism and suggests caution must be taken with the assumptions used to interpret bulk stable isotope data in dietary studies. 6. Our study is the first to investigate the expression of AA Delta(13)C(C-D) values for a marine vertebrate and should provide for significant refinements in studies of diet, habitat use and migration using

  7. Sequential and simultaneous dual-isotope brain SPECT: Comparison with PET for estimation and discrimination tasks in early Parkinson disease

    Science.gov (United States)

    Trott, Cathryn M.; El Fakhri, Georges

    2008-01-01

    Parkinson disease (PD) is the second most frequently occurring cerebral degenerative disease, after Alzheimer disease. Treatments are available, but their efficacy is diminished unless they are administered in the early stages. Therefore, early identification of PD is crucial. In addition to providing perfectly registered studies, simultaneous 99mTc∕123I imaging makes possible the assessment of pre- and postsynaptic neurotransmission functions under identical physiological conditions, while doubling the number of counts for the same total imaging time. These advantages are limited, however, by cross talk between the two radionuclides due to the close emission energies of 99mTc (140 keV) and 123I (159 keV). PET, on the other hand, provides good temporal and spatial resolution and sensitivity but usually requires the use of a single radionuclide. In the present work, the authors compared brain PET with sequential and simultaneous dual-isotope SPECT for the task of estimating striatal activity concentration and striatal size for a normal brain and two stages of early PD. Realistic Monte Carlo simulations of a time-of-flight PET scanner and gamma cameras were performed while modeling all interactions in the brain, collimator (gamma camera) and crystal (detector block in PET), as well as population biological variability of pre- and postsynaptic uptake. For SPECT imaging, we considered two values of system energy resolution and scanners with two and three camera heads. The authors used the Cramer–Rao bound, as a surrogate for the best theoretical performance, to optimize the SPECT acquisition energy windows and objectively compare PET and SPECT. The authors determined the discrimination performance between 500 simulated subjects in every disease stage as measured by the area under the ROC curve (AUC). The discrimination accuracy between a normal subject and a subject in the prodromal disease stage was AUC=0.924 with PET, compared to 0.863 and 0.831 with simultaneous

  8. Carbon Isotopic tests on the Origins of the Shuram Anomaly from the San Juan Fm., Peru

    Science.gov (United States)

    Hodgin, E. B.

    2015-12-01

    Carbon isotope anomalies are associated with perturbations to the carbon cycle that offer insight into the geochemical evolution of the Earth. The largest Carbon isotope anomaly in earth history is the Shuram, which remains poorly understood in spite of being linked to the oxygenation of earth, the rise of metazoans, and a complete reorganization of the carbon cycle. From a basin transect of the carbonate-dominated San Juan Formation in southern Peru, we present evidence for the first clear example of the Shuram isotope anomaly in South America. Unique to this succession are ~140 meters of organic-rich black shale within the anomaly, containing as much as 4% TOC. Preliminary data from the organic-rich black shales of the San Juan Fm. confirm that δ13Corg is relatively invariant and does not covary with δ13Ccarb. These observations are consistent with other Shuram sections and support various models: an exogenous carbon source, an enlarged dissolved organic carbon pool, as well as authigenic carbonate production in organic-rich anoxic sediments. Critical tests of these models have been complicated by a paucity of organics in Shuram facies worldwide. Further analyses of the robust organics from the Shuram facies of the San Juan Fm. therefore hold promise in shedding light on the origin of the Shuram isotope anomaly and critical earth history events to which it has been linked.

  9. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapour isotopes

    Science.gov (United States)

    The isotopic fluxes of carbon dioxide (CO2) and water vapour (H2O) between the atmosphere and terrestrial plants provide powerful constraints on carbon sequestration on land 1-2, changes in vegetation cover 3 and the Earth’s Dole effect 4. Past studies, relying mainly on leaf-scale observations, hav...

  10. Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The analysis of carbon isotope in phytoliths from modern plants and surface soils in China shows that the values of carbon isotope are consistent with those from C3 and C4 plants,and the processes of photosynthesis of the original plants can be clearly identified by carbon isotope in phytoliths.The value of carbon isotope varied from -23.8‰ to -28‰,with the maximum distributed in the latitude zone from 34° N to 40° N in North China and East China areas,and the minimum in the Northeast China and South China regions.The values of carbon of phytoliths tend to increase from low to high and then reduce to low value again as the latitude increases.In the same latitude zone,the carbon isotope in phytoliths from grassland soil under the trees is obviously lower than that from grassland soil without any trees with the difference of 1‰-2‰.

  11. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  12. Significance of Carbon Isotopes in Carbonate Sequence Stratigraphy—As Exemplified by the Permian System in Southwest China

    Institute of Scientific and Technical Information of China (English)

    覃建雄; 杨作升; 等

    1999-01-01

    Based on the research on sequence stratigraphy of the Permian in Southwest China,in conjunction with the carbon isotope data from the typical sections at Ganluo,Sichuan and Tianlin and Masan,Guangxi,the authors suggest that the genetic framework and internal architicture of different sequences possess quite different carbon isotopic characteristics.Therefore ,the following problems can be solved in terms of carbon isotopic values,evolutionary curve patterns and structures of carbonate sequences:(1) to determe the nature of sequence boundary surface and related geological events;(2) to recognize various kinds of sedimentary system tracts;(3) to discuss the internal architicture and genetic framework of the sequences and their evolution;(4) to subdivide and correlate sedimentary sequences on a regional or global scale; and (5)to enhance the resolution of sequence stratigraphic analysis.Stable carbon isotopes have proved themselves to be valid in sequence stratigraphic studies of carbonate rocks,as demonstrated by our results presented in this paper.

  13. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  14. Trophic ecology of small yellow croaker (Larimichthys polyactis Bleeker): stable carbon and nitrogen isotope evidence

    Institute of Scientific and Technical Information of China (English)

    JI Weiwei; CHEN Xuezhong; JIANG Yazhou; LI Shengfa

    2011-01-01

    The trophic ecology of the small yellow croaker (Larimichthys polyactis) was studied using stable isotope analyses.Samples were collected from July to September 2009 and 34 individuals from eight sites were examined for stable carbon and nitrogen isotopes.Stable carbon isotope ratios (δ13C)ranged from -20.67 to -15.43,while stable nitrogen isotope ratios (δ15N) ranged 9.18-12.23.The relationship between δ13C and δ15N suggested high resource partitioning in the sampling area.Significant differences in stable isotope values among the eight sampling sites may be linked to environmental diversities involving various physical processes (such as ocean current,wind and tide) and different carbon sources.Furthermore,the stable isotope ratios may also explain the ontogenetic variability in diet and feeding,because δ13C and δ15N varied significantly with increasing body size.The findings are consistent with other studies on diet analyses in small yellow croaker.It was also demonstrated that stable isotope analysis could be used to estimate the trophic characters of small yellow croaker in feeding patterns and migrating habits.

  15. Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications

    Directory of Open Access Journals (Sweden)

    J. T. G. Hamilton

    2004-08-01

    Full Text Available We report that the most abundant C1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs are also anomalously depleted in 13C compared with Cn+1 VOCs. The results confirm that the plant methoxyl pool is the predominant source of biospheric C1 compounds of plant origin such as methanol, chloromethane and bromomethane. Furthermore this pool, comprising ca. 2.5% of carbon in plant biomass, represents an important substrate for methanogenesis and could be a significant source of isotopically light methane entering the atmosphere. Our findings have significant implications for the use of carbon isotope ratios in elucidation of global carbon cycling. Moreover methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin.

  16. Carbon isotope anomaly in the major plant C1 pool and its global biogeochemical implications

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2004-01-01

    Full Text Available We report that the most abundant C1 units of terrestrial plants, the methoxyl groups of pectin and lignin, have a unique carbon isotope signature exceptionally depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs are also anomalously depleted in 13C compared with Cn+1 VOCs. The results confirm that the plant methoxyl pool is the predominant source of biospheric C1 compounds of plant origin such as methanol, chloromethane and bromomethane. Furthermore this pool, comprising ca 2.5% of carbon in plant biomass, could be an important substrate for methanogenesis and thus be envisaged as a possible source of isotopically light methane entering the atmosphere. Our findings have significant implications for the use of carbon isotope ratios in elucidation of global carbon cycling. Moreover methoxyl groups could act as markers for biological activity in organic matter of terrestrial and extraterrestrial origin.

  17. Organic Carbon Isotope Geochemistry of the Neoproterozoic Doushantuo Formation, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG; ZHU Maoyan; PI Daohui; WANG Jian

    2006-01-01

    The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China,documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata,exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ13Corg = -35.0%) from the uppermost Nantuo Formation are followed by an overall increase in δ13C up-section. Carbon isotope values vary between -9.9% and 3.6% for carbonate and between -35.6% and -21.5% for organic carbon, respectively. Heavier δ13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin,reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.

  18. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates

    Science.gov (United States)

    Hippler, Dorothee; Buhl, Dieter; Witbaard, Rob; Richter, Detlev K.; Immenhauser, Adrian

    2009-10-01

    This study presents magnesium stable-isotope compositions of various biogenic carbonates of several marine calcifying organisms and an algae species, seawater samples collected from the western Dutch Wadden Sea, and reference materials. The aim of this study is to explore the influence of mineralogy, taxonomy and environmental factors (e.g., seawater isotopic composition, temperature, salinity) on magnesium-isotopic (δ 26Mg) ratios of skeletal carbonates. Using high-precision multi-collector inductively coupled plasma mass spectrometry, we observed that the magnesium-isotopic composition of seawater from the semi-enclosed Dutch Wadden Sea is identical to that of open marine seawater. We further found that a considerable component of the observed variability in δ 26Mg values of marine skeletal carbonates can be attributed to differences in mineralogy. Furthermore, magnesium-isotope fractionation is species-dependent, with all skeletal carbonates being isotopically lighter than seawater. While δ 26Mg values of skeletal aragonite and high-magnesium calcite of coralline red algae indicate the absence or negligibility of metabolic influences, the δ 26Mg values of echinoids, brachiopods and bivalves likely result from a taxon-specific level of control on Mg-isotope incorporation during biocalcification. Moreover, no resolvable salinity and temperature effect were observed for coralline red algae and echinoids. In contrast, Mg-isotope data of bivalves yield ambiguous results, which require further validation. The data presented here, point to a limited use of Mg isotopes as temperature proxy, but highlight the method's potential as tracer of seawater chemistry through Earth's history.

  19. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  20. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  1. Astrophysical Shrapnel: Discriminating Among Near-Earth Stellar Explosion Sources of Live Radioactive Isotopes

    CERN Document Server

    Fry, Brian J; Ellis, John R

    2015-01-01

    We consider the production and deposition on Earth of isotopes with half-lives in the range 10$^{5}$ to 10$^{8}$ years that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGBs) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the $^{60}$Fe and $^{26}$Al signatures, and extend these estimates to include $^{244}$Pu and $^{53}$Mn. We discuss interpretations of the $^{60}$Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ~2.2 Myr ago, showing that (i) the $^{60}$Fe yield rules out the TNSN and KN interpretations, (ii) the $^{60}$Fe signals highly constrain a SAGB interpretation but do not completely them rule out, (iii) are consistent with a CCSN origin, and (iv) are highly compatible with an ECSN interpretation. Future measurements could resolve the radio...

  2. ASTROPHYSICAL SHRAPNEL: DISCRIMINATING AMONG NEAR-EARTH STELLAR EXPLOSION SOURCES OF LIVE RADIOACTIVE ISOTOPES

    Energy Technology Data Exchange (ETDEWEB)

    Fry, Brian J.; Fields, Brian D. [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Ellis, John R. [Theoretical Physics and Cosmology Group, Department of Physics, King' s College London, London WC2R 2LS (United Kingdom)

    2015-02-10

    We consider the production and deposition on Earth of isotopes with half-lives in the range 10{sup 5}-10{sup 8} yr that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGB) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the {sup 60}Fe and {sup 26}Al signatures, and extend these estimates to include {sup 244}Pu and {sup 53}Mn. We discuss interpretations of the {sup 60}Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ∼2.2 Myr ago, showing that (1) the {sup 60}Fe yield rules out the TNSN and KN interpretations, (2) the {sup 60}Fe signals highly constrain SAGB interpretations but do not completely them rule out, (3) are consistent with a CCSN origin, and (4) are highly compatible with an ECSN interpretation. Future measurements could resolve the radioisotope deposition over time, and we use the Sedov blast wave solution to illustrate possible time-resolved profiles. Measuring such profiles would independently probe the blast properties including distance, and would provide additional constraints for the nature of the explosion.

  3. ASTROPHYSICAL SHRAPNEL: DISCRIMINATING AMONG NEAR-EARTH STELLAR EXPLOSION SOURCES OF LIVE RADIOACTIVE ISOTOPES

    International Nuclear Information System (INIS)

    We consider the production and deposition on Earth of isotopes with half-lives in the range 105-108 yr that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGB) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the 60Fe and 26Al signatures, and extend these estimates to include 244Pu and 53Mn. We discuss interpretations of the 60Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ∼2.2 Myr ago, showing that (1) the 60Fe yield rules out the TNSN and KN interpretations, (2) the 60Fe signals highly constrain SAGB interpretations but do not completely them rule out, (3) are consistent with a CCSN origin, and (4) are highly compatible with an ECSN interpretation. Future measurements could resolve the radioisotope deposition over time, and we use the Sedov blast wave solution to illustrate possible time-resolved profiles. Measuring such profiles would independently probe the blast properties including distance, and would provide additional constraints for the nature of the explosion

  4. Determination of Cr isotopic composition in low-level carbonates by MC-ICP-MS: a sensitive proxy for redox changes?

    Science.gov (United States)

    Bonnand, Pierre; Parkinson, Ian; James, Rachael; Karjalainen, Anne-Mari; Fehr, Manuela; Fairchild, Ian

    2010-05-01

    Geochemical data suggest that atmospheric oxygen increased during two major steps: the Great oxidation event (~2.4 Ga) and the Neoproterozoic (~1Ga-545Ma). The O2 concentration in the atmosphere is strongly linked to the redox condition of the oceans. Therefore the study of redox sensitive elements in marine sediments can be used to evaluate the evolution of O2 concentrations in the atmosphere. Chromium is a redox sensitive element which significantly fractionates its isotopes during the reduction of Cr(VI) to Cr(III) (Ellis et al., 2002). Thus, Cr isotopes can be used to assess redox changes in the past oceans. Chromium isotopic compositions in sedimentary rocks (BIFs) have been used to determine the evolution of the O2 concentration in the atmosphere during the Proterozoic (Frei et al., 2009). We have developed a chemical procedure for the purification of Cr in carbonates by using a single cation column to separate the Cr from the matrix, Fe, Ti and V. Cr isotopic compositions are determined used a 50Cr-54Cr double spike method and analysed on a ThermoFisher Neptune MC-ICP-MS using HR and MR in order to be able to discriminate Ar interferences. Standards and samples are analysed as 50ppb Cr solutions and yield an external reproducibility 50 and 70ppm. This new method allowed us to analyse samples with a Cr concentrations as low as 1ppm. We have analysed a suite of Neoproterozoic carbonates from Australia, but also modern ooids and oolithic limestones through the Phanerozoic. The Cr isotopic data for carbonates record a range of δ53Cr between -0.1 and +1.7. This range indicates that some of these carbonates clearly reflect oxidising conditions in the ocean. By comparison, the Neoproterozoic samples have Cr isotopic compositions close to the continental crust value (-0.1 to 0.1), indicating the Neoproterozoic samples reflect deposition under more reducing conditions These data suggests that the redox condition during the deposition of shallow-water carbonates

  5. Stable Carbon Isotope Ratios of Phenolic Compounds in Secondary Particulate Organic Matter Formed by Photooxidation of Toluene

    CERN Document Server

    Irei, Satoshi; Huang, Lin; Auld, Janeen; Collin, Fabrice; Hastie, Donald

    2014-01-01

    Compound-specific stable carbon isotope ratios for phenolic compounds in secondary particulate organic matter (POM) formed by photooxidation of toluene were studied. Secondary POM generated by photooxidation of toluene using a continuous-flow reactor and an 8 cubic meter indoor smog chamber was collected, and then extracted with acetonitrile. Eight phenolic compounds were identified in the extracts by a gas chromatograph coupled with a mass spectrometer, and their compound-specific stable carbon isotope ratios were determined by a gas chromatograph coupled with a combustion furnace followed by an isotope ratio mass spectrometer. The majority of the products, including methylnitrophenols and methylnitrocatechols, were isotopically depleted by 5 to 6 permil compared to the initial isotope ratio for toluene, whereas the isotope ratio for 4_nitrophenol remained the same as the initial isotope ratio for toluene. Based on the reaction mechanisms postulated in literature, stable carbon isotope ratios of these produc...

