WorldWideScience

Sample records for carbon isotope composition

  1. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O16 than the patterns from marine environments. The C12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.)

  2. Carbon isotopic composition of individual Precambrian microfossils

    Science.gov (United States)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  3. Carbon isotopic composition of individual Precambrian microfossils.

    Science.gov (United States)

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  4. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope

  5. Characteristics of carbon and hydrogen isotopic compositions of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    沈平

    1995-01-01

    Light hydrocarbons named in the present paper refer to the natural gas-associated light oil and condensate 46 light oil and condensate samples from 11 oil-bearing basins of China were collected and their carbon and hydrogen isotopic compositions were analysed in terms of their total hydrocarbons, saturated hydrocarbons and a part of aromatic fractions, and gas-source materials and their sedimentary environments were discussed based on the above-mentioned data and the geological background of each area. From the view of carbon and hydrogen isotopic composition of total hydrocarbons and saturated hydrocarbons, it is revealed that the condensate related to coal-bearing strata is enriched in 13C and D while that related to the source material of type I-II is enriched in 12C. In general, the isotopic composition of carbon is mainly attributed to the inheriting effect of their source materials, whereas that of hydrogen principally reflects the correlationship between hydrogen isotopes and the sedimentary envi

  6. The Li isotope composition of modern biogenic carbonates

    Science.gov (United States)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  7. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    Science.gov (United States)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb isotopically extreme carbonates in Neoproterozoic successions remain poorly understood. Little is also known about organisms and metabolisms that cycled carbon in these carbonate strata, because they rarely contain well-preserved organic-rich fossils. To better understand the cycling of carbon during the deposition of the 715-635 Ma Tayshir member of the Tsagaan Oloom Formation, Mongolia, we analyzed δ13Cfossil of two types of organic fossils that occur in 13C- enriched carbonates (+ 5 to 9.9 per mil) and within 13C-depleted carbonates of the Tayshir anomaly (-3 to -6 per mil). Because these organic microfossils are remarkably similar to the tests of modern planktonic, herbivorous tintinnid ciliates and benthic macroscopic red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The isotopic difference between δ13Cfossil and 13C-enriched carbonates is 28 to 30 per mil, suggesting maximal isotopic fractionation by primary producers, and little environmental (or diagenetic

  8. Carbon and oxygen isotope compositions of the carbonate facies in the Vindhyan Supergroup, central India

    Indian Academy of Sciences (India)

    S Banerjee; S K Bhattacharya; S Sarkar

    2006-02-01

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the subtle controls of facies variation,depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood.The Vindhyan Super- group hosts four carbonate units,exhibiting a wide variability in depositional processes and paleogeography.A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values.It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis.The effect of diagenetic alteration is,however,more pronounced in case of oxygen isotopes than carbon isotopes.Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed.Major alteration of original isotope ratios was observed in case of shallow marine carbonates,which became exposed to meteoric fluids during early diagenetic stage.Duration of exposure possibly determined the magnitude of alteration and shift from the original values.Moreover,dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates.The present study suggests that variations in sediment depositional settings,in particular the possibility of subaerial exposure,need to be considered while extracting chronostratigraphic signi ficance from 13C data.

  9. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    Science.gov (United States)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10‰ below 500° C, 5-6‰ between 500-700° C, and 8-10‰ above 700° C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675° C, compared with much larger changes in oxygen isotopic composition, especially above 300° C. On average, original

  10. Respiration and assimilation processes reflected in the carbon isotopic composition of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    The paper presents diurnal variations of concentration and carbon isotopic composition of atmospheric carbon dioxide caused by respiration and assimilation processes. Air samples were collected during early and late summer in 1998 in unpolluted area (village Guciow located near Roztocze National Park, SE Poland) in three different environments: uncultivated field on a hill, a meadow in the Wieprz river valley and a forest. The effect is very strong during intensive vegetation growth on a sunny day and clear night. The largest diurnal variations in atmospheric CO2 concentration and its carbon isotopic composition in June above the meadow were about 480 ppm and 10 pro mille, respectively. (author)

  11. Isotopic composition of carbon-13 and oxygen-18 from authigenic carbonates, Black Sea region

    Science.gov (United States)

    Logvina, E.; Mazurenko, L.; Prasolov, E.

    2004-05-01

    Several types of authigenic carbonates related to the fluid discharge zones were sampled during the international expeditions onboard R/V "Professor Vodyanitskiy" (56th cruise) and R/V "Professor Logachev" (11th cruise of UNESCO-TTR) in the northwest part of the Black sea. These carbonates are represented as mounds, build-ups and chimney-like structures, cemented sediments, crusts and concretions. The isotope analyses of carbonates were conducted using mass-spectrometer MS-20 in the Laboratory of Isotope Geology (St.Petersburg State University). The obtained values of oxygen-18 varied from +0,6 to -1,9 per mille (up to C0.8 per mille on average). This value is corresponding to normal seawater oxygen-18 value (about 0 per mille); we suspect, that the source of oxygen for carbonate formation is the seawater. The carbonates are characterized by low carbon-13 (from -35,4 to -42,6 per mille) in comparison with normal marine carbonates (about 0 per mille). We have reason to suppose that carbonates associated with fluid venting were formed by light isotopic composition of carbon dioxide (carbon-13 -45 to -52 per mille), which forming under methane microbiologic oxidation with such isotopic composition. This is because of crossing fluid process of carbon dioxide to carbonate with 8~10 degrees temperature carbon became heaver to 10- 11 per mille. The isotopic composition study of carbonate build-ups is of interest because its association with the gas hydrate accumulations is quite often in the gas seeps. This work is financially supported by Russian Foundation for Basic Research, grant 02-05-64346.

  12. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface

  13. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  14. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  15. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  16. Molecular and carbon isotopic compositions of gas inclusions of deep carbonate rocks in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shixin; WANG Xianbin; MENG Zifang; LI Yuan; Paul Farrimond; LI Liwu; DUAN Yi

    2004-01-01

    Gaseous components of gas inclusions in deep carbonate rocks (>5700 m) from the Tacan 1 well were analyzed by online mass spectrometry by means of either the stepwise heating technique or vacuum electromagnetism crushing. The carbon isotopic compositions of gases released by vacuum electromagnetism crushing were also measured. Although the molecular compositions of gas inclusions show differences between the two methods, the overall characteristics are that gas inclusions mainly contain CO2, whilst hydrocarbon gases, such as CH4, C2H6 and C3H8, are less abundant. The content of CO is higher in the stepwise heating experiment than that in the method of vacuum electromagnetism crushing, and there are only minor amounts of N2, H2 and O2 in gas inclusions. Methane δ13C values of gas inclusions in Lower Ordovician and Upper Cambrian rocks (from 5713.7 to 6422 m; -52‰-63‰) are similar to those of bacterial methane, but their chemical compositions do not exhibit the dry character in comparison with biogenic gases. These characteristics of deep gas inclusions may be related to the migration fractionation. Some deep natural gases with light carbon isotopic characteristics in the Tazhong Uplift may have a similar origin. The δ13C1 values of gas inclusions in Lower Cambrian rocks (7117-7124 m) are heavier (-39‰), consistent with highly mature natural gases. Carbon isotopic compositions of CO2 in the gas inclusions of deep carbonate rocks are similar (from -4‰ to -13‰) to those of deep natural gases, indicating predominantly an inorganic origin.

  17. Soil drying effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  18. Carbon and hydrogen isotopic composition and generation pathway of biogenic gas in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; WANG Xiaofeng; XU Yin; SHI Baoguang; XU Yongchang

    2009-01-01

    The carbon and hydrogen isotopic composition of biogenic gas is of great importance for the study of its generation pathway and reservoiring characteristics. In this paper, the formation pathways and reservoiring characteristics of biogenic gas reservoirs in China are described in terms of the carbon and hydrogen isotopic compositions of 31 gas samples from 10 biogenic gas reservoirs. The study shows that the hydrogen isotopic compositions of these biogenic gas reservoirs can be divided into three intervals:δDCH4>-200‰,-250‰<δDCH4<-200‰ and δDCH4<-250‰. The forerunners believed that the main generation pathway of biogenic gas under the condition of continental fresh water is acetic fermentation. Our research results showed that the generation pathway of biogenic gas under the condition of marine facies is typical CO2- reduction, the biogenic gas has heavy hydrogen isotopic composition: its δDCH4 values are higher than -200‰; that the biogenic gas under the condition of continental facies also was generated by the same way, but its hydrogen isotopic composition is lighter than that of biogenetic gas generated under typical marine facies condition: -250‰<δDCH4<-200‰, the δDCH4 values may be related to the salinity of the water medium in ancient lakes. From the relevant data of the Qaidam Basin, it can be seen that the hydrogen isotopic composition of biogenic methane has the same variation trend with increasing salinity of water medium. There are biogenic gas reservoirs formed in transitional regions under the condition of continental facies. These gas reservoirs resulted from both CO2- reduction and acetic fermentation, the formation of which may be related to the non-variant salinity of ancient water medium and the relatively high geothermal gradient, as is the case encountered in the Baoshan Basin. The biogenic gas generating in these regions has light hydrogen isotopic composition: δDCH4<-250‰, and relatively heavy carbon isotopic

  19. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    Science.gov (United States)

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. PMID:26358051

  20. Isotopic composition of carbon and nitrogen in ureilitic fragments of the Almahata Sitta meteorite

    OpenAIRE

    Downes, Hilary; Abernethy, F.A.J.; Smith, C.L.; Ross, A. J.; Verchovsky, A. B.; Grady, M. M.; Jenniskens, P.; Shaddad, M.H.

    2015-01-01

    This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon-rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They co...

  1. Carbon and Oxygen Isotopic Composition of Surface-Sediment Carbonate in Bosten Lake (Xinjiang, China) and its Controlling Factors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengjun; Steffen MISCHKE; ZHENG Mianping; Alexander PROKOPENKO; GUO Fangqin; FENG Zhaodong

    2009-01-01

    Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity

  2. Modelling carbon isotope composition of dissolved inorganic carbon and methane in marine porewaters

    Science.gov (United States)

    Meister, Patrick; Liu, Bo; Khalili, Arzhang; Barker Jørgensen, Bo

    2014-05-01

    Carbon isotope compositions of dissolved inorganic carbon (DIC) and methane (CH4) in marine sedimentary porewaters at near surface temperatures show extremely large variation in apparent fractionation covering a range from -100 ‰ to +30 ‰. This fractionation is essentially the result of microbial activity, but the mechanisms and factors controlling this fractionation are still incompletely understood. This study provides a reaction transport model approach to evaluate the effects of the most important processes and factors on carbon isotope distribution with the goal to better understand carbon isotope distribution in modern sediment porewaters and in the geological record. Our model results show that kinetic fractionation during methanogenesis, both through the acetoclastic and autotrophic pathways, results in a nearly symmetrical distribution of δ13C values in DIC and CH4 with respect to the isotope value of buried organic matter. An increased fractionation factor during methanogenesis leads to a larger difference between δ13CDIC and δ13CCH4. Near the sulphate methane transition zone, DIC is more depleted in 13C due to diffusive mixing with DIC produced by anaerobic oxidation of methane (AOM) and organoclastic sulphate reduction. The model also shows that an upward decrease in δ13CCH4 near the SMT can only be caused by equilibrium fractionation during AOM including a backward "leakage" of carbon from DIC to CH4 through the enzymatic pathway. However, this effect of reversibility has no influence on the DIC pool as long as methane is completely consumed at the SMT. Only a release of methane at the sediment-water interface, due to a fraction of the methane escaping re-oxidation, results in a small shift towards more positive δ13CDIC values. Methane escape at the SMT is possible if either the methane flux is too high to be entirely oxidized by AOM, or if bubbles of methane gas by-pass the sulphate reduction zone and escape episodically into the water column

  3. The specific carbon isotopic compositions of branched and cyclic hydrocarbons from Fushun oil shale

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; WU Baoxiang; ZHENG Guodong; ZHANG Hui; ZHENG Chaoyang

    2004-01-01

    Various branched and cyclic hydrocarbons are isolated from the Fushun oil shale and their carbon isotopes are determined. The analytical results show that the branched and cyclic hydrocarbons are fully separated from n-alkanes by 5 A Molecular-sieve adduction using long time and cold solvent. The branched and cyclic hydrocarbon fraction obtained by this method is able to satisfy the analytic requests of GC-IRMS. The carbon isotopic compositions of these branched and cyclic hydrocarbons obtained from the sample indicate that they are derived from photoautotrophic algae, chemoautotrophic bacteria (-3.4‰ --39.0‰) and methanotrophic bacteria (-38.4‰--46.3‰). However the long-chain 2-methyl-branched alkanes indicate that their carbon isotopic compositions reflect biological origin from higher plants. The carbon isotopic composition of C30 4-methyl sterane (-22.1‰) is the heaviest in all studied ste- ranes, showing that the carbon source or growth condition for its precursor, dinoflagellate, may be different from that of regular steranes. The variation trend of δ13C values between isomers of hopanes shows that 13C-enriched precursors take precedence in process of their epimerization. Methanotrophic hopanes presented reveal the processes of strong transformation of organic matter and cycling of organic carbon in the water column and early diagenesis of oil shale.

  4. Is my C isotope excursion global, local, or both? Insights from the Mg and Ca isotopic composition of primary, diagenetic, and authigenic carbonates

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Husson, J. M.

    2014-12-01

    The C isotopic composition of ancient limestones and dolomites is a widely used proxy for the global geochemical cycles of carbon and oxygen in the ocean-atmosphere system and a critical tool for chemostratigraphy in Precambrian rocks. Although relatively robust to diagenesis, the C isotopic composition of bulk carbonates can be reset when conditions favor high water-to-rock ratios or fluids with high C concentrations and distinct isotopic compositions. Authigenic carbonates and different pools of primary carbonate (e.g. calcite vs. aragonite) may also bias the C isotopic composition of bulk carbonates if they are both abundant and isotopically distinct. New approaches to quantifying contributions from diagenesis, authigenesis, and mixing of primary carbonates to the C isotopic composition of bulk sedimentary carbonates are needed. Here we present preliminary Mg and Ca isotope data sets of primary, diagenetic, and authigenic carbonates, both modern and ancient. We show that recrystallization, dolomitization, and authigenesis produce Mg and Ca isotope fingerprints that may be used to identify and characterize these processes in ancient carbonate sediments.

  5. Oxygen and carbon isotope composition from the UHP Shuanghe marbles, Dabie Mountains, China

    Institute of Scientific and Technical Information of China (English)

    王清晨; Douglas; Rumble

    1999-01-01

    Investigations on the oxygen and carbon isotope compositions from the ultrahigh-pressure (UHP)-metamorphosed Shuanghe marbles, that occur as a member of a UHP slab, show that the δ18O values range from +11.1‰ to+20.5‰ SMOW, and δ13C from+1.0‰ to+5.7‰ PDB, respectively. The variations in isotope compositions show a centimeter scale of homogeneity and a heterogeneity of regional scale larger than 1 meter. In contrast to the eclogite marbles from Norway, the Shuanghe marbles have inherited the carbon isotope compositions from their sedimentary precursor. The δ13C shows positive correlation to the content of dolomite. The depletion in 18O, compared with the protolithic carbonate strata, might result from three possible geological processes: 1) exchanging oxygen isotope with meteoric water before the UHP metamorphism, 2) decarbonation during the UHP metamorphism, and 3) exchanging oxygen isotope with country gneiss at local scale during retrograde metamorphism. It seems that the adveetion

  6. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  7. The chromium isotopic composition of an Early to Middle Ordovician marine carbonate platform, eastern Precordillera, San Juan, Argentina

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Frei, Robert; Gilleaudeau, Geoffrey Jon;

    A broad suite of redox proxy data suggest that despite ocean and atmosphere oxygenation in the late Neoproterozoic, euxinic conditions persisted in the global deep oceans until the at least Ordovician [1,2,3]. Major changes in the sulphur isotopic composition of carbonate associated sulphate and co......-existing pyrite in the later Middle Ordovician are consistent with oxygen mixing at depth and ventilation of euxinic bottom waters [4]. We measured the Cr isotopic composition of an Early to Middle Ordovician carbonate platform to test whether Cr isotopes record ocean oxygenation. The Cr isotopic composition...

  8. Carbon and oxygen isotopic composition of the carbonates from the Jacupiranga and Catalao I carbonatite complexes, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Morikiyo, Toshiro (Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Science); Hirano, Hideo; Matsuhisa, Yukihiro

    1990-11-01

    Carbon and oxygen isotope compositions were measured for carbonates from the Jacupiranga and Catalao I carbonatite complexes in Brazil. The {delta}{sup 13}C values of the Jacupiranga carbonates are uniform, ranging from -6.4 to -5.6 per mille with the average of -6.07 per mille. Except for one sample, the {delta}{sup 18}O values of the carbonates are between 7.1 and 8.1 per mille, and the average value is 7.6 per mille. The isotopic compositions of the Jacupiranga carbonates represent the value of primary igneous carbonatite. The {delta}{sup 13}C values of dolomites are about 0.5 per mille higher than those of calcites. The {delta}{sup 13}C values of carbonates from the Catalao I complex range from -6.8 to -5.2 per mille with the average of -5.83 per mille. Those values are similar to the values of the Jacupiranga carbonates. However, oxygen isotopic compositions of the Catalao I carbonates show a wide range of 8.4 to 22.3 per mille. Carbonates with the lowest {delta}{sup 18}O values in the complex are considered to represent the igneous stage. Carbonates with extremely high {delta}{sup 18}O values of about 22 per mille are considered to have precipitated from low-temperature hydrothermal fluids. The group of intermediate {delta}{sup 18}O values indicates a variable degree of contamination by the {delta}{sup 18}O-rich hydrothermal carbonates. The contribution of secondary stage hydrothermal carbonates seems to be significant in the Catalao I complex as compared with the Jacupiranga complex. The development of a network structure in the Catalao I complex may have enhanced the circulation of the later stage hydrothermal fluids. (author).

  9. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  10. Carbon isotopic composition of fossil leaves from the Early Cretaceous sediments of western India

    Indian Academy of Sciences (India)

    S Chakraborty; B N Jana; S K Bhattacharya; I Robertson

    2011-08-01

    Stable carbon isotope analysis of fossil leaves from the Bhuj Formation, western India was carried out to infer the prevailing environmental conditions. Compression fossil leaves such as Pachypteris indica, Otozamite kachchhensis, Brachyphyllum royii and Dictyozamites sp. were recovered from three sedimentary successions of the Bhuj Formation, Early Cretaceous in age. A chronology was established based on faunal assemblage and palyno-stratigraphy and further constrained by carbon isotope stratigraphy. The three sampling sites were the Karawadi river bank near Dharesi; the Chawad river bank near Mathal; and the Pur river section near Trambau village in Gujarat. The Dharesi sample was also analyzed to investigate intra-leaf 13C variability. The mean 13C of the leaf was −24.6 ± 0.4‰ which implied negligible systematic change along the leaf axis. The Mathal sample was fragmented in nature and showed considerable variation in carbon isotopic composition. The Trambau sample considered to be the oldest, dating to the middle of Aptian (ca. 116 Ma), shows the most depleted value in 13C among all of them. The overall 13C trend ranging from mid Aptian (ca. 116 Ma) to early Albian (ca. 110 Ma) shows a progressive increase in 13C from −26.8 to −20.5‰. Based on these measurements the carbon isotopic composition of atmospheric carbon dioxide of the Aptian–Albian period is estimated to be between −7.4 and −1.7‰. The ratio of the partial pressure of carbon dioxide in leaf to that of the ambient atmosphere calculated based on a model is estimated to be similar to that of the modern plants. This indicates that the Early-Cretaceous plants adapted to the prevailing high carbon dioxide regime by increasing their photosynthetic uptake.

  11. Temperature and Oxygen Isotope Composition of The Ediacaran Ocean: Constraints From Clumped Isotope Carbonate Thermometry

    Science.gov (United States)

    Bonifacie, M.; Eiler, J. M.; Fike, D. A.

    2008-12-01

    The temperature and chemical variations of the early oceans on Earth are highly debated, particularly for periods associated with significant evolutionary change and/or extinction. The temperature of past oceans has been estimated based on conventional carbonate-water and/or silicate-water stable oxygen isotope thermometry. Precambrian carbonates and silicates both exhibit a long-term secular trend of increasing δ18O values with decreasing age. This trend has been used to support two opposite - though related - interpretations: the Earth's oceans gradually cooled over the course of the Proterozoic eon, from a maximum of ~ 60-90°C at ~ 2.5Ga (and were, on average, relatively warm during much of the Paleozoic era) [1]. This interpretation has been supported by Si-isotope proxies and the thermal tolerances of proteins in various classes of microbial organisms [2-3]. Alternatively, the δ18O value of the oceans has gradually increased through time [4-5], and mean Earth surface temperatures varied over a narrow range similar to modern conditions. In other terms, one either assumes an ocean of constant δ18O and infers that climate varied dramatically, or vise versa. Finally, it is possible that post- depositional processes (e.g., diagenesis, burial metamorphism, weathering) has modified the δ18O values of all or most Precambrian sedimentary carbonates and silicates, overprinting any paleoclimatic variations. Carbonate 'clumped isotope' thermometry provides a new way to independently test these hypotheses because it allows one to determine the apparent growth temperatures of carbonate minerals based on their abundances of 13C-18O bonds, as reflected by the 'Δ47' value of CO2 extracted by phosphoric acid digestion [6]. This method is thermodynamically based and independent of the δ18O of water from which the carbonate grew. We will report the initial results of measurements of 'Δ47 for a suite of carbonates from the Sultanate of Oman. This Ediacaran age (~ 635 to

  12. Carbon isotope composition of carbonaceous matter from the precambrian of the witwatersrand system.

    Science.gov (United States)

    Hoefs, J; Schidlowski, M

    1967-03-01

    Polymerized hydrocarbons occurring in the gold-uranium conglomerates of the Witwatersrand System (South Africa) show deltaC(13) values between -22.4 and -32.8 per mille, their isotopic composition thus falling into the range of sedimentary organic carbon. Accordingly, organic derivation of the material seems very probable. This conclusion is consistent with a model of the existence of organic evolution and biologic activity in times certainly older than 2.15 x 10(9) years.

  13. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    OpenAIRE

    Baoli Wang; Cong-Qiang Liu; Xi Peng; Fushun Wang

    2013-01-01

    In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHY)in freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton whi...

  14. Noble gas isotopic composi-tions of deep carbonate rocks from the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Abundances and isotopic compositions of noble gases (He, Ne, Ar, Kr) with various existence states in carbonate rocks from the Tacanl Well have been investigated by means of the stepwise heating technique. The elemental abundance patterns of noble gases in the samples show the enrichment of heavy noble gases and depletion of 20Ne relative to the atmosphere, which are designated as type- I and are similar to that observed in water, natural gases and sedimentary rocks. The 3He/4He ratios of deep carbonate samples at lower and medium temperature (300-700℃) and a majority of samples at higher temperature (1100-1500℃) steps are very similar to those of natural gases in the same strata in this area, this feature of radiogenic crustal helium shows that the Tazhong Uplift is relatively stable.However, significant helium and argon isotopic anomalies are found at the 1100℃ step in the Middle-Upper Ordoviclan carbonate rock, suggesting the incorporation of manfie-derived volatiles, this may be due to minor igneous minerals contained in sedimentary carbonate rocks. The 40Ar/36Ar ratios in the Cambrian carbonate rock are slightly higher than those in Ordovician carbonate rocks, which may reflect the influence of the chronologic accumulation effect of crust radiogenic 40Ar. Argon isotopes of various existence states in source rocks are much more different, both 38Ar/36Ar and 40Ar/36Ar ratios at the higher temperature steps are higher than those at the lower temperature steps.``

  15. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    Science.gov (United States)

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  16. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    NARCIS (Netherlands)

    Megens, L; van der Plicht, J; de Leeuw, JW; Smedes, F; Altabet, M.

    2002-01-01

    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (

  17. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    Science.gov (United States)

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  18. Skeletal and isotopic composition and paleoclimatic significance of late Pleistocene carbonates, Ross Sea, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Taviani, M. (Ist. per la Geologia Marina, Bologna (Italy)); Reid, D.E.; Anderson, J.B. (Rice Univ., Houston, TX (United States))

    1993-01-01

    Carbonates cover an extensive area of the northwestern Ross Sea continental shelf. Radiocarbon dates yield late Pleistocene (stage 3) ages for these deposits, hence the carbonates appear to be correlative with widespread tills and glacial marine deposits in the region. Four carbonate facies are recognized on the basis of skeletal composition: a barnacle/foraminifer facies, a muddy bryozoan facies, a bryozoan/barnacle/pelecypod/foraminifer facies, and a planktonic foraminiferal facies. These deposits occur on the shelf and upper slope, while carbonate turbidities derived from them occur on the adjacent continental slope and rise. Compositional analyses of Ross Sea carbonates lend support to previously recognized criteria for identifying cold water carbonates. These include: (1) the presence of an associated ice-rafted component (including dropstones); (2) a dominance of calcite relative to other carbonate minerals (the remaining fraction consists solely of aragonite); (3) allochems that are entirely skeletal; and (4) heavy oxygen isotopic compositions (in the range of +3.0 to +5.1% PDB).

  19. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    Directory of Open Access Journals (Sweden)

    Baoli Wang

    2013-02-01

    Full Text Available In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHYin freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton which assimilated more dissolved inorganic carbon (DIC, resulting in the increase of δ13CPHY, δ13CDIC and pH. When the concentration of dissolved carbon dioxide (CO2 was less than 10 mmol L–1, phytoplankton shifted to using HCO3– as a carbon source. This resulted in the sharp increase of δ13CPHY. The carbon stable isotope composition of phytoplankton tended to decrease with the increase of Bacillariophyta, which dominated in January and April, but tended to increase with the increase of Chlorophyta and Dinophyta, which dominated in July. Multiple regression equations suggested that the influence of biological factors such as taxonomic difference on δ13CPHY could be equal or more important than that of physical and chemical factors. Thus, the effect of taxonomic differences on δ13CPHY must be considered when explaining the δ13C of organic matter in lacustrine ecosystem.

  20. Molecular and stable carbon isotopic compositions of hopanoids in seep carbonates from the South China Sea continental slope

    Science.gov (United States)

    Guan, Hongxiang; Sun, Yongge; Mao, Shengyi; Zhu, Xiaowei; Wu, Nengyou

    2014-10-01

    The lipid biomarkers of hopanoids in cold seep carbonates from the South China Sea continental slope were investigated by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-isotope ratio-mass spectrometer (GC-ir-MS). The distribution of hopanes/hopenes shows a preference for the ‘biological’ 17β(H), 21β(H)-over the ‘geological’ 17α(H), 21β(H)-configuration. This interpretation is in agreement with the strong odd-even preference of long-chain n-alkanes in those samples, suggesting that the ββ hopanes may be the early diagenetic products of biohopanoids and the αβ, βα configurations of hopanes were mainly derived from allochthonous sources contributing to the organic matter of the carbonates. In terms of hopanoid acids, the C30 to C33 17β(H), 21β(H)-hopanoid acids were detected with C32 17β(H), 21β(H)-hopanoid acid being the most abundant. However, there is a significant difference in stable carbon isotopic compostions of the C32 17β(H), 21β(H)-hopanoic acid among samples (-30.7‰ to -69.8‰). The δ13C values match well with the carbon isotopic compositions of SRB-derived iso-/anteiso-C15:0 fatty acids in the samples, which strongly depend on the carbon utilization types by microbe. The most abundant compound of hopanols detected in the samples, C30-17β(H), 21β(H)-hopanol, may be a good indicator of diagenetic product of type I methanotrophs. The molecular and carbon isotopic compositions of hopanoids demonstrate clearly that there is a combination contribution of both SRB and type I or type X methanotrophs to the source organism in the seep carbonates from the South China Sea continental slope.

  1. Stable carbon isotope composition of monoterpanes in essential oils and crude oils

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Twenty-five monoterpanes from six types of essential oils and hydrogenated turpentine oil have been identified and their stable carbon isotope composition determined.Monoterpanes in essential oils sourced from terrestrial higher plants display a δ13C value in the range of-34‰-26‰,and mostly between-29‰ and-27‰.The δ13C value of any single monoterpane is very consistent in different essential oils.Acyclic monoterpanes show closer isotope composition between-28.6‰ and-26.2‰,with an average value of-27.7‰.In contrast,the isotope composition of cyclic monoterpanes is more scattered with an average value of-28.6‰.Isotopic fractionation with 13C enrichment has been observed during both artificial and geological hydrogenation of monoterpenoids to monoterpanes,and this is more obvious for the acyclic monoterpenoids.In addition to higher plants,acyclic monoterpane 2,6-dimethylheptane in crude oil can also be originated from other organic inputs.

  2. Recent planktic foraminifers in the Fram Strait (Arctic Ocean): carbon and oxygen stable isotope composition

    Science.gov (United States)

    Pados, T.; Spielhagen, R. F.; Bauch, D.; Meyer, H.; Segl, M.

    2012-12-01

    In paleoceanographic reconstructions the carbon isotopic compositions (δ13C) of fossil foraminifers refer to, e.g., paleoproductivity and stratification, while oxygen isotopic (δ18O) records provide information about variations in sea surface temperatures and salinities in the past. However, for a correct interpretation of the fossil data it is important to improve our understanding of the correlation between recent oceanic variability and the composition of shells of living calcareous microorganisms. For this, the upper water column and sediment surface in the Fram Strait (Arctic Ocean, 78°50'N, 5°W-8°E) were sampled for planktic foraminifer species Neogloboquadrina pachyderma (sin.) and Turborotalita quinqueloba with a large-diameter multinet and a multicorer, respectively. The δ13C and δ18O values of the shells are compared to the stable isotope composition of the ambient water and to equilibrium calcite values to define the preferred calcification depths of the foraminifers and to determine the factors controlling the isotopic signature of these calcareous microorganisms. The study area was chosen because of its high oceanographic variability: in the eastern Fram Strait the northward flowing West Spitsbergen Current (WSC) carries Atlantic Water, with a thin mixed layer on top, while in the west the upper 200 m consists of cold, low-saline Arctic outflow waters of the East Greenland Current (EGC) and warmer, saline waters of Atlantic origin underneath. Despite this variable oceanographic regime along the studied transect, the stable carbon isotope ratios of the shells do not show major differences according to their horizontal but to their vertical distribution: the δ13C values of N. pachyderma (sin.) from plankton tow samples vary roughly between -1 and -0.1‰ depending on the water depth, while the δ18O values of the tests differ more between the stations.

  3. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  4. Stable isotopic composition of pedogenic carbonate in soils of Minusinsk Hollow

    Science.gov (United States)

    Vasil'chuk, Jessica; Krechetov, Pavel; Budantseva, Nadine; Chizhova, Julia; Vasil'chuk, Yurij

    2016-04-01

    The purpose of the research is to characterize the isotopic composition of carbonate neoformations in soils and estimate its correlation with isotopic composition of water and parent material. The study site is located in the Minusinsk Hollow that is situated among Kuznetsk Alatau and Sayan Mountains. Three key-sites with in different parts of hollow, under mainly steppe vegetation with calciphilic grasses and diverse parent material were studied including: 1) Kazanovka Khakass state national reserve in foothills of Kuznetsk Alatau 2) Hankul salt lake that is considered as natural monument 3) region of Sayanogorsk aluminum smelter on a left bank of the Yenisei river. The samples of pedogenic and lithogenic carbonates as well as water samples were analyzed using the Delta-V mass spectrometer with a standard option of a gas bench according to standard methods. Carbonate coatings (also called pendants or cutans) is one of the most common types of carbonate neoformations occurring in the region. Fine coatings' layers one over another usually can be found on the bottom sides of rubble and gravel inside the soil profile colour varies from white to brownish and yellowish (probably depending on the impurities of organic matter). In Petric Calcisols, Chernozems and Kastanozems δ18O values of coatings vary in a rather small range from - 8.9 to - 10.1 ‰ PDB. This probably shows that their forming took place approximately in the same climatic conditions. While δ18O values of carbonate parent rocks are close to them and are vary from - 11.1 to - 11.9 ‰ PDB. Also, δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers, that can indicate differences connected with the diffusion of organic material. River waters' δ18O values also show a small range from - 16.62 to - 17.66‰ SMOW, while salt lakes' waters due to the fractionation evaporation effects demonstrate much heavier values from - 4.73 to - 9.22‰ SMOW. The groundwater shows δ18O

  5. Stable isotopic composition of pedogenic carbonate in soils of Minusinsk Hollow

    Science.gov (United States)

    Vasil'chuk, Jessica; Krechetov, Pavel; Budantseva, Nadine; Chizhova, Julia; Vasil'chuk, Yurij

    2016-04-01

    The purpose of the research is to characterize the isotopic composition of carbonate neoformations in soils and estimate its correlation with isotopic composition of water and parent material. The study site is located in the Minusinsk Hollow that is situated among Kuznetsk Alatau and Sayan Mountains. Three key-sites with in different parts of hollow, under mainly steppe vegetation with calciphilic grasses and diverse parent material were studied including: 1) Kazanovka Khakass state national reserve in foothills of Kuznetsk Alatau 2) Hankul salt lake that is considered as natural monument 3) region of Sayanogorsk aluminum smelter on a left bank of the Yenisei river. The samples of pedogenic and lithogenic carbonates as well as water samples were analyzed using the Delta-V mass spectrometer with a standard option of a gas bench according to standard methods. Carbonate coatings (also called pendants or cutans) is one of the most common types of carbonate neoformations occurring in the region. Fine coatings' layers one over another usually can be found on the bottom sides of rubble and gravel inside the soil profile colour varies from white to brownish and yellowish (probably depending on the impurities of organic matter). In Petric Calcisols, Chernozems and Kastanozems δ18O values of coatings vary in a rather small range from ‑ 8.9 to ‑ 10.1 ‰ PDB. This probably shows that their forming took place approximately in the same climatic conditions. While δ18O values of carbonate parent rocks are close to them and are vary from ‑ 11.1 to ‑ 11.9 ‰ PDB. Also, δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers, that can indicate differences connected with the diffusion of organic material. River waters' δ18O values also show a small range from ‑ 16.62 to ‑ 17.66‰ SMOW, while salt lakes' waters due to the fractionation evaporation effects demonstrate much heavier values from ‑ 4.73 to ‑ 9.22‰ SMOW. The

  6. Temporal Variability in Carbon Isotope Composition of Leaf-Respired Carbon Dioxide

    Science.gov (United States)

    Barbour, M. M.; Hanson, D. T.; Bickford, C. P.; McDowell, N. G.

    2005-12-01

    The stable carbon isotope composition of leaf-respired CO2 (δ13CRl) has enormous potential to allow partitioning of ecosystem respiration into various components, to provide information on key physiological processes, and to trace carbon fluxes through plants and ecosystems. However, difficulties in measuring and understanding variation in δ13CRl have limited its application. We coupled an open gas exchange system (LI-6400, LiCor) to a tunable diode laser (TGA100A, Campbell Scientific) enabling measurement of leaf respiratory CO2 fluxes and δ13CRl every three minutes, with a precision of at least ±0.3 per mil. We also measured oxygen consumption rates, allowing calculation of the respiratory quotient ( RQ) and indicating likely respiratory substrates. Castor bean ( Ricinus communis) plants grown at high and low light were placed in the dark after different lengths of time exposed to sunlight and variation in δ13CRl measured to test the patterns in variation in δ13CRl predicted by existing biochemical models. CO2 respired by leaves previously exposed to high cumulative incident irradiance was up to 11 per mil more enriched than phloem sap sugars for the first 10 to 15 minutes after plants had been moved into the dark . This enrichment rapidly decreased, so that by 30 minutes in the dark δ13CRl was 5 per mil more enriched than phloem sap sugars. CO2 production rates were also initially very high and rapidly decreased. RQ for plants grown in high light varied between 0.8 and 1.2, indicating that carbohydrates and/or organic acids were the respiratory substrates. δ13CRl measured 30 to 80 minutes after plants had been moved into the dark increased with increasing δ13C of phloem sap sugars. The RQ values of plants grown at low light suggested that the respiratory substrates were fatty acids or amino acids ( RQ of around 0.6), or lipids ( RQ less than 0.4). δ13CRl values were enriched by either 4 per mil ( RQ = 0.3) or 12 per mil ( RQ = 0.5) compared to phloem

  7. Carbon Isotope Composition of Mysids at a Terrestrial-Marine Ecotone, Clayoquot Sound, British Columbia, Canada

    Science.gov (United States)

    Mulkins, L. M.; Jelinski, D. E.; Karagatzides, J. D.; Carr, A.

    2002-04-01

    The relative contribution of summertime terrestrial versus marine carbon to an estuary on coastal British Columbia, Canada was explored using stable carbon isotopic (δ 13C values) analysis of mysid crustaceans (Malacostraca: Peracarida: Mysidacea). We hypothesized that landscape linkages between the forested upland and adjacent inshore marine waters, via river, groundwater and overland flows, may influence carbon content and metabolism in the coastal zone. We sampled 14 stations spatially distributed in a grid and found δ 13C compositions of mysids ranged from -15·2 to -18·4‰. There was, however, no obvious spatial distribution of δ 13C values relative to the estuarine gradient in Cow Bay. Heavy tidal mixing is suggested to disperse marine and terrestrial carbon throughout the entire bay. From a temporal perspective however, mysid δ 13C signatures became enriched over the sampling period (mid-July to mid-August), which is representative of a stronger marine influence. This may arise because mysids are exposed to greater marine-derived carbon sources later in the summer, a decrease in freshwater input (and hence terrestrial carbon), changes in phytoplankton or macrophyte community structure, or that mysids preferentially feed on marine food sources. Overall, the recorded isotopic values are characteristic of marine organic carbon signatures suggesting that in summer, despite the proximity to shore, little or no terrestrial carbon penetrates the food web at the trophic level of mysids. This notwithstanding we believe there is a strong need for additional study of carbon flows at the marine-terrestrial interface, especially for disturbed watersheds.

  8. Stable isotope composition of dissolved inorganic carbon and particulate organic carbon in sea ice from the Ross Sea, Antarctica

    Science.gov (United States)

    Munro, David R.; Dunbar, Robert B.; Mucciarone, David A.; Arrigo, Kevin R.; Long, Matthew C.

    2010-09-01

    We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (ΣCO2), and the 13C/12C ratio of ΣCO2 ? Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (δ13CPOC). ΣCO2 in sea ice brines ranged from 1368 to 7149 μmol kg-1, equivalent to 1483 to 2519 μmol kg-1 when normalized to 34.5 psu salinity (sΣCO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available ΣCO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce sΣCO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine ? ranged from -2.6 to +8.0‰ while δ13CPOC ranged from -30.5 to -9.2‰. Isotopic enrichment of the ΣCO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of sΣCO2, ? and δ13CPOC within sea ice suggest that ɛp (the net photosynthetic fractionation factor) for sea ice algae is ˜8‰ smaller than the ɛp observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.

  9. Environmental inputs that can influence carbon isotopic compositions of hot spring biofilms

    Science.gov (United States)

    Donatelli, J. L.; Havig, J. R.; Shock, E.

    2011-12-01

    The carbon isotopic compositions of hydrothermal biofilms are influenced by microbial carbon cycling, and can be correlated with the presence or absence of specific genes in environmental genomic analyses (Havig et al., 2011, JGR). Additional isotopic data on potential environmental sources of carbon will enable further tests of the specific pathways of carbon assimilation and cycling throughout hydrothermal ecosystems. Hot springs at Yellowstone National Park (YNP) are often located in open meadows or forested areas with varying amounts of vegetation and exposed soil surrounding the pools. These pools are open systems which have the potential to accumulate allochthonous materials via physical and biogenic processes. These inputs may affect the δ13C signatures of the hot spring waters and the biofilms associated with them. In the YNP hot springs we have studied since 2003, biofilms range in δ13C from -1.2 to -30.7%. Dissolved inorganic carbon (DIC) in coexisting fluids ranges from 4.3 to -3.9%. The heaviest biofilms typically show minimal isotopic fractionation from the DIC in coexisting fluids. DIC values are strongly influenced by inputs from magma degassing, water-rock reactions in the hydrothermal system, and the atmosphere. Dissolved organic carbon (DOC) values for the coexisting fluids range from -16.5 to -26.8%, which are within the range of biofilm δ13C values. DOC values will also be affected by diverse processes as precipitation infiltrates, reacts, and eventually returns to the surface as hydrothermal fluids, but may also be influenced by biologically derived inputs from the local environments where hot springs occur. In an effort to characterize the environmental context of hot springs, we have collected isotopic data on lodgepole pine needles, grasses, soils, insects and bison feces. Of these, the δ13C data for bison feces (-27.7 to -29.6%) are lighter than any of the DOC data. Pine needles (-26.3 to -29.1%) and soils (-24.8 to -27.1%) overlap with

  10. Factors controlling the temporal variability of ecosystem respiration and its carbon isotope composition

    Science.gov (United States)

    Fassbinder, J.; Griffis, T. J.; Baker, J. M.; Erickson, M.; Billmark, K.; Smith, J.

    2009-12-01

    Ecosystem respiration (FR ) is the major pathway for carbon loss from terrestrial ecosystems. Stable carbon isotope analyses have been used to improve our understanding of the processes controlling ecosystem respiration. In particular, 13CO2 has been used to partition the autotrophic (Fa) and heterotrophic (Fh) contributions to FR. Further, there has been some concern in the literature regarding the temporal variability of the isotopic composition of ecosystem respiration (δR) and its potential influence on ecosystem flux partitioning based on isotope methods. In this study, we used an automated chamber and tunable diode laser system to measure soil respiration (FRs) and its isotopic composition (δRs) in an agricultural ecosystem under a C3/C4 crop rotation. Further, we used the same chamber-TDL system in a climate controlled greenhouse facility with C3/C4 treatments to examine the main factors causing variability in δRs and δR. The chamber data revealed strong diurnal patterns in the isotopic composition of Fh in the agricultural soil plots before crop emergence and in the greenhouse experiments involving bare soils. The diurnal pattern consisted of a sharp enrichment of up to 6‰ from 0700 to 1200 hr followed by a gradual depletion throughout the afternoon and evening. The diurnal signals of FR and soil temperature closely resembled the diurnal signal of δh, but consistently lagged δh by 3 to 4 hours. During peak corn growth, diurnal variation in δRs was strongly influenced by the isotopic composition of root respiration (δas), which enriched nighttime δRs by as much as 7‰ and daytime δRs by as much as 3‰. Chamber and flux-gradient data also indicated considerable seasonal variation in δR during corn growing seasons, ranging from -25‰ at the time of planting to -11‰ during peak growth. Less variation in δR was observed during soybean seasons, with values ranging from -26 to -21‰. Major shifts in δR during corn seasons were consistently

  11. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    Science.gov (United States)

    Saiz, G.; Wynn, J. G.; Wurster, C. M.; Goodrick, I.; Nelson, P. N.; Bird, M. I.

    2015-03-01

    Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations.

