WorldWideScience

Sample records for carbon ionic liquid

  1. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  2. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  3. Combined reactions and separations using ionic liquids and carbon dioxide

    NARCIS (Netherlands)

    Kroon, M.C.

    2006-01-01

    A new and general type of process for the chemical industry is presented using ionic liquids and supercritical carbon dioxide as combined reaction and separation media. In this process, the carbon dioxide pressure controls the miscibility of reactants, products, catalyst and ionic liquid, enabling f

  4. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  5. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  6. Carbon dioxide in ionic liquid microemulsions.

    Science.gov (United States)

    Zhang, Jianling; Han, Buxing; Li, Jianshen; Zhao, Yueju; Yang, Guanying

    2011-10-10

    Tailor-made emulsion: a CO(2) -in-ionic-liquid microemulsion was produced for the first time. The CO(2)-swollen micelles are "tunable" because the micellar size can be easily adjusted by changing the pressure of CO(2). The microemulsion has potential applications in materials synthesis, chemical reactions, and extraction. PMID:21898733

  7. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  8. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  9. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Kamalakanta Behera

    2015-12-01

    Full Text Available Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability, ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2 gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  10. Carbons, Ionic Liquids, and Quinones for Electrochemical Capacitors

    OpenAIRE

    Díaz-Delgado, Raül; Doherty, Andrew P.

    2016-01-01

    Carbons are the main electrode materials used in supercapacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density capacity will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternati...

  11. Carbons, ionic liquids and quinones for electrochemical capacitors

    OpenAIRE

    Raul eDiaz; Doherty, Andrew P.

    2016-01-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alterna...

  12. Carbons, ionic liquids and quinones for electrochemical capacitors

    Science.gov (United States)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  13. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  14. Carbon dioxide in an ionic liquid: Structural and rotational dynamics

    Science.gov (United States)

    Giammanco, Chiara H.; Kramer, Patrick L.; Yamada, Steven A.; Nishida, Jun; Tamimi, Amr; Fayer, Michael D.

    2016-03-01

    Ionic liquids (ILs), which have widely tunable structural motifs and intermolecular interactions with solutes, have been proposed as possible carbon capture media. To inform the choice of an optimal ionic liquid system, it can be useful to understand the details of dynamics and interactions on fundamental time scales (femtoseconds to picoseconds) of dissolved gases, particularly carbon dioxide (CO2), within the complex solvation structures present in these uniquely organized materials. The rotational and local structural fluctuation dynamics of CO2 in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2) were investigated by using ultrafast infrared spectroscopy to interrogate the CO2 asymmetric stretch. Polarization-selective pump probe measurements yielded the orientational correlation function of the CO2 vibrational transition dipole. It was found that reorientation of the carbon dioxide occurs on 3 time scales: 0.91 ± 0.03, 8.3 ± 0.1, 54 ± 1 ps. The initial two are attributed to restricted wobbling motions originating from a gating of CO2 motions by the IL cations and anions. The final (slowest) decay corresponds to complete orientational randomization. Two-dimensional infrared vibrational echo (2D IR) spectroscopy provided information on structural rearrangements, which cause spectral diffusion, through the time dependence of the 2D line shape. Analysis of the time-dependent 2D IR spectra yields the frequency-frequency correlation function (FFCF). Polarization-selective 2D IR experiments conducted on the CO2 asymmetric stretch in the parallel- and perpendicular-pumped geometries yield significantly different FFCFs due to a phenomenon known as reorientation-induced spectral diffusion (RISD), revealing strong vector interactions with the liquid structures that evolve slowly on the (independently measured) rotation time scales. To separate the RISD contribution to the FFCF from the structural spectral

  15. Carbon-Carbon Cross Coupling Reactions in Ionic Liquids Catalysed by Palladium Metal Nanoparticles

    OpenAIRE

    Martin H. G. Prechtl; Scholten, Jackson D.; Jairton Dupont

    2010-01-01

    A brief summary of selected pioneering and mechanistic contributions in the field of carbon-carbon cross-coupling reactions with palladium nanoparticles (Pd-NPs) in ionic liquids (ILs) is presented. Five exemplary model systems using the Pd-NPs/ILs approach are presented: Heck, Suzuki, Stille, Sonogashira and Ullmann reactions which all have in common the use of ionic liquids as reaction media and the use of palladium nanoparticles as reservoir for the catalytically active palladium species.

  16. Ultrafast diffusion of Ionic Liquids Confined in Carbon Nanotubes.

    Science.gov (United States)

    Ghoufi, Aziz; Szymczyk, Anthony; Malfreyt, Patrice

    2016-01-01

    Over the past decade many works have focused on various aspects of the dynamics of liquids confined at the nanoscale such as e.g. water flow enhancement through carbon nanotubes (CNTs). Transport of room temperature ionic liquids (RTILs) through various nanochannels has also been explored and some conflicting findings about their translational dynamics have been reported. In this work, we focus on translational dynamics of RTILs confined in various CNTs. By means of molecular dynamics simulations we highlight a substantially enhanced diffusion of confined RTILs with an increase up to two orders of magnitude with respect to bulk-phase properties. This ultrafast diffusion of RTILs inside CNTs is shown to result from the combination of various factors such as low friction, molecular stacking, size, helicity, curvature and cooperative dynamics effects. PMID:27334208

  17. Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-17

    The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.

  18. High performance batteries with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  19. Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid

    International Nuclear Information System (INIS)

    A lipase from Pseudomonas cepacia was immobilized onto single walled carbon nanotubes (SWNTs) in two different ways in each of two solvent systems (buffer and ionic liquid). The most efficient immobilization was achieved in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-BF4). In this procedure, carbon nanotubes were first functionalized noncovalently with 1-pyrenebutyric acid N-hydroxysuccinimide ester and then subject to the coupling reaction with the lipase in ionic liquid. The resulting immobilized enzyme displayed the highest activity in the transesterification of 1-phenylethyl alcohol in the presence of vinyl acetate in toluene

  20. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF6 or the mixture of HMIMPF6/paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  1. Promotion of Ionic Liquid to Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    CAI,Qing-Hai(蔡清海); ZHANG,Li(张丽); SHAN,Yong-Kui(单永奎); HE,Ming-Yuan(何鸣元)

    2004-01-01

    Promotion of ionic liquid,1-ethyl-3-methylimidazolium bromide (emimBr),to the synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the presence of potassium carbonate and less amount of methyl iodide under mild conditions was investigated.The results showed that the high selectivity and raised yield of DMC was achieved due to the addition of emimBr in the reaction system.And effect of several reaction conditions such as temperature,pressure and amount of emimBr was discussed.

  2. Ion field-evaporation from ionic liquids infusing carbon xerogel microtips

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, C. S., E-mail: carlita@mit.edu; Lozano, P. C. [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-27

    Ionic liquid ion sources capable of producing positive and negative molecular ion beams from room-temperature molten salts have applications in diverse fields, from materials science to space propulsion. The electrostatic stressing of these ionic liquids places the liquid surfaces in a delicate balance that could yield unwanted droplet emission when not properly controlled. Micro-tip emitter configurations are required to guarantee that these sources will operate in a pure ionic regime with no additional droplets. Porous carbon based on resorcinol-formaldehyde xerogels is introduced as an emitter substrate. It is demonstrated that this material can be shaped to the required micron-sized geometry and has appropriate transport properties to favor pure ionic emission. Time-of-flight mass spectrometry is used to verify that charged particle beams contain solvated ions exclusively.

  3. Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhihong [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Xiaoying; Zhuang Xiaoming [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zeng Yan [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Wei, E-mail: sunwei@qust.edu.c [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Huang Xintang [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China)

    2010-11-01

    The single-walled carbon nanotubes (SWCNTs) modified carbon ionic liquid electrode (CILE) was designed and further used for the voltammetric detection of rutin in this paper. CILE was prepared by mixing graphite powder with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate and liquid paraffin together. Based on the interaction of SWCNTs with IL present on the electrode surface, a stable SWCNTs film was formed on the CILE to get a modified electrode denoted as SWCNTs/CILE. The characteristics of SWCNTs/CILE were recorded by different methods including cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The electrochemical behaviors of rutin on the SWCNTs/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. Due to the specific interface provided by the SWCNTs-IL film, the electrochemical response of rutin was greatly enhanced with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The oxidation peak currents showed good linear relationship with the rutin concentration in the range from 1.0 x 10{sup -7} to 8.0 x 10{sup -4} mol/L with the detection limit as 7.0 x 10{sup -8} mol/L (3{sigma}). The SWCNTs/CILE showed the advantages such as excellent selectivity, improved performance, good stability and it was further applied to the rutin tablets sample detection with satisfactory results.

  4. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, A.; Dugas, R.; Taberna, P.L.; Simon, P. [Universite Paul Sabatier, CIRIMAT, UMR CNRS 5085, 118 Route de Narbonne, 31062 Toulouse Cedex (France); Plee, D. [ARKEMA, GRL, RN 117, 64170 Lacq (France); Mastragostino, M. [Universita di Bologna, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, Sede Amministrativa, via San Donato 15, 40127 Bologna (Italy); Passerini, S. [ENEA (Italian National Agency for New Technologies, Energy and Environment), IDROCOMB, Casaccia Research Center, Via Anguillarese 301, 00060 Rome (Italy)

    2007-03-20

    This paper presents results about the electrochemical and cycling characterizations of a supercapacitor cell using a microporous activated carbon as the active material and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR{sub 14}TFSI) ionic liquid as the electrolyte. The microporous activated carbon exhibited a specific capacitance of 60 F g{sup -1} measured from the three-electrode cyclic voltammetry experiments at 20 mV s{sup -1} scan rate, with a maximum operating potential range of 4.5 V at 60 C. A coin cell assembled with this microporous activated carbon and PYR{sub 14}TFSI as the electrolyte was cycled for 40,000 cycles without any change of cell resistance (9 {omega} cm{sup 2}), at a voltage up to 3.5 V at 60 C, demonstrating a high cycling stability as well as a high stable specific capacitance in this ionic liquid electrolyte. These high performances make now this type of supercapacitor suitable for high temperature applications ({>=}60 C). (author)

  5. Electrochemical determination of hydroquinone using hydrophobic ionic liquid-type carbon paste electrodes

    OpenAIRE

    Liu Hongtao; Tang Yougen; She Yiyi; He Ping

    2010-01-01

    Abstract Three types of carbon paste electrodes (CPEs) with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II) probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion...

  6. Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea.

    Science.gov (United States)

    Lin, Zhenzhen; Wang, Xinchen

    2014-06-01

    To allow for simultaneous textural engineering and doping of carbon nitride materials with heteroatoms, urea has been polymerized with an ionic liquid. The role of urea is to create a delamination effect during carbon nitride synthesis, whereas ionic liquid functions as texture modifier as well as B/F dopant source. This will result in the rational fabrication of boron- and fluorine-containing 2D carbon nitride nanosheets with enhanced optical harvesting and charge separation capabilities for hydrogen evolution catalysis using visible light. We believe that the innovative modification strategy developed herein can be coupled with the already known modification tools of 2D carbon nitride, thus further developing a new family of light-harvesting 2D platforms for the efficient and sustained utilization of solar radiation for a variety of advanced applications, including CO2 photofixation, organic photosynthesis, and pollutant controls.

  7. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid

    Science.gov (United States)

    Giacomo Bettini, Luca; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-01

    Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  8. Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material

    Science.gov (United States)

    Kong, Lirong; Chen, Wei

    2015-01-01

    Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials. PMID:26656464

  9. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  10. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  11. Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.

    Science.gov (United States)

    Imaizumi, Satoru; Ohtsuki, Yuto; Yasuda, Tomohiro; Kokubo, Hisashi; Watanabe, Masayoshi

    2013-07-10

    We present here printable high-performance polymer actuators comprising ionic liquid (IL), soluble polyimide, and ubiquitous carbon materials. Polymer electrolytes with high ionic conductivity and reliable mechanical strength are required for high-performance polymer actuators. The developed polymer electrolytes comprised a soluble sulfonated polyimide (SPI) and IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]), and they exhibited acceptable ionic conductivity up to 1 × 10(-3) S cm(-1) and favorable mechanical properties (elastic modulus >1 × 10(7) Pa). Polymer actuators based on SPI/[C2mim][NTf2] electrolytes were prepared using inexpensive activated carbon (AC) together with highly electron-conducting carbon such as acetylene black (AB), vapor grown carbon fiber (VGCF), and Ketjen black (KB). The resulting polymer actuators have a trilaminar electric double-layer capacitor structure, consisting of a polymer electrolyte layer sandwiched between carbon electrode layers. Displacement, response speed, and durability of the actuators depended on the combination of carbons. Especially the actuators with mixed AC/KB carbon electrodes exhibited relatively large displacement and high-speed response, and they kept 80% of the initial displacement even after more than 5000 cycles. The generated force of the actuators correlated with the elastic modulus of SPI/[C2mim][NTf2] electrolytes. The displacement of the actuators was proportional to the accumulated electric charge in the electrodes, regardless of carbon materials, and agreed well with the previously proposed displacement model. PMID:23738653

  12. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  13. Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Mysyk, R.; Raymundo-Pinero, E.; Beguin, F. [CRMD, CNRS-University, 1B rue de la Ferollerie, 45071 Orleans (France); Anouti, M.; Lemordant, D. [Universite Francois Rabelais, Laboratoire PCMB/CIME, Parc de Grandmont, 37200 Tours (France)

    2010-03-15

    Protic ionic liquids (PILs) were used as novel electrolyte for carbon-based supercapacitors. The cyclic voltammograms in three-electrode cells show reversible redox humps, revealing pseudo-faradaic charge transfer. Oxidative treatment of activated carbon enriches the surface functionality and leads to a higher capacitance owing to a stronger pseudo-faradaic contribution. The capacitors using PILs demonstrate a higher voltage window than with aqueous H{sub 2}SO{sub 4}, while keeping the same values of capacitance, and being able to operate at lower temperature. A combination of activated carbons and PILs holds promise for improving the energy characteristics of supercapacitors. (author)

  14. Composition and structural effects on the adsorption of ionic liquids onto activated carbon

    OpenAIRE

    Lemus, Jesús; Freire, Mara G.; Palomar, Jose; Neves, Catarina M. S. S.; Marques, Carlos F. C.; Coutinho, João A. P.

    2013-01-01

    The applications and variety of ionic liquids (ILs) have increased during the last few years, and their use at a large scale will require their removal/recovery from wastewater streams. Adsorption on activated carbons (ACs) has been recently proposed for this aim and this work presents a systematic analysis of the influence of the IL chemical structures (cation side chain, head group, anion type and the presence of functional groups) on their adsorption onto commercial AC from water solution....

  15. Electrochemical determination of hydroquinone using hydrophobic ionic liquid-type carbon paste electrodes

    Directory of Open Access Journals (Sweden)

    Liu Hongtao

    2010-10-01

    Full Text Available Abstract Three types of carbon paste electrodes (CPEs with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion control mechanism was confirmed and the diffusion coefficient (D of 5.05 × 10-4 cm2 s-1 was obtained. The hydrophobic IL-CPE is promising for the determination of hydroquinone in terms of high sensitivity, easy operation, and good durability.

  16. A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Ohba, T.; Chaban, Vitaly V.

    2014-01-01

    -3 nm wide CNTs at slightly elevated temperatures (323-363 K). Molecular simulations were used to assign atom-atom peaks. Experimental and simulated structures of RTIL inside CNT and in bulk phase are in good agreement. We emphasize a special role of the CNT-chloride interactions in the successful......We report a combined experimental (X-ray diffraction) and theoretical (molecular dynamics, hybrid density functional theory) study of 1-ethyl-3-methylimidazolium chloride, [C2C1MIM][Cl], inside carbon nanotubes (CNTs). We show that despite its huge viscosity [C2C1MIM][Cl] readily penetrates into 1...... adsorption of [C2C1MIM][Cl] on the inner sidewalls of 1-3 nm carbon nanotubes....

  17. A highly viscous imidazolium ionic liquid inside carbon nanotubes.

    Science.gov (United States)

    Ohba, Tomonori; Chaban, Vitaly V

    2014-06-12

    We report a combined experimental (X-ray diffraction) and theoretical (molecular dynamics, hybrid density functional theory) study of 1-ethyl-3-methylimidazolium chloride, [C2C1MIM][Cl], inside carbon nanotubes (CNTs). We show that despite its huge viscosity [C2C1MIM][Cl] readily penetrates into 1-3 nm wide CNTs at slightly elevated temperatures (323-363 K). Molecular simulations were used to assign atom-atom peaks. Experimental and simulated structures of RTIL inside CNT and in bulk phase are in good agreement. We emphasize a special role of the CNT-chloride interactions in the successful adsorption of [C2C1MIM][Cl] on the inner sidewalls of 1-3 nm carbon nanotubes.

  18. Gas Phase Conversion of Carbon Tetrachloride to Alkyl Chlorides Catalyzed by Supported Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    SUN Aijun; ZHANG Jinlong; LI Chunxi; MENG Hong

    2009-01-01

    An efficient way of converting carbon tetrachloride(CTC)to alkyl chlorides is reported,which uses the catalysts of ionic liquids supported on granular active carbon.The catalytic performance was evaluated in a temperature range of 120-200℃ and atmospheric pressure for different ionic liquids,namely 1-butyl-3-methylimidazolium chloride,1-octyl-3-methylimidazolium chloride,hydrochloric salts of N-methylimidazole(MIm),pyridine and triethylamine,as well as bisulfate and dihydric phosphate of N-methylimidazole.On this basis,the reaction mechanism was proposed,and the influences of the reaction temperature and the attributes of ionic liquids were discussed.The overall reaction was assumed to be comprised of two steps,the hydrolysis of CTC and reaction of HCI with alcohols under acidic catalyst.The results indicate that the conversion of CTC increased monotonically with temperature and even approached 100% at 200 ℃,while the maximum selectivity to alkyl chlorides was obtained around 160 ℃.This reaction might be potentially applicable to the resource utilization of superfluous byproduct of CTC in the chloromethane industry.

  19. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  20. Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    contains exclusively ions. We exemplify these unusual effects by computer simulation on a highly hydrophilic, electrostatically structured, and immobile 1-ethyl-3-methylimidazolium chloride, [C2C1IM][CI]. Self-diffusion constants and energetic properties provide microscopic interpretation of the observed...... liquids (ILs) and apolar carbon nanotubes (CNTs) are disparate objects; nevertheless, their interaction leads to spontaneous CNT filling with ILs. Moreover, ionic diffusion of highly viscous ILs can increase 5-fold inside CNTs, approaching that of molecular liquids, even though the confined IL phase still...... phenomena. Governed by internal energy and entropy rather than external work, the kinetics of CNT filling is characterized in detail The significant growth of the IL mobility induced by nanoscale carbon promises important advances in electricity storage devices....

  1. Preparation of Multi-Walled Carbon Nanotube/Amino-Terminated Ionic Liquid Arrays and Their Electrocatalysis towards Oxygen Reduction

    OpenAIRE

    Li Niu; Ari Ivaska; Carita Kvarnström; Rose-Marie Latonen; Zhijuan Wang

    2010-01-01

    Arrays of aligned multi-walled carbon nanotube-ionic liquid (MIL) were assembled on silicon wafers (Si-MIL). Formation of Si-MIL was confirmed by ATR-FTIR, AFM and Raman techniques. The electrochemical measurements indicated that Si-MIL showed good electrocatalysis towards oxygen reduction compared with MIL drop-cast on a glassy carbon electrode.

  2. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Dong, Lifeng, E-mail: donglifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Deng, Ying; Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H{sub 2}O{sub 2}, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates.

  3. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton–Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (ks) as 1.36 s−1. Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10−8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results. - Highlights: ► A graphene modified carbon ionic liquid electrode was fabricated and characterized. ► Electrochemical behaviors of bisphenol A were investigated. ► Bisphenol A was detected by the proposed electrode.

  4. Electrochemically reduced graphene modified carbon ionic liquid electrode for the sensitive sensing of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng [Fujian Province University Key Laboratory of Analytical Science, Department of Chemistry and Environment Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Qi Xiaowei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cai Xili; Wang Qingxiang; Gao Fei [Fujian Province University Key Laboratory of Analytical Science, Department of Chemistry and Environment Science, Zhangzhou Normal University, Zhangzhou 363000 (China); Sun Wei, E-mail: sunwei@qust.edu.cn [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2012-05-31

    In this paper a graphene (GR) modified carbon ionic liquid electrode that was obtained by one-step potentiostatic electroreduction of a graphene oxide solution was described. The resulting electrode displayed excellent electrochemical performance due to the formation of highly conductive GR film on the electrode surface. Electrochemistry of rutin was carefully studied with a pair of well-defined redox peaks appeared in pH 2.5 buffer solution. Rutin exhibited a diffusion-controlled two-electron and two-proton transfer reaction on the modified electrode with the electrochemical parameters calculated. The reduction peak currents are linearly related to rutin concentration in the concentration range from 0.070 to 100.0 {mu}mol/L with a detection limit as low as 24.0 nmol/L (3{sigma}). The modified electrode displayed excellent selectivity with good stability, and was applied to the determination of rutin content in tablet, human serum and urine samples with satisfactory results. - Highlights: Black-Right-Pointing-Pointer Electroreduced graphene modified carbon ionic liquid electrode was obtained. Black-Right-Pointing-Pointer Electrochemical behaviors of rutin were investigated on the modified electrode. Black-Right-Pointing-Pointer Rutin in different samples were detected by the proposed electrode.

  5. Ionic liquid modified carbon paste electrode and investigation of its electrocatalytic activity to hydrogen peroxide

    Indian Academy of Sciences (India)

    Erhan Canbay; Hayati Türkmen; Erol Akyilmaz

    2014-05-01

    This paper reports on the preparation and advantages of novel amperometric biosensors in the presence of hydrophobic ionic liquid (IL), 1-methyl-3-butylimidazolium bromide ([MBIB]). Carbon paste bio-sensor has been constructed by entrapping horseradish peroxidase in graphite and IL mixed with paraffin oil as a binder. The resulting IL/graphite material brings new capabilities for electrochemical devices by combining the advantages of ILs composite electrodes. Amounts of H2O2 were amperometrically detected by monitoring current values at reduction potential (–0.15 V) of K3Fe(CN)6. Decrease in biosensor responses were linearly related to H2O2 concentrations between 10 and 100 M with 2 s response time. Limit of detection of the biosensor were calculated to be 3.98 M for H2O2. In the optimization studies of the biosensor some parameters such as optimum pH, optimum temperature, enzyme amount, interference effects of some substances on the biosensor response, reproducibility and storage stability were carried out. The promising results are ascribed to the use of an ionic liquid, which forms an excellent charge-transfer bridge and wide electrochemical windows in the bulk of carbon paste electrode.

  6. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin

    International Nuclear Information System (INIS)

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. - Graphical abstract: The utilization of N-doped graphene enables direct electrochemistry of hemoglobin with a pair of well-defined redox peaks appearing. - Highlights: • Nitrogen-doped graphene (NG) was synthesized by a solvothermal method. • NG was used for the investigation on direct electrochemistry of hemoglobin with carbon ionic liquid electrode. • The Hb modified electrode exhibited excellent electrocatalytic activity toward different substrates

  7. Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites

    Directory of Open Access Journals (Sweden)

    Xiaolin Xie

    2013-06-01

    Full Text Available Carbon nanotubes (CNTs and graphene sheets are the most promising fillers for polymer nanocomposites due to their superior mechanical, electrical, thermal optical and gas barrier properties, as well as high flame-retardant efficiency. The critical challenge, however, is how to uniformly disperse them into the polymer matrix to achieve a strong interface for good load transfer between the two. This problem is not new but more acute in CNTs and graphene, both because they are intrinsically insoluble and tend to aggregate into bundles and because their surfaces are atomically smooth. Over the past decade, imidazolium ionic liquids (Imi-ILs have played a multifunctional role (e.g., as solvents, dispersants, stabilizers, compatibilizers, modifiers and additives in the fabrication of polymer composites containing CNTs or graphene. In this review, we first summarize the liquid-phase exfoliation, stabilization, dispersion of CNTs and graphene in Imi-ILs, as well as the chemical and/or thermal reduction of graphene oxide to graphene with the aid of Imi-ILs. We then present a full survey of the literature on the Imi-ILs assisted fabrication of CNTs and graphene-based nanocomposites with a variety of polymers, including fluoropolymers, hydrocarbon polymers, polyacrylates, cellulose and polymeric ionic liquids. Finally, we give a future outlook in hopes of facilitating progress in this emerging area.

  8. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  9. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Wencheng [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Wang, Lei [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2014-07-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E{sup 0′}) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H{sub 2}O{sub 2}. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized.

  10. Direct electrochemistry of hemoglobin entrapped in dextran film on carbon ionic liquid electrode

    Indian Academy of Sciences (India)

    Xiaoqing Li; Yan Wang; Xiaoying Sun; Tianrong Zhan; Wei Sun

    2010-03-01

    Direct electrochemistry of hemoglobin (Hb) entrapped in the dextran (De) film on the surface of a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) modified carbon paste electrode (CILE) has been investigated. UV-Vis and FT-IR spectroscopy showed that Hb retained its native structure in the De film. Scanning electron microscopy (SEM) indicated an uniform film was formed on the electrode surface. Cyclic voltammetric experiments indicated that the electron transfer efficiency between Hb and the electrode was greatly improved due to the presence of the De film and ionic liquid, which provided a biocompatible and higher conductive interface. A pair of well-defined and quasi-reversible redox peak was obtained with the anodic and cathodic peaks located at -0.195 V and -0.355 V in pH 7.0 phosphate buffer solution, respectively. The electrochemical parameters were calculated by investigating the relationship of the peak potential with the scan rate. The fabricated De/Hb/CILE showed good electrocatalytic ability to the reduction of H2O2 with the linear concentration range from 4.0 × 10-6 to 1.5 × 10-5 mol/L and the apparent Michaelis-Menten constant ($K_{M}^{\\text{app}}$) for the electrocatalytic reaction was calculated as 0.17 M.