  6. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Monson, K.D.; Hayes, J.M. (Indiana Univ., Bloomington (USA). Dept. of Chemistry; Indiana Univ., Bloomington (USA). Dept. of Geology)

    1982-02-01

    Methods for the determination of /sup 13/C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO/sub 2/ quantitatively from the carboxyl groups of the separated cleavage products; and (4) the CO/sub 2/ is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3 parts per thousand in /sup 13/C relative to the glucose. This fractionation arises in the formation of acetyl-coenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in /sup 13/C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%.

  7. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    International Nuclear Information System (INIS)

    Methods for the determination of 13C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO2 quantitatively from the carboxyl groups of the separated cleavage products; and (4) the CO2 is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3 parts per thousand in 13C relative to the glucose. This fractionation arises in the formation of acetyl-coenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in 13C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%. (author)

  8. Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA

    Directory of Open Access Journals (Sweden)

    I. R. van der Velde

    2014-01-01

    Full Text Available We present an enhanced version of the SiBCASA photosynthetic/biogeochemical model for a future integration with a multi-tracer data-assimilation system. We extended the model with (a biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from Global Fire Emissions Database (GFED version 3.1, (b a new set of 13C pools that cycle consistently through the biosphere, and (c, a modified isotopic discrimination scheme to estimate variations in 13C exchange as a~response to stomatal conductance. Previous studies suggest that the observed variations of atmospheric 13C/12C are driven by processes specifically in the terrestrial biosphere rather than in the oceans. Therefore, we quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. Based on an assessment of observed respiration signatures we conclude that SiBCASA does well in simulating global to regional plant discrimination. The global mean discrimination value is 15.2‰, and ranges between 4 and 20‰ depending on the regional plant phenology. The biomass burning emissions (annually and seasonally compare favorably to other published values. However, the observed short-term changes in discrimination and the respiration 13C signature are more difficult to capture. We see a too weak drought response in SiBCASA and too slow return of anomalies in respiration. We demonstrate possible ways to improve this, and discuss the implications for our current capacity to interpret atmospheric 13C observations.

  9. Analyzing carbon losses from dry soils after precipitation pulses by stable carbon isotopes

    Science.gov (United States)

    Unger, Stephan; Máguas, Cristina; Santos-Pereira, João.; Werner, Christiane

    2010-05-01

    Rain events after drought periods strongly increase soil respiration (Birch effect) and affect plant activity, and thus, may influence the isotopic signal of ecosystem respiration. These CO2-pulses may largely affect the C-balance of arid and semi-arid systems. Here, we evaluate the origins of the Birch effect in a Mediterranean forest and its influence on the isotopic signal of ecosystem (δ13CR) and soil respiration (δ13CSoil). We conducted artificial rain pulses in May and August 2005 and estimated δ13CSoil on intact vegetation, bare and root-free soil in response to watering. After watering in May δ13CSoil showed strong enrichment (-18) and a rapid return to initial values (-27). This transient enrichment was smaller in August than in May (ca. -22). Further, we compared δ13CR and δ13CSoil after first natural rains in October 2005, where both revealed a good relationship over the diurnal and the fortnight cycle. We hypothesize that the 'Birch effect' immediately after irrigation is the result of a hypo-osmotic stress response of the soil microbial community: during sudden moisture changes enriched osmoregulants are rapidly released and mineralized by the soil microbes to avoid cell lysis. After the pulse soil respiration followed a common moisture response. The overall impact of the Birch effect on C-sequestration will depend on both timing and frequency of the rains and thus, on whether the respired CO2 source is microbial or soil organic matter carbon.

  10. Coordinated In Situ Nanosims Analyses of H-C-O Isotopes in ALH 84001 Carbonates

    Science.gov (United States)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2016-01-01

    The surface geology and geomorphology of Mars indicate that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. This study reports the hydrogen, carbon, and oxygen isotope compositions of the ancient atmosphere/hydrosphere of Mars based on in situ ion microprobe analyses of approximately 4 Ga-old carbonates in Allan Hills (ALH) 84001. The ALH 84001 carbonates are the most promising targets because they are thought to have formed from fluid that was closely associated with the Noachian atmosphere. While there are a number of carbon and oxygen isotope studies of the ALH 84001 carbonates, in situ hydrogen isotope analyses of these carbonates are limited and were reported more than a decade ago. Well-documented coordinated in situ analyses of carbon, oxygen and hydrogen isotopes provide an internally consistent dataset that can be used to constrain the nature of the Noachian atmosphere/hydrosphere and may eventually shed light on the hypothesis of ancient watery Mars.

  11. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    Science.gov (United States)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  12. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    Science.gov (United States)

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  13. Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria

    Science.gov (United States)

    Miller, L.G.; Kalin, Robert M.; McCauley, S.E.; Hamilton, John T.G.; Harper, D.B.; Millet, D.B.; Oremland, R.S.; Goldstein, Allen H.

    2001-01-01

    The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as ???70???) shifts in ??13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70???) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole Cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.

  14. Carbon and oxygen isotope variations of the Middle-Late Triassic Al Aziziyah Formation, northwest Libya

    Science.gov (United States)

    Moustafa, Mohamed S. H.; Pope, Michael C.; Grossman, Ethan L.; Mriheel, Ibrahim Y.

    2016-06-01

    This study presents the δ13C and δ18O records from whole rock samples of the Middle-Late Triassic (Ladinian-Carnian) Al Aziziyah Formation that were deposited on a gently sloping carbonate ramp within the Jifarah Basin of Northwest Libya. The Al Aziziyah Formation consists of gray limestone, dolomite, and dolomitic limestone interbedded with shale. The Ghryan Dome and Kaf Bates sections were sampled and analyzed for carbon and oxygen isotope chemostratigraphy to integrate high-resolution carbon isotope data with an outcrop-based stratigraphy, to provide better age control of the Al Aziziyah Formation. This study also discusses the relation between the facies architecture of the Al Aziziyah Formation and the carbon isotope values. Seven stages of relative sea level rise and fall within the Ghryan Dome were identified based on facies stacking patterns, field observations and carbon stable isotopes. The Al Aziziyah Formation δ13C chemostratigraphic curve can be partially correlated with the Triassic global δ13C curve. This correlation indicates that the Al Aziziyah Formation was deposited during the Ladinian and early Carnian. No straight-forward relationship is seen between δ13C and relative sea level probably because local influences complicated systematic environmental and diagenetic isotopic effects associated with sea level change.

  15. Carbon and oxygen isotopic composition of the carbonates from the Jacupiranga and Catalao I carbonatite complexes, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Morikiyo, Toshiro (Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Science); Hirano, Hideo; Matsuhisa, Yukihiro

    1990-11-01

    Carbon and oxygen isotope compositions were measured for carbonates from the Jacupiranga and Catalao I carbonatite complexes in Brazil. The {delta}{sup 13}C values of the Jacupiranga carbonates are uniform, ranging from -6.4 to -5.6 per mille with the average of -6.07 per mille. Except for one sample, the {delta}{sup 18}O values of the carbonates are between 7.1 and 8.1 per mille, and the average value is 7.6 per mille. The isotopic compositions of the Jacupiranga carbonates represent the value of primary igneous carbonatite. The {delta}{sup 13}C values of dolomites are about 0.5 per mille higher than those of calcites. The {delta}{sup 13}C values of carbonates from the Catalao I complex range from -6.8 to -5.2 per mille with the average of -5.83 per mille. Those values are similar to the values of the Jacupiranga carbonates. However, oxygen isotopic compositions of the Catalao I carbonates show a wide range of 8.4 to 22.3 per mille. Carbonates with the lowest {delta}{sup 18}O values in the complex are considered to represent the igneous stage. Carbonates with extremely high {delta}{sup 18}O values of about 22 per mille are considered to have precipitated from low-temperature hydrothermal fluids. The group of intermediate {delta}{sup 18}O values indicates a variable degree of contamination by the {delta}{sup 18}O-rich hydrothermal carbonates. The contribution of secondary stage hydrothermal carbonates seems to be significant in the Catalao I complex as compared with the Jacupiranga complex. The development of a network structure in the Catalao I complex may have enhanced the circulation of the later stage hydrothermal fluids. (author).

  16. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China

    Institute of Scientific and Technical Information of China (English)

    Yang Peng; Yongbo Peng; Xianguo Lang; Haoran Ma; Kangjun Huang; Fangbing Li; Bing Shen

    2016-01-01

    ABSTRACT:Global occurrences of Steptoean Positive Carbon Isotope Excursion (SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon (δ13C) and organic carbon (δ13Corg) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate (CAS, δ34SCAS) and pyrite (δ34Spyrite), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰increase inδ13Ccarb of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions inδ34SCAS andδ34Spyrite have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound (VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of 32S from continental margins to open oceans, elevatingδ34S of seawater sulfate in continental margins. A simple box model indicates that about 35%to 75%of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.

  17. Carbon isotope ratios and isotopic correlations between components in fruit juices

    Science.gov (United States)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  18. Variation in Isotopic Biosignatures From Carbonate Rich, Microbial Mats in Saline, Alkaline Lakes on the Cariboo Plateau, B.C.

    Science.gov (United States)

    Brady, A.; Slater, G.; Druschel, G.; Lim, D.

    2009-05-01

    Cyanobacteria dominated, carbonate rich microbial mats found in saline, alkaline lakes on the Cariboo Plateau, B.C. represent potential analogues of the evaporative systems that might have occurred on early Earth or Mars. These evaporative lakes generally have pH values > 10, salinities of up to 33 psu and alkalinities of > 15, 000 mg CaCO3/L but differ in other geochemical parameters. The ability to understand natural variations in microbial activity and biosignatures in such modern analogues is central to our understanding of the capabilities and limits of life, the interpretation of the geologic record and potentially one day to the interpretation of astrobiological data. Phospholipid fatty acid (PLFA) profiling, voltammetry, and stable isotope analysis of organic and inorganic carbon pools highlighted the spatial and seasonal variability that exists in modern evaporative microbial mat dominated lakes. Variations in microbial PLFA distribution demonstrated that Cariboo Plateau microbial mat community composition varied seasonally and spatially. Voltammetry results showed that photosynthetic oxygen production occurred in the upper 5 mm of mats resulting in supersaturation of oxygen in surface waters. Depletion of oxygen generally occurred just below 5 mm and sulfide production began at 10 - 15 mm from the mat surface. Isotope analysis (13C) of Cariboo microbial mats showed inorganic (dissolved inorganic carbon) to organic (bulk cell) isotopic discriminations of 23-25 ‰, indicating non-CO2 limited photosynthesis. These results are in contrast to high organic content analogue mats previously reported that show evidence of CO2 limitation. Further, the Cariboo mats demonstrated significant intra- and inter-mat variations in carbonate δ13C values with respect to dissolved inorganic carbon (DIC) ranging from enrichment to 13C-depleted carbonate. In Deer Lake, isotopic enrichment of surface water DIC by 2-3 ‰ above atmospheric equilibrium indicated microbial

  19. Relationship between Water Use Efficiency and Î"13C Isotope Discrimination of Safflower (Carthamus tinctorius L.) under Drought Stress

    OpenAIRE

    Canavar, Öner; GÖTZ, Klaus-Peter; Koca, Yakup Onur; Ellmer, Frank

    2014-01-01

    Drought stress is one of the most limiting factors in agricultural productivity because of its highly negative effect on photosynthesis and growth of plants. The main objectives of this study were to determine the performance of four selected safflower genotypes (Remzibey, Dinçer, Balcı and TRE-ASL09/14) against drought stress. The relationship between water use efficiency (WUE) and δ13C (isotope discrimination) was investigated under well watered (60%) and drought stress (30%) irrigation in ...

  20. Carbon-14 production compared to oxygen isotope records from Camp Century, Greenland and Devon Island, Canada

    International Nuclear Information System (INIS)

    Carbon-14 production rate variations that are not explainable by geomagnetic changes are thought to be in antiphase with solar activity and as such should be in antiphase with paleotemperature records or proxy temperature histories such as those obtainable from oxygen isotope analyses of ice cores. Oxygen isotope records from Camp Century, Greeland and Devon Island Ice Cap are in phase with each other over thousands of years and in antiphase to the 14C production rate residuals. (Auth.)

  1. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰).

  2. Variability of carbonate diagenesis in equatorial Pacific sediments deduced from radiogenic and stable Sr isotopes

    Science.gov (United States)

    Voigt, Janett; Hathorne, Ed C.; Frank, Martin; Vollstaedt, Hauke; Eisenhauer, Anton

    2015-01-01

    The recrystallisation (dissolution-precipitation) of carbonate sediments has been successfully modelled to explain profiles of pore water Sr concentration and radiogenic Sr isotope composition at different locations of the global ocean. However, there have been few systematic studies trying to better understand the relative importance of factors influencing the variability of carbonate recrystallisation. Here we present results from a multi-component study of recrystallisation in sediments from the Integrated Ocean Drilling Program (IODP) Expedition 320/321 Pacific Equatorial Age Transect (PEAT), where sediments of similar initial composition have been subjected to different diagenetic histories. The PEAT sites investigated exhibit variable pore water Sr concentrations gradients with the largest gradients in the youngest sites. Radiogenic Sr isotopes suggest recrystallisation was relative rapid, consistent with modelling of other sediment columns, as the 87Sr/86Sr ratios are indistinguishable (within 2σ uncertainties) from contemporaneous seawater 87Sr/86Sr ratios. Bulk carbonate leachates and associated pore waters of Site U1336 have lower 87Sr/86Sr ratios than contemporaneous seawater in sediments older than 20.2 Ma most likely resulting from the upward diffusion of Sr from older recrystallised carbonates. It seems that recrystallisation at Site U1336 may still be on-going at depths below 102.5 rmcd (revised metres composite depth) suggesting a late phase of recrystallisation. Furthermore, the lower Sr/Ca ratios of bulk carbonates of Site U1336 compared to the other PEAT sites suggest more extensive diagenetic alteration as less Sr is incorporated into secondary calcite. Compared to the other PEAT sites, U1336 has an inferred greater thermal gradient and a higher carbonate content. The enhanced thermal gradient seems to have made these sediments more reactive and enhanced recrystallisation. In this study we investigate stable Sr isotopes from carbonate-rich deep

  3. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  4. The specific carbon isotopic compositions of branched and cyclic hydrocarbons from Fushun oil shale

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; WU Baoxiang; ZHENG Guodong; ZHANG Hui; ZHENG Chaoyang

    2004-01-01

    Various branched and cyclic hydrocarbons are isolated from the Fushun oil shale and their carbon isotopes are determined. The analytical results show that the branched and cyclic hydrocarbons are fully separated from n-alkanes by 5 A Molecular-sieve adduction using long time and cold solvent. The branched and cyclic hydrocarbon fraction obtained by this method is able to satisfy the analytic requests of GC-IRMS. The carbon isotopic compositions of these branched and cyclic hydrocarbons obtained from the sample indicate that they are derived from photoautotrophic algae, chemoautotrophic bacteria (-3.4‰ --39.0‰) and methanotrophic bacteria (-38.4‰--46.3‰). However the long-chain 2-methyl-branched alkanes indicate that their carbon isotopic compositions reflect biological origin from higher plants. The carbon isotopic composition of C30 4-methyl sterane (-22.1‰) is the heaviest in all studied ste- ranes, showing that the carbon source or growth condition for its precursor, dinoflagellate, may be different from that of regular steranes. The variation trend of δ13C values between isomers of hopanes shows that 13C-enriched precursors take precedence in process of their epimerization. Methanotrophic hopanes presented reveal the processes of strong transformation of organic matter and cycling of organic carbon in the water column and early diagenesis of oil shale.