  12. The carbon isotopic compositions of Non-methane Hydrocarbons in atmosphere

    Institute of Scientific and Technical Information of China (English)

    PENG Lin; ZHANG HuiMin; REN ZhaoFang; MU Ling; SHI RuiLiang; CHANG LiPing; LI Fan

    2009-01-01

    Carbon isotopic compositions of atmospheric Non-methane Hydrocarbons (NMHCs) in the urban areas of Taiyuan and Lanzhou in summer were reported and the sources of NMHCs are discussed.Carbon isotopic ratios (δ13C) of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust were also measured with thermal desorption-gas chromatography-isotope ratio-mass spectrometry (TD-GC-IR-MS).δ13C values of NMHCs in the urban areas of Lanzhou and Taiyuan range from -32.3‰ to -22.3‰ and from -32.8‰ to -18.1‰.δ13C values of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust are -32.5‰--21.7‰,-24.5‰--22.3‰,-32.5%--27.4‰ and -31.6‰--24.5‰,respectively.The data indicate that vehicle exhaust and cooking exhaust make a significant contribution to the atmospheric NMHCs.Therefore,to reduce emissions of vehicle exhaust and cook-ing exhaust is critical for controlling atmospheric NMHCs pollution in summer.

  13. Carbon and helium isotopic composition of fumarolic gases and hot spring gases from Kirishima volcanic area

    International Nuclear Information System (INIS)

    When a structure survey on the Kirishima volcano was conducted in 1994, authors conducted a chemical investigation on volcanic volatile components. In this paper, on volcanic and fumarolic gases samples adopted at that time, their analytic results such as carbon isotopic compositions of CH4 and CO2, and 3-He/4-He ratio were reported, according to which here was described on a forecasting result on origin of volcanic gas of the Kirishima volcanic area under a relation of volcano structure. As a result, it was thought that CO2/3-He and delta 13-C(CO2) distributed at a nearly duplicated region with another island volcano area, and most of CO2 seemed to form at an origin of mantle. As at the Iwoyama CH4 formed by thermolytic origin was emitted, at the Sinmoe-dake CH4 showing delta 13-C reaching isotope equilibrium with CO2 of magma origin at 400 centigrade was emitted. And, the carbon isotope ratio of CH4 showed high possibility to be increased by living actions or organic oxidation. (G.K.)

  14. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    Science.gov (United States)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  15. Stable carbon isotopic composition of soil organic matter in the karst areas of Southwest China

    Institute of Scientific and Technical Information of China (English)

    ZHU Shufa; LIU Congqiang

    2008-01-01

    This study dealt with the distribution characteristics of soil organic carbon (SOC) and the variation of stable carbon isotopic composition (δ13C values) with depth in six soil profiles, including two soil types and three vegetation forms in the karst areas of Southwest China. The δ13C values of plant-dominant species, leaf litter and soils were measured using the sealed-tube high-temperature combustion method. Soil organic carbon contents of the limestone soil profiles are all above 11.4 g/kg, with the highest value of 71.1 g/kg in the surface soil. However, the contents vary between 2.9 g/kg and 46.0 g/kg in three yellow soil profiles. The difference between the maximum and minimum δ13C values of soil organic matter (SOM) changes from 2.2‰ to 2.9‰ for the three yellow soil profiles. But it changes from 0.8‰ to 1.6‰ for the limestone soil profiles. The contrast research indicated that there existed significant difference in vertical patterns of organic carbon and δ13C values of SOM between yellow soil and limestone soil. This difference may reflect site-specific factors, such as soil type, vegetation form, soil pH value, and clay content, etc., which control the contents of different organic components comprising SOM and soil carbon turnover rates in the profiles. The vertical variation patterns of stable carbon isotope in SOM have a distinct regional character in the karst areas.

  16. Carbon isotope geochemistry and geobiology

    Science.gov (United States)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  17. Stable isotope composition of bulk and secondary carbonates from the Quaternary loess-paleosol sequence in Sutto, Hungary

    DEFF Research Database (Denmark)

    Koeniger, Paul; Barta, Gabriella; Thiel, Christine;

    2014-01-01

    , and microscale secondary (authigenic) carbonates (calcified root cells, carbonate coatings, hypocoatings, and earthworm biospheroids) and concretions at 10 cm resolution were analysed to interpret stable isotope variations. Isotope values of bulk samples were in the range of 2.6 parts per thousand to -13.9 parts......, secondary carbonates showed more depleted values than bulk samples. Calcified root cells have the most depleted isotope composition with mean values of -16.0 parts per thousand and -11.8 parts per thousand for delta C-13 and 8180, respectively. Results indicate that loess and paleosol secondary carbonates...... or vegetation. Secondary carbonates are more reliable than bulk samples because of their direct connection to the host strata. (C) 2012 Elsevier Ltd and INQUA. All rights reserved....

  18. Factors controlling carbon isotopic composition of land snail shells estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, Naizhong; Yamada, Keita; Yoshida, Naohiro

    2014-05-01

    Carbon isotopic composition (δ13C) of land snail shell carbonate is widely applied in reconstructing the C3/C4 vegetation distribution of paleo-environment, which is considered to reflect variations of some environmental parameters [1][2][3]. Land snail shell carbon has three potential sources: diet, atmospheric CO2 and ingested carbonate (limestone) [4]. However, their relative contributions to shell carbonate have not been understood well yet [4][5][6][7][8]. More researches are necessary before we could apply this tool in paleo-environment reconstruction, especially inter-lab culturing experiment. A kind of land snail species, Acusta despecta sieboldiana, was collected at Yokohama, Japan and cultured under suitable environment to lay eggs. The second generations were growing up from eggs to adults around 6-12 months at the temperature of 20°, 25° and 30°, respectively. All of the snails at 25° and 30° and most of those at 20° were fed by cabbage (C3 plant) during their life span while others were fed by corn (C4 plant). To investigate the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. δ13C of shells were analyzed by an Isotope Ratio Mass Spectrometry (Thermo Finnigan MAT 253); δ13C of food and snail tissue were measured by a Cavity Ring-Down Spectroscopy (Picarro G1121-i). At the same time, δ13C of eggshell and new born snails were analyzed by a Continuous Flow Isotope Ratio Mass Spectrometry (GasBench II). We confirmed that diet, atmospheric CO2 and ingested limestone could be important sources controlling shell δ13C values. And the temperature could affect shell carbonate δ13C values, too. A simple but credible frame was raised to discuss the mechanism of how each possible source and environmental parameter could affect shell carbonate δ13C values based on previous works [4][6][8] and this study. According to this frame and some reasonable assumptions, we have estimated the

  19. Bulk carbon, oxygen, and hydrogen stable isotope composition of recent resins from amber-producing Hymenaea.

    Science.gov (United States)

    Nissenbaum, Arie; Yakir, Dan; Langenheim, Jean H

    2005-01-01

    Resins of Hymenaea, an angiosperm tree genus known to be a copious resin producer and a major source of amber since the Oligo-Miocene, were collected from a wide range of tropical environments from Latin America and Africa, and analyzed for their carbon, hydrogen, and oxygen stable isotope composition. The average value for delta13C in the resins was found to be -27.0+/-1.3 per thousand, which is very similar to the values reported for resins in other studies. Delta18O values for the Hymenaea resins averaged +11.2+/-1.6 per thousand, or about 20 per thousand more depleted than normal plant cellulose. DeltaD values of the resins ranged from -196 to -319 per thousand, with an average of -243+/-30 per thousand. Rough estimates suggest a fractionation of -200 to -210 per thousand between the resins and the environmental water. This value is similar to the -200 per thousand value observed for the fractionation between other plant lipids and environmental water. The present study suggests that the stable isotope composition of fossil resins (amber) has the potential to provide information on ancient environmental waters.

  20. Constraints on Phanerozoic paleotemperature and seawater oxygen isotope evolution from the carbonate clumped isotope compositions of Late Paleozoic marine fossils (Invited)

    Science.gov (United States)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Pérez-Huerta, A.; Shenton, B.; Yancey, T. E.

    2013-12-01

    A long-standing geoscience controversy has been the interpretation of the observed several per mil increase in the oxygen isotope compositions of marine calcites over the Phanerozoic Eon. Explanations for this trend have included decreasing seawater paleotemperatures, increasing seawater oxygen isotope values, and post-depositional calcite alteration. Carbonate clumped isotope paleothermometry is a useful geochemical tool to test these hypotheses because of its lack of dependence on the bulk isotopic composition of the water from which carbonate precipitated. This technique is increasingly applied to ancient marine invertebrate shells, which can be screened for diagenesis using chemical and microstructural approaches. After several years of clumped isotope analysis of these marine carbonates in a handful of laboratories, a long-term temperature and isotopic trend is emerging, with the results pointing to relatively invariant seawater δ18O and generally decreasing seawater temperatures through the Phanerozoic. Uncertainties remain, however, including the effects of reordering of primary clumped isotope compositions via solid-state diffusion of C and O through the mineral lattice at elevated burial temperatures over hundred million year timescales. To develop a quantitative understanding of such reordering, we present data from laboratory heating experiments of late Paleozoic brachiopod calcite. When combined with kinetic models of the reordering reaction, the results of these experiments suggest that burial temperatures less than ~120 °C allow for preservation of primary brachiopod clumped isotope compositions over geological timescales. Analyses of well-preserved Carboniferous and Permian brachiopods reinforce these results by showing that shells with apparent clumped isotope temperatures of ~150 °C are associated with deep sedimentary burial (>5 km), whereas those with putatively primary paleotemperatures in the 10-30 °C range experienced no more than ~1.5 km

  1. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    OpenAIRE

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of ^(13)C and ^(18)O isotopes bound to each other within carbonate minerals in ^(13)C^(18)O^(16)O_2^(2−) groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solutio...

  2. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    Directory of Open Access Journals (Sweden)

    G. Saiz

    2014-10-01

    C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC components, with each of these also partitioned into proximal (> 125 μm and distal (13C compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7 ‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion was computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, and for global 13C isotopic disequilibria calculations.

  3. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    International Nuclear Information System (INIS)

    This study discusses the conditions of formation and provenance of calcite cleats in coal deposits of Antarctica and Ohio, based on their isotope compositions of oxygen, carbon and strontium. The paper gives some data of the relative radioisotope abundance of 87Sr. (Auth.)

  4. Mineralogy and stable isotope compositions of carbonate and sulphide minerals of carbonate crusts associated with gas hydrate-forming cold vents from the NE Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Conly, A.G. [Lakehead Univ., Thunder Bay, ON (Canada). Dept. of Geology; Scott, S.D. [Toronto Univ., ON (Canada). Dept. of Geology; Riedel, M. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada, Pacific Geoscience Centre

    2005-07-01

    In 2001, the ROPOS submersible sampled 21 specimens of carbonate crusts from 2 gas hydrate fields located offshore Vancouver Island on the northeast Pacific continental margin. The mineralogy and stable isotopic composition of carbonate and sulphide minerals were used to evaluate petrogenesis and the relationship to associated gas hydrate occurrences. The crusts form the upper surface of carbonate and pelagic mud mounds within the gas hydrate fields. The crusts are made up of micritic carbonate with a highly variable morphology that includes blocky, fissile, nodular and mudcemented brecciated forms. The crusts include micritic calcite and dolomite/ferroan dolomite, with up to 30 per cent detrital and authigenic silicates. The finely disseminated sulphide minerals include pyrite and trace amounts of sphalerite. Bulk-rock chemical compositions are mainly homogeneous. Any variations reflect the calcite:dolomite and carbonate:silicate ratios. The {delta}13 C values for bulk carbonate (calcite and dolomite) were presented. No definitive correlation between {delta}13 C value and carbonate mineralogy was noted, but calcite-dominant samples were found to be more depleted. The {delta}34 S values for sulphide were also presented. The carbon isotopic composition of the carbonate is associated with the balance of inorganic and organic carbon species. Bacterial sulphate reduction and/or bacterial fermentation and carbonate reduction processes responsible for the production of methane were found to control the {delta}13 C of the carbon dioxide reservoir in gas hydrate environments. It was shown that methane was the carbon source involved in bacterial sulphate reduction and that the isotopic composition of the CO{sub 2} reservoir may be controlled by fractionation during bacterial carbonate reduction. The range in sulphur isotopes correlates with the bacterial sulphate reduction under partially closed conditions, where the rate of diffusion of sulphate is less than the rate of

  5. Stable isotopic investigations of early development in extant and fossil chambered cephalopods I. Oxygen isotopic composition of eggwater and carbon isotopic composition of siphuncle organic matter in Nautilus

    Science.gov (United States)

    Crocker, Kimberley C.; DeNiro, Michael J.; Ward, Peter D.

    1985-12-01

    Eggwaters from the chambered cephalopod Nautilus are depleted in both 18O and deuterium relative to ambient seawater. Eggwaters from six other species, including the related chambered cephalopod Sepia, do not show such depletion. These observations indicate that the previously observed step towards more positive δ 18O values in calcium carbonate laid down after Nautilus hatches, relative to carbonate precipitated prior to hatching, can be explained by equilibration of the carbonate with water in the egg before hatching and with seawater after hatching. The presence of an oxygen isotope difference between eggwater and seawater for Nautilus and its absence for Sepia suggest that hatching will be recorded in the δ 18O values of shell carbonates for some but not all extinct and extant chambered cephalopods. The δ 13C values of the organic fraction of the siphuncle in Nautilus do not show any consistent pattern with regard to the time of formation before or after hatching. This observation suggests that the minimum in δ 13C values previously observed for calcium carbonate precipitated after Nautilus hatches is not caused by a change in food sources once the animal becomes free-swimming, as has been suggested.

  6. Vegetation evolution on the central Chinese Loess Plateau since late Quaternary evidenced by elemental carbon isotopic composition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin; SHEN ChengDe; ZHENG HongBo; ZHAO MeiXun; SUN YanMin

    2009-01-01

    There are many controversial issues in loess studies such as natural vegetation types on the Chinese Loess Plateau during the historical periods and the spatial and temporal evolution of C3/C4 plants.Elemental carbon isotopic composition (δ13Cec) in the loess section may offer new evidence for these problems. Elemental carbon (EC) is produced by incomplete combustion of vegetation, and its carbon isotopic composition has a very small difference from that of the formal vegetation, then δ13Cec can be used as a record to recover the changes of vegetation. Elemental carbon was extracted by applying the oxidation method from the loess-paleosol sequence in the central Chinese Loess Plateau, and its carbon isotope composition was analyzed by the isotope mass spectrometer. The results showed that the vegetation in this region was a mixed type of C3 and C4 plants, dominated with C3 plants in most of the time. Since late Quaternary, C3/C4 plants may not follow a simple glacial-interglacial cycle mode on the Chinese Loess Plateau, but showing fluctuations. C3 plants increased gradually in L4 period, and more C3 plants occurred during S3 period, and C4 plants increased again during L3-L2 periods, after that, C3plants dominated again during S1-S0 periods. During periods of paleosol development, C3 plants were abundant in S3 and S1, and there were more C4 plants in S2 and S0. During periods of loess sedimentation, there were more C3 plants in L4 and L1, and there were more C4 plants in L3 and L2. On the orbital timescale, the vegetation variations revealed by δ13Cec record are consistent with the results of pollen data and also similar to the results obtained by organic carbon isotopic composition since the last glacial period.

  7. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Science.gov (United States)

    Jung, J.; Kawamura, K.

    2011-11-01

    In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E) in East Asia, total suspended particles (TSP) were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during pollen emission episodes (range: -26.2‰ to -23.5‰, avg. -25.2 ± 0.9‰), approaching those of the airborne pollen (-28.0‰) collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C). Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  8. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  9. Variability in magnesium, carbon and oxygen isotope compositions, and trace element contents of brachiopod shells: implications for paleoceanographic studies

    Science.gov (United States)

    Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe

    2016-04-01

    Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best

  10. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-11-01

    δ13Catm level in the Penultimate (~ 140 000 yr BP and Last Glacial Maximum (~ 22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  11. Conditions of diamond formation beneath the Sino-Korean craton: paragenesis, temperatures and the isotopic composition of carbon

    International Nuclear Information System (INIS)

    Mineral inclusions (23 pyrope garnets, 30 chromites) have been extracted from 28 diamonds selected from the Pipe 50 kimberlite in Liaoning Province, and the pipes of the Shengli 1 and Hongqi 6 kimberlites in Shandong province. These inclusions, and several from the collection of Meyer et al., (1994), have been analysed for major elements using EMP and for trace elements using the proton microprobe. Carbon-isotope compositions have been measured on 44 diamonds (23 from Liaoning, 21 from Shandong), of which 32 contained identified inclusions. The δ13C values range from +0.9 to -6.0 per mill; the heaviest carbon is found in stones with very low-Ca garnets. This implies that the isotopic composition of carbon in harzburgitic rocks is related to the primary depletion process, which suggests ancient formation of the diamonds

  12. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Directory of Open Access Journals (Sweden)

    N. Zhang

    2014-05-01

    Full Text Available The carbon isotopic composition (δ13C of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone. However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66–80%, 16–24%, and 0–13%. For corn (C4 plant fed groups, because of the possible food stress (lower consumption ability of C4 plant, the values vary respectively as 56–64%, 18–20%, and 16–26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite–HCO3−–aragonite equilibrium.

  13. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-05-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant) fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66-80%, 16-24%, and 0-13%. For corn (C4 plant) fed groups, because of the possible food stress (lower consumption ability of C4 plant), the values vary respectively as 56-64%, 18-20%, and 16-26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite-HCO3--aragonite equilibrium.

  14. Physical and Human Controls on the Carbon Composition of Organic Matter in Tropical Rivers: An Integrated Analysis of Landscape Properties and River Isotopic Composition

    International Nuclear Information System (INIS)

    We applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. To evaluate physical and human controls on the carbon composition of organic matter in tropical rivers, we applied an integrated analysis of landscape properties including soil properties, land cover and riverine isotopic composition. Our main objective was to establish the relationship between basin attributes and forms, fluxes and composition of dissolved and particulate organic matter in river channels. A physical template was developed as a GIS-based comprehensive tool to support the understanding of the biogeochemistry of the surface waters of two tropical rivers: the Ji-Parana (Western Amazonia) and the Piracicaba (southeastern of Brazil). For each river we divided the basin into drainage units, organized according to river network morphology and degree of land use impact. Each sector corresponded to a sampling point where river isotopic composition was analysed. River sites and basin characteristics were calculated using datasets compiled as layers in ArcGis Geographical Information System and ERDAS-IMAGINE (Image Processing) software. Each delineated drainage area was individually characterized in terms of topography, soils, river network and land use. Carbon stable isotopic composition of dissolved organic matter (DOM) and particulate organic matter (POM) was determined at several sites along the main tributaries and small streams. The effects of land use on fluvial carbon composition were quantified by a linear regression analysis, relating basin cover and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, vegetation plays a key role in the composition of riverine organic matter in agricultural ecosystems. (author)

  15. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism.

    Science.gov (United States)

    Kaufman, A J; Hayes, J M; Knoll, A H; Germs, G J

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late

  16. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].

    Science.gov (United States)

    Ivlev, A A

    2010-01-01

    model, data on isotope composition of carbon of carbonate and organic substance in rocks are used and its ability to explain several known natural regularities and empirical correlations. The model is used for analysis of some key stages of evolution of photosynthesis. PMID:20583589

  17. A high resolution record of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-04-01

    Full Text Available The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm, as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a highly resolved record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC and the Talos Dome ice cores in East Antarctica. We find an 0.4‰ offset between the mean δ13Catm level in the Penultimate (~140 000 yr BP and Last Glacial Maximum (~22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  18. Stable Carbon Isotopic Compositions of Methylated-MTTC in Crude Oils from Saline Lacustrine Depositional Environment: Source Implications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Significantly high abundant methyl-MethylTrimethylTridecylChromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of these compounds is dominated by methyl-MTTC and dimethylMTTC series, which indicate diagenetic products of a hypersaline depositional environment in the early stage and show a low degree of methylation. The occurrence of significantly high abundant methyl-MTTC depends mainly on good preservation conditions with a strongly reductive, hypersaline and water-columned depositional environment and subsequent non-intensive diagenetic transformations. The stable carbon isotopic compositions of the methyl-MTTCs and dimethyl-MTTCs in two samples are far different from the stable carbon isotopic composition of C30 hopane of apparent bacteria biogenesis (up to 4.11‰ and 5.75‰, respectively). This obviously demonstrates that the methyl-MTTC and dimethyl-MTTCs cannot be of bacteria origin, which is different from the previous point of view about non-photosynthetic bacteria products or possible bacteria-reworked products. On the contrary, the stable carbon isotopic compositions of methyi-MTTC and dimethyl-MTTCs in the two samples were similar to that of the samecarbon-numbered n-alkanes (nC27-nC28-nC29), which indicates that they share the same source origin. Especially in the crude oil from the Zhao61 well, stable carbon isotopic compositions are also similar to that of the same carbon-numbered steranes with ααα-20R isomer (mostly less than 0.4‰). In consideration of the results of previous studies on saline lake ecological sedimentation, the authors hold that the methyl-MTTC and dimethyl-MTTCs in the saline lake sediments should be of algal biogenesis origin.

  19. Alkane distribution and carbon isotope composition in fossil leaves: An interpretation of plant physiology in the geologic past

    Science.gov (United States)

    Graham, H. V.; Freeman, K. H.

    2014-12-01

    The relative chain-length distribution and carbon-isotope composition of n-alkanes extracted from sedimentary rocks are important geochemical tools for investigating past terrestrial ecosystems. Alkanes preserved in ancient sediments are assumed to be contemporaneous, derived from the same ecosystem, and integrated from the biomass present on the landscape at the time of deposition. Further, there is an underlying assumption that ancient plants exhibited the same metabolic and physiological responses to climate conditions that are observed for modern plants. Interpretations of alkane abundances and isotopic signatures are complicated by the strong influence of phylogenetic affiliation and ecological factors, such as canopy structure. A better understanding of how ecosystem and taxa influence alkane properties, including homologue abundance patterns and leaf-lipid carbon isotope fractionation would help strengthen paleoecological interpretations based on these widely employed plant biomarkers. In this study, we analyze the alkane chain-length distribution and carbon-isotope composition of phytoleim and alkanes (d13Cleaf and d13Clipid) extracted from a selection of Cretaceous and Paleocene fossil leaves from the Guaduas and Cerrejon Formations of Colombia. These data were compared with data for the same families in a modern analogue biome. Photosynthetic and biosynthetic fractionation (∆leaf and elipid) values determined from the fossil material indicate carbon metabolism patterns were similar to modern plants. Fossil data were incorporated in a biomass-weighted mixing model to represent the expected lipid complement of sediment arising from this ecosystem and compared with alkane measurements from the rock matrix. Modeled and observed isotopic and abundance patterns match well for alkane homologs most abundant in plants (i.e., n-C27 to n-C33). The model illustrates the importance of understanding biases in litter flux and taphonomic pressures inherent in the

  20. Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Science.gov (United States)

    Jung, J.; Kawamura, K.

    2011-05-01

    In order to investigate the carbon episodes at Gosan background super-site (33.17° N, 126.10° E) in East Asia during spring of 2007 and 2008, total suspended particles (TSP) were collected and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The carbon episodes at the Gosan site were categorized as long-range transported anthropogenic pollutant (LTP) from Asian continent, Asian dust (AD) accompanying with LTP, and local pollen episodes. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during the pollen episodes (range: -26.2 ‰ to -23.5 ‰, avg.: -25.2 ± 0.9 ‰), followed by the LTP episodes (range: -23.5 ‰ to -23.0 ‰, avg.: -23.3 ± 0.3 ‰) and the AD episodes (range: -23.3 to -20.4 %, avg.: -21.8 ± 2.0 ‰). The δ13CTC of the airborne pollens (-28.0 ‰) collected at the Gosan site showed value similar to that of tangerine fruit (-28.1 ‰) produced from Jeju Island. Based on the carbon isotope mass balance equation and the TN and TC regression approach, we found that ∼40-45 % of TC in the TSP samples during the pollen episodes was attributed to airborne pollens from Japanese cedar trees planted around tangerine farms in Jeju Island. The δ13C of citric acid in the airborne pollens (-26.3 ‰) collected at the Gosan site was similar to that in tangerine fruit (-27.4 ‰). The negative correlation between the citric acid-carbon/TC ratios and δ13CTC were obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollens and then transported to the Gosan site. Based on the thermal evolution pattern of organic aerosols during the carbon episodes, we found that organic aerosols originated from East China are more volatile on heating and are more likely to form pyrolized organic carbon than the pollen-enriched organic aerosols and organic

  1. Determination of carbon isotopic composition of individual light hydrocarbons evolved from pyrolysis of source rocks by using GC-IRMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The carbon isotopic composition of individual light hydrocarbons generated from source rocks that had been pyrolysed in vacuum glass tube were determined by using the GC-IRMS techniques. The results indicate that abundant CO2 in the pyrolysates has a remarkable effect on the determination of CH4δ13C. Running cryogenically with an initial temperature of -40℃can effectively eliminate the effect. In addition, it conduces to measuring the δ13C of C2+ hydrocarbons by increasing the injection volume and/or absorbing CO2 with the solution of sodium hydroxide.The above measures will help to get the carbon isotopic composition of C1-C7 components, which is of great significance for gas/source rock correlation and for study on the genesis of natural gas.

  2. Carbon and Noble Gas Isotope Banks in Two-Phase Flow: Changes in Gas Composition During Migration

    Science.gov (United States)

    Sathaye, K.; Larson, T.; Hesse, M. A.

    2015-12-01

    In conjunction with the rise of unconventional oil and gas production, there has been a recent rise in interest in noble gas and carbon isotope changes that can occur during the migration of natural gas. Natural gas geochemistry studies use bulk hydrocarbon composition, carbon isotopes, and noble gas isotopes to determine the migration history of gases from source to reservoir, and to trace fugitive gas leaks from reservoirs to shallow groundwater. We present theoretical and experimental work, which helps to explain trends observed in gas composition in various migration scenarios. Noble gases are used as tracers for subsurface fluid flow due to distinct initial compositions in air-saturated water and natural gases. Numerous field studies have observed enrichments and depletions of noble gases after gas-water interaction. A theoretical two-phase gas displacement model shows that differences in noble gas solubility will cause volatile gas components will become enriched at the front of gas plumes, leaving the surrounding residual water stripped of dissolved gases. Changes in hydrocarbon gas composition are controlled by gas solubility in both formation water and residual oil. In addition to model results, we present results from a series of two-phase flow experiments. These results demonstrate the formation of a noble gas isotope banks ahead of a main CO2 gas plume. Additionally, we show that migrating hydrocarbon gas plumes can sweep biogenic methane from groundwater, significantly altering the isotope ratio of the gas itself. Results from multicomponent, two-phase flow experiments qualitatively agree with the theoretical model, and previous field studies. These experimentally verified models for gas composition changes can be used to aid source identification of subsurface gases.

  3. Abnormal composition of carbon isotopes in underground alkaline waters of Kuzbass

    Science.gov (United States)

    Shvartsev, S. L.; Lepokurova, O. E.; Ponomarchuk, V. A.; Domrocheva, E. V.; Sizikov, D. A.

    2016-08-01

    The first data on abnormally high δ13C values in hydrocarbonates (HCO 3 - ) dissolved in underground waters of coal deposits of Kuzbass (up to +30.9‰) are reported. It is shown that such an unusual isotope composition of waters results from the long, strictly directed interaction in the water-rock-gas-organic material system occurring under the conditions of hindered water exchange. Extensive fractionation of C isotopes is the result of the evolution of the water-rock-gas-coal system after penetration of infiltration waters into the coal deposits and their long interaction with all these components, rather than metamorphism of organic material upon its transformation into coal. With respect to such an approach, the isotope composition of dissolved C may indicate the duration of the evolution in the water-rock-gas-organic material system.

  4. Variability in the carbon isotope composition of individual amino acids in plant proteins from different sources: 1 Leaves.

    Science.gov (United States)

    Lynch, Anthony H; Kruger, Nicholas J; Hedges, Robert E M; McCullagh, James S O

    2016-05-01

    The natural carbon isotope composition of individual amino acids from plant leaf proteins has been measured to establish potential sources of variability. The plant leaves studied, taken from a range of plant groups (forbs, trees, grasses, and freshwater aquatic plants), showed no significant influence of either season or environment (water and light availability) on their Δδ(13)C values. Plant groups did, however, differ in carbon isotope composition, although no consistent differences were identified at the species level. A discriminant analysis model was constructed which allowed leaves from (1) nettles, (2) Pooideae, (3) other Poales, (4) trees and (5) freshwater higher plants to be distinguished from each other on the basis of their natural abundance (13)C/(12)C ratios of individual amino acids. Differences in carbon isotope composition are known to be retained, to some extent, in the tissues of their consumers, and hence an understanding of compound-specific variation in (13)C/(12)C fractional abundance in plants has the potential to provide dietary insights of value in archaeological and ecological studies. PMID:26948983

  5. Variations of organic carbon isotopic composition and its environmental significance during the last glacial on western Chinese Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    CHEN Fahu; RAO Zhiguo; ZHANG Jiawu; JIN Ming; MA Jianying

    2006-01-01

    A high-resolution loess section in the western Chinese Loess Plateau, Yuanbao Section,was sampled for organic carbon isotopic analyses.The soil organic carbon isotope (δ13Corg) varied between -22.6‰ and -27.5‰ during the last glacial at the section. During the last interstadial, the δ13Corg values were more negative than those in both early and late periods of the last glacial by 4‰. The isotopic composition indicates a coupled response of the pure C3 plants to the temperature, precipitation and the concentration of atmospheric CO2. Decrease in temperature and the atmospheric CO2 concentration from the last interstadial to Last Glaicial Maximum (LGM) caused the organic carbon isotopes to become positive by 1.5‰-2.0‰. The amplitude of 4‰in the δ13Corg variation during the last glacial should be mainly caused by the precipitation change.Therefore, the δ13Corg variations of the Yuanbao Section during the last glacial period documented the large-amplitude fluctuation of the monsoon precipitation, which is estimated to be 250-310 mm more during the last interstadial than that in the LGM, and 100 mm more than that during early last glacial. The rapid changes of the monsoon precipitation on millennial scale during the last glacial have also been recorded in the isotopic variations in Yuanbao loess section. As the isotopic composition varies complicatedly as shown in the Ioess-paleosol sequence, it cannot be simply attributed to the abundances of C3and C4 plants or be used as an indicator of the summer monsoon variations.

  6. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    To better understand 14C cycling in terrestrial ecosystems, 14C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14C in atmospheric CO2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14C values of residual SOM after acid hydrolysis, the Δ 14C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14C abundance in acid-soluble SOM. The most of CO2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  7. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    Science.gov (United States)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  8. Oxygen isotopic composition of fruit carbonate in Lithospermeae and its potential for paleoclimate research in the Mediterranean

    Science.gov (United States)

    Pustovoytov, Konstantin; Riehl, Simone; Hilger, Hartmut H.; Schumacher, Erich

    2010-04-01

    Calcareous pericarps of the tribe Lithospermeae (fam. Boraginaceae) are a common component of archaeobotanical macroremain assemblages in the Mediterranean region. In this study, the relationship between oxygen isotopic composition of fruit biogenic carbonate and climatic conditions was examined. δ18O and δ13C values of biogenic carbonate were measured in modern Lithospermeae fruits from seven Eurasian sites (Berlin, Kirchentellinsfurt, Göttingen, Athens, Ankara, Tbilisi, and Almaty) and in fossil fruits from three archaeological sites in the eastern Mediterranean (Troy, Kumtepe, and Hirbet ez-Zeraqon). Additionally, three 14C measurements were performed on ancient fruit carbonate from Hirbet ez-Zeraqon. The δ18O and δ13C values varied from - 9 to 5‰ PDB and between - 35 and - 7‰ PDB respectively. In modern fruits, δ18O of biogenic carbonate was correlated to local summer precipitation amounts (inversely proportional) and summer air temperatures (proportional). In fossil fruits, the δ18O values of carbonate from Troy and Kumtepe were significantly lower than that from Hirbet ez-Zeraqon (ca. - 5 vs. 2‰ PDB respectively). The vertical distribution of stable isotopic values and 14C dates in cultural layers of Hirbet ez-Zeraqon indicate that fruit biogenic carbonate can persist in sediment without appreciable diagenetic alteration. These findings suggest that biogenic carbonate of Lithospermeae fruits can be useful as a paleoclimate proxy at least in the Mediterranean.

  9. Compositional and stable carbon isotopic fractionation during non-autocatalytic thermochemical sulfate reduction by gaseous hydrocarbons

    Science.gov (United States)

    Xia, Xinyu; Ellis, Geoffrey S.; Ma, Qisheng; Tang, Yongchun

    2014-01-01

    The possibility of autocatalysis during thermochemical sulfate reduction (TSR) by gaseous hydrocarbons was investigated by examination of previously reported laboratory and field data. This reaction was found to be a kinetically controlled non-autocatalytic process, and the apparent lack of autocatalysis is thought to be due to the absence of the required intermediate species. Kinetic parameters for chemical and carbon isotopic fractionations of gaseous hydrocarbons affected by TSR were calculated and found to be consistent with experimentally derived values for TSR involving long-chain hydrocarbons. Model predictions based on these kinetic values indicate that TSR by gaseous hydrocarbon requires high-temperature conditions. The oxidation of C2–5 hydrocarbons by sulfate reduction is accompanied by carbon isotopic fractionation with the residual C2–5 hydrocarbons becoming more enriched in 13C. Kinetic parameters were calculated for the stable carbon isotopic fractionation of gaseous hydrocarbons that have experienced TSR. Model predictions based on these kinetics indicate that it may be difficult to distinguish the effects of TSR from those of thermal maturation at lower levels of hydrocarbon oxidation; however, unusually heavy δ13C2+ values (>−10‰) can be diagnostic of high levels of conversion (>50%). Stoichiometric and stable carbon isotopic data show that methane is stable under the investigated reaction conditions and is likely a product of TSR by other gaseous hydrocarbons rather than a significant reactant. These results indicate that the overall TSR reaction mechanism for oxidation of organic substrates containing long-chain hydrocarbons involves three distinct phases as follows: (1) an initial slow and non-autocatalytic stage characterized by the reduction of reactive sulfate by long-chain saturated hydrocarbons; (2) a second autocatalytic reaction phase dominated by reactions involving reduced sulfur species and partially oxidized hydrocarbons; (3

  10. The concentration and isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Pacific Ocean

    Science.gov (United States)

    Blank, Jennifer G.; Delaney, John R.; Des Marais, David J.

    1993-01-01

    The abundance and C-13/C-12 ratios of carbon were analyzed in basaltic glass from twenty locations along the Juan de Fuca Ridge using a 3-step combustion/extraction technique. Carbon released during the first two combustion steps at 400-500 C and 600-650 C is interpreted to be secondary, and only the carbon recovered during a final combustion step at about 1200 C is thought to be indigenous to the samples. For carbon released at about 1200 C, glasses analyzed as 1-2 mm chips contained 23-146 ppm C with delta C-13 values of -4.8 to -9.3 per mil, whereas samples crushed to 38-63 microns or 63-90 microns yielded 56-103 ppm C with delta C-13 values of -6.1 to -9.2 per mil. The concentrations and isotopic compositions of the primary carbon dissolved in the glasses and present in the vesicles are similar to those previously reported for other ocean-ridge basalts. The Juan de Fuca basaltic magmas were not in equilibrium with respect to carbon when they erupted and quenched on the sea floor. Evidence of disequilibrium includes (1) a large range of carbon contents among glasses collected at similar depths, (2) a highly variable calculated carbon isotopic fractionation between melt and vapor determined by comparing crushed and uncrushed splits of the same sample, and (3) a lack of correlation between vesicle abundance, carbon concentration, and depth of eruption. Variations in carbon concentration and delta C-13 ratios along the ridge do not correlate with major element chemistry. The observed relationship between carbon concentrations and delta C-13 values may be explained by late-stage, variable degrees of open-system (Rayleigh-like) degassing.

  11. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; Da Li; Hong-Fei Ling; Shao-Yong Jiang

    2008-01-01

    Isotopic compositions of Mn-carbonate and organic carbon from the same individual samples and sulfur isotopic compositions of pyrites in the basal Datangpo Formation were analyzed. Highly 34S-enriched pyrites (δ34Spyrite = 31.7-59.4‰) were precipitated in relatively occlusive pore water under anoxic condition in sediments, which is consistent with the observation of large and scattered pyrite framboids. The sulfidic deep ocean was not "oxidized" in the early Datangpo interglacial interval, thus the level of seawater sulfate remained low and marine δ3.4Ssuiphate remained high. Low δ13Ccar (average - 7.4‰) and abnormal relationship between δ13Ccar and frac-tionation (Δcar-org) imply that the negative δ13Ccar excursion may have resulted from oxidation of part of a large organic carbon reservoir. High Δcar-org (average 25A‰) implicates high CO2 level in the atmosphere. Small standard deviation (1.0‰) of δ13Ccar values indicates the Mn-carbonate was precipitated near the water-sediment interface under dysoxic conditions rather than in occlusive pore water in sediments.

  12. Deuterium content of European palaeowaters as inferred from isotopic composition of fluid inclusions trapped in carbonate cave deposits

    International Nuclear Information System (INIS)

    The results of isotope investigations of groundwaters and carbonate cave deposits collected in karstic regions of southern and central Poland are discussed in detail. Combined isotope studies of carbonate cave deposits allowed some important conclusions to be formulated regarding climatic and environmental conditions prevailing over the European continent during the last 300,000 years: (a) δD values of fluid inclusions suggest a remarkable constancy of the heavy isotope content of European palaeoinfiltration waters recharged during interglacial periods, (b) climate-induced, long term changes in isotopic composition of precipitation and surface air temperature over Europe can be characterized by the deuterium gradient of about 1.4 per mille per deg. C, (c) an apparent constancy of the continental gradient in deuterium content of European palaeoinfiltration waters, as judged from fluid inclusion data, and its similarity to the present-day gradient suggests that atmospheric circulation over Europe has not undergone substantial changes during the last 300,000 years. (author). 28 refs, 4 figs, 1 tab

  13. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    Science.gov (United States)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  14. Carbon and oxygen isotope composition of carbonates from an L6 chondrite: Evidence for terrestrial weathering from the Holbrook meteorite

    Science.gov (United States)

    Socki, R. A.; Gibson, E. K.; Jull, A. J. T.; Karlsson, H. R.

    1991-01-01

    Terrestrial weathering in meteorites is an important process which alters pristine elemental and isotopic abundances. The Holbrook L6 chondrite fell in 1912. Material was recovered at the time of the fall, in 1931, and 1968. The weathering processes operating on the freshly fallen meteorite in a semi-arid region of northeastern Arizona have been studied after a ground residence of 19 and 56 years. It has been shown that a large portion of the carbonate material in 7 Antarctic ordinary chondrites either underwent extensive isotopic exchange with atmospheric CO2, or formed recently in the Antarctic environment. In fact it has been demonstrated that hydrated Mg-carbonates, nesquehonite and hydromagnesite, formed in less than 40 years on LEW 85320. In order to help further constrain the effects of terrestrial weathering in meteorites, the carbon and oxygen isotopes extracted from carbonates of three different samples of Holbrook L6: a fresh sample at the time of the fall in 1912, a specimen collected in 1931, and a third specimen collected at the same site in 1968.

  15. Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico

    Science.gov (United States)

    Yang, Weifeng; Guo, Laodong

    2014-11-01

    There exists increasing evidence supporting the important role of black carbon in global carbon cycles. Particulate black carbon (PBC) is allochthonous and has distinct reactivities compared to the bulk particulate organic carbon (tot-POC) in marine environments. However, the abundance, geochemical behavior of PBC and its importance in oceanic carbon budget remain poorly understood. Here we report the abundance, distribution, and stable isotopic signatures of BC derived from the chemo-thermal oxidation (CTO-375) method (BCCTO) in the Gulf of Mexico. Our results show that BCCTO abundance decreased from shelf to basin, and more than a half of riverine BCCTO could be removed over the shelf. Moreover, BCCTO is much more refractory compared to the tot-POC and has δ13C values lower than those of BC-excluded POC. These results highlight the significance of PBC in marine carbon cycles and potentially suggest the need for a new end-member term in quantifying POC sources in the ocean.

  16. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    Science.gov (United States)

    Faure, G.; Botoman, G.

    1984-01-01

    Isotopic compositions of oxygen, carbon and strontium of calcite cleats in coal seams of southern Victoria Land, Antarctica, and Tuscarawas County, Ohio, contain a record of the conditions a the time of their formation. The Antarctic calcites (?? 18O(SMOW) = +9.14 to +11.82%0) were deposited from waters enriched in 16O whose isotopic composition was consistent with that of meteoric precipitation at low temperature and high latitude. The carbon of the calcite cleats (?? 13C(PDB) = -15.6 to -16.9%0) was derived in part from the coal (?? 13C(PDB) = -23.5 to -26.7%0) as carbon dioxide and by oxidation of methane or other hydrocarbon gases. The strontium ( 87Sr 86Sr = 0.71318-0.72392) originated primarily from altered feldspar grains in the sandstones of the Beacon Supergroup. Calcite cleats in the Kittaning No. 6 coal seam of Ohio (?? 18O(SMOW) = +26.04 to +27.79%0) were deposited from waters that had previously exchanged oxygen, possibly with marine carbonate at depth. The carbon (?? 13C(PDB) = 0.9 to +2.4%0) is enriched in 13C even though that cleats were deposited in coal that is highly enriched in 12C and apparently originated from marine carbonates. Strontium in the cleats ( Sr 87 0.71182-0.71260) is not of marine origin but contains varying amounts of radiogenic 87Sr presumably derived from detrital Rb-bearing minerals in the adjacent sedimentary rocks. The results of this study suggest that calcite cleats in coal of southern Victoria Land, Antarctica, were deposited after the start of glaciation in Cenozoic time and that those in Ohio precipitated from formation waters derived from the underlying marine carbonate rocks, probably in the recent geologic past. ?? 1984.

  17. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    Science.gov (United States)

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide.

  18. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in northern China.

    Directory of Open Access Journals (Sweden)

    Jian-Ying Ma

    Full Text Available Water availability is the most influential factor affecting plant carbon (δ(13C and nitrogen (δ(15N isotope composition in arid and semi-arid environments. However, there are potential differences among locations and/or species in the sensitivity of plant δ(13C and δ(15N to variation in precipitation, which are important for using stable isotope signatures to extract paleo-vegetation and paleo-climate information. We measured δ(13C and δ(15N of plant and soil organic matter (SOM samples collected from 64 locations across a precipitation gradient with an isotherm in northern China. δ(13C and δ(15N for both C(3 and C(4 plants decreased significantly with increasing mean annual precipitation (MAP. The sensitivity of δ(13C to MAP in C(3 plants (-0.6 ± 0.07‰/100 mm was twice as high as that in C(4 plants (-0.3 ± 0.08‰/100 mm. Species differences in the sensitivity of plant δ(13C and δ(15N to MAP were not observed among three main dominant plants. SOM became depleted in (13C with increasing MAP, while no significant correlations existed between δ(15N of SOM and MAP. We conclude that water availability is the primary environmental factor controlling the variability of plant δ(13C and δ(15N and soil δ(13C in the studied arid and semi-arid regions. Carbon isotope composition is useful for tracing environmental precipitation changes. Plant nitrogen isotope composition can reflect relative openness of ecosystem nitrogen cycling.