  11. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E0′) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H2O2. Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  12. Ionic liquid coated single-walled carbon nanotube buckypaper as supercapacitor electrode

    Institute of Scientific and Technical Information of China (English)

    Chao Zheng; Weizhong Qian; Yuntao Yu; Fei Wei

    2013-01-01

    Effect of stacking structure of single-walled carbon nanotubes (SWCNTs) on its performance as electrode of supercapacitor was investigated in the present work.Considering SWCNTs easily formed bundles due to strong van de Waals attraction between tubes,we proposed first dispersion of SWCNTs by ionic liquids (ILs) of 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4),followed by fabrication of buckypaper by compression.The debundling effect of ILs on SWCNTs increased the interface between electrode and electrolyte,decreased electrical resistance,and,consequently,increased performance of the supercapacitor.Since ILs,used to disperse SWCNTs,also functioned as electrolyte in supercapacitor,our method is a simple way to prepare buckypaper electrode with high performance.

  13. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions

    Energy Technology Data Exchange (ETDEWEB)

    Baj, Stefan; Krawczyk, Tomasz; Dabrowska, Aleksandra; Siewniak, Agnieszka [Silesian University of Technology, Gliwice (Poland); Sobolewski, Aleksander [Institute for Chemical Processing of Coal, Zabrze (Poland)

    2015-11-15

    The solubility of carbon dioxide at atmospheric pressure in aqueous mixtures of 1,3-alkyl substituted imidazolium ionic liquids (ILs) containing carboxylic anions was studied. The ILs showed increased solubility of CO{sub 2} with decreasing water concentration. The relationship between the CO{sub 2} concentration in solution and the mole fraction of water in the ILs describes a sigmoidal curve. The regression constants of a logistic function were used to quantitatively assess the absorbent capacity and the effect of water on CO{sub 2} absorption. ILs containing the most basic anions, such as pivalate, propionate and acetate, had the best properties. It was observed that the impact of water on absorption primarily depended on the cation structure. The best absorption performance was observed for 1,3-dibutylimidazolium pivalate and 1-butyl-3-methyl imidazolium acetate.

  14. Multi-layer stretchable pressure sensors using ionic liquids and carbon nanotubes

    Science.gov (United States)

    Vatani, Morteza; Vatani, Mohamad; Choi, J. W.

    2016-02-01

    A stretchable and pressure sensitive polymer capable of detecting strains was developed through the incorporation of 1-ethyl-3-methylimidazolium tetrafluoroborate as an ionic liquid (IL) into a stretchable photopolymer. The developed IL/polymer composite showed both a field effect characteristic and piezoresistivity by embedding the composite between two layers of carbon nanotube (CNT)-based stretchable electrodes. A multi-layer pressure sensitive taxel was formed using a hybrid manufacturing process, where two electrode layers were fabricated by screen printing and the IL/polymer composite was formed by casting using a mold. A composite material for the electrodes was developed through the dispersion of CNTs into a highly stretchable photo/thermal crosslinkable prepolymer. The fabricated sensor was evaluated with different forces ranging from 0 to 140 g. The experiment results showed that the developed stretchable sensor had good repeatability and reliability in detecting applied pressures.

  15. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose.

    Science.gov (United States)

    Qi, Xinhua; Li, Luyang; Tan, Tengfei; Chen, Wenting; Smith, Richard L

    2013-03-19

    Functional carbonaceous material (FCM) loaded with carboxylic groups was prepared by hydrothermal carbonization of cellulose in the presence of acrylic acid. The resulting FCM was used as adsorbent for recovery of a water-soluble ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). The FCM consisted of microspheres (100-150 nm) and had a low surface area (ca. 20 m(2)/g), but exhibited adsorption capacity comparable to that of commercial activated carbon which can be attributed to the presence of high content of polar oxygenated groups (-OH, -C═O, -COOH) as revealed by spectral analyses. Sorption of [BMIM][Cl] onto FCM adsorbent could be well-described by pseudo-second-order kinetics. Thermodynamic and adsorption isothermal analyses revealed that the adsorption process was spontaneous, exothermic, and could be described by the Freundlich adsorption model. The FCM adsorbent could be regenerated effectively and recycled for at least three times without loss of adsorption capacity. The results of this work provide a facile method for production of functional carbonaceous materials from renewable resources that can be used for treatment of aqueous streams containing small concentrations of ionic liquid, [BMIM][Cl].

  16. Hydrophobic ionic liquids

    Science.gov (United States)

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  17. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties

    Directory of Open Access Journals (Sweden)

    H. Maka

    2014-10-01

    Full Text Available Epoxy nanocomposites with commercial carbon nanotubes (CNT or graphene (GN have been prepared using phosphonium ionic liquid [trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl phosphinate, IL-f]. IL-f served simultaneously as nanofiller dispersing medium and epoxy resin catalytic curing agent. An influence of IL-f/epoxy weight ratio (3, 6 and 9/100, phr, carbon nanofiller type and content on viscosity of epoxy compositions during storage at ambient temperature was evaluated. Curing process was controlled for neat and CNT or GN modified epoxy compositions (0.25-1.0 wt.% load using differential scanning calorimetry and rheometry. Epoxy nanocomposites exhibited slightly increased glass transition temperature values (146 to 149°C whereas tan δ and storage modulus decreased (0.30 to 0.27 and 2087 to 1070 MPa, respectively as compared to reference material. Crosslink density regularly decreased for composites with increasing CNT content (11 094 to 7 020 mol/m3. Electrical volume resistivity of the nanocomposites was improved in case of CNT to 4•101 Ω•m and GN to 2•105 Ω•m (nanofiller content 1 wt.%. Flame retardancy was found for modified epoxy materials with as low GN and phosphorus content as 0.25 and 0.7 wt.%, respectively (increase of limiting oxygen index to 26.5%.

  18. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.

    Science.gov (United States)

    Peng, Chengxin; Wen, Zubiao; Qin, Yao; Schmidt-Mende, Lukas; Li, Chongzhong; Yang, Shihe; Shi, Donglu; Yang, Jinhu

    2014-03-01

    Three-dimensional nanoporous carbon with interconnected vesicle-like pores (1.5-4.2 nm) has been prepared through a low-cost, template-free approach from petroleum coke precursor by KOH activation. It is found that the thin pore walls are highly graphitized and consist of only three to four layers of graphene, which endows the material with an unusually high specific surface area (2933 m(2)  g(-1) ) and good conductivity. With such unique structural characteristics, if used as supercapacitor electrodes in ionic liquid (IL) electrolytes, the graphitized carbon nanovesicle (GCNV) material displays superior performance, such as high energy densities up to 145.9 Wh kg(-1) and a high combined energy-power delivery, and an energy density of 97.6 Wh kg(-1) can be charged in 47 s at 60 °C. This demonstrates that the energy output of the GCNV-based supercapacitors is comparable to that of batteries, and the power output is one order of magnitude higher. Moreover, the synergistic effect of the GCNVs and the IL electrolyte on the extraordinary performance of the GCNV supercapacitors has been analyzed and discussed. PMID:24474720

  19. Ionic liquid based EDLCs: influence of carbon porosity on electrochemical performance.

    Science.gov (United States)

    Noofeli, Asa; Hall, Peter J; Rennie, Anthony J R

    2014-01-01

    Electrochemical double layer capacitors (EDLCs) are a category of supercapacitors; devices that store charge at the interface between electrodes and an electrolyte. Currently available commercial devices have a limited operating potential that restricts their energy and power densities. Ionic liquids (ILs) are a promising alternative electrolyte as they generally exhibit greater electrochemical stabilities and lower volatility. This work investigates the electrochemical performance of EDLCs using ILs that combine the bis(trifluoromethanesulfonyl)imide anion with sulfonium and ammonium based cations. Different activated carbon materials were employed to also investigate the influence of varying pore size on electrochemical performance. Electrochemical impedance spectroscopy (EIS) and constant current cycling at different rates were used to assess resistance and specific capacitance. In general, greater specific capacitances and lower resistances were found with the sulfonium based ILs studied, and this was attributed to their smaller cation volume. Comparing electrochemical stabilities indicated that significantly higher operating potentials are possible with the ammonium based ILs. The marginally smaller sulfonium cation performed better with the carbon exhibiting the largest pore width, whereas peak performance of the larger sulfonium cation was associated with a narrower pore size. Considerable differences between the performance of the ammonium based ILs were observed and attributed to differences not only in cation size but also due to the inclusion of a methoxyethyl group. The improved performance of the ether bond containing IL was ascribed to electron donation from the oxygen atom influencing the charge density of the cation and facilitating cation-cation interactions. PMID:25427314

  20. Electrochemical behavior of labetalol at an ionic liquid modified carbon paste electrode and its electrochemical determination

    Directory of Open Access Journals (Sweden)

    Zhang Yan-Mei

    2013-01-01

    Full Text Available Electrochemical behavior of labetalol (LBT at carbon paste electrode (CPE and an ionic liquid1-benzyl-3-methylimidazolehexafluorophosphate([BnMIM]PF6modified carbon paste electrode([BnMIM]PF6/CPEin Britton-Robinson buffer solution (pH 2.0 was investigated by cyclic voltammetry (CV and square wave voltammetric (SWV. The experimental results showed that LBT at both the bare CPE and [BnMIM]PF6/CPEshowed an irreversible oxidation process, but at [BnMIM]PF6/CPE its oxidation peak current increased greatly and the oxidation peak potential shifted negatively. The electrode reaction process is a diffusion-controlled process involving one electron transferring accompanied by a participation of one proton at [BnMIM]PF6/CPE. At the same time, the electrochemical kinetic parameters were determined. Under the optimized electrochemical experimental conditions, the oxidation peak currents were proportional to LBT concentration in the range of 7.0 x 10-6-1.0 x 10-4 mol L-1 with the limit of detection(LOD, S/N=3 of 4.810 x 10-8 mol L-1and the limit of quantification(LOQ, S/N=10 of 1.60 x 10-7 mol L-1, respectively. The proposed method was successfully applied in the determination of LBT content in commercial tablet samples.

  1. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study.

    Science.gov (United States)

    Shim, Youngseon; Kim, Hyung J

    2010-04-27

    Supercapacitors composed of carbon nanotube (CNT) micropores in the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4(-)) are studied via molecular dynamics (MD)computer simulations. It is found that the distribution of RTIL ions inside the micropore varies significantly with the pore size. Internal solvation of small (6,6) and (7,7) CNTs with an electrified interior wall is effected almost exclusively via counterions. Surprisingly, these counterions, even though they all have the same charge, lead to a charge density characterized by multiple layers with alternating signs. This intriguing feature is attributed to the extended nature of RTIL ion charge distributions, which result in charge separation through preferential orientation inside the electrified nanotubes. In the case of larger (10,10) and (15,15) CNTs, counterions and coions develop multilayer solvation structures. The specific capacitance normalized to the pore surface area is found to increase as the CNT diameter decreases from (15,15) to (7,7). As the pore size further reduces from (6,6) to(5,5), however, the specific capacitance diminishes rapidly. These findings are in excellent agreement with recent experiments with carbon-based materials. A theoretical model based on multiple charge layers is proposed to understand both the MD and experimental results.

  2. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.

    Science.gov (United States)

    Sun, Xiao-Guang; Wang, Xiqing; Mayes, Richard T; Dai, Sheng

    2012-10-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic-liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide ([MPPY][TFSI]) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the lower onset sulfur reduction potential, higher redox current density in the CV test, and faster charge-transfer kinetics, as indicated by EIS measurements. At room temperature under a current density of 84 mA g(-1) (C/20), the battery based on the NC/S composite exhibited a higher discharge potential and an initial capacity of 1420 mAh g(-1), whereas the battery based on the AC/S composite showed a lower discharge potential and an initial capacity of 1120 mAh g(-1). Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; capacity fading can be improved by further cathode modification. PMID:22847977

  3. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...

  4. Applications of functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    LI Xuehui; ZHAO Dongbin; FEI Zhaofu; WANG Lefu

    2006-01-01

    Recent developments of the synthesis and applications of functionalized ionic liquids(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

  5. Radiation chemistry of ionic liquids

    International Nuclear Information System (INIS)

    Ionic liquids are expected as a replacement of processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiations and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. (author)

  6. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode

    International Nuclear Information System (INIS)

    A novel multiwall carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of norepinephrine (NP). MWCNTs/CILE was prepared by mixing hydrophilic ionic liquid, 1-methyl-3-butylimidazolium bromide (MBIDZBr), with graphite powder, MWCNTs, and liquid paraffin. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of NE. The electron transfer coefficient, diffusion coefficient, and charge transfer resistant (Rct) of NE at the modified electrode were calculated. Differential pulse voltammetry of NE at the modified electrode exhibited two linear dynamic ranges with slopes of 0.0841 and 0.0231 μA/μM in the concentration ranges of 0.3 to 30.0 μM and 30.0 to 450.0 μM, respectively. The detection limit (3σ) of 0.09 μM NP was achieved. This modified electrode exhibited a good ability for well separated oxidation peaks of NE and acetaminophen (AC) in a buffer solution, pH 7.0. The proposed sensor was successfully applied for the determination of NE in human urine, pharmaceutical, and serum samples. Highlights: ► Electrochemical behavior of norepinephrine study using carbon ionic liquid electrode ► This sensor resolved the overlap response of norepinephrine and acetaminophen. ► This sensor is also used for the determination of above compounds in real samples.

  7. Polarity and Nonpolarity of Ionic Liquids Viewed from the Rotational Dynamics of Carbon Monoxide.

    Science.gov (United States)

    Yasaka, Y; Kimura, Y

    2015-12-17

    The rotational dynamics of carbon monoxide (CO) in a molten salt, ionic liquids (ILs), and alkanes were investigated by (17)O NMR T1 measurements using labeled C(17)O. The molten salt and the studied ILs have the bis(trifluoromethanesulfonyl)imide anion ([NTf2](-)) in common. In hexane near room temperature, the rotational relaxation times are close to the values predicted from the slip boundary condition in the Stokes-Einstein-Debye (SED) theory. However, in contradiction to the theoretical prediction, the rotational relaxation times decrease as the value of η/T increases, where η and T are the viscosity and absolute temperature, respectively. In other alkanes and ILs used in this study, the rotational relaxation times are much faster than those predicted by SED, and show a unique dependence on the number of alkyl carbons. For the same value of η/T, the CO rotational relaxation times in ILs composed of short-alkyl-chain-length imidazolium cations (1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) are close to those for a molten salt (Cs[NTf2]). On the other hand, the rotational relaxation times in ILs composed of long-chain-length imidazolium (1-methyl-3-octylimidazolium) and phosphonium (tributylmethylphosphonium and tetraoctylphosphonium) cations are much shorter than the SED predictions. This deviation from theory increases as the alkyl chain length increases. We also found that the rotational relaxation times in dodecane and squalane are similar to those in ILs with a similar number of alkyl carbons. These results are discussed in terms of heterogeneous solvation and in comparison with the translational diffusion of CO in ILs.

  8. Development of a sensitive and selective Riboflavin sensor based on carbon ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, Afsaneh, E-mail: safavi@chem.susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Maleki, Norouz; Ershadifar, Hamid; Tajabadi, Fariba [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2010-08-03

    The electrochemical properties of Riboflavin adsorbed on carbon ionic liquid electrode (CILE) were studied by cyclic voltammetry. A film with a surface coverage of up to 3.3 x 10{sup -9} mol cm{sup -2} was formed after 10 min exposure time. Electron transfer coefficient and rate constant of electron transfer across the modified electrode were found to be 0.43 and 3.03 s{sup -1}, respectively. Differential pulse voltammetry was used for the determination of Riboflavin. Two linear working ranges of 0.8-110 nM and 0.11-1.0 {mu}M were obtained with correlation coefficients of 0.998 and 0.996, respectively. The experimental detection limit was obtained as 0.1 nM. The relative standard deviation for five replicate analyses was 4.7%. Other soluble vitamins had no significant interferences and the electrode was used for the determination of Riboflavin in pharmaceutical products, nutrition and beverages.

  9. Anisometric Charge Dependent Swelling of Porous Carbon in an Ionic Liquid

    CERN Document Server

    Kaasik, F; Hantel, M M; Perre, E; Aabloo, A; Lust, E; Bazant, M Z; Presser, V

    2013-01-01

    In situ electrochemical dilatometry was used to study, for the first time, the expansion behavior of a porous carbon electrode in a pure ionic liquid, 1-ethyl-3-methyl-imidazolium-tetrafluoroborate. For a single electrode, an applied potential of -2 V and +2 V against the potential of zero charge resulted in maximum strain of 1.8 % and 0.5 %, respectively. During cyclic voltammetry, the characteristic expansion behavior strongly depends on the scan rate, with increased scan rates leading to a decrease of the expansion. Chronoamperometry was used to determine the equilibrium specific capacitance and expansion. The obtained strain versus accumulated charge relationship can be fitted with a simple quadratic function. Cathodic and anodic expansion data collapses on one parabola when normalizing the surface charge by the ratio of ion volume and average pore size. There is also a transient spike in the height change when polarity is switched from positive to negative that is not observed when changing the potential...

  10. Structure evolution of carbon black under ionic-liquid-assisted microwave irradiation

    International Nuclear Information System (INIS)

    The interactions between the carbon black (CB) and the ionic liquid (IL), 1-butyl-3-methyl-imiazolium hexafluorophosphate ([BMIM+][PF6-]), are firstly examined. The CB, mixed with the IL via simple blending, is then subjected to microwave (MW) irradiation to prepare the modified CB. The structure evolutions of the modified CB such as the microcrystalline structure and surface chemistry are revealed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and pore analysis. After mixing but before MW irradiation, the microcrystalline arrangement of CB turns to be more ordering and microcrystalline size (La) to be a little bigger but with a limited degree. Under MW irradiation, the IL undergoes severe decomposition. The combination of localized high temperature (proposed to be higher than 425 deg. C) and the decomposition of the IL leads to substantial structure changes of the CB. The graphitization of the CB surface, the disordering of the microcrystalline and the decrease in La are disclosed. In addition, compared with the untreated CB, the CB treated with IL-assisted MW irradiation is found to have much higher volume of the smaller mesopore.

  11. Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic Liquid + propylene carbonate) binary mixture

    OpenAIRE

    Pires, J; Timperman, L.; Jacquemin, J.; A. Balducci; Anouti, M.

    2013-01-01

    Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) e...

  12. Molecular Dynamics Simulation for the Binary Mixtures of High Pressure Carbon Dioxide and Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    徐君臣; 王松; 喻文; 徐琴琴; 王伟彬; 银建中

    2014-01-01

    Molecular dynamics simulation with an all-atom force field has been carried out on the two binary sys-tems of [bmim][PF6]-CO2 and [bmim][NO3]-CO2 to study the transport properties, volume expansion and micro-structures. It was found that addition of CO2 in the liquid phase can greatly decrease the viscosity of ionic liquids (ILs) and increase their diffusion coefficient obviously. Furthermore, the volume expansion of ionic liquids was found to increase with the increase of the mole fraction of CO2 in the liquid phase but less than 35%for the two simulated systems, which had a significant difference with CO2 expanded organic solvents. The main reason was that there were some void spaces inter and intra the molecules of ionic liquids. Finally, site to site radial distribution functions and corresponding number integrals were investigated and it was found that the change of microstructures of ILs by addition CO2 had a great influence on the properties of ILs.

  13. Wettability by Ionic Liquids.

    Science.gov (United States)

    Liu, Hongliang; Jiang, Lei

    2016-01-01

    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges. PMID:26619157

  14. Electrochemical horseradish peroxidase biosensor based on dextran-ionic liquid-V2O5 nanobelt composite material modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Direct electrochemistry of horseradish peroxidase (HRP) was realized in a dextran (De), 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO3) and V2O5 nanobelt composite material modified carbon ionic liquid electrode (CILE). Spectroscopic results indicated that HRP retained its native structure in the composite. A pair of well-defined redox peaks of HRP appeared in pH 3.0 phosphate buffer solution with the formal potential of -0.213 V (vs. SCE), which was the characteristic of HRP heme Fe(III)/Fe(II) redox couple. The result was attributed to the specific characteristics of De-IL-V2O5 nanocomposite and CILE, which promoted the direct electron transfer rate of HRP with electrode. The electrochemical parameters of HRP on the composite modified electrode were calculated and the electrocatalysis of HRP to the reduction of trichloroacetic acid (TCA) was examined. Under the optimal conditions the reduction peak current increased with TCA concentration in the range from 0.4 to 16.0 mmol L-1. The proposed electrode is valuable for the third-generation electrochemical biosensor.

  15. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  16. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  17. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents.

    Science.gov (United States)

    Zhang, Li-Shun; Gao, Shu-Ping; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-07-01

    In this work, an efficient method to prepare polymer monoliths with incorporated carbon nanotubes in a mixture of room temperature ionic liquid and deep eutectic solvents was developed. With assistance of the binary green solvent, 1-butyl-3-methylimidazolium tetrafluoroborate and choline chloride/ethylene glycol, single-walled carbon nanotubes were dispersed successfully in pre-polymerization mixture without need of oxidative cutting of carbon nanotubes, which may allow depletion of the emission of volatile organic compounds into environment. The novel single-walled carbon nanotubes monolith was evaluated by capillary electrochromatography. Compared with the monolith made without single-walled carbon nanotubes, the monolith with the incorporation of single-walled carbon nanotubes exhibited high column efficiency (251,000plates/m) in the chromatographic separation. The morphology of the monolith can be tuned by the composition of mixture of ionic liquids and deep eutectic solvents to afford good column permeability and excellent separation ability for small molecules of alkyl phenones and alkyl benzenes. The results demonstrated that the method is a green strategy for the fabrication of multifunctional polymer monoliths. PMID:27154683

  18. Solubility dynamic of methyl yellow and carbon black in microemulsions and lamellar liquid crystal of water, non ionic surfactants and cyclohexane system

    Science.gov (United States)

    Amran, A.; Harfianto, R.; Dewi, W. Y.; Beri, D.; Putra, A.

    2016-02-01

    Solubility dynamics of methyl yellow and carbon black in microemulsions and liquid crystals of water, non-ionic surfactants and cyclohexane system, have been investigated. Actually, solubility dynamics of these dyes both in microemulsion (w/o microemulsions) and the lamellar liquid crystal (LLC) were strongly related to the chemical composition, nature and characteristics of microemulsions and the lamellar liquid crystals.

  19. Electrochemical reduction of aromatic ketones in 1-butyl-3-methylimidazolium-based ionic liquids in the presence of carbon dioxide: the influence of the ketone substituent and the ionic liquid anion on bulk electrolysis product distribution.

    Science.gov (United States)

    Zhao, Shu-Feng; Horne, Mike; Bond, Alan M; Zhang, Jie

    2015-07-15

    Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based ionic liquids containing tetrafluoroborate ([BF4](-)), trifluoromethanesulfonate ([TfO](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) anions in the presence of carbon dioxide in order to investigate the ketone substituent effect and the influence of the acidic proton on the imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the minor products were dimers (50%) derived from proton coupled electron transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both acetophenone and benzophenone, the product distribution is essentially independent of the ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is dependent on the ionic liquid anion. Higher yields of carboxylic acids (∼40%) are obtained with [TfO](-) and [FAP](-) anions because in these ionic liquids the C2-H is less acidic, making the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of carboxylic acid (>30% versus ∼15%) was obtained with 4-phenylbenzophenone in all ionic liquids due to the weaker basicity of 4-phenylbenzophenone radical anion. PMID:26136079

  20. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  1. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    Science.gov (United States)

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; Zhang, Pengfei; Turner, C. Heath; Cummings, Peter T.; Dai, Sheng

    2016-10-01

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.

  2. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    OpenAIRE

    Yan, Fangyong; Lartey, Michael; Damodaran, Krishnan; Albenze, Erik; Thompson, Robert L.; Kim, Jihan; Haranczyk, Maciej; Nulwala, Hunaid B.; Luebke, David R.; Smit, Berend

    2013-01-01

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure-property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determinat...

  3. Liquid-liquid extraction of cadmium(II) by TIOACl (tri-iso-octyl ammonium chloride) ionic liquid and its application to a TIOACl impregnated carbon nanotubes system

    International Nuclear Information System (INIS)

    The extraction of cadmium(II) by the ionic liquid (R3NH+Cl-) (R: tri-iso-octyl) in Exxsol D100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of R3NH+CdCl-3 - and (R3NH+)2CdCl42- species in the organic phase. The results obtained for cadmium(II) distribution have been implemented in an impregnated multi-walled carbon nanotubes system. The influence of aqueous solution stirring speed (250-2000 min-1), adsorbent dosage (0.05-0.2 g) and temperature (20 degree centigrade-60 degree centigrade) on cadmium adsorption have been investigated. (Author)

  4. Liquid-liquid extraction of cadmium(II) by TIOACl (tri-iso-octyl ammonium chloride) ionic liquid and its application to a TIOACl impregnated carbon nanotubes system

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil, F. J.; Garcia-Diaz, I.; Lopez, F. A.; Rodriguez, O.

    2015-07-01

    The extraction of cadmium(II) by the ionic liquid (R{sub 3}NH{sup +}Cl{sup -}) (R: tri-iso-octyl) in Exxsol D100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of R{sub 3}NH{sup +}CdCl{sup -}{sub 3} - and (R{sub 3}NH{sup +}){sub 2}CdCl{sub 4}{sup 2}- species in the organic phase. The results obtained for cadmium(II) distribution have been implemented in an impregnated multi-walled carbon nanotubes system. The influence of aqueous solution stirring speed (250-2000 min{sup -}1), adsorbent dosage (0.05-0.2 g) and temperature (20 degree centigrade-60 degree centigrade) on cadmium adsorption have been investigated. (Author)

  5. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  6. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    Science.gov (United States)

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-01

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture. PMID:27458723

  7. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    Science.gov (United States)

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-01

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture.

  8. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  9. Immobilization of lipase on amino-cyclodextrin functionalized carbon nanotubes for enzymatic catalysis at the ionic liquid-organic solvent interface.