  5. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  6. Determination of organic milk authenticity using carbon and nitrogen natural isotopes.

    Science.gov (United States)

    Chung, Ill-Min; Park, Inmyoung; Yoon, Jae-Yeon; Yang, Ye-Seul; Kim, Seung-Hyun

    2014-10-01

    Natural stable isotopes of carbon and nitrogen ((12)C, (13)C, (14)N, (15)N) have abundances unique to each living creature. Therefore, measurement of the stable isotope ratio of carbon and nitrogen (δ(13)C=(13)C/(12)C, δ(15)N=(15)N/(14)N) in milk provides a reliable method to determine organic milk (OM) authenticity. In the present study, the mean δ(13)C value of OM was higher than that of conventional milk (CM), whereas the mean δ(15)N value of OM was lower than that of CM; nonetheless both δ(13)C and δ(15)N values were statistically different for the OM and CM (Pauthenticity using stable isotopes of carbon and nitrogen.

  7. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics

    Science.gov (United States)

    Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III

    2012-01-01

    Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.

  8. Chromium isotopes in carbonates — A tracer for climate change and for reconstructing the redox state of ancient seawater

    DEFF Research Database (Denmark)

    Frei, Robert; Gaucher, Claudio; Døssing, Lasse Nørbye;

    2011-01-01

    climatic changes. We here present results of a new isotopic tracer system – stable chromium isotopes – applied to a late Ediacaran marine carbonate sequence exposed in the Calera de Recalde syncline, Arroyo del Soldado Group, Uruguay. The aim was to compare Cr isotope signatures directly to d13C, 87Sr/86Sr...

  9. POSSIBILITY OF USING CARBON ISOTOPES IN THE ASSESSMENT OF THE POLLUTION OF GAS PHASE IN ENVIRONMENTAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Dorota Porowska

    2015-10-01

    Full Text Available Carbon isotope analyses can be used for knowledge and practical purpose. They can be used to assess the genesis of carbon in geochemical environment, and may also be used to indicate environmental contamination by carbon-containing compounds. The aim of the paper is to indicate the possibilities of using carbon isotope composition for interpretation concerning the following elements of the natural environment: atmospheric air, subsurface zone (gases in soils and aeration zone in terms of natural and anthropogenic factors influencing on their quality. This method can be applied universally, when carbon sources are different in isotopic composition.

  10. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  11. Variability in the carbon isotopic composition of foliage carbon pools (soluble carbohydrates, waxes) and respiration fluxes in southeastern U.S. pine forests

    Science.gov (United States)

    Mortazavi, Behzad; Conte, Maureen H.; Chanton, Jeffrey P.; Weber, J. C.; Martin, Timothy A.; Cropper, Wendell P., Jr.

    2012-06-01

    We measured the δ13C of assimilated carbon (foliage organic matter (δCOM), soluble carbohydrates (δCSC), and waxes (δCW)) and respiratory carbon (foliage (δCFR), soil (δCSR) and ecosystem 13CO2 (δCER)) for two years at adjacent ecosystems in the southeastern U.S.: a regenerated 32 m tall mature Pinus palustrisforest, and a mid-rotation 13 m tallPinus elliottii stand. Carbon pools and foliage respiration in P. palustris were isotopically enriched by 2‰ relative to P. elliottii. Despite this enrichment, mean δCER values of the two sites were nearly identical. No temporal trends were apparent in δCSC, δCFR, δCSR and δCER. In contrast, δCOM and δCW at both sites declined by approximately 2‰ over the study. This appears to reflect the adjustment in the δ13C of carbon storage reserves used for biosynthesis as the trees recovered from a severe drought prior to our study. Unexpectedly, the rate of δ13C decrease in the secondary C32-36 n-alkanoic acid wax molecular cluster was twice that observed forδCOM and the predominant C22-26 compound cluster, and provides new evidence for parallel but separate wax chain elongation systems utilizing different carbon precursor pools in these species. δCFR and δCER were consistently enriched relative to assimilated carbon but, in contrast to previous studies, showed limited variations in response to changes in vapor pressure deficit (D). This limited variability in respiratory fluxes and δCSC may be due to the shallow water table as well as the deep taproots of pines, which limit fluctuations in photosynthetic discrimination arising from changes in D.

  12. Uranium isotopes in carbonate aquifers of arid region setting

    DEFF Research Database (Denmark)

    Alshamsi, Dalal M.; Murad, Ahmed A.; Aldahan, Ala;

    2013-01-01

    Groundwater in arid and semiarid regions is vital resource for many uses and therefore information about concentrations of uranium isotopes among other chemical parameters are necessary. In the study presented here, distribution of 238U and 235U in groundwater of four selected locations in the so......Groundwater in arid and semiarid regions is vital resource for many uses and therefore information about concentrations of uranium isotopes among other chemical parameters are necessary. In the study presented here, distribution of 238U and 235U in groundwater of four selected locations...... in the southern Arabian peninsula, namely at two locations within the United Arab Emirates (UAE) and two locations in Oman are discussed. The analyses of the uranium isotopes were performed using ICP-MS and the results indicated a range of concentrations for 235U and 238 U at 3–39 ng L-1 (average: 18 ng L-1...

  13. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers.

    Science.gov (United States)

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-05-06

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ(199)Hg signatures, with some highest value (8.6%) ever in living organisms. The δ(202)Hg and Δ(199)Hg in sediment and biotic samples increased with trophic positions (δ(15)N) and %methylmercury. Fish total length closely correlated to δ(13)C and Δ(199)Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions.

  14. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers

    Science.gov (United States)

    Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong

    2016-05-01

    Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions.

  15. Isotope aided studies of atmospheric carbon dioxide and other greenhouse gases. Phase II

    International Nuclear Information System (INIS)

    The substantial increase in atmospheric greenhouse gas concentrations and their role in global warming have become major concerns of world governments. Application of isotope techniques to label sources and sinks of CO2 and other greenhouse gases has emerged as a potentially powerful method for reducing uncertainties in the global CO2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. As with CO2 concentration measurements, meaningful integration of isotopes in global models requires careful attention to quality assurance, quality control and inter-comparability of measurements made by a number of networks and laboratories. To support improvements in isotope measurement capabilities, the IAEA began implementing Co-ordinated Research Projects (CRPs) in 1992. The first project, entitled Isotope Variations of Carbon Dioxide and other Trace Gases in the Atmosphere, was implemented from 1992 to 1994. A significant contribution was made towards a better understanding of the global carbon cycle and especially of the sources and sinks of carbon with data on the 14C and 13C content of atmospheric CO2, pointing to a better understanding of the problem of the 'missing sink' in the global carbon cycle. Important methodological developments in the field of high precision stable isotope mass spectrometry and improved data acquisition procedures emerged from work carried out within the framework of this programme. The development of pressurized gas standards and planning for an associated interlaboratory calibration were initiated. Due to the good progress and long standing nature of the required work a second CRP was initiated and implemented from 1996 to 1999. It was entitled Isotope aided Studies of Atmospheric Carbon Dioxide and Other Trace Gases - Phase II, to document the close relationship of both programmes. This publication provides an overview of the scientific outcomes of the studies conducted within Phase II of

  16. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALELiquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (C-13/C-12) in biological metabolites, at their natural abundance. However, until now this technique cou

  17. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Schmitt, J.; Seth, B.; Bock, M; van der Veen, C.; Möller, L.; Sapart, C.J.; Prokopiou, M.; Sowers, T.; Röckmann, T.; Fischer, H

    2013-01-01

    Stable carbon isotope analysis of methane ( 13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentra

  18. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  19. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  20. Evaluation of clumped isotope paleotemperatures across carbon isotope excursions from lacustrine strata of the Aptian Xiagou Formation, China

    Science.gov (United States)

    Suarez, M. B.; Gonzalez, L. A.; Ludvigson, G. A.; You, H.

    2014-12-01

    Carbon cycle perturbations associated with Ocean Anoxic Event 1a have been implicated in global climate and environmental changes in the Early Aptian, in particular evidence for high sea surface temperatures (SST) and carbonate platform drowning. Records of environmental changes in the terrestrial realm remain sparse. This study provides additional data on clumped isotope derived temperatures (T(Δ47)) from lacustrine carbonates of the Xiagou Formation, Gansu Province, China. In addition, Vitrinite reflectance and the Rock-Eval parameter Tmax were used to evaluate the potential for 13C-18O bonds in the carbonates to have experienced reordering. Clumped isotope derived temperatures range from 28.8 °C to 45.9°C. Vitrinite reflectance values range from 0.67 to 0.72 and Tmax ranges from 429 °C to 443 °C. The warmest temperature, derived from a very fine-grained calcareous sandstone, is at the upper limit of known modern Earth surface temperatures, and prompts concern that the T(Δ47) may be shifted to warmer temperatures as a result of burial diagenesis. Vitrinite reflectance and Tmax values indicate the samples have reached early maturity for oil generation (oil window from 60 °C to 150°C), so may have reached the lower end of temperatures for bond reordering to have occurred (~100 °C for ~100 million years). Despite this, the T(Δ47) are consistent with summer temperatures in a warm Cretaceous. In addition, temperature variations are similar to TEX86 records, especially from SST of the tropical Pacific. Two temperature increases and decreases occur, with the first peak in temperature occurring at the negative carbon isotope excursion (C3) associated with the initiation of the Selli Event (OAE1a). This study provides evidence that climate variations occurring during the Selli Event were experienced in terrestrial environments, and provides maximum summer temperatures for this part of the Asian continent during the Cretaceous. While it was intended that thermal

  1. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  2. Molecular and stable carbon isotopic compositions of hopanoids in seep carbonates from the South China Sea continental slope

    Science.gov (United States)

    Guan, Hongxiang; Sun, Yongge; Mao, Shengyi; Zhu, Xiaowei; Wu, Nengyou

    2014-10-01

    The lipid biomarkers of hopanoids in cold seep carbonates from the South China Sea continental slope were investigated by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-isotope ratio-mass spectrometer (GC-ir-MS). The distribution of hopanes/hopenes shows a preference for the ‘biological’ 17β(H), 21β(H)-over the ‘geological’ 17α(H), 21β(H)-configuration. This interpretation is in agreement with the strong odd-even preference of long-chain n-alkanes in those samples, suggesting that the ββ hopanes may be the early diagenetic products of biohopanoids and the αβ, βα configurations of hopanes were mainly derived from allochthonous sources contributing to the organic matter of the carbonates. In terms of hopanoid acids, the C30 to C33 17β(H), 21β(H)-hopanoid acids were detected with C32 17β(H), 21β(H)-hopanoid acid being the most abundant. However, there is a significant difference in stable carbon isotopic compostions of the C32 17β(H), 21β(H)-hopanoic acid among samples (-30.7‰ to -69.8‰). The δ13C values match well with the carbon isotopic compositions of SRB-derived iso-/anteiso-C15:0 fatty acids in the samples, which strongly depend on the carbon utilization types by microbe. The most abundant compound of hopanols detected in the samples, C30-17β(H), 21β(H)-hopanol, may be a good indicator of diagenetic product of type I methanotrophs. The molecular and carbon isotopic compositions of hopanoids demonstrate clearly that there is a combination contribution of both SRB and type I or type X methanotrophs to the source organism in the seep carbonates from the South China Sea continental slope.

  3. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous)

    NARCIS (Netherlands)

    Jarvis, I.; Trabucho-Alexandre, João; Gröcke, D.R.; Uličný, D.; Laurin, J.

    2015-01-01

    Carbon (d13Corg, d13Ccarb) and oxygen (d18Ocarb) isotope records are presented for an expanded Upper Cretaceous (Turonian–Coniacian) hemipelagic succession cored in the central Bohemian Cretaceous Basin, Czech Republic. Geophysical logs, biostratigraphy and stable carbon isotope chemostratigraphy pr

  4. ­­A Clumped Isotope Calibration for Terrestrial Microbial Carbonates

    Science.gov (United States)

    Petryshyn, V. A.; Mering, J. A.; Mitsunaga, B. A.; Eagle, R.; Dunbar, R. B.; Bhattacharya, A.; Tripati, A.

    2014-12-01

    Accurate terrestrial paleotemperature records are key pieces of information in the paleoenvironmental reconstruction of Earth history. These records aid in building reliable climate models and help scientists understand the links between continental and oceanic climate data. Many different types of analyses are used to estimate terrestrial climate shifts, including leaf margin analysis, palynology, glacial deposits, elemental ratios, organic geochemistry, and stable isotopes of lacustrine deposits. Here we report a carbonate clumped isotope calibration for microbial carbonates. Application of the clumped isotope paleothermometer can potentially provide a direct temperature measurement of the water at the time of carbonate formation. Although different calibrations of the paleothermometer have been published for both inorganic and biotic carbonate minerals, the effects of clumping in microbialites (structures built under the influence of microbial activity) have not yet been quantified. Lacustrine microbialites present a potentially large, untapped archive of terrestrial climate data, however they are not strictly biotic or abiotic, but bio-induced carbonate, meaning that organisms (such as photosynthetic bacteria) influence but do not directly control precipitation. We have measured modern microbialites from multiple lacustrine sites and will report a comparison of these results to known water temperatures. Additionally we will compare lacustrine samples to marine microbialites (e.g., samples from Shark Bay) to assess potential differences between lacustrine and marine intertidal environments on clumped isotope compositions.

  5. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    Science.gov (United States)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  6. Transient carbon isotope changes in complex systems: Finding the global signal, embracing the local signal

    Science.gov (United States)

    Bowen, G. J.; Schneider-Mor, A.; Filley, T. R.

    2008-12-01

    Global, transient carbon isotope excursions (CIEs) in the geological record are increasingly invoked as evidence of short-lived changes in carbon fluxes to/from the ocean-atmosphere-biosphere (exogenic) system. Reconstructing the dynamics of carbon cycle perturbation and response during such events requires that the global extent, magnitude, and temporal pattern of carbon isotope change are well understood. Unfortunately, no simple, globally integrated measure of exogenic δ13C change exists in the geological record: during major global perturbations even the best-case candidates such as deep-ocean carbonate δ13C values likely respond to a complex of factors including ocean carbonate chemistry and circulation. Here we consider the utility of organic carbon isotope records from two complex depositional systems common in the geological record, fossil soils and continental margin sediments, which are of interest in terms of their relationship to organic carbon cycling and records of past ecological change. Within both systems changes in ecology, climate, carbon source, residence time, and molecular composition have clear potential to modulate the preserved record of global exogenic δ13C change, compromising 1st-order interpretations of bulk or compound-specific isotopic records. Process-explicit eco- geochemical models, ideally combined with multi-substrate data, provide one approach to the isolation of global δ13C change and identification of local or regional processes reflected in such records. Examples from both systems drawn from ongoing work on the Paleocene-Eocene thermal maximum illustrate the potential pitfalls, as well as opportunities, afforded by coupled data/model assessment of transient δ13C changes in complex systems.