  19. Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-05-01

    Full Text Available In order to investigate the carbon episodes at Gosan background super-site (33.17° N, 126.10° E in East Asia during spring of 2007 and 2008, total suspended particles (TSP were collected and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition13C of TC. The carbon episodes at the Gosan site were categorized as long-range transported anthropogenic pollutant (LTP from Asian continent, Asian dust (AD accompanying with LTP, and local pollen episodes. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during the pollen episodes (range: −26.2 ‰ to −23.5 ‰, avg.: −25.2 ± 0.9 ‰, followed by the LTP episodes (range: −23.5 ‰ to −23.0 ‰, avg.: −23.3 ± 0.3 ‰ and the AD episodes (range: −23.3 to −20.4 %, avg.: −21.8 ± 2.0 ‰. The δ13CTC of the airborne pollens (−28.0 ‰ collected at the Gosan site showed value similar to that of tangerine fruit (−28.1 ‰ produced from Jeju Island. Based on the carbon isotope mass balance equation and the TN and TC regression approach, we found that ∼40–45 % of TC in the TSP samples during the pollen episodes was attributed to airborne pollens from Japanese cedar trees planted around tangerine farms in Jeju Island. The δ13C of citric acid in the airborne pollens (−26.3 ‰ collected at the Gosan site was similar to that in tangerine fruit (−27.4 ‰. The negative correlation between the citric acid-carbon/TC ratios and δ13CTC were obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollens and then transported to the Gosan site. Based on the thermal evolution pattern of organic aerosols during the carbon episodes, we found that organic aerosols originated from East China are more volatile on

  20. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation.......The redox changes of past surface environments can be explored using the Cr isotope composition of ancient marine carbonates, where a marginal offset compared to contemporaneous seawater δ53Cr is expected and the degree of contamination and later diagenetic alteration can be evaluated. Improved...

  1. Carbon-13 isotope composition of the mean CO2 source in the urban atmosphere of Krakow, southern Poland

    Science.gov (United States)

    Zimnoch, Miroslaw; Jasek, Alina; Rozanski, Kazimierz

    2014-05-01

    Quantification of carbon emissions in urbanized areas constitutes an important part of the current research on the global carbon cycle. As the carbon isotopic composition of atmospheric carbon dioxide can serve as a fingerprint of its origin, systematic observations of δ13CO2 and/or Δ14CO2, combined with atmospheric CO2mixing ratio measurements can be used to better constrain the urban sources of this gas. Nowadays, high precision optical analysers based on absorption of laser radiation in the cavity allow a real-time monitoring of atmospheric CO2 concentration and its 13CO2/12CO2 ratio, thus enabling better quantification of the contribution of different anthropogenic and natural sources of this gas to the local atmospheric CO2load. Here we present results of a 2-year study aimed at quantifying carbon isotopic signature of the mean CO2 source and its seasonal variability in the urban atmosphere of Krakow, southern Poland. The Picarro G2101-i CRDS isotopic analyser system for CO2and 13CO2/12CO2 mixing ratio measurements has been installed at the AGH University of Science and Technology campus in July 2011. Air inlet was located at the top of a 20m tower mounted on the roof of the faculty building (ca. 42m a.g.l.), close to the city centre. While temporal resolution of the analyser is equal 1s, a 2-minute moving average was used for calculations of δ13CO2 and CO2 mixing ratio to reduce measurement uncertainty. The measurements were calibrated against 2 NOAA (National Oceanic and Atmospheric Administration) primary standard tanks for CO2 mixing ratio and 1 JRAC (Jena Reference Air Cylinder) isotope primary standard for δ13C. A Keeling approach based on two-component mass and isotope balance was used to derive daily mean isotopic signatures of local CO2 from individual measurements of δ13CO2 and CO2 mixing ratios. The record covers a 2-year period, from July 2011 to July 2013. It shows a clear seasonal pattern, with less negative and less variable δ13CO2 values

  2. The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow lake

    Directory of Open Access Journals (Sweden)

    B. M. Bontes

    2006-01-01

    Full Text Available In this study we investigated the effects of experimental biomanipulation on community structure, ecosystem metabolism, carbon biogeochemistry and stable isotope composition of a shallow eutrophic lake in the Netherlands. Three different biomanipulation treatments were applied. In two parts of the lake, isolated from the rest, fish was removed and one part was used as a reference treatment in which no biomanipulation was applied. Stable isotopes have proved useful to trace trophic interactions at higher food web levels but until now methodological limitations have restricted species specific isotope analysis in the plankton community. We applied a new approach based on the combination of fluorescence activated cell sorting (FACS and isotope ratio mass spectrometry (IRMS to trace carbon flow through the planktonic food web. With this method we aimed at obtaining group specific δ13C signatures of phytoplankton and to trace possible shifts in δ13C resulting from fish removal. Biomanipulation led to an increase in transparency and macrophyte biomass and decrease in phytoplankton abundance, but zooplankton numbers did not increase. Fish removal also resulted in high pH, high O2, low CO2 and more negative δ13CDIC values than expected, which is attributed to chemical enhanced diffusion with large negative fractionation. Despite high temporal variation we detected differences between the isotopic signatures of the primary producers and between the different treatments. The fractionation values of green algae (~21 and diatoms (~23 were similar and independent of treatment, while fractionation factors of filamentous cyanobacteria were variable between the treatments that differed in CO2 availability. 13C-labeling of the phytoplankton groups showed that biomanipulation led to increased growth rates of green algae and diatoms at the expense of cyanobacteria. Finally, consumers seemed generalists to the available food sources.

  3. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    OpenAIRE

    Zhang, N.; Yamada, K; Suzuki, N; N. Yoshida

    2014-01-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of m...

  4. The impact of recycling of organic carbon on the stable carbon isotopic composition of dissolved inorganic carbon in a stratified marine system (Kyllaren fjord, Norway)

    NARCIS (Netherlands)

    Breugel, Y. van; Schouten, S.; Paetzel, M.; Nordeide, R.; Sinninghe Damsté, J.S.

    2005-01-01

    A negative carbon isotope shift in sedimentary organic carbon deposited in stratified marine and lacustrine systems has often been inferred to be a consequence of the process of recycling of respired and, therefore, 13C-depleted, dissolved inorganic carbon (DIC) formed from mineralization of descend

  5. The Influence of CO on the Carbon Isotopic Composition of CH4 in Closed Pyrolysis Experiment With Coal

    Institute of Scientific and Technical Information of China (English)

    刘全有; 刘文汇

    2004-01-01

    A low-mature coal (Ro=0.4%, from the Manjia'er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic compositions of the pyrolyst fractions (hydrocarbon, CO2, CO, etc.) at two temperature points (350°C and 550°C) were measured. The results showed that δ13CCH4 value is generally heavier at 350°C than that at 550°C, because the high abundance of CO generated at low temperature would greatly influence δ13CCH4 value, and the retention time of CO in gas chromatograph is close to that of CH4. But CO is formed through chemical reaction of the oxygen-containing functional group C=O, e.g. Lactones, ketones, ether, etc. At low temperature, while CO2 comes mainly from zecarboxylization.The carbon isotopic composition of coal gas from Lanzhou Coal Gas Works was definitely different from that of thermally pyrolysed products from coal. Theδ13CCH4 value of coal gas was abnormally heavier than δ13CCO. At the same time, the reversed sequence (δ13C-1>δ13C-2) of δ13C1 and δ13C2 happened. The bond energy of free ions generally decides the sequence of generation of hydrocarbon fractions according to the chemical structure, whereas the stability of pyrolysate fractions and their carbon isotope fractionation are affected by the C-C bond energy.

  6. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon (14C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14C abundances showed that (1) bomb-derived 14C has penetrated the first 16 cm mineral soil at least; (2) Δ14C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  7. An episode of widespread ocean anoxia during the latest Ediacaran Period revealed by light U isotope compositions in carbonates

    Science.gov (United States)

    Zhang, F.

    2015-12-01

    Reconstruction of ocean redox chemistry during the Ediacaran Period is important for understanding the causal relationship between environmental oxygen levels and early metazoan evolution. Geochemical data (e.g., high Mo and U concentrations and/or heavy Mo and U isotope compositions from sedimentary rocks) provide evidence of extensive ocean oxygenation shortly after the Marinoan glaciation at ca. 632 Ma [1], during the late Ediacaran Period at ca. 560-551 Ma [2], and multiple times during the early Cambrian Period [3, 4]. These episodes of oxygenation may have been separated by intervals of less oxygenated conditions [1, 2]. However, the global redox state of the ocean during the terminal Ediacaran period (ca. 551-541 Ma) is poorly constrained. We address this knowledge gap by measuring carbonate U isotope compositions (δ238U) - a novel global ocean redox proxy - of the Gaojiashan Member of the late Ediacaran Dengying Formation (ca. 551-541 Ma) in South China. An abrupt negative shift in δ238U from values scattering around -0.45‰ to values averaging -0.95‰ (±0.20‰, 2sd) was observed in the middle Gaojiashan Member, suggesting a globally widespread expansion of ocean anoxia during the terminal Ediacaran Period. The negative δ238U shift coincides with the onset of a pronounced positive carbon isotope excursion (from 0‰ to +6‰), suggesting that ocean anoxia is the major driving force behind enhanced organic carbon burial that led to the carbon isotope excursion. The widespread anoxia recorded by the Gaojiashan Member is bracketed by known intervals of extensive ocean oxygenation, thus indicating that the Precambrian-Phanerozoic transition was characterized by oscillating ocean redox conditions. The Ediacara biota (ca. 541 Ma) [5] disappeared shortly after the widespread ocean anoxia, suggesting that an expansion of ocean anoxia may have triggerred the onset of a mass extinction in the latest Ediacaran time. References: [1] Sahoo, et al. (2012), Nature

  8. Emission rate, isotopic composition and origin(s) of magmatic carbon dioxide at Merapi volcano, Indonesia

    Science.gov (United States)

    Allard, P.

    2012-12-01

    (iii) other Javanese volcanoes whose lavas do not contain calc-silicate xenoliths emit CO2 with identical δ13C values of -4‰. Based on the above observations and on typical arc-type isotopic ratios for water, sulphur and nitrogen in Merapi magmatic gases [2], I rather propose that 80% of CO2 emitted by the volcano ultimately derives from a subducted sediment contribution, in agreement with Sr-Nd-Pb isotope data for bulk lavas [9]. The CO2/HCl ratio of Merapi magmatic gases, normalized to the bulk mass fraction of outgassed Cl inferred from analysis of melt inclusions in clinopyroxene and the matrix glasses, points to a maximum CO2 content of ~1 wt% in the undegassed magma [3], 0.8 wt% of which derived from subducted carbon. [1] Allard, 1980, C.R. Acad Sciences Paris; [2] Allard, 1986, Ph.D thesis, Paris 7 Univ.; [3] Allard et al., 1995, and submitted (JVGR, 2012); [4] Toutain et al., Bull. Volcanol. 2009; [5] Clocchiatti et al., 1982, C.R. Acad. Sciences Paris; [6] Chadwick et al., 2007, J. Petrol.; [7] Deegan et al., 2010, J. Petrol.; [8] Troll et al., 2012, Geophys. Res. Lett.; [9] Gertisser and Keller, 2003, J. Petrol..

  9. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  10. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States

    Science.gov (United States)

    Kendall, C.; Silva, S.R.; Kelly, V.J.

    2001-01-01

    Riverine particulate organic matter (POM) samples were collected bi-weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996-97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios were used to identify four endmember sources of POM: Plankton, fresh terrestrial plant material, aquatic plants, and soil organic material. This large-scale study also incorporated ancillary chemical and hydrologic data to refine and extend the interpretations of POM sources beyond the source characterizations that could be done solely with isotopic and elemental ratios. The ancillary data were especially useful for differentiating between seasonal changes in POM source materials and the effects of local nutrient sources and in-stream biogeochemical processes. Average values of ??13 C and C : N for all four river systems suggested that plankton is the dominant source of POM in these rivers, with higher percentages of plankton downstream of reservoirs. Although the temporal patterns in some rivers are complex, the low ??13C and C : N values in spring and summer probably indicate plankton blooms, whereas relatively elevated values in fall and winter are consistent with greater proportions of decaying aquatic vegetation and/or terrestrial material. Seasonal shifts in the ??13C of POM when the C : N remains relatively constant probably indicate changes in the relative rates of photosynthesis and respiration. Periodic inputs of plant detritus are suggested by C : N ratios >15, principally on the Columbia and Ohio Rivers. The ??15N and ??13C also reflect the importance of internal and external sources of dissolved carbon and nitrogen, and the degree of in-stream processing. Elevated ??15N values at some sites probably reflect inputs from sewage and/or animal waste. This information on the spatial and temporal variation in sources of POM in four major river systems should prove

  11. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta)13C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta)13C of soil-respired carbon dioxide (CO2) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta)13C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta)13C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  12. Carbon and oxygen isotope microanalysis of carbonate.

    Science.gov (United States)

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  13. Carbon isotope composition of individual amino acids in the Murchison meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Engel, M.H. [School of Geology and Geophysics, 100 E Boyd Street, University of Oklahoma, Norman, Oklahoma 73019 (United States); Macko, S.A. [Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22903 (United States); Silter, J.A. [School of Geology and Geophysics, 100 E Boyd Street, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    1996-07-01

    A SIGNIFICANT parties of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets.{sup 1} The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis{sup 2} and the composition of organic matter on Earth before living systems developed.{sup 3} Previous studies{sup 11,12} have shown that meteorite amino acids are enriched in {sup 13}C relatives to their terrestrial counterparts, but individual species were not distinguished. Here we report the {sup 13}C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in {sup 13}C, indicating an extraterrestrial origin. Alanine is not racemic, and the {sup 13}C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began. {copyright} {ital 1996 American Institute of Physics.}

  14. Carbon isotope composition of individual amino acids in the Murchison meteorite

    International Nuclear Information System (INIS)

    A SIGNIFICANT parties of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets.1 The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis2 and the composition of organic matter on Earth before living systems developed.3 Previous studies11,12 have shown that meteorite amino acids are enriched in 13C relatives to their terrestrial counterparts, but individual species were not distinguished. Here we report the 13C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in 13C, indicating an extraterrestrial origin. Alanine is not racemic, and the 13C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began. copyright 1996 American Institute of Physics

  15. Comparison of the carbon isotope composition of total organic carbon and long-chain n-alkanes from surface soils in eastern China and their significance

    Institute of Scientific and Technical Information of China (English)

    RAO ZhiGuo; JIA GuoDong; ZHU ZhaoYu; WU Yi; ZHANG JiaWu

    2008-01-01

    Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition (δ13C) of total organic carbon (TOC) and higher plant-derived long-chain n-alkanes,with the latter reported as weighted mean values. The two sets of δ13C values are significantly correlated and show similar trends in spatial variation. The spatial distribution of δ13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes. This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing conditions for C4 plants. Furthermore, δ13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ13C of a soil samples remains relatively constant. Our data demonstrate that in eastern China, soil δ13C composition of both TOC and long-chain n-alkanes is effective indicators of Ca/C4 ratios of the prevailing vegetation. This work suggests that -22‰ and -32‰ are good estimated end members for the weighted mean δ13C values of long-chain n-alkanes (C27, C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation, allowing us to reconstruct paleovegetation trends.

  16. Assessment of grain-scale homogeneity and equilibration of carbon and oxygen isotope compositions of minerals in carbonate-bearing metamorphic rocks by ion microprobe

    Science.gov (United States)

    Ferry, John M.; Ushikubo, Takayuki; Kita, Noriko T.; Valley, John W.

    2010-11-01

    Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ˜5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ 18O and ±0.71‰ for δ 13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ 18O and 0.10-0.29‰ for δ 13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ 13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ 13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ 18O (up to 9.4‰), intercrystalline inhomogeneity in δ 18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ 18O and δ 13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively

  17. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    OpenAIRE

    Krylov, A. A.; Khlystov, O.M.; Hachikubo, A.; Minami, H.; Nunokawa, Y.; Shoji, H; Zemskaya, T. I.; L. Naudts; Pogodaeva, T.V.; Kida, M; Kalmychkov, G. V.; J. Poort

    2010-01-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The d13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near ...

  18. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    International Nuclear Information System (INIS)

    Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), 'air' (i.e. N2 + O2 + Ar, 1-5%) and CO2 (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (4 content (>90%) with low CO2 (1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, 4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.

  19. Leaf wax composition and carbon isotopes vary among major conifer groups

    Science.gov (United States)

    Diefendorf, Aaron F.; Leslie, Andrew B.; Wing, Scott L.

    2015-12-01

    Leaf waxes (e.g. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle, water availability, and plant ecophysiology. Previous studies indicated that conifers have lower n-alkane concentrations than angiosperms and that 13C fractionation during n-alkane synthesis (εn-alkane) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 43 conifer species (and Ginkgo biloba) from the University of California Botanical Garden at Berkeley, sampling all extant conifer families and almost two-thirds of extant genera. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially Southern Hemisphere Araucariaceae and Podocarpaceae (monkey puzzles, Norfolk Island pines, and yellowwoods), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL, observed in the context of a common growth environment for all plants we sampled, suggests that ACL is strongly influenced by factors other than climate. An analysis of εn-alkane indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in Taxaceae (yews and relatives). The

  20. Paleoclimatic Change Inferred from Carbon Isotope Composition of Organic Matter in Sediments of Dabusu Lake, Jilin Province, China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ji(沈吉); ZHANG Enlou(张恩楼); YANG Xiangdong(羊向东); Ryo Matsumoto

    2004-01-01

    Study on the organic compounds and stable isotope composition of a sediment section in Dabusu Lake revealed that the organic materials in the sediments came mainly from terrestrial plants brought into the lake by runoff. The δ13C of the organic materials had high values during warm-dry climatic stages and decreased in cold-wet stages. Analysis of data on carbonate content and 14 C age showed that the lake basin had experienced several wet-cold and warm-dry climatic cycles since 15000 a BP. Since 6700 a BP, the climate reached a relatively stable warm-dry stage, so that the lake water was gradually condensed and finally a saline lake was formed.

  1. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  2. Strontium Isotope Composition and Characteristic Analysis of Cambrian-Ordovician Carbonate in the Region of Tazhong, Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Huang Wenhui; Yang Min; Yu Bingsong; Fan Tailiang; Chu Guangzhen; Wan Huan; Zhu Jingquan; Wang Xu; Wu Shiqiang

    2006-01-01

    The research on the trace elements of Ordovician carbonates plays an important part in the whole work on reservoir in Tazhong ( 塔中 ) area. This paper systematically studies the characteristics and sedimentary settings of Ordovician dolomites in Tazhong area, Tarim basin, and debates their enrichment of mechanisms and different element existing patterns. The study makes use of ICP-MS analysis technology to test the strontium and manganese content of 109 samples from four wells in the Tazhong area, Tarim basin and strontium isotope composition tests have also been done on 25 samples from wells Zhong-1 and Zhong-4 on VG354 solid isotope mass spectrograph. By means of analyzing contents of strontium andmanganese elements, doing research on the strontium isotope composition characteristics from wells Zhong-1 and Zhong-4 and comparing the results of strontium analysis to the global Ordovician marine carbonate and its evolution trend, in the combination of sedimentary facies characteristics of isolated wells in this area, we can come to the following cognitions: (1) The marine carbonate strontium isotope curve in the Tazhong area of Tarim basin is consistent to the global evolution trend which is overall descending with time, the direct reason of which is the evolution of paleogeographic environment.The Ordovician paleogeographic environment goes through restricted platform to open platform and then shallow marine shelf in Tazhong area, Tarim basin. Dolomitization is another subordinate reason and the inversion of fluid with high manganese can lead to heavy strontium; (2) The fact that the 87 Sr/86 Sr ratios of the Upper Ordovician in Tazhong area have an apparent mono-decline trend with the time going by,which is similar to the global strontium isotope ratio, is suggesting that the variation of the Upper Ordovician sea level is starting, the overall trend of which is the rising of the sea level; (3) Compared to the global seawater strontium ratios, the 87 Sr/86 Sr

  3. Utilization of carbon isotope enrichments (ð¹³C) of alkanes as faecal markers to estimate diet composition of goats fed with heathland vegetation

    NARCIS (Netherlands)

    Ferreira, L.M.M.; Daniel, J.B.; Celaya, R.; Santos, A.S.; Osoro, K.; Rodrigues, M.A.M.; Pellikaan, W.F.

    2014-01-01

    This study aimed to evaluate the possible utilization of carbon isotope enrichments (d13C) of n-alkanes as faecal markers for estimating diet composition of goats fed with diets composed of different proportions of browse (Erica umbellata, Erica cinerea, Calluna vulgaris, Erica arborea, and Ulex gal

  4. Tracing the Carbon Cycle in a Small Boreal Catchment of a Groundwater Dominated River Using the Isotopic Composition of Dissolved Inorganic Carbon

    Science.gov (United States)

    Niinikoski, P. I. A.; Karhu, J.

    2015-12-01

    Understanding the carbon cycle in river systems is particularly important in fragile catchments with agriculture, urbanization, water purification facilities and other possible contamination sources. The isotopic composition and concentration of dissolved inorganic carbon (DIC) has been used to determine carbon sinks and sources in river systems. The Vantaanjoki River, in southern Finland, is located in one of the most densely populated areas in Finland. Previous studies have shown the river having a considerable amount of groundwater - surface water interaction which leads to local groundwater being vulnerable to any contaminants released into the river. The catchment of the river has six water purification facilities, and during times of high discharge some of the waste water is released into the river without treatment. Other possible sources of contamination are urban areas, agriculture and a saw mill. In this study the isotopic composition of DIC was studied, along with the concentration of DIC in the river water, to determine the major influences in carbon balance in the river water, to see if human induced changes in the environment are affecting the carbon cycle. The highest δ13CDIC values were found in the summer, and the lowest ones in the spring. Locations of the water purification facilities or fields along the flow path did not show on the δ13CDIC values, nor in the DIC contents of the water. Similar trends in δ13CDIC values related to the variations between warm and cold seasons have been reported in other studies as well and are likely due to organic material forming and decaying in and around the river channel.

  5. Oxygen and carbon isotopic composition of limestones and dolomites, bikini and eniwetok atolls

    Science.gov (United States)

    Grant, Gross M.; Tracey, J.I., Jr.

    1966-01-01

    Aragonitic, unconxolidated sediments from the borings on the Eniwetok and Bikini atolls are isotopically identical with unaltered skeletal fragments, whereas the recrystallized limestones exhibit isotopic variations resulting from alteration in meteoric waters during periods of emergence. Dolomites and associated calcites are enriched in O18, perhaps because of interaction with hypersaline brines.

  6. Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling

    Science.gov (United States)

    Schuur, E.A.G.; Trumbore, S.E.; Mack, M.C.; Harden, J.W.

    2003-01-01

    Fire is an important pathway for carbon (C) loss from boreal forest ecosystems and has a strong effect on ecosystem C balance. Fires can range widely in severity, defined as the amount of vegetation and forest floor consumed by fire, depending on local fuel and climatic conditions. Here we explore a novel method for estimating fire severity and loss of C from fire using the atmosphere to integrate ecosystem heterogeneity at the watershed scale. We measured the ??13C and ??14C isotopic values of CO2 emitted from an experimental forest fire at the Caribou-Poker Creek Research Watershed (CPCRW), near Fairbanks, Alaska. We used inverse modeling combined with dual isotope near measurements of C contained in aboveground black spruce biomass and soil organic horizons to estimate the amount of C released by this fire. The experimental burn was a medium to severe intensity fire that released, on average, about 2.5 kg Cm-2, more than half of the C contained in vegetation and soil organic horizon pools. For vegetation, the model predicted that approximately 70-75% of pools such as needles, fine branches, and bark were consumed by fire, whereas only 20-30% of pools such as coarse branches and cones were consumed. The fire was predicted to have almost completely consumed surface soil organic horizons and burned about half of the deepest humic horizon. The ability to estimate the amount of biomass combusted and C emission from fires at the watershed scale provides an extensive approach that can complement more limited intensive ground-based measurements.

  7. Reliability of stable carbon and oxygen isotope compositions of pedogenic needle fibre calcite as environmental indicators: examples from Western Europe.

    Science.gov (United States)

    Millière, Laure; Spangenberg, Jorge E; Bindschedler, Saskia; Cailleau, Guillaume; Verrecchia, Eric P

    2011-09-01

    Stable carbon and oxygen isotope analyses were conducted on pedogenic needle fibre calcite (NFC) from seven sites in areas with roughly similar temperate climates in Western Europe, including the Swiss Jura Mountains, eastern and southern France, northern Wales, and north-eastern Spain. The δ(13)C values (-12.5 to-6.8 ‰ Vienna Pee Dee Belemnite (VPDB)) record the predominant C(3) vegetation cover at the sites. A good correlation was found between mean monthly climatic parameters (air temperature, number of frost days, humidity, and precipitation) and δ(18)O values (-7.8 to-3.4‰ VPDB) of all the NFC. Similar seasonal variations of δ(18)O values for monthly NFC samples from the Swiss sites and those of mean monthly δ(18)O values of local precipitation and meteorological data point out precipitation and preferential growth/or recrystallisation of the pedogenic needle calcite during dry seasons. These covariations indicate the potential of stable isotope compositions of preserved NFC in fossil soil horizons as a promising tool for palaeoenvironmental reconstructions.

  8. Estimation of food composition of Hodotermes mossambicus (Isoptera: Hodotermitidae) based on observations and stable carbon isotope ratios

    Institute of Scientific and Technical Information of China (English)

    Craig T. Symes; Stephan Woodborne

    2011-01-01

    The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13 C isotope values, -13.8‰to -14.0‰) and C3 plants (δ13C isotope values, -25.6‰ to -27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H, mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.

  9. Problem of soot aggregates separation and purification for Carbon isotopic composition analyses - burning experiment and real black layers from speleothems examples

    Science.gov (United States)

    Hercman, Helena; Zawidzki, Pawel; Majewska, Agata

    2015-04-01

    Burning products are often used as an indicator of fire or prehistoric men activities. When it consists of macroscopically visible black layer it may be studied by different methods. When it is dispersed within sediment it is necessary to apply method for burning product separation. Soot aggregates as a result of incomplete combustion of organic materials are most reliable indication of burning. Size of soot particles is too small to observe by optical microscopy. There are two main advantages of application of transmission electron microscopy (TEM) for investigations of samples formed as a result of organic materials (like wood) combustion. First, it makes possible to investigate not only morphology but also its interior structure. The carbon layers arrangement is characteristic for particles obtained from combustion processes, and it directly confirm that these particles were formed that way. And second, analysis of chemical composition using of EDS spectroscopy in transmission microscope are precise and it spatial resolution is about a few nanometers. Burning chamber for wood burning experiments was constructed. It allows wood burning with controlling of burning temperature, carbon isotopic composition in carbon dioxide of burning atmosphere and carbon dioxide originated during burning. Burning products are collected on the plates with controlling of plates material, temperature and distance from flame. Two types of samples were studied. The first type of samples consisted the products of recent wood burning. The second type of samples consisted of black layers collected from speleothems. Soot aggregates were chemically separated from other burning products collected on plates. Process of chemical separation and purity of soot material were tested by TEM observations. Isotopic carbon composition at each step of soot separation as well as original wood fragments was analysed at the Isotopic Laboratory for Dating and Palaeoenvironment Studies, Polish Academy of

  10. Carbon isotopic study of individual alcohol compounds in modern sediments from Nansha Islands sea area, China

    Institute of Scientific and Technical Information of China (English)

    段毅; 文启彬; 郑国东; 罗斌杰

    1997-01-01

    Carbon isotopic compositions of individual n-alkanols and sterols in modern sediments from the Nan-sha Islands sea area are measured after derivatization to trimethylsilyl ethers by the new isotopic analytical technique of GC/C/IRMS. The effects of the three added silyl carbon atoms in every alcohol molecule on these compound isotopic compositions and the characteristics of their carbon isotopic compositions are studied. Then their biological sources are discussed using their carbon isotopic compositions.

  11. Oxygen and carbon isotope composition of Quaternary bivalve shells as a water mass indicator: Last interglacial and Holocene, East Greenland

    DEFF Research Database (Denmark)

    Israelson, C.; Buchardt, Bjørn; Funder, S.V.;

    1994-01-01

    Oxygen and carhon isotope composition of arctic bivahe shells are used in an attempt to reCO'1struct -.urface water temperature and salinities in Scoresby Sund. East Greenland. The oxygen i:;otope compositions or .1,tw mllicuf£!. Hialclla arctica and Tridmlla hOl'm!is han~ been compared with pres......Oxygen and carhon isotope composition of arctic bivahe shells are used in an attempt to reCO'1struct -.urface water temperature and salinities in Scoresby Sund. East Greenland. The oxygen i:;otope compositions or .1,tw mllicuf£!. Hialclla arctica and Tridmlla hOl'm!is han~ been compared...

  12. Carbon isotopic composition effects on interatomic interactions and the properties of diamond

    International Nuclear Information System (INIS)

    The interatomic interaction potential parameters were determined for 12C and 13C in diamond. The results were used to obtain the isotopic dependences of such diamond properties as the Debye temperature, molar heat capacity, thermal expansion coefficient, energies of vacancy formation and self-diffusion, surface energy, and longitudinal velocity of sound. The isotopic dependence of isochoric heat capacity disappeared as the temperature increased. Sign inversion was observed for the isotopic dependence of the thermal expansion coefficient at a certain temperature: its growth changed into a drop. This approach was also used to estimate changes in the interatomic interaction potential and crystal bulk compression modulus of lithium in going from 7Li to 6Li. The isotopic dependences of phase transition parameters and the whole p-T phase diagram of a simple substance were predicted

  13. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    Science.gov (United States)

    Schoeninger, Margaret J.; DeNiro, Michael J.

    1984-04-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The δ15N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9%. more positive than those from animals that fed exclusively in the terrestrial environment; ranges for the two groups overlap by less than 1%. Bone collagen δ15N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen δ15N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3%. difference in the δ15N values of their bone collagen. Specifically, carnivorous and herbivorous terrestrial animals have mean δ15N values for bone collagen of + 8.0 and + 5.3%., respectively. Among marine animals, those that fed on fish have a mean δ15N value for bone collagen of + 16.5%., whereas those that fed on invertebrates have a mean δ15N value of + 13.3%. These results support previous suggestions of a 3%. enrichment in δ15N values at each successively higher trophic level. In contrast to the results for δ15N values, the ranges of bone collagen δ13C values from marine and terrestrial feeders overlap to a great extent. Additionally, bone collagen δ13C values do not reflect the trophic levels at which the animals fed. These results indicate that bone collagen δ15N values will be useful in determining relative dependence on marine and terrestrial food sources and in investigating trophic level relationships among different animal species within an ecosystem. This approach should be applicable to animals represented by prehistoric or fossilized

  14. The pool of organic carbon and its isotopic composition in cryomorphic quasi-gley chernozems of the Trans-Baikal region

    Science.gov (United States)

    Tsybenov, Yu. B.; Chimitdorzhieva, G. D.; Egorova, R. A.; Gongal'skii, K. B.

    2016-01-01

    Quasi-gley chernozems of the Trans-Baikal region are characterized by the clearly pronounced anisotropy of their properties related to carbon sequestration processes. The main carbon pool is concentrated in the humus horizon; the organic carbon content sharply decreases down the soil profile. The pool of organic carbon in the cryogenic fissures is two to three times higher than its pool in the enclosing soil horizons. The analysis of stable carbon isotopes in the plants and soils attests to the predominance of C3 plants. The composition of stable carbon isotopes is clearly differentiated in the soil profile with an increase in the portion of heavy isotopes in the deep horizons. In the humus pockets and cryogenic fissures, the increase in the portion of heavy carbon isotopes with the depth is weaker, which attests to a lower degree of the organic matter transformation. It is probable that the organic matter in the fissures is younger than the organic matter in the enclosing soil mass and derives from the upper humus horizon. The organic matter in the cryogenic fissures preserves the evolutionary properties of humus from the upper horizons.

  15. Effects of pretreatment procedures on fatty acid composition and stable carbon isotopes in the marine microalgaIsochrysis zhanjiangenisis

    Institute of Scientific and Technical Information of China (English)

    YAO Jingyuan; LIU Yu; LI Ying; WANG Haixia

    2016-01-01

    This study aims to quantify the effects of different pretreatment methods on the stable carbon isotope values of fatty acids in marine microalgae (Isochrysis zhanjiangenisis). To identify the effects of sample preparation on theδ13C value and the fatty acid composition, we examined eight types of pretreatment methods including: (a) drying the sample followed by direct methyl esterification using HCl-CH3OH; (b) drying the sample followed by direct methyl esterification using H2SO4-CH3OH; (c) drying the sample by ultrasonic extraction and methyl-esterification using HCl-CH3OH; (d) drying the sample by ultrasonic extraction and methyl-esterification using H2SO4-CH3OH; (e) fresh sample followed by direct methyl-esterification using HCl-CH3OH; (f) fresh sample followed by direct methyl-esterification using H2SO4-CH3OH; (g) fresh sample with ultrasonic extraction followed by methyl-esterification using HCl-CH3OH, and (h) fresh sample with ultrasonic extraction followed by methyl-esterification using H2SO4-CH3OH. The results show that theδ13C values from Groups a–e, g and h fluctuated within 0.3‰, and theδ13C values of Group f were approximately 0.7‰ lower than the other seven groups. Therefore, the different sample pretreatment methods used towards the extraction of fatty acids from marine microalgae may result in different results regarding the stable carbon isotope ratios, and if necessary a correction should be applied.

  16. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Hung-Chun [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); You, Chen-Feng, E-mail: cfy20@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); Sun, Chih-Hsien [Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan (China)

    2010-03-15

    Mud volcanoes are important pathways for CH{sub 4} emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH{sub 4} were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH{sub 4} (>90%), 'air' (i.e. N{sub 2} + O{sub 2} + Ar, 1-5%) and CO{sub 2} (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH{sub 4} concentration (CH{sub 4} > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO{sub 2} up to 85%, and much lower CH{sub 4} content (<37%). High CH{sub 4} content (>90%) with low CO{sub 2} (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C{sub 1} (methane)/C{sub 2} (ethane) + C{sub 3} (propane) and {delta}{sup 13}C{sub CH4} results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH{sub 4} concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH{sub 4} emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH{sub 4} could contribute up to 10% of total natural CH{sub 4} emissions in Taiwan.

  17. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  18. Stable isotopic compositions of elemental carbon in PM1.1 in north suburb of Nanjing Region, China

    Science.gov (United States)

    Guo, Zhaobing; Jiang, Wenjuan; Chen, Shanli; Sun, Deling; Shi, Lei; Zeng, Gang; Rui, Maoling

    2016-02-01

    Stable isotopic compositions (δ13C) of elemental carbon (EC) in PM1.1 in north suburb of Nanjing region were determined in order to quantitatively evaluate the carbon sources of atmospheric fine particles during different seasons. Besides, δ13C values from potential sources such as coal combustion, vehicle exhaust, biomass burning, and dust were synchronously measured. The results showed that the average δ13C values of EC in PM1.1 in winter and summer were - 23.89 ± 1.6‰ and - 24.76 ± 0.9‰, respectively. Comparing with δ13C values from potential sources, we concluded that the main sources of EC in PM1.1 were from the emission of coal combustion and vehicle exhaust. The higher δ13C values in winter than those in summer were chiefly attributed to the more coal consumption. Combining with the concentrations of SO42 - and K+ in PM1.1, the high δ13C values of EC on 24 December and 27 December 2013 were ascribed to extra input of corn straw burning in addition to coal combustion and vehicle exhaust.

  19. Carbon isotopic composition and its implications on paleoclimate of the underground ancient forest ecosystem in Sihui, Guangdong

    Institute of Scientific and Technical Information of China (English)

    DING Ping; SHEN ChengDe; WANG Ning; YI WeiXi; LIU KeXin; DING XingFang; FU DongPo

    2009-01-01

    We present the carbon isotopic composition of the total organic carbon (TOC) and fine roots in the sedimentary profile from the underground ancient forest in Sihui to study the climatic and environ-mental changes from 4.5 ka BP to 0.6 ka BP. Results show that C3 plant was the main vegetation from 4.5 ka BP to 0.6 ka BP in this region. The ancient forest began to develop in the wetland st around 4 ks BP and disappeared together with the wetland at about 3.0 ka BP, implying that the climate had changed greatly at around 3.0 ka BP. As indicated by the simulation results, the content of atmospheric CO2 increased slightly during 3.5 ka BP and 3.0 ka BP, implying climate warming during that period. The interval of radiocarbon age between 3.0 ka BP and 1.2 ka BP was possibly caused by the strong erosion when the block was lifted in the neotectonic movement. From 1.2 ks BP to 0.6 ka BP, the region re-mained in terrestrial sedimentary environment, and the surface plant biomass declined gradually. Drought caused by the climate change was the likely cause for the disappearance of the ancient forest. South transition of Intertropical Convergence Zone (ITCZ) was probably the main mechanism for the climate change.

  20. Carbon isotopic composition and its implications on paleoclimate of the underground ancient forest ecosystem in Sihui,Guangdong

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We present the carbon isotopic composition of the total organic carbon(TOC) and fine roots in the sedimentary profile from the underground ancient forest in Sihui to study the climatic and environmental changes from 4.5 ka BP to 0.6 ka BP.Results show that C3 plant was the main vegetation from 4.5 ka BP to 0.6 ka BP in this region.The ancient forest began to develop in the wetland at around 4 ka BP and disappeared together with the wetland at about 3.0 ka BP,implying that the climate had changed greatly at around 3.0 ka BP.As indicated by the simulation results,the content of atmospheric CO2 increased slightly during 3.5 ka BP and 3.0 ka BP,implying climate warming during that period.The interval of radiocarbon age between 3.0 ka BP and 1.2 ka BP was possibly caused by the strong erosion when the block was lifted in the neotectonic movement.From 1.2 ka BP to 0.6 ka BP,the region remained in terrestrial sedimentary environment,and the surface plant biomass declined gradually.Drought caused by the climate change was the likely cause for the disappearance of the ancient forest.South transition of Intertropical Convergence Zone(ITCZ) was probably the main mechanism for the climate change.

  1. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing.

    Science.gov (United States)

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-01-01

    Molecular distributions and stable carbon isotopic compositions (δ(13)C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19-C36), fatty acids (C8-C32) and n-alcohols (C16-C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ(13)C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from -34.1 to -24.7% and -26.9 to -24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China. PMID:27270951

  2. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  3. Hydrogen and Carbon Stable Isotopic Compositions and Concentrations of Methane in Cave Air of Cueva de Villa Luz, Tabasco, Mexico

    Science.gov (United States)

    Webster, K.; Rosales Lagarde, L.; Sauer, P. E.; Schimmelmann, A.; Lennon, J. T.; Boston, P. J.

    2014-12-01

    Cueva de Villa Luz (CVL) is a unique biogeochemical environment where microbial consortia are supported by hydrogen sulfide (H2S) leading to sulfuric acid speleogenesis (SAS) which is thought to have generated the porosity and permeability of several petroleum reservoirs. Possible sources of the sulfur (S) include the Chichón Volcano and petroleum basins in the area. A better understanding of the source of the H2S in CVL may help predict where else SAS may have occurred. Analysis of methane (CH4) in CVL may provide a proxy to assess the source of S entering CVL. We obtained 13 air samples in 1-L Tedlar® bags from varying locations in CVL to assess the role of CH4 in sulfide-rich karst systems. CH4 and carbon dioxide (CO2) concentrations were measured by gas-chromatography. The stable isotopic ratios of carbon and hydrogen were measured on a stable isotope-ratio mass-spectrometer. CH4 in the air of CVL ranged from 1.88 ± 0.10 ppmv to 3.7 ± 0.2 ppmv. CO2 concentrations ranged from 400 ± 20 ppmv to 920 ± 50 ppmv. For comparison, the CH4 and CO2 concentrations in the outside atmosphere were 1.96 ± 0.10 ppmv and 430 ± 20 ppmv respectively. CH4 and CO2 were positively correlated in CVL (R2 = 0.91, CH4 = [0.0035 ± 0.0007] CO2 + [0.4 ± 0.4], p >0.01). The highest concentrations were near springs. Keeling-style analysis showed that the CH4 samples from CVL plot along a two-end member mixing model and suggest that CH4 is outgassing from spring water with isotopic compositions δ13CCH4 = -24 ± 3 ‰ and δ2HCH4 = -40 ± 40 ‰. CO2 did not plot along a two end member mixing model. The proposed δ13C of CH4 entering from springs does not closely match the δ13CCH4 values from hydrocarbon basins in the area. This is likely due to oxidative loss of CH4 as it ascends to CVL which may be partly driven by anaerobic methanotrophy coupled to sulfate reduction. Analysis of the spring water chemistry coupled to biogeochemical modeling may help quantify the amount of

  4. Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?

    NARCIS (Netherlands)

    Sapart, C.J.; Martinerie, P.; et al, [No Value; van de Wal, R.S.W.; van der Veen, C.; Röckmann, T.

    2013-01-01

    Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past.

  5. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Stephen C; Keeling, Ralph F

    2012-01-03

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

  6. Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano

    Science.gov (United States)

    Schubotz, Florence; Lipp, Julius S.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2011-08-01

    Seepage of asphalt forms the basis of a cold seep system at 3000 m water depth at the Chapopote Knoll in the southern Gulf of Mexico. Anaerobic microbial communities are stimulated in the oil-impregnated sediments as evidenced by the presence of intact polar membrane lipids (IPLs) derived from archaea and Bacteria at depths up to 7 m below the seafloor. Detailed investigation of stable carbon isotope composition (δ 13C) of alkyl and acyl moieties derived from a range of IPL precursors with distinct polar head groups resolved the complexity of carbon metabolisms and utilization of diverse carbon sources by uncultured microbial communities. In surface sediments most of the polar lipid-derived fatty acids with phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) head groups could be tentatively assigned to autotrophic sulfate-reducing bacteria, with a relatively small proportion involved in the anaerobic oxidation of methane. Derivatives of phosphatidyl-( N)-methylethanolamine (PME) were abundant and could be predominantly assigned to heterotrophic oil-degrading bacteria. Archaeal IPLs with phosphate-based hydroxyarchaeols and diglycosidic glyceroldibiphytanylglyceroltetraethers (GDGTs) were assigned to methanotrophic archaea of the ANME-2 and ANME-1 cluster, respectively, whereas δ 13C values of phosphate-based archaeols and mixed phosphate-based and diglycosidic GDGTs point to methanogenic archaea. At a 7 m deep sulfate-methane transition zone that is linked to the upward movement of gas-laden petroleum, a distinct increase in abundance of archaeal IPLs such as phosphate-based hydroxyarchaeols and diglycosidic archaeol and GDGTs is observed; their δ 13C values are consistent with their origin from both methanotrophic and methanogenic archaea. This study reveals previously hidden, highly complex patterns in the carbon-flow of versatile microbial communities involved in the degradation of heavy oil including hydrocarbon gases

  7. Determination of Cr isotopic composition in low-level carbonates by MC-ICP-MS: a sensitive proxy for redox changes?

    Science.gov (United States)

    Bonnand, Pierre; Parkinson, Ian; James, Rachael; Karjalainen, Anne-Mari; Fehr, Manuela; Fairchild, Ian

    2010-05-01

    Geochemical data suggest that atmospheric oxygen increased during two major steps: the Great oxidation event (~2.4 Ga) and the Neoproterozoic (~1Ga-545Ma). The O2 concentration in the atmosphere is strongly linked to the redox condition of the oceans. Therefore the study of redox sensitive elements in marine sediments can be used to evaluate the evolution of O2 concentrations in the atmosphere. Chromium is a redox sensitive element which significantly fractionates its isotopes during the reduction of Cr(VI) to Cr(III) (Ellis et al., 2002). Thus, Cr isotopes can be used to assess redox changes in the past oceans. Chromium isotopic compositions in sedimentary rocks (BIFs) have been used to determine the evolution of the O2 concentration in the atmosphere during the Proterozoic (Frei et al., 2009). We have developed a chemical procedure for the purification of Cr in carbonates by using a single cation column to separate the Cr from the matrix, Fe, Ti and V. Cr isotopic compositions are determined used a 50Cr-54Cr double spike method and analysed on a ThermoFisher Neptune MC-ICP-MS using HR and MR in order to be able to discriminate Ar interferences. Standards and samples are analysed as 50ppb Cr solutions and yield an external reproducibility 50 and 70ppm. This new method allowed us to analyse samples with a Cr concentrations as low as 1ppm. We have analysed a suite of Neoproterozoic carbonates from Australia, but also modern ooids and oolithic limestones through the Phanerozoic. The Cr isotopic data for carbonates record a range of δ53Cr between -0.1 and +1.7. This range indicates that some of these carbonates clearly reflect oxidising conditions in the ocean. By comparison, the Neoproterozoic samples have Cr isotopic compositions close to the continental crust value (-0.1 to 0.1), indicating the Neoproterozoic samples reflect deposition under more reducing conditions These data suggests that the redox condition during the deposition of shallow-water carbonates

  8. Carbon isotopic composition in components of a mangrove ecosystem in the Sepetiba Bay, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    The carbon isotopic ratios (13C/12C) for various components of a mangrove ecosystem in the Sepetiba Bay, RJ, in order to evaluate the possibility of its use a tracer for organic matter in these environments are presented. The results showed consistent differences of (13C/12C) isotopic ratio between the organic matter from mangrove (+-26%0, PDB) and the one from marine origin (+-20%0, PDB). These results suggest that this ratio can be used as tracer of organic carbon in the studied environment. (Author)

  9. Can the carbon isotopic composition of methane be reconstructed from multi-site firn air measurements?

    Directory of Open Access Journals (Sweden)

    C. J. Sapart

    2013-07-01

    Full Text Available Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4 variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites, the Kr isobaric interference (up to ~0.8 ‰, system dependent, inter-laboratory calibration offsets (~0.2 ‰ and uncertainties in past CH4 levels (~0.5 ‰.