    Science.gov (United States)

    Li, Lili; Feng, Wei; Pan, Kehou

    2013-02-01

    Amino-cyclodextrin was covalently attached to multiwalled carbon nanotubes (MWNTs). The functionalized MWNTs have a good dispersibility in water. The lipase was adsorbed onto the functionalized MWNTs. The immobilized lipase was utilized for the resolution of the model compound (R, S)-1-phenyl ethanol in heptane, the ionic liquid [Bmim]PF(6) as well as the heptane/[Bmim]PF(6) mixture. In the reaction media, the enzymatic activity of the immobilized lipase is much higher than that of the native lipase. In comparison to the catalysis in the ionic liquid and heptane, when using the mixture of heptane/[Bmim]PF(6) as the reaction medium, the catalysis by the immobilized lipase at the heptane-ionic liquid interface exhibited a higher catalysis activity. This is due to two aspects: the continuous diffusion of substrate from the heptane phase to the ionic liquid phase; the simultaneous extraction of product from the ionic liquid phase. In addition, the interfacial enzymatic catalysis facilitates the reuse of the immobilized lipase and the ionic liquid.

  10. Effect of Dimethyl Carbonate on the Dynamic Properties and Ionicities of Ionic Liquids with [M(III) (hfip)4 ](-) (M=B, Al) Anions.

    Science.gov (United States)

    Rupp, Alexander B A; Welle, Sabrina; Klose, Petra; Scherer, Harald; Krossing, Ingo

    2015-06-22

    Several ionic liquids (ILs) comprising [B(hfip)4 ](-) [hfip=OCH(CF3 )2 ] or [Al(hfip)4 ](-) anions and imidazolium or ammonium cations were prepared and mixed with up to 270 mol % of dimethyl carbonate (DMC). The viscosities, conductivities, and self-diffusion constants of these mixtures and, where possible, of the neat ILs were measured and compared with common [NTf2 ](-) based ILs and their mixtures with DMC. A tremendous decrease of the viscosities and a likewise increase of the conductivities and diffusion constants can be achieved for all classes of ILs. However, the order of the conductivities is partially reversed in the diffusion data. This is probably due to the low dielectric constant of DMC and the, thus, favored ion pairing, as evidenced, for example, by the calculated ionicities. Altogether, our data show that the chemically robust, but high-melting and more viscous [B(hfip)4 ](-) ILs might be candidates for electrolytes when mixed with suitable molecular solvents. PMID:25877038

  11. Electrochemical Depositions in Ionic Liquids

    OpenAIRE

    De Vreese, Peter

    2013-01-01

    In this PhD thesis, several aspects of the electrodeposition of metals and alloys in ionic liquids were investigated. First, the deposition of brass from choline acetate was studied. Secondly, the electrodeposition of pure molybdenum from ionic liquids based on phosphonium chloride and zinc chloride was treated. In each case, the influence of water, either as a main constituent of the electrolyte or an impurity, was investigated. When comparing electrochemical processes such as electrodeposit...

  12. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  13. Simultaneous Determination of Hydroquinone, Catechol and Resorcinol at Graphene Doped Carbon Ionic Liquid Electrode

    Directory of Open Access Journals (Sweden)

    Li Ma

    2012-01-01

    Full Text Available A new composite electrode has been prepared with doping graphene into the paste consisting graphite and ionic liquid, n-octyl-pyridinum hexafluorophosphate (OPFP. This electrode shows an excellent electrochemical activity for the redox of hydroquinone (HQ, catechol (CC, and resorcinol (RS. In comparison with bare paste electrode, the redox peaks of three isomers of dihydroxybenzene can be obviously, simultaneously observed at graphene doping paste electrode. Under the optimized condition, the simultaneous determination of HQ, CC, and RS in their ternary mixture can be carried out with a differential pulse voltammetric technique. The peak currents are linear to the concentration of HQ, CC, and RS in the range form 1×10−5 to 4×10−4, 1×10−5 to 3×10−4, and 1×10−6 to 1.7×10−4 mol L−1, respectively. The limits of detection are 1.8×10−6 mol L−1 for HQ, 7.4×10−7 mol L−1 for CC, and 3.6×10−7 M for RS, respectively.

  14. Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fangyong [Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engingeering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Lartey, Michael [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Damodaran, Krishnan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States). Dept. of Chemistry; Albenze, Erik [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); URS Corporation, South Park, PA (United States); Thompson, Robert L. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); URS Corporation, South Park, PA (United States); Kim, Jihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Div.; Harancyzk, Maciel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Div.; Nulwala, Hunaid B. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Luebke, David R. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Smit, Berend [Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engingeering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2013-01-01

    Ionic liquids are an emerging class of materials with applications in a variety of fields. Steady progress has been made in the creation of ionic liquids tailored to specific applications. However, the understanding of the underlying structure–property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of side groups on ionic liquid properties has been studied through an integrated approach utilizing synthesis, experimental determination of properties, and simulation techniques. To achieve this goal, a classical force field in the framework of OPLS/Amber force fields has been developed to predict ionic liquid properties accurately. Cu(I)-catalyzed click chemistry was employed to synthesize triazolium-based ionic liquids with diverse side groups. Values of densities were predicted within 3% of experimental values, whereas self-diffusion coefficients were underestimated by about an order of magnitude though the trends were in excellent agreement, the activation energy calculated in simulation correlates well with experimental values. The predicted Henry coefficient for CO{sub 2} solubility reproduced the experimentally observed trends. This study highlights the importance of integrating experimental and computational approaches in property prediction and materials development, which is not only useful in the development of ionic liquids for CO{sub 2} capture but has application in many technological fields.

  15. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view

    Science.gov (United States)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]- is the anion from the series hexafluorophosphate (PF 6- ), tetrafluoroborate (BF 4- ), bis-(trifluoromethyl)sulfonylimide (Tf2N-), triflate (TfO-), trifluoroacetate (TFA-), dicyanamide (DCA-), and thiocyanate (SCN-)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

  16. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    Energy Technology Data Exchange (ETDEWEB)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean, E-mail: sgr@pitt.edu [Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 (United States)

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  17. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide’s point of view

    International Nuclear Information System (INIS)

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]− is the anion from the series hexafluorophosphate (PF6−), tetrafluoroborate (BF4−), bis-(trifluoromethyl)sulfonylimide (Tf2N−), triflate (TfO−), trifluoroacetate (TFA−), dicyanamide (DCA−), and thiocyanate (SCN−)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations

  18. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    International Nuclear Information System (INIS)

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H2O2. The observed sensitivities for the electrocatalytic oxidation and reduction of H2O2 at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M−1, respectively. The detection limit (S/N = 3) for H2O2 was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M−1 and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M−1 and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H2O2 reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor

  19. Magnetic multiwall carbon nanotubes modified with dual hydroxy functional ionic liquid for the solid-phase extraction of protein.

    Science.gov (United States)

    Chen, Jing; Wang, Yuzhi; Huang, Yanhua; Xu, Kaijia; Li, Na; Wen, Qian; Zhou, Yigang

    2015-05-21

    A novel adsorbent based on silica-coated magnetic multiwall carbon nanotubes (MWCNTs) surface modified by dual hydroxy functional ionic liquid (FIL) ([OH]-FIL-m-MWCNTs@SiO2) has been designed and used for the purification of lysozyme (Lys) by magnetic solid-phase extraction (MSPE). Fourier transform infrared spectroscopy (FTIR), a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were employed to characterize [OH]-FIL-m-MWCNTs@SiO2. After extraction, the concentration of Lys was determined by a UV-Vis spectrophotometer at 278 nm. A series of single-factor experiments were carried out to identify the optimal conditions of the extraction and the extraction amount could reach up to 94.6 mg g(-1). The RSD of the precision, the repeatability and the stability experiments were 0.37% (n = 3), 0.47% (n = 3) and 0.52% (n = 3), respectively. Comparison of [OH]-FIL-m-MWCNTs@SiO2 with silica-coated magnetic Fe3O4 (Fe3O4@SiO2), silica-coated magnetic multiwall carbon nanotubes (m-MWCNTs@SiO2) and alkyl quaternary ammonium ionic liquid-modified on m-MWCNTs@SiO2 was carried out by extracting Lys. The extraction of bovine serum albumin (BSA), trypsin (Try) and ovalbumin (OVA) was also done by the proposed method. Desorption of Lys was carried out by 0.005 mol L(-1) Na2HPO4-1 mol L(-1) NaCl as the eluent solution and the desorption ratio reached 91.6%. Nearly 97.8% of the [OH]-FIL-m-MWCNTs@SiO2 could be recovered from each run, and the extraction amount decreased less after five runs. The circular dichroism spectral experiment analysis indicated that the secondary structure of Lys was unchanged after extraction.

  20. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...

  1. Electrocatalytic oxidation and determination of dopamine at a carbon ionic liquid electrode modified with nafion-L-aspartic acid composite film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrocatalytic oxidation of dopamine(DA)was studied by electrochemical approaches at a carbon ionic liquid electrode(CILE)modified with the composite film of nafion and L-aspartic acid(NL-CILE).The CILE was fabricated by replacing non-conductive organic binders with a room-temperature hydrophobic ionic liquid,1-butyl-3-methyl-imidazolium hexafluorophosphate.The composite film of NL was used as matrix to adsorb DA and catalyze the oxidation of DA in phosphate buffer solution(PBS).The electrochemical re...

  2. Corrosion of steel in ionic liquids

    OpenAIRE

    Arenas M.F.; Reddy R.G.

    2003-01-01

    The corrosion behavior of 1018 carbon steel alloy has been investigated by electrochemical techniques. The ionic liquids studied were 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1 hexyl-3-methylimidazolium hexafluorophosphate ([C6mim]PF6) 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim]PF6), and 1-butyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide ([C4mim][Tf2N]). Potentiodynamic polarization and Tafel plots were used to determine the corrosion behavior of the carbon...

  3. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-01

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  4. The preparation of carbon dots/ionic liquids-based electrolytes and their applications in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► A facile means to generate carbon dots/ionic liquids (ILs) – were demonstrated. ► The carbon dots/ILs blend were used for fabricating quasi-solid-state DSSCs. ► Cells exhibited good stability in room temperature without any further sealing. -- Abstract: A facile means to generate carbon dots/ionic liquids (ILs) blend using ionic liquid-assisted electrochemical exfoliation was demonstrated. Two kinds of ILs, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), were used in this work. Transmission electron microscopy and UV–vis spectrum were employed to characterize the formed carbon dots/ILs. The carbon dots/ILs were used for fabricating quasi-solid-state dye-sensitized solar cells (DSSCs), where 1-butyl-3-methylimidazolium iodide and LiI/I2 were added to enhance the performance of DSSCs. Effects of the varied contents of components in the complex on the performance of DCCSs have been studied in detail at ambient temperature. The electrochemical impedance spectroscopy showed that the introduction of carbon dots into ionic liquids can enhance the electrical properties by facilitating charge transfer processes of the electrolytes. The overall energy-conversion efficiency (η) was 2.71% and 2.41% for carbon dots/[bmim][PF6] and carbon dots/[bmim][BF4] based blend electrolytes, respectively. A 82% enhancement in η was obtained by introduction of carbon dots into [bmim][PF6] comparing with pure [bmim][PF6] (η = 1.49%). In addition, the cells exhibited good stability under continuous illumination in room temperature without any further sealing

  5. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG MengDong; DENG ChunYan; NIE Zhou; XU XiaHong; YAO ShouZhuo

    2009-01-01

    Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N=3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  6. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Amino acid ionic liquids(AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes(CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase(GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes(CNTs) modified glassy carbon(GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM(S/N = 3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  7. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang Yuhua; Zhang Yuanyuan; Ju Xiaomei; Li Guangjiu [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Poly(methylene blue) functionalized graphene was electrodeposited on the electrode. Black-Right-Pointing-Pointer The fabricated electrode showed better electrochemical performances. Black-Right-Pointing-Pointer Dopamine was sensitive detected by the modified electrode. - Abstract: An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB-GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation ({Delta}E{sub p}) as 0.058 V in 0.1 mol L{sup -1} pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB-GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s{sup -1} and the diffusional coefficient (D) as 3.45 Multiplication-Sign 10{sup -4} cm{sup 2} s{sup -1}, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 {mu}mol L{sup -1} with the detection limit as 5.6 nmol L{sup -1} (3{sigma}). The coexisting substances exhibited no interference and PMB-GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results.

  8. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine

    International Nuclear Information System (INIS)

    Highlights: ► Poly(methylene blue) functionalized graphene was electrodeposited on the electrode. ► The fabricated electrode showed better electrochemical performances. ► Dopamine was sensitive detected by the modified electrode. - Abstract: An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB–GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔEp) as 0.058 V in 0.1 mol L−1 pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB–GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s−1 and the diffusional coefficient (D) as 3.45 × 10−4 cm2 s−1, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L−1 with the detection limit as 5.6 nmol L−1 (3σ). The coexisting substances exhibited no interference and PMB–GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results.

  9. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-01

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  10. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.

    Science.gov (United States)

    Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic

    2013-05-28

    Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.

  11. A novel and simple electrochemical sensor for electrocatalytic reduction of nitrite and oxidation of phenylhydrazine based on poly (o-anisidine) film using ionic liquid carbon paste electrode

    International Nuclear Information System (INIS)

    In this study, nitrite electroreduction and phenylhydrazine electrooxidation were investigated on poly(o-anisidine) formed by cyclic voltammetry at the surface of ionic liquid carbon paste electrode. The films were characterized by cyclic voltammetry and scanning electron microscopy (SEM) and were contrasted with poly(o-anisidine) prepared under identical conditions in the absence of ionic liquid in carbon paste electrode. This carbon paste modified electrode exhibits a good electrocatalytic capability (via an EC’ mechanism) for both electrooxidation and electroreduction of some important molecules. The obtained results showed that the catalytic oxidation peak currents of phenylhydrazine and catalytic reduction peak currents of nitrite at the surface of this simple (unfunctionalized) polymeric electrode were linearly dependent on their concentrations. Electrode was successfully applied for determination of nitrite and phenylhydrazine in real samples.

  12. Electrospun Pd nanoparticles loaded on Vulcan carbon/ conductive polymeric ionic liquid nanofibers for selective and sensitive determination of tramadol.

    Science.gov (United States)

    Fathirad, Fariba; Mostafavi, Ali; Afzali, Daryoush

    2016-10-12

    In the present work a sensitive and selective electrochemical sensor was fabricated based on a glassy carbon electrode which has been modified with Pd nanoparticles loaded on Vulcan carbon/conductive polymeric ionic liquid composite nanofibers. The nanostructures were characterized by UV-Vis, FT-IR, FESEM, EDX and XRD techniques. The electrochemical study of the modified electrode, as well as its efficiency for the electrooxidation of tramadol was described in 0.1 M phosphate buffered solution (PBS) (pH 7.0) using cyclic voltammetry, linear sweep voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. It has been found that application of the composite nanofibers result in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts about 200 mV in peak potential. The results exhibit a linear dynamic range from 0.05 μM to 200 μM and a detection limit of 0.015 μM for tramadol. Finally, the modified electrode was used for the determination of tramadol in pharmaceutical and biological samples.

  13. Liquid-liquid extraction of cadmium(II by TIOACl (tri-iso-octylammonium chloride ionic liquid and its application to a TIOACl impregnated carbon nanotubes system

    Directory of Open Access Journals (Sweden)

    Alguacil, Francisco J.

    2015-09-01

    Full Text Available The extraction of cadmium(II by the ionic liquid (R3NH+Cl- (R: tri-iso-octyl in Exxsol D100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of R3NH+CdCl3− and (R3NH+2CdCl42− species in the organic phase. The results obtained for cadmium(II distribution have been implemented in an impregnated multi-walled carbon nanotubes system. The influence of aqueous solution stirring speed (250–2000 min−1, adsorbent dosage (0.05–0.2 g and temperature (20 °C–60 °C on cadmium adsorption have been investigated.Se ha estudiado la extracción de cadmio(II, de disoluciones en medio HCl, por el líquido iónico (R3NH+Cl- (R: tri-iso-octyl disuelto en Exxsol D100. La reacción de extracción tiene un carácter exotérmico. El análisis numérico de la distribución del metal sugiere la formación de las especies R3NH+CdCl3− y (R3NH+2CdCl42− en la fase orgánica. Estos resultados se han implementado en un sistema que utiliza nanotubos de carbono de pared múltiple impregnados con este líquido iónico. Se han investigado diversas variables experimentales: velocidad de agitación de la disolución acuosa (250–2000 min−1, adición del adsorbente (0,05–0,2 g y temperatura (20–60 °C.

  14. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    Moura Leila; Santini Catherine C.; Costa Gomes Margarida F.

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  15. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir; Khosravi, Mehdi; Barati, Ali

    2014-07-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H{sub 2}O{sub 2}. The observed sensitivities for the electrocatalytic oxidation and reduction of H{sub 2}O{sub 2} at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M{sup −1}, respectively. The detection limit (S/N = 3) for H{sub 2}O{sub 2} was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M{sup −1} and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M{sup −1} and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H{sub 2}O{sub 2} reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor.

  16. The hype with ionic liquids as solvents

    Science.gov (United States)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  17. Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol

    International Nuclear Information System (INIS)

    A novel cholesterol biosensor was fabricated on hydrophobic ionic liquid (IL)/aqueous solution interface. The hydrophobic IL thin film played a signal amplification role because it not only enriched the cholesterol from the aqueous solution, but also immobilized matrix for cholesterol oxidase (ChOx). Prussian blue (PB) as advanced sensing materials was used as effective low-potential electron transfer mediation toward hydrogen peroxide (H2O2). The fabricated IL-ChOx/PB/Glassy carbon electrode (GCE) was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammogram (CV), respectively. And it exhibited a linear response to cholesterol in the range of 0.01–0.40 mM with a detection limit of 4.4 μM. In addition, the kinetics behavior of cholesterol at IL-Chox/PB/GCE electrode was examined, and the electrocatalytic mechanism was proposed as shown in first scheme. ChOx immobilized in hydrophobic IL thin film was used as the first electrocatalyst for the cholesterol into H2O2, and the PB film onto the GCE was used as the second electrocatalyst for the 2e− reduction of the produced H2O2 into H2O

  18. Fixation of CO2 by electrocatalytic reduction to synthesis of dimethyl carbonate in ionic liquid using effective silver-coated nanoporous copper composites

    Institute of Scientific and Technical Information of China (English)

    Xuan Yun Wang; Su Qin Liu; Ke Long Huang; Qiu Ju Feng; De Lai Ye; Bing Liu; Jin Long Liu; Guan Hua Jin

    2010-01-01

    With high surface area, open porosity and high efficiency, a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate (DMC). The electrochemical property for electrocatalytic reduction of CO2 in ionic liquid was studied by cyclic voitammogram (CV). The effects of various reaction variables like temperature, working potential and cathode materials on the electrocatalytic performance were also investigated. 80% yield of DMC was obtained under the optimal reaction conditions.

  19. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  20. Ionic liquids for enzymatic sensing

    OpenAIRE

    Fraser, Kevin J.

    2012-01-01

    Point-of-care (POC) glucose biosensors play an important role in the management of blood sugar levels in patients with diabetes. One of the most commonly used enzymes in glucose biosensors is Glucose Oxidase (GOx). It is a biorecognition enzyme, which recognises the glucose molecule and acts as a catalyst to produce gluconic acid and hydrogen peroxide in the presence of glucose and oxygen. Ionic liquids (ILs) have evolved as a new type of solvent for biocatalysis, mainly due to their uniq...

  1. Application of Ionic Liquids in Hydrometallurgy

    OpenAIRE

    Jesik Park; Yeojin Jung; Priyandi Kusumah; Jinyoung Lee; Kyungjung Kwon; Churl Kyoung Lee

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing...

  2. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Afraz, Ahmadreza [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir [Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Najafi, Mojgan [Department of Materials Engineering, Hamedan University of Technology (HUT), 65169 Hamedan (Iran, Islamic Republic of)

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. - Highlights: • New method for simultaneous determination of AA, DA and UA was developed. • MWCNT/ionic liquid/cauliflower-like Au nanostructure was used for CPE modification. • Optimization of electrode composition was done by Design-Expert software. • The pH effect, peak separation mechanism and real samples was thoroughly studied.

  3. Quantized Friction across Ionic Liquid Thin Films

    OpenAIRE

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-01-01

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion ...

  4. Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites

    OpenAIRE

    Xiaolin Xie; Yingkui Yang; Rengui Peng; Yuanzhen Wang; Wei Tang

    2013-01-01

    Carbon nanotubes (CNTs) and graphene sheets are the most promising fillers for polymer nanocomposites due to their superior mechanical, electrical, thermal optical and gas barrier properties, as well as high flame-retardant efficiency. The critical challenge, however, is how to uniformly disperse them into the polymer matrix to achieve a strong interface for good load transfer between the two. This problem is not new but more acute in CNTs and graphene, both because they are intrinsically ins...

  5. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  6. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  7. Electrochemical oxidation of adenosine-5 Prime -triphosphate on a chitosan-graphene composite modified carbon ionic liquid electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Liu Jun; Wang Xiuzhen; Li Tongtong; Li Guangjiu; Wu Jie [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhang Liqi [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-01

    In this paper a new electrochemical method was proposed for the determination of adenosine-5 Prime -triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS-GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H{sub 2}PO{sub 4}) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS-GR/CILE were calculated with the electron transfer coefficient ({alpha}) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 Multiplication-Sign 10{sup -5} s{sup -1} and the surface coverage ({Gamma}{sub T}) as 9.33 Multiplication-Sign 10{sup -10} mol cm{sup -2}. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -3} M with the detection limit of 0.311 {mu}M (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection. - Highlights: Black-Right-Pointing-Pointer Ionic liquid [BMIM]H{sub 2}PO{sub 4} based carbon ionic liquid electrode (CILE) was prepared. Black-Right-Pointing-Pointer Graphene modified CILE was fabricated for the sensitive electrochemical detection of ATP. Black-Right-Pointing-Pointer Good electrocatalytic ability to the ATP oxidation was achieved. Black-Right-Pointing-Pointer Detection of 5 Prime -ATP in commercial injection samples with satisfactory results.

  8. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases.

    Science.gov (United States)

    Yang, Wen; Fellinger, Tim-Patrick; Antonietti, Markus

    2011-01-19

    Mesoporous nitrogen-doped carbon materials with high surface areas up to 1500 m(2) g(-1) were conveniently made by the carbonization of nucleobases dissolved in an all-organic ionic liquid (1-ethyl-3-methylimidazolium dicyanamide). Using hard templating with silica nanoparticles, this process yields high-surface-area nitrogen-doped carbon materials with nitrogen contents as high as 12 wt %, narrow mesopore size distribution of ca. 12 nm diameter, and local graphitic carbon structure. It is demonstrated that the resulting nitrogen-doped carbons show very high catalytic activity, even in the metal-free case in the oxygen reduction reaction (ORR) for fuel cells. Specifically, the as-prepared materials exhibit a low onset voltage for ORR in alkaline medium and a high methanol tolerance, compared with those of commercial 20 wt % Pt/C catalyst. We regard this as a first step toward an all-sustainable fuel cell, avoiding noble metals. PMID:21155583

  9. Why is the electroanalytical performance of carbon paste electrodes involving an ionic liquid binder higher than paraffinic binders? A simulation investigation.

    Science.gov (United States)

    Ghatee, M H; Namvar, S; Zolghadr, A R; Moosavi, F

    2015-10-14

    Recently, carbon paste electrodes (CPE) fabricated using an ionic liquid (IL) binder have shown enhanced electroanalytical performance over conventional paraffinic binders. Molecular dynamics (MD) simulations of graphite mixed with ionic liquid and with paraffin binder can unravel the potential atomistic factors responsible for such enhancement. Based on an experimentally optimized binder/graphite mass ratio, which has been reported to be crucial for such a performance, comprehensive simulations (at 323 K) are performed with the ensembles involving an ionic liquid binder (1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim]PF6) and a paraffin binder (n-C20H42) mixed with graphite comprising large-size hexagonal-shaped double graphene plates. Structural analysis indicates both binders form only a monolayer on the graphite surface, covering the surface locally by IL but all-encompassing by paraffin. With charged and uncharged graphite, the IL monolayer tends to cover mainly the graphite center without approaching the edge planes. On the contrary, a monolayer of the paraffin binder covers uniformly the center, near the center, and the edge planes. Cations and anions of the IL form well-defined two dimensional pentagonal matrixes with characteristic high adsorption energy, almost 2.4 times higher than paraffin adsorption. The cation and anion coordination ability of the IL is responsible for such a local distribution. The simulation of these phenomena under experimental conditions unravels strong two-dimensional coordination properties inherent to the ionic liquid when distributed over the graphite surface. This direct MD simulation comparison of the IL properties with an organic liquid counterpart, made for the first time, can be used to explain the high electroanalytical performance (electron transfer) of CPEs involving an IL binder over paraffin binders.

  10. Electrosynthesis of polyaniline in ionic liquid and its electrocatalytic properties

    Institute of Scientific and Technical Information of China (English)

    Qi Ximin; Du Yanfang; Zhang Guirong; Zhao Peng; Lu Jiaxing

    2006-01-01

    Ionic liquid like 1-butyl-3-methyl- imidazolium tetrafluorobrate ([BMIM]BF4) has been used as solvent and electrolyte for the electropolymerization of aniline at glassy carbon electrode by cyclic voltammetry.Electrode modified with polyaniline (PAn) has obvious electrochemical activity in ionic liquid and acid solution (pH 0-4),and has significant electrocatalyfic activity for redox reaction of catechol and hydroquione.

  11. Improved Ionic Liquids as Space Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  12. Membrane separation of ionic liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  13. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  14. Ionic liquid tunes microemulsion curvature.