  7. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  8. Carbon and oxygen isotope geochemistry of Ediacaran outer platform carbonates, Paraguay Belt, central Brazil

    Directory of Open Access Journals (Sweden)

    Claudio Riccomini

    2007-09-01

    Full Text Available After the late Cryogenian glaciation the central region of Brazil was the site of extensive deposition of platformal carbonates of the Araras Group. This group includes a basal cap carbonate sequence succeeded by transgressive, deep platform deposits of bituminous lime mudstone and shale. Facies and stratigraphic data combined with carbon and oxygen isotopic analyses of the most complete section of the transgressive deposits, exposed in the Guia syncline, were used to evaluate the depositional paleoenvironment and to test the correlation of these deposits along the belt and with other units worldwide. The studied succession consists of 150 m thick tabular beds of black to grey lime mudstone and shale with predominantly negative delta13C PDB values around -2.5 to -1‰ . The delta13C PDB profile of Guia syncline shows a clear correlation with the upper portion of Guia Formation in the Cáceres region, about 200 km to the southwest. The delta13C PDB profile of the Araras Group is comparable with delta13C PDB profiles of Ediacaran units of the southern Paraguay Belt, western Canada, and the Congo and Kalahari cratons. Moreover, facies distribution, stratigraphy and the carbon isotopic profile of the Araras Group match the middle Tsumeb Subgroup in Namibia, which reinforces the Ediacaran age assigned to the Araras Group.Após a glaciação do final do Criogeniano, a região central do Brasil foi palco de extensa deposição de carbonatos plataformais do Grupo Araras. Este grupo inclui na sua base uma seqüência de capa carbonática sucedida por depósitos transgressivos de calcilutitos betuminosos e folhelhos de plataforma profunda. Dados de fácies e estratigráficos combinados com análises isotópicas de carbono e oxigênio da seção mais completa desses depósitos transgressivos, expostos no sinclinal da Guia, foram empregados para avaliar o paleambiente deposicional e para testar a correlação desses depósitos ao longo da faixa e tamb

  9. Vertical Stratification Changes During the Last Deglaciation Based on Foraminiferal Neodymium and Carbon Isotopes

    Science.gov (United States)

    Piotrowski, A. M.; Noble, T. L.; Roberts, N. L.; Yu, J.

    2011-12-01

    Reorganizations of the vertical structure of the ocean are believed to have occurred during major climate transitions. Some studies utilizing nutrient tracers have suggested that North Atlantic intermediate and deep ocean circulation changed together during the last deglaciation, in a manner consistent with reorganizations of the global thermohaline circulation (Rickaby and Elderfield, 2005). A strong vertical gradient in carbon isotopes, or chemocline, existed at ~2.5 km-bsl the glacial South Atlantic sector of the Southern Ocean, which may have been due to different intermediate and deep water sourcing (Hodell et al., 2003). We present new Nd isotope records from globally-distributed intermediate sites in the North Atlantic, South Atlantic, and Pacific Ocean, comparing them to Nd isotope records from proximal deep sites to examine whether there is a global coherency to changes in intermediate and deep water mass sourcing. Comparison of Nd isotopes from vertical transects in the ocean also allows us to address an important geochemical debate about REE cycling in the ocean; whether long-distance horizontal advection or local boundary exchange from sediments plays a more important role in labelling the Nd isotopic composition of seawater. Down-slope vertical transport of sediments from the continental shelf to the deep ocean should mean that under conditions where boundary exchange is dominant, intermediate and deep waters will be labelled with similar Nd isotopic compositions and it will also cause them to covary together through time. We show that the Nd isotopic composition of intermediate depth cores in the South Atlantic and Pacific sectors of the Southern Ocean record small changes of ~1 epsilon unit or less during the deglaciation. As is the case with C isotopes, a stronger vertical Nd isotope gradient existed in the South Atlantic during the last glacial. Nd and C isotopes changed together at intermediate-depth ODP Site 1088 in the South Atlantic in a manner

  10. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: Methane and hydrogen from the mantle?

    Science.gov (United States)

    Lawrence, J. R.; Taviani, M.

    1988-08-01

    D/H ratios in the pore waters of the sediments from the Norwegian Sea decrease as a function of depth to values as low as -14%. Oxygen isotope ratios in the pore waters and carbon and oxygen isotope ratios in carbonates both in the sediments and basalts are low. Extensive alteration of basalt has been given as the explanation for the low oxygen isotope ratios. Material balance calculations suggest that alteration of volcanic material and oxidation of organic matter cannot explain the hydrogen and carbon isotope anomalies. Arguments are presented suggesting that methane and hydrogen from the mantle are oxidized to carbon dioxide and water by sulfate and ferric iron in the basaltic crust to yield the low hydrogen and carbon isotope ratios.

  11. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: Methane and hydrogen from the mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.R. (Univ. of Houston, University Park, TX (USA)); Taviani, M. (Instituto di Geologia Marina, del C.N.R., Bologna (Italy))

    1988-08-01

    D/H ratios in the pore waters of the sediments from the Norwegian Sea decrease as a function of depth to values as low as {minus}14{per thousand}. Oxygen isotope ratios in the pore waters and carbon and oxygen isotope ratios in carbonates both in the sediments and basalts are low. Extensive alteration of basalt has been given as the explanation for the low oxygen isotope ratios. Material balance calculations suggest that alteration of volcanic material and oxidation of organic matter cannot explain the hydrogen and carbon isotope anomalies. Arguments are presented suggesting that methane and hydrogen from the mantle are oxidized to carbon dioxide and water by sulfate and ferric iron in the basaltic crust to yield the low hydrogen and carbon isotope ratios.

  12. Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria)

    Science.gov (United States)

    Ruhl, Micha; Kürschner, Wolfram M.; Krystyn, Leopold

    2009-05-01

    The late Triassic period is recognized as one of the five major mass extinctions in the fossil record. All these important intervals in earth history are associated with excursions in C-isotope records thought to have been caused by perturbations in the global carbon cycle. The nature and causes of C-isotopic events across the Triassic-Jurassic (T-J) transition however, are poorly understood. We present several new high resolution organic C-isotope records from the Eiberg Basin, Austria, including the proposed Global boundary Stratotype Section and Point (GSSP) for the base of the Jurassic. The Triassic-Jurassic boundary interval in these records is characterized by the initial and main negative organic carbon isotope excursions (CIE) of up to 8‰. The initial and main CIEs are biostratigraphically constrained by first and last occurrences of boundary defining macro- and microfossils (e.g. ammonites). High resolution C-isotope records appear to be an excellent correlation proxy for this period in the Eiberg Basin. Pyrolysis analysis demonstrates increased Hydrogen Index (HI) values for organic matter coinciding with the initial CIE. Terrestrial organic matter influx and mass occurrences of green algae remains may have influenced the C-isotope composition of the sedimentary organic matter. This may have contributed to the extreme amplitude of the initial CIE in the Eiberg Basin.

  13. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    Directory of Open Access Journals (Sweden)

    J. Wintel

    2013-04-01

    Full Text Available Measurements of stable carbon isotope ratios in VOC are a powerful tool to identify sources or to track both dynamical and chemical processes. During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer and the lower free troposphere over south-west Germany. These samples were analysed with respect to VOC mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer. In this study we present the results for toluene, one of the major anthropogenic pollutants. In the boundary layer we observed rather fresh emissions mixing into the background and derived a toluene source isotope ratio of δ13C = −28.2 ± 0.5 ‰. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We estimated the photochemical age of toluene in the atmosphere in two different ways (using isotope ratios and mixing ratios, respectively. The results differ strongly in the planetary boundary layer, probably due to mixing processes, but are compatible with each other in the free troposphere.

  14. Carbon isotopic records inpaleosols over the Pliocene in Northern China: Implication on vegetation developmentand Tibetan uplift

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon isotopic composition of pedogenic carbonate can be used to estimate the proportion of C4 and C3 plants. Here we present carbon isotopic data of carbonate in a red earth section at Xifeng, central Loess Plateau. Results show that C4 vegetation increased in ~4.4 Ma B.P., stabilized between 4.0 and 3.0 Ma B.P. The character and timing of C4 expansion on the Loess Plateau are similar, but different with other localities, e.g. Pakistan and Africa, implying that regional climate changes were main factors driving the expansion of C4 plants. This event is comparable in timing with increased aridity evidenced by Xifeng grain size and North Pacific eolian dust records. Therefore we argue that the Pliocene expansion of C4 plants in northern China might have been caused by the increased aridity, which in turn might be related to rapid uplift of the Tibetan Plateau.

  15. Oxygen and carbon isotope composition from the UHP Shuanghe marbles, Dabie Mountains, China

    Institute of Scientific and Technical Information of China (English)

    王清晨; Douglas; Rumble

    1999-01-01

    Investigations on the oxygen and carbon isotope compositions from the ultrahigh-pressure (UHP)-metamorphosed Shuanghe marbles, that occur as a member of a UHP slab, show that the δ18O values range from +11.1‰ to+20.5‰ SMOW, and δ13C from+1.0‰ to+5.7‰ PDB, respectively. The variations in isotope compositions show a centimeter scale of homogeneity and a heterogeneity of regional scale larger than 1 meter. In contrast to the eclogite marbles from Norway, the Shuanghe marbles have inherited the carbon isotope compositions from their sedimentary precursor. The δ13C shows positive correlation to the content of dolomite. The depletion in 18O, compared with the protolithic carbonate strata, might result from three possible geological processes: 1) exchanging oxygen isotope with meteoric water before the UHP metamorphism, 2) decarbonation during the UHP metamorphism, and 3) exchanging oxygen isotope with country gneiss at local scale during retrograde metamorphism. It seems that the adveetion

  16. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem

    Science.gov (United States)

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Ma, Jing; Xu, Hua

    2016-06-01

    Carbon isotopic fractionations in the processes of CH4 emission from paddy field remain poorly understood. The δ13C-values of CH4 in association with production, oxidation and transport of CH4 in different pools of a paddy field were determined, and the stable carbon isotope fractionations were calibrated to assess relative contribution of acetate to CH4 production (fac) and fraction of CH4 oxidized (fox) by different pathways. The apparent isotope fractionation for CO2 conversion to CH4 (αapp) was 1.041-1.056 in the soil and 1.046-1.080 on the roots, indicating that fac was 10-60% and 0-50%, respectively. Isotope fractionation associated with CH4 oxidation (αox) was 1.021 ± 0.007 in the soil and 1.013 ± 0.005 on the roots, and the transport fractionation (ɛtransport) by rice plants was estimated to be -16.7‰ ~ -11.1‰. Rhizospheric fox was about 30-100%, and it was more important at the beginning but decreased fast towards the end of season. Large value of fox was also observed at the soil-water interface and soil and roots surfaces, respectively. The results demonstrate that carbon isotopic fractionations which might be different in different conditions were sensitive to the estimations of fac and fox in paddy field.

  17. Metal isotopes and carbonate proxy archives: Model-based perspectives on diagenesis

    Science.gov (United States)

    Fantle, M. S.; Higgins, J. A.; Griffith, E. M.

    2014-12-01

    Metal isotopes are novel tools, and have expanded the geochemical toolbox for elucidating the functioning of the Earth over various time scales. Carbonate-based stable isotope proxies now extend well beyond the traditional major elements (C and O) to include Ca, as well as trace elements such as Sr, S, Mg, B, Li, Cd, and U. Such trace isotopic proxies may contain invaluable information about the Earth system in the past, but can be susceptible to diagenetic alteration over long time scales. It is therefore critical that diagenetic effects are understood and can be recognized in ancient rocks. The extent of alteration depends on reaction rate and advection velocity in the sedimentary section, and elemental partitioning and isotopic effects associated with diagenesis. Numerical approaches, such as reactive transport models, are extremely useful tools for constraining such variables, and for testing hypotheses related to alteration of proxy records. Reactive transport models allow for constraints on calcite recrystallization rates in natural systems; data from ODP Sites 807A, 1170A, 1171A, and 806B suggest rapid recrystallization in relatively young sediments, as well as a Ca isotopic fractionation factor (α) associated with calcite recrystallization close to 1 (Δ=0). While the former is critical for addressing the fidelity and accuracy of a variety of geochemical proxies, the latter is distinctly different from that associated with the formation of carbonates in the surface ocean (Δ~ -1.35‰), suggesting considerable isotopic leverage to alter Ca isotopes during diagenesis. While Ca isotopes are generally well buffered in carbonate-rich sediments, this leverage to alter may be expressed as a reduction in the amplitude of geochemical variability in the solid or as a result of reactions near the sediment-seawater interface (as seen at ODP Site 1221 associated with chemical burndown during the PETM). Further, the Ca and Mg isotopic compositions of shallow water

  18. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream

    Science.gov (United States)

    Doctor, D.H.; Kendall, C.; Sebestyen, S.D.; Shanley, J.B.; Ohte, N.; Boyer, E.W.

    2008-01-01

    The stable isotopic composition of dissolved inorganic carbon (??13C-DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed ?? 13C-DIC increased between 3-5??? from the stream source to the outlet weir approximately 0??5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in ??13C-DIC of 2.4 ?? 0??1??? per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased ?? 13C-DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream ??13C-DIC values, points of localized groundwater seepage into the stream were identified by decreases in ??13C-DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, ??13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright ?? 2007 John Wiley & Sons, Ltd.

  19. Preliminary Study: Application of Off-Axis ICOS to Determine Stable Carbon Isotope in Dissolved Inorganic Carbon

    Science.gov (United States)

    Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.

    2015-12-01

    CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.

  20. Li isotopes in foraminifera: a new proxy for past ocean dissolved inorganic carbon

    Science.gov (United States)

    Vigier, N.; Rollion-Bard, C.; Erez, J.

    2009-12-01

    Past ocean pH and pCO2 are critical parameters for establishing relationships between Earth climate and carbon cycle. For the Miocene-Pleistocene period, two main proxies have been used: carbon isotopes of di-unsaturated alkenones extracted from sea cores, and boron isotope signatures of marine carbonates [1, 2]. Both techniques lead to selfconsistent palaeooceanic pH or pCO2 estimates, but are associated with large uncertainties. Moreover, the paleovariations calculated from boron isotope measurements are a matter of debate. Additional proxies are therefore needed. Based on an in-situ analytical technique recently developed [3], we analysed a series of foraminifera - Amphistegina - cultured under various conditions (in pH, T and Dissolved Inorganic Carbon). We show that the lithium isotope signature of the foraminifera correlates with the DIC (r2 = 0.93). Conversely, there is no dependency of Li isotope signature on pH or T. A simple model of biomineralization in which growth rate is a key parameter can fit the whole dataset, including published values for other foraminifera species [4, 5]. This strongly suggests that the DIC-δ7Li correlation highlighted by the cultured Amphistegina can also be applied to other species. These results, combined with the published oceanic Li and B isotope paleovariations [2, 4, 5], allow us to estimate the ocean DIC and pCO2 evolution for the past 18Ma. The similarity with the pCO2 curve given by carbon isotopes measured in di-unsaturated alkenones is striking. This supports the use of Li isotopes as a new proxy and adds support to the existing data. It also suggests, in contrast with the common view, a less significant role of river input on the variation of the ocean Li isotope composition, at least for the period considered. [1] Pagani et al. (2005) Science 309, 600-603. [2] Pearson & Palmer (2000) Nature 406, 695-699. [3] Vigier et al. (2007) G-cubed 8, Q01003 [4] Hall et al. (2005) Mar. Geology 217, 255-265 [5] Hathorne

  1. Molecular, radioactive and stable carbon isotope characterization of estuarine particulate organic matter

    OpenAIRE

    Megens, L.; van der Plicht, J.; De Leeuw, JW; Leeuw, Jan W. de; Mook, W.G.

    1998-01-01

    Organic matter in sediments and suspended matter is a complex mixture of constituents with different histories, sources and stabilities. To study these components in a suspended matter sample from the Ems-Dollard Estuary, we used combined molecular analysis with pyrolysis/gas chromatography/mass spectrometry and stable and radioactive carbon isotope analyses of the bulk and separated chemical fractions. Carbohydrates and proteins, ca. 50% of the total organic carbon (TOC), are much younger th...