  10. Carbon Carbon Composites: An Overview .

    Directory of Open Access Journals (Sweden)

    G. Rohini Devi

    1993-10-01

    Full Text Available Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several industrial and biomedical applications. The multidirectional carbon-carbon product technology is versatile and offers design flexibility. This paper describes the multidirectional preform and carbon-carbon process technology and research and development activities within the country. Carbon-carbon product experience at DRDL has also been discussed. Development of carbon-carbon brake discs process technology using the liquid impregnation process is described. Further the test results on material characterisation, thermal, mechanical and tribological properties are presented.

  11. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  12. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    Science.gov (United States)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  13. Variations of Microbial Communities and the Contents and Isotopic Compositions of Total Organic Carbon and Total Nitrogen in Soil Samples during Their Preservation

    Institute of Scientific and Technical Information of China (English)

    TAO Qianye; LI Yumei; WANG Guo'an; QIAO Yuhui; LIU Tung-Sheng

    2009-01-01

    Semi-sealed preservation of soil samples at difierent moisture of 4%and 23%,respectively, was simulated to observe the variations of soil microbiaI communities and determine the contents and isotopic compositions of the total organic carbon and total nitrogen on the 7th and 30th day, respectively.The results show that during preservation,the quantity of microbial communities tended to increase first and then decrease,with a wider variation range at higher moisture(23%).At the moisture content of 23%,the microbial communities became more active on the 7th day.but less after 30 days,and their activity Was stable with little fluctuation at the moisture content of 4%.However. there were no significant changes in the contents and isotopic compositions of the total organic carbon and total nitrogen.During preservation.the responses of soil microbes to the environment are more sensitive to changes in the total nitrogen and organic carbon contents.It is thus suggested that the variations of microbial communities have not exerted remarkable impacts on the isotope compositions of the total nitrogen and total organic carbon.

  14. Stable carbon isotope analysis of heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Fixari, B.; Le Perchec, P.; Bigois, M.; Casabianca, H.; Jame, P. [CNRS, Vernaison (France). Lab. des Materiaux Organiques

    1994-03-01

    Stable carbon isotope analysis of various heavy oils and some thermo-catalytically converted products was performed with a thermal analyser coupled with an isotopic ratio mass spectrometer. The temperature-programmed oxidative pyroanalysis technique subdivides the classical {sup 13}C/{sup 12}C ratio, affording new insights into the structural composition of heavy oils such as the contribution of naphthenoaromatics, and appears to be of interest for following their thermal refining. 24 refs., 11 figs., 2 tabs.

  15. Trophic Relationships and Habitat Preferences of Delphinids from the Southeastern Brazilian Coast Determined by Carbon and Nitrogen Stable Isotope Composition

    OpenAIRE

    Tatiana Lemos Bisi; Paulo Renato Dorneles; José Lailson-Brito; Gilles Lepoint; Alexandre de Freitas Azevedo; Leonardo Flach,; Olaf Malm; Krishna Das

    2013-01-01

    To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (d13C) and nitrogen (d15N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the d13C and d15N values among four populations of S. guianensis. Variation in carbon ...

  16. Foliar Carbon Isotope Composition (δ13C) and Water Use Efficiency of Different Populus deltoids Clones Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Zhao Fengjun; Gao Rongfu; Shen Yingbai; Su Xiaohua; Zhang Bingyu

    2006-01-01

    Foliar carbon isotope composition (δ13C),total dry biomass,and long-term water use efficiency (WUEL)of 12 Populus deltoids clones were studied under water stress in a greenhouse.Total dry biomass of clones decreased greatly,while δ13C increased.Single-element variance analysis in the same water treatment indicated that WUEL difference among clones was significant.Clones J2,J6,J7,J8,and J9 were excellent with high WUEL.Extremely significant δ13C differences among water treatments and clones were revealed by two-element variance analysis.Water proved to be the primary factor affecting δ13C under water stress.It showed that there was a good positive correlation between δ13C and WUEL in the same water treatment,and that a high WUEL always coincided with a high δ13C.δ13C might be a reliable indirect index to estimate WUEL among P.deltoids clones.

  17. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ13C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.)

  18. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing

    Science.gov (United States)

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-06-01

    Molecular distributions and stable carbon isotopic compositions (δ13C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19–C36), fatty acids (C8–C32) and n-alcohols (C16–C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ13C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from –34.1 to ‑24.7% and ‑26.9 to ‑24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.

  19. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Directory of Open Access Journals (Sweden)

    B. He

    2010-04-01

    Full Text Available Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized by a variety of techniques, including elemental (C and N, stable carbon isotopic13C composition, as well as molecular-level analyses. Total organic carbon (TOC content was 1.61±1.20% in the upper reach down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.11‰ to −21.28‰ across the studied area, with a trend of enrichment seaward. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio from 10.9±1.3 in the Lingdingyang Bay surface sediments to 6.5±0.09 in the outer shelf surface sediments. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC−1, and typically followed TOC concentrations in the estuarine and shelf sediments, suggesting that the relative abundance of total carbohydrate was fairly constant in TOC. Total neutral sugars as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose yielded between 4.0 and 18.6 mg (100 mg OC−1 in the same sediments, suggesting that a significant amount of carbohydrates were not neutral aldoses. The bulk organic matter properties, isotopic composition and C/N ratios, combined with molecular-level carbohydrate compositions were used to assess the sources and accumulation of terrestrial organic matter in the Pearl River Estuary and the adjacent northern South China Sea shelf. Results showed a mixture of terrestrial riverine organic carbon with in situ phytoplankton organic carbon in the areas studied. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to

  20. Carbon stable isotopic composition of karst soil CO2 in central Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    郑乐平

    1999-01-01

    The δ13 values of soil CO2 are less than that of atmosphere CO2 in the karst area. On the soil-air interface, the δ13 vlaues of soil CO2 decrease with the increase in soil depth; below the soil-air interface, the δ13C values of soil CO2 are invariable. The type of vegetation on the land surface has an influence on the δ13C values of soil CO2 Due to the activity of soil microbes, the δ13C values of soil CO2 are variable with seasonal change in grass. Isotopic tracer indicates that atmosphere CO2 has a great deal of contribution to soil CO2 at the lower parts of soil profile.

  1. Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Mandal, T.K.; Karapurkar, S.; Naja, M.; Gadi, R.; Ahammed, Y.N.; Kumar, A.; Saud, T.; Saxena, M.

    occurring in fine mode fraction of aerosols. As continental polluted air is diluted, NH 4 NO 3 can be disassociated and reformed HNO 3 can react with aerosol carbonate or sea salt in marine realm (Widory et al., 2007). Thus N incorporation in aerosols...

  2. Chemical characterization and stable carbon isotopic composition of particulate polycyclic aromatic hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2012-08-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography coupled with a mass spectrometer (GC/MS and molecular isotopic compositions13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the different species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion from others origins of particulate matter (vehicular exhaust using isotopic measurements (with δ13CPAH = −28.7 to −26.6‰ but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach of source tracking.

  3. Carbon isotope geochemistry in the Yalujiang estuary

    Institute of Scientific and Technical Information of China (English)

    吴莹; 张经

    2001-01-01

    The distribution of particulate organic carbon (POC) along the lower reaches is similar between the dry season and the flood season in the Yalujiang Estuary, North China. However, the values of particulate organic carbon of the upperstream in the dry season are one magnitude lower than the concentrations in the flood season. Stable carbon isotope ratios have been used to study the sources of particulate organic carbon in the Yalujiang Estuary. The isotopic composition of POC shows a range from -23.1‰ to -29.4‰ with a little seasonal variation. The isotopic evidence indicates that the POC in the Yalujiang Estuary is predominantly of terrestrial origin rather than a result of in situ plankton. The study of the ratio of POC: Chla shows that the turbidity maximum plays an important role in POC cycle in the Yalujiang Estuary. Organic detritus and soil erosion are the main contributions to POC in the turbidity maximum, especially in the flood season.

  4. Carbon isotope effects in carbonate systems

    Science.gov (United States)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  5. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Science.gov (United States)

    He, B.; Dai, M.; Huang, W.; Liu, Q.; Chen, H.; Xu, L.

    2010-10-01

    Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N) ratio, bulk stable organic carbon isotopic composition (δ13C), and carbohydrate composition analyses. Total organic carbon (TOC) content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from -25.1‰ to -21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC)-1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose), were between 4.0 and 18.6 mg (100 mg OC)-1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and/or transformation during transport. Sediment budget based on calculated regional accumulation rates

  6. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions

    Directory of Open Access Journals (Sweden)

    B. He

    2010-10-01

    Full Text Available Organic matter in surface sediments from the upper reach of the Pearl River Estuary and Lingdingyang Bay, as well as the adjacent northern South China Sea shelf was characterized using a variety of techniques, including elemental (C and N ratio, bulk stable organic carbon isotopic composition13C, and carbohydrate composition analyses. Total organic carbon (TOC content was 1.21±0.45% in the upper reach, down to 1.00±0.22% in Lingdingyang Bay and to 0.80±0.10% on the inner shelf and 0.58±0.06% on the outer shelf. δ13C values ranged from −25.1‰ to −21.3‰ in Lingdingyang Bay and the South China Sea shelf, with a trend of enrichment seawards. The spatial trend in C/N ratios mirrored that of δ13C, with a substantial decrease in C/N ratio offshore. Total carbohydrate yields ranged from 22.1 to 26.7 mg (100 mg OC−1, and typically followed TOC concentrations in the estuarine and shelf sediments. Total neutral sugars, as detected by the nine major monosaccharides (lyxose, rhamnose, ribose, arabinose, fucose, xylose, galactose, mannose, and glucose, were between 4.0 and 18.6 mg (100 mg OC−1 in the same sediments, suggesting that significant amounts of carbohydrates were not neutral aldoses. Using a two end-member mixing model based on δ13C values and C/N ratios, we estimated that the terrestrial organic carbon contribution to the surface sediment TOC was ca. 78±11% for Lingdingyang Bay, 34±4% for the inner shelf, and 5.5±1% for the outer shelf. The molecular composition of the carbohydrate in the surface sediments also suggested that the inner estuary was rich in terrestrially derived carbohydrates but that their contribution decreased offshore. A relatively high abundance of deoxyhexoses in the estuary and shelf indicated a considerable bacterial source of these carbohydrates, implying that sediment organic matter had undergone extensive degradation and

  7. Oxygen and carbon isotopic composition of hydrothermal vein minerals from the Copeland, goldfield, NSW

    International Nuclear Information System (INIS)

    The Copeland goldfield yielded nearly 1.8t Au from vein systems developed in low metamorphic grade siltstones and sandstones of Palaeozoic age centred on a region 15 km west of Gloucester and 105 km north of Newcastle in the southern New England Fold Belt, New South Wales. Despite the small size of the goldfield, interest in the area arises because of the enigmatic nature of the mineralisation. Mineralisation is clearly structurally controlled; structures have formed under essentially a brittle regime, but the timing of the structures and their relationship to major nearby structures, such as the Peel-Manning Fault System (PMFS) have remained unclear. Models for vein-style, gold-quartz mineralisation such as the slate-belt type appear to be discounted, by reason of the low strain in the host rocks and very low grade of metamorphism (prehnite-pumpellyite facies). By a similar argument, the lack of igneous activity in the area does not immediately suggest a link between gold mineralisation and magmatic activity. This contribution presents isotopic data (O, C) for hydrothermal vein quartz and calcite from a number of deposits in the region, as part of a larger study aimed at identifying the source of ore-forming components, and the conditions and timing of gold deposition

  8. The Precambrian marine carbonate isotope database: version 1.1.

    OpenAIRE

    G. A. Shields; Veizer, J.

    2002-01-01

    We present a compilation of strontium, carbon, and oxygen isotope compositions of roughly 10,000 marine carbonate rocks of Archean - Ordovician age (3800 Ma – 450 Ma). The Precambrian Marine Carbonate Isotope Database (PMCID) has been compiled from 152 published and 3 unpublished articles and books of the past 40 years. Also included are 30 categories of relevant “metadata” that allow detailed comparisons and quality assessments of the isotope data to be made. The PMCID will be updated period...

  9. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    Science.gov (United States)

    Krylov, Alexey A.; Khlystov, Oleg M.; Hachikubo, Akihiro; Minami, Hirotsugu; Nunokawa, Yutaka; Shoji, Hitoshi; Zemskaya, Tamara I.; Naudts, Lieven; Pogodaeva, Tatyana V.; Kida, Masato; Kalmychkov, Gennady V.; Poort, Jeffrey

    2010-06-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.

  10. Lipid Biomarkers and Carbon Isotopic Composition from Authigenic Carbonates and Seep Sediments from the US Mid-Atlantic Margin

    Science.gov (United States)

    Campbell, P.; Prouty, N.; Demopoulos, A. W.; Roark, B.; Coykendall, K.

    2015-12-01

    Anaerobic oxidation of methane (AOM), mediated by Archaea and sulfate-reducing bacteria, is common in continental margin sediment and can result in authigenic carbonate precipitation. A lipid biomarker study was undertaken in Mid-Atlantic submarine canyons, focusing specifically on Baltimore and Norfolk canyons, to determine biomarker variability of carbonate rock and the associated sediment in cold seep communities dominated by chemosynthetic mussels, Bathymodiolus childressi. Preliminary 16S metagenomic results confirm the presence of free-living sulfur-reducing bacteria and methantrophic endosymbiotic bacteria in the mussels. Depleted d13C values in both the mussel tissue (-63 ‰) and authigenic carbonates (-48 ‰) support methanotrophy as the dominant nutritional pathway and AOM as the main driver of carbonate precipitation. In addition, paired 14C and 230Th dates are highly discordant, reflecting dilution of the 14C pool with fossil hydrocarbon derived carbon. Seep and canyon sediment, as well as authigenic carbonates, were collected and analyzed for a suite of biomarkers, including sterols, alcohols, alkanes and fatty acids, as well as δ13C values of select biomarkers, to elucidate pathways of organic matter cycling. A comparison of terrestrial biomarker signatures (e.g., n-alkane carbon preference index and C23 / (C23 + C29) values, HMW n-alkanes and C29 sterols) suggests that terrestrial inputs dominate the submarine canyon surface sediment, whereas seep sediment is predominantly marine autochthonous (i.e., cholesterol and 5α-cholestanol). Lipid biomarker profiles (e.g., n-alkanes in the C15 to C33 range) from authigenic carbonates mirror those found in the seep sediment, suggesting that the organisms mediating carbonate precipitation on the seafloor are characteristic of the assemblages present in the sediment at these sites. With widespread methane leakage recently discovered along the Atlantic Margin, the presence of AOM-mediated carbonate

  11. NanoSIMS Determination of Carbon and Oxygen Isotopic Compositions of Presolar Graphites from the Murchison Meteorite

    Science.gov (United States)

    Stadermann, F. J.; Croat, T. K.; Bernatowicz, T.

    2004-01-01

    Graphite from the Murchison density separate KFC1 (2.15 - 2.20 g/cu cm) has previously been studied by combined SEM/EDX and ion microprobe analysis. These studies found several distinct morphological types of graphites and C isotopic compositions that vary over more than 3 orders of magnitude, clearly establishing their presolar origin. Subsequent TEM measurements of a subset of these particles found abundant embedded crystals of metal (Zr, Mo, Ti, Ru) carbides which were incorporated during the growth of the graphites. A new TEM study of a large set of KFC1 graphites led to the discovery of another type of presolar material, Ru-Fe metal. Here we report results of the C and O isotopic measurements in the same graphite sections, which makes it possible for the first time to directly correlate isotopic and TEM data of KFC1 grains.

  12. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jidun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province 256600 (China); Wu, Fengchang, E-mail: wufengchang@163.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xiong, Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fasheng; Du, Xiaoming; An, Da [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Lifang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2014-03-01

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC–IRMS). The δ{sup 13}C values of individual n-alkanes (C{sub 16}–C{sub 31}) varied between − 24.1‰ and − 35.6‰, suggesting a dominance of {sup 13}C-depleted n-alkanes that originated from C{sub 3} plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage. - Highlights: • Long-chain n-alkanes and FFAs are mainly derived from terrestrial sources. • Short-chain n-alkanes and fatty acids are mainly derived from bacterial and/or algal sources. • Long-chain BFAs are mainly derived from algal sources in hypereutrophic lakes.

  13. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China

    International Nuclear Information System (INIS)

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC–IRMS). The δ13C values of individual n-alkanes (C16–C31) varied between − 24.1‰ and − 35.6‰, suggesting a dominance of 13C-depleted n-alkanes that originated from C3 plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage. - Highlights: • Long-chain n-alkanes and FFAs are mainly derived from terrestrial sources. • Short-chain n-alkanes and fatty acids are mainly derived from bacterial and/or algal sources. • Long-chain BFAs are mainly derived from algal sources in hypereutrophic lakes

  14. [Composition and seasonal variations of carbon isotopes in aerosols of Lhasa, Tibet].

    Science.gov (United States)

    Huang, Jie; Kang, Shi-chang; Shen, Cheng-de; Cong, Zhi-yuan; Liu, Ke-xin; Liu, Li-chao

    2010-05-01

    A total of 30 samples of total suspended particles were collected at an urban site in western of Lhasa city, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. 14C was taken as a reference to quantitatively distinguish the fossil and biogenic-derived origins along with the characteristics of seasonal variations of all carbonaceous materials in Lhasa are discussed. The results showed that the f(c) values in Lhasa ranged from 0.357 to 0.702, with an average of 0.493, which is higher than Beijing and Tokyo, but are far lower than that of remote/rural regions such as Launceston, indicating a major biogenic influence in Lhasa. Values of f(c) displayed clear seasonal variations with higher mean value in winter, a decreasing trend in spring, while relatively lower values in summer and autumn. Higher f(C) values in winter demonstrate that carbonaceous aerosol is mainly dominated by wood burning and incineration of agricultural wastes during the winter. The lower f(c) values in summer and autumn might be caused by increased diesel engines, motor vehicles emissions, which are related to the tourism in Lhasa. delta13C values ranged from -26.40% per hundred to approximately -25.10% per hundred, with an average of -25.8% per hundred, and showed no clear seasonal variation. The relative higher values in summer reflected the increment of fossil carbon emissions. 13C(TC) values are relatively homogeneous at -25.8% per hundred, considering the characteristics of seasonal variations of f(c) values, it can be concluded that carbonaceous aerosol of Lhasa was mainly influenced by a constant mixing of several pollution sources such as motor vehicles and wood burning emissions. PMID:20623843

  15. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  16. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition.

    Directory of Open Access Journals (Sweden)

    Tatiana Lemos Bisi

    Full Text Available To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ(13C and nitrogen (δ(15N isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ(13C and δ(15N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ(13C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ(13C value, while oceanic species showed significantly lower δ(13C values. The highest δ(15N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ(15N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ(13C values, but similar δ(15N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ(13C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area.

  17. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition.

    Science.gov (United States)

    Bisi, Tatiana Lemos; Dorneles, Paulo Renato; Lailson-Brito, José; Lepoint, Gilles; Azevedo, Alexandre de Freitas; Flach, Leonardo; Malm, Olaf; Das, Krishna

    2013-01-01

    To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ(13)C and δ(15)N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ(13)C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ(13)C value, while oceanic species showed significantly lower δ(13)C values. The highest δ(15)N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ(15)N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ(13)C values, but similar δ(15)N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ(13)C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area. PMID:24358155

  18. Sedimentary process control on carbon isotope composition of sedimentary organic matter in an ancient shallow-water shelf succession

    Science.gov (United States)

    Davies, S. J.; Leng, M. J.; Macquaker, J. H. S.; Hawkins, K.

    2012-11-01

    Source and delivery mechanisms of organic matter are rarely considered when interpreting changing δ13C through sedimentary successions even though isotope excursions are widely used to identify and correlate global perturbations in the carbon cycle. Combining detailed sedimentology and geochemistry we demonstrate how organic carbon abundance and δ13C values from sedimentary organic matter from Carboniferous-aged mudstones are influenced by the proportion of terrestrial versus water column-derived organic matter. Silt-bearing clay-rich shelf mudstones that were deposited by erosive density flows are characterized by 1.8-2.4% organic carbon and highδ13C values (averaging -22.9 ± 0.3‰, n = 12). Typically these mudstones contain significant volumes of terrestrial plant-derived material. In contrast, clay-rich lenticular mudstones, with a marine macrofauna, are the products of the transport of mud fragments, eroded from pre-existing water-rich shelfal muds, when shorelines were distant and biological productivity in the water column was high. Higher organic carbon (2.1-5.2%) and lowerδ13C values (averaging -24.3 ± 0.5‰, n = 11) characterize these mudstones and are interpreted to reflect a greater contribution by (isotopically more negative) amorphous organic matter derived from marine algae. Differences in δ13C between terrestrial and marine organic matter allow the changing proportions from different sources to be tracked through this succession. Combining δ13C values with zirconium (measured from whole rock), here used as a proxy for detrital silt input, provides a novel approach to distinguishing mudstone provenance and ultimately using δ13C to identify oil-prone organic matter in potential source rocks. These results have important implications for using bulk organic matter to identify and characterize global C-isotope excursions.

  19. Carbon and oxygen isotopic composition of carbonate cements of different phases in terrigenous siliciclastic reservoirs and significance for their origin: A case study from sandstones of the Triassic Yanchang Formation, southwestern Ordos Basin,China

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; ZHUO Xizhun; CHEN Guojun; LI Xiaoyan

    2008-01-01

    Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ18O values range from -0.3‰-0.1‰) and lighter oxygen isotope (their ‰18O values range from -22.1‰--19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later dissolution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous calcites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.

  20. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    of sediments are mostly closer to the boron isotopic composition of minerals. Such low delta sup(11)B values are attributed to the presence of borates, ulexite and other carbonate minerals in sediments of the salt lakes of Qaidam Basin....

  1. Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil

    International Nuclear Information System (INIS)

    Depth profiles of the specific activities of 14C and carbon isotopic compositions (Δ 14C, δ 13C) in soil organic matter and soil CO2 in a Japanese larch forest were determined. For investigating the transport of CO2 in soil, specific activities of 14C, Δ 14C and δ 13C in the organic layer, and atmospheric CO2 in the same forest area were also determined. The specific activity of 14C and Δ 14C in the soil organic matter decreased with the increase in depth of 0-60 cm, while that of soil CO2 did not vary greatly at a soil depth of 13-73 cm and was more prevalent than that of atmospheric CO2. Peaks of specific activities of 14C appeared at the depth of 0-4 cm and Δ 14C values were positive in the depth range from 0 to 15 cm. These results suggest that the present soil at a depth of 0-4 cm had been produced from the mid-1950s up until 1963, and the bomb C had reached the depth of 15 cm in the objective soil area. The δ 13C in the soil organic matter increased at the depth of 0-55 cm, while that of soil CO2 collected on 8 November 2004 decreased rapidly at the depth of 0-13 cm and only slightly at the depth of 53-73 cm. By combining the Δ 14C and δ 13C of the respective components and using the Keeling plot approach it was made clear that the entering of atmospheric CO2 showed a large contribution to soil CO2 at the depth of 0-13 cm and a negligible contribution at the depth of 53-73 cm for soil air collected on 8 November 2004. Respiration of live roots was presumed to be the main source of soil CO2 at the depth of 53-73 cm on 8 November 2004

  2. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  3. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    Science.gov (United States)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  4. Carbon isotope composition and its implications of Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, North Tibet

    Institute of Scientific and Technical Information of China (English)

    ZHU; Jingquan; LI; Yongtie; JIANG; Maosheng; CHEN; Daizha

    2004-01-01

    The δ13C values of Lower Cretaceous Aptian-Albian platform-type carbonates in the Cuoqin Basin, North Tibet vary between 2.48‰ and 5.46‰. The mean value is 3.93‰. The values are not only provided with positive excursion, but also 1.17‰ higher than those of contemporaneous pelagic carbonates which possess pretty high δ13C values. The origin is approached. During the oceanic anoxic events, a great number of organisms were rapidly buried, causing the increase of the δ13C value of oceanic total dissolved carbon (TDC) and generally promoting the values of marine carbonates. After that, owing to the organisms undergoing different isotopic fractionation in the paleo-ocean with stratified structure,δ13C values of shallow sea carbonate were obviously higher than those of pelagic carbonates.

  5. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    Science.gov (United States)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  6. Carbon and Nitrogen Stable Isotope Composition of OM From Florida Bay, the Initial Results of a Paleoenvironmental Seagrass Reconstruction

    Science.gov (United States)

    Evans, S. L.; Anderson, W. T.; Fourqurean, J. W.; Jaffe, R.; Gaiser, E. E.; Collins, L. S.; Holmes, C. W.

    2002-12-01

    The shallow marine waters of Florida Bay provide an ideal environment for seagrasses, which are the most common benthic community in the region. However, these communities are susceptible to a variety of anthropogenic disturbances, particularly changes in water quality, and environmental conditions in Florida Bay have become a concern due to recent increases in salinity, the frequency of algal blooms, and seagrass die-off. These changes have been attributed to 20th century decreases in freshwater discharge from the Everglades to Florida Bay, deteriorated water quality, and changes in exchange between Florida Bay and the Atlantic Ocean. In order to better understand environmental change over long timescales, sediment cores were collected in the summer, 2002, from four locations in Florida Bay for multiple proxy analyses of seagrass abundance, which is an excellent indicator of water quality. Sediment depths ranged from 96 to 244 cm, potentially representing a 5000-year time series. Cores were sampled in 2-cm increments representing an average of 2-10 years for bulk isotopic analysis of sediment organic content. In 2 cores analyzed, δ15N values ranged between 3.2 and 7.6‰ , following an oscillating pattern over time. δ13C values ranged between -11.2 and -8.6‰ along a progressive enrichment trend that is inconsistent with the adjacent development of the metro Miami area and agricultural activities. These patterns show evidence of decoupling between carbon and nitrogen isotopic systems, although values throughout suggest that buried organic matter at these 2 sites is seagrass-derived. Further bulk isotopic analyses of remaining cores, together with organic biomarker analyses, diatom and foraminiferal community analyses, and development of an age model for the cores, will allow more definitive interpretation of the isotope patterns with implications to seagrass productivity levels, and thus, water quality, over time in Florida

  7. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  8. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  9. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  10. The Sources of Carbon and Nitrogen in Mountain Lakes and the Role of Human Activity in Their Modification Determined by Tracking Stable Isotope Composition.

    Science.gov (United States)

    Gąsiorowski, Michał; Sienkiewicz, Elwira

    2013-04-01

    We studied the isotopic composition of organic matter in the sediments of eight mountain lakes located in the Tatra Mountains (Western Carpathians, Poland). The sediments of the lakes were fine and course detritus gyttja, mud, and sand. The total organic carbon content varied from 0.5 to 53 %. The C/N ratio indicated that in-lake primary production is the major source of the organic matter in the lakes located above the treeline, whereas terrestrial plant fragments are the major organic compounds in the sediments of dystrophic forest lakes. We also found that a clear trend of isotopic curves toward lower values of δ (13)C and δ (15)N (both ~3 ‰) began in the 1960s. This trend is a sign of the deposition of greater amounts of NO x from the combustion of fossil fuels, mainly by vehicle engines. The combustion of fossil fuels in electric plants and other factories had a smaller influence on the isotopic composition. This trend has been weaker since the 1990s. Animal and human wastes from pastures and tourism had a surprisingly minor effect on lake environments. These data are contrary to previous data regarding lake biota and suggest the high sensitivity of living organisms to organic pollution. PMID:23576824

  11. Deciphering Carbon Isotope Excursions in Separated Biogenic and Diagenetic Carbonates

    Science.gov (United States)

    Hermoso, M.; Minoletti, F.; Hesselbo, S.; Jenkyns, H.; Rickaby, R.; Diester-Haass, L.; Delsate, D.

    2008-12-01

    shift in the bulk carbonate record. Contrasts in the amplitude of the carbon-isotope excursion at the single-species level compared to inorganic calcite and organic subtrate, should improve our understanding of the evolution of the water column composition through these major C-cycling perturbation events, and how marine calcifiers have fedback during such events, and eventually contribute for better understanding ocean-climate dynamics through time and into the future. Minoletti, F., Hermoso, M. and Gressier, V. (accepted). Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nature protocols.

  12. Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments

    Directory of Open Access Journals (Sweden)

    Y. Kashiyama

    2008-05-01

    Full Text Available We determined both the nitrogen and carbon isotopic compositions of various vanadyl alkylporphyrins isolated from siliceous marine sediments of the Onnagawa Formation (middle Miocene, northeastern Japan to investigate the biogeochemistry and ecology of photoautotrophs living in the paleo-ocean. The distinctive isotopic signals support the interpretations of previous works that the origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP is chlorophylls-c1-3, whereas 8-nor-DPEP may have originated from chlorophylls-a2 or b2 or bacteriochlorophyll-a. Although DPEP and cycloheptanoDPEP are presumably derived from common precursory pigments, their isotopic compositions differed in the present study, suggesting that the latter represents a specific population within the photoautotrophic community. The average δ15N value for the entire photoautotrophic community is estimated to be –2 to +1‰ from the δ15N values of DPEP (–6.9 to –3.6‰; n=7, considering that the empirical isotopic relationships that the tetrapyrrole nuclei of chloropigments are depleted in 15N by ~4.8‰ and enriched in 13C by ~1.8‰ relative to the whole cells. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N2-fixation by diazotrophic cyanobacteria. Based on the δ13C values of DPEP (–17.9 to –15.6‰; n=7, we estimated isotopic fractionation associated with photosynthetic carbon fixation to be 8–14‰. This range suggests the importance of β-carboxylation and/or active transport of the carbon substrate, indicating in turn the substantial contribution of diazotrophic cyanobacteria to primary production. Based on the δ15N values of 17-nor-DPEP (–7.4 to –2.4‰ n=7, the δ15N range of chlorophylls-c-producing algae was estimated to be –3

  13. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  14. Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin

    Directory of Open Access Journals (Sweden)

    Tjaša Kanduč

    2015-07-01

    Full Text Available CO2 concentrations (partial pressure of CO2, pCO2, and isotope compositions of carbon dioxide in air (δ13CCO2, temperature (T and relative humidity (H have been measured in the atmosphere in the Velenje Basin. Samples were collected monthly in the calendar year 2011 from 9 locations in the area where the largest thermal power plant in Slovenia with the greatest emission of CO2 to the atmosphere (around 4M t/year is located. Values of pCO2 ranged from 239 to 460 ppm with an average value of 294 ppm, which is below the average atmospheric CO2 pressure (360 ppm. δ13CCO2 ranged from -18.0 to -6.4 ‰, with an average value of -11.7 ‰. These values are similar to those measured in Wroclaw, Poland. We performed the comparison of δ13CCO2 values in atmospheric air with Wroclaw since researchers used similar approach to trace δ13CCO2 around anthropogenic sources. The isotopic composition of dissolved inorganic carbon (δ13CDIC in rivers and lakes from the Velenje basin changes seasonally from -13.5 to -7.1‰. The values of δ13CDIC indicate the occurrence of biogeochemical processes in the surface waters, with dissolution of carbonates and degradation of organic matter being the most important. A concentration and diffusion model was used to calculate the time of equilibration between dissolved inorganic carbon in natural sources (rivers and atmospheric CO2.

  15. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; Brunner, A. E.; Grotzinger,J. P.; Jones, J. H.; Leshin, L. A.; Miller, K.; Morris, R. V.; Navarro-Gonzalez, R.; Niles, P. B.; Owen, T. C.; Summons, R. E.; Sutter, B.; Webster, C. R.

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  16. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...

  17. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake

    Science.gov (United States)

    Rao, Zhiguo; Jia, Guodong; Li, Yunxia; Chen, Jianhui; Xu, Qinghai; Chen, Fahu

    2016-07-01

    Both the timing of the maximum East Asian summer monsoon (EASM) intensity in monsoonal China and the environmental significance of the Chinese stalagmite oxygen isotopic record (δ18O) have been debated. Here, we present a ca. 120-year-resolution compound-specific carbon (δ13C) and hydrogen (δD) isotopes of terrestrial long-chain n-alkanes extracted from a well-dated sediment core from an alpine lake in north China. Our δ13C data, together with previously reported pollen data from a parallel core, demonstrate a humid mid-Holocene from ca. 8-5 ka BP. Assuming that the climatic humidity of north China is an indicator of the EASM intensity, then the maximum EASM intensity occurred in the mid-Holocene. Our δD data reveal a similar long-term trend to the δ18O record from nearby Lianhua Cave, indicating that the synchronous δD and δ18O records faithfully record the δD and δ18O of precipitation, respectively. The most negative δD and δ18O values occur in the early-mid Holocene, from ca. 11-5 ka BP. This contrast in the timing of isotopic variations demonstrates a complex relationship between the isotopic composition of precipitation and precipitation amount, or EASM intensity. Further comparisons indicate a possible linkage between the precipitation amount in north China and the west-east thermal gradient in the equatorial Pacific. In addition, the temperature of the moisture source area may play an important role in determining the isotopic composition of precipitation in monsoonal China.

  18. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    Science.gov (United States)

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.

  19. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy

    Directory of Open Access Journals (Sweden)

    S. Dai

    2014-11-01

    Full Text Available Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC, organic carbon (OC, water-soluble organic carbon (WSOC, water-soluble inorganic ions (WSII, metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle−1 km−1 respectively. Emission factors of WSII were 0.016 (F- ~4.17 (Cl- mg vehicle−1 km−1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle−1 km−1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle−1 km−1, respectively. Stable carbon isotopic composition δ13C value was measured and it was −25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0–93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A

  20. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002

    Institute of Scientific and Technical Information of China (English)

    GUO Zhigang; LI Juyuan; FENG Jialiang; FANG Ming; YANG Zuosheng

    2006-01-01

    The molecular compositions and compound-specific carbon isotope compositions of individual long-chain n-alkanes of atmospheric aerosols collected during two severe Asian dust episodes in Qingdao in spring of 2002 were analyzed using gas chromatography/mass spectrometry (GC/MS) and gas chromatography/isotope ratio mass spectrometry (GC/IRMS). Typical plant wax n-alkanes (C29 and C31) had lowerδ13C values than those from anthropogenic (engine exhaust) sources (C21―C23). The average δ13C value of plant wax n-alkane C29 in non-dust episode periods was -30.5‰ (-30.3‰― -31.9‰), while -31.3‰ (-31.1‰―-31.5‰) in dust episode periods; for C31, it was -31.4‰ (-31.1‰―-33.0‰) in non-dust episode periods, and -31.7‰ (-31.3‰―-32.6‰) in dust episode periods. Plant wax in the dust episode samples was mainly from herbaceous plants via long-range transport, while local plant wax was mainly from deciduous plants and woody plants. In North China coast, 83.3% of the plant wax in the severe dust episode samples was from C3 plants while 80.0% for the non-dust samples, indicating that plant wax transported to the northwestern Pacific Ocean by airborne dust from East Asia was mainly from C3 plants. The results suggest that the molecular and molecular-isotopic compositions of individual long-chain n-alkanes can, as an effective indicator, identify the terrestrial organic components in the dust from East Asia and sediments in the northwest Pacific Ocean.

  1. Large regional-scale variation in C3/C4 distribution pattern of Inner Mongolia steppe is revealed by grazer wool carbon isotope composition

    Directory of Open Access Journals (Sweden)

    K. Auerswald

    2009-05-01

    Full Text Available This work explored the spatial variation of C3/C4 distribution in the Inner Mongolia, P. R. China, steppe by geostatistical analysis of carbon isotope data of vegetation and sheep wool. Standing community biomass (n=118 and sheep wool (n=146 were sampled in a ~0.2 Mio km2 area. Samples from ten consecutive years (1998–2007 were obtained. Community biomass samples represented the carbon isotopic composition of standing vegetation on about 1000 m2 ("community-scale", whereas the spatio-temporal scale of wool reflected the isotope composition of the entire area grazed by the herd during a 1-yr period (~5–10 km2, "farm-scale". Pair wise sampling of wool and vegetation revealed a 13C-enrichment of 2.7±0.7‰ (95% confidence interval in wool relative to vegetation, but this shift exhibited no apparent relationships with environmental parameters or stocking rate. The proportion of C4 plants in above-ground biomass (PC4, % was estimated with a two-member mixing model of 13C discrimination by C3 and C4 vegetation (13Δ3 and 13Δ4, respectively, in accounting for the effects of changing 13C in atmospheric CO2 on sample isotope composition, and of altitude and aridity on 13Δ3. PC4 averaged 19%, but the variation was enormous: full-scale (0% to 100% at community-scale, and 0% to 85% at farm-scale. The farm-scale variation of PC4 exhibited a clear regional pattern over a range of ~250 km. Importantly PC4 was significantly higher above the 22°C isotherm of the warmest month, which was obtained from annual high-resolution maps and averaged over the different sampling years. This is consistent with predictions from C3/C4 crossover temperature of quantum yield or light use efficiency in C3 and C4 plants. Still, temperature gradients accounted for only 10% of

  2. Carbon isotopic composition of forest soil respiration in the decade following bark beetle and stem girdling disturbances in the Rocky Mountains.

    Science.gov (United States)

    Maurer, Gregory E; Chan, Allison M; Trahan, Nicole A; Moore, David J P; Bowling, David R

    2016-07-01

    Bark beetle outbreaks are widespread in western North American forests, reducing primary productivity and transpiration, leading to forest mortality across large areas and altering ecosystem carbon cycling. Here the carbon isotope composition (δ(13) C) of soil respiration (δJ ) was monitored in the decade after disturbance for forests affected naturally by mountain pine beetle infestation and artificially by stem girdling. The seasonal mean δJ changed along both chronosequences. We found (a) enrichment of δJ relative to controls (<1 ‰) in near-surface soils in the first 2 years after disturbance; (b) depletion (1‰ or no change) during years 3-7; and (c) a second period of enrichment (1-2‰) in years 8-10. Results were consistent with isotopic patterns associated with the gradual death and decomposition of rhizosphere organisms, fine roots, conifer needles and woody roots and debris over the course of a decade after mortality. Finally, δJ was progressively more (13) C-depleted deeper in the soil than near the surface, while the bulk soil followed the well-established pattern of (13) C-enrichment at depth. Overall, differences in δJ between mortality classes (<1‰) and soil depths (<3‰) were smaller than variability within a class or depth over a season (up to 6‰). PMID:26824577

  3. Stable isotopes of oxygen and carbon compositions in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin): Are cap carbonates and lithoherms recording a particular destabilization event after the Marinoan glaciation?

    Science.gov (United States)

    Préat, Alain; Prian, Jean-Pierre; Thiéblemont, Denis; Obame, Rolf Mabicka; Delpomdor, Franck

    2011-06-01

    Geologic evidence of tropical sea level glaciation in the Neoproterozoic remains a matter of debate in the Snowball Earth hypothesis. The Niari Tillite Formation and the cap carbonates record the late Neoproterozoic Marinoan glaciation in South Gabon. These cap carbonates are located at the base of the Schisto-Calcaire Subgroup a predominantly carbonate succession that rests with sharp contact on top of the Niari Tillite. Integrating sedimentological and stable isotope data, a consistent sequence of precipitation events is proposed, with strongly negative δ 13C values pointing to a particular event in the cap carbonates (average δ 13C value = -3.2‰ V-PDB) and in a further newly defined lithohermal unit (average δ 13C value = -4.6‰ V-PDB). Subsequent shallow evaporitive platform carbonates display carbon and oxygen isotopic compositions indicative of relatively unaltered seawater values. Strongly negative δ 18O values in the lithoherms and replacement of aragonite fans by equigranular calcite suggest flushing of meteoric water derived from glacial meltwater.

  4. Sources of Organic-Carbon in the Littoral of Lake Gloomier as Indicated by Stable Carbon-Isotope and Carbohydrate Compositions

    NARCIS (Netherlands)

    Boschker, H.T.S.; Dekkers, E.M.J.; Pel, R.; Cappenberg, T.E.

    1995-01-01

    The relative importance of potential carbon sources in the littoral of Lake Gooimeer, a lake in the centre of the Netherlands, was studied using a combination of C-13/C-12-ratio analysis and carbohydrate composition analysis. The littoral is covered on the land side by a 80 m wide Phragmites austral

  5. Changes in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought

    Institute of Scientific and Technical Information of China (English)

    Giovanni Di Matteo; Luigi Perini; Paolo Atzori; Paolo De Angelis; Tiziano Mei; Giada Bertini; Gianfranco Fabbio; Giuseppe Scarascia Mugnozza

    2014-01-01

    We estimated water-use efficiency and potential photosyn-thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard tech-niques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We pos-tulated that responses to drought of coppiced trees would lead to differ-ential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterra-nean area. We observed physiological responses of the coppiced trees that suggested acclimation in photosynthetic potential and water-use effi-ciency:(1) a significant reduction in stomatal conductance (p<0.01) was recorded as the drought increased at the SW site;(2) foliarδ13C increased as drought increased at the SW site (p<0.01);(3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosyn-thetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe.

  6. The Effects of Trimethylamine and Organic Matter Additions on the Stable Carbon Isotopic Composition of Methane Produced in Hypersaline Microbial Mat Environments

    Science.gov (United States)

    Kelley, C. A.; Nicholson, B. E.; Beaudoin, C. S.; Detweiler, A. M.; Bebout, B.