    Science.gov (United States)

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325

  15. Discrimination and simultaneous determination of hydroquinone and catechol by tunable polymerization of imidazolium-based ionic liquid on multi-walled carbon nanotube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun; Gao, Weiwei; Zhou, Shenghai; Shi, Hongyan; Huang, Hao; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2013-12-17

    Graphical abstract: -- Highlights: •Tunable free radical polymerization of ionic liquid on MWCNT surfaces. •Discrimination of hydroquinone and catechol at functional electrochemical interface. •Excellent performances in simultaneous determination based on cation-π interaction. -- Abstract: Tunable polymerization of ionic liquid on the surfaces of multi-walled carbon nanotubes (MWCNTs) was achieved by a mild thermal-initiation-free radical reaction of 3-ethy-1-vinylimidazolium tetrafluoroborate in the presence of MWCNTs. Successful modification of polymeric ionic liquid (PIL) on MWCNTs surfaces (PIL-MWCNTs) was demonstrated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The resulting PIL-MWCNTs possessed unique features of high dispersity in aqueous solution and tunable thickness of PIL layer, due to positive imidazole groups along PIL chains and controllable ionic liquid polymerization by tuning the ratio of precursor. Based on cation-π interaction between the positive imidazole groups on PIL-MWCNTs surface and hydroquinone (HQ) or catechol (CC), excellent discrimination ability toward HQ and CC and improved simultaneous detection performance were achieved. The linear range for HQ and CC were 1.0 × 10{sup −6} to 5.0 × 10{sup −4} M and 1.0 × 10{sup −6} to 4.0 × 10{sup −4} M, respectively. The detection limit for HQ was 4.0 × 10{sup −7} M and for CC 1.7 × 10{sup −7} M (S/N = 3), correspondingly.

  16. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single-Walled Carbon Nanotubes Nanocomposite%A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single-Walled Carbon Nanotubes Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    Babaei, Ali; Babazadeh, Mitra; Afrasiabi, Mohammad

    2011-01-01

    The present work demonstrates that simultaneous determination of adrenalin (AD) and paracetamol (PAR) can be performed on single-walled carbon nanotube/chitosan/ionic liquid modified glassy carbon electrode (SWCNT-CHIT-IL/GCE). The electro-oxidations of AD and PAR were investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV) and also chronoamperometry (CA) methods. DPV experiments showed that the oxidation peak currents of AD and PAR are proportional to the corresponding concentrations over the 1-580 μmol/L and 0.5-400 μmol/L ranges, respectively. The RSD at a concentration level of 15 μmol/L AD and 15 μmol/L PAR were 1.69% and 1.82%, respectively. Finally the modified electrode was used for simultaneous determination of AD and PAR in real samples with satisfactory results.

  17. Quantized friction across ionic liquid thin films.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-01

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition. PMID:23942943

  18. Ionic liquid coated carbon nanospheres as a new adsorbent for fast solid phase extraction of trace copper and lead from sea water, wastewater, street dust and spice samples.

    Science.gov (United States)

    Tokalıoğlu, Şerife; Yavuz, Emre; Şahan, Halil; Çolak, Süleyman Gökhan; Ocakoğlu, Kasım; Kaçer, Mehmet; Patat, Şaban

    2016-10-01

    In this study a new adsorbent, ionic liquid (1,8-naphthalene monoimide bearing imidazolium salt) coated carbon nanospheres, was synthesized for the first time and it was used for the solid phase extraction of copper and lead from various samples prior to determination by flame atomic absorption spectrometry. The ionic liquid, carbon nanospheres and ionic liquid coated carbon nanospheres were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, (1)H NMR and (13)C NMR, Brunauer, Emmett and Teller surface area and zeta potential measurements. Various parameters for method optimization such as pH, adsorption and elution contact times, eluent volume, type and concentration, centrifuge time, sample volume, adsorption capacity and possible interfering ion effects were tested. The optimum pH was 6. The preconcentration factor, detection limits, adsorption capacity and precision (as RSD%) of the method were found to be 300-fold, 0.30µgL(-1), 60mgg(-1) and 1.1% for copper and 300-fold, 1.76µgL(-1); 50.3mgg(-1) and 2.2%, for lead, respectively. The effect of contact time results showed that copper and lead were adsorbed and desorbed from the adsorbent without vortexing. The equilibrium between analyte and adsorbent is reached very quickly. The method was rather selective for matrix ions in high concentrations. The accuracy of the developed method was confirmed by analyzing certified reference materials (LGC6016 Estuarine Water, Reference Material 8704 Buffalo River Sediment, and BCR-482 Lichen) and by spiking sea water, wastewater, street dust and spice samples. PMID:27474302

  19. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    J.M. Vicent-Luna; D. Dubbeldam; P. Gómez-Álvarez; S. Calero

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactio

  20. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  1. Ionic liquid-in-oil microemulsions.

    Science.gov (United States)

    Eastoe, Julian; Gold, Sarah; Rogers, Sarah E; Paul, Alison; Welton, Tom; Heenan, Richard K; Grillo, Isabelle

    2005-05-25

    Phase stability and small-angle neutron scattering (SANS) data show that surfactant-stabilized nanodomains of a typical ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]) may be dispersed by the nonionic surfactant Triton-X100 in cyclohexane. Analyses of these SANS data are consistent with the formation of ionic liquid-in-oil microemulsion droplets. PMID:15898765

  2. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    2000-01-01

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species a

  3. Engineered microorganisms having resistance to ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  4. Performance of Ion-gel Actuator Containing Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    H.Kokubo; Y.Kato; T.Honda; M.Watanabe

    2007-01-01

    1 Results Electroactive polymers (EAPs) driven by transducing electric energy into mechanical energy have been the subjects of recent interest[1]."Ionic liquids",consisting entirely of cation and anion,have characteristic features such as negligible volatility,non-flammability,thermal and chemical stability,and high ionic conductivity.We proposed an EAP actuator utilizing ion-gels[2-3],which consist of ionic liquids and polymers,sandwiching with two carbon material sheets as shown in Fig.1.This electrol...

  5. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Sanati, Afsaneh L. [Department of Chemistry, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Karimi-Maleh, Hassan, E-mail: h.karimi.maleh@gmail.com [Department of Chemistry, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Biparva, Pourya [Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari (Iran, Islamic Republic of); Ensafi, Ali A. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2014-02-01

    A novel ionic liquid modified NiO/CNTs carbon paste electrode (IL/NiO/CNTCPE) had been fabricated by using hydrophilic ionic liquid 1-methyl-3-butylimidazolium chloride [MBIDZ]Cl as a binder. The cyclic voltammogram showed an irreversible oxidation peak at 0.61 V (vs. Ag/AgCl{sub sat}), which corresponded to the oxidation of morphine. Compared to common carbon paste electrode, the electrochemical response was greatly improved for morphine electrooxidation. This modified electrode exhibited a potent and persistent electron mediating behavior followed by well separated oxidation peaks of morphine and diclofenac. Detection limit of morphine was found to be 0.01 μM using square wave voltammetry (SWV) method. The proposed sensor was successfully applied for the determination of morphine in human urine and pharmaceutical samples. - Graphical abstract: Diclofenac as a nonsteroidal anti-inflammatory drug has been shown to decrease morphine consumption after operation in adults. The addition of regular doses of diclofenac may reduce the need for morphine after abdominal surgery. Therefore, in this study we describe a sensitive electrochemical sensor for simultaneous determination of morphine and diclofenac. - Highlights: • Electrochemical behavior of morphine study using modified carbon paste electrode • The sensor resolved the overlap of morphine and diclofenac • This sensor is also used for the determination of morphine in real samples.

  6. Ionic liquid incorporating thiosalicylate for metal removal

    Science.gov (United States)

    Wilfred, Cecilia Devi; Mustafa, Fadwa Babiker; Romeli, Fatimah Julia

    2012-09-01

    Ionic liquids are a class of organic molten salts "designer solvents" that are composed totally of anions (inorganic and organic polyatomic) and organic cations. The replacement of volatile organic solvents from a separation process is of utmost importance since the use of a large excess of these solvents is hazardous and creates ecological problem. The new method for metal ion extraction is by using task-specific ionic liquids such as ionic liquids which incorporate thiosalicylate functionality. This paper looks at producing a new cluster of ionic liquids which incorporates thiosalicylate with pyridinium cation. Its thermophysical properties such as density and viscosity in single and binary mixtures are studied. The ionic liquids' capability in metal removal processes is evaluated.

  7. TETRAHALOINDATE(III)-BASED IONIC LIQUIDS IN THE COUPLING REACTION OF CARBON DIOXIDE AND EPOXIDES TO GENERATE CYCLIC CARBONATES: H-BONDING AND MECHANISTIC STUDIES

    Science.gov (United States)

    The microwave reactions of InX3 with [Q]Y produce a series of tetrahaloindate(III)-based ionic liquids (ILs) with a general formula of [Q][InX3Y] (Q = imidazolium, phosphonium, ammonium, and pyridinium; X = Cl, Br, I; Y = Cl, Br). The reaction of CO2

  8. Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C.

    Science.gov (United States)

    Ababtain, Khalid; Babu, Ganguli; Lin, Xinrong; Rodrigues, Marco-Tulio F; Gullapalli, Hemtej; Ajayan, Pulickel M; Grinstaff, Mark W; Arava, Leela Mohana Reddy

    2016-06-22

    Fabrication of lithium-ion batteries that operate from room temperature to elevated temperatures entails development and subsequent identification of electrolytes and electrodes. Room temperature ionic liquids (RTILs) can address the thermal stability issues, but their poor ionic conductivity at room temperature and compatibility with traditional graphite anodes limit their practical application. To address these challenges, we evaluated novel high energy density three-dimensional nano-silicon electrodes paired with 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (Pip) ionic liquid/propylene carbonate (PC)/LiTFSI electrolytes. We observed that addition of PC had no detrimental effects on the thermal stability and flammability of the reported electrolytes, while largely improving the transport properties at lower temperatures. Detailed investigation of the electrochemical properties of silicon half-cells as a function of PC content, temperature, and current rates reveal that capacity increases with PC content and temperature and decreases with increased current rates. For example, addition of 20% PC led to a drastic improvement in capacity as observed for the Si electrodes at 25 °C, with stability over 100 charge/discharge cycles. At 100 °C, the capacity further increases by 3-4 times to 0.52 mA h cm(-2) (2230 mA h g(-1)) with minimal loss during cycling. PMID:27237138

  9. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  10. Actinide chemistry in ionic liquids.

    Science.gov (United States)

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  11. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  12. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Xu, Li; Zhu, Huanhuan [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun, Zhenfan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Sun, Wei, E-mail: swyy26@hotmail.com [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established.

  13. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    International Nuclear Information System (INIS)

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established

  14. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  15. Electrochemical Reduction of Benzoylformic Acid in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    陆嘉星; 孙茜; 何鸣元

    2003-01-01

    Ionic Hquids possess a number of unique properties that makethem ideal electrolytes. Electrochical reduction of benzoyl-formic acid in room temperature ionic liquids as reaction media could be conducted with excellent performances without any ad-ditional supporting electrolyte. Electrolysis at glassy carbon electrode results in the formation of mandelic acid in 91% yield. And the electrochemical behavior of benzoylformic acid was investigated with the technique of cyclic voltammetry.

  16. A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries

    International Nuclear Information System (INIS)

    Highlights: • A quaternary PEC-LiTFSI-Pyr14TFSI-Silica fiber electrolyte was prepared by a solvent casting method. • Both electrochemical and mechanical properties were improved by the presence of the Silica fiber. • The electrolyte showed a tLi+ value of 0.36 with an anodic stability extended up to 4.5 V vs. Li/Li+. • A prototype Li/LiFePO4 polymer cell delivered a discharge capacity of about 100 mAh g−1 (75 °C, C/15). - Abstract: Poly(ethylene carbonate) (PEC) is known as an alternating copolymer derived from carbon dioxide (CO2) and an epoxide as monomers. Here, we describe a new quaternary PEC-based composite electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, N-n-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr14TFSI) ionic liquid, and an electrospun silica (SiO2) fiber (SiF) with a submicron diameter in view of its possible applications in solid-state Li polymer batteries. A free-standing electrolyte membrane is prepared by a solvent casting method. The Pyr14TFSI ionic liquid enhances the ionic conductivity of the electrolyte as a result of its plasticizing effect. The electrochemical properties, such as ionic conductivity and Li transference number (tLi+), as well as mechanical strength of the electrolyte, are further improved by the SiF. We show that the quaternary electrolyte has a conductivity of the order of 10−7 S cm−1 at ambient temperature and a high tLi+ value of 0.36 with an excellent flexibility. A prototype Li polymer cell using LiFePO4 as a cathode material is assembled and tested. We demonstrate that this battery delivers a reversible charge-discharge capacity close to 100 mAh g−1 at 75 °C and C/15 rate. We believe that this work may pave the road to utilize CO2 as a carbon source for highly-demanded, functional battery materials in future

  17. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes;

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  18. Ionic Liquid Epoxy Composite Cryotanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  19. Structure of ionic liquids with cationic silicon-substitutions

    Science.gov (United States)

    Wu, Boning; Shirota, Hideaki; Lall-Ramnarine, Sharon; Castner, Edward W.

    2016-09-01

    Significantly lower viscosities result when a single alkyl carbon is replaced by a silicon atom on the side chain of an ionic liquid cation. To further explore this effect, we compare liquid structure factors measured using high-energy X-ray scattering and calculated using molecular dynamics simulations. Four ionic liquids are studied that each has a common anion, bis(trifluoromethylsulfonyl)amide ( NTf2 - ). The four cations for this series of NTf2 - -anion ionic liquids are 1-methyl-3-trimethylsilylmethylimidazolium (Si-mim+), 1-methyl-3-neopentylimidazolium (C-mim+), 1-methyl-3-pentamethyldisiloxymethylimidazolium (SiOSi-mim+), and 1-methyl-1-trimethylsilylmethylpyrrolidinium (Si-pyrr+). To achieve quantitative agreement between the structure factors measured using high-energy X-ray scattering and molecular dynamics simulations, new transferable parameters for silicon were calibrated and added to the existing force fields.

  20. Lanthanides and actinides in ionic liquids

    OpenAIRE

    Binnemans, Koen

    2007-01-01

    This lecture gives an overview of the research possibilities offered by combining f-elements (lanthanides and actinides) with ionic liquids [1] Many ionic liquids are solvents with weakly coordinating anions. Solvation of lanthanide and actinide ions in these solvents is different from what is observed in conventional organic solvents and water. The poorly solvating behavior can also lead to the formation of coordination compounds with low coordination numbers. The solvation of f-elements can...

  1. Ionic liquids behave as dilute electrolyte solutions

    OpenAIRE

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical contr...

  2. Dynamics of Ion Transport in Ionic Liquids

    OpenAIRE

    Lee, Alpha A.; Kondrat, Svyatoslav; Vella, Dominic; Goriely, Alain

    2015-01-01

    A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishe...

  3. Ionic liquids in the synthesis of nanoobjects

    Energy Technology Data Exchange (ETDEWEB)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A [Institute of Chemistry and Problems of Sustainable Development D.I.Mendeleev University of Chemical Technology of Russia (Russian Federation)

    2010-08-12

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  4. Ionic liquids in the synthesis of nanoobjects

    Science.gov (United States)

    Tarasova, Natalia P.; Smetannikov, Yurii V.; Zanin, A. A.

    2010-08-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  5. Thermodynamic Properties of Caprolactam Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    JIANG Lu; BAI Liguang; ZHU Jiqin; CHEN Biaohua

    2013-01-01

    A series of caprolactam ionic liquids (ILs) containing incorporated halide anions were synthesized.Their physical properties,such as melting points,heats of fusion and heat capacities,were measured by differential scanning calorimeter (DSC).The results indicate that these ionic liquids exhibit proper melting points,high value of heats of fusion,and satisfying heat capacities which are suitable for thermal energy storage applications.

  6. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  7. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  8. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    Science.gov (United States)

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  9. Electropolymerization of O-Phenylenediamine in an Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Yan Fang DU; Xi Min QI; Peng ZHAO; Jia Xing LU; Ming Yuan HE

    2004-01-01

    Ionic liquid like 1-ethyl-3-methylimidazolium bromine ([EMIM]Br) has been used as electrolyte for the electropolymerization of O-phenylenediamine at glassy carbon electrode by cyclic voltammetry. It is found that poly (O-phenylenediamine) film modified electrode has favorable electrochemical activity in acid solution.

  10. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    Science.gov (United States)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  11. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG HaiBo; ZHOU XiaoHai; DONG JinFeng; ZHANG GaoYong; WANG CunXin

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents, which promises widespread applications in industry and other areas. However, the ionic liquids with surface activity are rarely reported. In this work, a series of novel ionic liquids was synthesized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized, which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  12. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  13. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  14. Ionic liquids--an overview.

    Science.gov (United States)

    Jenkins, Harry Donald Brooke

    2011-01-01

    A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the "designer role" so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of lLs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half although knowledge of these materials has existed for much longer. PMID:22026149

  15. Structural and Rotational Dynamics of Carbon Dioxide in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: The Effect of Chain Length.

    Science.gov (United States)

    Giammanco, Chiara H; Yamada, Steven A; Kramer, Patrick L; Tamimi, Amr; Fayer, Michael D

    2016-07-14

    Ionic liquids (ILs) have been proposed as possible carbon dioxide (CO2) capture media; thus, it is useful to understand the dynamics of both the dissolved gas and its IL environment as well as how altering an IL affects these dynamics. With increasing alkyl chain length, it is well-established that ILs obtain a mesoscopic structural feature assigned to polar-apolar segregation, and the change in structure with chain length affects the dynamics. Here, the dynamics of CO2 in a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ILs, in which the alkyl group is ethyl, butyl, hexyl, or decyl, were investigated using ultrafast infrared spectroscopy by measuring the reorientation and spectral diffusion of carbon dioxide in the ILs. It was found that reorientation of the carbon dioxide occurs on three time scales, which correspond to two different time scales of restricted wobbling-in-a-cone motions and a long-time complete diffusive reorientation. Complete reorientation slows with increasing chain length but less than the increases in viscosity of the bulk liquids. Spectral diffusion, measured with two-dimensional IR spectroscopy, is caused by a combination of the liquids' structural fluctuations and reorientation of the CO2. The data were analyzed using a recent theory that takes into account both contributions to spectral diffusion and extracts the structural spectral diffusion. Different components of the structural fluctuations have distinct dependences on the alkyl chain length. All of the dynamics are fast compared to the complete orientational randomization of the bulk ILs, as measured with optical heterodyne-detected optical Kerr effect measurements. The results indicate a hierarchy of constraint releases in the liquids that give rise to increasingly slower dynamics. PMID:27264965

  16. An Amperometric Biosensor of Determination H/sub 2/ O/sub 2/ Based on horseradish peroxidase in carbon nanotubes/ionic liquid

    International Nuclear Information System (INIS)

    A novel amperometric biosensor for the determination of H/sub 2/ O/sub 2/ based on horseradish peroxidase (HRP) in nanocomposite material of muti-walled carbon nanotubes/ionic liquid was explored. Cyclic voltammetry (CV) was used to characterize the performance of the biosensor. Under the optimized experimental conditions, H/sub 2/ O/sub 2/ could be detected in a linear calibration range of 0.5 x 10/sup -6/ M Approximately 6.0 x 10/sup -6/ M with a correlation coefficient of 0.9902 (n = 7), a detection limit of 1.5 x 10/sup -7/ M at 3 sigma and the recovery ratio was of 96.2% ∼ 110.8%, which indicated that the accuracy of this method is also satisfied. The modified electrodes display more excellent electrochemical performance, high sensitivity, good reproducibility, and long-term stability. (author)

  17. A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Mai; Liu, Donghui; Zhao, Lu; Han, Jiajun; Liang, Yiran; Wang, Peng; Zhou, Zhiqiang, E-mail: zqzhou@cau.edu.cn

    2014-12-10

    Highlights: • A new kind of ionic liquid modified carbon nanotube has been synthesized and applied for simultaneous analysis of AOPPs and their metabolites. • The potential pollutants, such as metabolites of AOPPs, have been analyzed. • The mechanism of absorption has been discussed. • Varieties of experiment factors were optimized and selected. • This method has been successfully applied in the analysis of real water samples. - Abstract: A reliable, sensitive, rapid and environmentally friendly analysis procedure for the simultaneous determination of the analytes with a wide range of polarity in the environmental water was developed by coupling dispersive magnetic solid-phase extraction (d-MSPE) with high-performance liquid chromatography (HPLC)–diode array detector (DAD) and ultra-high pressure liquid chromatography (UHPLC)-triple quadrupole mass spectrometer (MS/MS), in this work. Magnetic ionic liquid modified multi-walled carbon nanotubes (m-IL-MWCNTs) were prepared by spontaneous assembly of magnetic nanoparticles and imidazolium-modified carbon nanotubes, and used as the sorbent of d-MSPE to simultaneously extract aryloxyphenoxy-propionate herbicides (AOPPs) and their polar acid metabolites due to the excellent π–π electron donor–acceptor interactions and anion exchange ability. The factors, including the amount of sorbent, pH of the sample solution, extraction time and the volume of elution solvent were investigated. Under the optimized conditions, the proposed d-MSPE coupling to HPLC–DAD system had a satisfactory performance, the limits of detection (LODs, defined as the signal to noise ratio of 3) and the limits of quantification (LOQs, defined as the signal to noise ratio of 10) for analytes in Milli-Q water were in the range of 2.8–14.3 and 9.8–43.2 μg L{sup −1} respectively. Calibration curves were linear (r{sup 2} > 0.998) over the concentration range from 0.02 to 1 mg L{sup −1}. The recoveries of the eight analytes ranged

  18. Stability of polypyrrole soft actuators in ionic liquids

    Science.gov (United States)

    Kaneto, Keiicgi; Takashima, Wataru

    2012-04-01

    Characteristics of electrochemomechanical deformation (ECMD) of polypyrrole films using ionic liquids are reported. The PPy film prepared by electrodeposition in an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluorometylsulfonyl)imide, BMPTFSI) was compact and high density. The other film prepared from LiTSFI/methyl benzoate and dimethyl phthalate mixed solvents was porous and low density. Both films demonstrated a stable ECMD in the ionic liquid. The strain of ECMD was 3-5% and superimposed on a creeping, showing a typical behaviour of cation movement. The Strains of ECMD in both films operated in a mixed electrolyte of BMPTFSI and propylene carbonate were enhanced up to 17- 25 %, showing anion movement. However, the large strain decreased upon several electrochemical cycles. The results were discussed in terms of swelling of the PPy film by solvents and loss of electrochemical activity.

  19. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  20. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.;

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  1. The Research Progress of CO2 Capture with Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    赵志军; 董海峰; 张香平

    2012-01-01

    Due to their negligible volatility, reasonable thermal stability, strong dissolubility, wide liquid range and tunability of structure and property, ionic liquids have been regarded as emerging candidate reagents for CO2 cap- ture from industries gases. In this review, the research progresses in CO2 capture using conventional ionic liquids,functionalized ionic liquids, supported ionic-liquids membranes, polymerized ionic liquids and mixtures of ionic liquids with some molecular solvents were investigated and reviewed. Discussion of relevant research fields was presented and the future developments were suggested.

  2. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  3. Enzyme activity in dialkyl phosphate ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  4. Computationally Efficient Prediction of Ionic Liquid Properties

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... the ability of RTILs to stay liquid at several hundred degrees Celsius and introduce a straightforward and computationally efficient method for predicting RTIL properties at ambient temperature. RTILs do not alter phase behavior at 600-800 K. Therefore, their properties can be smoothly extrapolated down...

  5. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    Energy Technology Data Exchange (ETDEWEB)

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  6. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  7. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  8. Structure of room temperature ionic liquids

    Science.gov (United States)

    Yethiraj, Arun

    2016-10-01

    The structure of room temperature ionic liquids is studied using molecular dynamics simulations and integral equation theory. Three ionic liquids 1-alkyl-3-methylimidazolium hexfluorophosphate, [C n MIM] [PF6], for n  =  1, 4, and 8, are studied using a united atom model of the ions. The primary interest is a study of the pair correlation functions and a test of the reference interaction site model theory. There is liquid-like ordering in the liquid that arises from electrostatic attractions and steric packing considerations. The theory is not in quantitative agreement with the simulation results and underestimates the degree of liquid-like order. A pre-peak in the static structure factor is seen in both simulations and theory, suggesting that this is a geometric effect arising from a packing of the alkyl chains.

  9. Structure of room temperature ionic liquids.

    Science.gov (United States)

    Yethiraj, Arun

    2016-10-19

    The structure of room temperature ionic liquids is studied using molecular dynamics simulations and integral equation theory. Three ionic liquids 1-alkyl-3-methylimidazolium hexfluorophosphate, [C n MIM] [PF6], for n  =  1, 4, and 8, are studied using a united atom model of the ions. The primary interest is a study of the pair correlation functions and a test of the reference interaction site model theory. There is liquid-like ordering in the liquid that arises from electrostatic attractions and steric packing considerations. The theory is not in quantitative agreement with the simulation results and underestimates the degree of liquid-like order. A pre-peak in the static structure factor is seen in both simulations and theory, suggesting that this is a geometric effect arising from a packing of the alkyl chains. PMID:27546807

  10. Anodic dissolution of metals in ionic liquids

    OpenAIRE

    Abbott, Andrew P.; Gero Frisch; Jennifer Hartley; Wrya O. Karim; Ryder, Karl S.

    2015-01-01

    The anodic dissolution of metals is an important topic for battery design, material finishing and metal digestion. Ionic liquids are being used in all of these areas but the research on the anodic dissolution is relatively few in these media. This study investigates the behaviour of 9 metals in an ionic liquid [C4mim][Cl] and a deep eutectic solvent, Ethaline, which is a 1:2 mol ratio mixture of choline chloride and ethylene glycol. It is shown that for the majority of metals studied a quasi-...

  11. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  12. Facile synthesis of nitrogen-doped carbon dots from COOH-functional ionic liquid and their sensing application in selective detection of free chlorine

    Science.gov (United States)

    Wang, Congyue; Wang, Chunfeng; Sun, Dong; Li, Aoqi; Chen, Yujuan; Zhuo, Kelei

    2016-09-01

    Heteroatom doped carbon dots (CDs) possess many unique properties and have attracted increasing attention. The precursor is vital for the preparation of highly fluorescent heteroatom doped CDs. Herein, 1, 3-bis(carboxymethyl)imidazolium chloride ([Im(AH)2]Cl, a COOH-functional ionic liquid) and aminoethylethanolamine (AEEA) were firstly used as precursors to prepare nitrogen-doped carbon dots (N-CDs) by a simple one-step pyrolysis approach. The effects of reaction time, temperature, and mass ratio of precursors on the quantum yield (QY) of N-CDs were investigated. The prepared N-CDs are spherical morphology with an average diameter of 2.4 nm, and have blue fluorescence with a QY of 23.2% and excitation-dependent emission behavior. They also possess good water solubility and fluorescent stability. In addition, based on the obtained N-CDs, a sensing method of free chlorine detection in acidic water system was introduced. The proposed method has good sensitivity and selectivity to free chlorine, and exhibits a nice linear response in the concentration range from 0.2 to 22 μM with a detection limit of 0.15 μM. Furthermore, this sensing method was successfully applied to detect free chlorine of tap water with satisfactory recovery (97%-103%), suggesting it has the potential application in water quality monitoring.