  2. Food sources for the mangrove tree crab aratus pisonii: a carbon isotopic study

    International Nuclear Information System (INIS)

    Muscle tissues from the mangrove tree crab Aratus pisonii was analysed for carbon isotopic composition, in order to trace its major food sources. Potential food sources: mangrove leaves epi phytic green algae, mangrove sediments and open water and mangrove suspended matter; were also analysed. The results show that A. pisonii is basically omnivorous, with major food sources from marine origin. However, mangrove carbon can contribute with 16% to 42% in the crab's diet. (author)

  3. Mass spectrometric analysis of stable carbon isotopes in abiogenic and biogenic natural compounds

    International Nuclear Information System (INIS)

    This report describes the general methodology of sup/13/ carbon analysis on mass spectrometer and various preparation systems developed for conversion of samples into isotopically non-fractionated and purified carbon dioxide. Laboratory standards required for sup/13/ C analysis have been calibrated against international standards. The reproducibility/accuracy of sample preparation and analysis on mass spectrometer for sup/13/ C or sup/12/ C measurement is well within the internationally acceptable limits. (author)

  4. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    .1 ± 0.8‰; ε18O, −23.7 ± 1.8‰ to −19.9 ± 0.8‰). The observed isotope effects did not depend on the growth kinetics which were similar for the three types of electron donors. We suggest that different carbon sources change the observed isotope enrichment factors by changing the relative kinetics of......-labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed...

  5. Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces

    Directory of Open Access Journals (Sweden)

    D. Codron

    2005-06-01

    Full Text Available In African savannas, browse-based resources (@3 plants are isotopically distinct from grasses (@4 plants. The carbon isotopic composition of the basic plant diet is recorded in animal tissues. Mammal faeces are a readily accessible, non-invasive, sample material for temporally resolved dietary reconstructions. Faeces, however, include both undigested plant matter and waste, hence accuracy of dietary calculations could potentially be compromised by shifts in plant isotopic values related to seasonal or spatial differences, or by variability in the isotopic differences between faeces and diet. A controlled feeding study of four ungulate species showed a small, consistent difference between diet and faeces of-0.9 o, irrespective of whether the diet was @3 or C4-based. Results from faeces oftaxa known to be pure grazers, pure browsers, and mixed-feeders from the Kruger National Park were entirely consistent with their diets, but the accuracy of dietary reconstructions is enhanced with data from local plant communities.

  6. Stable Carbon Isotope Fractionation by Methylotrophic Methanogenic Archaea

    OpenAIRE

    Penger, Jörn; Conrad, Ralf; Blaser, Martin

    2012-01-01

    In natural environments methane is usually produced by aceticlastic and hydrogenotrophic methanogenic archaea. However, some methanogens can use C1 compounds such as methanol as the substrate. To determine the contributions of individual substrates to methane production, the stable-isotope values of the substrates and the released methane are often used. Additional information can be obtained by using selective inhibitors (e.g., methyl fluoride, a selective inhibitor of acetoclastic methanoge...

  7. Constraints on the formation and diagenesis of phosphorites using carbonate clumped isotopes

    Science.gov (United States)

    Stolper, Daniel A.; Eiler, John M.

    2016-05-01

    The isotopic composition of apatites from sedimentary phosphorite deposits has been used previously to reconstruct ancient conditions on the surface of the Earth. However, questions remain as to whether these minerals retain their original isotopic composition or are modified during burial and lithification. To better understand how apatites in phosphorites form and are diagenetically modified, we present new isotopic measurements of δ18O values and clumped-isotope-based (Δ47) temperatures of carbonate groups in apatites from phosphorites from the past 265 million years. We compare these measurements to previously measured δ18O values of phosphate groups from the same apatites. These results indicate that the isotopic composition of many of the apatites do not record environmental conditions during formation but instead diagenetic conditions. To understand these results, we construct a model that describes the consequences of diagenetic modification of phosphorites as functions of the environmental conditions (i.e., temperature and δ18O values of the fluids) during initial precipitation and subsequent diagenesis. This model captures the basic features of the dataset and indicates that clumped-isotope-based temperatures provide additional quantitative constraints on both the formational environment of the apatites and subsequent diagenetic modification. Importantly, the combination of the model with the data indicates that the δ18O values and clumped-isotope temperatures recorded by phosphorites do not record either formation or diagenetic temperatures, but rather represent an integrated history that includes both the formation and diagenetic modification of the apatites.

  8. Stable carbon isotope analyses in sediments and its implications for reconstructing climatic and environmental changes

    International Nuclear Information System (INIS)

    The relative significance of the 20th-century climatic and environmental changes must be assessed form the long-term global-scale perspective available from a spectrum of proxy histories. In many cases geochemical proxies in sediments are needed to supplement the established use of the stable isotope analyses for paleotemperature and paleo-hydrological modeling so as to understand the past environment conditions and evaluate predictive models of climate. The stable carbon isotope fractionation during photosynthesis and the system CO2 (gas)-CO2-(aqueous)-HCO3- (aqueous) are reviewed; and application of the stable carbon isotope to reconstruction of palaeo-climatic and palaeo-environmental changes, especially CO2 levels during the late Quaternary are discussed

  9. Isotopes of carbon monoxide in the free troposphere and their implications to atmospheric chemistry. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Mak, J.E.

    1992-01-01

    The thesis project was designed to provide information for the following questions: what is the oxidative capacity of the troposphere, and how are the source strengths of carbon monoxide partitioned. Because of its active role in tropospheric chemistry, carbon monoxide is important in determining the fate of a number of species, including hydroxyl radicals. (14)CO serves as a natural tracer for its destruction, as the source function can be well contrained. By determining the tropospheric inventory of (14)CO and calculating its source strength, one may realize the rate of destruction. Similarly, because certain sources have unique stable isotope signatures, an analysis of the stable isotopes provides information on the relative source strengths. A sampling system was built which allowed for the collection of large, whole air samples from an aircraft platform. CO was extracted and the isotopes were determined, and from these data an OH abundance was calculated using a 2-D transport model.

  10. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation

    Science.gov (United States)

    Bauska, Thomas K.; Baggenstos, Daniel; Brook, Edward J.; Mix, Alan C.; Marcott, Shaun A.; Petrenko, Vasilii V.; Schaefer, Hinrich; Severinghaus, Jeffrey P.; Lee, James E.

    2016-03-01

    An understanding of the mechanisms that control CO2 change during glacial-interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO2 (δ13C-CO2) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO2 from 17.6 to 15.5 ka, these data demarcate a decrease in δ13C-CO2, likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO2 rise of 40 ppm is associated with small changes in δ13C-CO2, consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in δ13C-CO2 that suggest rapid oxidation of organic land carbon or enhanced air-sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO2 coincident with increases in atmospheric CH4 and Northern Hemisphere temperature at the onset of the Bølling (14.6-14.3 ka) and Holocene (11.6-11.4 ka) intervals are associated with small changes in δ13C-CO2, suggesting a combination of sources that included rising surface ocean temperature.

  11. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation

    Science.gov (United States)

    Bauska, Thomas K.; Baggenstos, Daniel; Brook, Edward J.; Mix, Alan C.; Marcott, Shaun A.; Petrenko, Vasilii V.; Schaefer, Hinrich; Lee, James E.

    2016-01-01

    An understanding of the mechanisms that control CO2 change during glacial–interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO2 (δ13C-CO2) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO2 from 17.6 to 15.5 ka, these data demarcate a decrease in δ13C-CO2, likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO2 rise of 40 ppm is associated with small changes in δ13C-CO2, consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in δ13C-CO2 that suggest rapid oxidation of organic land carbon or enhanced air–sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO2 coincident with increases in atmospheric CH4 and Northern Hemisphere temperature at the onset of the Bølling (14.6–14.3 ka) and Holocene (11.6–11.4 ka) intervals are associated with small changes in δ13C-CO2, suggesting a combination of sources that included rising surface ocean temperature. PMID:26976561

  12. Noble gas isotopic composi-tions of deep carbonate rocks from the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Abundances and isotopic compositions of noble gases (He, Ne, Ar, Kr) with various existence states in carbonate rocks from the Tacanl Well have been investigated by means of the stepwise heating technique. The elemental abundance patterns of noble gases in the samples show the enrichment of heavy noble gases and depletion of 20Ne relative to the atmosphere, which are designated as type- I and are similar to that observed in water, natural gases and sedimentary rocks. The 3He/4He ratios of deep carbonate samples at lower and medium temperature (300-700℃) and a majority of samples at higher temperature (1100-1500℃) steps are very similar to those of natural gases in the same strata in this area, this feature of radiogenic crustal helium shows that the Tazhong Uplift is relatively stable.However, significant helium and argon isotopic anomalies are found at the 1100℃ step in the Middle-Upper Ordoviclan carbonate rock, suggesting the incorporation of manfie-derived volatiles, this may be due to minor igneous minerals contained in sedimentary carbonate rocks. The 40Ar/36Ar ratios in the Cambrian carbonate rock are slightly higher than those in Ordovician carbonate rocks, which may reflect the influence of the chronologic accumulation effect of crust radiogenic 40Ar. Argon isotopes of various existence states in source rocks are much more different, both 38Ar/36Ar and 40Ar/36Ar ratios at the higher temperature steps are higher than those at the lower temperature steps.``

  13. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua).

    Science.gov (United States)

    McMahon, Kelton W; Polito, Michael J; Abel, Stephanie; McCarthy, Matthew D; Thorrold, Simon R

    2015-03-01

    Compound-specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ(13)CC-D and Δ(15)NC-D, respectively). We found that essential AA δ (13)C values and source AA δ (15)N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ(13)CC-D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian-specific nitrogen trophic discrimination factor (TDFGlu-Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ(15)NC -D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi-TDFG lu-Phe equation with the avian-specific TDFG lu-Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFG lu-Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers. PMID:25859333

  14. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways

    NARCIS (Netherlands)

    Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S.A.B.; Stams, A.J.M.; Richnow, H.H.; Vogt, C.

    2008-01-01

    Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under o

  15. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne;

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  16. Feeding ecology of harbour porpoises: stable isotope anlaysis of carbon and nitrogen in muscle and bone

    NARCIS (Netherlands)

    Jansen, O.E.; Aarts, G.M.; Das, K.; Lepoint, G.; Michel, L.; Reijnders, P.J.H.

    2012-01-01

    Harbour porpoises are the most common small cetaceans in the North Sea and Dutch coastal waters. To study their trophic level and feeding location, stable carbon and nitrogen isotope ratios (d13C and d15N) were analysed in muscle and bone samples collected from 157 porpoises stranded along the Dutch

  17. Production of exotic, short lived carbon isotopes in ISOL-type facilities

    CERN Document Server

    Franberg, Hanna; Köster, Ulli; Ammann, Markus

    2008-01-01

    The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

  18. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  19. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with δ18O = 0±50‰ relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41‰ relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of δ18O = 31.0±5.7‰. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment δ18O = 18±18‰. We present results from fully resolved spectroscopic measurements near 10.6 μm of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power λ/Δλ=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1

  20. The time has changed: Middle Triassic climate changes revealed by carbon isotopes

    Science.gov (United States)

    Schmid, S.; Worden, R.; Fisher, Q.

    2003-04-01

    The Middle Triassic stratigraphy in Europe can be subdivided into a marine section of the Germanic and Paris Basin and a continental red-bed succession of Western Europe (Irish Basin, Wessex Basin). The link between the marine and continental is uncertain due to a lack of biostratigraphic information but recent palaeomagnetic studies have given a better understanding of the two environments (Hounslow et. al, 2001). In this study we have produced geochemical evidence which emphasize the implications of the palaeomagnetic data. We show that the marine and continental strata can be correlated using carbon isotopes. Throughout Europe the Middle Triassic is characterized by limestone deposits of the Muschelkalk Formation that contain evidence of a hiatus in sedimentation due to sea-level fall in the Middle Muschelkalk with the consequent deposition of evaporites. The Sherwood Sandstone Group (SSG) characterizes the Middle Triassic of Western Europe. The SSG is dominated by fluvial deposits with intercalated floodplain deposits, sand-flats and playas, which are penetrated by dolocretes and calcretes. The abundance of fluvial channels and sandflats are dependent on the fluvial activity and the water table height. In both depositional environments water plays a major role in the type of sediment. The volume of water is controlled by the prevalent climate. Climate signals are stored in carbon isotopes in both the marine Muschelkalk and the continental SSG. Carbon isotopes from the SSG from the Corrib Field, Slyne Basin, west of Ireland and from the Muschelkalk of the Germanic Basin have thus been interpreted in terms of climate change linked to stratigraphy. The continental sediments show a distinct positive carbon isotope excursion (taken from dolocretes), which is interpreted to present a more arid climate. In contrast the marine limestones exhibit a negative carbon isotopes excursion from a sea level low stand for the same time interval. The plot of both carbon isotopes

  1. Intra-lake stable isotope ratio variation in selected fish species and their possible carbon sources in Lake Kyoga (Uganda): implications for aquatic food web studies

    NARCIS (Netherlands)

    Mbabazi, D.; Makanga, B.; Orach-Meza, F.; Hecky, R.E.; Balirwa, J.S.; Ogutu-Ohwayo, R.; Verburg, P.H.; Chapman, L.; Muhumuza, E.

    2010-01-01

    The stable isotopes of nitrogen (delta 15N) and carbon (delta 13C) provide powerful tools for quantifying trophic relationships and carbon flow to consumers in food webs; however, the isotopic signatures of organisms vary within a lake. Assessment of carbon and nitrogen isotopic signatures in a suit

  2. Combined oxygen- and carbon-isotope records through the Early Jurassic: multiple global events and two modes of carbon-cycle/temperature coupling

    DEFF Research Database (Denmark)

    Hesselbo, Stephen P.; Korte, Christoph

    2010-01-01

    , to the extent that meaningful comparisons between these events can begin to be made. Here we present new carbon and oxygen isotope data from mollusks (bivalves and belemnites) and brachiopods collected through the marine Early Jurassic succession of NE England, including the Sinemurian-Plienbachian boundary...... GSSP. All materials have been screened by chemical analysis and scanning electron microscopy to check for diagenetic alteration. Analysis of carbon isotopes from marine calcite is supplemented by analysis of carbon-isotope values from fossil wood collected through the same section. It is demonstrated...... that both long-term and short-term carbon-isotope shifts from the UK Early Jurassic represent global changes in carbon cycle balances. The Sinemurian-Pliensbachian boundary event is an event of global significance and shows several similarities to the Toarcian OAE (relative sea-level change, carbon...

  3. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    Science.gov (United States)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with δ18O = 0±50‰ relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41‰ relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of δ18O = 31.0±5.7‰. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment δ18O = 18±18‰. We present results from fully resolved spectroscopic measurements near 10.6 μm of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power λ/Δλ=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1

  4. Carbon isotopic composition of fossil leaves from the Early Cretaceous sediments of western India

    Indian Academy of Sciences (India)

    S Chakraborty; B N Jana; S K Bhattacharya; I Robertson

    2011-08-01

    Stable carbon isotope analysis of fossil leaves from the Bhuj Formation, western India was carried out to infer the prevailing environmental conditions. Compression fossil leaves such as Pachypteris indica, Otozamite kachchhensis, Brachyphyllum royii and Dictyozamites sp. were recovered from three sedimentary successions of the Bhuj Formation, Early Cretaceous in age. A chronology was established based on faunal assemblage and palyno-stratigraphy and further constrained by carbon isotope stratigraphy. The three sampling sites were the Karawadi river bank near Dharesi; the Chawad river bank near Mathal; and the Pur river section near Trambau village in Gujarat. The Dharesi sample was also analyzed to investigate intra-leaf 13C variability. The mean 13C of the leaf was −24.6 ± 0.4‰ which implied negligible systematic change along the leaf axis. The Mathal sample was fragmented in nature and showed considerable variation in carbon isotopic composition. The Trambau sample considered to be the oldest, dating to the middle of Aptian (ca. 116 Ma), shows the most depleted value in 13C among all of them. The overall 13C trend ranging from mid Aptian (ca. 116 Ma) to early Albian (ca. 110 Ma) shows a progressive increase in 13C from −26.8 to −20.5‰. Based on these measurements the carbon isotopic composition of atmospheric carbon dioxide of the Aptian–Albian period is estimated to be between −7.4 and −1.7‰. The ratio of the partial pressure of carbon dioxide in leaf to that of the ambient atmosphere calculated based on a model is estimated to be similar to that of the modern plants. This indicates that the Early-Cretaceous plants adapted to the prevailing high carbon dioxide regime by increasing their photosynthetic uptake.