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of non-competitive substrates, such as the methylamines, methanol and dimethylsulfide. The stable carbon isotopic composition of the produced methane has suggested that the methanogens are operating under conditions of substrate limitation. We investigated substrate limitation in gypsum-hosted endoevaporite and soft mat hypersaline environments by the additions of trimethylamine, a non-competitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71 ‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. We hypothesize that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  7. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline, meromictic lake

    International Nuclear Information System (INIS)

    Distribution and isotopic composition (delta13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake, an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion, reached uniform concentrations in the monimolimnion and again increased with depth in monimolimnion bottom sediments. The delta13C[CH4] values in bottom sediment below 1 m sub-bottom depth increased with vertical distance up the core. Monimolimnion delta13C[CH4] values were greater than most delta13C[CH4] values found in the anoxic mixolimnion. No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50 to 60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4/[C2H6 + C3H8] were high in the anoxic mixolimnion, decreased in the monimolimnion and increased with depth in the sediment. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. (author)

  8. Variability in the carbon isotopic composition of foliage carbon pools (soluble carbohydrates, waxes) and respiration fluxes in southeastern U.S. pine forests

    Science.gov (United States)

    Mortazavi, Behzad; Conte, Maureen H.; Chanton, Jeffrey P.; Weber, J. C.; Martin, Timothy A.; Cropper, Wendell P., Jr.

    2012-06-01

    We measured the δ13C of assimilated carbon (foliage organic matter (δCOM), soluble carbohydrates (δCSC), and waxes (δCW)) and respiratory carbon (foliage (δCFR), soil (δCSR) and ecosystem 13CO2 (δCER)) for two years at adjacent ecosystems in the southeastern U.S.: a regenerated 32 m tall mature Pinus palustrisforest, and a mid-rotation 13 m tallPinus elliottii stand. Carbon pools and foliage respiration in P. palustris were isotopically enriched by 2‰ relative to P. elliottii. Despite this enrichment, mean δCER values of the two sites were nearly identical. No temporal trends were apparent in δCSC, δCFR, δCSR and δCER. In contrast, δCOM and δCW at both sites declined by approximately 2‰ over the study. This appears to reflect the adjustment in the δ13C of carbon storage reserves used for biosynthesis as the trees recovered from a severe drought prior to our study. Unexpectedly, the rate of δ13C decrease in the secondary C32-36 n-alkanoic acid wax molecular cluster was twice that observed forδCOM and the predominant C22-26 compound cluster, and provides new evidence for parallel but separate wax chain elongation systems utilizing different carbon precursor pools in these species. δCFR and δCER were consistently enriched relative to assimilated carbon but, in contrast to previous studies, showed limited variations in response to changes in vapor pressure deficit (D). This limited variability in respiratory fluxes and δCSC may be due to the shallow water table as well as the deep taproots of pines, which limit fluctuations in photosynthetic discrimination arising from changes in D.

  9. Zinc isotopic compositions of breast cancer tissue.

    Science.gov (United States)

    Larner, Fiona; Woodley, Laura N; Shousha, Sami; Moyes, Ashley; Humphreys-Williams, Emma; Strekopytov, Stanislav; Halliday, Alex N; Rehkämper, Mark; Coombes, R Charles

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.

  10. Effect of temperature on the oxygen isotope composition of carbon dioxide (δ18O) prepared from carbonate minerals by reaction with polyphosphoric acid: An example of the rhombohedral CaCO 3-MgCO 3 group minerals

    Science.gov (United States)

    Crowley, Stephen F.

    2010-11-01

    Measurement of the ratio of 18O to 16O in CO 2(δ18O) produced from rhombohedral carbonate minerals in the compositional range CaCO 3-MgCO 3 by reaction with polyphosphoric acid (PPA), at temperatures of between 25 and 110 °C, shows that values of δ18O are linearly correlated ( r o > 0.99) with the reciprocal of absolute reaction temperature (K/ T). This observation is consistent with earlier studies documenting the effect of temperature on the kinetic fractionation of oxygen isotopes between parent carbonate and product CO 2 and H 2O during acid decomposition. However, analysis of the resultant data reveals: (1) a progressive increase in dδ18O/dT-1 with increasing Mg content, and (2) a significant variation in dδ18O/dT-1 between individual samples of carbonate of identical lattice symmetry and similar chemical composition. The overall increase in gradient with increasing Mg content is assumed to reflect cation radius dependent factors that control the bonding environment at the interface between the metal cation exposed at the surface of the reacting carbonate solid and a H 2CO 3 transitional species during disproportionation of H 2CO 3 to CO 2 and H 2O ("cluster model" of Guo et al., 2009). Phase-specific variations in dδ18O/dT-1 might result from differences in lattice structure variables (e.g., degree of lattice distortion, extent of positional disorder, and non-ideal mixing of substituent cations where carbonates depart from end-member compositions). Lattice structure variables may be dependent on geochemical conditions pertaining at the time of carbonate precipitation (e.g., biosynthetic versus inorganic precipitates) and suggests that dδ18O/dT-1 has the potential to vary, within limits, in response to both the chemical composition and structure of each carbonate sample. Because the oxygen isotope composition of carbonate minerals (δ18O) measured on the VPDB scale is defined by the oxygen isotope composition of CO 2 prepared from NBS19 (calcite) by

  11. Correlations Between Foliar Stable Carbon Isotope Composition and Environ-mental Factors in Desert Plant Reaumuria soongorica (Pall.) Maxim.

    Institute of Scientific and Technical Information of China (English)

    Jian-Ying MA; Tuo CHEN; Wei-Ya QIANG; Gang WANG

    2005-01-01

    Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ13C values and environmental factors. Results showed that δ13C values in R. soongorica ranged from-22.77‰. to-29.85‰. and that the mean δ13C value (-26.52‰)was higher than a previously reported δ13C value for a different desert ecosystem. This indicates that R.soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ13C values and environmental factors demonstrated that the foliar δ13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ13C values in R. soongorica was not obvious and there was no significant correlation between the δ13C values and mean annual temperature. We conclude that different distribution trends in δ13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R.soongorica. This pattern of δ13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.

  12. Carbon and hydrogen isotope composition of plant biomarkers as proxies for precipitation changes across Heinrich Events in the subtropics

    Science.gov (United States)

    Arnold, T. E.; Freeman, K.; Brenner, M.; Diefendorf, A. F.

    2014-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  13. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    Science.gov (United States)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  14. Biogeochemistry of the stable carbon isotopes in carboxylic acids

    International Nuclear Information System (INIS)

    The carbon isotopic compositions of the carboxyl carbons of fatty acids were determined by measuring the isotopic composition of the carbon dioxide quantitatively released from the acid. A modified version of the Schmidt decarboxylation developed and tested in this work was employed. A study of the evolution of CO2 at 5 +- 20C from the Schmidt decarboxylation of octanoic acid during the developmental program revealed two kinetic phases, each characterized by different rate constants and carbon isotope effects. The first, slower reaction phase displayed overall first-order kinetics, its rate being independent of HN3 concentration. Both pre-equilibration of the HN3-CHCl3 decarboxylation reagent with H2SO4 and saturation of the catalytic H2SO4 phase with KHSO4 drastically altered the rate of evolution and isotopic composition of the product CO2. The mechanistic implications of these results were discussed. A review of the metabolism of saturated fatty acids was made in which the impact of potential isotope fractionations in the various chemical reactions comprising the biosynthetic pathways on the intramolecular carbon isotope distribution within fatty acids was discussed

  15. Molecular and stable carbon isotopic compositions of saturated fatty acids within one sedimentary profile in the Shenhu, northern South China Sea: Source implications

    Science.gov (United States)

    Zhu, Xiaowei; Mao, Shengyi; Wu, Nengyou; Sun, Yongge; Guan, Hongxiang

    2014-10-01

    This study examined the distributions and stable carbon isotopic compositions of saturated fatty acids (SaFAs) in one 300 cm long sedimentary profile, which was named as Site4B in Shenhu, northern South China Sea. The concentrations of total SaFAs in sediments ranged from 1.80 to 10.16 μg/g (μg FA/g dry sediment) and showed an even-over-odd predominance in the carbon chain of C12 to C32, mostly with n-C16 and n-C18 being the two major components. The short-chain fatty acids (ScFAs; n-C12 to n-C18) mainly from marine microorganisms had average δ13C values of -26.7‰ to -28.2‰, whereas some terrigenous-sourced long-chain fatty acids (LcFAs; n-C21 to n-C32) had average δ13C values of -29.6‰ to -34.1‰. The other LcFAs (n-C24 & n-C26 ∼ n-C28; average δ13C values are -26.1‰ to -28.0‰) as well as n-C19 and n-C20 SaFAs (average δ13C values are -29.1‰ and -29.3‰, respectively) showed a mixed signal of carbon isotope compositions. The relative bioproductivity calculation (marine vs. terrigenous) demonstrated that most of organic carbon accumulation throughout the sedimentary profile was contributed by marine organism. The high marine productivity in Shenhu, South China Sea may be related to the hydrocarbon seepage which evidenced by diapiric structures. Interestingly, there is a sever fluctuation of terrigenous inputs around the depth of 97 cm below the seafloor (bsf), probably resulting from the influence of the Dansgaard-Oeschger events and the Younger Dryas event as revealed by 14C age measurements.

  16. Quantitative analysis of intraspecific variations in the carbon and oxygen isotope compositions of the modern cool-temperate brachiopod Terebratulina crossei

    Science.gov (United States)

    Takayanagi, Hideko; Asami, Ryuji; Otake, Tsuguo; Abe, Osamu; Miyajima, Toshihiro; Kitagawa, Hiroyuki; Iryu, Yasufumi

    2015-12-01

    This study unravels intraspecific variations in the carbon isotope (δ13C) and oxygen isotope (δ18O) compositions of shells of the modern cool-temperate brachiopod Terebratulina crossei collected at a water depth of 70 m in Otsuchi Bay, northeastern Honshu, Japan. Brachiopod shells have been used as proxies of the δ13C values of dissolved inorganic carbon (DIC) (δ13CDIC) and seawater temperature/δ18O (δ18OSW) values to reconstruct the evolution of Phanerozoic oceans. To identify more reliable shell portions as the proxies, we conducted a rigorous time-series comparison of δ13C and δ18O values between the brachiopod shells and calcite precipitated in isotopic equilibrium with ambient seawater (equilibrium calcite) (δ13CEC and δ18OEC values, respectively). Samples were collected from the outer and inner surfaces of the secondary shell layer along the maximum growth axis (ontogenetic-series and inner-series samples, respectively). The ontogenetic-series δ13C values, which showed regular annual and irregular non-annual cycles, partly fell in but were mostly less than the range of the δ13CEC values. The δ13C cycles were often associated with one or two minor negative peaks. The peaks were likely resulted from an increased incorporation of respiration-derived 12C due to elevated metabolic activity during spawning. The ontogenetic-series δ18O values showed distinct seasonal variations and were mostly within the range of δ18OEC values. The amplitude of the δ18O profiles was relatively large during the younger fast-growth stage, and decreased during the senescent slow-growth stage. The inner-series δ13C and δ18O values of individual shells varied within narrow ranges. The inner-series δ13C values were close to the minimum δ13CEC values. The inner-series δ18O values were in the upper range of the δ18OEC values. Kinetic isotope fractionation effects were evident, but its degree varied among different shells. We identified the shell portions reliably

  17. Ferromanganese crusts as archives of deep water Cd isotope compositions

    Science.gov (United States)

    Horner, T. J.; SchöNbäChler, M.; RehkäMper, M.; Nielsen, S. G.; Williams, H.; Halliday, A. N.; Xue, Z.; Hein, J. R.

    2010-04-01

    The geochemistry of Cd in seawater has attracted significant attention owing to the nutrient-like properties of this element. Recent culturing studies have demonstrated that Cd is a biologically important trace metal that plays a role in the sequestration of inorganic carbon. This conclusion is supported by recent isotope data for Cd dissolved in seawater and incorporated in cultured phytoplankton. These results show that plankton features isotopically light Cd while Cd-depleted surface waters typically exhibit complimentary heavy Cd isotope compositions. Seawater samples from below 900 m depth display a uniform and intermediate isotope composition of ɛ114/110Cd = +3.3 ± 0.5. This study investigates whether ferromanganese (Fe-Mn) crusts are robust archives of deep water Cd isotope compositions. To this end, Cd isotope data were obtained for the recent growth surfaces of 15 Fe-Mn crusts from the Atlantic, Pacific, Indian, and Southern oceans and two USGS Fe-Mn reference nodules using double spike multiple collector inductively coupled plasma mass spectrometry. The Fe-Mn crusts yield a mean ɛ114/110Cd of +3.2 ± 0.4 (2 SE, n = 14). Data for all but one of the samples are identical, within the analytical uncertainty of ±1.1ɛ114/110Cd (2 SD), to the mean deep water Cd isotope value. This indicates that Fe-Mn crusts record seawater Cd isotope compositions without significant isotope fractionation. A single sample from the Southern Ocean exhibits a light Cd isotope composition of ɛ114/110Cd = 0.2 ± 1.1. The origin of this signature is unclear, but it may reflect variations in deep water Cd isotope compositions related to differences in surface water Cd utilization or long-term changes in seawater ɛ114/110Cd. The results suggest that time series analyses of Fe-Mn crusts may be utilized to study changes in marine Cd utilization.

  18. Effect of varying frontal systems on stable oxygen and carbon isotopic compositions of modern planktic foraminifera of Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, M.; Mohan, R.; Meloth, T.; Naik, S.S.; Sudhakar, M.

    sediments yield values akin to that obtained from plankton net samples. It implies that planktic foraminifera preserved in sediments record overlying seawater signatures in this sector. Thus, down-core foraminiferal isotopic data from the Indian sector...

  19. Carbonate clumped isotope bond reordering and geospeedometry

    Science.gov (United States)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    short-lived hydrothermal event (Bristow et al., 2011, Nature v. 474, p. 68-71). Most of the uncertainty in these estimates relates to uncertainty in Arrhenius parameters for different calcites. Thus, while the carbonate clumped isotope geospeedometer shows promise for recording cooling rates in settings and lithologies where other geospeedometers may not be applicable, the uncertainty in cooling rate will be large without independent knowledge of the reordering kinetics of each study material. Thus the full potential of the method will only be realized if reordering kinetics can be accurately determined for each study material, or predicted on the basis of mineral composition, texture, or other observable parameters.

  20. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  1. Tracing the Fate of Enhanced Organic Carbon Production during a Southern Ocean Fe Fertilization Experiment using Natural Variations in Carbon and Nitrogen Isotopic Composition

    Energy Technology Data Exchange (ETDEWEB)

    Altabet, M.A.

    2005-02-05

    This project focused on the N and C natural stable isotope response during SOFeX--a purposeful iron (Fe) addition experiment in the Fe limited Southern Ocean. One purpose of the study was to determine if relief of phytoplankton Fe stress would increase productivity sufficiently to enhance C export from surface to deep waters. We proposed that N and C stable isotopes would be useful for tracing this export. Iron was added to waters north and south of the Antarctic Polar Front in waters to the southwest of New Zealand. While both sites have high-nutrient, low chlorophyll conditions (HNLC) typical of Fe limitation, [SiO4] a required nutrient for diatoms was low at the northerly site and high at the southern location. The most extensive coverage occurred at the southern site. Here, FeSO4 was added four different times over an {approx}two week period. We found that: (1) Particulate organic nitrogen and carbon in the mixed layer increased by a factor of 2-3 in response to the Fe addition in the southern patch. (2) PN accumulation and NO3- drawdown were both 1-2 {micro}M during the occupation of the bloom, suggesting retention of particulates within the mixed layer of the southern patch. (3) {sub 15}N of PN and of NO{sub 3}{sup -} increased by 1-2{per_thousand} as [NO{sub 3}{sup -}] decreased, and there is a clear contrast between in- and out-patch stations with respect to particulate {sub 15}N. The isotopic fractionation factor for NO{sub 3}{sup -} was near 5-6{per_thousand} and appears to have been unaffected by Fe fertilization. In contrast, there was little change in {delta}{sup 13}C. (4) The > 54 {micro}m size fraction was typically lighter than the 1-54 {micro}m size fraction by about 0.5 {per_thousand} in {delta}{sup 13}C. In the south patch, this difference increased as the bloom progressed, and with increasing PN concentration. This result may have been caused by large chain-forming diatoms responded to the Fe addition and were likely isotopically lighter than

  2. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  3. Zinc isotopic compositions of breast cancer tissue.

    OpenAIRE

    Larner, F; Woodley, LN; Shousha, S; Moyes, A; Humphreys-Williams, E; Strekopytov, S; Halliday, AN; Rehkämper, M; Coombes, RC

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn i...

  4. Stable isotope composition of food from different regions of Poland

    International Nuclear Information System (INIS)

    Full text: Stable isotope (hydrogen, oxygen, carbon and nitrogen) composition is important tool for food authenticity and control of origin. The isotopic fractionation of those elements in the environment follows complex patterns allowing to established the correlation between the food (fruits, vegetables etc.) and raw materials (water and CO2). The aim of the study is to explore the relationship between isotope composition of different sorts of food and its geographical origin. The purpose of the study is to compare the data from different regions of Poland. The samples are received directly from a producer. Hydrogen, oxygen, nitrogen and carbon composition is measured in many sorts of food. The collected data gives a possibility to find the relationship between time and place of origin and isotope ratio: 18O/16O, 13C/12C, 15N/14N and D/H. The composition of water presented in the food is tested. Hydrogen is measured by H/Device and oxygen isotope ratio by Gasbench II (both instruments connected with mass spectrometer). For the comparison the water samples from the region of plant growing are tested. In this study for measurements of carbon and nitrogen composition in food, we use our new instrument Elemental Analyser coupled with mass spectrometer. The correlation between stable isotope composition 18O/16O, 13C/12C, 15N/14N, D/H and geographical origin of food will be presented in the paper. In the future, the study will be continued and addition of parameters, as a sulfur isotope composition in food and in surrounding environment (as a pollutant), will be compared. (author)

  5. Stable isotope composition of food from different regions of Poland

    International Nuclear Information System (INIS)

    Full text: Stable isotope (hydrogen, oxygen, carbon and nitrogen) composition is an important tool for food authenticity and control of origin. The isotopic fractionation of those elements in the environment follows complex patterns, allowing to establish the correlation between food (fruits, vegetables etc.) and raw materials (water and CO2). The aim of the study is to explore the relationship between isotope composition of different sorts of food and its geographical origin. The purpose of the study is to compare the data from different regions of Poland. The samples are received directly from a producer. Hydrogen, oxygen, nitrogen and carbon composition is measured in many sorts of food. The collected data give a possibility to find the relationship between time and place of origin and isotope ratio: 18O/16O, 13C/12C, 15N/14N and D/H. The composition of water presented in food is tested. Hydrogen is measured by H/Device and oxygen isotope ratio, by Gasbench II (both instruments connected with mass spectrometer). For the comparison the water samples from the region of plant growing are tested. In this study, for measurements of carbon and nitrogen composition in food, we use our new instrument Elemental Analyser coupled with mass spectrometer. The correlation between stable isotope composition 18O/16O, 13C/12C, 15N/14N, D/H and geographical origin of food will be presented in the paper. In the future, the study will be continued and addition of parameters, as a sulfur isotope composition in food and in surrounding environment (as a pollutant), will be compared. (author)

  6. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  7. Stable isotope composition of inorganic carbonates from Lake Abiyata (Ethiopia): Attempt of reconstructing δ18O palaeohydrological changes during the Holocene

    International Nuclear Information System (INIS)

    Due to the sensitivity of its regional climate to the African monsoon seasonal shifting, Ethiopia has been designated as a key site for palaeoenvironmental reconstructions mainly within the IGBP-PAGES-PEPIII programme. Under the French-Ethiopian ERICA project, we focused on Lake Abiyata located in the Ziway-Shala basin (Central Ethiopia) which has experienced several lacustrine highstands during the Late Pleistocene and Holocene. At present, Lake Abiyata is a closed lake with a very flat catchment area, and corresponds to a half, deep graben infilled by 600-m of sedimentary deposits. In 1995, a 12.6-m-long sequence ABII was cored in Lake Abiyata. A reliable 14C-AMS chronology was defined on both organic matter and inorganic carbonates. Both the modern hydrologeological and geochemical balances of the 'groundwater-lake' system indicate that (i) carbonate cristallization mainly occurs at the water-sediment interface via the mixing of lake water and 14C-depleted groundwaters, and that (ii) modern algae form in equilibrium with the atmospheric reservoir. Phytoplankton is thus considered as an authigenic material, and Core ABII has registered 13,500 cal. yr B.P. of environmental history. The evidence of calcite precipitation at the water-sediment interface calls into question the direct palaeoclimatic reconstruction based on inorganic carbonates. Since the evolution of isotopic contents of carbonates might be linked to the variable proportion of the 'lake/groundwater' end-members in the mixing, calculations based on isotopic mass balance models may allow for the reconstruction of δ18O composition of the lake water. Two major changes can be highlighted: (i) the ∼12,000-5500 cal. yr B.P. period is associated to low 18O contents of lake water, and corresponds to an open hydrological system, with a high lacustrine phytoplanktonic productivity, and (ii) from ∼5500 cal. yr B.P. to Present, regressive conditions are suggested by the δ18O enrichment of the lake water

  8. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    organic carbon (SOC, we estimate that an average of 24% (up to 64% of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%. In contrast, isoprene SOC was the main contributor (6.6% to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6 to −23.2‰, mean −25.0‰ were lower than those (−23.9 to −21.9‰, mean −22.9‰ in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic composition and stable carbon isotopic composition of aerosol particles in the troposphere over the North China Plain.

  9. Carbon isotopic studies of organic matter in Precambrian rocks.

    Science.gov (United States)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  10. Carbon isotopes in oil and gas exploration. Examples of applications

    International Nuclear Information System (INIS)

    The use of carbon isotopes in hydrocarbon exploration is reviewed. Examples of the application of stable carbon isotopes are discussed in the fields of: (1) gas exploration, where source rocks of gas deposits or gas shows can be identified by 13C/12C analyses of methane and the exploration efforts redirected; (2) wildcat drilling, in which the carbon isotope composition of methane from the head space of canned cuttings characterizes autochthonous methane and gives information on the maturity of organic matter in relation to depth; (3) oil/oil and source-rock/oil correlation, where the 'isotopic type curve technique', a recently developed sensitive oil/oil and source-rock/oil correlation method, is discussed and applied to correlation problems in the British North Sea region. (author)

  11. Pitch carbon microsphere composite

    Science.gov (United States)

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  12. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    OpenAIRE

    R. A. Cabral-Tena; A Sánchez; Reyes-Bonilla, H.; A. H. Ruvalcaba-Díaz; Balart, E.F.

    2015-01-01

    Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth paramet...

  13. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    OpenAIRE

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F

    2016-01-01

    Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show ...

  14. Bimodality in stable isotope composition facilitates the tracing of carbon transfer from macrophytes to higher trophic levels

    NARCIS (Netherlands)

    Mendonca, R.; Kosten, S.; Lacerot, G.; Mazzeo, N.; Roland, F.; Ometto, J.P.; Paz, A.; Bueno, O.C.; Gomes, A.C.M.M.; Scheffer, M.

    2013-01-01

    Even though the suitability of macrophytes to act as a carbon source to food webs has been questioned by some studies, some others indicate that macrophyte-derived carbon may play an important role in the trophic transfer of organic matter in the food web of shallow lakes. To evaluate the importance

  15. Stable-Carbon-Isotope Composition of Fatty Acids in Hydrothermal Vent Mussels Containing Methanotrophic and Thiotrophic Bacterial Endosymbionts

    OpenAIRE

    Pond, David W; Bell, Michael V; Dixon, David R.; Fallick, Anthony E.; Segonzac, Michel; Sargent, John R.

    1998-01-01

    Fatty acid biomarker analysis coupled with gas chromatography-isotope ratio mass spectrometry was used to confirm the presence of methanotrophic and thiotrophic bacterial endosymbionts in the tissues of a hydrothermal vent mussel (Bathymodiolus sp.), collected from the Menez Gwen vent field on the mid-Atlantic ridge. Monounsaturated (n-8) fatty acids, which are diagnostic of methanotrophic bacteria, were detected in all three types of tissues examined (gill, posterior adductor, and mantle), a...

  16. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    Energy Technology Data Exchange (ETDEWEB)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to

  17. Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleoenvironment after the K-T impact event

    Science.gov (United States)

    Maruoka, T.; Koeberl, C.; Bohor, B.F.

    2007-01-01

    To assess the environmental perturbation induced by the impact event that marks the Cretaceous-Tertiary (K-T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K-T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record ??13C values of plant-derived organic matter, reflecting the ??13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the ??13C values of organic matter derived from plants and microbiota. The microbiota ??13C value reflects not only the ??13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds. Across the freshwater K-T boundary at Brownie Butte, the ??13C values decrease by 2.6??? (from - 26.15??? below the boundary clay to - 28.78??? above the boundary clay), similar to the trend in carbonate at marine K-T sites. This means that the organic ??13C values reflect the variation of ??13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in ??13C values is observed across the K-T boundary at Dogie Creek (from - 25.32??? below the boundary clay to - 26.11??? above the boundary clay), the degree of ??13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate. About 2??? decrease in ??13C of atmospheric CO2 was expected from the ??13C variation of marine carbonate at the K-T boundary. This ??13C-decrease of atmospheric CO2 should affect the ??13C values of organic matter derived from plant tissue. As such a

  18. Carbon isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  19. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s

    Directory of Open Access Journals (Sweden)

    J. W. H. Weijers

    2010-09-01

    Full Text Available Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs are membrane spanning lipids synthesised by as yet unknown bacteria that thrive in soils and peat. In order to obtain more information on their ecological niche, the stable carbon isotopic composition of branched GDGT-derived alkanes, obtained upon ether bond cleavage, has been determined in a peat and various soils, i.e. forest, grassland and cropland, covered by various vegetation types, i.e., C3- vs. C4-plant type. These δ13C values are compared with those of bulk organic matter and higher plant derived n-alkanes from the same soils. With average δ13C values of −28‰, branched GDGTs in C3 soils are only slightly depleted (ca. 1‰ relative to bulk organic carbon and on average 8.5‰ enriched relative to plant wax-derived long-chain n-alkanes ( nC29nC33. In an Australian soil dominantly covered with C4 type vegetation, the branched GDGTs have a δ13C value of −18‰, clearly higher than observed in soils with C3 type vegetation. As with C3 vegetated soils, branched GDGT δ13C values are slightly depleted (1‰ relative to bulk organic carbon and enriched (ca. 5‰ relative to n-alkanes in this soil. The δ13C values of branched GDGT lipids being similar to bulk organic carbon and their co-variation with those of bulk organic carbon and plant waxes, suggest a heterotrophic life style and assimilation of relatively heavy and likely labile substrates for the as yet unknown soil bacteria that synthesise the branched GDGT lipids. However, a chemoautotrophic lifestyle, i.e. consuming respired CO2, could not be fully excluded based on these data alone. Based on a natural labelling experiment of a C3/C4 crop change introduced on one of the soils 23 years before sampling and based

  20. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s

    Directory of Open Access Journals (Sweden)

    J. W. H. Weijers

    2010-05-01

    Full Text Available Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs are membrane spanning lipids synthesised by as yet unknown bacteria that thrive in soils and peat. In order to obtain more information on their ecological niche, the stable carbon isotopic composition of branched GDGT-derived alkanes, obtained upon ether bond cleavage, has been determined in various soils, i.e. peat, forest, grassland and cropland, covered by various vegetation types, i.e., C3- vs. C4-plant type. These δ13C values are compared with those of bulk organic matter and higher plant derived n-alkanes from the same soils. With average δ13C values of −28‰, branched GDGTs in C3 soils are only slightly depleted (ca. 1‰ relative to bulk organic carbon and on average 8.5‰ enriched relative to plant wax-derived long-chain n-alkanes (nC29nC33. In an Australian soil covered with C4 type vegetation, the branched GDGTs have a δ13C value of −18‰, clearly higher than observed in soils with C3 type vegetation. As with C3 vegetated soils, branched GDGT δ13C values are slightly depleted (1‰ relative to bulk organic carbon and enriched (ca. 5‰ relative to n-alkanes in this soil. The δ13C values of branched GDGT lipids being similar to bulk organic carbon and their co-variation with those of bulk organic carbon and plant waxes, suggest a heterotrophic life style and assimilation of relatively heavy and likely labile substrates for the as yet unknown soil bacteria that synthesise the branched GDGT lipids. However, a chemoautotrophic lifestyle, i.e. consuming respired CO2, could not be fully excluded based on these data alone. Based on a natural labelling experiment of a C3/C4 crop change introduced on one of the soils 23 years before sampling and based on a free air CO

  1. Isotopic composition of carbonate-bound organic nitrogen in deep-sea scleractinian corals: A new window into past biogeochemical change

    Science.gov (United States)

    Wang, Xingchen T.; Prokopenko, Maria G.; Sigman, Daniel M.; Adkins, Jess F.; Robinson, Laura F.; Ren, Haojia; Oleynik, Sergey; Williams, Branwen; Haug, Gerald H.

    2014-08-01

    Over the last two decades, the skeletal remains of deep-sea corals have arisen as a geochemical archive of Pleistocene oceanographic change. Here we report the exploration of the isotopic composition of the carbonate-bound organic nitrogen (hereafter, CB-δ15N) in the deep-sea scleractinian coral Desmophyllum dianthus as a possible tool for reconstructing past changes in the ocean nitrogen cycle. The measurement protocol is adapted from a high-sensitivity method for foraminifera shell-bound δ15N. We explored the variability of CB-δ15N within specimens, among corals collected at different depths in a given ocean region, and among different ocean regions. Modern D. dianthus CB-δ15N is strongly correlated with the δ15N of N export as estimated from sediment traps, shallow subsurface nitrate, and surface sediments, suggesting that CB-δ15N is a reliable proxy for δ15N of N export. D. dianthus CB-δ15N is consistently 8-9‰ higher than δ15N of N export, indicating that D. dianthus acquires its nutrition primarily from suspended particulate organic matter (POM) that derives from sinking POM, not directly from sinking POM.

  2. Carbon Isotope Composition of Carbohydrates and Polyols in Leaf and Phloem Sap of Phaseolus vulgaris L. Influences Predictions of Plant Water Use Efficiency.

    Science.gov (United States)

    Smith, Millicent; Wild, Birgit; Richter, Andreas; Simonin, Kevin; Merchant, Andrew

    2016-08-01

    The use of carbon isotope abundance (δ(13)C) to assess plant carbon acquisition and water use has significant potential for use in crop management and plant improvement programs. Utilizing Phaseolus vulgaris L. as a model system, this study demonstrates the occurrence and sensitivity of carbon isotope fractionation during the onset of abiotic stresses between leaf and phloem carbon pools. In addition to gas exchange data, compound-specific measures of carbon isotope abundance and concentrations of soluble components of phloem sap were compared with major carbohydrate and sugar alcohol pools in leaf tissue. Differences in both δ(13)C and concentration of metabolites were found in leaf and phloem tissues, the magnitude of which responded to changing environmental conditions. These changes have inplications for the modeling of leaf-level gas exchange based upon δ(13)C natural abundance. Estimates of δ(13)C of low molecular weight carbohydrates and polyols increased the precision of predictions of water use efficiency compared with those based on bulk soluble carbon. The use of this technique requires consideration of the dynamics of the δ(13)C pool under investigation. Understanding the dynamics of changes in δ(13)C during movement and incorporation into heterotrophic tissues is vital for the continued development of tools that provide information on plant physiological performance relating to water use. PMID:27335348

  3. Isotopic compositions of cometary matter returned by Stardust.

    Science.gov (United States)

    McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst

    2006-12-15

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.

  4. Interaction between ultrapotassic magmas and carbonate rocks: Evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy

    Science.gov (United States)

    Peccerillo, Angelo; Federico, Marcella; Barbieri, Mario; Brilli, Mauro; Wu, Tsai-Wan

    2010-05-01

    Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts ( ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (˜30 to 40 wt%) and δ 18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO 2 and enriched in CaO with respect to Group-3. The analysed ejecta have similar 143Nd/ 144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/ 86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ 18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks. Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a

  5. Environmental controls on the carbon isotope composition of ecosystem-respired CO2 in contrasting forest ecosystems in Canada and the USA.

    Science.gov (United States)

    Alstad, Karrin P; Lai, Chun-Ta; Flanagan, Lawrence B; Ehleringer, James R

    2007-10-01

    We compared the carbon isotope composition of ecosystem-respired CO2 (delta13C(R)) from 11 forest ecosystems in Canada and the USA and examined differences among forest delta13C(R) responses to seasonal variations in environmental conditions from May to October 2004. Our experimental approach was based on the assumption that variation in delta13C(R) is a good proxy for short-term changes in photosynthetic discrimination and associated shifts in the integrated ecosystem-level intercellular to ambient CO2 ratio (c(i)/c(a)). We compared delta13C(R) responses for three functional groups: deciduous, boreal and coastal forests. The delta13C(R) values were well predicted for each group and the highest R2 values determined for the coastal, deciduous and boreal groups were 0.81, 0.80 and 0.56, respectively. Consistent with previous studies, the highest correlations between delta13C(R) and changes in environmental conditions were achieved when the environmental variables were averaged for 2, 3 or 4 days before delta13C(R) sample collection. The relationships between delta13C(R) and environmental conditions were consistent with leaf-level responses, and were most apparent within functional groups, providing support for our approach. However, there were differences among groups in the strength or significance, or both, of the relationships between delta13C(R) and some environmental factors. For example, vapor pressure deficit (VPD) and soil temperature were significant determinants of variation in delta13C(R) in the boreal group, whereas photosynthetic photon flux (PPF) was not; however, in the coastal group, variation in delta13C(R) was strongly correlated with changes in PPF, and there was no significant relationship with VPD. At a single site, comparisons between our delta13C(R) measurements in 2004 and published values suggested the potential application of delta13C(R) measurements to assess year-to-year variation in ecosystem physiological responses to changing

  6. Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2012-02-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ13CWSOC in total suspended particulate matter (TSP exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~57 % to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ13CWSOC as well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site.

  7. Morphology Composition Isotopes: Recent Results from Observations

    Science.gov (United States)

    Schulz, R.

    2008-07-01

    This article presents some recent imaging and spectroscopic observations that led to results which are significant for understanding the properties of comet nuclei. The coma morphology and/or composition were investigated for 12 comets belonging to different dynamical classes. The data analysis showed that the coma morphology of three non-periodic comets is not consistent with the general assumption that dynamically new comets still have a relatively uniform nucleus surface and therefore do not exhibit gas and/or dust jets in their coma. The determination of carbon and nitrogen isotopic ratios revealed the same values for all comets investigated at various heliocentric distances. However, the relative abundance of the rare nitrogen isotope 15N is about twice as high as in the Earth’s atmosphere. Observations of comets at splitting events and during outbursts led to indications for differences between material from the nucleus surface and the interior. The monitoring of the induced outburst of 9P/Temple revealed that under non-steady state conditions the fast disintegration of species is detectable.

  8. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  9. Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies

    OpenAIRE

    Cachier, Héléne; BUAT-MÉNARD, PATRICK; Fontugne, Michel; Chesselet, Roger

    2011-01-01

    Since 1979, we have investigated marine and non-marine sources of particulate carbon in the marine atmosphere from measurements of carbon concentration and isotopic composition 13C/12C). Aerosol samples were collected, mostly during the Sea/Air Exchange (SEAREX) Program experiments, in the northern and southern hemispheres (Sargasso Sea, Enewetak Atoll, Peru upwelling, American Samoa, New Zealand, Amsterdam Island). The concentration and the isotopic composition of particulate carbon of marin...

  10. Impact of CO2 and pH on the distribution and stable carbon isotopic composition of microbial biomarker lipids

    NARCIS (Netherlands)

    Schoon, P.L.

    2013-01-01

    In addition to the more acknowledged consequences of climate change, such as global warming, the current human-induced increase of CO2 into the atmosphere is also responsible for a change in the chemical composition of seawater. Since 1750, the initiation of the industrial revolution, approximately

  11. Carbon and nitrogen isotopic composition of suspended particulate organic matter in Zuari Estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bardhan, P.; Karapurkar, S.G.; Shenoy, D.M.; Kurian, S.; Sarkar, A.; Maya, M.V.; Naik, H.; Varik, S.; Naqvi, S.W.A.

    polypropylene rope and equipped with reversing thermometers were used for water sampling. The conventional Winkler titrimetric method was followed for estimating DO (Grasshoff et al., 1983). Nutrient concentrations were measured using a SKALAR segmented flow... carbonates and air dried in a clean laminar flow. Two aliquots each of 12 mm diameter were sub-sectioned from each filter and packed tightly in tin cups, for the analysis. A EURO3000 Eurovector elemental analyzer coupled to a Thermo-Finnigan Delta V...

  12. The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow turf lake

    Directory of Open Access Journals (Sweden)

    B. M. Bontes

    2005-08-01

    Full Text Available The effects of fish removal on the biogeochemistry and lower-trophic level food web relations were studied in a shallow eutrophied turf lake. Biomanipulation led to an increase in transparency and macrophyte biomass and decrease in phytoplankton abundance, but zooplankton numbers did not increase. Moreover, fish removal resulted in high pH, high O2, low CO2, and more negative δ13CDIC values than expected, which is proposed to be the likely result of chemical enhanced diffusion with large negative fractionation (-13. By combining fluorescence activated cell sorting and isotope ratio mass spectrometry (IRMS of fatty acids we were able to obtain group specific δ13C signatures and to trace possible shifts in δ13C resulting from fish removal. Fractionation values of green algae (20 and diatoms (22 were uniform and independent of treatment, while fractionation factors of filamentous cyanobacteria were variable between the treatments that differed in CO2 availability. 13C-labeling of the phytoplankton groups showed that biomanipulation led to increased growth rates of green algae and diatoms at the expense of cyanobacteria. Finally, the primary consumer Chydorus appeared to prefer cyanobacteria, whilst Asplanchna grazed predominantly upon eukaryotes.

  13. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production

    OpenAIRE

    Weber, Y.; De Jonge, C.; Rijpstra, W.I.C.; Hopmans, E. C.; Stadnitskaia, A.; Schubert, C J; Lehmann, M.F.; Sinninghe Damsté, J. S.; Niemann, H.

    2015-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that occur ubiquitously in soils and lacustrine sediments and have great potential as proxy indicators for paleotemperature and pH reconstructions. Initially, brGDGTs in lakes were thought to originate from soils of the watershed. The composition of the lacustrine brGDGT pool, however, often differs substantially from that in catchment soils, complicating the application of the brGDGT paleothermometer to la...

  14. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  15. The clumped isotopic record of Neoproterozoic carbonates, Sultanate of Oman

    Science.gov (United States)

    Bergmann, K. D.; Eiler, J. M.; Fischer, W. W.; Osburn, M. R.; Grotzinger, J. P.

    2011-12-01

    The Huqf Supergroup of the Sultanate of Oman records several important events in latest Precambrian time, including two glaciations in the Abu Mahara Group (ca. 725 - isotope excursion in the Nafun Group (ca. Precambrian-Cambrian boundary in the Ara Group (ca. 547-540 Ma). This interval contains several extreme isotopic excursions, hypothesized to record perturbations of the surficial Earth carbon cycle or post-depositional diagenetic processes. Rigorous interpretation of these records requires a more thorough assessment of diagenetic processes. To better understand the significance and cause of these large amplitude isotopic excursions, we employed carbonate clumped isotope thermometry. This method allows us to estimate the absolute temperature of carbonate precipitation, including recrystallization, based on the temperature dependent abundance of carbonate ions containing both 13C and 18O. These estimates are accompanied by a measurement of carbonate δ18O, which in conjunction with temperature, can be used to calculate the oxygen isotopic composition of the fluid from which the carbonate precipitated. We analyzed stratigraphically constrained samples from a range of paleoenvironments with differing burial histories (1 - >10km maximum burial depth) to constrain the temperature and fluid composition of recrystallization. Clumped isotope temperatures from Huqf Supergroup samples range from 35-175°C. The isotopic composition of the fluid these rocks equilibrated with ranges from -3.7 to 15.7% VSMOW. This large range in temperature and fluid composition separates into distinct populations that differ systematically with independent constraints on petrography, stratigraphy and burial history. The data indicate the Abu Mahara, Nafun and Ara groups have unique diagenetic histories. In central Oman, the post-glacial Abu Mahara cap dolostone shows high temperature, rock buffered diagenesis (Tavg = 176°C; δ18Ofluid = 15% VSMOW), the Nafun Group generally experienced

  16. High-Resolution Records of the Holocene Paleoenvironmental Variation Reflected by Carbonate and Its Isotopic Compositions in Bosten Lake and Response to Glacial Activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengjun; ZHENG Mianping; Alexander PROKOPENKO; Steffen MISCHKE; GOU Xiaohui; YANG Qili; ZHANG Wanyi; FENG Zhaodong

    2009-01-01

    The Early Holocene paleoclimate in Bosten Lake on the northern margin of the Tarim Basin, southern Xinjiang, is reconstructed through an analysis of a 953 cm long core (BSTC2000) taken from Bosten Lake. Multiple proxies of this core, including the mineral components of carbonate, carbonate content, stable isotopic compositions of carbonate, Ca/Sr, TOC and C/N and C/S of organic matter, are used to reconstruct the climatic change since 8500 a B.P. The chronology model is made by nine AMS ~(14)C ages of leaves, seeds and organic matter contained in two parallel cores. The climate was cold and wet during 8500 to 8100 a B.P. Temperature increased from 8100 to 6400 a B.P., the climate was warm and humid, and the lake expanded. The lake level was highest during this stage. Then from 6400 to 5100 a B.P., the climate became cold and the lake level decreased slightly. During the late mid-Holocene, the climate was hot and dry from 5100 to 3100 a B.P., but there was a short cold period during 4400 to 3800 a B.P. At this temporal interval, a mass of ice and snow melting water supplied the lake at the early time and made the lake level rise. The second highest lake level stage occurred during 5200 to 3800 a B.P. The climate was cool and wet during 3100 to 2200 a B.P., when the lake expanded with decreasing evaporation. The lake had the last short-term high level during 3100 to 2800 a B.P. After this short high lake level period, the lake shrank because of the long-term lower temperature and reduced water supply. From 2200 to 1200 a B.P., the climate was hot and dry, and the lake shrank greatly. Although the temperature decreased somewhat from 1200 a B.P. to the present, the climate was warm and dry. The lake level began to rise a little again, but it did not reach the river bed altitude of the Konqi River, an outflow river of the Bosten Lake.

  17. New Data on Food Consumption in Pre-Hispanic Populations from Northwest Argentina (ca. 1000–1550 A.D.: The Contribution of Carbon and Nitrogen Isotopic Composition of Human Bones

    Directory of Open Access Journals (Sweden)

    María Soledad Gheggi

    2013-01-01

    Full Text Available We present data on carbon and nitrogen isotopic composition of human bones from Tolombón (Calchaqui Valley, Salta and Esquina de Huajra (Quebrada de Humahuaca, Jujuy sites located in Northwest Argentina (NWA. Both are complex archaeological residential settlements ascribed to the Regional Development Period (ca. 900–1430 A.D., the Inca Period (ca. 1430–1536 A.D., and the Early Colonial Period (ca. 1536–1600 A.D.. Twelve samples of human bones were collected and analyzed, including remains from individuals of both sexes and different ages at death. We also present the carbon and nitrogen isotopic composition of modern plants from nearby areas in order to start building an isotopic ecology of the area and compile available information on food consumption from different lines of evidence. The isotopic results obtained reveal the consumption of C4 plants, which for the area are maize and amaranth, combined with animal proteins. The integration of these results with the broader database was useful to discuss the political and economical implications of the findings, especially in the context of this area under the Inca domination.

  18. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NARCIS (Netherlands)

    Pathirana, S. L.; Van Der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique.