  13. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells

    Science.gov (United States)

    Wei, Huan; Wu, Xiao-Shuai; Zou, Long; Wen, Guo-Yun; Liu, Ding-Yu; Qiao, Yan

    2016-05-01

    An amine-terminated ionic liquid (IL-NH2) is applied to functionalize carbon nanotubes (CNTs) for improving the interfacial electron transfer of Shewanella putrefaciens (S. putrefaciens) anode in Microbial fuel cells (MFCs). The introduction of thin layer of ILs does not change the morphology of CNTs a lot but increases surface positive charges as well as nitrogen functional groups of the CNTs based anode. The CNT-IL composite not only improves the adhesion of S. putrefaciens cells but also promotes both of the flavin-mediated and the direct electron transfer between the S. putrefaciens cells and the anode. It is interesting that the CNT-IL is more favorable for the mediated electron transfer than for the direct electron transfer. The CNT-IL/carbon cloth anode delivers 3-fold higher power density than that of CNT anode and shows great long-term stability in the batch-mode S. putrefaciens MFCs. This CNT-IL could be a promising anode material for high performance MFCs.

  14. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  15. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  16. Physical chemistry of reaction dynamics in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  17. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  18. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  19. Solvation and Reaction in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  20. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  1. Esterification of Starch in Ionic Liquids

    Science.gov (United States)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  2. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    Peng-noo, Worawit; Kulajanpeng, Kusuma; Gani, Rafiqul;

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane...

  3. Reactions of Starch in Ionic Liquids

    Science.gov (United States)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  4. Ionic-liquid based electrochemical ethylene sensor

    NARCIS (Netherlands)

    Zevenbergen, M.A.G.; Wouters, D.; Dam, V.-A.T.; Brongersma, S.H.; Crego-Calama, M.

    2011-01-01

    We present an electrochemical ethylene sensor that exploits a thin ionic-liquid (IL) layer as electrolyte. ILs are fluids that completely consist of ions at room temperature and have emerged as extremely promising electrolytes for the following reasons: first, the vapor pressure is practically negli

  5. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes. PMID:25830724

  6. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  7. Synthesis, characterization and thermal properties of thiosalicylate ionic liquids

    Indian Academy of Sciences (India)

    Cecilia Devi Wilfred; Fadwa Babiker Mustafa

    2013-11-01

    In an attempt to produce new functionalized ionic liquids, a series of thiosalicylate ionic liquids based on imidazolium, ammonium, phosphonium, choline and pyrrolidinium cations were synthesized. The compounds were characterized by Infra Red (IR), Nuclear Magnetic Resonance (NMR) and mass spectra (ESI-MS). Their glass-transition temperatures, melting points and decomposition temperatures have been measured. Physicochemical properties of ionic liquids are influenced by alkyl chain length and nature of the cation of ionic liquids.

  8. Redox-active Crosslinkable Poly(ionic liquid)s

    NARCIS (Netherlands)

    Sui, Xiaofeng; Hempenius, Mark A.; Vancso, G. Julius

    2012-01-01

    The synthesis of a new class of cross-linkable redox-responsive poly(ferrocenylsilane)-based poly(ionic liquid)s (PFS-PILs) is reported. PFS-PILs self-cross-link at low concentrations into nanogels or form macroscopic hydrogel networks at higher concentrations. PFS-PILs proved to be efficient disper

  9. Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Deli; Yuan, Danhua [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); He, Hua, E-mail: dochehua@163.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Gao, Mengmeng [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)

    2013-08-15

    In this study, a new sensitive and convenient method for the determination of quercetin based on the fluorescence quenching of fluorescent carbon nanoparticles (CNPs) was developed. The CNPs derived from ionic liquids were prepared using a green and rapid microwave-assisted synthetic approach for the first time. The one-step green preparation process is simple and effective, neither a strong acid solvent nor surface modification reagent is needed, which makes this approach very suitable for large-scale production. The prepared CNPs were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectrometry, elemental analysis and spectrofluorometry. In NH{sub 3}–NH{sub 4}Cl buffer solution (pH 9.47), the fluorescence signals of CNPs decreased obviously with increase of the quercetin concentration. The effect of other coexisting foreign substances on the intensity of CNPs showed a low interference response. Under the optimum conditions, the fluorescence intensity presented a linear response versus quercetin concentration according to the Stern–Volmer equation with an excellent 0.9989 correlation coefficient. The linearity ranged from 2.87×10{sup −6} to 31.57×10{sup −6} mol L{sup −1} with the detection limit (3σ) of 9.88×10{sup −8} mol L{sup −1}. The recovery of this method was in the range of 93.3–105.1%. Therefore, the CNPs could to be a promising candidate as a fluorescence probe for the detection of trace levels of quercetin due to their advantages in low-cost production, low cytotoxicity, strong fluorescence and excellent biocompatibility. -- Highlights: ► Fluorescent CNPs were synthesized with microwave pyrolysis approach. ► Ionic liquids were used as sources of carbon and nitrogen for the first time. ► The formation and functionalization of CNPs were accomplished simultaneously. ► CNPs were used as fluorescent probes for the determination of quercetin. ► A sensitive and convenient method based

  10. Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination

    International Nuclear Information System (INIS)

    In this study, a new sensitive and convenient method for the determination of quercetin based on the fluorescence quenching of fluorescent carbon nanoparticles (CNPs) was developed. The CNPs derived from ionic liquids were prepared using a green and rapid microwave-assisted synthetic approach for the first time. The one-step green preparation process is simple and effective, neither a strong acid solvent nor surface modification reagent is needed, which makes this approach very suitable for large-scale production. The prepared CNPs were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectrometry, elemental analysis and spectrofluorometry. In NH3–NH4Cl buffer solution (pH 9.47), the fluorescence signals of CNPs decreased obviously with increase of the quercetin concentration. The effect of other coexisting foreign substances on the intensity of CNPs showed a low interference response. Under the optimum conditions, the fluorescence intensity presented a linear response versus quercetin concentration according to the Stern–Volmer equation with an excellent 0.9989 correlation coefficient. The linearity ranged from 2.87×10−6 to 31.57×10−6 mol L−1 with the detection limit (3σ) of 9.88×10−8 mol L−1. The recovery of this method was in the range of 93.3–105.1%. Therefore, the CNPs could to be a promising candidate as a fluorescence probe for the detection of trace levels of quercetin due to their advantages in low-cost production, low cytotoxicity, strong fluorescence and excellent biocompatibility. -- Highlights: ► Fluorescent CNPs were synthesized with microwave pyrolysis approach. ► Ionic liquids were used as sources of carbon and nitrogen for the first time. ► The formation and functionalization of CNPs were accomplished simultaneously. ► CNPs were used as fluorescent probes for the determination of quercetin. ► A sensitive and convenient method based on the fluorescence quenching was developed

  11. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    OpenAIRE

    EeroSalminen; Jyri-PekkaTuomoMikkola

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths ...

  12. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    Science.gov (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  13. Synthesis of electroactive ionic liquids for flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  14. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  15. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  16. Synthesis of tin nanocrystals in room temperature ionic liquids

    OpenAIRE

    Le Vot, Steven; Dambournet, Damien; Groult, Henri; Ngo, Anh-tu; Petit, Christophe; Rizzi, Cécile; Salzemann, Caroline; Sirieix-Plenet, Juliette; Borkiewicz, Olaf J.; Raymundo-Piñero, Encarnación; Gaillon, Laurent

    2014-01-01

    International audience The aim of this work was to investigate the synthesis of tin nanoparticles (NPs) or tin/carbon composites, in room temperature ionic liquids (RTILs), that could be used as structured anode materials for Li-ion batteries. An innovative route for the synthesis of Sn nanoparticles in such media is successfully developed. Compositions, structures, sizes and morphologies of NPs were characterized by high-energy X-ray diffraction (HEXRD), X-ray photoelectron spectroscopy (...

  17. Improved Ionic Model of Liquid Uranium Dioxide

    CERN Document Server

    Gryaznov, Victor; Yakub, Eugene; Fortov, Vladimir; Hyland, Gerard J; Ronchi, Claudio

    2009-01-01

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species are considered here: U(5+), U(4+), U(3+), O(2-) and O(-). The ions are described as charged hard-spheres of different diameters. Coulomb interaction of ions is taken into account according to the modified Mean Sphere Approximation (MSA). The main result of the new model is the appearance of natural "plasma" equivalent, which, from the theory, is directly related to the definition of oxygen potential in liquid UO(2+x). The features of the model make it possible to describe non-congruent phase equilibrium (and evaporation) in uranium dioxide, as well as other relevant phenomena characterising the phase equilibrium in chemically active matter. First calculation results are discussed.

  18. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides.

    Science.gov (United States)

    Wu, Mian; Wang, Liying; Zeng, Baizhao; Zhao, Faqiong

    2016-04-29

    A poly(3,4-ethylenedioxythiophene)-ionic liquid polymer functionalized multiwalled carbon nanotubes (PEDOT-PIL/MWCNTs) composite solid-phase microextraction (SPME) coating was fabricated by electrodeposition. After being dipped in Nafion solution, a Nafion-modified coating was obtained. The outer layer Nafion played a crucial role in enhancing the durability and stability of the coating, thus it was robust enough for replicated extraction for at least 150 times without decrease of extraction performance. The Nafion-modified coating exhibited much higher sensitivity than commercial coatings for the direct extraction of carbamate pesticides in aqueous solutions, due to its strong hydrophobic effect and π-π affinity based enrichment. When it was used for the determination of carbamate pesticides in combination with gas chromatography-flame ionization detection, good linearity (correlation coefficients higher than 0.9981), low limits of detection (15.2-27.2 ng/L) and satisfactory precision (relative standard deviation pesticides in apple and lettuce samples, and acceptable recoveries (i.e. 87.5-106.5%) were obtained for the standard addition.

  19. Ni(II)-quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Li [Institute of Analytical Science, Northwest University, Xi' an, 710069 (China); College of Chemistry and Chemical Engineering, Xi' an Shiyou University, Xi' an, 710065 (China); Zhang Jiaoqiang [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi' an, 710072 (China); Song Junfeng [Institute of Analytical Science, Northwest University, Xi' an, 710069 (China)], E-mail: songjunf@nwu.edu.cn

    2009-07-30

    A modified electrode Ni(II)-Qu-MWCNT-IL-PE has been fabricated by electrodepositing Ni(II)-quercetin [Ni(II)-Qu] complex on the surface of multi-wall carbon nanotube ionic liquid paste electrode (MWCNT-IL-PE) in alkaline solution. The Ni(II)-Qu-MWCNT-IL-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-Qu-MWCNT-PE. It also shows good electrocatalytic activity toward the oxidation of glucose. Kinetic parameters such as the electron transfer coefficient {alpha}, rate constant k{sub s} of the electrode reaction and the catalytic rate constant k{sub cat} of the catalytic reaction are determined. Moreover, the catalytic current presents linear dependence on the concentration of glucose from 5.0 {mu}M to 2.8 mM, with a detection limit of 1.0 {mu}M by amperometry. The modified electrode for glucose determination is of the property of simple preparation, good stability, fast response and high sensitivity.

  20. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides.

    Science.gov (United States)

    Wu, Mian; Wang, Liying; Zeng, Baizhao; Zhao, Faqiong

    2016-04-29

    A poly(3,4-ethylenedioxythiophene)-ionic liquid polymer functionalized multiwalled carbon nanotubes (PEDOT-PIL/MWCNTs) composite solid-phase microextraction (SPME) coating was fabricated by electrodeposition. After being dipped in Nafion solution, a Nafion-modified coating was obtained. The outer layer Nafion played a crucial role in enhancing the durability and stability of the coating, thus it was robust enough for replicated extraction for at least 150 times without decrease of extraction performance. The Nafion-modified coating exhibited much higher sensitivity than commercial coatings for the direct extraction of carbamate pesticides in aqueous solutions, due to its strong hydrophobic effect and π-π affinity based enrichment. When it was used for the determination of carbamate pesticides in combination with gas chromatography-flame ionization detection, good linearity (correlation coefficients higher than 0.9981), low limits of detection (15.2-27.2 ng/L) and satisfactory precision (relative standard deviation <8.2%, n=5) were achieved. The developed method was applied to the analysis of four carbamate pesticides in apple and lettuce samples, and acceptable recoveries (i.e. 87.5-106.5%) were obtained for the standard addition. PMID:27036210

  1. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties.

    Science.gov (United States)

    Ji, Mengxia; Xia, Jiexiang; Di, Jun; Wang, Bin; Yin, Sheng; Xu, Li; Zhao, Junze; Li, Huaming

    2016-09-15

    In this study, novel visible-light-driven carbon quantum dots (CQDs)/Bi4O5I2 material has been prepared via a reactable ionic liquid 1-hexyl-3-methylimidazolium iodide ([Hmim]I) assisted bidirectional regulation solvothermal method. This is the first time for the preparation of CQDs/Bi4O5I2 material with halogen and CQDs bidirectional regulation at the same time. With CQDs modified on the surface of Bi4O5I2, fast transfer of photogenerated charges and low recombination of photo-induced electron-hole pairs facilitated the enhancement of photodegradation activity. At the same time, the introduction of CQDs made the electrons occupied in high-energy potential on the conduction band of Bi4O5I2 transfer to the reaction center CQDs and the molecular oxygen can be thus activated. The enhanced mechanisms for the active species (holes, hydroxyl and superoxide radicals) during the photocatalytic reaction under visible irradiation were analyzed using DRS analysis, electron spin resonance (ESR) technique and free radicals trapping experiments. PMID:27318012

  2. Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin

    International Nuclear Information System (INIS)

    A carbon/ionic liquid paste electrode (CILPE) prepared by 1-hexylpyridinium hexafluorophosphate as the binder was used as the substrate electrode. A layer of graphene oxide (GO) film was cast on CILPE surface (GO/CILPE) and the electropolymerization of acridine orange (AO) on electrode was further realized by cyclic voltammetry in the potential range from −1.40 V to 1.40 V, which could simultaneously reduce GO to graphene (GR) electrochemically. The fabricated PAO-GR/CILPE exhibited good electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behaviors of rutin were further investigated on the modified electrode in 0.1 mol/L pH 2.0 phosphate buffer solution by cyclic voltammetry with a pair of well-defined redox peaks appeared. The peak-to-peak separation (ΔEp) was calculated as 0.076 V, which proved a fast quasi-reversible electron transfer process and the electrochemical parameters of rutin on PAO-GR/CILPE were calculated. Under the optimal conditions, the linear relationship between the oxidation peak current of rutin and its concentration was obtained in the range from 0.03 to 800.0 μmol/L with the detection limit as 8.33 nmol/L (3σ). The PAO-GR/CILPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet samples with satisfactory results

  3. A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles

    International Nuclear Information System (INIS)

    This article describes an electrochemical immunosensor for rapid determination of Salmonella pullorum and Salmonella gallinarum. The first step in the preparation of the immunosensor involves the electrodeposition of gold nanoparticles used for capturing antibody and enhancing signals. In order to generate a benign microenvironment for the antibody, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate was used to modify the surface of a screen-printed carbon electrode (SPCE). The single steps of modification were monitored via cyclic voltammetry and electrochemical impedance spectroscopy. Based on these findings, a sandwich immunoassay was worked out for the two Salmonella species by immobilizing the respective unlabeled antibodies on the SPCE. Following exposure to the analytes, secondary antibody (labeled with HRP) is added to form the sandwich. After adding hydrogen peroxide and thionine, the latter is oxidized and its signal measured via CV. A linear response to the Salmonella species is obtained in the 104 to 109 cfu · mL−1 concentration range, and the detection limits are 3.0 × 103 cfu · mL−1 for both species (at an SNR of 3). This assay is sensitive, highly specific, acceptably accurate and reproducible. Given its low detection limit, it represents a promising tool for the detection of S. pullorum, S. gallinarum, and - conceivably - of other food-borne pathogens by exchanging the antibody. (author)

  4. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    Science.gov (United States)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  5. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents,which promises widespread applications in industry and other areas. However,the ionic liq-uids with surface activity are rarely reported. In this work,a series of novel ionic liquids was synthe-sized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized,which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  6. Biocatalysis in ionic liquids - advantages beyond green technology.

    Science.gov (United States)

    Park, Seongsoon; Kazlauskas, Romas J

    2003-08-01

    In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.

  7. Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement.

    Science.gov (United States)

    Mandal, Amit; Nandi, Arun K

    2013-02-01

    Multiwalled carbon nanotubes (MWNTs) are functionalized covalently with ionic liquid (IL, 3-aminoethyl imidazolium bromide) which helps good dispersion of IL-functionalized MWNTs (MWNT-IL) in the poly(vinylidene fluoride) (PVDF) matrix. Analysis of transmission electron microscopy (TEM) micrographs suggests ∼10 nm coating thickness of MWNTs by ILs, and the covalent linkage of ILs with MWNTs is confirmed from FT-IR and Raman spectra. PVDF nanocomposites with full β-polymorphic (piezoelectric) form are prepared using MWNT-IL by both the solvent cast and melt-blending methods. The FE-SEM and TEM micrographs indicate that IL-bound MWNTs are homogeneously dispersed within the PVDF matrix. Increasing MWNT-IL concentration in the composites results in increased β polymorph formation with a concomitant decrease of the α polymorph, and a 100% β polymorph formation occurs for 1 wt % MWNT-IL in both the fabrication conditions. A differential scanning calorimetry (DSC) study shows that the MWNT-ILs are an efficient nucleating agent for PVDF crystallization preferentially nucleating the β form due to its dipolar interactions with PVDF. The glass transition temperature (T(g)) gradually increases with an increase in MWNT-IL concentration, and the storage modulus (G') of the composites increases significantly, showing a maximum increase of 101.3% for 0.5 wt % MWNT-IL. The Young's modulus increases with MWNT-IL concentration, and analysis of the data using the Halpin-Tsai equation suggests that at low concentration they adopt an orientation parallel to the film surface; however, at higher MWNT-IL concentration it is randomly oriented. The tensile strength also increases with an increase in MWNT-IL concentration, and both the Young's modulus and the tensile strength of solvent cast films are lower than melt-blended samples. The elongation at break in the solvent cast samples shows a maximum, but in melt-blended samples it decreases continuously with increasing MWNT

  8. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    Science.gov (United States)

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  9. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  10. Ionic liquids for enzymatic sensing

    OpenAIRE

    Fraser, Kevin J.; Byrne, Robert; Benito-Lopez, Fernando; Warren, Susan; Dempsey, Eithne; Diamond, Dermot

    2011-01-01

    The key challenges currently faced in lab-on-a-chip biochemical sensor developments are device reliability and power consumption. The major issues faced in terms of device reliability are liquid handling over extended periods of time, as the micro-dimensioned fluidic channels are prone to blockage, and unreliable micro pumps/valves. The overall aim of this proposal is to develop a biocompatible molecular sensor that will address these key issues which are holding back biocompatible sensors te...

  11. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  12. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials. PMID:26939357

  13. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  14. Dynamics of Ion Transport in Ionic Liquids.

    Science.gov (United States)

    Lee, Alpha A; Kondrat, Svyatoslav; Vella, Dominic; Goriely, Alain

    2015-09-01

    A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form of the mobility matrix gives rise to a charging behavior that is different to the one known for electrolytic solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations. PMID:26382685

  15. Supramolecular ionic liquid based on graphene oxide.

    Science.gov (United States)

    Zeng, Chunfang; Tang, Zhenghai; Guo, Baochun; Zhang, Liqun

    2012-07-28

    For the purpose of preparing liquefied graphene oxide (GO), a process consisting of sulfonation with sodium sulfanilic acid and ionization with bulky amine-terminated Jeffamine® was designed and performed. The obtained hybrid fluid is actually a supramolecular ionic liquid (SIL) with sulfonated GO as the central anions and the terminal ammonium groups of Jeffamine® as the surrounding cations. The successful grafting of the GO sheets with Jeffamine®via an ionic structure was verified and the morphology of the SIL was characterized. The SIL based on GO (GO-SIL) exhibits excellent solubility and amphiphilicity. The rheological measurements confirm the essential viscoelasticity and the liquid-like behavior of GO-SIL. The present GO based SIL suggests promising applications in the fabrication of various GO or graphene based composite materials. In addition, the new functionalization method may guide the future work on acquiring derivatives with tunable properties by simply changing the bulky canopy.

  16. Structural Transitions at Ionic Liquid Interfaces.

    Science.gov (United States)

    Rotenberg, Benjamin; Salanne, Mathieu

    2015-12-17

    Recent advances in experimental and computational techniques have allowed for an accurate description of the adsorption of ionic liquids on metallic electrodes. It is now well-established that they adopt a multilayered structure and that the composition of the layers changes with the potential of the electrode. In some cases, potential-driven ordering transitions in the first adsorbed layer have been observed in experiments probing the interface on the molecular scale or by molecular simulations. This perspective gives an overview of the current understanding of such transitions and of their potential impact on the physical and (electro)chemical processes at the interface. In particular, peaks in the differential capacitance, slow dynamics at the interface, and changes in the reactivity have been reported in electrochemical studies. Interfaces between ionic liquids and metallic electrodes are also highly relevant for their friction properties, the voltage-dependence of which opens the way to exciting applications. PMID:26722704

  17. Dissolution enthalpies of cellulose in ionic liquids.

    Science.gov (United States)

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.

  18. Electrochemical oxidation behavior of hydroxypivalaldehyde in the ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Jian Fang Zhong; De Liang He; Zhou Zhou; Yi Bin Xu

    2008-01-01

    The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, QMIMPFg, C4MIMBF4 and CgMIMPF6, are investigated using classic electrochemical methods, respectively. Only the product, hydroxypivalic acid is detected by high performance liquid chromatography (HPLC). It can be conferred that the electrochemical oxidation of hydroxypivalaldehyde consists of two successive one-electron irreversible reactions at glass carbon (GC) electrode and the possible reaction mechanism in the ILs is proposed firstly. The diffusion coefficients of hydroxypivalaldehyde are obtained according to the electrochemical characteristics of hydroxypivalaldehyde in C4MIMPF6, C4MIMBF4 and C8MIMPF6.

  19. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  20. Use of Ionic Liquids in Recycle of Palladium Catalysts for Synthesis of Polyketone

    Institute of Scientific and Technical Information of China (English)

    TIAN Jing; GUO Jintang; ZHANG Xuemei; ZHANG Xin; XU Yongshen

    2008-01-01

    Room temperature ionic liquids as solvents for palladium-catalyzed copolymerization of carbon monoxide and styrene were prepared by reaction of aqueous lead tetrafluoroborate with correspond-ing chloride or bromide salts. The recyclability of palladium composite catalyst in various ionic liquids was investigated.[Pd(bipy)2][BF4]2 showed a lower catalytic activity than [Pd(bipy)2][PF6]2 in similar conditions, although the catalytic activity of each composite catalyst in ionic liquids still existed after 4 successive recycles. It was shown the catalytic activity of palladium composite catalyst was higher than that of the catalyst formed in situ from palladium acetate, 2,2'-bipyridyl, and HA (A=PF6-, BF4-) in ionic liquids. The effects of volume of ionic liquids, reaction time, and the dosage of benzoquinone on the copolymerization were also studied.

  1. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    Science.gov (United States)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  2. The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; FENG DaPeng; XU Bin; LIU XuQing; LIU WeiMin

    2009-01-01

    Several imidazole phosphate ionic liquids with varying carbon chain length have been synthesized at room temperature. Corrosion characteristics and tribological properties of these synthesized ionic liquids were studied using four-ball friction and wear testing machine. Its lubrication mechanism was also investigated by means of electron microscopy and X-ray photoelectron spectroscopy. The ex-perimental results showed that no corrosion was generated when the imidazole phosphate ionic liquid was applied to steel-steel pair. Meanwhile, the imidazole phosphate showed excellent anti-wear and lubricating performances, its frictional performance was related to the polarity of ionic liquids. It is suggested that the ionic liquids react with friction surface to form a protective film of iron phosphate and result in reduction in friction and wear.

  3. The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Several imidazole phosphate ionic liquids with varying carbon chain length have been synthesized at room temperature.Corrosion characteristics and tribological properties of these synthesized ionic liquids were studied using four-ball friction and wear testing machine.Its lubrication mechanism was also investigated by means of electron microscopy and X-ray photoelectron spectroscopy.The ex-perimental results showed that no corrosion was generated when the imidazole phosphate ionic liquid was applied to steel-steel pair.Meanwhile,the imidazole phosphate showed excellent anti-wear and lubricating performances,its frictional performance was related to the polarity of ionic liquids.It is suggested that the ionic liquids react with friction surface to form a protective film of iron phosphate and result in reduction in friction and wear.

  4. Clickable Poly(ionic liquids): A Materials Platform for Transfection.

    Science.gov (United States)

    Freyer, Jessica L; Brucks, Spencer D; Gobieski, Graham S; Russell, Sebastian T; Yozwiak, Carrie E; Sun, Mengzhen; Chen, Zhixing; Jiang, Yivan; Bandar, Jeffrey S; Stockwell, Brent R; Lambert, Tristan H; Campos, Luis M

    2016-09-26

    The potential applications of cationic poly(ionic liquids) range from medicine to energy storage, and the development of efficient synthetic strategies to target innovative cationic building blocks is an important goal. A post-polymerization click reaction is reported that provides facile access to trisaminocyclopropenium (TAC) ion-functionalized macromolecules of various architectures, which are the first class of polyelectrolytes that bear a formal charge on carbon. Quantitative conversions of polymers comprising pendant or main-chain secondary amines were observed for an array of TAC derivatives in three hours using near equimolar quantities of cyclopropenium chlorides. The resulting TAC polymers are biocompatible and efficient transfection agents. This robust, efficient, and orthogonal click reaction of an ionic liquid, which we term ClickabIL, allows straightforward screening of polymeric TAC derivatives. This platform provides a modular route to synthesize and study various properties of novel TAC-based polymers. PMID:27578602

  5. Periodicity and map for discovery of new ionic liquids

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There is virtually no limit in the number of ionic liquids. How to select proper ones or discover new ones with desirable properties in such a large pool of ionic liquids? It has become a bottleneck in the researches and applications of ionic liquids. Mendeleev's periodic law states that the properties of the elements vary periodically. Whether the similar regularity exists among ionic or molecular fragments of compounds is an interesting topic. In this work, we attempted to establish a periodicity and draw a "map" of ionic liquids for providing definite guidance to discover, design, and select the proper ionic liquids rather than trial-and-error. If a complete regularity of the system of ionic liquids can be finally established in the future, we are near an epoch in understanding the existing differences and the reasons for the similarity of the ions or molecular fragments.