  5. Carbon isotope ratios of Phanerozoic marine cements: Re-evaluating the global carbon and sulfur systems

    Science.gov (United States)

    Carpenter, Scott J.; Lohmann, Kyger C.

    1997-11-01

    Original δ 13C values of abiotically precipitated marine cements from a variety of stratigraphic intervals have been used to document secular variations in the δ 13C values of Phanerozoic oceans. These, together with the ° 34S values of coeval marine sulfates, are used to examine the global cycling of carbon and sulfur. It is generally accepted that secular variation in δ 13C and δ 34S values of marine carbonates and sulfates is controlled by balanced oxidation-reduction reactions and that their long-term, steady-state variation can be predicted from the present-day isotopic fractionation ratio (Δ c/Δ s) the ratio of the riverine flux of sulfur and carbon ( Fs/ Fc). The predicted slope of the linear relation between δ 13C carb and δ 34S sulfate values is approximately -0.10 to -0.14. However, temporal variation observed in marine cement δ 13C values and the 6345 values of coeval marine sulfates produces a highly significant linear relation ( r2 = 0.80; α > 95%) with a slope of -0.24; approximately twice the predicted value. This discordance suggests that either the Phanerozoic average riverine Fs/ Fc was 1.6-3.3 times greater than today's estimates or that an additional source of 34S-depleted sulfur or 13C-enriched carbon, other than continental reservoirs, was active during the Phanerozoic. This new relation between marine δ 13C and δ 34S values suggests that the flux of reduced sulfur, iron, and manganese from seafloor hydrothermal systems affects oceanic O2 levels which, in turn, control the oxidation or burial of organic matter, and thus the δ 13C value of marine DIC. Therefore, the sulfur system (driven by seafloor hydrothermal systems) controls the carbon system rather than organic carbon burial controlling the response of δ 34S values (via formation of sedimentary pyrite). Secular variation of marine 87Sr/86Sr ratios and δ 13C values argues for a coupling of δ 34S and δ 34S values to variation in the relative contribution of seafloor

  6. Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite

    Science.gov (United States)

    Socki, R. A.; Gibson, E. K.; Jull, A. J. T.; Karlsson, H. R.

    1991-01-01

    Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968.

  7. Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations

    Science.gov (United States)

    Pendall, E.G.; Harden, J.W.; Trumbore, S.E.; Chadwick, O.A.

    1994-01-01

    The radiocarbon content and stable isotope composition of soil carbonate are best described by a dynamic system in which isotopic reequilibration occurs as a result of recurrent dissolution and reprecipitation. Depth of water penetration into the soil profile, as well as soil age, determines the degree of carbonate isotope reequilibration. We measured ??13C, ??18O and radiocarbon content of gravel rinds and fine (soils of 3 .different ages (1000, 3800, and 6300 14 C yr B.P.) to assess the degree to which they record and preserve a climatic signal. In soils developing in deposits independently dated at 3800 and 6300 radiocarbon yr B.P., carbonate radiocarbon content above 40 cm depth suggests continual dissolution and reprecipitation, presumably due to frequent wetting events. Between 40 and 90 cm depth, fine carbonate is dissolved and precipitated as rinds that are not redissolved subsequently. Below 90 cm depth in these soils, radiocarbon content indicates that inherited, fine carbonate undergoes little dissolution and reprecipitation. In the 3800- and 6300-yr-old soils, ??13C in rind and fine carbonate follows a decreasing trend with depth, apparently in equilibrium with modern soil gas, as predicted by a diffusive model for soil CO2. ??18O also decreases with depth due to greater evaporative enrichment above 50 cm depth. In contrast, carbonate isotopes in a 1000-yr-old deposit do not reflect modern conditions even in surficial horizons; this soil has not undergone significant pedogenesis. There appears to be a lag of at least 1000 but less than 3800 yr before carbonate inherited with parent material is modified by ambient climatic conditions. Although small amounts of carbonate are inherited with the parent material, the rate of pedogenic carbonate accumulation indicates that Ca is derived primarily from eolian and rainfall sources. A model describing carbonate input and radiocarbon decay suggests that fine carbonate below 90 cm is mostly detrital (inherited

  8. Anomalous carbon-isotope ratios in nonvolatile organic material.

    Science.gov (United States)

    Kaplan, I R; Nissenbaum, A

    1966-08-12

    Organic mats are associated with sulfur deposits in Upper Pleistocene sand ridges of the coastal plain of southern Israel; black, brittle, and non-volatile, they show parallel layering but no other apparent cellular structure. Two independent carbon-14 determinations yielded ages of 27,750+/-500 and 31,370+/-1400 years. Four carbon-13:carbon-12 determinations fell within the range deltaC(13) =-82.5 to -89.3 per mille relative to the PDB standard; these appear to be the lowest values yet reported for naturally occurring high-molecular-weight organic material. The origin of the carbon is probably complex; it must have passed through at least one biologic cycle before final deposition.

  9. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  10. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    Science.gov (United States)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the

  11. Calibration of the carbonate `clumped isotope' paleotemperature proxy using mollusc shells and benthic foraminiferal tests

    Science.gov (United States)

    Came, R. E.; Curry, W. B.; Weidman, C. R.; Eiler, J. M.

    2007-12-01

    It has recently been shown that the carbonate `clumped isotope' thermometer can provide temperature constraints that depend only on the isotopic composition of carbonate (in particular, on the proportion of 13C and 18O that form bonds with each other), and that do not require assumptions about the isotopic composition of the water in which the carbonate formed (Ghosh et al., 2006). Furthermore, this novel method permits the calculation of seawater δ18O based on the clumped isotope temperature estimates and the simultaneously obtained δ18O of carbonate, thereby enabling the extraction of global ice volume estimates for both the recent and distant geologic past. Here we present clumped isotope analyses of several naturally occurring marine carbonates that calcified at known temperatures in the modern ocean. First, we analyzed benthic foraminiferal tests from six high-quality multicore tops collected in the Florida Strait, spanning a temperature range of 9.3-20.2 degrees C. Second, we analyzed shallow-water mollusc shells from a variety of different climate regimes, spanning a temperature range of 2.5-26.0 degrees C. We find that the calcitic foraminiferal species Cibicidoides spp. agrees well with the inorganic calcite precipitation experiments of Ghosh et al. (2006), while the aragonitic species Hoeglundina elegans is significantly offset. Similarly, clumped isotope results obtained from aragonitic mollusc shells also reveal an offset from the Ghosh et al. (2006) trend, although the offset observed in mollusc aragonite is quite different in nature from that observed in foraminiferal aragonite. Assuming our estimates of the growth temperatures of these naturally occurring organisms are correct, these results suggest that there are vital effects associated with the stable isotope compositions of the aragonite-precipitating organisms examined in this study; further work will be required to determine their cause. Nevertheless, the internal coherence of trends for

  12. Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313)

    DEFF Research Database (Denmark)

    Fang, Linhao; Bjerrum, Christian J.; Hesselbo, Stephen P.;

    2013-01-01

    The stratigraphic utility of carbon-isotope values from terrestrial organic matter is explored for Miocene siliciclastic sediments of the shallow shelf, New Jersey margin, USA (Integrated Ocean Drilling Program [IODP] Expedition 313). These shallow marine strata, rich in terrestrial organic matter......, provide a record of deposition equivalent to the Monterey event, a prolonged interval of time characterized by relatively positive carbon-isotope values recorded from foraminiferal carbonate in numerous oceanic settings. Coherent stratigraphic trends and short-term isotopic excursions are observed...... on the basis of measured C/N ratios, a high degree of conformity with the woody phytoclast record is observed. However, assuming that the correlations based on strontium-isotope values and biostratigraphy are correct, the carbon-isotope record from the New Jersey margin contrasts with that previously...

  13. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    Science.gov (United States)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  14. Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus

    Science.gov (United States)

    Crocker, Kimberley C.; DeNiro, Michael J.; Ward, Peter D.

    1985-12-01

    Eggwaters from the chambered cephalopod Nautilus are depleted in both 18O and deuterium relative to ambient seawater. Eggwaters from six other species, including the related chambered cephalopod Sepia, do not show such depletion. These observations indicate that the previously observed step towards more positive δ 18O values in calcium carbonate laid down after Nautilus hatches, relative to carbonate precipitated prior to hatching, can be explained by equilibration of the carbonate with water in the egg before hatching and with seawater after hatching. The presence of an oxygen isotope difference between eggwater and seawater for Nautilus and its absence for Sepia suggest that hatching will be recorded in the δ 18O values of shell carbonates for some but not all extinct and extant chambered cephalopods. The δ 13C values of the organic fraction of the siphuncle in Nautilus do not show any consistent pattern with regard to the time of formation before or after hatching. This observation suggests that the minimum in δ 13C values previously observed for calcium carbonate precipitated after Nautilus hatches is not caused by a change in food sources once the animal becomes free-swimming, as has been suggested.

  15. Stable isotope composition of dissolved inorganic carbon and particulate organic carbon in sea ice from the Ross Sea, Antarctica

    Science.gov (United States)

    Munro, David R.; Dunbar, Robert B.; Mucciarone, David A.; Arrigo, Kevin R.; Long, Matthew C.

    2010-09-01

    We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (ΣCO2), and the 13C/12C ratio of ΣCO2 ? Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (δ13CPOC). ΣCO2 in sea ice brines ranged from 1368 to 7149 μmol kg-1, equivalent to 1483 to 2519 μmol kg-1 when normalized to 34.5 psu salinity (sΣCO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available ΣCO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce sΣCO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine ? ranged from -2.6 to +8.0‰ while δ13CPOC ranged from -30.5 to -9.2‰. Isotopic enrichment of the ΣCO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of sΣCO2, ? and δ13CPOC within sea ice suggest that ɛp (the net photosynthetic fractionation factor) for sea ice algae is ˜8‰ smaller than the ɛp observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.

  16. On-line coupling of the MAT 251 with a Carlo Erba elemental analyzer for carbon isotope ratio measurements

    International Nuclear Information System (INIS)

    For carbon isotope investigations with a moderate precision demand of about 0.2 per mil in the isotope ratio fast and reliable results are attained by on line combination of the ANA 1500 Elemental Analyzer and the MAT 251 Isotope Mass Spectrometer. The crucial point hereof is the gas splitting device. By proper design and adjustment of the analytical parameters, good sample efficiency and a sharp CO2 bulk within the He stream is reached. The main characteristics of this combined equipment are described and some isotopic results of organic and anorganic carbon in lake sediment-samples are given as well as deltasup13C-analyses of spiritous liquors. (Author)

  17. The chromium isotopic composition of an Early to Middle Ordovician marine carbonate platform, eastern Precordillera, San Juan, Argentina

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Frei, Robert; Gilleaudeau, Geoffrey Jon;

    A broad suite of redox proxy data suggest that despite ocean and atmosphere oxygenation in the late Neoproterozoic, euxinic conditions persisted in the global deep oceans until the at least Ordovician [1,2,3]. Major changes in the sulphur isotopic composition of carbonate associated sulphate and co......-existing pyrite in the later Middle Ordovician are consistent with oxygen mixing at depth and ventilation of euxinic bottom waters [4]. We measured the Cr isotopic composition of an Early to Middle Ordovician carbonate platform to test whether Cr isotopes record ocean oxygenation. The Cr isotopic composition...

  18. Determination of the coefficient of iodine absorption carbon materials adsorber ventilation NPP using stable isotopes

    International Nuclear Information System (INIS)

    Submitted by nuclear-physical methods of determining the coefficient of absorption of iodine carbon materials using stable isotopes of iodine. Designed and created by pumping and measuring iodine content units. The processes of dynamic sorption of iodine on industrial carbon adsorbents studied the possibility of determining the iodine content of nuclear-physical methods and presents the metrological characteristics x-ray method. Application methods allow for the certification of carbon adsorbents gas cleaning systems and improve the safety of nuclear power plant operation

  19. Organic Carbon Isotopic Evolution during the Ediacaran-Cambrian Transition Interval in Eastern Guizhou, South China: Paleoenvironmental and Stratigraphic Implications

    Institute of Scientific and Technical Information of China (English)

    YANG Xinglian; ZHU Maoyan; GUO Qingjun; ZHAO Yuanlong

    2007-01-01

    Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Guizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow shelf to deep basin of the Yangtze Platform.

  20. Global Cr-isotope distributions in surface seawater and incorporation of Cr isotopes into carbonate shells

    OpenAIRE

    Paulukat, Cora Stefanie; Frei, Robert; Vögelin, Andrea Regula; Samankassou, Elias

    2015-01-01

    In this study we present the Cr-isotope composition of surface seawater from several locations worldwide. In addition to the samples from the oceans (Atlantic Ocean, Pacific Ocean, Southern Ocean and Artic Ocean) we analysed water samples from areas with a more limited water exchange (Mediterranean Sea, Baltic Sea, Øresund and Kattegat). The long residence time of Cr (7,000 to 40,000 years) [1,2,3] relative to the ocean mixing time (1,000 to 2,000 years) [4] could lead to the expectation that...

  1. Mixing of water in a carbonate aquifer, southern Italy, analysed through stable isotope investigations

    Directory of Open Access Journals (Sweden)

    Petrella Emma

    2013-01-01

    Full Text Available Mixing of water was analysed in a carbonate aquifer, southern Italy, through stable isotope investigations (18O,δ2H. The input signal (rainwater was compared with the isotopic content of a 35-meter groundwater vertical prof ile, over a 1-year period. Within the studied aquifer, recharge and f low are diffuse in a well-connected f issure network.At the test site, the comparison between input and groundwater isotopic signals illustrates that no eff icient mixing takes place in the whole unsaturated zone, between the fresh inf iltration water and the stored water.When analysing the stable isotope composition of groundwater, signif icant variations were observed above the threshold elevation of 1062 m asl, while a nearly constant composition was observed below the same threshold. Thus, temporal variations in stable isotope composition of rainwater are completely attenuated just in the deeper phreatic zone.On the whole, taking into consideration also the results of previous studies in the same area, the investigations showed that physical characteristics of the carbonate bedrock, as well as aquifer heterogeneity, are factors of utmost importance in inf luencing the complete mixing of water. These f indings suggest a more complex scenario at catchment scale.

  2. Carbon and oxygen isotopic ratios for nearby miras

    CERN Document Server

    Hinkle, K H; Straniero, O

    2016-01-01

    C and O isotopic ratios are reported for a sample of 46 Mira and SRa-type variable AGB stars. Vibration-rotation 1st and 2nd overtone CO lines in 1.5 to 2.5 $\\mu$m spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of the M stars had main sequence masses < 2 Msun and have not experienced sizable third dredge-up episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the 6 C stars in the sample three have clear evidence relating their origin to the occurrence of the third dredge-up. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars...

  3. Chromium Isotopes in Carbonate Rocks: New Insights into Proterozoic Atmospheric Oxygenation

    Science.gov (United States)

    Kah, L. C.; Gilleaudeau, G. J.; Frei, R.; Kaufman, A. J.; Azmy, K.; Bartley, J. K.; Chernyavskiy, P.; Knoll, A. H.