  19. Exotic structure of carbon isotopes

    International Nuclear Information System (INIS)

    Ground state properties of C isotopes, deformation and electromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parties of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12∼15% of the Thomas-Reiche-Kuhn sum rule value and 50∼ 80% of the cluster sum rule value. (author)

  20. High Resolution Carbon and Oxygen Isotope Measurements of Laminations in Pedogenic Carbonate

    Science.gov (United States)

    Breecker, D.; Sharp, Z.

    2005-12-01

    Stable carbon and oxygen isotope ratios in pedogenic carbonate from buried soils provide a proxy for low-resolution Quaternary climate and environmental conditions. Samples of carbonate are taken from clast rinds, nodules or filaments in calcic soils. Most clast rinds exhibit micro-laminations that may preserve isotopic ratios of formation. The techniques typically utilized to sample pedogenic carbonate, however, are too coarse to sample individual laminations and likely result in time averages and therefore limit temporal resolution. We investigated the heterogeneity of both carbon and oxygen isotopes ratios in clast rinds at a 100 μm scale using a rapid CO2 laser extraction technique (Sharp and Cerling, 1996). A single 20 msec burst at low power releases CO2 from polished carbonate slabs and the CO2 is then analyzed using continuous flow GC-IRMS. Analyses take less than 5 minutes with a reproducibility of better than ±0.3‰ (δ13C) and ±0.4‰ (δ18O). We have made a two dimensional map of a thick carbonate rind on a limestone clast from a stage V soil to explore the potential for preservation of isotopic ratios in well developed soils and plan to analyze additional rinds from less well developed calcic horizons for comparison. The isotopic map reveals heterogeneities in δ13C of up to 4‰ at a sub-millimeter scale, possibly corresponding to 30% changes in the fraction of C4 plants. Also imaged are abrupt changes in δ13C of approximately 2‰ across sub-100 μm scale boundaries. One well-defined carbon isotope boundary is sub parallel to, but crosses, the lamination boundaries. Oxygen isotope compositions do not change systematically across the same boundary and generally appear more random. These observations are most easily explained by alteration of initial isotopic compositions. Alteration may preferentially affect oxygen isotope ratios leaving carbon isotope distributions relatively intact. It is also possible that both carbon and oxygen isotopes

  1. n-alkane distribution coupled with organic carbon isotope composition in the shell bar section, Qarhan paleolake, Qaidam basin, NE Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    Yang PU; Hucai ZHANG; Guoliang LEI; Fengqin CHANG; Mingsheng YANG; Xianyu HUANG

    2009-01-01

    Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triter-penoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21 n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.

  2. Reconstruction of the carbon isotopic composition of methane over the last 50 yr based on firn air measurements at 11 polar sites

    Directory of Open Access Journals (Sweden)

    C. J. Sapart

    2012-04-01

    Full Text Available Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. We present an attempt to reconcile methane carbon isotope records from 11 firn sites from both Greenland and Antarctica to reconstruct a consistent δ13C(CH4 history over the last 50 yr. In the firn, the atmospheric signal is altered mainly by diffusion and gravitation. These processes are taken into account by firn transport models. We show that isotope reconstructions from individual sites are not always mutually consistent among the different sites. Therefore we apply for the first time a multisite isotope inversion to reconstruct an atmospheric isotope history that is constrained by all individual sites, generating a multisite "best-estimate" scenario. This scenario is compared to ice core data, atmospheric air archive results and direct atmospheric monitoring data.

  3. Magnesium Isotopic Composition of Subducting Marine Sediments

    Science.gov (United States)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  4. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  5. Transformation of soil organic matter in a Japanese larch forest. Radiocarbon and stable carbon isotope compositions versus soil depth

    International Nuclear Information System (INIS)

    Soil organic matter at a depth of 0-55 cm, collected from a Japanese larch forest area, was separated into particulate organic matter (size >53 μm), particulate organic matter (size 14C and δ13C values were determined. The Δ14C values of particulate matters decreased greatly from 128 per mille to -278 per mille, indicating a relative increase of resistant organic components in particulate matters. That of humic acid matter decreased from 183 per mille to -139 per mille. For these of organic matter fractions at the same depth, the Δ14C values of particulate matter (size >53μm) are smallest and those of humic acid matter are the largest. That indicates that a high contribution of young organic matter to the humic acid matter exists and transformation tendency of particulate matter may be from coarse to small in the particulate size. Positive Δ14C values appeared at a depth of 10 cm, 25 cm, and 35 cm for the particulate organic matter (size >53μm), particulate organic matter (size 14C values of the humic acid matter also infects that the bomb carbon has reached the depth of 35 cm. Additionally, the Δ14C values of these three kinds of organic matters ranged from 50 per mille to 183 per mille at a depth of 0-7 cm, which were not smaller than that of litter in the forest area, indicating high proportion of modern, plants-derived soil organic matter in this depth ranges. The δ13C values increased from -28 per mille to -23 per mille with the increase depth of 0-55 cm. The δ13C values of humic acid matter are approximately less than that of particulate matters at the same depth, which may be explained as a high contribution of young organic matter to the humic acid matter. (author)

  6. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production

    Science.gov (United States)

    Weber, Yuki; De Jonge, Cindy; Rijpstra, W. Irene C.; Hopmans, Ellen C.; Stadnitskaia, Alina; Schubert, Carsten J.; Lehmann, Moritz F.; Sinninghe Damsté, Jaap S.; Niemann, Helge

    2015-04-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that occur ubiquitously in soils and lacustrine sediments and have great potential as proxy indicators for paleotemperature and pH reconstructions. Initially, brGDGTs in lakes were thought to originate from soils of the watershed. The composition of the lacustrine brGDGT pool, however, often differs substantially from that in catchment soils, complicating the application of the brGDGT paleothermometer to lake sediments. This suggests that terrigenous brGDGT signals in lacustrine sedimentary archives may be affected by aquatic in situ production. In sediments of a Swiss mountain lake, we detected a novel hexamethylated brGDGT, which elutes between the known 5- and 6-methyl brGDGT isomers during HPLC-MS analysis. This novel isomer accounted for 8.5% of the total brGDGTs. Most remarkably, this brGDGT was not detected in soils collected from the catchment of the lake, providing circumstantial evidence for an in situ brGDGT source in the lake's water column or sediments. Isolation of the compound by preparative HPLC and subsequent GC-MS analysis of the alkyl chains revealed that the novel brGDGT comprises two structural isomers. One possesses a 5,13,16- and a 6,13,16-trimethyloctacosanyl moiety and constitutes 84% of the new brGDGT; the second contains a 13,16-dimethyloctacosanyl and a 5,13,16,23-tetramethyloctacosanyl moiety. The δ13C values of both the alkyl chains derived from the novel brGDGT (-46‰) and all other major brGDGTs (-43‰ to -44‰) were significantly lower than those of brGDGT-derived alkanes in catchment soils (-27‰ to -28‰) further attesting to in situ production of brGDGTs in the studied lake.

  7. Stable isotope composition of Earth's large lakes

    Science.gov (United States)

    Jasechko, S.; Gibson, J. J.; YI, Y.; Birks, S. J.; Sharp, Z. D.

    2011-12-01

    Lakes cover about three percent of Earth's continental area. Large lakes can significantly influence lake shore and regional climates by increasing specific humidity during evaporation and by moderating air temperatures. Stable isotopes of oxygen and hydrogen can be used to quantify lake evaporation, providing a supplementary and often cost-advantageous alternative to conventional hydrologic approaches that require over lake monitoring. Further, stable isotopes in lake sediments are an established tool in paleolimnology; however, interpreting changes to a lake's past isotope composition requires a comprehensive understanding of contemporary controls. Here, δ18O and δ2H values of water in modern lakes exceeding roughly five hundred square kilometres are compiled (n > 35). Voluminous and seasonally mixed lakes - such as the North American Great Lakes - have the most homogenous stable isotope compositions, while perennially-stratified and shallow lakes show greater variability. A rudimentary stable isotope mass balance is used to assess evaporation fluxes from large lakes on Earth. The approach taken simultaneously constrains evaporation outputs for both oxygen and hydrogen stable isotopes by accounting for lake effects on the overlying atmosphere. Model development highlights important considerations such as isotopic stratification (Tanganyika), disequilibrium isotopic mass balances (Baikal), and non-steady hydrologic balances. Further, the isotope composition of Earth's continental surface water reservoir is calculated. This value - weighted to volume - is δ18O = -7.5±1.7 per mille relative to standard mean ocean water. The compiled data may be a useful tracer of continental evaporate in global atmospheric water cycle studies and could be coupled to climate models capable of incorporating oxygen-18 and deuterium tracers to improve or validate calculations of lake effects on regional water cycling.

  8. Iron isotope composition of some Archean and Proterozoic iron formations

    Science.gov (United States)

    Planavsky, Noah; Rouxel, Olivier J.; Bekker, Andrey; Hofmann, Axel; Little, Crispin T. S.; Lyons, Timothy W.

    2012-03-01

    Fe isotopes can provide new insight into redox-dependent biogeochemical processes. Precambrian iron formations (IF) are deserving targets for Fe isotope studies because they are composed predominantly of authigenic Fe phases and record a period of unprecedented iron deposition in Earth's history. We present Fe isotope data for bulk samples from 24 Archean and Proterozoic IF and eight Phanerozoic Fe oxide-rich deposits. These data reveal that many Archean and early Paleoproterozoic iron formations were a sink for isotopically heavy Fe, in contrast to later Proterozoic and Phanerozoic Fe oxide-rich rocks. The positive δ56Fe values in IF are best explained by delivery of particulate ferric oxides formed in the water column to the sediment-water interface. Because IF are a net sink for isotopically heavy Fe, there must be a corresponding pool of isotopically light Fe in the sedimentary record. Earlier work suggested that Archean pyritic black shales were an important part of this light sink before 2.35 billion years ago (Ga). It is therefore likely that the persistently and anomalously low δ56Fe values in shales are linked with the deposition of isotopically heavy Fe in IF in the deeper parts of basins. IF deposition produced a residual isotopically light dissolved Fe pool that was captured by pyritic Fe in shales. Local dissimilatory Fe reduction in porewater and associated diagenetic reactions resulting in pyrite and carbonate precipitation may have further enhanced Fe isotope heterogeneity in marine sediments, and an 'iron shuttle' may have transported isotopically light Fe from shelf sediments to the basin. Nevertheless, water-column processing of hydrothermally delivered Fe likely had the strongest influence on the bulk iron isotope composition of Archean and Paleoproterozoic iron formations and other marine sediments.

  9. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ13C and δ15N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13C and 15N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ13C and δ15N values. These data were compared to previously published δ13C and δ15N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ13C and δ15N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  10. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  11. Seasonal variations in the carbon isotope composition of soil-respired CO2 and the dominance of root/rhizsophere respiration in desert soils (Invited)

    Science.gov (United States)

    Breecker, D.; Driese, S. G.; Nordt, L. C.; Beverly, E.; Huntington, K. W.

    2013-12-01

    Quantifying the sources of CO2 produced in soils is important for closing ecosystem scale carbon (C) budgets and predicting the response of soil C pools to global change. Sourcing soil-respired CO2 is also important for accurately using paleosol carbonates as paleoenvironmental indicators. Here we present ten records of seasonal change in C isotope compositions of soil-respired CO2 (δ13Cr) and examine their implications for soil respiration. Measured concentrations and δ13C values of soil CO2 below 30 cm were used to calculate all δ13Cr values reported here. Distinct seasonal cycles occur in all records and the lowest/highest δ13Cr values occur during the winter/summer in 9 of the 10 records. The magnitude of seasonal δ13Cr fluctuations varies inversely with mean annual precipitation (MAP), increasing from 3‰ at 500 mm to 8‰ at 200 mm. Values for two Vertisols in subhumid climates plot off the trend, perhaps in part because winter ponding induces a closed system resulting in calculated winter δ13Cr values that are lower than actual and therefore overestimated seasonal δ13Cr amplitudes. The large seasonal variation in desert soil δ13Cr values has been attributed to seasonal variation in the magnitude of photosynthetic discrimination expressed in soil-respired CO2. Seasonal changes in C3 versus C4 productivity do not explain the observations as some of the largest δ13Cr variations occur in nearly monospecific C3 shrublands (creosotebush). A number of other explanations involving heterotrophic respiration, including soil temperature- and moisture- induced changes in respiration depth and substrate, are also rejected based on observed soil temperatures and average depths of respiration, which frequently exceed 50 cm in the driest soils studied. The observed decrease of seasonal amplitude with increasing precipitation is consistent with a stomatal control on desert soil δ13Cr values and may be caused by 1) MAP-driven increase in the component of

  12. Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?

    Science.gov (United States)

    Frei, R.; Gaucher, C.

    2010-12-01

    Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr

  13. Carbon isotope separation by absorptive distillation

    International Nuclear Information System (INIS)

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole percent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HETP's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  14. Carbon isotope separation by absorptive distillation

    International Nuclear Information System (INIS)

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole per cent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HTU's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  15. Exotic Structure of Carbon Isotopes

    CERN Document Server

    Suzuki, T; Hagino, K; Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2002-01-01

    We studied firstly the ground state properties of C-isotopes using a deformed Hartree-Fock (HF)+ BCS model with Skyrme interactions. Shallow deformation minima are found in several neutron$-$rich C-isotopes. It is shown also that the deformation minima appear in both the oblate and the prolate sides in $^{17}$C and $^{19}$C having almost the same binding energies. Secondly, we carried out shell model calculations to study electromagnetic moments and electric dipole transitions of the C-isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C-isotopes, which will be useful to find out the deformations and the spin-parities of the ground states of these nuclei. We studied electric dipole states of C-isotopes focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Reasonable agreement is obtained with available experimental data for the photoreaction cross sections both in the low energy region below $\\hbar \\omega $=14 MeV and ...

  16. Carbon Fiber Composites

    Science.gov (United States)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  17. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  18. The Strontium Isotope Record of Zavkhan Terrane Carbonates: Strontium Isotope Stability Through the Ediacaran-Cambrian Transition

    OpenAIRE

    Petach, Tanya N.

    2015-01-01

    First order trends in the strontium isotopic (87Sr/86Sr) composition of seawater are controlled by radiogenic inputs from the continent and non-radiogenic inputs from exchange at mid-ocean ridges. Carbonates precipitated in seawater preserve trace amounts of strontium that record this isotope ratio and therefore record the relative importance of mid-ocean ridge and weathering chemical inputs to sea water composition. It has been proposed that environmental changes during the Ediacaran-Cambria...

  19. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    Science.gov (United States)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  20. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, Northeastern Pacific Ocean

    Science.gov (United States)

    Simoneit, B.R.T.; Schoell, M.; Kvenvolden, K.A.

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7 per mill, respectively) reflect a primarily terrestrial organic matter source.

  1. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils.

    Science.gov (United States)

    Chiocchini, Francesca; Portarena, Silvia; Ciolfi, Marco; Brugnoli, Enrico; Lauteri, Marco

    2016-07-01

    The authentication and verification of the geographical origin of food commodities are important topics in the food sector. This study shows the spatial variability in δ(13)C and δ(18)O of 387 samples of Italian extra-virgin olive oil (EVOO) collected from 2009 to 2011. EVOOs' δ(13)C and δ(18)O values were related to GIS (Geographic Information System) layers of source water δ(18)O and climate data (mean monthly temperature and precipitation, altitude, xerothermic index) to evaluate the impact of the most significant large-scale drivers for the isotopic composition of Italian EVOOs. A geospatial model of δ(18)O and δ(13)C was developed for the authentication and verification of the geographical origin of EVOOs. The geospatial model identified EVOOs from four distinct areas: north, south-central Tyrrhenian, central Adriatic and islands, highlighting the zonation of the expected isotopic signatures. This geospatial approach can be used to define a protocol for analyzing the isotopic composition of EVOOs in order to certify their origin and prevent food fraud. Limits and perspectives of the model are discussed. PMID:26920297

  2. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils.

    Science.gov (United States)

    Chiocchini, Francesca; Portarena, Silvia; Ciolfi, Marco; Brugnoli, Enrico; Lauteri, Marco

    2016-07-01

    The authentication and verification of the geographical origin of food commodities are important topics in the food sector. This study shows the spatial variability in δ(13)C and δ(18)O of 387 samples of Italian extra-virgin olive oil (EVOO) collected from 2009 to 2011. EVOOs' δ(13)C and δ(18)O values were related to GIS (Geographic Information System) layers of source water δ(18)O and climate data (mean monthly temperature and precipitation, altitude, xerothermic index) to evaluate the impact of the most significant large-scale drivers for the isotopic composition of Italian EVOOs. A geospatial model of δ(18)O and δ(13)C was developed for the authentication and verification of the geographical origin of EVOOs. The geospatial model identified EVOOs from four distinct areas: north, south-central Tyrrhenian, central Adriatic and islands, highlighting the zonation of the expected isotopic signatures. This geospatial approach can be used to define a protocol for analyzing the isotopic composition of EVOOs in order to certify their origin and prevent food fraud. Limits and perspectives of the model are discussed.

  3. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

    1994-10-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

  4. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species.

    Science.gov (United States)

    Lehmann, M M; Wegener, F; Werner, R A; Werner, C

    2016-09-01

    Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 . PMID:27086877

  5. Calcium isotopic composition of mantle peridotites

    Science.gov (United States)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large ∆44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  6. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  7. Impact of flood events on lacustrine carbonate isotope records

    Science.gov (United States)

    Kämpf, Lucas; Plessen, Birgit; Lauterbach, Stefan; Nantke, Carla; Meyer, Hanno; Chapligin, Bernhard; Höllerer, Hannes; Brauer, Achim

    2016-04-01

    Stable oxygen (δ 18O) and carbon (δ 13C) isotope compositions of lacustrine carbonates are among the most frequently used proxies in palaeolimnological / -environmental studies. Stable isotope analyses are often carried out on bulk carbonate samples, which are prone to contamination with detrital carbonates, transported into the lake by runoff processes and carrying the isotopic signal of catchment rocks, thus hampering the interpretation of the data in terms of past climatic and/or environmental changes. Despite the awareness of a likely detrital bias, the degree of contamination in most cases remains unknown and discrete contaminated samples undetected due to a lack of methods to disentangle endogenic and detrital carbonates in sediment records. To address this issue and provide more comprehensive insights into effects of flood-related detrital input on the bulk carbonate isotopic composition, we conducted stable isotope measurements on sediments trapped on a 3-12 day basis over a three-year period (January 2011 to November 2013) at two locations in pre-Alpine Lake Mondsee, close to the inflow of the main tributary and in the deepest part of the lake basin. Lake Mondsee was chosen for the monitoring since the pelagic sediments are annually laminated consisting of couplets of light calcite layers and dark layers made up by a mixture of detrital clastic and organic matter. Maximum calcite flux rates >1.5 g m2 d-1 were trapped between May and September, indicating the seasonal endogenic precipitation of calcite crystals. The comparison of the δ 18O composition of trapped carbonates, rain and epilimnion lake water revealed equilibrium calcite precipitation, allowing us to infer purely endogenic δ 18O (-9 to -11.3‰ VPDB) and δ 13C values (-6 to -9‰ VPDB) throughout the summer season. The endogenic calcite precipitation was interrupted by 14 peaks in carbonate flux (4 to 175 g m2 d-1) triggered by runoff events of different magnitudes (10-110 m3 s-1 peak

  8. New Data on Food Consumption in Pre-Hispanic Populations from Northwest Argentina (ca. 1000–1550 A.D.): The Contribution of Carbon and Nitrogen Isotopic Composition of Human Bones

    OpenAIRE

    María Soledad Gheggi; Verónica Isabel Williams

    2013-01-01

    We present data on carbon and nitrogen isotopic composition of human bones from Tolombón (Calchaqui Valley, Salta) and Esquina de Huajra (Quebrada de Humahuaca, Jujuy) sites located in Northwest Argentina (NWA). Both are complex archaeological residential settlements ascribed to the Regional Development Period (ca. 900–1430 A.D.), the Inca Period (ca. 1430–1536 A.D.), and the Early Colonial Period (ca. 1536–1600 A.D.). Twelve samples of human bones were collected and analyzed, including remai...

  9. Investigating the Formation of Pedogenic Carbonate Using Stable Isotopes

    Science.gov (United States)

    Breecker, D. O.; Sharp, Z. D.; McFadden, L.

    2006-12-01

    The stable isotope composition of pedogenic carbonate has been used as a paleoenvironmental proxy because it is thought to form in isotopic equilibrium with soil CO2 and soil water, which are influenced by vegetation type and atmospheric circulation patterns, respectively. However, the isotopic composition of soil CO2 and soil water change seasonally and it is not known what portion of this variability is recorded by the isotopic composition of pedogenic carbonate. It is generally believed that carbonate precipitation in soils is driven by evaporative concentration of Ca ions and/or decreasing soil pCO2. We seek to improve the proxy by determining the seasonality of pedogenic carbonate formation, in particular whether pedogenic carbonate forms during the wet season after individual rainstorms or during seasonal drying following the wet season. This was done by comparing the variations in carbon and oxygen isotope composition of soil CO2 with the isotopic composition of proximally located, newly-formed carbonates. Soil CO2 and incipient pedogenic carbonate coatings were collected in a very young (soil developing in an inset terrace on the piedmont of the Sandia Mountains, central New Mexico. We also measure soil temperatures at the same site. In May 2006, at the end of the driest 6-month period on record in central New Mexico, soil CO2 profiles displayed a 2‰ decrease in δ13C values with depth from 9 to 100 cm. In August 2006, the shapes of the profiles were similar, but the δ13C values were 3-4‰ lower at each depth than in May. These results can be explained by an increase in respiration rate during the latter half of the summer (the wettest on record) when monsoon rainfall maintained high moisture contents in soils across New Mexico. Calculated δ13C values of calcite in equilibrium with May (but not August) soil CO2 agree with measured carbonate δ13C values below 20 cm depth. Very shallow carbonate has anomalously high δ13C values. Measurements of the

  10. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  11. Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean?

    Science.gov (United States)

    Thomazo, Christophe; Nisbet, Euan G.; Grassineau, Nathalie V.; Peters, Marc; Strauss, Harald

    2013-11-01

    To explore the linkage between mass-independent sulfur isotope fractionation (MIF-S) and δ13Corg excursions during the Neoarchean, as well as the contemporary redox state and biogeochemical cycling of carbon and sulfur, we report the results of a detailed carbon and multiple sulfur (δ34S, δ33S, δ36S) isotopic study of the ∼2.7 Ga Manjeri and ∼2.65 Ga Cheshire formations of the Ngezi Group (Belingwe Greenstone Belt, Zimbabwe). Multiple sulfur isotope data show non-zero Δ33S and Δ36S values for sediments older than 2.4 Ga (i.e. prior to the Great Oxidation Event, GOE), indicating MIF-S thought to be associated with low atmospheric oxygen concentration. However, in several 2.7-2.5 Ga Neoarchean localities, small-scale variations in MIF-S signal (magnitude) seem to correlate with negative excursion in δ13Corg, possibly reflecting a global connection between the relative reaction rate of different MIF-S source reaction and sulfur exit channels and the biogenic flux of methane into the atmosphere during periods of localized, microbiologically mediated, shallow surface-water oxygenation. The Manjeri Formation black shales studied here display a wide range of δ13Corg between -35.4‰ and -16.2‰ (average of -30.3 ± 6.0‰, 1σ), while the Cheshire Formation shales have δ13Corg between -47.7‰ and -35.1‰ (average -41.3 ± 3‰, 1σ). The δ34S values of sedimentary sulfides from Manjeri Formation vary between -15.15‰ and +2.37‰ (average -1.71 ± 4.76‰, 1σ), showing very small and mostly negative Δ33S values varying from -0.58‰ to 0.87‰ (average 0.02 ± 0.43‰, 1σ). Cheshire Formation black shale sulfide samples measured in this study have δ34S values ranging from -2.11‰ to 2.39‰ (average 0.25 ± 1.08‰, 1σ) and near zero and solely positive Δ33S anomalies between 0.14‰ and 1.17‰ (average 0.56 ± 0.29‰, 1σ). Moreover, Δ36S/Δ33S in the two formations are comparable with a slope of -1.38 (Manjeri Formation) and -1.67 (Cheshire

  12. Allochthonous carbon hypothesis for bulk OM and n-alkane PETM carbon isotope discrepancies

    Science.gov (United States)

    Baczynski, A. A.; McInerney, F. A.; Wing, S. L.; Kraus, M. J.; Fricke, H. C.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM), a period of abrupt, transient, and large-scale global warming fueled by a large release of isotopically light carbon, is a relevant analogue for episodes of rapid global warming and recovery. The PETM is recorded in pedogenic carbonate, bulk organic matter, and n-alkanes as a prominent negative carbon isotope excursion (CIE) in paleosols exposed in the Bighorn Basin, WY. Here we present a composite stable carbon isotope record from n-alkanes and dispersed soil organic δ13C records from five individual sections that span the PETM in the southeastern Bighorn Basin. Four sections are from a 10km transect in the Cabin Fork area and one section was collected at Sand Creek Divide. These five new dispersed organic carbon (DOC) isotope records are compared to the previously published Polecat Bench (Magioncalda et al. 2004) and Honeycombs (Yans et al. 2006) isotope records. The high-resolution n-alkane curve shows an abrupt, negative shift in δ13C values, an extended CIE body, and a rapid recovery to more positive δ13C values. Although the five DOC records show similarly abrupt negative shifts in δ13C values, the DOC CIEs are compressed, smaller in magnitude, and return to more positive δ13C values more gradually relative to the n-alkane record. Moreover, the stratigraphic thickness of the body of the excursion and the pattern of the recovery phase are not consistent among the five DOC records. We modeled predicted DOC δ13C values from the n-alkane record by applying enrichment factors based on modern plants to the n-alkane δ13C values. The anomaly, difference between the expected and observed DOC δ13C values, was calculated for the PETM records and compared to weight percent carbon and grain size. There is no correlation between pre- and post-PETM anomaly values and grain size or weight percent carbon. PETM anomaly values, however, do trend with both grain size and weight percent carbon. The largest PETM anomaly values

  13. Laser ablation molecular isotopic spectrometry of carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bol' shakov, Alexander A. [Applied Spectra, Inc., Fremont, CA (United States); Jain, Jinesh [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Russo, Richard E. [Applied Spectra, Inc., Fremont, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McIntyre, Dustin [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Mao, Xianglei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  14. Laser ablation molecular isotopic spectrometry of carbon isotopes

    Science.gov (United States)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  15. Stable Isotope Studies of Crop Carbon and Water Relations: A Review

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cong-zhi; ZHANG Jia-bao; ZHAO Bing-zi; ZHANG Hui; HUANG Ping

    2009-01-01

    Crop carbon and water relations research is important in the studies of water saving agriculture,breeding program,and energy and material cycles in soil plant atmosphere continuum (SPAC).The purpose of this paper is to review the current state of knowledge on stable isotopes of carbon,oxygen,and hydrogen in the research of crop carbon and water relations,such as carbon isotope discrimination (△13C) during carbon fixation process by photosynthesis,application of △13C in crop water use efficiency (WUE) and breeding programs,oxygen isotope enrichment during leaf water transpiration,CO2 fixation by photosynthesis and release by respiration,application of hydrogen isotope composition (δD) and oxygen isotope composition (δ18O) for determination of water source used by a crop,stable isotope coupling Keeling plot for investigating the carbon and water flux in ecosystem,energy and material cycle in SPAC and correlative integrative models on stable isotope.These aspects contain most of the stable isotope researches on crop carbon and water relations which have been widely explored internationally while less referred in China.Based on the reviewed literatures,some needs for future research are suggested.

  16. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    Directory of Open Access Journals (Sweden)

    C. Blodau

    2008-10-01

    Full Text Available Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been removed. Net production of CH4 was calculated from mass balances in the peat and emission using static chamber measurements. Results were compared to 13C isotope budgets of CO2 and CH4 and energy yields of acetoclastic and hydrogenotrophic methanogenesis. Drought retarded methane production after rewetting for days to weeks and promoted methanotrophic activity. Based on isotope and flux budgets, aerobic soil respiration contributed 32–96% in the wet treatment and 86–99% in the other treatments. Drying and rewetting did not shift methanogenic pathways according to δ13C ratios of CH4 and CO2. Although δ13C ratios indicated a prevalence of hydrogenotrophic methanogenesis, free energies of this process were small and often positive on the horizon scale. This suggests that methane was produced very locally. Fresh plant-derived carbon input apparently supported respiration in the rhizosphere and sustained methanogenesis in the unsaturated zone, according to a 13C-CO2 labelling experiment. The study documents that drying and rewetting in a rich fen soil may have little effect on methanogenic pathways, but result in rapid shifts between methanogenesis and methanotrophy. Such shifts may be promoted by roots and soil heterogeneity, as hydrogenotrophic methanogenesis occurred locally even when conditions were not conducive for this process in the bulk peat.

  17. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria;

    2015-01-01

    . Negative δ13C excursions are related to low-stand deposits and caused by diagenetic processes during subaerial exposure. The comparison with δ13C records from other parts of the world demonstrate that δ13C values are high in most unaltered samples, an overall negative trend during the Permian, as recently...... published, is not obvious and negative excursions related to changes in the carbon isotope composition of the global oceanic carbon pool cannot be confirmed, except for the Permian–Triassic boundary interval....

  18. The use of carbon stable isotope ratios in drugs characterization

    International Nuclear Information System (INIS)

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures

  19. The use of carbon stable isotope ratios in drugs characterization

    Energy Technology Data Exchange (ETDEWEB)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro; Mirel, V., E-mail: gabriela.cristea@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  20. Light element isotopic compositions of cometary matter returned by the STARDUST mission

    Energy Technology Data Exchange (ETDEWEB)

    McKeegan, K D; Aleon, J; Bradley, J; Brownlee, D; Busemann, H; Butterworth, A; Chaussidon, M; Fallon, S; Floss, C; Gilmour, J; Gounelle, M; Graham, G; Guan, Y; Heck, P R; Hoppe, P; Hutcheon, I D; Huth, J; Ishii, H; Ito, M; Jacobsen, S B; Kearsley, A; Leshin, L A; Liu, M; Lyon, I; Marhas, K; Marty, B; Matrajt, G; Meibom, A; Messenger, S; Mostefaoui, S; Nakamura-Messenger, K; Nittler, L; Palma, R; Pepin, R O; Papanastassiou, D A; Robert, F; Schlutter, D; Snead, C J; Stadermann, F J; Stroud, R; Tsou, P; Westphal, A; Young, E D; Ziegler, K; Zimmermann, L; Zinner, E

    2006-10-10

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild2 particle fragments, however extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Non-terrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is {sup 16}O-enriched like refractory inclusions in meteorites, suggesting formation in the hot inner solar nebula and large-scale radial transport prior to comet accretion in the outer solar system.

  1. Do stable carbon isotopes of brown coal woods record changes in Lower Miocene palaeoecology?

    NARCIS (Netherlands)

    Poole, I.J.; Dolezych, M.; Kool, J.; Burgh, J. van der; Bergen, P.F. van

    2006-01-01

    Stable carbon isotope ratios of fossil wood from the Miocene brown coal deposits in former East Germany are compared with palaeobotanical and sedimentological data to test the use of stable isotopes in determining palaeoenvironment. Significant differences in the chemical composition of samples from

  2. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, northeastern Pacific Ocean.

    Science.gov (United States)

    Simoneit, B R; Schoell, M; Kvenvolden, K A

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source. PMID:11541391

  3. 湖相碳酸盐岩有机质热演化产物及其碳同位素组成特征%Thermolysis Production of Lake Carbonatite Organic Matter and its Carbon Isotopic Composition Characteristic

    Institute of Scientific and Technical Information of China (English)

    张成君; 孙柏年; 崔彦立

    2001-01-01

    通过泌阳凹陷第三系核桃园组核三段湖相碳酸盐岩的热模拟实验,对有机质热演化特征、释放气体组分及含碳气体碳同位素组成特征获得了以下认识:(1)释放气体主要以二氧化碳和烷烃类气为主,含有少量烯烃气体,在300~400℃时达到气体释放峰,随温度的升高,C4~C6较重烷烃气含量增加.二氧化碳随温度的升高释放量增大,主要为碳酸盐分解贡献;(2)含碳气体碳同位素随温度的升高增重,在气体释放峰温度段350℃左右时发生明显“转折”,碳同位素组成明显变重,结果造成在不同的热演化阶段碳同位素值有较大范围的变化.%In this paper, lake carbonatite in Hei 3 section of TertiaryHeitaoyua n Formation of Biyang depression has been pyrolysised and t he thermal evolution of organic matter,gas component releasing and carbon isoto pic composition of carbon-bearing gas is better comprehended. We understan d that (1) releasing gase s are mainly made up of CO2 and alkane gases, and have a little ethylenic gase s. There is a gas releasing peak at the temperature of 300~400℃ and the c ontent of C4~C6 increases with temperature rise. The content of CO2 inc reases too, with temperature rising and comes mainly from carbonatite; (2) The higher t he temperature increases, the higher weight the carbon isotopic composition of c arbon-bearing gas is. At the gas releasing peak of temperature about 350℃ the c arbon isotopic composition apparently“changes greatly” and becomes w eight. Hence the carbon isotopic composition changes in a large rang e at different pyrolysis stages.

  4. Triple oxygen isotopes in biogenic and sedimentary carbonates

    Science.gov (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  5. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    Science.gov (United States)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Owen, T. C.; Raaen, E.; Steele, A.; Webster, C. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  6. Carbon isotopic studies of individual lipids in organisms from the Nansha sea area, China

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; SONG Jinming; ZHANG Hui

    2004-01-01

    Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. δ13C values of saturated fatty acids in different organisms examined are from -25.6‰ to -29.7‰ with the average values ranging from -26.4‰ to -28.2‰ and the variance range of 1.8‰ between different organisms is also observed.Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9‰-6.8‰ compared to the same carbon number saturated fatty acids. δ13C values of n-alkanes range from -27.5‰ to -29.7‰ and their mean values, ranging from -28.6‰ to -28.9‰, are very close in different organisms. The mean difference in δ13C between the saturated fatty acids and n-alkanes is only 1.5‰, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within ±2.0‰, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.

  7. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  8. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  9. POSSIBILITY OF USING CARBON ISOTOPES IN THE ASSESSMENT OF THE POLLUTION OF GAS PHASE IN ENVIRONMENTAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Dorota Porowska

    2015-10-01

    Full Text Available Carbon isotope analyses can be used for knowledge and practical purpose. They can be used to assess the genesis of carbon in geochemical environment, and may also be used to indicate environmental contamination by carbon-containing compounds. The aim of the paper is to indicate the possibilities of using carbon isotope composition for interpretation concerning the following elements of the natural environment: atmospheric air, subsurface zone (gases in soils and aeration zone in terms of natural and anthropogenic factors influencing on their quality. This method can be applied universally, when carbon sources are different in isotopic composition.

  10. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    Science.gov (United States)

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.

    2016-05-01

    Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of ≈ 1.0 to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental

  11. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.)

  12. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    Directory of Open Access Journals (Sweden)

    Ana G Popa-Lisseanu

    Full Text Available The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers.

  13. Seasonal variation in stable carbon and nitrogen isotope values of bats reflect environmental baselines.

    Science.gov (United States)

    Popa-Lisseanu, Ana G; Kramer-Schadt, Stephanie; Quetglas, Juan; Delgado-Huertas, Antonio; Kelm, Detlev H; Ibáñez, Carlos

    2015-01-01

    The stable carbon and nitrogen isotope composition of animal tissues is commonly used to trace wildlife diets and analyze food chains. Changes in an animal's isotopic values over time are generally assumed to indicate diet shifts or, less frequently, physiological changes. Although plant isotopic values are known to correlate with climatic seasonality, only a few studies restricted to aquatic environments have investigated whether temporal isotopic variation in consumers may also reflect environmental baselines through trophic propagation. We modeled the monthly variation in carbon and nitrogen isotope values in whole blood of four insectivorous bat species occupying different foraging niches in southern Spain. We found a common pattern of isotopic variation independent of feeding habits, with an overall change as large as or larger than one trophic step. Physiological changes related to reproduction or to fat deposition prior to hibernation had no effect on isotopic variation, but juvenile bats had higher δ13C and δ15N values than adults. Aridity was the factor that best explained isotopic variation: bat blood became enriched in both 13C and 15N after hotter and/or drier periods. Our study is the first to show that consumers in terrestrial ecosystems reflect seasonal environmental dynamics in their isotope values. We highlight the danger of misinterpreting stable isotope data when not accounting for seasonal isotopic baselines in food web studies. Understanding how environmental seasonality is integrated in animals' isotope values will be crucial for developing reliable methods to use stable isotopes as dietary tracers. PMID:25700080

  14. Isotopic and chemical composition of submarine geothermal gases from the Bay of Plenty, New Zealand

    International Nuclear Information System (INIS)

    Gas samples collected from the ocean floor near Whale Island, Bay of Plenty, New Zealand, are composed of carbon dioxide, methane, hydrogen, and air. The methane has an isotopic composition of delta13C(PDB) = -280/00 and deltaD(SMOW) = -1250/00. The isotopic and chemical composition show that the gases are of geothermal origin and similar to gas evolved from Whale Island hot springs

  15. The use of stable isotope compositions of selected elements in food origin control

    International Nuclear Information System (INIS)

    Stable isotope ratios have been used widely for authentication of foodstuffs especially for detection of added water and sugar in fruit juices and wines. Hydrogen and oxygen composition are particularly interesting probes for geographical origin and authenticity identification. Carbon and nitrogen composition of fruits contains the finger-print of their metabolism and growing condition. Exemplary data are presented which demonstrated the usefulness of the Isotope Ratio Mass Spectrometry (IRMS) methods for authenticating wines and fruits (juice and pulp). (author)

  16. Constraining the global bromomethane budget from carbon stable isotopes

    Science.gov (United States)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition

  17. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    Science.gov (United States)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  18. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    Science.gov (United States)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0

  19. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  20. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  1. Oxygen isotope fractionation in divalent metal carbonates

    Science.gov (United States)

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  2. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    Science.gov (United States)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  3. Using Carbon Isotopes in Cenozoic Soil Carbonates to Quantify Primary Productivity from Mid-Latitude Regions

    Science.gov (United States)

    Caves, J. K.; Kramer, S. H.; Ibarra, D. E.; Chamberlain, C. P.

    2015-12-01

    The carbon isotope composition of pedogenic carbonates (δ13Ccarb) from paleosols has been extensively used as a proxy to estimate atmospheric pCO2 over the Phanerozoic. However, a number of other factors - including the concentration of plant-respired CO2 and the isotopic composition of both atmospheric and plant-respired carbon - influence the δ13C of pedogenic carbonates. For example, δ13Ccarb records from the mid-latitudes in central Asia and western North America show increasing trends in δ13Ccarb despite decreasing pCO2 during the late Cenozoic, which suggests that other factors play an important role in determining the isotopic composition of pedogenic carbonates. Instead, we suggest that these records are primarily recording changes in primary productivity rather than changes in atmospheric pCO2 and therefore propose a novel use of paleosol carbonate records to understand paleo-ecosystem dynamics. Here, we compile existing paleosol carbonate records, and present three new records from Wyoming, to estimate soil respiration and primary productivity in western North America during the Paleogene and early Neogene. We observe both an overall increase in δ13Ccarb after the early Eocene, and spatially heterogeneous δ13Ccarb values across western US basins. We combine this δ13Ccarb data with compilations of atmospheric pCO2 to estimate soil respiration and plant productivity. The long-term increase in δ13Ccarb indicates a decrease in plant productivity as conditions became more arid across much of the western US, congruent with both records of regional uplift and of global cooling. Furthermore, significant spatial heterogeneity in δ13Ccarb indicates that regional factors, such as the presence of paleolakes and/or local paleotopography may have provided a second-order control on local and regional productivity. Thus, our results provide a first-order estimate linking changes in primary productivity with regional tectonics and global climatic change.

  4. The clumped isotope geothermometer in soil and paleosol carbonate

    Science.gov (United States)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  5. Technical Note: Constraining stable carbon isotope values of microphytobenthos (C3 photosynthesis) in the Arctic for application to food web studies

    OpenAIRE

    Oxtoby, L. E.; Mathis, J. T.; Juranek, L. W.; M. J. Wooller

    2013-01-01

    Microphytobenthos (MPB) tends to be omitted as a possible carbon source to higher trophic level consumers in high latitude marine food web models that use stable isotopes. Here, we used previously published relationships relating the concentration of aqueous carbon dioxide ([CO2]aq), the stable carbon isotopic composition of dissolved inorganic carbon (DIC) (δ13CDIC), and algal growth rates (μ) to estimate the stable carbon isotop...

  6. Stable Isotopic Evidence for a Pedogenic Origin of Carbonates in Trench 14 near Yucca Mountain, Nevada.

    Science.gov (United States)

    Quade, J; Cerling, T E

    1990-12-14

    Layered carbonate and silica encrust fault fractures exposed in Trench 14 near Yucca Mountain, site of the proposed high-level nuclear waste repository in southern Nevada. Comparison of the stable carbon and oxygen isotopic compositions of the fracture carbonates with those of modern soil carbonates in the area shows that the fracture carbonates are pedogenic in origin and that they likely formed in the presence of vegetation and rainfall typical of a glacial climate. Their isotopic composition differs markedly from that of carbonate associated with nearby springs. The regional water table therefore remained below the level of Trench 14 during the time that the carbonates and silica precipitated, a period probably covering parts of at least the last 300,000 years. PMID:17818282

  7. Stable Carbon and Oxygen Isotopes of Pedogenic Carbonates in Ustic Vertisols: Implications for Paleoenvironmental Change

    Institute of Scientific and Technical Information of China (English)

    HUANG Cheng-Min; WANG Cheng-Shan; TANG Ya

    2005-01-01

    Pedogenic carbonates, found extensively in arid and semiarid regions, are important in revealing regional climatic and environmental changes as well as the carbon cycle. In addition, stable carbon and oxygen isotopic compositions of pedogenic carbonates have been used to rebuild paleoecology (biomass and vegetation) and to estimate paleotemperature and paleoprecipitation during past geological time. By utilizing the stable carbon and oxygen isotopic compositions (δ13C and δ18O) of secondary nodules in Ustic Vertisols, this study looked into the climatic and environmental changes in the dry valleys of the Yuanmou Basin, Yunnan Province, in southwestern China. The results showed that during the early Holocene, a warm-humid or hot-humid climate existed in the Yuanmou Basin, but since then fluctuations in climate have occurred, with a dry climate prevailing. A highly significant correlation (r = 0.92, n= 9) between δ13C and δ18O values of carbonates illustrated that there had been a continual shifting between cold-humid and warm-dry climates in southwestern China including the Yuanmou Basin since the early Holocene.

  8. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guy, R.D. (Carnegie Institution of Washington, Stanford, CA (United States)); Fogel, M.L.; Berry, J.A. (Carnegie Inst. of Washington, Washington, DC (United States))

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  9. Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon.

    Science.gov (United States)

    Guy, R. D.; Fogel, M. L.; Berry, J. A.