  6. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode.

    Science.gov (United States)

    Chaiyo, Sudkate; Mehmeti, Eda; Žagar, Kristina; Siangproh, Weena; Chailapakul, Orawon; Kalcher, Kurt

    2016-04-28

    A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L(-1). With an accumulation period of 120 s detection limits of 0.09 ng mL(-1), 0.06 ng L(-1) and 0.08 ng L(-1) were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry. PMID:27046207

  7. Enhanced direct electron transfer reactivity of hemoglobin in cationic gemini surfactant-room temperature ionic liquid composite film on glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiangwen; Liu Lihong; Yan Rui; Xiao Mengying; Liu Liqin [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Zhao Faqiong [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: zhaofq@chem.edu.cn; Zeng Baizhao [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2008-05-20

    A novel composite film comprising cationic gemini surfactant butyl-{alpha},{omega}-bis(dimethylcetylammonium bromide) (C{sub 16}H{sub 33}N(CH{sub 3}){sub 2}-C{sub 4}H{sub 8}-N(CH{sub 3}){sub 2}C{sub 16}H{sub 33}, C{sub 16}-C{sub 4}-C{sub 16}) and ionic liquid 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF{sub 6}) has been prepared. The composite film shows good biocompatibility and it can promote the direct electron transfer between hemoglobin (Hb) and glassy carbon (GC) electrode. On the C{sub 16}-C{sub 4}-C{sub 16} (dissolved in ethanol)-OMIMPF{sub 6} film coated GC electrode, the immobilized Hb can exhibit a pair of well-defined, quasi-reversible and stable redox peaks with a formal potential of -0.317 V (vs SCE) in 0.10 M pH 7 phosphate buffer solutions. The electron transfer coefficient ({alpha}) of Hb is calculated to be 0.44 and the heterogeneous electron transfer rate constant is 6.08 s{sup -1}. With the length of alkyl chains of gemini surfactant increasing and the ethanol concentration rising, the redox peaks of the resulting electrode C{sub 16}-C{sub 4}-C{sub 16}-OMIMPF{sub 6}-Hb/GC become bigger. The electrode presents good electrocatalytic response to peroxide hydrogen. The kinetic parameters I{sub max} and k{sub m} for the catalytic reaction are estimated. In addition, UV-vis spectra and reflectance absorption infrared spectra demonstrate that the Hb immobilized in the C{sub 16}-C{sub 4}-C{sub 16}-OMIMPF{sub 6} film almost retains the structure of native Hb.

  8. Reduction of Metal Oxide to Metal using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  9. Evaporation from an ionic liquid emulsion.

    Science.gov (United States)

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  10. Magnetic microemulsions based on magnetic ionic liquids.

    Science.gov (United States)

    Klee, Andreas; Prevost, Sylvain; Kunz, Werner; Schweins, Ralf; Kiefer, Klaus; Gradzielski, Michael

    2012-11-28

    Microemulsions with magnetic properties were formed by employing a magnetic room temperature ionic liquid (MRTIL) as polar phase, cyclohexane as oil, and an appropriate mixture of ionic surfactant and decanol as a cosurfactant. By means of small-angle neutron scattering (SANS) and electric conductivity the microemulsion structure could be confirmed, where the classical structural sequence of oil-continuous-bicontinuous-polar phase continuous is observed with increasing ratio [polar phase]/[oil]. Accordingly a maximum of the structural size is observed at about equal volumes of oil and MRTIL contained. Therefore this system is structurally the same as normal microemulsions but with the magnetic properties added to it by the incorporation into the systems formulation. PMID:23060241

  11. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-14

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM(+) on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 ± 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection. PMID:26891173

  12. Employing ionic liquids to deposit cellulose on PET fibers.

    Science.gov (United States)

    Textor, Torsten; Derksen, Leonie; Gutmann, Jochen S

    2016-08-01

    Several ionic liquids are excellent solvents for cellulose. Starting from that finishing of PET fabrics with cellulose dissolved in ionic liquids like 1-ethyl-3-methyl imidazolium acetate, diethylphosphate and chloride, or the chloride of butyl-methyl imidazolium has been investigated. Finishing has been carried out from solutions of different concentrations, using microcrystalline cellulose or cotton and by employing different cross-linkers. Viscosity of solutions has been investigated for different ionic liquids, concentrations, cellulose sources, linkers and temperatures. Since ionic liquids exhibit no vapor pressure, simple pad-dry-cure processes are excluded. Before drying the ionic liquid has to be removed by a rinsing step. Accordingly rinsing with fresh ionic liquid followed by water or the direct rinsing with water have been tested. The amount of cellulose deposited has been investigated by gravimetry, zinc chloride iodine test as well as reactive dyeing. Results concerning wettability, water up-take, surface resistance, wear-resistance or washing stability are presented.

  13. Structure Analysis of Polyacrylonitrile Polymerized in Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-yan; ZHANG Yu-mei; YANG Ling-ling; WANG Hua-ping

    2008-01-01

    Polyacrylonitriles (PANs) were synthesizid both by atom transfer radical polymerization (ATRP) and free radical polymenzation in ionic liquid 1-buty-3-methylimidazolium chloride ([bmim]Cl).[bmim]Cl demonstrates to be a preferable solvent for ATRP of acrylonitrile (AN).The polymerization maintains the usual advantages of ATRP with molecular weight agrees well withtheoretical value and low polydispersity (PDI=1.15).It is also shown the higher conversion and lower molecular weight dispersion in ionic liquid than in dimethylformamide (DMF).From FTIR and NMR analysis,it is confirmed that the chemical structures of PANs synthesized in [bmlm]Cl were identical with that obtained in DMF.In atom transfer radical polymerization,the methine and cyan carbon atoms in isotactic configuration for PAN preduced in [bmim] Cl have a configuration consisting of about 55.5% isotactic diads.It is higher than that obtained in DMF which is 52.2%,So,ionic liquid has effect on the stereostmcture of PANs.Further analysis of 13C NMR spectra indicated that the isotacticity of PAN synthesized by free radical polymerization was lower than that of PAN prepared by ATRP,although both of them were random in stereoregularity.Besides the pentad tacticities of PANs also suggested that the sequence distributions of them all obey Bernoulli statistics.

  14. Silica–enzyme–ionic liquid composites for improved enzymatic activity

    OpenAIRE

    Katsuya Kato; Yuki Kawachi; Hitomi Nakamura

    2014-01-01

    Trypsin and pepsin enzyme-catalyzed precipitation of silica, synthesized by sol–gel chemistry in an ionic liquid, produces a composite material that demonstrates high enzymatic activity. This study investigates the structural properties of this silica–enzyme–ionic liquid composite material that allows for the retention of enzyme hydrolysis and condensation activity. The composite was prepared from a mixture of organo-functionalized triethoxysilane and tetraethoxysilane in an ionic liquid via ...

  15. Electrospun nanosized cellulose fibers using ionic liquids at room temperature

    OpenAIRE

    Freire, Mara G.; Teles, Ana Rita R.; Ferreira, Rute A. S.; Carlos, Luís D.; José A. Lopes-da-Silva; Coutinho, João A. P.

    2011-01-01

    Aiming at replacing the noxious solvents commonly employed, ionic-liquid-based solvents have been recently explored as novel non-volatile and non-flammable media for the electrospinning of polymers. In this work, nanosized and biodegradable cellulose fibers were obtained by electrospinning at room temperature using a pure ionic liquid or a binary mixture of two selected ionic liquids. The electrospinning of 8 wt% cellulose in 1-ethyl-3-methylimidazolium acetate medium (a low viscosity and roo...

  16. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  17. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes.

    Science.gov (United States)

    Liu, Mingming; Pi, Jiangyan; Wang, Xiaojie; Huang, Rong; Du, Yamei; Yu, Xiaoyang; Tan, Wenfeng; Liu, Fan; Shea, Kenneth J

    2016-08-17

    A pH-responsive surface molecularly imprinted poly(ionic liquids) (MIPILs) was prepared on the surface of multiwall carbon nanotubes (MWCNTs) by a sol-gel technique. The material was synthesized using a 3-aminopropyl triethoxysilane modified multiwall carbon nanotube (MWCNT-APTES) as the substrate, bovine serum albumin (BSA) as the template molecule, an alkoxy-functionalized IL 1-(3-trimethoxysilyl propyl)-3-methyl imidazolium chloride ([TMSPMIM]Cl) as both the functional monomer and the sol-gel catalyst, and tetraethoxysilane (TEOS) as the crosslinking agent. The molecular interaction between BSA and [TMSPMIM]Cl was quantitatively evaluated by UV-vis spectroscopy prior to polymerization so as to identify an optimal template/monomer ratio and the most suitable pH value for the preparation of the MWCNTs@BSA-MIPILs. This strategy was found to be effective to overcome the problems of trial-and-error protocol in molecular imprinting. The optimum synthesis conditions were as follows: template/monomer ratio 7:20, crosslinking agent content 2.0-2.5 mL, temperature 4 °C and pH 8.9 Tris-HCl buffer. The influence of incubation pH on adsorption was also studied. The result showed that the imprinting effect and selectivity improved significantly with increasing incubation pH from 7.7 to 9.9. This is mainly because the non-specific binding from electrostatic and hydrogen bonding interactions decreased greatly with the increase of pH value, which made the specific binding affinity from shape selectivity strengthened instead. The polymers synthesized under the optimal conditions were then characterized by BET surface area measurement, FTIR, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The adsorption capacity, imprinting effect, selective recognition and reusability were also evaluated. The as-prepared MWCNTs@BSA-MIPILs were also found to have a number of advantages including high surface area (134.2 m(2) g(-1)), high adsorption capacity (55.52

  18. INTERACTION OF IONIC LIQUIDS WITH POLYSACCHARIDES

    Directory of Open Access Journals (Sweden)

    Tim Liebert

    2008-05-01

    Full Text Available The use of ionic liquids (ILs in the field of cellulose chemistry opens up a broad variety of new opportunities. Besides the regeneration of the biopolymer to fibers, films, and beads, this new class of cellulose solvents is particularly useful for the homogeneous chemical modification of the polysaccharide. In this review, the potential of ILs as a reaction medium for the homogeneous cellulose functionalization is discussed. It is shown that numerous conversions proceed very efficiently and the ILs may be recycled. But it is also demonstrated that some side reactions have to be considered.

  19. ZnO-ionic liquid nanostructures

    International Nuclear Information System (INIS)

    The mixture of nanostructures derived from the surface interactions and reactivity of ZnO nanoparticles with the room-temperature ionic liquid (IL1) 1-hexyl, 3-methylimidazolium hexafluorophosphate has been studied. Results are discussed on the basis of transmission electron microscopy (TEM) observations, energy dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) determinations. Size and morphology changes in ZnO nanoparticles by surface modification with IL1 are observed. ZnF2 crystalline needles due to reaction with the hexafluorophosphate anion are also formed.

  20. A Convenient Synthesis of Triflate Anion Ionic Liquids and Their Properties

    Directory of Open Access Journals (Sweden)

    Peter Sartori

    2012-05-01

    Full Text Available A solvent- and halogen-free synthesis of high purity triflate ionic liquids via direct alkylation of organic bases (amines, phosphines or heterocyclic compounds with methyl and ethyl trifluoromethanesulfonate (methyl and ethyl triflate has been developed. Cheap and non-toxic dimethyl and diethyl carbonate serve as source for the methyl and ethyl groups in the preparation of methyl and ethyl triflate by this invented process. The properties of ionic liquids containing the triflate anion are determined and discussed.

  1. Reactions of CH-acids with α,β-unsaturated aldehydes in ionic liquids

    DEFF Research Database (Denmark)

    Kryshtal, G. V.; Zhdankina, G. M.; Astakhova, Irina Kira;

    2004-01-01

    Metal carbonate-catalyzed reactions of CH-acids (diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate, and ethyl 2-acetyl- and 2-ethoxycarbonyl-5,9- dimethyldeca-4,8-dienoates) with α,β-unsaturated aldehydes (acrolein, crotonaldehyde, citral) were studied in an ionic liquid, 1-butyl-3...... of the Michael adducts. The ionic liquid [bmim][PF 6] can be recovered and repeatedly used in the reactions....

  2. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  3. Improving Stability of Gasoline by Using Ionic Liquid Catalyst

    Institute of Scientific and Technical Information of China (English)

    Gao Zhirong; Liu Daosheng; Liao Kejian; Jian Heng

    2003-01-01

    The composition, characteristics and preparation of ionic liquids are presented. The factors influencing the stability of gasoline and the significance of improving gasoline stability are discussed. A novel way to improve the stability of gasoline by using ionic liquid catalyst is developed. The contents of olefin, basic nitrogen and sulfur in gasoline are determined and the optimal experimental conditions for improving gasoline stability are established.The ionic liquid catalyst, which is environmentally friendly, can reduce the olefin content in gasoline, and such process is noted for mild reaction conditions, simple operation, short reaction time, easy recycling of the ionic liquid catalyst and ready separation of products and catalyst.

  4. Room Temperature ionic liquids based on asymmetric ammonium salts

    OpenAIRE

    Shaheen, Sobia

    2013-01-01

    Ionic liquids, ILs, in principle, are salts composed of weakly coordinating ions which are liquids at low temperature (˂100 0C). Room temperature ionic liquids, RTILs are those salts which are liquid even at room temperature. Due to the unique properties, such as large liquid range, negligible vapour pressure, solubility of wide range of materials and potential to be recycled and reused, ILs have become a popular class of solvents and catalysts.This study reports the synthesis of a library of...

  5. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert L; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  6. Gold Functionalized Supported Ionic Liquids Catalyst for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Svetlana Ivanova

    2011-11-01

    Full Text Available The present study tries to give an insight to the combination of the homogeneous and heterogeneous catalytic properties in a new class of materials. Well dispersed gold nanoparticles on an ionic liquid layer supported on a mineral carrier have been prepared. This work is concentrated on the characterizations and understanding of the interactions between all the components of the catalytic system. The application of the materials in the reaction of oxidation of carbon monoxide shows rather unexpected results—a good catalytic activity completely independent of the temperature.

  7. Predictive thermodynamics for ionic solids and liquids.

    Science.gov (United States)

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a

  8. Magnetic ionic liquids: synthesis and characterization

    International Nuclear Information System (INIS)

    The synthesis of magnetic ionic liquids (MILs) based on the stable dispersions of magnetic nanoparticles (MNPs) of γ-Fe2O3, Fe3O4, and CoFe2O4 in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) is reported. The MNPs were obtained by the coprecipitation method. The surface of the α-Fe2O3, Fe3O4, and CoFe2O4 MNPs with mean sizes (XRD) of 9.3, 12.3, and 11.0 nm, respectively were functionalized by 1-n-butyl-3-(3'-trimethoxypropylsilane)- imidazolium chloride. The non functionalized and functionalized MNPs were further characterized by Raman, FTIR-ATR, and FTNIR spectroscopy and by TGA. The stability of the MILs was assigned to the formation of at least one monolayer of the surface modifier agent that mimics the structure of the BMI.NTf2 IL. (author)

  9. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, S.

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  10. Anodic dissolution of metals in ionic liquids

    Directory of Open Access Journals (Sweden)

    Andrew P. Abbott

    2015-12-01

    Full Text Available The anodic dissolution of metals is an important topic for battery design, material finishing and metal digestion. Ionic liquids are being used in all of these areas but the research on the anodic dissolution is relatively few in these media. This study investigates the behaviour of 9 metals in an ionic liquid [C4mim][Cl] and a deep eutectic solvent, Ethaline, which is a 1:2 mol ratio mixture of choline chloride and ethylene glycol. It is shown that for the majority of metals studied a quasi-passivation of the metal surface occurs, primarily due to the formation of insoluble films on the electrode surface. The behaviour of most metals is different in [C4mim][Cl] to that in Ethaline due in part to the differences in viscosity. The formation of passivating salt films can be decreased with stirring or by increasing the electrolyte temperature, thereby increasing ligand transport to the electrode surface.

  11. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    Science.gov (United States)

    Reis, P. M.; Carvalho, P. J.; Lopes-da-Silva, J. A.; Esperança, J. M. S. S.; Araújo, J. M. M.; Rebelo, L. P. N.; Freire, M. G.; Pereiro, A. B.

    2016-01-01

    This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from 293.15 to 353.15 K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  12. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders;

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  13. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}: Part 2

    International Nuclear Information System (INIS)

    Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for heptane/thiophene separation is discussed. - Abstract: Ternary (liquid + liquid) equilibria for 3 systems containing ionic liquids {(1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, 1-(2-hydroxyethyl)-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, ethyl-dimethyl-(2-methoxyethyl)ammonium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature values obtained for other systems containing ionic liquids with [FAP]− anions and [emim]+ cations. In each system, high solubility of thiophene and low solubility of heptane in the ionic liquid are observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is discussed

  14. Advanced Ionic Liquid Monopropellant for Payload Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a monopropellant replacement for hydrazine using eutectic mixtures of ionic liquids (EILs). These liquids offer us the ability to tailor fluid...

  15. 离子液体介质中尿素醇解法合成碳酸二甲酯的工艺优化%Optimization of the Synthesis Conditions of Dimethyl Carbonate from Urea and Methanol in Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    卢翠英; 张智芳; 马亚军; 王爱民

    2011-01-01

    以离子液体为介质,采用正交试验法确定尿素醇解法最佳合成碳酸二甲酯的条件,通过极差分析和方差分析法结果对比,最终确定尿素醇解法最佳合成碳酸二甲酯的条件是:150℃下,离子液体与尿素化学计算量比为2.0下合成7个小时。%Dimethyl Carbonate were synthemed from urea and methanol in ionic liquids in the work..The highly productive conditions were explored by using orthogonal expenriment design.Through compareing the results of range analysis and variance analysis,the idea sythemitic conditions of dimethyl carbonate from urea and methanol in ionic liquid were as follows:at 150℃,at 1 of the ratio of ironic liquid to urea,and for 7 hours.

  16. Modeling of aluminium deposition from chloroaluminate ionic liquids

    OpenAIRE

    Schaltin, Stijn; Ganapathi, Murugan; Binnemans, Koen; Fransaer, Jan

    2011-01-01

    A finite-element model of the electrodeposition of aluminium from chloroaluminate ionic liquids is introduced. The purpose of this model is to give an explanation for the reasonable current densities that can be achieved in chloroaluminate ionic liquids despite the fact that the electrochemically active Al2Cl7- complexes are transformed into inactive AlCl4- complexes during the electrodeposition of aluminium. The obtainable current density in the electrodeposition from chloroaluminate ionic l...

  17. Polarity of the interface in ionic liquid in oil microemulsions.

    Science.gov (United States)

    Andújar-Matalobos, María; García-Río, Luis; López-García, Susana; Rodríguez-Dafonte, Pedro

    2011-11-01

    Ionic liquid based microemulsions were characterized by absorption solvatochromic shifts, (1)H NMR and kinetic measurements in order to investigate the properties of the ionic liquid within the restricted geometry provided by microemulsions and the interactions of the ionic liquid with the interface. Experimental results show a significant difference between the interfaces of normal water and the new ionic liquid microemulsions. Absorption solvatochromic shift experiments and kinetic studies on the aminolysis of 4-nitrophenyl laurate by n-decylamine show that the polarity at the interface of the ionic liquid in oil microemulsions (IL/O) is higher than at the interface of water in oil microemulsions (W/O) despite the fact that the polarity of [bmim][BF(4)(-)] is lower than the polarity of water. (1)H NMR experiments showed that an increase in the ionic liquid content of the microemulsion led to an increase in the interaction between [bmim][BF(4)(-)] and TX-100. The reason for the higher polarity of the microemulsions with the ionic liquid can be explained in terms of the incorporation of higher levels of the ionic liquid at the interface of the microemulsions, as compared to water in the traditional systems. PMID:21820124

  18. An Ionic Liquid Solution of Chitosan as Organocatalyst

    Directory of Open Access Journals (Sweden)

    René Wilhelm

    2013-11-01

    Full Text Available Chitosan, which is derived from the biopolymer chitin, can be readily dissolved in different ionic liquids. The resulting homogeneous solutions were applied in an asymmetric Aldol reaction. Depending on the type of ionic liquid used, high asymmetric inductions were found. The influence of different additives was also studied. The best results were obtained in [BMIM][Br] without an additive.

  19. Absorption of Flue-Gas Components by Ionic Liquids

    DEFF Research Database (Denmark)

    Kolding, Helene; Thomassen, Peter Langelund; Mossin, Susanne;

    2014-01-01

    Gas separation by ionic liquids (ILs) is a promising new research field with several potential applications of industrial interest. Thus cleaning of industrial off gases seems to be attractive by use of ILs and Supported Ionic Liquid Phase (SILP) materials. The potential of selected ILs...

  20. Reversible physical absorption of SO2 by ionic liquids

    DEFF Research Database (Denmark)

    Huang, Jun; Riisager, Anders; Fehrmann, Rasmus;

    2006-01-01

    Ionic liquids can reversibly absorb large amounts of molecular SO2 gas under ambient conditions with the gas captured in a restricted configuration, possibly allowing SO2 to probe the internal cavity structures in ionic liquids besides being useful for SO2 removal in pollution control....

  1. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  2. Absorption and oxidation of no in ionic liquids

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature.......The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature....

  3. Synthesis and Characterization of Dual Acidic Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Xiao Hua WANG; Guo Hong TAO; Zi Yan ZHANG; Yuan KOU

    2005-01-01

    Novel ionic liquids with dual acidity, of which the cation contains Bronsted acidity and anions contain Lewis acidity were synthesized. These ionic liquids obtained were identified by NMR,FT-IR, SDT and FAB-MS. Their acidities were determined by pyridine probe on IR spectrography.

  4. Preparation of Ionic Liquid-based Vilsmier Reagent from Novel Multi-purpose Dimethyl Formamide-like Ionic Liquid and Its Application

    Institute of Scientific and Technical Information of China (English)

    Hullio, Ahmed Ali; Mastoi, G. M.

    2012-01-01

    In continuation of research to explore the applied potential of DMF-like ionic liquid, the ionic liquid version of N,N-dimethyliminiumchloride (Vilsmier reagent) has been synthesized from DMF-like ionic liquid and tested effectively for its capacity to achieve more useful organic transformations. The results show that DMF-like ionic liquid is world's first task specific ionic liquid which has catalyzed numerous diverse type of reaction and is multipurpose in its application. Thus a new term for this DMF-like ionic liquid has been coined that is DMF-like "multipurpose" ionic liquid.

  5. High energy supercapattery with an ionic liquid solution of LiClO4.

    Science.gov (United States)

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte. PMID:27228429

  6. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-01

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM+ on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 +/- 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often

  7. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    Science.gov (United States)

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies. PMID:26277141

  8. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W., E-mail: ed.castner@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854 (United States); Husson, Pascale [CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, BP 80026, F-63171 Aubière (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Costa Gomes, Margarida F. [CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, BP 80026, F-63171 Aubière (France); Greenbaum, Steven G. [Department of Physics and Astronomy, Hunter College, CUNY, New York, New York 10065 (United States)

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  9. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    Science.gov (United States)

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  10. Recyclability of an ionic liquid for biomass pretreatment.

    Science.gov (United States)

    Weerachanchai, Piyarat; Lee, Jong-Min

    2014-10-01

    This study investigated the possibility of reusing an ionic liquid for the pretreatment of biomass. The effects of lignin and water content in a pretreatment solvent on pretreatment products were examined, along with the recyclability of an ionic liquid for pretreatment. It was discovered that the presence of lignin and water within a pretreatment solvent resulted in a far less effective pretreatment process. 1-Ethyl-3-methylimidazolium acetate/ethanolamine (60/40 vol%) presents more promising properties than EMIM-AC, providing a small decrease in sugar conversion and also a small increase of lignin deposition with an increasing lignin amount in the pretreatment solvent. Deteriorations of the ionic liquid were observed from considerably low sugar conversions and lignin extraction after using the 5th and 7th batch, respectively. Furthermore, the changes of ionic liquid properties and lignin accumulation in ionic liquid were determined by analyzing their thermal decomposition behavior (TGA) and chemical functional groups (FTIR and (1)H NMR).

  11. Solubility of natural gas species in ionic liquids and commercial solvents: experiments and Monte Carlo simulations

    NARCIS (Netherlands)

    M. Ramdin; S.P. Balaji; A. Torres-Knoop; D. Dubbeldam; T.W. de Loos; T.J.H. Vlugt

    2015-01-01

    A detailed comparison of the solubility of carbon dioxide (CO2) and methane (CH4) in ionic liquids (ILs) and in conventional solvents like Selexol, Purisol, propylene carbonate, and sulfolane is presented. The solubilities are compared on mole fraction, molality, and volume basis to demonstrate the

  12. Retreating behavior of a charged ionic liquid droplet in a dielectric liquid under electric field

    Science.gov (United States)

    Ahn, Myung Mo; Im, Do Jin; Kang, In Seok

    2013-11-01

    Ionic liquids show great promise as excellent solvents or catalysts in energy and biological fields due to their unique chemical and physical properties. The ionic liquid droplets in microfluidic systems can also be used as a potential platform for chemical biological reactions. In order to control electrically the ionic liquid droplets in a microfluidic device, the charging characteristics of ionic liquid droplets need to be understood. In this work, the charging characteristics of various ionic liquids are investigated by using the parallel plate electrodes system. Under normal situation, a charged droplet shows bouncing motion between electrodes continuously. However, for some special ionic liquids, interesting retreating behavior of charged ionic liquid droplet has been observed. This retreating behavior of ionic liquid droplet has been analyzed experimentally by the image analysis and the electrometer signal analysis. Based on the hypothesis of charge leakage of the retreating ionic liquid droplets, FT-IR spectroscopy analysis has also been performed. The retreating behavior of ionic liquid droplet is discussed from the intermolecular point of view according to the species of ionic liquids. This research was supported by grant No. 2013R1A1A2011956 funded by the Ministry of Science, ICT and Future Planning (MSIP) and by grant No. 2013R1A1A2010483 funded by the Ministry of Education, Science and Technology (MEST) through the NRF.