    2015-12-01

    There has been a long-standing debate in geobiology about the role that Earth's oxygenation played in the evolution of complex life. Temporal linkages exist between the Great Oxidation Event (GOE) and the evolution of eukaryotes, as well as Neoproterozoic rise in oxygen and the diversification of metazoans. Further advances have been hampered, however, by the lack of direct proxies that mark specific levels of atmospheric pO2 in the geologic past. Chromium (Cr) isotopes show promise in this regard because the oxidation of Cr during terrestrial weathering—which results in isotopic fractionation—is dependent on a specific threshold of atmospheric pO2 (0.1-1% of the present atmospheric level [PAL]). This threshold value broadly coincides with recent estimates of the oxygen requirements of early animals. Here we report new Cr-isotope data from four late Mesoproterozoic carbonate-dominated successions. Samples were collected from the Turukhansk Uplift (Siberia), the El Mreiti Group (Mauritania), the Vazante Group (Brazil), and the Angmaat Formation (Canada). We emphasize the application of Cr-isotopes to carbonate rocks because the broad temporal range of this lithology in the geologic record provides an opportunity to significantly expand our understanding of Proterozoic oxygenation on shorter time scales. Our data indicate that pO2 levels required to support early animals were attained long before Neoproterozoic metazoan diversification, although the large degree of isotopic heterogeneity in our dataset may indicate that pO2 > 0.1-1% PAL was only a transient phenomenon in the Mesoproterozoic. This study demonstrates the utility of Cr-isotopes as an atmospheric redox proxy in carbonate rocks and helps inform future avenues of research on Proterozoic pO2 thresholds.

  4. Assessing the duration and possible causes of the earliest Toarcian carbon isotopic excursion

    Science.gov (United States)

    Krencker, Francois-Nicolas; Bodin, Stéphane; Suan, Guillaume; Kabiri, Lahcen; Immenhauser, Adrian

    2013-04-01

    The early Toarcian stage (Early Jurassic) records two short-lived events of major faunal turnover and environmental perturbation. The first event (eT-E) occurs during the earliest Toarcian (early Polymorphum chronozone) and has been documented only in a few sites worldwide. The second event, better known as the Toarcian Oceanic Anoxic Event (T-OAE) has been documented in numerous sites from Northern Siberia to Argentina. Both events are marked by negative carbon isotope excursions (CIE) recorded in carbonate and organic substrate. Therefore they are thought to be associated with major changes in carbon cycling. Similarities between the eT-E and the T-OAE thus lead to the conclusion that these events might have been triggered by similar mechanisms. If this is the case, the CIEs associated with both events should have a comparable duration. In order to valid or falsify this hypothesis, it is therefore crucial to constrain the duration of both events. The duration of the T-OAE CIE was assessed in several papers by cyclostratigraphic analyses thanks to favourable outcropping condition. It is however not the case for the eT-E CIE, this latter being often associated with sedimentary condensation or hiatal surfaces. We make use of the high palaeo-subsidence rates of the Lower Toarcian Moroccan shelf leading to extended sections in the High Atlas Basin. The Foum Tillicht section was sampled in increments of 20 cm across a stratigraphic interval of 50 m, covering the Polymorphum chronozone. Carbon and oxygen isotopes analyses were performed on micritic and organic matter. Ammonites and nannofossils biostratigraphy aided in calibrating geochemical analyses. Carbon isotopes data display a rhythmic pattern. Preliminary results indicate that the eT-E negative carbon isotope excursion lasted around 400 kyr.

  5. Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria

    Science.gov (United States)

    Mavromatis, Vasileios; Pearce, Christopher R.; Shirokova, Liudmila S.; Bundeleva, Irina A.; Pokrovsky, Oleg S.; Benezeth, Pascale; Oelkers, Eric H.

    2012-01-01

    The hydrous magnesium carbonates, nesquehonite (MgCO 3·3H 2O) and dypingite (Mg 5(CO 3) 4(OH) 2·5(H 2O)), were precipitated at 25 °C in batch reactors from aqueous solutions containing 0.05 M NaHCO 3 and 0.025 M MgCl 2 and in the presence and absence of live photosynthesizing Gloeocapsa sp. cyanobacteria. Experiments were performed under a variety of conditions; the reactive fluid/bacteria/mineral suspensions were continuously stirred, and/or air bubbled in most experiments, and exposed to various durations of light exposure. Bulk precipitation rates are not affected by the presence of bacteria although the solution pH and the degree of fluid supersaturation with respect to magnesium carbonates increase due to photosynthesis. Lighter Mg isotopes are preferentially incorporated into the precipitated solids in all experiments. Mg isotope fractionation between the mineral and fluid in the abiotic experiments is identical, within uncertainty, to that measured in cyanobacteria-bearing experiments; measured δ 26Mg ranges from -1.54‰ to -1.16‰ in all experiments. Mg isotope fractionation is also found to be independent of reactive solution pH and Mg, CO 32-, and biomass concentrations. Taken together, these observations suggest that Gloeocapsa sp. cyanobacterium does not appreciably affect magnesium isotope fractionation between aqueous fluid and hydrous magnesium carbonates.

  6. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    Science.gov (United States)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  7. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  8. Technical Note: Constraining stable carbon isotope values of microphytobenthos (C3 photosynthesis) in the Arctic for application to food web studies

    OpenAIRE

    Oxtoby, L. E.; Mathis, J. T.; Juranek, L. W.; M. J. Wooller

    2013-01-01

    Microphytobenthos (MPB) tends to be omitted as a possible carbon source to higher trophic level consumers in high latitude marine food web models that use stable isotopes. Here, we used previously published relationships relating the concentration of aqueous carbon dioxide ([CO2]aq), the stable carbon isotopic composition of dissolved inorganic carbon (DIC) (δ13CDIC), and algal growth rates (μ) to estimate the stable carbon isotop...

  9. Regeneration of the iodine isotope-exchange efficiency for nuclear-grade activated carbons

    International Nuclear Information System (INIS)

    The removal of radioactive iodine from air flows passing through impregnated activated carbons depends on a minimum of three distinguishable reactions: (1) adsorption on the carbon networks of the activated carbons, (2) iodine isotope exchange with impregnated iodine-127, and (3) chemical combination with impregnated tertiary amines when present. When a carbon is new, all three mechanisms are at peak performance and it is not possible to distinguish among the three reactions by a single measurement; the retention of methyl iodide-127 is usually equal to the retention of methyl iodide-131. After the carbon is placed in service, the three mechanisms of iodine removal are degraded by the contaminants of the air at different rates; the adsorption process degrades faster than the other two. This behavior will be shown by comparisons of methyl iodide-127 and methyl iodide-131 penetration tests. It was found possible to regenerate the iodine isotope-exchange efficiency by reaction with airborne chemical reducing agents with little or no improvement in methyl iodine-127 retention. Examples will be given of the chemical regeneration of carbons after exhaustion with known contaminants as well as for many carbons removed from nuclear power operations. The depth profile of methyl iodide-131 penetration was determined in 2-inch deep layers before and after chemical treatments

  10. Carbon, cesium and iodine isotopes in Japanese cedar leaves from Iwaki, Fukushima

    DEFF Research Database (Denmark)

    Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.;

    2016-01-01

    Japanese cedar leaves from Iwaki, Fukushima were analyzed for carbon, cesium and iodine isotopic compositions before and after the 2011 nuclear accident. The Δ14C values reflect ambient atmospheric 14C concentrations during the year the leaves were sampled/defoliated, and also previous year......(s). The elevated 129I and 134,137Cs concentrations are attributed to direct exposure to the radioactive fallout for the pre-fallout-expended leaves and to internal translocation from older parts of the tree for post-fallout-expended leaves. 134Cs/137Cs and 129I/137Cs activity ratios suggest insignificant isotopic...

  11. Authenticity and Traceability of Vanilla Flavors by Analysis of Stable Isotopes of Carbon and Hydrogen

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg; Fromberg, Arvid; Frandsen, Henrik Lauritz

    2014-01-01

    . The authenticity of the flavor compound vanillin was evaluated on the basis of measurements of ratios of carbon stable isotopes (delta C-13). It was found that results of delta C-13 for vanillin extracted from Vanilla planifolia and Vanilla tahitensis were significantly different (t test) and that it was possible...... to differentiate these two groups of natural vanillin from vanillin produced otherwise. Vanilla flavors were also analyzed for ratios of hydrogen stable isotopes (delta H-2). A graphic representation of delta C-13 versus delta H-2 revealed that vanillin extracted from pods grown in adjacent geographic origins...

  12. Coniacian-maastrichtian calcareous nannofossil biostratigraphy and carbon-isotope stratigraphy in the Zagros Basin (Iran)

    DEFF Research Database (Denmark)

    Razmjooei, Mohammad Javad; Thibault, Nicolas; Kani, Anoshiravan;

    2014-01-01

    Calcareous nannofossil biostratigraphy and stable isotope stratigraphy have been investigated in the Shahneshin section of the Gurpi Formation from the Zagros Basin (Iran). The results show that the Gurpi Formation spans the late early Coniacian to late Thanetian. The age-model shows that the...... magnetostratigraphy in the Santonian-early Campanian interval. The δ13C correlation, supported by calcareous nannofossil biostratigraphy, brings insights into: (1) the position of the Coniacian/Santonian, Santonian/Campanian and Campanian/Maastrichtian boundaries with respect to carbon-isotope stratigraphy and...

  13. Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us?

    OpenAIRE

    K. R. Lassey; Etheridge, D. M.; Lowe, D. C.; Smith, A M; D. F. Ferretti

    2007-01-01

    Little is known about how the methane source inventory and sinks have evolved over recent centuries. New and detailed records of methane mixing ratio and isotopic composition (12CH4, 13CH4 and 14CH4) from analyses of air trapped in polar ice and firn can enhance this knowledge. We use existing bottom-up constructions of the source history, including "EDGAR"-based constructions, as inputs to a model of the evolving global budget for methane and for its carbon isotope composition thro...

  14. Source inference of exogenous gamma-hydroxybutyric acid (GHB) administered to humans by means of carbon isotopic ratio analysis: novel perspectives regarding forensic investigation and intelligence issues.

    Science.gov (United States)

    Marclay, François; Saudan, Christophe; Vienne, Julie; Tafti, Mehdi; Saugy, Martial

    2011-05-01

    γ-Hydroxybutyric acid (GHB) is an endogenous short-chain fatty acid popular as a recreational drug due to sedative and euphoric effects, but also often implicated in drug-facilitated sexual assaults owing to disinhibition and amnesic properties. Whilst discrimination between endogenous and exogenous GHB as required in intoxication cases may be achieved by the determination of the carbon isotope content, such information has not yet been exploited to answer source inference questions of forensic investigation and intelligence interests. However, potential isotopic fractionation effects occurring through the whole metabolism of GHB may be a major concern in this regard. Thus, urine specimens from six healthy male volunteers who ingested prescription GHB sodium salt, marketed as Xyrem(®), were analysed by means of gas chromatography/combustion/isotope ratio mass spectrometry to assess this particular topic. A very narrow range of δ(13)C values, spreading from -24.81‰ to -25.06‰, was observed, whilst mean δ(13)C value of Xyrem(®) corresponded to -24.99‰. Since urine samples and prescription drug could not be distinguished by means of statistical analysis, carbon isotopic effects and subsequent influence on δ(13)C values through GHB metabolism as a whole could be ruled out. Thus, a link between GHB as a raw matrix and found in a biological fluid may be established, bringing relevant information regarding source inference evaluation. Therefore, this study supports a diversified scope of exploitation for stable isotopes characterized in biological matrices from investigations on intoxication cases to drug intelligence programmes.

  15. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Xichang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research — UFZ, Leipzig 04318 (Germany)

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰.

  16. Large amplitude carbon isotope excursion during the Late Silurian Lau Event

    Science.gov (United States)

    Schoenmaker, N. R.; Reichart, G. J.; Nierop, K. G. J.; Mann, U.; White, T.; Sancay, R. H.

    2010-05-01

    High magnitude excursions in the stable carbon isotope record reveal that the Silurian greenhouse world (443.7-416.0 Ma) represents a period of globally unstable environmental conditions. Fundamental changes in the global carbon cycle were more frequent and had a larger impact during the Silurian compared to any other period of the Phanerozoic [1]. The late Silurian "Lau event" is the largest of four major positive d13Ccarb excursions. The carbon isotope excursion associated with the "Lau event" is recognized globally and reaches values ranging from +6‰ from the Eastern Baltic, +8.5‰ on Gotland, 11‰ from southern Sweden and even up to 12‰ in Australia, Queensland. This makes the "Lau event" the strongest d13C excursion of the entire Phanerozoic, comparable in amplitude to Precambrian events. However, the mechanism underlying the Silurian stable isotope excursions is ill understood. Scenarios proposed include enhanced carbon burial due to anoxic conditions [2] and/or enhanced productivity [3]. Alternative hypotheses range from alternating wet and humid periods influencing global ocean circulation [4], weathering of carbonates [5] to changes in the primary producer community [6]. Evaluating these different scenarios critically relies on establishing the true magnitude of the isotopic excursions and rates of change. Existing stable carbon isotope studies of the Lau event were based on analyses of bulk carbonates or bulk organic matter. Both signal carriers are subject to admixing of organic matter or carbonates from various sources. Moreover, preferential preservation of some organic moieties, e.g. lipids, over other potentially offsets isotopic records, since the carbon isotopic signatures between these moieties substantially differ. A stable organic geochemical composition over the isotope events is thus crucial to ensure capturing the true amplitude of the excursion. Here we therefore investigate, using Curie point pyrolysis GC-MS, the composition of the

  17. Vegetational ecotype of the Gyirong Basin in Tibet, China and its response in stable carbon isotopes of mammaltooth enamel

    Institute of Scientific and Technical Information of China (English)

    DENG Tao; LI Yumei

    2005-01-01

    Carbon isotope analysis of modern herbaceous plants in the Gyirong Basin (Tibet, China) indicates that although C3 plants are dominant, C4 plants rarely comprise of the vegetation in the area at 4000 m above sea level. The C4 plants discovered in the Gyirong Basin are Salsola nepalensis of Chenopodiaceae and Pennisetum flaccidum of Gramineae, affirming that C4 plants affected by high solar gain can be distributed at high altitude, which supports the opinion that some C4 plants can exist in areas of high elevation. Carbon isotope analysis of herbivore tooth enamel from the Gyirong Basin indicates that carbon isotopes of structural carbonate in biogenic apatite at high altitude still keep a stable enrichment relationship with those of plants in their diet. Carbon isotopes in tooth enamel are therefore an accurate proxy for vegetation ecotypes and should reflect climatic and environmental features.

  18. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    Science.gov (United States)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  19. Geochemistry of carbon stable isotopes in the sea

    International Nuclear Information System (INIS)

    This paper describes geochemical process which affect the distribution in the sea of the 13C/12C ratio of total inorganic dissolved CO2; synthesis of the biomass and respiratory phenomena; oxidation of organic matter; dissolution of carbonates; run off waters; exchange of CO2 between sea and atmosphere. Some applications to the paleoclimatology are presented. (author)

  20. A molecular organic carbon isotope record of Miocene climate changes

    NARCIS (Netherlands)

    Schoell, M.; Schouten, S.; Sinninghe Damsté, J.S.; Leeuw, J.W. de; Summons, R.E.

    1994-01-01

    The difference in carbon-13 (13C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in 18O (δ18O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters

  1. Temporal Variability in Carbon Isotope Composition of Leaf-Respired Carbon Dioxide

    Science.gov (United States)

    Barbour, M. M.; Hanson, D. T.; Bickford, C. P.; McDowell, N. G.