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. PMID:12231663

  10. Irradiation-induced structure and property changes in tokamak plasma-facing, carbon-carbon composites

    International Nuclear Information System (INIS)

    Carbon-carbon composites are an attractive choice for fusion reactor plasma-facing components because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce large neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from two irradiation experiments are reported and discussed here. Carbon-carbon composite materials were irradiated in target capsules in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 4.7 displacements per atom (dpa) at 600 degree C was attained. The carbon materials irradiated included uni-directional, two-directional, and three-directional carbon-carbon composites. Dimensional changes are reported for the composite materials and are related to single crystal dimensional changes through fiber and composite structural models. Moreover, the irradiation-induced dimensional changes are reported and discussed in terms of their architecture, fiber type, and graphitization temperature. The effect of neutron irradiation on thermal conductivity of two three-directional, carbon-carbon composites is reported and the recovery of thermal conductivity due to thermal annealing is discussed

  11. Carbon and hydrogen isotope composition of plant biomarkers from lake sediments as proxies for precipitation changes across Heinrich Events in the subtropics

    Science.gov (United States)

    Arnold, T. E.; Diefendorf, A. F.; Brenner, M.; Freeman, K. H.; Curtis, J. H.

    2015-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven

  12. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition

    Science.gov (United States)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2016-02-01

    The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator

  13. Reassessing the stable isotope composition assigned to methane flux from natural wetlands in isotope-constrained budgets

    Science.gov (United States)

    Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew

    2013-04-01

    Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.

  14. Carbon isotope fractionation for cotton genotype selection

    Directory of Open Access Journals (Sweden)

    Giovani Greigh de Brito

    2014-09-01

    Full Text Available The objective of this work was to evaluate the carbon isotope fractionation as a phenomic facility for cotton selection in contrasting environments and to assess its relationship with yield components. The experiments were carried out in a randomized block design, with four replicates, in the municipalities of Santa Helena de Goiás (SHGO and Montividiu (MONT, in the state of Goiás, Brazil. The analysis of carbon isotope discrimination (Δ was performed in 15 breeding lines and three cultivars. Subsequently, the root growth kinetic and root system architecture from the selected genotypes were determined. In both locations, Δ analyses were suitable to discriminate cotton genotypes. There was a positive correlation between Δ and seed-cotton yield in SHGO, where water deficit was more severe. In this site, the negative correlations found between Δ and fiber percentage indicate an integrative effect of gas exchange on Δ and its association with yield components. As for root robustness and growth kinetic, the GO 05 809 genotype performance contributes to sustain the highest values of Δ found in MONT, where edaphoclimatic conditions were more suitable for cotton. The use of Δ analysis as a phenomic facility can help to select cotton genotypes, in order to obtain plants with higher efficiency for gas exchange and water use.

  15. Investigating the Source, Transport, and Isotope Composition of Water in the Atmospheric Boundary Layer

    Science.gov (United States)

    Griffis, T. J.; Schultz, N. M.; Lee, X.

    2011-12-01

    The isotope composition of water (liquid and vapor phases) can provide important insights regarding the source of water used by plants, the origins of atmospheric water vapor, and the sources of carbon dioxide. In recent years there have been significant advances in the ability to quantify the isotope composition of water and water vapor using optical isotope techniques. We have used and helped develop some of these techniques to determine the isotope composition of soil and plant waters, to measure the isoflux of water vapor between the land surface and atmosphere, and to examine the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. In this presentation we will discuss three related issues: 1) Identification and correction of spectral contamination in soil and plant water samples using optical techniques; 2) The benefits and practical limitations of quantifying the isotope composition of evapotranspiration using the eddy covariance approach; and 3) The scientific value and feasibility of tracking the long-term (seasonal and interannual) behavior of the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. A few short stories will be provided from experiments conducted in the lab, at the field scale, and from a very tall tower at the University of Minnesota from 2008 to 2011.

  16. High performance carbon-carbon composites

    Indian Academy of Sciences (India)

    Lalit M Manocha

    2003-02-01

    Carbon-carbon composites rank first among ceramic composite materials with a spectrum of properties and applications in various sectors. These composites are made of fibres in various directions and carbonaceous polymers and hydrocarbons as matrix precursors. Their density and properties depend on the type and volume fraction of reinforcement, matrix precursor used and end heat treatment temperature. Composites made with thermosetting resins as matrix precursors possess low densities (1.55–1.75 g/cm3) and well-distributed microporosity whereas those made with pitch as the matrix precursor, after densification exhibit densities of 1.8–2.0 g/cm3 with some mesopores, and those made by the CVD technique with hydrocarbon gases, possess intermediate densities and matrices with close porosities. The former (resin-based) composites exhibit high flexural strength, low toughness and low thermal conductivity, whereas the latter (pitch- and CVD-based) can be made with very high thermal conductivity (400–700 W/MK) in the fibre direction. Carbon-carbon composites are used in a variety of sectors requiring high mechanical properties at elevated temperatures, good frictional properties for brake pads in high speed vehicles or high thermal conductivity for thermal management applications. However, for extended life applications, these composites need to be protected against oxidation either through matrix modification with Si, Zr, Hf etc. or by multilayer oxidation protection coatings consisting of SiC, silica, zircon etc.

  17. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces and wool

    DEFF Research Database (Denmark)

    Kristensen, Ditte; Kristensen, Erik; Forchhammer, Mads C.;

    2011-01-01

    for studying arctic herbivore diets. In this study, we examined the potential of both stable carbon and nitrogen isotopes to reconstruct the diet of an arctic herbivore, here the muskox (Ovibos moschatus (Zimmermann, 1780)), in northeast Greenland. The isotope composition of plant communities and functional......% graminoids and up to 20% willows. In conclusion, the diet composition of an arctic herbivore can indeed be inferred from stable isotopes in arctic areas, despite the lack of C4 plants...

  18. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  19. Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the brine-seawater interface

    Directory of Open Access Journals (Sweden)

    S. R. Shah

    2012-12-01

    Full Text Available Orca Basin, an intraslope basin on the Texas–Louisiana continental slope, hosts a hypersaline, anoxic brine in its lowermost 200 m. This brine contains a large reservoir of reduced and aged carbon, and appears to be stable at decadal time scales: concentrations and the isotopic composition of dissolved inorganic (DIC and organic carbon (DOC are similar to previous reports. Both DIC and DOC are more "aged" within the brine pool than in overlying water, and the isotopic contrast between brine carbon and seawater carbon is much greater for DIC than DOC. While the stable carbon isotopic composition of brine DIC points towards a combination of methane and organic carbon re-mineralization as its source, radiocarbon and box model results point to the brine interface as the major source region for DIC with oxidation of methane diffusing upwards from sediments supplying only limited DIC to the brine. This conclusion is consistent with previous studies reporting microbial activity focused at the seawater-brine interface. Isotopic similarities between DIC and DOC suggest a different relationship between these two carbon reservoirs than is typically observed in deep ocean basins. Radiocarbon values implicate the seawater-brine interface region as the likely source region for DOC as well as DIC. Further investigations of the seawater-brine interface are needed to advance our understanding of the specific microbial processes contributing to dissolved carbon storage in the Orca Basin brine.

  20. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    Science.gov (United States)

    Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.

    1994-01-01

    at sediment-covered spreading centers. Our data show that the sulfur isotope composition of hydrothermal Sulfide minerals in Guaymas Basin can be explained by derivation of S from diagenetic sulfide and seawater sulfate. Basaltic S may also contribute to hydrothermal sulfide precipitates but is not required to explain their isotopic composition. Estimates of seawater/ sediment mass ratios based on sulfur isotopic composition of sulfide minerals and the abundance of dissolved NH3 in vent fluids range from 3-29 during hydrothermal circulation. Sources of C in Guaymas Basin hydrothermal fluids include thermal degradation of organic matter, bacteriogenic methane production, and dissolution of diagenetic carbonate. ?? 1994.

  1. Diurnal and Seasonal Variation in the Carbon Isotope Composition of Leaf- and Root- respired CO2 in C3 and C4 Species

    Science.gov (United States)

    Sun, W.; Resco, V.; Chen, S.; Williams, D. G.

    2008-12-01

    The carbon isotope signature of leaf (δ13Cl) and root (δ13Cr) dark- respired CO2 records and integrates short-term metabolic changes. Plants with C3 and C4 photosynthetic metabolism are expected to differ in diurnal and seasonal patterns in δ13Cl and δ13Cr because of differences in photorespiration, isotopic fractionation at metabolic branch points and allocation patterns. A thorough understanding of the environmental and metabolic controls on δ13Cl and δ13Cr is necessary to interpret the δ13C of ecosystem respired CO2 and partition the CO2 efflux into autotrophic and heterotrophic respiration sources. We measured δ13Cl in two C3 tree species (Prosopis velutina and Celtis reticulata), a C3 herb (Viguiera dentata) and a C4 grass (Sporobolus wrightii), and δ13Cr in P. velutina and S. wrightii in a semiarid savanna in southeastern Arizona, USA. δ13Cl during the dry pre-monsoon period was relatively enriched in 13C during daytime periods and became depleted in 13C at night relative to daytime values for all species with the exception of S. wrightii, the C4 grass. δ13Cl in S. wrightii was strongly influenced by seasonal differences in water availability with a larger diurnal amplitude in δ13Cl (8.2 +/- 0.6‰) during the wet monsoon period compared to that in the dry pre-monsoon period (4.4 +/- 0.4‰). The δ13C values of starch and lipid fractions remained constant over diurnal periods within the pre-monsoon and monsoon seasons. For C3 species, δ13Cl and δ13C of the cumulative, flux-weighted photosynthate pool estimated from gas exchange were strongly positively correlated, suggesting that progressive 13C-enrichment of leaf-respired CO2 during the daytime period resulted from changes in the δ13C signature of respiratory substrates associated with short-term changes in photosynthetic 13C discrimination. Rapid decreases in δ13Cl following the daytime period was likely caused by decreases in the ratio of PDH:acetyl-CoA oxidation rather than by a shift in

  2. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  3. Phanerozoic and Neoproterozoic Negative Carbon Isotope Excursions, Diagenesis and Terrestrialization

    Science.gov (United States)

    Paul, K.; Kennedy, M. J.

    2008-12-01

    Comprehensive data sets of Phanerozoic and late Precambrian carbon isotope data derived from carbonate rocks show a similar positive relation when cross-plotted with oxygen isotope values. The range and slope between the time periods is identical and the processes responsible for the relation have been well documented in Quaternary sediments. These processes include the stabilization of isotope values to ambient meteoric water values during shallow burial and flushing of carbonate sediments. Both data sets show strongly depleted carbon (-9 per mil PDB) and oxygen isotope values that retain seemingly systematic stratigraphic patterns with the Quaternary and Phanerozoic examples that demonstrably record meteroric water values. Similar values and patterns in the Precambrian are interpreted as primary marine in origin with significant implications for an ocean carbon mass balance not possible in the Phanerozoic carbon cycle. A similar compilation of carbonates older than one billion years do not show a relation between carbon and oxygen isotopes, lacking the negative carbon values evident in the younger record. We hypothesize that this difference records the onset of significant organic carbon on the land surface and the alteration of meteoric waters toward Phanerozoic values. We demonstrate the meteoric affinities of Neoproterozoic carbonates containing prominent negative isotope excursions recorded in the Shuram and Wonoka Formations of Oman and South Australia commonly attributed to whole ocean isotope variation. The conspicuous absence of negative carbon isotope values with normal marine oxygenisotope values in the Phanerozoic and Neoproterozic identifies a consistent relation between these time intervals and suggests that, as well accepted in the Phanerozoic, negative carbon isotope excursions less than -3 per mil are not a record of marine processes, but rather the later terrestrial biotic influence on meteoric water values.

  4. Carbon and strontium isotope variations and responses tosea-level fluctuations in the Ordovician of the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Abstract In the Ordovician, a carbonate platform system grading from the platformal interioreastwards to basin was developed in the Tazhong area of the Tarim Basin, and the study column islocated in the place where the paleoslope occurred. The isotope compositions of the carbonatesthere are thus considered as having reflected those of simultaneous sea waters in view of its goodconnection with the open seas. The carbon and strontium isotope compositions of the Ordoviciancarbonates in the Tazhong area are analyzed, and their relationships to the sea-level fluctuationsare discussed as well. Studies have revealed that the carbon isotope composition is related posi-tively with the sea-level fluctuations, whereas an opposing situation occurs to the strontium isotopevariation. Similar responses of carbon and strontium isotope compositions to the sea-level fluctua-tions are reported elsewhere in the world, suggesting that the Ordovician sea-level fluctuations ofthe Tarim Basin were of eustatic implication.

  5. Carbon isotopes and water use efficiency in C4 plants.

    Science.gov (United States)

    Ellsworth, Patrick Z; Cousins, Asaph B

    2016-06-01

    Drought is a major agricultural problem worldwide. Therefore, selection for increased water use efficiency (WUE) in food and biofuel crop species will be an important trait in plant breeding programs. The leaf carbon isotopic composition (δ(13)Cleaf) has been suggested to serve as a rapid and effective high throughput phenotyping method for WUE in both C3 and C4 species. This is because WUE, leaf carbon discrimination (Δ(13)Cleaf), and δ(13)Cleaf are correlated through their relationships with intercellular to ambient CO2 partial pressures (Ci/Ca). However, in C4 plants, changing environmental conditions may influence photosynthetic efficiency (bundle-sheath leakiness) and post-photosynthetic fractionation that will potentially alter the relationship between δ(13)Cleaf and Ci/Ca. Here we discuss how these factors influence the relationship between δ(13)Cleaf and WUE, and the potential of using δ(13)Cleaf as a meaningful proxy for WUE.

  6. Mantle Degassing and Diamond Genesis:A Carbon Isotope Perspective

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1994-01-01

    The effect of Co2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation.Assuming the δ13 C value of -5‰ for the mantle,the outgassing of CO2 can result in the large negative δ13 C values of diamond,whereas the outgassing of CH4 can drive the δ13C values of diamond in the positive direction.The theoretical expectations can be used to explain the full range of δ13 C values from-34.4‰5 to+5‰ observed for natural diamonds.It is possible that diamond formation was triggered by the degassing of Co2 and/or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.

  7. Carbonate isotopic records of paleoclimate changes in Chinese loess

    Institute of Scientific and Technical Information of China (English)

    韩家懋; 姜文英; 刘东生; 吕厚远; 郭正堂; 吴乃琴

    1996-01-01

    Oxygen and carbon isotopes of carbonate in concretion and bulk samples collected from Xifeng. Luochuan and Weinan loess sections, China, have been analyzed. It has been found that carbon and oxygen isotopic ratios of concretion in paleosol, as useful paleodimatic indicators, recorded temperature and humidity variation during their formation. Comparison of isotopic data from different locations may offer a spatial picture of past environmental changes. Isotopic data from carbonate of bulk sample also include useful environmental information. Carbon and oxygen isotopic curves of past 150ka in Weinan completely reflect the fluctuations of the paleodimate with different stratigraphical units. The curves can correlate well with those of other dimatic proxies and of the deep sea sediments.

  8. Climatic significance of the stable carbon isotope composition of tree-ring cellulose:Comparison of Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast) in a temperate-moist region of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the reconstruction of past climate using stable carbon isotope composition (δ13C) in tree ring,the responses of the stable carbon composition (δ13C) of multiple tree species to environmental factors must be known detailedly. This study presented two δ13C series in annual tree rings for Chinese hem-lock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast),and investigated the relationships between climatic parameters and stable carbon discrimination (△13C) series,and evaluated the poten-tial of climatic reconstruction using △13C in both species,in a temperate-moist region of Chuanxi Pla-teau,China. The raw δ13C series of the two species was inconsistent,which may be a result of different responses caused by tree’s inherent physiological differences. After removing the low-frequency ef-fects of CO2 concentration,the high-frequency (year-to-year) inter-series correlation of △13C was strong,indicating that △13C of the two tree species were controlled by common environmental conditions. The △13C series of the species were most significantly correlated with temperature and moisture stress,but in different periods and intensity between the species. During the physiological year,the impacts of temperature and moisture stress on △13C occur earlier for Chinese hemlock (previous December to February for moisture stress and February to April for temperature,respectively) than for alpine pine (March to May for moisture stress and April to July for temperature,respectively). In addition,in temperate-moist regions,the control on △13C of single climatic parameter was not strongly dominant and the op-timal multiple regressions functions just explained the 38.5% variance of the total. Therefore,there is limited potential for using δ13C alone to identify clear,reliable climatic signals from two species.

  9. Climatic significance of the stable carbon isotope composition of tree-ring cellulose: Comparison of Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast) in a temperate-moist region of China

    Institute of Scientific and Technical Information of China (English)

    LIU XiaoHong; SHAO XueMei; WANG LiLi; ZHAO LiangJu; WU Pu; CHEN Tuo; QIN DaHe; REN JiaWen

    2007-01-01

    In the reconstruction of past climate using stable carbon isotope composition (δ13C) in tree ring, the responses of the stable carbon composition (δ13C) of multiple tree species to environmental factors must be known detailedly. This study presented two δ13C series in annual tree rings for Chinese hemlock (Tsuga chinensis Pritz) and alpine pine (Pinus densata Mast), and investigated the relationships between climatic parameters and stable carbon discrimination (Δ13C) series, and evaluated the potential of climatic reconstruction using Δ13C in both species, in a temperate-moist region of Chuanxi Plateau, China. The raw δ13C series of the two species was inconsistent, which may be a result of different responses caused by tree's inherent physiological differences. After removing the low-frequency effects of CO2 concentration, the high-frequency (year-to-year) inter-series correlation of Δ13C was strong, indicating that Δ13C of the two tree species were controlled by common environmental conditions. The Δ13C series of the species were most significantly correlated with temperature and moisture stress, but in different periods and intensity between the species. During the physiological year, the impacts of temperature and moisture stress on Δ13C occur earlier for Chinese hemlock (previous December to February for moisture stress and February to April for temperature, respectively) than for alpine pine (March to May for moisture stress and April to July for temperature, respectively). In addition, in temperatemoist regions, the control on Δ13C of single climatic parameter was not strongly dominant and the optimal multiple regressions functions just explained the 38.5% variance of the total. Therefore, there is limited potential for using δ13C alone to identify clear, reliable climatic signals from two species.

  10. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates

    Science.gov (United States)

    Hippler, Dorothee; Buhl, Dieter; Witbaard, Rob; Richter, Detlev K.; Immenhauser, Adrian

    2009-10-01

    This study presents magnesium stable-isotope compositions of various biogenic carbonates of several marine calcifying organisms and an algae species, seawater samples collected from the western Dutch Wadden Sea, and reference materials. The aim of this study is to explore the influence of mineralogy, taxonomy and environmental factors (e.g., seawater isotopic composition, temperature, salinity) on magnesium-isotopic (δ 26Mg) ratios of skeletal carbonates. Using high-precision multi-collector inductively coupled plasma mass spectrometry, we observed that the magnesium-isotopic composition of seawater from the semi-enclosed Dutch Wadden Sea is identical to that of open marine seawater. We further found that a considerable component of the observed variability in δ 26Mg values of marine skeletal carbonates can be attributed to differences in mineralogy. Furthermore, magnesium-isotope fractionation is species-dependent, with all skeletal carbonates being isotopically lighter than seawater. While δ 26Mg values of skeletal aragonite and high-magnesium calcite of coralline red algae indicate the absence or negligibility of metabolic influences, the δ 26Mg values of echinoids, brachiopods and bivalves likely result from a taxon-specific level of control on Mg-isotope incorporation during biocalcification. Moreover, no resolvable salinity and temperature effect were observed for coralline red algae and echinoids. In contrast, Mg-isotope data of bivalves yield ambiguous results, which require further validation. The data presented here, point to a limited use of Mg isotopes as temperature proxy, but highlight the method's potential as tracer of seawater chemistry through Earth's history.

  11. The stable isotope composition of vanadium, nickel, and molybdenum in crude oils

    International Nuclear Information System (INIS)

    Highlights: • First precise stable isotope measurements of V, Ni and Mo in crude oils. • First order constraints are placed on the magnitude of isotope variability. • Isotope compositions are unaffected by generation, expulsion, and migration. • V and Ni stable isotope compositions are likely source dependent. • V, Ni, and Mo isotope compositions are likely affected by paleoredox chemistry. - Abstract: Crude oils often have high concentrations of transition metals including vanadium (V), nickel (Ni), iron (Fe), and to a lesser extent molybdenum (Mo). Determining the conditions under which these metals enter into crude oil is of interest for the understanding of biogeochemical cycles and the pathways leading to oil formation. This study presents the first high precision measurements of V, Ni, and Mo stable isotopes determined for a set of globally distributed crude oils as a first examination of the magnitude of potential stable isotope fractionation. Vanadium stable isotope compositions are presented for crude oils formed from different source rocks spanning a range of geologic ages (Paleozoic–Tertiary) and are complemented by Ni and Mo stable isotope compositions on a subset of crude oils produced from lacustrine source rocks in the Campos Basin, Brazil. The crude oils span a wide range of V and Mo isotope compositions, and display more restricted Ni stable isotope signatures. Overall, the stable isotope composition of all three systems overlaps with previously determined values for igneous and inorganic sedimentary materials. Comparisons between vanadium concentration and stable isotope composition yield distinct clusters associated with crude oils predominantly derived from terrestrial/lacustrine or marine/carbonate source rocks. The Ni stable isotope signatures of studied crude oils are similar to that of carbonaceous shales. The Mo stable isotope signatures of the lacustrine sourced crude oils are similar to what is observed for rivers. This

  12. Which minerals control the Nd-Hf-Sr-Pb isotopic compositions of river sediments?

    Science.gov (United States)

    Garcon, M.; Chauvel, C.; France-Lanord, C.; Limonta, M.; Garzanti, E.

    2013-12-01

    River sediments naturally sample and average large areas of eroded continental crust. They are ideal targets not only for provenance studies based on isotopic compositions, but also to establish average continental crust isotopic values. However, in large fluvial systems, mineral sorting processes significantly modify the mineralogy, and thus the geochemistry of the transported sediments. We still do not know, in any quantitative way, to what extent mineral sorting affects and fractionates the isotopic compositions of river sediments. Here, we focus on this issue and try to decipher the role of each mineral species in the bulk isotopic compositions of bedloads and suspended loads sampled at the outflow of the Ganga River that drains the Himalayan mountain range. We analyzed Nd, Hf, Sr and Pb isotopic compositions as well as trace element contents of a large number of pure mineral fractions (K-feldspar, plagioclase, muscovite, biotite, magnetite, zircon, titanite, apatite, monazite/allanite, amphibole, epidote, garnet, carbonate and clay) separated from bedload sediments. We combine these data with mineral proportions typical of the Ganga sediments to perform Monte-carlo simulations that quantify the contribution of individual mineral species to the Nd, Hf, Sr and Pb isotopic budgets of bedloads and suspended loads. We show that the isotopic systematic of river sediments is entirely buffered by very few minerals. Despite their extremely low proportions in sediments, zircon and monazite/allanite control Hf and Nd isotopes, respectively. Feldspars, epidote and carbonate buffer the Sr isotopic budget while clay, feldspars and heavy minerals dominate Pb isotopes. We also demonstrate that the observed difference in Hf, Sr and Pb isotopic compositions between bedloads and suspended loads reflects their different mineral proportions. Our findings highlight the need to be very careful about the choice of isotopic compositions measured on sediments when used as source

  13. Carbon isotope fractionation in protoplanetary disks

    CERN Document Server

    Woods, Paul M

    2008-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

  14. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  15. Progressive extraction method applied to isotopic exchange of carbon-14

    International Nuclear Information System (INIS)

    Isotopic exchange in natural settings is essentially an irreversible process, so that it progresses continuously until there is complete isotopic equilibrium. In soils, this process involves interaction between isotopes in the liquid and solid phases, and complete isotopic equilibrium may take a very long time. Measurements after partial isotopic exchange have been used to characterize the labile fraction of elements in soils. We describe a method to characterize the extent of isotopic exchange, with application here to incorporation of inorganic carbon-14 (14C) into mineral carbonates and organic matter in soils. The procedure uses a continuous addition of extractant, acid, or H2O2in the examples presented here, coupled with sequential sampling. The method has been applied to demonstrate the degree of isotopic exchange in soil. The same strategy could be applied to many other elements, including plant nutrients. (author)

  16. Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001

    Science.gov (United States)

    Leshin, Laurie A.; McKeegan, Kevin D.; Harvey, Ralph P.

    1997-03-01

    With a crystallization age of 4.5 Ga, ALH84001 is unique among the Martian meteorites. It is also the only Martian meteorite that contains an appreciable amount of carbonate, and significantly, this carbonate occurs without associated secondary hydrated minerals. Moreover, McKay et al. (1996) have suggested that ALH84001 contains evidence of past Martian life in the form of nanofossils, biogenic minerals, and polycyclic aromatic hydrocarbons. The presence of carbonate in ALH84001 is especially significant. The early Martian environment is thought to have been more hospitable to life than todays cold, dry climate. In order to better assess the true delta-O-18 values, as well as the isotopic diversity and complexity of the ALH84001 carbonates, direct measurements of the oxygen and carbon isotopic compositions of individual carbonate phases are needed. Here we report in situ analyses of delta-O-18 values in carbonates from two polished thin sections of ALH84001.

  17. Carbon isotopic compositions of coal-derived gas in the Xujiahe Formation and Jurassic in the Sichuan Basin%四川盆地须家河组及侏罗系煤成气碳同位素组成

    Institute of Scientific and Technical Information of China (English)

    吴小奇; 黄士鹏; 廖凤蓉; 李振生

    2011-01-01

    四川盆地须家河组煤系烃源岩为须家河组自生自储气藏和上覆侏罗系次生气藏提供气源.须家河组气藏主要分布在川西和川中气区,侏罗系气藏主要分布在川西气区.须家河组煤系烃源岩生成的天然气为典型热成因气,表现出腐殖型气的特点.整体上看侏罗系天然气的碳同位素特征与须家河组天然气基本一致,须家河组煤成气碳同位素组成表现出自下而上逐渐变轻的趋势;侏罗系各层天然气则由于来源不尽相同而碳同位素组成规律性不明显,但具有近源聚集的特点.横向上川西气区南部烷烃气δ13C值大于北部,且均明显大于川中和川南气区的值.须家河组和侏罗系中少许气样发生了碳同位素的倒转,主要是受同源不同期气混合的影响.油型气的混合不仅使得川中气区部分煤成气气样δ13C值偏小,而且导致部分气样发生碳同位素的倒转.%Coal-measure source rocks of Xujiahe Formation in the Sichuan Basin are important gas-source rocks, and provide sufficient natural gas for self-generation and self-storage gas reservoirs in the Xujiahe Formation and secondary gas reservoirs in the overlying Jurassic. The gas reservoirs in the Xujiahe Formation are mainly located in the western and central Sichuan gas provinces, while those in the Jurassic in the western Sichuan gas province. Natural gas derived from coal-measure source rocks in the Xujiahe Formation are typical thermogenic gas and shares the same characteristics of humic type gas. The carbon isotopic characteristics of gas samples in the Jurassic are generally identical to those in the Xujiahe Formation. The carbon isotopic compositions of the coal-derived gas tend to become lighter from bottom to top in the Xujiahe Formation. The gases in the Jurassic have no clear rule due to their coming from different members of the Xujiahe Formation, and they tend to accumulate near the source. Horizontally, the SliC values

  18. Reconstruction of the carbon isotopic composition of methane over the last 50 years based on firn air measurements at 11 polar sites

    NARCIS (Netherlands)

    Sapart, C.J.; Martinerie, P.; van de Wal, R.S.W.; van der Veen, C.; Röckmann, T.

    2012-01-01

    Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps reconstructing the evolution of its sources and sinks in the past. Th

  19. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    OpenAIRE

    S. L. Pathirana; C. van der Veen; Popa, M. E.; T. Röckmann

    2015-01-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol−1, or 1–3 % of the typical sam...

  20. 气相色谱-燃烧-同位素比值质谱法测定单体氨基酸的碳稳定同位素组成%Analysis of Stable Carbon Isotope Composition of Individual N-Trifluoroacetyl-Isopropyl Amino Acid Esters by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    蔡德陵; 刘金钟; 刘海珍

    2004-01-01

    A combined gas chromatography combustion-isotope ratio mass spectrometry method(GC-C IRMS) for stable carbon isotope analysis of amino acids is presented. Unlike hydrocarbons, amino acids require derivatization prior to GC-C-IRMS analysis. Replicate carbon isotope analyses of trifluoroacetyl isopropyl ester derivatives of 17 amino acids by IRMS revealed that the derivatization process is reproducible. Due to a reproducible isotopic fractionation an empirical correction factor for each individual amino acid is derived separately for derivatives and the original δ13C value of the underivatized amino acid is calculated.

  1. The stable isotope composition of some East Coast natural gases

    International Nuclear Information System (INIS)

    The carbon and hydrogen isotopic ratios of methane from 17 natural gas seeps on the East Coast of the North Island, New Zealand, show a diversity of values. All isotopic ratios are consistent with overseas values for gases associated with oil. Chemical compositions and geological settings are used to make further interpretations, and to relate the gases to possible source rocks. Isotopic compositions suggest that mature source rocks have produced the gases from Otopotehetehe, Waitangi, Tukituki, Wairakau, Weber, Te Hoe and Langdale. The Rotokautuku gas appears to have been altered by secondary processes such as oxidation. Some of the cases are associated with oil seeps. Waimata gas may be from a less mature source than the above. All these gases have methane delta/sup 13/C values more positive than -45 per thousand implying, probable R/sub o/, values greater than 1% if the source matter is of marine origin. Kaikopu and Te Pohue gas seeps have more negative delta/sup 13/C values implying, they have been buried and/or heated to a lesser degree than the other gases. The warm springs at Te Puia also evolve a mature methane-rich gas with saline water. A warm spring in the greywacke ranges at Mangatainoka is suggestive of a reasonable degree of thermal maturity, but is nitrogen-rich and identical to other springs on the same fault. Morere warm springs and nearby seeps and mud volcanoes at Kopuawhara and Tiromoana suggest variable mixtures of thermogenic gas with a microbial gas although their /sup 3/He//sup 4/He values suggest a deeper gas contribution. (author). 26 refs.; 7 figs.; 2 tabs

  2. Development of carbon composites cured by radiation

    International Nuclear Information System (INIS)

    -Developments of the new process in the manufacture of composites - Developments of a necessary technics for the manufacture of an export embargo components - Developments of the green process in the manufacture of composites - Developments and applications of the radiation curing technics in the manufacture of various composites - Developments of the manufacturing process for carbon/carbon(carbon/silicon carbide) composites

  3. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    Science.gov (United States)

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  4. Carbon isotopic characteristics and their genetic relationships for individual lipids in plants and sediments from a marsh sedimentary environment

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; ZHANG Hui; ZHENG Chaoyang; WU Baoxiang; ZHENG Guodong

    2005-01-01

    The carbon isotopes of individual lipids in herbaceous plants and tree leaves in Ruoergai marsh were measured by the GC-IRMS analytical technique in order to understand the inherent relationships of carbon isotopes between sedimentary and plant lipids from typical marsh environment. The analytical results show that the carbon isotopic compositions of n-alkanes in different kinds of plants differ significantly. Mean δ13C values of n-alkanes in herbaceous plants (-32.2‰―-36.9‰) are 3.3‰ lower than those in woody plant (-27.2‰― -35.0‰). The carbon isotopic compositions of fatty acids in organisms (-30.3‰― -36.2‰) are very similar to those of n-alkanes and the δ13C values for unsaturated fatty acids are within the range of those for saturated fatty acids. The differences in δ13C values between plant lipids are obvious and range from 2.4‰ to 7.8‰. It is observed that the carbon isotopic compositions of sedimentary lipids are closely related to those of plant lipids. The carbon isotopic compositions (-27.0‰―-36.9‰) of n-alkanes, ≥C16 fatty acids, n-alkanols, sterols and n-alkanones in the sediments are similar to those of plant lipids and the carbon isotopic compositions of short-chain sedimentary lipids are similar to those of long-chain sedimentary homologues. These indicate that the sedimentary lipids are derived from high plants. However, the δ13C values of C14:0 and C15:0 fatty acids in the sediments are lighter than those of the same carbon number saturated homologues in plants, reflecting the genetic features partially derived from bacteria. These data provide scientific evidence for carbon isotope-applied research of individual lipids.

  5. Isotopic compositional Characteristics of Terrigenous Natural Gases in China

    Institute of Scientific and Technical Information of China (English)

    沈平; 徐永昌

    1993-01-01

    The C and H isotopic compositions of the methane in more than 160 gas samples from 10 basins in China are presented in this paper.The natural gases are classified as four types: biogenic gas ,bio-thermocatalytic transitional gas, gas associated with condensate oil ,and coal-type gas. The isotopic compositions of these gases closely related to the depositional basins, the types of organic matter,the stages of thermal evolution and the genetic characteristics of different gas reservoirs.Studies of the C and H isotopic compositions of terrigenous natural gases will provide valua-ble information on the prospecting and development of natural gases of different genetic types.

  6. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    Science.gov (United States)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of 120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic. Since Zn is a trace element in the mantle and Zn isotopic compositions of marine carbonates and the mantle differ markedly, we highlight Zn isotopes as a new and useful tool of tracing deep carbonate cycling in the Earth's mantle.

  7. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph [UCSD-SIO

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  8. Isotopic composition of sulfate accumulations, Northern Calcareous Alps, Austria

    Science.gov (United States)

    Bojar, Ana-Voica; Halas, Stanislaw; Bojar, Hans-Peter; Trembaczowski, Andrzej

    2015-04-01

    The Eastern Alps are characterised by the presence of three main tectonic units, such as the Lower, Middle and Upper Austroalpine, which overlie the Penninicum (Tollmann, 1977). The Upper Austroalpine unit consists of the Northern Calcareous Alps (NCA) overlying the Greywacke zone and corresponding to the Graz Paleozoic, Murau Paleozoic and the Gurktal Nappe. Evaporitic rocks are lacking in the later ones. The Northern Calcareous Alps are a detached fold and thrust belt. The sedimentation started in the Late Carboniferous or Early Permian, the age of the youngest sediments being Eocene. The NCA are divided into the Bajuvaric, Tirolic and Juvavic nappe complexes. The evaporitic Haselgebirge Formation occurs in connection with the Juvavic nappe complex at the base of the Tirolic units (Leitner et al., 2013). The Haselgebirge Formation consists mainly of salt, shales, gypsum and anhydrite and includes the oldest sediments of the NCA. The age of the Haselgebirge Formation, established by using spors and geochronological data, is Permian to Lower Triassic. For the Northern Calcareous Alps, the mineralogy of sulphate accumulations consists mainly of gypsum and anhydrite and subordonates of carbonates. The carbonates as magnesite, dolomite and calcite can be found either as singular crystals or as small accumulations within the hosting gypsum. Sulfides (sphalerite, galena, pyrite), sulfarsenides (enargite, baumhauerite) and native sulphur enrichments are known from several deposits (Kirchner, 1987; Postl, 1990). The investigated samples were selected from various gypsum and halite rich deposits of the Northern Calcareous Alps. A total of over 20 samples were investigated, and both oxygen and sulfur isotopic composition were determined for anhydrite, gyps, polyhalite, blödite and langbeinite. The sulfur isotopic values vary between 10.1 to 14 ‰ (CDT), with three values higher than 14 ‰. The Oxygen isotopic values show a range from 9 to 23 ‰ (SMOW). The sulfur

  9. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne;

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  10. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  11. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  12. Nanographene reinforced carbon/carbon composites

    Science.gov (United States)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  13. SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Olivier Chapleur

    Full Text Available In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH and nanoscale secondary ion mass spectrometry (nanoSIMS imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13C uptake during labelled methanol anaerobic degradation.

  14. Ruthenium Isotopic Composition of Terrestrial Materials, Iron Meteorites and Chondrites

    Science.gov (United States)

    Becker, H.; Walker, R. J.

    2002-01-01

    Ru isotopic compositions of magmatic iron meteorites and chondrites overlap with terrestrial Ru at the 0.3 to 0.9 (epsilon) level. Additional information is contained in the original extended abstract.

  15. Application of carbon isotope analyses in food technology

    International Nuclear Information System (INIS)

    The vast economic size of the food market offers great temptations for the production and sale of fraudulent products, adulterated products and synthetic products that are labeled as natural ones. Conventional techniques of chemical analyses have served the food industry well for many years but are limited in their ability to detect certain types of fraudulent or mislabelled products. The aversion to added sugar and the demand for 'all natural' food products among consumers has led to a great deal of mislabelling on the part of food processors in order to achieve greater economic gain. The nature of deceptions detectable by carbon Stable Isotope Ratio Analysis (SIRA) in food technology falls into three broad categories. The most common is the adulteration of an expensive natural product, such as apple juice, with a much cheaper natural product such as cane sugar or high fructose corn syrup (HFCS). The second is outright falsification of a food. An example is maple syrup produced by simple addition of maple flavoring to a sugar syrup or HFCS. The third general category is the sale of synthetic materials as natural ones or the addition of synthetic materials to natural ones in order to increase the volume of the product. The procedure for using carbon SIRA in monitoring food products involves two stages. It must first be established that the product to be analyzed, or some specific component of it, has a particular isotopic composition that can be distinguished from that of the materials that might be used to adulterate it. Potential adulterating components are then analyzed to establish their isotopic identity. The carbon SIRA method cannot, in general, be used to establish purity unequivocally but it can be used to establish impurity or adulteration with a high degree of success. The overall process of carbon SIRA consists of three stages: selection of the sample or the isolation of the particular compound to be analyzed, conversion of this compound into CO2 gas

  16. Morphology-Composition-Isotopes: Recent Results from Observations

    Science.gov (United States)

    Schulz, R.

    This article presents some recent imaging and spectroscopic observations that led to results which are significant for understanding the properties of comet nuclei. The coma morphology and/or composition were investigated for 12 comets belonging to different dynamical classes. The data analysis showed that the coma morphology of three non-periodic comets is not consistent with the general assumption that dynamically new comets still have a relatively uniform nucleus surface and therefore do not exhibit gas and/or dust jets in their coma. The determination of carbon and nitrogen isotopic ratios revealed the same values for all comets investigated at various heliocentric distances. However, the relative abundance of the rare nitrogen isotope 15N is about twice as high as in the Earth's atmosphere. Observations of comets at splitting events and during outbursts led to indications for differences between material from the nucleus surface and the interior. The monitoring of the induced outburst of 9P/Temple revealed that under non-steady state conditions the fast disintegration of species is detectable.

  17. Study of neutron rich carbon isotopes

    Science.gov (United States)

    Fallon, Paul

    2012-03-01

    Electric quadrupole (E2) matrix elements are important quantities in nuclear structure. In particular they are sensitive to nuclear deformation, the decoupling of proton and neutron degrees of freedom, and are often affected by small components of the nuclear wave function. Neutron-rich carbon isotopes have attracted a great deal of attention recently, both experimentally and theoretically, with regards to the question of spatially extended (halo-like) and decoupled valence neutrons. For example, 19C and the drip-line nucleus 22C are proposed to have ground-state neutron halo structures. Electric quadrupole transition rates in 16C 18C and 20C are among the lowest found throughout the nuclear chart and this fact has been cited by some as evidence for a reduced coupling between the valence neutrons and the core nucleons. In this talk I will present the results from our experiments to measure the transition rates in 16,18,20C and discuss the evidence for a ``decoupling'' of valence neutrons from the core that goes beyond the usual shell model approach. Data will be compared to shell model and no-core (ab-initio) shell model calculations with NN and NN+NNN interactions.

  18. Food sources for the mangrove tree crab aratus pisonii: a carbon isotopic study

    International Nuclear Information System (INIS)

    Muscle tissues from the mangrove tree crab Aratus pisonii was analysed for carbon isotopic composition, in order to trace its major food sources. Potential food sources: mangrove leaves epi phytic green algae, mangrove sediments and open water and mangrove suspended matter; were also analysed. The results show that A. pisonii is basically omnivorous, with major food sources from marine origin. However, mangrove carbon can contribute with 16% to 42% in the crab's diet. (author)

  19. Evaluating Foraminifera as an Archive for Seawater Chromium Isotopic Composition

    Science.gov (United States)

    Wang, X.; Planavsky, N.; Hull, P. M.; Tripati, A.; Reinhard, C.; Zou, H.; Elder, L. E.; Henehan, M. J.

    2015-12-01

    In recent years there has been growing interest in using chromium isotopes (δ53Cr) as a proxy to investigate the redox evolution of Earth's ocean-atmosphere system throughout geological history. Potential archives for seawater δ53Cr that have been identified to date include iron formations and organic-rich siliciclastic sediments. However, these types of sediments are not common and they are discontinuous over geologic time. As a result, alternative types of archives are needed. Here we evaluate the utility of foraminifera tests as a recorder of seawater δ53Cr. Core-tops used were from different ocean basins. Mono-specific samples of Globigerinoides sacculifer, Orbulina universa, Pulleniatina obliquiloculata, Globoratalia crassula-crassaformis, Globoratalia truncatulinoides, and Globigerinella siphonifera were isolated to investigate inter-species isotope fractionation. Chromium concentrations were measured by isotope dilution method to be 0.1-0.3 μg/g. The δ53Cr values of these species range from 0.2‰ to 2.4‰, with an analytical uncertainty of 0.3‰ (95% confidence). Despite the high analytical uncertainty due to the extremely low levels of Cr present, there is still large detectable variation in foraminiferal δ53Cr values, which overlap presently available seawater values (Bonnand et al., 2013; Scheiderich et al., 2015). Possible explanations for such variations in foraminiferal δ53Cr values include heterogeneity of seawater δ53Cr in the modern oceans, and/or photobiochemical redox cycling of Cr in the surface oceans. Therefore, care should be taken when using foraminifera to reconstruct past seawater δ53Cr values. ReferencesBonnand, P., James, R., Parkinson, I., Connelly, D., Fairchild, I., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10-20. Scheiderich, K., Amini, M., Holmden, C., Francois, R., 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific

  20. Variability of carbonate diagenesis in equatorial Pacific sediments deduced from radiogenic and stable Sr isotopes

    Science.gov (United States)

    Voigt, Janett; Hathorne, Ed C.; Frank, Martin; Vollstaedt, Hauke; Eisenhauer, Anton

    2015-01-01

    The recrystallisation (dissolution-precipitation) of carbonate sediments has been successfully modelled to explain profiles of pore water Sr concentration and radiogenic Sr isotope composition at different locations of the global ocean. However, there have been few systematic studies trying to better understand the relative importance of factors influencing the variability of carbonate recrystallisation. Here we present results from a multi-component study of recrystallisation in sediments from the Integrated Ocean Drilling Program (IODP) Expedition 320/321 Pacific Equatorial Age Transect (PEAT), where sediments of similar initial composition have been subjected to different diagenetic histories. The PEAT sites investigated exhibit variable pore water Sr concentrations gradients with the largest gradients in the youngest sites. Radiogenic Sr isotopes suggest recrystallisation was relative rapid, consistent with modelling of other sediment columns, as the 87Sr/86Sr ratios are indistinguishable (within 2σ uncertainties) from contemporaneous seawater 87Sr/86Sr ratios. Bulk carbonate leachates and associated pore waters of Site U1336 have lower 87Sr/86Sr ratios than contemporaneous seawater in sediments older than 20.2 Ma most likely resulting from the upward diffusion of Sr from older recrystallised carbonates. It seems that recrystallisation at Site U1336 may still be on-going at depths below 102.5 rmcd (revised metres composite depth) suggesting a late phase of recrystallisation. Furthermore, the lower Sr/Ca ratios of bulk carbonates of Site U1336 compared to the other PEAT sites suggest more extensive diagenetic alteration as less Sr is incorporated into secondary calcite. Compared to the other PEAT sites, U1336 has an inferred greater thermal gradient and a higher carbonate content. The enhanced thermal gradient seems to have made these sediments more reactive and enhanced recrystallisation. In this study we investigate stable Sr isotopes from carbonate-rich deep

  1. Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us?