  13. Ionic Liquids as Advanced Lubricant Fluids

    Directory of Open Access Journals (Sweden)

    Francisco-José Carrión

    2009-08-01

    Full Text Available Ionic liquids (ILs are finding technological applications as chemical reaction media and engineering fluids. Some emerging fields are those of lubrication, surface engineering and nanotechnology. ILs are thermally stable, non-flammable highly polar fluids with negligible volatility, these characteristics make them ideal candidates for new lubricants under severe conditions, were conventional oils and greases or solid lubricants fail. Such conditions include ultra-high vacuum and extreme temperatures. Other very promising areas which depend on the interaction between IL molecules and material surfaces are the use of ILs in the lubrication of microelectromechanic and nanoelectromechanic systems (MEMS and NEMS, the friction and wear reduction of reactive light alloys and the modification of nanophases.

  14. Microregion detection of ionic liquid microemulsions.

    Science.gov (United States)

    Gao, Yanan; Wang, Suqing; Zheng, Liqiang; Han, Shuaibing; Zhang, Xuan; Lu, Deming; Yu, Li; Ji, Yongqiang; Zhang, Gaoyong

    2006-09-15

    Nonaqueous ionic liquid (IL) microemulsion consisting of IL, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), surfactant TX-100, and toluene was prepared and the phase behavior of the ternary system was investigated. Electrical conductivity measurement was used for investigating the microregions of the nonaqueous IL microemulsions. On the basis of the percolation theory, the bmimBF(4)-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF(4) (O/IL) microregions of the microemulsions were successfully identified using insulative toluene as the titration phase. However, this method was invalid when conductive bmimBF(4) acted as the titration phase. The microregions obtained by conductivity measurements were further proved by electrochemical cyclic voltammetry experiments. The results indicated that the conductivity method was feasible for identifying microstructures of the nonaqueous IL microemulsions. PMID:16765365

  15. Graphene terahertz modulators by ionic liquid gating

    CERN Document Server

    Wu, Yang; Qiu, Xuepeng; Liu, Jingbo; Deorani, Praveen; Banerjee, Karan; Son, Jaesung; Chen, Yuanfu; Chia, Elbert E M; Yang, Hyunsoo

    2015-01-01

    Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

  16. Inorganic materials synthesis in ionic liquids

    Directory of Open Access Journals (Sweden)

    Christoph Janiak

    2014-01-01

    Full Text Available The field of "inorganic materials from ionic liquids" (ILs is a young and dynamically growing research area for less than 10 years. The ionothermal synthesis in ILs is often connected with the preparation of nanomaterials, the use of microwave heating and in part also ultrasound. Inorganic material synthesis in ILs allows obtaining phases which are not accessible in conventional organic or aqueous solvents or with standard methods of solid-state chemistry or under such mild conditions. Cases at hand include "ligand-free" metal nanoparticles without added stabilizing capping ligands, inorganic or inorganic-organic hybrid solid-state compounds, large polyhedral clusters and exfoliated graphene from low-temperature synthesis. There are great expectations that ILs open routes towards new, possibly unknown, inorganic materials with advantageous properties that cannot (or only with great difficulty be made via conventional processes.

  17. Energy storage materials synthesized from ionic liquids.

    Science.gov (United States)

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  18. Layering of ionic liquids on rough surfaces

    Science.gov (United States)

    Sheehan, Alexis; Jurado, L. Andres; Ramakrishna, Shivaprakash N.; Arcifa, Andrea; Rossi, Antonella; Spencer, Nicholas D.; Espinosa-Marzal, Rosa M.

    2016-02-01

    Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact.Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact. Electronic supplementary information (ESI) available: Optimized geometries and sizes for [HMIM] Ntf2, SEM images of the smooth and rough colloids, frequency of occurrence of layering in the resolved force-distance curves for all investigated systems with [HMIM] Ntf2, layer size and layering force measured with a sharp tip on mica for the same IL, and results of the kinetics experiments. See DOI: 10.1039/c5nr07805a

  19. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  20. Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence.

    Science.gov (United States)

    Adhikari, Aniruddha; Sahu, Kalyanasis; Dey, Shantanu; Ghosh, Subhadip; Mandal, Ujjwal; Bhattacharyya, Kankan

    2007-11-01

    Solvation dynamics in a neat ionic liquid, 1-pentyl-3-methyl-imidazolium tetra-flouroborate ([pmim][BF4]) and its microemulsion in Triton X-100 (TX-100)/benzene is studied using femtosecond up-conversion. In both the neat ionic liquid and the microemulsion, the solvation dynamics is found to depend on excitation wavelength (lambda(ex)). The lambda(ex) dependence is attributed to structural heterogeneity in neat ionic liquid (IL) and in IL microemulsion. In neat IL, the heterogeneity arises from clustering of the pentyl groups which are surrounded by a network of cation and anions. Such a nanostructural organization is predicted in many recent simulations and observed recently in an X-ray diffraction study. In an IL microemulsion, the surfactant (TX-100) molecules aggregate in form of a nonpolar peripheral shell around the polar pool of IL. The micro-environment in such an assembly varies drastically over a short distance. The dynamic solvent shift (and average solvation time) in neat IL as well as in IL microemulsions decreases markedly as lambda(ex) increases from 375 to 435 nm. In a [pmim][BF4]/water/TX-100/benzene quaternary microemulsion, the solvation dynamics is slower than that in a microemulsion without water. This is ascribed to the smaller size of the water containing microemulsion. The anisotropy decay in an IL microemulsion is found to be faster than that in neat IL. PMID:17944511

  1. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  2. Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization

    CERN Document Server

    Ng, Y S; Hashim, M A

    2014-01-01

    Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also evaluated. Lastly, an optimization study on bulk ionic liquid membrane was conducted and the maximum phenol removal efficiency was compared with the organic liquid membranes. The preliminary study shows that high phenol extraction and stripping efficiencies of 96.21% and 98.10%, respectively can be achieved by ionic liquid memb...

  3. Particle aggregation mechanisms in ionic liquids.

    Science.gov (United States)

    Szilagyi, Istvan; Szabo, Tamas; Desert, Anthony; Trefalt, Gregor; Oncsik, Tamas; Borkovec, Michal

    2014-05-28

    Aggregation of sub-micron and nano-sized polystyrene latex particles was studied in room temperature ionic liquids (ILs) and in their water mixtures by time-resolved light scattering. The aggregation rates were found to vary with the IL-to-water molar ratio in a systematic way. At the water side, the aggregation rate is initially small, but increases rapidly with increasing IL content, and reaches a plateau value. This behaviour resembles simple salts, and can be rationalized by the competition of double-layer and van der Waals forces as surmised by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). At the IL side, aggregation slows down again. Two generic mechanisms could be identified to be responsible for the stabilization in ILs, namely viscous stabilization and solvation stabilization. Viscous stabilization is important in highly viscous ILs, as it originates from the slowdown of the diffusion controlled aggregation due to the hindrance of the diffusion in a viscous liquid. The solvation stabilization mechanism is system specific, but can lead to a dramatic slowdown of the aggregation rate in ILs. This mechanism is related to repulsive solvation forces that are operational in ILs due to the layering of the ILs close to the surfaces. These two stabilization mechanisms are suspected to be generic, as they both occur in different ILs, and for particles differing in surface functionalities and size. PMID:24727976

  4. A structural investigation of ionic liquid mixtures.

    Science.gov (United States)

    Matthews, Richard P; Villar-Garcia, Ignacio J; Weber, Cameron C; Griffith, Jeraime; Cameron, Fiona; Hallett, Jason P; Hunt, Patricia A; Welton, Tom

    2016-03-28

    The structures of mixtures of ionic liquids (ILs) featuring a common 1-butyl-3-methylimidazolium ([C4C1im](+)) cation but different anions have been investigated both experimentally and computationally. (1)H and (13)C NMR of the ILs and their mixtures has been performed both on the undiluted liquids and those diluted by CD2Cl2. These experiments have been complemented by quantum chemical density functional theory calculations and molecular dynamics simulations. These techniques have identified the formation of preferential interactions between H(2) of the imidazolium cation and the most strongly hydrogen bond (H-bond) accepting anion. In addition, a preference for the more weakly H-bond accepting anion to interact above the imidazolium ring through anion-π(+) interactions has been identified. The modelling of these data has identified that the magnitude of these preferences are small, of the order of only a few kJ mol(-1), for all IL mixtures. No clustering of the anions around a specific cation could be observed, indicating that these interactions arise from the reorientation of the cation within a randomly assigned network of anions. π(+)-π(+) stacking of the imidazolium cations was also studied and found to be promoted by ILs with a strong H-bond accepting anion. Stacking interactions are easily disrupted by the introduction of small proportions (accounting for why most IL mixtures exhibit ideal, or nearly ideal, behaviour. PMID:26947103

  5. Visible-Light Photolabile, Charge-Convertible Poly(ionic liquid) for Light-degradable Films and Carbon-Based Electronics.

    Science.gov (United States)

    Zhou, Tongtong; Lei, Yuan; Zhang, Hanzhi; Zhang, Ping; Yan, Casey; Zheng, Zijian; Chen, Yongming; Yu, You

    2016-09-14

    We report for the first time an innovative visible-light photolabile poly(ionic liquid) (VP-PIL). The as-prepared VP-PIL features low Tg (47 °C), good thermal stability (Td ≈ 284 °C) and solubility in ranges of polar solvents. Upon blue light irradiation (∼452 nm), C-O bonds of picolinuim units are photocleaved, and the charges of PILs are simultaneously converted from positive to negative. Taking full advantages of these excellent properties of VP-PIL, a visible light degradable film for the first time is fabricated. Moreover, to demonstrate its applications in electronics, we prepared high-quality VP-PIL-containing conductive ink for flexible interconnects and graphene electrodes for supercapacitors.

  6. Nitrogen and sulfur co-doped carbon with three-dimensional ordered macroporosity: An efficient metal-free oxygen reduction catalyst derived from ionic liquid

    Science.gov (United States)

    Wu, Hui; Shi, Liang; Lei, Jiaheng; Liu, Dan; Qu, Deyu; Xie, Zhizhong; Du, Xiaodi; Yang, Peng; Hu, Xiaosong; Li, Junsheng; Tang, Haolin

    2016-08-01

    The development of efficient and durable catalyst for oxygen reduction reaction (ORR) is critical for the practical application of proton exchange membrane fuel cell (PEMFC). A novel imidazole based ionic liquid is synthesized in this study and used subsequently for the preparation of a N and S co-doped metal-free catalyst with three dimensional ordered microstructure. The catalyst prepared at 1100 °C showed improved ORR catalytic performance and stability compared to commercial Pt/C catalyst. We demonstrate that the high graphitic N content and high degree of graphitization of the synthesized catalyst is responsible for its superb ORR activity. Our results suggest that the N and S co-doped metal-free catalyst reported here is a promising alternative to traditional ORR catalyst based on noble metal. Furthermore, the current study also demonstrate that importance of morphology engineering in the development of high performance ORR catalyst.

  7. Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Christine J. [Univ. of California, Berkeley, CA (United States); Liu, Chen-Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Harmon, Christopher W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Strasser, Daniel [Univ. of California, Berkeley, CA (United States); Golan, Amir [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kostko, Oleg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chambreau, Steven D. [Edwards Air Force Base, ERC Inc., CA (United States); Vaghjiani, Ghanshyam L. [Air Force Research Laboratory, Edwards Air Force Base, CA (United States); Leone, Stephen R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-04-20

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N–]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca–]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Also, hotoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~0.3 eV), attributed to reduced internal energy of the isolated ion pairs. Lastly, the method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally “cooler” source of isolated intact ion pairs in the gas phase compared to effusive sources.

  8. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    Energy Technology Data Exchange (ETDEWEB)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  9. First title: Ionic liquids-useful reaction green solvents for the future Second title: ionic liquids are the replacements for environmentally damaging solvents in a wide range of chemical processes.

    Directory of Open Access Journals (Sweden)

    K.Vijaya Bhaskar

    2012-09-01

    "designer solvents”. This means that their properties can be adjusted to suit the requirements of a particular process. Properties such as melting point, viscosity, density, and hydrophobicity can be varied by simple changes to the structure of the ions. For example, the melting points of 1-alkyl-3-methylimidazolium tetrafluoroborates and hexafluorophosphates are a function of the length of the 1-alkyl group, and form liquid crystalline phases for alkyl chain lengths over 12 carbon atoms. Another important property that changes with structure is the miscibility of water in these ionic liquids. For example, 1-alkyl-3-methylimidazolium tetrafluoroborate salts are miscible with water at 25 °C where the alkyl chain length is less than 6, but at or above 6 carbon atoms, they form a separate phase when mixed with water. This behaviour can be of substantial benefit when carrying out solvent extractions or product separations, as the relative solubility’s of the ionic and extraction phase can be adjusted to make the separation as easy as possible. In addition, ionic liquids have practically no vapour pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications. Research into ionic liquids is booming. The first industrial process involving ionic liquids was announced in March 2003, and the potential of ionic liquids for new chemical technologies is beginning to be recognized. One of the primary driving forces behind research into ionic liquids is the perceived benefit of substituting traditional industrial solvents, most of which are volatile organic compounds (VOCs, with non-volatile ionic liquids. Replacement of conventional solvents by ionic liquids would prevent the emission of VOCs, a major source of environmental

  10. Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; White, John; Camarda, Kyle V.;

    2011-01-01

    A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using...... the best candidate, vapor-liquid equilibria data is predicted using a new ionic liquid UNIFAC model that has been developed. The UNIFAC model is used to confirm the breaking of the azeotrope. The methanol-acetone azeotrope at 1 atm is used as an example. The azeotrope was predicted to break with 10 mol...... % [BMPy][BF4] added. The driving force concept is used to design an extractive distillation process that minimizes energy inputs. The methodology given can be expanded to the use of ionic liquids as entrainers in any azeotropic system of interest....

  11. Densities and isothermal compressibilities of ionic liquids - Modelling and application

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    Two corresponding-states forms have been developed for direct correlation function integrals in liquids to represent pressure effects on the volume of ionic liquids over wide ranges of temperature and pressure. The correlations can be analytically integrated from a chosen reference density...... to provide a full equation of state for ionic liquids over reduced densities from 1.5 to more than 3.6. One approach is empirical with 3 parameters, the other is a 2-parameter theoretical form which is directly connected to a method for predicting gas solubilities in ionic liquids. Parameters for both...... methods have been obtained for 28 different ionic liquid systems by reduction of carefully validated PρT data. The results show excellent agreement with the experimental data for nearly all substances over all ranges of conditions. Group contributions to parameters are also explored, leading...

  12. Inorganic or organic azide-containing hypergolic ionic liquids.

    Science.gov (United States)

    Joo, Young-Hyuk; Gao, Haixiang; Zhang, Yanqiang; Shreeve, Jean'ne M

    2010-04-01

    Recently extensive research has focused on replacing toxic hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine as liquid propellant fuels. 2-Azido-N,N-dimethylethylamine (1) is a good candidate to replace hydrazine derivatives in certain hypergolic fuel applications. Energetic ionic liquids that contain the 2-azido-N,N,N-trimethylethylammonium cation with nitrocyanamide, dicyanamide, dinitramide, or azide anion have been successfully synthesized in good yields by metathesis reactions. Ionic liquids have received considerable attention as energetic materials. The replacement of hydrazine with tertiary ammonium salts is especially attractive since many ionic liquids are models for green chemistry. In this work, new azide-functionalized ionic liquids are demonstrated to exhibit hypergolic activity with such oxidizers as 100% nitric acid or nitrogen tetraoxide (NTO). PMID:20175509

  13. Electron solvation and geminate ion recombination in ionic liquids

    International Nuclear Information System (INIS)

    The behavior of radiation-induced active species in ionic liquids attract much attention from view point of radiation induced decomposition and reaction in ionic liquids. The formation process, lifetime, yield and reactivity of solvated electrons were studied in alkyl ammonium ionic liquid by electron beam pulse radiolysis method. As a result, the G-value of the solvated electron is about 1, the lifetime is about 300 ns, the high efficiency reaction between the dry electron and solute were clarified. Most of the ionized electron would recombine with parent radical cation geminately. Pre-solvated electron reaction and geminate ion recombination were investigated using the femtosecond pulse radiolysis system. (author)

  14. Periodicity and map for discovery of new ionic liquids

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Suojiang

    2006-01-01

    [1]Trohalaki,S.,Pachter,R.,Drake,G.W.,Hawkins,T.,Quantitative structure-property relationships for melting points and densities of ionic liquids,Energy & Fuels,2005,19:279-284.[2]Holbery,J.D.,Seddon,K.R.,The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates,ionic liquids and ionic liquid crystals,J.Chem.Soc.Dalton Trans.,1999,13:2133-2139.[3]Katritzky,A.R.,Lomaka,A.,Petrukhin,R.et al.,QSPR correlation of the melting point for pyridinium bromides,potential ionic liquids,J.Chem.Inf.Comput.Sci.,2002,42:71-74.[4]Katritzky,A.R.,Jain,R.,Lomaka,A.et al.,Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program,J.Chem.Inf.Comput.Sci.,2002,42:225-231.[5]Eike,D.M.,Brennecke,J.F.,Maginn,E.J.,Predicting melting points of quaternary ammonium ionic liquids,Green Chemistry,2003,5:323-328.[6]Dupont,J.,Souza,R.F.,Suarez,A.Z.,Ionic liquid (molten salt) phase organometallic catalysis,J.Chem.Rev.,2002,102:3667-3692.[7]Turner,E.A.,Pye,C.C.,Singer,R.D.,Use of ab initio calculations toward the rational design of room temperature ionic liquids,J.Phys.Chem.A,2003,107(13):2277-2288.[8]Morrow,T.I.,Maginn,E.J.,Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate,J.Phys.Chem.B,2002,106:12807-12813.[9]Cadena,C.,Antony,J.L.,Shah,J.K.et al.,Why is CO2 so soluble in imidazolium-based ionic liquids? J.Am.Chem.Soc.,2004,126(16):5300-5308.[10]Liu,Z.,Huang,S.,Wang,W.,A refined force field for molecular simulation of imidazolium-based ionic liquids,J.Phys.Chem.B,2004,108(34):12978-12989.[11]Earle,M.J,Seddon,K.R.,Ionic liquids,green solvents for the future,Pure Appl.Chem.,2000,72(7):1391-1398.[12]Mendeleev on periodicity:I and II,http://www.rod.beavon.clara.net/periodic1.htm[13]Hoffmann,R.,Building bridges between inorganic and organic chemistry,Angew.Chem.Int.Ed.Engl.,1982,21(10):711-800.

  15. Easy synthesis of poly(ionic liquid) for use as a porous carbon precursor%作为炭材料前驱体的离子液聚合物的简易合成

    Institute of Scientific and Technical Information of China (English)

    廖晨; 刘睿; 侯希森; 孙晓光; 戴胜

    2014-01-01

    A novel poly(ionic liquid) which can be used as a carbon precursor was synthesized using a one-pot reaction using 1, 2-dimethylimidazole and epichlorohydrin as starting materials. The unique features of this poly( ionic liquid) include:no additional initiator is required;anions can be metathesized to regulate the micropore size of the carbonaceous materials. Carbonaceous materials derived from the poly( ionic liquid) with chloride anions ( Cl-) as counter ions have a low surface area of 47 m2/g. However, by re-placing Cl-with a bulky bis( trifluoromethylsulfonyl) imide ( TFSI-) anion, the carbonaceous materials produced have a high surface area of 595 m2/g, while replacing Cl- with dicyanoimide (N(CN)2-) anion results in a reduced surface area of 30 m2/g.%采用一步法合成新型离子液聚合物,并以聚合物作为炭材料的前驱体。这种新型离子液聚合物的特征包括:聚合无需添加引发剂,聚合引入的阴离子能够控制材料的微孔大小。以含Cl-的离子液聚合物为前驱体合成的炭材料具有较小的比表面积(47評/g),而以含较大(三氟甲基磺酰基)亚胺基阴离子的离子液聚合物为前驱体合成的炭材料具有较大的比表面积(595評/g)。含二氰胺阴离子的离子液聚合物为前驱体合成的炭材料的比表面积为30評/g。

  16. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    Science.gov (United States)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  17. Morphology-enhanced conductivity in dry ionic liquids.

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera

    2016-03-01

    Ionic liquids exhibit fascinating nanoscale morphological phases and are promising materials for energy storage applications. Liquid crystalline order emerges in ionic liquids with specific chemical structures. Here, we investigate the phase behaviour and related ionic conductivities of dry ionic liquids, using extensive molecular dynamics simulations. Temperature dependence, properties of polymeric tail and excluded volume symmetry of the amphiphilic ionic liquid molecules are investigated in large scale systems with both short and long-range Coulomb interactions. Our results suggest that by adjusting stiffness and steric interactions of the amphiphilic molecules, lamellar or 3D continuous phases result in these molecular salts. The resulting phases are composed of ion rich and ion pure domains. In 3D phases, ion rich clusters form ionic channels and have significant effects on the conductive properties of the observed nano-phases. If there is no excluded-volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the steric interactions become asymmetric, lamellar phases are replaced by complex 3D continuous phases. Within the temperature ranges for which morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments on ionic liquid crystals. Stiffer molecules increase the high-conductivity interval and strengthen temperature-resistance of morphological phases. Increasing the steric interactions of cation leads to higher conductivities. Moreover, at low monomeric volume fractions and at low temperatures, cavities are observed in the nano-phases of flexible ionic liquids. We also demonstrate that, in the absence of electrostatic interactions, the morphology is distorted. Our findings inspire new design principles for room temperature ionic liquids and help explain previously-reported experimental data.

  18. Triphilic Ionic-Liquid Mixtures: Fluorinated and Non-fluorinated Aprotic Ionic-Liquid Mixtures.

    Science.gov (United States)

    Hollóczki, Oldamur; Macchiagodena, Marina; Weber, Henry; Thomas, Martin; Brehm, Martin; Stark, Annegret; Russina, Olga; Triolo, Alessandro; Kirchner, Barbara

    2015-10-26

    We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains-polar and nonpolar-three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment. PMID:26305804

  19. DFT Study of the Reaction Mechanisms of Carbon Dioxide and its Isoelectronic Molecules CS2 and OCS Dissolved in Pyrrolidinium and Imidazolium Acetate Ionic Liquids.

    Science.gov (United States)

    Danten, Y; Cabaço, M I; Coutinho, J A P; Pinaud, Noël; Besnard, M

    2016-06-16

    The reaction mechanisms of CO2 and its isoelectronic molecules OCS and CS2 dissolved in N-butyl-N-methylpyrrolidinium acetate and in 1-butyl-3-methylimidazolium acetate were investigated by DFT calculations in "gas phase". The analysis of predicted multistep pathways allowed calculating energies of reaction and energy barriers of the processes. The major role played by the acetate anion in the degradation of the solutes CS2 and OCS as well as in the capture of OCS and CO2 by the imidazolium ring is highlighted. In both ionic liquids, this anion governs the conversion of CS2 into OCS and of OCS into CO2 through interatomic S-O exchanges between the anion and the solutes with formation of thioacetate anions. In imidazolium acetate, the selective capture of CS2 and OCS by the imidazolium ring competes with the S-O exchanges. From the calculated values of the energy barriers a basicity scale of the anions is proposed. The (13)C NMR chemical shifts of the predicted adducts were calculated and agree well with the experimental observations. It is argued that the scenario issued from the calculated pathways is shown qualitatively to be independent from the functionals and basis set used, constitute a valuable tool in the understanding of chemical reactions taking place in liquid phase. PMID:27186961

  20. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  1. Morphology-induced low temperature conductivity in ionic liquids

    Science.gov (United States)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera de la Cruz Team

    Ionic liquids exhibit nano-scale liquid crystalline order depending on the polymeric details of salt molecules. The resulting morphology and temperature behavior are key factors in determining the room temperature conductivity of ionic liquids. Here we discuss the phase behavior and related ionic conductivities of dry ionic liquids with volume fractions close to unity by using extensive molecular dynamics simulations. Temperature dependence, effective persistence length of tails, and excluded volume symmetry of amphiphilic ionic liquid molecules are investigated in large scale systems with short and long-range electrostatics. Our results suggest that by adjusting stiffness of the amphiphilic molecules and excluded volume interactions, lamellar or interconnected 3D phases can be obtained. Resulting phases have significant effects on the conductive properties. If there is no excluded volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the excluded volume interactions become asymmetric, lamellar phases are replaced by interconnected phases consist of charged groups. Within temperature ranges that morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments of ionic liquid-based liquid Center of Bio-inspried Energy Center (CBES).

  2. Long-range electrostatic screening in ionic liquids.

    Science.gov (United States)

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  3. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  4. Nanodroplet cluster formation in ionic liquid microemulsions.