    2005-12-01

    The stable carbon isotope composition of leaf-respired CO2 (δ13CRl) has enormous potential to allow partitioning of ecosystem respiration into various components, to provide information on key physiological processes, and to trace carbon fluxes through plants and ecosystems. However, difficulties in measuring and understanding variation in δ13CRl have limited its application. We coupled an open gas exchange system (LI-6400, LiCor) to a tunable diode laser (TGA100A, Campbell Scientific) enabling measurement of leaf respiratory CO2 fluxes and δ13CRl every three minutes, with a precision of at least ±0.3 per mil. We also measured oxygen consumption rates, allowing calculation of the respiratory quotient ( RQ) and indicating likely respiratory substrates. Castor bean ( Ricinus communis) plants grown at high and low light were placed in the dark after different lengths of time exposed to sunlight and variation in δ13CRl measured to test the patterns in variation in δ13CRl predicted by existing biochemical models. CO2 respired by leaves previously exposed to high cumulative incident irradiance was up to 11 per mil more enriched than phloem sap sugars for the first 10 to 15 minutes after plants had been moved into the dark . This enrichment rapidly decreased, so that by 30 minutes in the dark δ13CRl was 5 per mil more enriched than phloem sap sugars. CO2 production rates were also initially very high and rapidly decreased. RQ for plants grown in high light varied between 0.8 and 1.2, indicating that carbohydrates and/or organic acids were the respiratory substrates. δ13CRl measured 30 to 80 minutes after plants had been moved into the dark increased with increasing δ13C of phloem sap sugars. The RQ values of plants grown at low light suggested that the respiratory substrates were fatty acids or amino acids ( RQ of around 0.6), or lipids ( RQ less than 0.4). δ13CRl values were enriched by either 4 per mil ( RQ = 0.3) or 12 per mil ( RQ = 0.5) compared to phloem

  2. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was similar at both depths, and POC was higher in CCS than in ICLS at 0-5 cm, while at 0-20 cm this trend was opposite. This is probably due to the presence of deep roots under pastures in ICLS. Delta

  3. Carbon and Oxygen Isotope Measurements of Ordinary Chondrite (OC) Meteorites from Antarctica Indicate Distinct Terrestrial Carbonate Species using a Stepped Acid Extraction Procedure Impacting Mars Carbonate Research

    Science.gov (United States)

    Evans, M. E.; Niles, P. B.; Locke, D.

    2015-12-01

    The purpose of this study is to characterize the stable isotope values of terrestrial, secondary carbonate minerals from five OC meteorites collected in Antarctica. These samples were selected for analysis based upon their size and collection proximity to known Martian meteorites. They were also selected based on petrologic type (3+) such that they were likely to be carbonate-free before falling to Earth. This study has two main tasks: 1) characterize the isotopic composition of terrestrial, secondary carbonate minerals formed on meteorites in Antarctica, and 2) study the mechanisms of carbonate formation in cold and arid environments with Antarctica as an analog for Mars. Two samples from each meteorite, each ~0.5g, was crushed and dissolved in pure phosphoric acid for 3 sequential reactions: a) Rx0 for 1 hour at 30°C, b) Rx1 for 18 hours at 30°C, and c) Rx2 for 3 hours at 150°C. CO2 was distilled by freezing with liquid nitrogen from each sample tube, then separated from organics and sulfides with a TRACE GC using a Restek HayeSep Q 80/100 6' 2mm stainless column, and then analyzed on a Thermo MAT 253 IRMS in Dual Inlet mode. This system was built at NASA/JSC over the past 3 years and proof tested with known carbonate standards to develop procedures, assess yield, and quantify expected uncertainties. Two distinct species of carbonates are found based on the stepped extraction technique: 1) Ca-rich carbonate released at low temperatures, and 2) Mg, or Fe-rich carbonate released at high temperatures. Preliminary results indicate that most of the carbonates present in the ordinary chondrites analyzed have δ13C=+5‰, which is consistent with formation from atmospheric CO2 δ13C=-7‰ at -20°C. The oxygen isotopic compositions of the carbonates vary between +4‰ and +34‰ with the Mg-rich and/or Fe-rich carbonates possessing the lowest δ18O values. This suggests that the carbonates formed under a wide range of temperatures. However, the carbonate oxygen

  4. Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany

    Science.gov (United States)

    Arneth, J.-D.; Matzigkeit, U.; Boos, A.

    1985-09-01

    Carbonates and organic matter in sediments of the Cretaceous-Tertiary (C/T) section of the Wasserfallgraben, Lattengebirge (Bavaria) have been investigated. All parameters—the carbonate content (C carb), its isotopic composition ( δ 13C carb, δ 18O carb) as well as the organic carbon content (C org), its isotopic composition ( δ 13C org) and the H/C ratio of the sedimentary organic matter—display systematic variations across the C/T boundary which cannot be attributed to a single cause. The boundary zone as a whole is tectonically disturbed and shows significant features of detrital contaminations. Unidirectional shift in δ 13C carb and δ 13C org are observed when directly comparing Maastrichtian (latest Cretaceous) and Danian (earliest Tertiary) sediments. These synchronous isotope displacements towards more negative readings are interpreted to reflect the reduced photosynthetic activity as consequence of the mass extinction at the C/T boundary. The results may have some bearings on other C/T profiles investigated where measurements on the reduced carbon species are still lacking.

  5. Late Ordovician (Turinian-Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanographic significance

    Science.gov (United States)

    Ludvigson, Greg A.; Witzke, B.J.; Gonzalez, Luis A.; Carpenter, S.J.; Schneider, C.L.; Hasiuk, F.

    2004-01-01

    Five positive carbon isotope excursions are reported from Platteville-Decorah strata in the Upper Mississippi Valley. All occur in subtidal carbonate strata, and are recognized in the Mifflin, Grand Detour, Quimbys Mill, Spechts Ferry, and Guttenberg intervals. The positive carbon isotope excursions are developed in a Platteville-Decorah succession in which background ??13C values increase upward from about -2??? at the base to about 0??? Vienna Pee Dee belemnite (VPDB) at the top. A regional north-south ??13C gradient, with lighter values to the north and heavier values to the south is also noted. Peak excursion ??13C values of up to +2.75 are reported from the Quimbys Mill excursion, and up to +2.6 from the Guttenberg excursion, although there are considerable local changes in the magnitudes of these events. The Quimbys Mill, Spechts Ferry, and Guttenberg carbon isotope excursions occur in units that are bounded by submarine disconformities, and completely starve out in deeper, more offshore areas. Closely spaced chemostratigraphic profiles of these sculpted, pyrite-impregnated hardground surfaces show that they are associated with very abrupt centimeter-scale negative ??13C shifts of up to several per mil, possibly resulting from the local diagenetic effects of incursions of euxinic bottom waters during marine flooding events. ?? 2004 Elsevier B.V. All rights reserved.

  6. Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?

    Science.gov (United States)

    Shirokova, L. S.; Mavromatis, V.; Bundeleva, I.; Pokrovsky, O. S.; Bénézeth, P.; Pearce, C.; Gérard, E.; Balor, S.; Oelkers, E. H.

    2011-07-01

    The fractionation of Mg isotopes was determined during the cyanobacterial mediated precipitation of hydrous magnesium carbonate precipitation in both natural environments and in the laboratory. Natural samples were obtained from Lake Salda (SE Turkey), one of the few modern environments on the Earth's surface where hydrous Mg-carbonates are the dominant precipitating minerals. This precipitation was associated with cyanobacterial stromatolites which were abundant in this aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory Mg carbonate precipitation experiments were conducted in the presence of purified Synechococcus sp cyanobacteria that were isolated from the lake water and stromatolites. The hydrous magnesium carbonates nesquehonite (MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake Salda water, in the presence and absence of live photosynthesizing Synechococcus sp. Bulk precipitation rates were not to affected by the presence of bacteria when air was bubbled through the system. In the stirred non-bubbled reactors, conditions similar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation, whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling, despite the fluids achieving a similar or higher degree of supersaturation. The extent of Mg isotope fractionation (Δ26Mgsolid-solution) between the mineral and solution in the abiotic experiments was found to be identical, within uncertainty, to that measured in cyanobacteria-bearing experiments, and ranges from -1.4 to -0.7 ‰. This similarity refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous Mg carbonates.

  7. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    Science.gov (United States)

    Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S.

    2016-06-01

    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ∼7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, δ13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province).

  8. Deuterium, carbon and nitrogen isotopic analysis of natural and synthetic caffeines. Authentication of coffees and coffee extracts

    International Nuclear Information System (INIS)

    Isotope ratio mass spectrometry (IRMS) was used to determine the δ(13C) and δ(15N) values of a series of caffeine samples extracted from coffee beans or obtained by synthesis, 2H NMR spectra were recorded in order to compute the site-specific isotope ratios of caffeine. The set of the five isotope ratios measured for the 26 different samples was studied by multi-variate analysis (principal component and discriminant analyse) and it is shown that the synthetic samples are clearly distinguishable from the natural caffeines which in turn can be classified with complete accuracy as of either American or African origin

  9. Comparison of bulk and n-alkane PETM carbon isotope trends from the Bighorn Basin, Wyoming

    Science.gov (United States)

    Baczynski, A. A.; McInerney, F. A.; Kraus, M. J.; Wing, S.

    2010-12-01

    The Paleocene-Eocene Thermal Maximum (PETM), a period of abrupt, short-term, and large-scale global warming fueled by a large release of isotopically light carbon, is recorded in terrestrial and marine carbonates and organic carbon as a prominent negative carbon isotope excursion (CIE). Here we present a composite stable carbon isotope record from n-alkanes and four bulk organic carbon records from individual sections spanning the PETM interval in the Cabin Fork area of the southeastern Bighorn Basin, Wyoming. The n-alkane curve shows an abrupt, negative shift in δ13C values, an extended CIE body, and a rapid recovery to pre-PETM δ13C values. While the bulk organic carbon records show similarly abrupt negative shifts in δ13C values, the CIE appears to be compressed as well as smaller in magnitude, and the return to more positive δ13C values is often more gradual. Furthermore, the stratigraphic thickness of the most negative CIE values and the pattern of the recovery phase are not consistent among the four bulk organic carbon records. The discrepancy between the bulk organic matter and n-alkane CIE may arise because of changes in soil organic matter cycling during the PETM. Bulk soil organic matter δ13C values are influenced by degradation and selective preservation whereas n-alkanes are resistant to diagenesis. Variations in sediment accumulation rates across the basin may be responsible for the differences between the four bulk organic carbon δ13C records. Sites with extended CIE bodies likely present more complete isotope records with greater time resolution and less time averaging than those with reduced CIEs. The shape of the high-resolution n-alkane curve presented here is similar to the newest 3He-based timescale for the PETM using data from Walvis Ridge, IODP site 1266 (Murphy et al., 2010). The most significant difference between this revised PETM timescale and previously published age models is the allocation of time within the PETM event. Murphy et

  10. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces and wool

    DEFF Research Database (Denmark)

    Kristensen, Ditte; Kristensen, Erik; Forchhammer, Mads C.;

    2011-01-01

    for studying arctic herbivore diets. In this study, we examined the potential of both stable carbon and nitrogen isotopes to reconstruct the diet of an arctic herbivore, here the muskox (Ovibos moschatus (Zimmermann, 1780)), in northeast Greenland. The isotope composition of plant communities and functional......% graminoids and up to 20% willows. In conclusion, the diet composition of an arctic herbivore can indeed be inferred from stable isotopes in arctic areas, despite the lack of C4 plants...

  11. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    Science.gov (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  12. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric PM

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-05-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter (PM is presented. It has been found in numerous laboratory studies that these compounds are photooxidation products of toluene in PM. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. PM was collected on quartz fibre filters using dichotomous high volume air samplers for PM 2.5. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography (HPLC and solid phase extraction (SPE. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide (BSTFA, was added to the solution for Gas Chromatography/Mass Spectroscopy (GC/MS analysis. The second half of the sample was stored at low temperature. When GC/MS analysis showed high enough concentrations the remaining sample was derivatized with BSTFA and analysed for stable isotope ratio using a Gas Chromatography/Isotope Ratio Mass Spectrometry (GC-IRMS.

    In all atmospheric PM samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol. Nevertheless, due to low pollution levels occurring in the rural area, no samples had concentrations high enough to perform stable carbon isotope composition measurements of the methylnitrophenols. Samples collected in the suburban area could be analysed for carbon stable isotope ratio using GC-IRMS.

    The procedure described in this paper provides a very sensitive and selective method for the analysis of methylnitrophenols in atmospheric PM at concentrations as low as 1 pg m−3. For accurate (within ±0.5‰ stable isotope ratio analysis significantly higher concentrations in the range of 100 pg m−3 or more are required.

  13. Carbon isotopic characteristics and their genetic relationships for individual lipids in plants and sediments from a marsh sedimentary environment

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; ZHANG Hui; ZHENG Chaoyang; WU Baoxiang; ZHENG Guodong

    2005-01-01

    The carbon isotopes of individual lipids in herbaceous plants and tree leaves in Ruoergai marsh were measured by the GC-IRMS analytical technique in order to understand the inherent relationships of carbon isotopes between sedimentary and plant lipids from typical marsh environment. The analytical results show that the carbon isotopic compositions of n-alkanes in different kinds of plants differ significantly. Mean δ13C values of n-alkanes in herbaceous plants (-32.2‰―-36.9‰) are 3.3‰ lower than those in woody plant (-27.2‰― -35.0‰). The carbon isotopic compositions of fatty acids in organisms (-30.3‰― -36.2‰) are very similar to those of n-alkanes and the δ13C values for unsaturated fatty acids are within the range of those for saturated fatty acids. The differences in δ13C values between plant lipids are obvious and range from 2.4‰ to 7.8‰. It is observed that the carbon isotopic compositions of sedimentary lipids are closely related to those of plant lipids. The carbon isotopic compositions (-27.0‰―-36.9‰) of n-alkanes, ≥C16 fatty acids, n-alkanols, sterols and n-alkanones in the sediments are similar to those of plant lipids and the carbon isotopic compositions of short-chain sedimentary lipids are similar to those of long-chain sedimentary homologues. These indicate that the sedimentary lipids are derived from high plants. However, the δ13C values of C14:0 and C15:0 fatty acids in the sediments are lighter than those of the same carbon number saturated homologues in plants, reflecting the genetic features partially derived from bacteria. These data provide scientific evidence for carbon isotope-applied research of individual lipids.

  14. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    Science.gov (United States)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-12-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol-1, or 1-3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol-1 for 100 mL of ambient air (185.4 nmol mol-1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.

  15. The significance of an Early Jurassic (Toarcian) carbon-isotope excursion in Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada

    Science.gov (United States)

    Caruthers, Andrew H.; Gröcke, Darren R.; Smith, Paul L.

    2011-07-01

    During the Early Toarcian there was a significant disruption in the short-term active carbon reservoir as revealed by carbon-isotope records, which show a broad positive shift that is interrupted by a large 5-7‰ negative excursion (δ 13C org). Carbon-isotope excursion co-occurs with the deposition of organic-rich shales in many areas. This perturbation in carbon isotopes is thought to be indicative of severe climate change and marine anoxia. The two leading hypotheses as to the cause of this event invoke either global or regional controls. Here we present carbon-isotope data from Haida Gwaii, British Columbia, Canada showing a significant perturbation within a temporally constrained Early Toarcian succession that was deposited in the northeastern paleo-Pacific Ocean. These data reinforce the concept that the short-term active carbon reservoir was affected globally, and assist with the correlation of ammonite zonal schemes between western North America and Europe. The δ 13C org data show a broad positive shift that is interrupted by a sharp and pronounced negative excursion of 7‰ (8.5‰ in δ 13C wood) in the Early Toarcian Kanense Zone. This negative excursion also coincides with increasing total organic carbon (TOC) from ~ 0.4% to ~ 1.2%. These data suggest that the Early Toarcian carbon-isotope perturbation was indeed global and imprinted itself on all active global reservoirs of the exchangeable carbon cycle (deep marine, shallow marine, atmospheric).

  16. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. PMID:26592622

  17. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thor