    OpenAIRE

    K. R. Lassey; Etheridge, D. M.; Lowe, D. C.; Smith, A M; D. F. Ferretti

    2007-01-01

    Little is known about how the methane source inventory and sinks have evolved over recent centuries. New and detailed records of methane mixing ratio and isotopic composition (12CH4, 13CH4 and 14CH4) from analyses of air trapped in polar ice and firn can enhance this knowledge. We use existing bottom-up constructions of the source history, including "EDGAR"-based constructions, as inputs to a model of the evolving global budget for methane and for its carbon isotope composition thro...

  2. Constraints on the formation and diagenesis of phosphorites using carbonate clumped isotopes

    Science.gov (United States)

    Stolper, Daniel A.; Eiler, John M.

    2016-05-01

    The isotopic composition of apatites from sedimentary phosphorite deposits has been used previously to reconstruct ancient conditions on the surface of the Earth. However, questions remain as to whether these minerals retain their original isotopic composition or are modified during burial and lithification. To better understand how apatites in phosphorites form and are diagenetically modified, we present new isotopic measurements of δ18O values and clumped-isotope-based (Δ47) temperatures of carbonate groups in apatites from phosphorites from the past 265 million years. We compare these measurements to previously measured δ18O values of phosphate groups from the same apatites. These results indicate that the isotopic composition of many of the apatites do not record environmental conditions during formation but instead diagenetic conditions. To understand these results, we construct a model that describes the consequences of diagenetic modification of phosphorites as functions of the environmental conditions (i.e., temperature and δ18O values of the fluids) during initial precipitation and subsequent diagenesis. This model captures the basic features of the dataset and indicates that clumped-isotope-based temperatures provide additional quantitative constraints on both the formational environment of the apatites and subsequent diagenetic modification. Importantly, the combination of the model with the data indicates that the δ18O values and clumped-isotope temperatures recorded by phosphorites do not record either formation or diagenetic temperatures, but rather represent an integrated history that includes both the formation and diagenetic modification of the apatites.

  3. Structure and isotopic composition of bacterial lipids : Insight into distribution and carbon acquisition mechanisms of bacteria in hot spring microbial mats

    NARCIS (Netherlands)

    van der Meer, M.T.J.

    2002-01-01

    The results described in this thesis thus support the possibility that Precambrian organic matter enriched in ¹³C relative to what would be expected for organic matter produced by the Calvin cycle could be due to organisms using carbon fixation pathways other than the Calvin cycle.

  4. Structure and isotopic composition of bacterial lipids: insights into distribution and carbon acquisition mechanisms of bacteria in hot spring microbial mats

    NARCIS (Netherlands)

    Meer, M.T.J. van der

    2002-01-01

    The results described in this thesis thus support the possibility that Precambrian organic matter enriched in l3C relative to what would be expected for organic matter produced by the Calvin cycle could be due to organisms using carbon fixation pathways other than the Calvin cycle.

  5. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    This study documents variation of stable-carbon isotope ratios (13C/12C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  6. Coordinated In Situ Nanosims Analyses of H-C-O Isotopes in ALH 84001 Carbonates

    Science.gov (United States)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2016-01-01

    The surface geology and geomorphology of Mars indicate that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. This study reports the hydrogen, carbon, and oxygen isotope compositions of the ancient atmosphere/hydrosphere of Mars based on in situ ion microprobe analyses of approximately 4 Ga-old carbonates in Allan Hills (ALH) 84001. The ALH 84001 carbonates are the most promising targets because they are thought to have formed from fluid that was closely associated with the Noachian atmosphere. While there are a number of carbon and oxygen isotope studies of the ALH 84001 carbonates, in situ hydrogen isotope analyses of these carbonates are limited and were reported more than a decade ago. Well-documented coordinated in situ analyses of carbon, oxygen and hydrogen isotopes provide an internally consistent dataset that can be used to constrain the nature of the Noachian atmosphere/hydrosphere and may eventually shed light on the hypothesis of ancient watery Mars.

  7. Organic Carbon Isotope Geochemistry of the Neoproterozoic Doushantuo Formation, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG; ZHU Maoyan; PI Daohui; WANG Jian

    2006-01-01

    The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China,documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata,exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ13Corg = -35.0%) from the uppermost Nantuo Formation are followed by an overall increase in δ13C up-section. Carbon isotope values vary between -9.9% and 3.6% for carbonate and between -35.6% and -21.5% for organic carbon, respectively. Heavier δ13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin,reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.

  8. Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    OpenAIRE

    H. A. Abels; Lauretano, V.; A. van Yperen; T. Hopman; Zachos, J.C.; L. J. Lourens; Gingerich, P. D.; G. J. Bowen

    2015-01-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically-light carbon to the exogenic atmosphere–ocean carbon pool, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event, as well as to correlate marine and terrestrial records with high precision. The ...

  9. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  10. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean

    Science.gov (United States)

    Prasanna, K.; Ghosh, Prosenjit; Bhattacharya, S. K.; Mohan, K.; Anilkumar, N.

    2016-02-01

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ18O and δ13C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ18O and δ13C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a ‘vital effect’ or a higher calcification rate. An interesting pattern of increase in the δ13C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ13C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.

  11. Source identification of Malaysian atmosphere polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Tomoaki; Takada, Hideshige [Tokyo Univ. of Agriculture and Technology (Japan). Faculty of Agriculture; Kumata, Hidetoshi [Tokyo Univ. of Pharmacy and Life Sciences (Japan); Zakaria, M.P. [Universiti Putra Malaysia, Selangor (Malaysia). Dept. of Environmental Sciences; Naraoka, Hiroshi; Ishiwatari, Ryoshi [Tokyo Metropolitan Univ., Hachioji (Japan). Graduate School of Science

    2002-07-01

    We report measurements of molecular and carbon isotopic compositions of Malaysian atmospheric polycyclic aromatic hydrocarbons (PAHs) in smoke haze from the 1997 Indonesian forest fire. Comparison of the carbon isotopic compositions ({sup {delta}}1{sup 3C}) of individual PAHs from the smoke haze, with those from other PAHs sources (soot collected from gasoline and diesel vehicle muffler, woodburning smoke), enables us to discriminate among the diverse sources of atmospheric PAHs. Soot PAHs extracted from gasoline and diesel vehicles show heavy isotopic signatures with a large inter-species {sup {delta}}1{sup 3C} variation from {sup -}12.9 per mille to {sup -}26.6 per mille, compared to soot PAHs extracted from woodburning smoke which are isotopically light, and have a small inter-species {sup {delta}}{sup 13}C variation from {sup -}26.8 per mille to -31.6 per mille. Values from -17.7 per mille to -27.9 per mille were obtained for the corresponding PAHs extracted from the smoke haze, indicating that they are derived mainly from automotive exhaust. Molecular and isotopic compositions of PAHs extracted from smoke haze were similar to those extracted from non-haze aerosol. Quantitative estimation shows that woodburning contribution to Malaysian atmospheric PAHs ranges from 25% to 35% with no relation to haze intensity, while automotive contribution ranges from 65% to 75%. These results suggest that the major contributor of PAHs in Malaysian air is automotive exhaust whether smoke haze is observed or not. (Author)

  12. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations

    Science.gov (United States)

    Wang, Haijing; Yan, Hao; Liu, Zaihua

    2014-01-01

    Water samples and modern endogenic (thermogene) travertine calcite deposited on plexiglass substrates in travertine pools and a ramp stream were collected along the Huanglong Ravine, Sichuan, SW China at regular ∼10 day intervals from early May to early November in 2010, including both wet and dry conditions. Temporal and spatial variations in the δ13C and δ18O values of the modern travertine were examined to understand their potential for paleoclimatic and paleoenvironmental interpretations. It was found that δ13C and δ18O of travertine formed in the ramp stream were low in the warm rainy season and high in the cold dry season. Their positive correlation was mainly due to dilution and rainfall seasonal effects on δ13C and δ18O values, respectively, i.e., low δ13C values were caused by dilution by overland flow with depleted δ13C values and reduced CO2-degassing in the warm rainy season while low δ18O values of travertine were because of low δ18O values of water induced by seasonal variation in oxygen isotopic ratios of rainwater. Meanwhile, kinetic effect on oxygen isotopic fractionation during ramp travertine deposition existed and reduced this positive correlation. In contrast, the δ13C and δ18O values of the pool travertines displayed a converse behavior which was caused mainly by the temperature effect. Low δ18O values and high δ13C values in the warm rainy season were correlated chiefly with the higher water temperatures. Therefore, the δ13C and δ18O values of the travertine may be used for paleo-rainfall or paleotemperature reconstruction respectively. This study demonstrates that endogenic travertine, like epigenic (meteogene) tufa, may be a suitable candidate for high-resolution paleoclimatic and paleoenvironmental reconstructions. However, since travertines deposited under differing hydrodynamic conditions (e.g., pools with still water contrasted to fast flow streams) have different climatic responses, it is necessary to check the

  13. Variations in carbon and nitrogen stable isotopes of cryoconite

    Science.gov (United States)

    Takeuchi, N.

    2012-12-01

    Cryoconite is biogenic surface dust on snow and ice, and is commoly observed on glaciers worldwide. Because of their dark coloration, cryoconite substantially reduce surface albedo and accelerate melting of glaciers. Therefore, it is important to understand formation process of cryoconite to evaluate its effect on glacier melting. Although cryoconite consists of mineral particles and organic matter, organic fraction is more important in terms of albedo effect because it is usually darker color and accounts for major part of cryoconite in volume. The organic matter is derived from photosynthetic microbes such as cyanobacteria, and/or from windblown organic matter from ground soil around glaciers. Carbon (C) and nitrogen (N) stable isotopes of the organic matter could be useful to know their sources and to understand their cycles on glaciers. In this study, I analyzed carbon and nitrogen stable isotopes of cryoconite collected from 6 sites of different elevation from May to September on an Alaska glacier (Gulkana Glacier) to know their spatial and seasonal variations. I also analyze those collected from glaciers in Asia and Arctic to compare them among different geographical locations. Results on the Alaska glacier show that C and N stable isotopes of cryoconite organic mater significantly varied among elevations and seasons. C isotope was generally higher in lower elevation, probably due to higher photosynthetic activity in the lower elevation. In contrast, N isotope was constant on the ice area, but was lower in the snow area where the red snow algae were blooming. N isotope may be reflective of nitrogen availavility on the glacier surface. Geograpical comparison shows large variations in C and N isotopes among regions: higher C and N isotopes on Asian glaciers, lower C and N isotopes in Alaska, and lower C and higher N isotopes on Arctic glaciers. The isotope values suggest that algal production is a major carbon source on most of glaciers, but their productivity

  14. Carbon and oxygen isotope fractionation in dense interstellar clouds

    Science.gov (United States)

    Langer, W. D.; Graedel, T. E.; Frerking, M. A.; Armentrout, P. B.

    1984-01-01

    It is pointed out that isotope fractionation as a result of chemical reactions is due to the small zero-point energy differences between reactants and products of isotopically distinct species. Only at temperatures near absolute zero does this energy difference become significant. Favorable conditions for isotope fractionation on the considered basis exist in space within dense interstellar clouds. Temperatures of approximately 10 K may occur in these clouds. Under such conditions, ion-molecule reactions have the potential to distribute isotopes of hydrogen, carbon, oxygen unequally among the interstellar molecules. The present investigation makes use of a detailed model of the time-dependent chemistry of dense interstellar clouds to study cosmological isotope fractionation. Attention is given to fractionation chemistry and the calculation of rate parameters, the isotope fractionation results, and a comparison of theoretical results with observational data.

  15. The Palladium Isotopic Composition in Iron Meteorites

    Science.gov (United States)

    Chen, J. H.; Papanastassiou, D. A.

    2005-01-01

    Ru, Mo and Pd are very useful indicators for the identification of nucleosynthetic components. We have developed techniques for Pd isotopes, in an effort to check the extent of isotopic effects in this mass region and for a Pt-group element which is less refractory than Ru. Stable Pd isotopes are produced by the process only (102Pd), the s-process only (104Pd), the process only (Pd-110) and by both the r- and s-processes (Pd-105, Pd-106, Pd-108). Kelly and Wasserburg reported a hint of a shift in 102Pd (approx. 25(epsilon)u; 1(epsilon)u (triple bonds) 0.01%) in Santa Clara. Earlier searches for Mo and Ru isotopic anomalies were either positive or negative.

  16. Whole water column distribution and carbon isotopic composition of bulk particulate organic carbon, cholesterol and brassicasterol from the Cape Basin to the northern Weddell Gyre in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A.-J. Cavagna

    2012-02-01

    Full Text Available The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC and sterols provides a powerful approach to study ecological and environmental changes both in the modern and ancient ocean, but its application has so far been restricted to the surface area. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (Feb–Mar 2008 from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature.

    We document depth distributions of concentrations (relative to bulk POC and δ13C signatures of cholesterol and brassicasterol from the Cape Basin to the northern Weddell Gyre combined with CO2 aq. surface concentration variation. While relationships between surface water CO2 aq. and δ13C of bulk POC and biomarkers have been previously established for surface waters, our data show that these remain valid in deeper waters, suggesting that δ13C signatures of certain biomarkers could be developed as proxies for surface water CO2 aq. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects Additionally, in the southern part of the transect south of the Polar Front (PF, the release of sea-ice algae is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, combined use of δ13C and concentrations measurements of both bulk organic C and specific sterol markers throughout the water

  17. Evidence from carbon isotope measurements for biological origins of individual longchain n-alkanes in sediments from the Nansha Sea, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon isotopes are measured for individual long-chain n-alkanes in sediments from the Nansha Sea. The features of carbon isotopic compositions of individual n-alkanes and their origins are studied. The results show that the long-chain n-aikanes have a light carbon isotopic composition and a genetic feature of mixing sources, and low-latitude higher plants and microbes are considered to be their main end member sources. Based on the abundances and carbon isotopic compositions of individual n-alkanes, the fractional contributions of the two end member sources to individual n-aikanes are quantitatively calculated by using a mixing model. The obtained data indicate that the fractional contributions of the two biological sources are different in the three samples. A trend is that the contribution of microbes increases with the depth. These results provide the theory basis and quantitatively studied method for carbon isotopic applied research of individual n-alkanes.

  18. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter

    Science.gov (United States)

    von Fischer, J.C.; Tieszen, L.L.; Schimel, D.S.

    2008-01-01

    We analyzed the ??13 C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root ??13 C increased about 1??? between the A and B horizon, suggesting that C 4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  19. Variability (in time) of the isotopic composition of precipitation: consequences regarding the isotopic composition of hydrologic systems

    International Nuclear Information System (INIS)

    The stable isotopic signature in precipitation is primarily imposed by the synoptic history of the air masses, namely, by the vapour origin and the rainout history en route. Mixing patterns in the cloud and rain intensity affect the isotopic composition of rain to some extent. During the recharge to groundwaters, additional isotopic change may occur due to isotope fractionation which accompanies evaporative water loss from the surface or soil (mainly in arid zones), or selection of part of the rainfall by run off or transpiration. Changes in the meteorological pattern and climate express themselves 'isotopically' both due to the changing synoptic patterns and the secondary isotope fractionation and selection which accompany the rain forming and the groundwater recharge process. For the latter case, the rain intensities and the intervals between individual rain events are of major importance. (author). 23 refs, 6 figs

  20. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as p

  1. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of C-13 in CO2. Using a set of reference gases of known CO2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO2 concentration, and 0.05 per thousand for δC-13 at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of C-13 on CO2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO2 concentration and 1.3 per thousand for δC-13, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source. (authors)

  2. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    Science.gov (United States)

    Guillon, S.; Pili, E.; Agrinier, P.

    2012-05-01

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of δ 13C in CO2. Using a set of reference gases of known CO2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO2 concentration, and 0.05 ‰ for δ 13C at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of δ 13C on CO2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO2 concentration and 1.3 ‰ for δ 13C, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source.

  3. Mixing of water in a carbonate aquifer, southern Italy, analysed through stable isotope investigations

    Directory of Open Access Journals (Sweden)

    Petrella Emma

    2013-01-01

    Full Text Available Mixing of water was analysed in a carbonate aquifer, southern Italy, through stable isotope investigations (18O,δ2H. The input signal (rainwater was compared with the isotopic content of a 35-meter groundwater vertical prof ile, over a 1-year period. Within the studied aquifer, recharge and f low are diffuse in a well-connected f issure network.At the test site, the comparison between input and groundwater isotopic signals illustrates that no eff icient mixing takes place in the whole unsaturated zone, between the fresh inf iltration water and the stored water.When analysing the stable isotope composition of groundwater, signif icant variations were observed above the threshold elevation of 1062 m asl, while a nearly constant composition was observed below the same threshold. Thus, temporal variations in stable isotope composition of rainwater are completely attenuated just in the deeper phreatic zone.On the whole, taking into consideration also the results of previous studies in the same area, the investigations showed that physical characteristics of the carbonate bedrock, as well as aquifer heterogeneity, are factors of utmost importance in inf luencing the complete mixing of water. These f indings suggest a more complex scenario at catchment scale.

  4. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    Science.gov (United States)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  5. Organic Carbon Isotopic Evolution during the Ediacaran-Cambrian Transition Interval in Eastern Guizhou, South China: Paleoenvironmental and Stratigraphic Implications

    Institute of Scientific and Technical Information of China (English)

    YANG Xinglian; ZHU Maoyan; GUO Qingjun; ZHAO Yuanlong

    2007-01-01

    Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Guizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow shelf to deep basin of the Yangtze Platform.

  6. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  7. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-11-01

    Full Text Available Here we explore the potential of magnesium (δ26Mg isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰, and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰ but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰ suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰ are affected by glacial versus interglacial climate change with outside air temperature

  8. The magnesium isotope record of cave carbonate archives

    Directory of Open Access Journals (Sweden)

    S. Riechelmann

    2012-05-01

    Full Text Available Here we explore the potential of time-series magnesium (δ26Mg isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco, the warm-temperate (Germany, the equatorial-humid (Peru and the cold-humid (Austria climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07 ‰ and HK3: −4.17 ± 0.15 ‰ and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: −3.96 ± 0.04 ‰ but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07 ‰; BU 4 mean δ26Mg: −4.20 ± 0.10 ‰ record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73 ‰; SPA 59: −3.70 ± 0.43 ‰ are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity

  9. Marine Carbon-Sulfur Biogeochemical Cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, South China

    Institute of Scientific and Technical Information of China (English)

    Yang Peng; Yongbo Peng; Xianguo Lang; Haoran Ma; Kangjun Huang; Fangbing Li; Bing Shen

    2016-01-01

    ABSTRACT:Global occurrences of Steptoean Positive Carbon Isotope Excursion (SPICE) during Late Cambrian recorded a significant perturbation in marine carbon cycle, and might have had profound impacts on the biological evolution. In previous studies, SPICE has been reported from the Jiangnan slope belt in South China. To evaluate the bathymetric extent of SPICE, we investigate the limestone samples from the upper Qingxi Formation in the Shaijiang Section in the Jiangnan Basin. Our results show the positive excursions for both carbonate carbon (δ13C) and organic carbon (δ13Corg) isotopes, as well as the concurrent positive shifts in sulfur isotopes of carbonate associated sulfate (CAS, δ34SCAS) and pyrite (δ34Spyrite), unequivocally indicating the presence of SPICE in the Jiangnan Basin. A 4‰increase inδ13Ccarb of the Qingxi limestone implies the increase of the relative flux of organic carbon burial by a factor of two. Concurrent positive excursions inδ34SCAS andδ34Spyrite have been attributed to the enhanced pyrite burial in oceans with extremely low concentration and spatially heterogeneous isotopic composition of seawater sulfate. Here, we propose that the seawater sulfur isotopic heterogeneity can be generated by volatile organic sulfur compound (VOSC, such as methanethiol and dimethyl sulfide) formation in sulfidic continental margins that were widespread during SPICE. Emission of 32S-enriched VOSC in atmosphere, followed by lateral transportation and aerobic oxidation in atmosphere, and precipitation in open oceans result in a net flux of 32S from continental margins to open oceans, elevatingδ34S of seawater sulfate in continental margins. A simple box model indicates that about 35%to 75%of seawater sulfate in continental margins needs to be transported to open oceans via VOSC formation.

  10. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Monson, K.D.; Hayes, J.M. (Indiana Univ., Bloomington (USA). Dept. of Chemistry; Indiana Univ., Bloomington (USA). Dept. of Geology)

    1982-02-01

    Methods for the determination of /sup 13/C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO/sub 2/ quantitatively from the carboxyl groups of the separated cleavage products; and (4) the CO/sub 2/ is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3 parts per thousand in /sup 13/C relative to the glucose. This fractionation arises in the formation of acetyl-coenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in /sup 13/C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%.

  11. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes

    International Nuclear Information System (INIS)

    Methods for the determination of 13C abundances at individual olefinic carbon positions have been developed, tested, and shown to perform accurately. (1) The double bond is oxidized with ozone; (2) silver oxide is used to cleave the resulting ozonide quantitatively to carboxylic-acid fragments; (3) a modified Schmidt decarboxylation is used to produce CO2 quantitatively from the carboxyl groups of the separated cleavage products; and (4) the CO2 is utilized for mass spectrometric analysis. The results of intramolecular isotopic analyses are combined with molecular-average isotopic compositions determined by total combustion in order to show that fatty acids biosynthesized by Escherichia coli grown aerobically with glucose as the sole carbon source and harvested at late log phase are depleted by approximately 3 parts per thousand in 13C relative to the glucose. This fractionation arises in the formation of acetyl-coenzyme A by pyruvate dehydrogenase and is localized at the carboxyl position in the acetyl-CoA product. The isotopic order in that two-carbon subunit is carried through the biosynthesis of fatty acids so that alternate positions in the fatty-acid chains are depleted in 13C by an amount equal to twice the molecular-average depletion. The kinetic isotope effect at C-2 for pyruvate dehydrogenase in vivo is shown to be approximately 2.3%. (author)

  12. Carbon isotopic records inpaleosols over the Pliocene in Northern China: Implication on vegetation developmentand Tibetan uplift

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Carbon isotopic composition of pedogenic carbonate can be used to estimate the proportion of C4 and C3 plants. Here we present carbon isotopic data of carbonate in a red earth section at Xifeng, central Loess Plateau. Results show that C4 vegetation increased in ~4.4 Ma B.P., stabilized between 4.0 and 3.0 Ma B.P. The character and timing of C4 expansion on the Loess Plateau are similar, but different with other localities, e.g. Pakistan and Africa, implying that regional climate changes were main factors driving the expansion of C4 plants. This event is comparable in timing with increased aridity evidenced by Xifeng grain size and North Pacific eolian dust records. Therefore we argue that the Pliocene expansion of C4 plants in northern China might have been caused by the increased aridity, which in turn might be related to rapid uplift of the Tibetan Plateau.

  13. Stable Carbon Isotope Record in a Palau Sclerosponge

    Science.gov (United States)

    Grottoli, A. G.

    2002-12-01

    The ratio of stable carbon isotopes (δ13C) deposited in the calcium carbonate skeleton of marine sclerosponges appears to record the carbon isotopic composition of seawater mixed-layer dissolved inorganic carbon (δ13CDIC). Thus the δ13C signature chronicled in sclerosponge skeletons offers a promising multi-century proxy record of seawater mixed-layer δ13CDIC throughout the tropics. Here, a high-resolution (0.1 mm) δ13C record for a 7.7 cm Acanthocheatetes wellsi sclerosponge from Palau (7N, 134W) is presented. At a published growth rate of 0.45 mm per year, this record spans ~s170 years beginning in July 2001 and going back to 1831. The δ13C values for a definitive 10-year A. wellsi record spanning 1989-1998 were similar to δ13C values here for the first 4.7 mm of the record providing supporting evidence for the growth rate. The sclerosponge δ13C shows a distinct Seuss Effect. At the time this abstract was submitted, the analysis of the first 16 mm of the sclerosponge revealed a significant decrease in δ13C with time [δ13C = 0.02 (distance) + 2.64, r2 = 0.73, p < 0.0001, where time is marked by distance in millimeters from the growing edge] corresponding to a decrease in δ13C of 0.076‰ per decade. For comparison, published low-frequency measurements in Australian, New Caledonian and Jamaican sclerosponges have yielded decreases in δ13C of ~s0.05 to 0.08 ‰ per decade over the past 40 years. Preliminary interpretation of the data indicates that the amount of atmospheric CO2 contributing to the seawater δ13CDIC at Palau is intermediate to Australia and Jamaica. In addition, visual examination of the δ13C record reveals regular fluctuation in δ13C that may correspond to annual variability in δ13CDIC. This research presents the first century or longer sclerosponge δ13C record from the northwester equatorial Pacific.

  14. Certification of the uranium hexafluoride reference materials for isotopic composition

    OpenAIRE

    MIALLE SÉBASTIEN; Richter, Stephan; HENNESSY Carmel; TRUYENS Jan; Jakobsson, Ulf; Aregbe, Yetunde

    2014-01-01

    The IRMM-019 to IRMM-029 series of uranium hexafluoride materials is certified for the isotopic composition. After conversion into uranyl nitrate solution, certification and homogeneity measurements were performed by Thermal Ionization Mass Spectrometry. Analyses were performed by Modified Total Evaporation and for some materials the major isotope amount ratio n(235U)/n(238U) was measured using a n(233U)/n(236U) double spike. Measurements were confirmed by UF6 Gas Source Mass Spectrometry. Ma...

  15. Plutonium isotopic composition by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    We discuss the general approach, computerized data analysis methods, and results of measurements to determine the isotopic composition of plutonium by gamma-ray spectroscopy. The simple techniques are designed to be applicable to samples of arbitrary size, geometry, chemical and isotopic composition that have attained 241Pu-237U equilibrium. The combination of the gamma spectroscopic measurement of isotopic composition coupled with calorimetric measurement of total sample power is shown to give a totally nondestructive determination of sample Pu mass with a precision of 0.6% for 1000-g samples of PuO2 with 12% 240Pu content. The precision of isotopic measurements depends upon many factors including sample size, sample geometry, and isotopic content. Typical ranges are found to be 238Pu, 239Pu, 0.1 to 0.5%; 240Pu, 2 to 5%; 241Pu, 0.3 to 0.7%; 242Pu (determined by isotopic correlation); and 241Am, 0.2 to 10%

  16. Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces

    Directory of Open Access Journals (Sweden)

    D. Codron

    2005-06-01

    Full Text Available In African savannas, browse-based resources (@3 plants are isotopically distinct from grasses (@4 plants. The carbon isotopic composition of the basic plant diet is recorded in animal tissues. Mammal faeces are a readily accessible, non-invasive, sample material for temporally resolved dietary reconstructions. Faeces, however, include both undigested plant matter and waste, hence accuracy of dietary calculations could potentially be compromised by shifts in plant isotopic values related to seasonal or spatial differences, or by variability in the isotopic differences between faeces and diet. A controlled feeding study of four ungulate species showed a small, consistent difference between diet and faeces of-0.9 o, irrespective of whether the diet was @3 or C4-based. Results from faeces oftaxa known to be pure grazers, pure browsers, and mixed-feeders from the Kruger National Park were entirely consistent with their diets, but the accuracy of dietary reconstructions is enhanced with data from local plant communities.

  17. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    Science.gov (United States)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration-rotation first and second-overtone CO lines in 1.5-2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2-2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected for

  18. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    Science.gov (United States)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected

  19. Vertical Stratification Changes During the Last Deglaciation Based on Foraminiferal Neodymium and Carbon Isotopes

    Science.gov (United States)

    Piotrowski, A. M.; Noble, T. L.; Roberts, N. L.; Yu, J.

    2011-12-01

    Reorganizations of the vertical structure of the ocean are believed to have occurred during major climate transitions. Some studies utilizing nutrient tracers have suggested that North Atlantic intermediate and deep ocean circulation changed together during the last deglaciation, in a manner consistent with reorganizations of the global thermohaline circulation (Rickaby and Elderfield, 2005). A strong vertical gradient in carbon isotopes, or chemocline, existed at ~2.5 km-bsl the glacial South Atlantic sector of the Southern Ocean, which may have been due to different intermediate and deep water sourcing (Hodell et al., 2003). We present new Nd isotope records from globally-distributed intermediate sites in the North Atlantic, South Atlantic, and Pacific Ocean, comparing them to Nd isotope records from proximal deep sites to examine whether there is a global coherency to changes in intermediate and deep water mass sourcing. Comparison of Nd isotopes from vertical transects in the ocean also allows us to address an important geochemical debate about REE cycling in the ocean; whether long-distance horizontal advection or local boundary exchange from sediments plays a more important role in labelling the Nd isotopic composition of seawater. Down-slope vertical transport of sediments from the continental shelf to the deep ocean should mean that under conditions where boundary exchange is dominant, intermediate and deep waters will be labelled with similar Nd isotopic compositions and it will also cause them to covary together through time. We show that the Nd isotopic composition of intermediate depth cores in the South Atlantic and Pacific sectors of the Southern Ocean record small changes of ~1 epsilon unit or less during the deglaciation. As is the case with C isotopes, a stronger vertical Nd isotope gradient existed in the South Atlantic during the last glacial. Nd and C isotopes changed together at intermediate-depth ODP Site 1088 in the South Atlantic in a manner

  20. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  1. ­­A Clumped Isotope Calibration for Terrestrial Microbial Carbonates

    Science.gov (United States)

    Petryshyn, V. A.; Mering, J. A.; Mitsunaga, B. A.; Eagle, R.; Dunbar, R. B.; Bhattacharya, A.; Tripati, A.

    2014-12-01

    Accurate terrestrial paleotemperature records are key pieces of information in the paleoenvironmental reconstruction of Earth history. These records aid in building reliable climate models and help scientists understand the links between continental and oceanic climate data. Many different types of analyses are used to estimate terrestrial climate shifts, including leaf margin analysis, palynology, glacial deposits, elemental ratios, organic geochemistry, and stable isotopes of lacustrine deposits. Here we report a carbonate clumped isotope calibration for microbial carbonates. Application of the clumped isotope paleothermometer can potentially provide a direct temperature measurement of the water at the time of carbonate formation. Although different calibrations of the paleothermometer have been published for both inorganic and biotic carbonate minerals, the effects of clumping in microbialites (structures built under the influence of microbial activity) have not yet been quantified. Lacustrine microbialites present a potentially large, untapped archive of terrestrial climate data, however they are not strictly biotic or abiotic, but bio-induced carbonate, meaning that organisms (such as photosynthetic bacteria) influence but do not directly control precipitation. We have measured modern microbialites from multiple lacustrine sites and will report a comparison of these results to known water temperatures. Additionally we will compare lacustrine samples to marine microbialites (e.g., samples from Shark Bay) to assess potential differences between lacustrine and marine intertidal environments on clumped isotope compositions.

  2. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    Science.gov (United States)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  3. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    Science.gov (United States)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  4. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale

    Science.gov (United States)

    Hayes, J. M.; Takigiku, Ray; Ocampo, Ruben; Callot, Enry J.; Albrecht, Pierre

    1987-01-01

    It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Messel shale, accumulated 47 + or - 2 million years ago in anaerobic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. The C-13 content of organic matter synthesized by lacustrine primary producers can be estimated from the observed C-13 content of the geoporphyrins derived from their chlorophylls. Total organic material in the shale is depleted in C-13 by six parts per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria.

  5. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein.

    Science.gov (United States)

    McMahon, Kelton W; Fogel, Marilyn L; Elsdon, Travis S; Thorrold, Simon R

    2010-09-01

    1. Analysis of stable carbon isotopes is a valuable tool for studies of diet, habitat use and migration. However, significant variability in the degree of trophic fractionation (Delta(13)C(C-D)) between consumer (C) and diet (D) has highlighted our lack of understanding of the biochemical and physiological underpinnings of stable isotope ratios in tissues. 2. An opportunity now exists to increase the specificity of dietary studies by analyzing the delta(13)C values of amino acids (AAs). Common mummichogs (Fundulus heteroclitus, Linnaeus 1766) were reared on four isotopically distinct diets to examine individual AA Delta(13)C(C-D) variability in fish muscle. 3. Modest bulk tissue Delta(13)C(C-D) values reflected relatively large trophic fractionation for many non-essential AAs and little to no fractionation for all essential AAs. 4. Essential AA delta(13)C values were not significantly different between diet and consumer (Delta(13)C(C-D) = 0.0 +/- 0.4 per thousand), making them ideal tracers of carbon sources at the base of the food web. Stable isotope analysis of muscle essential AAs provides a promising tool for dietary reconstruction and identifying baseline delta(13)C values to track animal movement through isotopically distinct food webs. 5. Non-essential AA Delta(13)C(C-D) values showed evidence of both de novo biosynthesis and direct isotopic routing from dietary protein. We attributed patterns in Delta(13)C(C-D) to variability in protein content and AA composition of the diet as well as differential utilization of dietary constituents contributing to the bulk carbon pool. This variability illustrates the complicated nature of metabolism and suggests caution must be taken with the assumptions used to interpret bulk stable isotope data in dietary studies. 6. Our study is the first to investigate the expression of AA Delta(13)C(C-D) values for a marine vertebrate and should provide for significant refinements in studies of diet, habitat use and migration using

  6. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  7. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  8. Carbon, cesium and iodine isotopes in Japanese cedar leaves from Iwaki, Fukushima

    DEFF Research Database (Denmark)

    Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.;

    2016-01-01

    Japanese cedar leaves from Iwaki, Fukushima were analyzed for carbon, cesium and iodine isotopic compositions before and after the 2011 nuclear accident. The Δ14C values reflect ambient atmospheric 14C concentrations during the year the leaves were sampled/defoliated, and also previous year......(s). The elevated 129I and 134,137Cs concentrations are attributed to direct exposure to the radioactive fallout for the pre-fallout-expended leaves and to internal translocation from older parts of the tree for post-fallout-expended leaves. 134Cs/137Cs and 129I/137Cs activity ratios suggest insignificant isotopic...

  9. Calibration of the carbonate `clumped isotope' paleotemperature proxy using mollusc shells and benthic foraminiferal tests

    Science.gov (United States)

    Came, R. E.; Curry, W. B.; Weidman, C. R.; Eiler, J. M.

    2007-12-01

    It has recently been shown that the carbonate `clumped isotope' thermometer can provide temperature constraints that depend only on the isotopic composition of carbonate (in particular, on the proportion of 13C and 18O that form bonds with each other), and that do not require assumptions about the isotopic composition of the water in which the carbonate formed (Ghosh et al., 2006). Furthermore, this novel method permits the calculation of seawater δ18O based on the clumped isotope temperature estimates and the simultaneously obtained δ18O of carbonate, thereby enabling the extraction of global ice volume estimates for both the recent and distant geologic past. Here we present clumped isotope analyses of several naturally occurring marine carbonates that calcified at known temperatures in the modern ocean. First, we analyzed benthic foraminiferal tests from six high-quality multicore tops collected in the Florida Strait, spanning a temperature range of 9.3-20.2 degrees C. Second, we analyzed shallow-water mollusc shells from a variety of different climate regimes, spanning a temperature range of 2.5-26.0 degrees C. We find that the calcitic foraminiferal species Cibicidoides spp. agrees well with the inorganic calcite precipitation experiments of Ghosh et al. (2006), while the aragonitic species Hoeglundina elegans is significantly offset. Similarly, clumped isotope results obtained from aragonitic mollusc shells also reveal an offset from the Ghosh et al. (2006) trend, although the offset observed in mollusc aragonite is quite different in nature from that observed in foraminiferal aragonite. Assuming our estimates of the growth temperatures of these naturally occurring organisms are correct, these results suggest that there are vital effects associated with the stable isotope compositions of the aragonite-precipitating organisms examined in this study; further work will be required to determine their cause. Nevertheless, the internal coherence of trends for

  10. Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria)

    Science.gov (United States)

    Ruhl, Micha; Kürschner, Wolfram M.; Krystyn, Leopold

    2009-05-01

    The late Triassic period is recognized as one of the five major mass extinctions in the fossil record. All these important intervals in earth history are associated with excursions in C-isotope records thought to have been caused by perturbations in the global carbon cycle. The nature and causes of C-isotopic events across the Triassic-Jurassic (T-J) transition however, are poorly understood. We present several new high resolution organic C-isotope records from the Eiberg Basin, Austria, including the proposed Global boundary Stratotype Section and Point (GSSP) for the base of the Jurassic. The Triassic-Jurassic boundary interval in these records is characterized by the initial and main negative organic carbon isotope excursions (CIE) of up to 8‰. The initial and main CIEs are biostratigraphically constrained by first and last occurrences of boundary defining macro- and microfossils (e.g. ammonites). High resolution C-isotope records appear to be an excellent correlation proxy for this period in the Eiberg Basin. Pyrolysis analysis demonstrates increased Hydrogen Index (HI) values for organic matter coinciding with the initial CIE. Terrestrial organic matter influx and mass occurrences of green algae remains may have influenced the C-isotope composition of the sedimentary organic matter. This may have contributed to the extreme amplitude of the initial CIE in the Eiberg Basin.

  11. Method for fabricating composite carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  12. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  13. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  14. Aptian Carbon Isotope Stratigraphy in Sierra del Rosario, Northeastern Mexico

    Science.gov (United States)

    Barragan-Manzo, R.; Moreno-Bedmar, J.; Nuñez, F.; Company, M.

    2013-05-01

    In most recent years Aptian carbon isotope stratigraphy has been widely studied in Europe where isotopic stages have been developed to correlate global events. Two negative excursions have been recorded in the Lower Aptian, the older is OAE 1a in the middle part, and a younger negative excursion labeled "Aparein level", which occurs in the uppermost part of the Lower Aptian. In Mexico previous works reported a carbon isotope negative excursion in the lowermost part of the La Peña Formation that was assigned to the onset of Oceanic Anoxic Event 1a (=OAE 1a). In this work we study the isotopic record of the δ13Ccarb of 32 bulk rock samples of limestone from the uppermost part of the Cupido Formation and the lower part of the La Peña Formation at the Francisco Zarco Dam Section (=FZD), Durango State, northeastern Mexico. The isotopic data are calibrated using the latest ammonite biostratigraphic biozonation of the Aptian. This age calibration allows us to make a precise correlation between the carbon isotopic record of Mexico and several European sections (e.g. Spain and France). In the studied Francisco Zarco Dam section we recognize a negative carbon isotopic excursion in the Dufrenoyia justinae ammonite Zone that corresponds to the "Aparein level", which we correlate using the ammonite zonation of others European sections (Figure 1). This correlation allows us to see how the negative excursion that characterizes the "Aparein level" is consistent with the C7 segment. Thus, our recent stratigraphic study allows us to conclude that the ammonite record in the lowermost part of the La Peña Formation is regionally isochronous, and correlates with the Dufrenoyia justinae Zone and Lower Aptian isotope interval C7. In agreement to these biostratigraphic data, the supposed record of the OAE 1a in the lowermost part of the La Peña Formation is not correct, and the carbon isotope negative excursion must be assigned to the younger event "Aparein level". Taking this into

  15. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  16. Isotopic evolution of the terminal Neoproterozoic and early Cambrian carbon cycle on the northern Yangtze Platform, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG

    2003-01-01

    Profound geotectonic, climatic and biological changes occur during the terminal Neoproterozoic and its transition into the early Cambrian. These are reflected in temporal variations of the chemical and isotopic composition of seawater. We are studying a sequence of sedimentary rocks at the Shatan section, northern Yangtze Platform, Sichuan Province of China. This succession comprises, in ascending stratigraphic order, predominantly calcareous sediments of the Sinian upper Dengying Formation and black shales of the lower Cambrian Guojiaba Formation (time equivalent of Niutitang Fm.). Paleoenvironmental setting represents shallow-water shelf deposits. The objective of our study is to provide temporal records for the isotopic compositions of organic and carbonate carbon throughout this time interval. Organic carbon isotope values display a range between -35.8‰ and -30.1‰ with clear stratigraphic variations. Carbonate carbon isotope data vary between -3.5‰ and +0.5‰. These secular variations are interpreted to reflect perturbations of the global carbon cycle, specifically changes in the fractional burial of organic carbon. However, local conditions have further affected the isotopic signals.

  17. Transient carbon isotope changes in complex systems: Finding the global signal, embracing the local signal

    Science.gov (United States)

    Bowen, G. J.; Schneider-Mor, A.; Filley, T. R.

    2008-12-01

    Global, transient carbon isotope excursions (CIEs) in the geological record are increasingly invoked as evidence of short-lived changes in carbon fluxes to/from the ocean-atmosphere-biosphere (exogenic) system. Reconstructing the dynamics of carbon cycle perturbation and response during such events requires that the global extent, magnitude, and temporal pattern of carbon isotope change are well understood. Unfortunately, no simple, globally integrated measure of exogenic δ13C change exists in the geological record: during major global perturbations even the best-case candidates such as deep-ocean carbonate δ13C values likely respond to a complex of factors including ocean carbonate chemistry and circulation. Here we consider the utility of organic carbon isotope records from two complex depositional systems common in the geological record, fossil soils and continental margin sediments, which are of interest in terms of their relationship to organic carbon cycling and records of past ecological change. Within both systems changes in ecology, climate, carbon source, residence time, and molecular composition have clear potential to modulate the preserved record of global exogenic δ13C change, compromising 1st-order interpretations of bulk or compound-specific isotopic records. Process-explicit eco- geochemical models, ideally combined with multi-substrate data, provide one approach to the isolation of global δ13C change and identification of local or regional processes reflected in such records. Examples from both systems drawn from ongoing work on the Paleocene-Eocene thermal maximum illustrate the potential pitfalls, as well as opportunities, afforded by coupled data/model assessment of transient δ13C changes in complex systems.

  18. Determining the oxygen isotope composition of evapotranspiration with eddy covariance

    Science.gov (United States)

    The oxygen isotope componsition of evapotranspiration (dF) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here we demonstrate direct measurement of dF based on eddy covariance (EC) and tunable diode laser (EC-TDL) techni...

  19. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  20. Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest. Final Report and Conference Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Maureen H

    2008-04-10

    Carbon dioxide is the major “greenhouse” gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

  1. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  2. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    Science.gov (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  3. Carbon nanostructure composite for electromagnetic interference shielding

    Indian Academy of Sciences (India)

    Anupama Joshi; Suwarna Datar

    2015-06-01

    This communication reviews current developments in carbon nanostructure-based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference. Conventionally, metal-based shielding materials have been used. But due to the requirement of light weight, corrosion resistive materials, lot of work is being done on composite materials. In this research the forerunner is the nanocarbon-based composite material whose different forms add different characteristics to the composite. The article focusses on composites based on graphene, graphene oxide, carbon nanotubes, and several other novel forms of carbon.

  4. Stable isotope composition of cocoa beans of different geographical origin.

    Science.gov (United States)

    Perini, Matteo; Bontempo, Luana; Ziller, Luca; Barbero, Alice; Caligiani, Augusta; Camin, Federica

    2016-09-01

    The isotopic profile (δ(13) C, δ(15) N, δ(18) O, δ(2) H, δ(34) S) was used to characterise a wide selection of cocoa beans from different renowned production areas (Africa, Asia, Central and South America). The factors most influencing the isotopic signatures of cocoa beans were climate and altitude for δ(13) C and the isotopic composition of precipitation water for δ(18) O and δ(2) H, whereas δ(15) N and δ(34) S were primarily affected by geology and fertilisation practises. Multi-isotopic analysis was shown to be sufficiently effective in determining the geographical origin of cocoa beans, and combining it with Canonical Discriminant Analysis led to more than 80% of samples being correctly reclassified. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27484307