    Science.gov (United States)

    Gao, Yanan; Voigt, Andreas; Hilfert, Liane; Sundmacher, Kai

    2008-08-01

    A common ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), is used as polar solvent to induce the formation of a reverse bmimBF(4)-in-toluene IL microemulsion with the aid of the nonionic surfactant Triton X-100. The swelling process of the microemulsion droplets by increasing bmimBF(4) content is detected by dynamic light scattering (DLS), conductivity, UV/Vis spectroscopy, and freeze-fracture transmission electron microscopy (FF-TEM). The results show that the microemulsion droplets initially formed are enlarged by the addition of bmimBF(4). However, successive addition of bmimBF(4) lead to the appearance of large-sized microemulsion droplet clusters (200-400 nm). NMR spectroscopic analysis reveal that the special structures and properties of bmimBF(4) and Triton X-100 together with the polar nature of toluene contribute to the formation of such self-assemblies. These unique self-assembled structures of IL-based microemulsion droplet clusters may have some unusual and unique properties with a number of interesting possibilities for potential applications. PMID:18576451

  5. Use of ionic liquids in biodiesel production: a review

    Directory of Open Access Journals (Sweden)

    L. Andreani

    2012-03-01

    Full Text Available This paper discusses the feasibility of the use of ionic liquids as catalysts in the biodiesel production field, describing some studies already published in the literature on this theme. Ionic liquids are regarded as a new generation of catalysts in the chemical industry, with several uses in different commercial segments. However only a few publications involving this topic can be found in the literature addressing the manufacture of biodiesel from vegetable oils or animal fats. Through the analysis of the data generated in the studies reviewed, it is possible to affirm that ionic liquids present great potential as catalysts for biodiesel production, but there are some challenges to be faced, such as the production of ionic liquids with low cost, easy recovery and with the possibility of reutilization of the catalyst for several cycles.

  6. Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry.

    Science.gov (United States)

    Trivedi, Shruti; Coombs, Sidney G; Wagle, Durgesh V; Bhawawet, Nakara; Baker, Gary A; Bright, Frank V

    2016-08-01

    To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower.

  7. The radiation chemistry of ionic liquids: A review

    International Nuclear Information System (INIS)

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind

  8. Non-Toxic Ionic Liquid Fuels for Exploration Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and test new, non-toxic ionic liquid fuels for propulsion applications. Vintage propulsion systems frequently use highly toxic...

  9. Biomass Conversion in Ionic Liquids - in-situ Investigations

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas

    Due to rising oil prices and global warming caused by CO2 emissions, there is an increased demand for new types of fuels and chemicals derived from biomass. This thesis investigates catalytic conversion of cellulose into sugars in ionic liquids and the important platform chemical 5......-hydroxymethylfurfural (HMF). The thesis focuses on kinetic and mechanistic investigations using new in-situ FTIR spectroscopic methods based on the ATR-principle. At first the kinetics of cellulose hydrolysis and the simultaneously HMF formation was investigated in the ionic liquid 1-butyl-2,3-dimethylimidazolium...... activation energies suggest that the ionic liquid acts co-catalytic by stabilizing the oxocarbenium transition state. The chromium catalyzed conversion of glucose to HMF in ionic liquid 1-butyl-3-methylimidazolium chloride with CrCl3⋅6H2O and CrCl2 as catalysts was investigated. The CrCl3⋅6H2O catalyst...

  10. Production of biofuels and chemicals with ionic liquids

    CERN Document Server

    Fang, Zhen; Qi, Xinhua

    2013-01-01

    This book explores the application of ionic liquids to biomass for producing biofuels and chemicals. Covers pretreatment, fermentation, cellulose transformation, reaction kinetics and more, as well as subsequent production of biofuels and platform chemicals.

  11. Synthesis of Multiester-appended and Multicarboxylic-appended Imidazolium Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Wei Guo GENG; Xue Hui LI; Le Fu WANG; Hong Li DUAN; Wei Ping PAN

    2006-01-01

    Multiester-appended imidazolium ionic liquids were synthesized in a quatemization reaction between the imidazole derivatives carrying single or double esters and ethyl chloroacetate or bromoethane. Multicarboxylic-appended imidazolium ionic liquids were achieved from the hydrolysis of the corresponding ionic liquids. The influences of multifunctional groups on the transition temperatures and viscosity of these new ionic liquids were investigated.

  12. Separating closely resembling steroids with ionic liquids in liquid-liquid extraction systems

    NARCIS (Netherlands)

    Vitasari, C.R.; Gramblicka, M.; Gibcus, K.; Visser, T.J.; Geertman, R.M.; Schuur, B.

    2015-01-01

    Separation of steroids by liquid–liquid extraction with ionic liquids (ILs) as solvent was studied both experimentally and by simulation using a model mixture of progesterone and pregnenolone. The studies involved a solvent screening using COSMO-RS software for estimation of progesterone solubility.

  13. Use of ionic liquids in biodiesel production: a review

    OpenAIRE

    ANDREANI, L; Rocha, J.D.

    2012-01-01

    This paper discusses the feasibility of the use of ionic liquids as catalysts in the biodiesel production field, describing some studies already published in the literature on this theme. Ionic liquids are regarded as a new generation of catalysts in the chemical industry, with several uses in different commercial segments. However only a few publications involving this topic can be found in the literature addressing the manufacture of biodiesel from vegetable oils or animal fats. Through the...

  14. Lead-Salt Quantum-Dot Ionic Liquids

    KAUST Repository

    Sun, Liangfeng

    2010-03-08

    PbS quantum dots (QDs) are functionalized using ionic liquids with thiol moieties as capping ligands. The resulting amphiphilic QD ionic liquids exhibit fluidlike behavior at room temperature, even in the absence of solvents. The photostability of the QDs is dramatically improved compared to the as-synthesized oleic acid-capped QDs dispersed in toluene. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Membrane contactor assisted extraction/reaction process employing ionic liquids

    Science.gov (United States)

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  16. First Claisen Rearrangement Reaction in Ionic Liquids with Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    XU Li-Wen; LI Fu-Wei; XIA Chun-Gu

    2003-01-01

    @@ We have demonstrated the first use of the common ionic liquids, [1] bmimBr, bmimBF4 and bmimPF6 as an environmentally benign solvent for the simple Claisen rearrangement under microwave irradiation. In many cases, the re action was carried out in toxic solvents of high boiling point. [2] Here we reported the first example of Claisen rear rangement reaction in green solvents, ionic liquids, under microwave irradiation.

  17. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO−) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s−1, suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10−9 to 3.0 × 10−5 mol L−1

  18. IONIC LIQUIDS MATERIAL AS MODERN CONTEXT OF CHEMISTRY IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Hernani Hernani

    2016-04-01

    Full Text Available One way to improve students’ chemistry literacy which is demanded in the modernization of modern technology-based chemistry learning is by studying ionic liquids. Low level of scientific literacy of students in Indonesia as revealed in the PISA in 2012 was the main reason of the research. Ionic liquids-based technology are necessary to be applied as a context for learning chemistry because: (1 the attention of the scientific an technology community in the use of ionic liquids as a new generation of green solvent, electrolyte material and fluidic engineering in recent years becomes larger, in line with the strong demands of the industry for the provision of new materials that are reliable, safe, and friendly for various purposes; (2 scientific explanations related to the context of the ionic liquid contains a lot of facts, concepts, principles, laws, models and theories can be used to reinforce the learning content as a media to develop thinking skill (process/competence as demanded by PISA; (3 The modern technology-based ionic liquid can also be used as a discourse to strengthen scientific attitude. The process of synthesis of ionic liquid involves fairly simple organic reagents, so it deserves to be included in the chemistry subject in school.

  19. Thallium Transfer from Hydrochloric Acid Media into Pure Ionic Liquids.

    Science.gov (United States)

    Tereshatov, Evgeny E; Boltoeva, Maria Yu; Mazan, Valerie; Volia, Merinda F; Folden, Charles M

    2016-03-10

    Pure hydrophobic ionic liquids are known to extract metallic species from aqueous solutions. In this work we have systematically investigated thallium (Tl) extraction from aqueous hydrochloric acid (HCl) solutions into six pure fluorinated ionic liquids, namely imidazolium- and pyrrolidinium-based ionic liquids with bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)-imide anions. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. Tl concentrations were on the order of picomolar (analyzed using radioactive tracers) and millimolar (analyzed using inductively coupled plasma mass spectrometry). The extraction of the cationic thallium species Tl(+) is higher for ionic liquids with more hydrophilic cations, while for the TlX(z)(3-z) anionic species (where X = Cl(-) and/or Br(-)), the extraction efficiency is greater for ionic liquids with more hydrophobic cations. The highest distribution value of Tl(III) was approximately 2000. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the coextraction of two different anionic species, and the relative contributions of each mechanism have been determined. PMID:26769597

  20. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture

  1. Thermomorphic phase separation in ionic liquid-organic liquid systems - conductivity and spectroscopic characterization

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Berg, Rolf W.;

    2005-01-01

    Electrical conductivity, FT-Raman and NMR measurements are demonstrated as useful tools to probe and determine phase behavior of thermomorphic ionic liquid-organic liquid systems. To illustrate the methods, consecutive conductivity measurements of a thermomorphic methoxyethoxyethyl-imidazolium io...... of the components in the system, the liquid-liquid equilibrium phase diagram of the binary mixture, and signify the importance of hydrogen bonding between the ionic liquid and the hydroxyl group of the alcohol....

  2. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.;

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...

  3. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    Science.gov (United States)

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  4. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy+ (N-methyl-N-propyl pyrrolidinium) cation and TFSI− (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  5. Ionic structure in liquids confined by dielectric interfaces

    Science.gov (United States)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  6. Solubility data and modeling for sugar alcohols in ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • Solubility of D-sorbitol and xylitol in six ILs. • The (liquid + liquid) phase equilibrium of (SA + IL) with UCST. • Interesting properties of [BMIM][TDI] IL. • The correlation with NRTL model. - Abstract: Ionic liquids (ILs) are novel media characterized by strong interactions with different organic substances which leads to a wide spectrum of applications involving extraction. Ionic liquids have been used as a solvent for sugar alcohols, sugars and hydrates. This work demonstrates the experimental and theoretical study of (liquid + liquid) phase equilibria for two sugar alcohols, D-sorbitol and xylitol in a few ILs based on different cations and anions (namely, 1-ethyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [EMPIP][NTf2], 1-hexyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [HMPIP][NTf2], N-hexylquinolinium bis(trifluoromethylsulfonyl)imide [HQuin][NTf2], N-hexylisoquinolinium bis(trifluoromethylsulfonyl)imide [HiQuin][NTf2], 1-butyl-1-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [BMIM][TDI] and 1-(cyanomethyl)-3-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [CCNMIM][TDI]). This study was conducted to assess the applicability of the studied ILs for dissolution of these biomass-related materials. (Liquid + liquid) phase equilibrium diagrams (LLE) in binary systems (sugar alcohol + ionic liquid) were measured using the dynamic technique. The influence of the chemical structure of both the ionic liquids and sugar alcohols were established and is discussed

  7. Tuning the Chemoselective Hydrogenation of Nitrostyrenes Catalyzed by Ionic Liquid-Supported Platinum Nanoparticles

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Andanson, Jean-Michel; Baiker, Alfons

    2012-01-01

    Pt nanoparticles (NPs) in the range of 1.7–3.4 nm were synthesized in an ionic liquid (IL). Subsequent immobilization on various solid supports (silica, alumina, titania, carbon nanotubes (CNTs)) in some cases proved to be beneficial. These catalysts exhibited excellent performance...

  8. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  9. Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid--liquid microextraction

    OpenAIRE

    BAZMANDEGAN, ALIREZA; SHABANI, Ali Mohammad HAJI; DADFARNIA, SAYESSTEH; SAEIDI, MAHBOUBEH; MOGHADAM, MASOUD ROHANI

    2015-01-01

    A simple and efficient method for speciation and determination of iron in different water samples was developed. The method is based on ionic liquid ultrasound assisted dispersive liquid--liquid microextraction (IL-USA-DLLME) followed by spectrophotometric determination. Fe(II) is complexed with 2,4,6-tri(2'-pyridyl)-l,3,5-triazine (TPTZ{)}, neutralized through ion pair formation with sodium dodecyl sulfate (SDS) and extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate [C$_{6}$...

  10. In situ electron holographic study of Ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Manabu, E-mail: shirai-manabu@naka.hitachi-hitec.com [Hitachi, Ltd., Central Research Laboratory, Hatoyama, Saitama 350-0395 (Japan); Tanigaki, Toshiaki [Hitachi, Ltd., Central Research Laboratory, Hatoyama, Saitama 350-0395 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-11-15

    Investigation of the effect of electron irradiation on ionic liquid (IL) droplets using electron holography revealed that electron irradiation changed the electrostatic potential around the IL. The potential for low electron flux irradiation (0.5×10{sup 17} e/m{sup 2} s) was almost constant as a function of time (up to 180 min). For higher electron flux irradiation (2×10{sup 17} e/m{sup 2} s), the potential increased exponentially for a certain time, reflecting the charging effect and then leveled off. The IL was found to be changed from liquid to solid state after a significant increase in the electrostatic potential due to electron irradiation. - Highlights: • We investigate the charging effect of ionic liquid using electron holography. • Electron irradiation changed the electrostatic potential around the ionic liquid. • The change of the potential depends on the electron irradiation flux. • The ionic liquid transformed from liquid to solid due electron irradiation. • Solidification of the ionic liquid correlates with the change of the potential.

  11. Thermoelectric energy recovery at ionic-liquid/electrode interface

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salez, Thomas J. [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Champs-sur-Marne, F-77455 Marne-la-Vallée (France)

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  12. Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available To improve the durability of dye-sensitized solar cells (DSCs, monolithic DSCs with ionic liquid electrolyte were studied. Deposited by screen printing, a carbon layer was successfully fabricated that did not crack or peel when annealing was employed beforehand. Optimized electrodes exhibited photovoltaic characteristics of 0.608 V open-circuit voltage, 6.90 cm−2 mA short-circuit current, and 0.491 fill factor, yielding 2.06% power conversion efficiency. The monolithic DSC using ionic liquid electrolyte was thermally durable and operated stably for 1000 h at 80°C.

  13. A novel ionic liquids-based scrubbing process for efficient CO2 capture

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel alkanolamine-based ionic liquid,N-methyl-diethanolammonium tetrafluoroborate ([MDEA][BF4]),was synthesized in our laboratory.The ionic liquid-based composite solution consisting of N-methyl-diethanolamine (MDEA),[MDEA][BF4],piperazine (PZ) and H2O was investigated for CO2 capture.The optimal performance for CO2 capture was found at 45°C,1.50 MPa,probably due to a synergistic action of the reaction and the transport.No apparent corrosion was found on stainless and carbon steel with the above composite solution.This finding is very significant to the promotion of its engineering application.

  14. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  15. Studies on electrical double layer capacitor with a low-viscosity ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate as electrolyte

    Indian Academy of Sciences (India)

    G P Pandey; S A Hashmi

    2013-08-01

    The performance of an electrical double layer capacitor (EDLC) composed of high surface area activated carbon electrodes and a new ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIm]TCB, as the electrolyte has been investigated by impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge studies. The high ionic conductivity (∼1.3 × 10-2 S cm-1 at 20 °C) and low viscosity (∼22 cP) of the ionic liquid, [EMIm]TCB, make it attractive as electrolyte for its use in EDLCs. The optimum capacitance value of 195.5 F g-1 of activated carbon has been achieved with stable cyclic performance.

  16. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  17. A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Elham [Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Imam Khomeini Hospital, Tehran (Iran, Islamic Republic of); Karimi, Ziba [Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-05-18

    Highlights: • Design of a novel impedimetric immunosensor for detection of HER2 in serum samples. • Use of a multiwall carbon nanotube-ionic liquid electrode modified with AuNPs as a base. • Immobilization of monoclonal HER2 antibody on AuNPs/MWCILE using 1,6-hexanedithiol as a cross linker. • Achieving linear dynamic range and limit of detection of 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. • Method development and validation and application to assay of HER2 in biological fluids. - Abstract: A highly sensitive impedimetric immunosensor based on a gold nanoparticles/multiwall carbon nanotube-ionic liquid electrode (AuNPs/MW-CILE) was developed for the determination of human epidermal growth factor receptor 2 (HER2). Gold nanoparticles were used to enhance the extent of immobilization and to retain the immunoactivity of the antibody Herceptin on the electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed for characterization of various layers coated onto the AuNPs/MW-CILE. The impedance measurements at different steps were based on the charge transfer kinetics of the [Fe(CN){sub 6}]{sup 3−/4−} redox pair. The immobilization of antibody and the corresponding antigen–antibody interaction at the electrode surface altered the interfacial electron transfer. The interactions of antibody with various concentrations of antigen were also monitored via the change of impedance response. The results showed that the charge transfer resistance increases linearly with increasing concentrations of HER2 antigen. The linear range and limit of detection were found as 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. The sensitivity and specificity of the immunosensor were validated. The results showed that the prepared immunosensor is a useful tool for screening of trace amounts of HER2 in serum samples of breast cancer patients.

  18. CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods

    Directory of Open Access Journals (Sweden)

    Elena Torralba-Calleja

    2013-01-01

    Full Text Available The growing concern of climate change and global warming has in turn given rise to a thriving research field dedicated to finding solutions. One particular area which has received considerable attention is the lowering of carbon dioxide emissions from large-scale sources, that is, fossil fuel power. This paper focuses on ionic liquids being used as novel media for CO2 capture. In particular, solubility data and experimental techniques are used at a laboratory scale. Cited CO2 absorption data for imidazolium-, pyrrolidinium-, pyridinium-, quaternary-ammonium-, and tetra-alkyl-phosphonium-based ionic liquids is reviewed, expressed as mole fractions (X of CO2 to ionic liquid. The following experimental techniques are featured: gravimetric analysis, the pressure drop method, and the view-cell method.

  19. Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation

    DEFF Research Database (Denmark)

    Hanning, Christopher William

    The work presented here is focused on the development of a new reaction process. It applies Supported Ionic Liquid Phase (SILP) catalysis to a specific reaction. By reacting methanol and carbon monoxide over a rhodium catalyst, acetic acid can be formed. This reaction is important on a large scale...... industrially, with millions of tonnes of acetic acid being produced annually. Acetic acid is an important precursor for making adhesives, plastics and fabrics. By using the SILP concept we are able to carry out the reaction in a continuous system, allowing a steady production of acetic acid without having...... were no longer classified as ionic liquids due to melting points above 100◦C). The phosphonium salts showed even better activity in the system compared to the ionic liquids. Overall the work has shown that this process for the manufacture of acetic acid is viable industrially. This is backed up...

  20. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals.

    Science.gov (United States)

    Nelyubina, Yulia V; Shaplov, Alexander S; Lozinskaya, Elena I; Buzin, Mikhail I; Vygodskii, Yakov S

    2016-08-17

    Volume-based prediction of melting points and other properties of ionic liquids (ILs) relies on empirical relations with volumes of ions in these low-melting organic salts. Here we report an accurate way to ionic volumes by Bader's partitioning of electron densities from X-ray diffraction obtained via a simple database approach. For a series of 1-tetradecyl-3-methylimidazolium salts, the volumes of different anions are found to correlate linearly with melting points; larger anions giving lower-melting ILs. The volume-based concept is transferred to ionic liquid crystals (ILs that adopt liquid crystalline mesophases, ILCs) for predicting the domain of their existence from the knowledge of their constituents. For 1-alkyl-3-methylimidazolium ILCs, linear correlations of ionic volumes with the occurrence of LC mesophase and its stability are revealed, thus paving the way to rational design of ILCs by combining suitably sized ions. PMID:27479022

  1. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.

    Science.gov (United States)

    Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting

    2016-07-01

    A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%). PMID:27181611

  2. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  3. Ionic Liquid-Complex Pd/C System as Catalyst for Copolymerization of CO and Styrene

    Institute of Scientific and Technical Information of China (English)

    王海霞; 郭锦棠; 胡光; 冯亚凯; 武瑞涛

    2014-01-01

    The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones (PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C4CNmim]+PF6-) medium. The synthe-sized PK was characterized by Fourier transform infrared(FTIR), elemental analysis, 13C-nuclear magnetic resonance (13C-NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chro-matography (GPC). The supported ionic liquid film on the surface of Pd/C catalyst can prevent the products from covering the hole of active carbon due to its chemical stability and weak coordination ability with metal ions, and thus efficiently improve the catalytic activity. The effects of different amounts of ionic liquid on the catalytic activity and reusability of the catalyst and the molecular weight of PK were discussed. When the usage of ionic liquid is 10wt%(0.1 g ionic liquid/1 g active carbon carrier) and the theoretical content of Pd2+is 5wt%(0.05 g Pd2+/1 g active car-bon carrier), the highest catalytic activity 2 963.64 gSTCO/(gPd·h) is achieved with the molecular weight and polydispersity index of PK as Mn=9 684, Mw=13 452 and Mw/Mn=1.389.

  4. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy.

  5. Syntheses and applications of ionic liquids as solvents and reactants : natural substances dissolution, esterification ionic tagging

    OpenAIRE

    Zhao, Bin

    2012-01-01

    The present thesis deals with the applications of ionic liquids (ILs), especially carboxylate-based ILs. The first part describes the syntheses and uses of ILs as solvents for natural compounds to dissolve cellulose and to extract betulin. The second part reveals their applications as reactants for esterification and ionic tagging. Dissolution of cellulose allows easier processing of this important biogenic feedstock. For this, ILs have been proposed. To foster understanding of the structure ...

  6. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  7. Task-specific ionic liquid for solubilizing metal oxides.

    Science.gov (United States)

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  8. Radiation stability of some room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jagadeeswara Rao, Ch.; Venkatesan, K.A. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil nadu (India); Tata, B.V.R. [Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil nadu (India); Nagarajan, K., E-mail: knag@igcar.gov.i [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil nadu (India); Srinivasan, T.G.; Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil nadu (India)

    2011-05-15

    Radiation stability of some room temperature ionic liquids (RTILs) that find useful electrochemical applications in nuclear fuel cycle has been evaluated. The ionic liquids such as protonated betaine bis(trifluoromethylsulfonyl)imide (HbetNTf{sub 2}), aliquat 336 (tri-n-octlymethylammonium chloride), 1-butyl-3-methylimidazolium chloride (bmimCl), 1-hexyl-3-methylimidazolium chloride (hmimCl), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyNTf{sub 2}) and N-methyl-N-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPiNTf{sub 2}) have been irradiated to various absorbed dose levels, up to 700 kGy. The effect of gamma radiation on these ionic liquids has been evaluated by determining the variations in the physical properties such as color, density, viscosity, refractive index and electrochemical window. The changes in density, viscosity and refractive index of these ionic liquids upon irradiation were insignificant; however, the color and electrochemical window varied significantly with increase of absorbed dose. -- Research highlights: {yields} Room temperature ionic liquids (RTILs). {yields} Gamma irradiation. {yields} Determination of physical and electrochemical properties. {yields} Minimal change in physical properties. {yields} Large variation in electrochemical window.

  9. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  10. Graphene/Ionic Liquid Composite Films and Ion Exchange

    OpenAIRE

    Yufei Mo; Yunfang Wan; Alicia Chau; Fuchuan Huang

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL ...

  11. Electrochemical Performance of Ionic Liquid-Graphene Modified Carbon Fiber Microelectrode%离子液体-石墨烯修饰碳纤维微电极电化学性能研究

    Institute of Scientific and Technical Information of China (English)

    范跃娟; 沙翠翠; 唐旻奕; 冉菊; 程寒

    2015-01-01

    本实验制备了离子液体-石墨烯修饰碳纤维微电极,采用循环伏安法和差分脉冲伏安法测定多巴胺(DA)在该修饰电极上的电化学行为。实验结果显示,修饰后电极的稳定性和重现性明显增加,DA在修饰电极上的氧化过程受扩散控制。在5×10-7-1×10-4mol/L浓度范围内,DA在修饰电极上的氧化峰电流与其浓度呈现良好的线性关系。%[Abstract]In this paper, the carbon fiber microelectrode modified with ionic liquid-graphene composites was fabricated, the electrochemical behaviors of dopamine (DA) at the modified carbon fiber microelectrode were determined with cyclic voltammetry and differential pulse voltammetric method. The results showed that the modified electrode showed good stability and duplicability. The oxidation of DA on the surface of the modified carbon fiber microelectrode belongs to the diffusion controlled reaction. In the 20mmol/L Tris-HCl (pH7.4) buffer solution, for DA determination, the oxidation peak current and the concentration of DA showed good linear relationships.

  12. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations. PMID:27046045

  13. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  14. Interaction Mechanism Insights on the Solvation of Fullerene B(80)with Choline-based Ionic Liquids.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-24

    Beyond carbon allotropes, other nanostructures such as fullerene B80 are attracting a growing interest due to their potential applications. The use of new materials based on fullerene B80 is still in a premature stage; however many of these applications would require the use of B80 in solution. This paper reports an unprecedented density functional theory (DFT) analysis on the interaction mechanism between B80 and two choline-based ionic liquids as a first insight for the fullerene B80 solvation by ionic liquids. The analysis of properties such as binding energies, charge distributions or intermolecular interactions shed light on the main features, which should govern interaction between ionic liquids and fullerene B80. In addition, the optimization of systems composed by six ionic pairs around a fullerene B80 has supplied some information about the first solvation shell at the molecular level. As a summary, this paper provides the first insights in the rational design of ionic liquids with suitable properties for the solvation of B80.

  15. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  16. USE OF IONIC LIQUIDS FOR IMPROVEMENT OF CELLULOSIC ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2011-02-01

    Full Text Available Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.

  17. The Use of Supported Acidic Ionic Liquids in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Rita Skoda-Földes

    2014-06-01

    Full Text Available Catalysts obtained by the immobilisation of acidic ionic liquids (ILs on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability.

  18. Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction

    Directory of Open Access Journals (Sweden)

    Kaoru Nobuoka

    2014-01-01

    Full Text Available Chiral ionic liquids, starting from (S-proline, have been prepared and evaluated the ability of a chiral catalyst. In Michael reaction of trans-β-nitrostyrene and cyclohexanone, all the reactions were carried out under homogeneous conditions without any solvent except for excess cyclohexanone. The chiral ionic liquid catalyst with the positive charge delocalized bulky pyrrolidinium cation shows excellent yields (up to 92%, diastereoselectivities (syn/anti = 96/4, and enantioselectivities (up to 95% ee and could be reused at least three times without any loss of its catalytic activity. Such results demonstrated a promising new approach for green and economic chiral synthesis by using the chiral ionic liquids as a chiral catalyst and a chiral medium.

  19. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  20. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size. PMID:26398675

  1. Structural studies of ionic liquid-modified microemulsions.

    Science.gov (United States)

    Rojas, Oscar; Koetz, Joachim; Kosmella, Sabine; Tiersch, Brigitte; Wacker, Philipp; Kramer, Markus

    2009-05-15

    This work is focused on the influence of an ionic liquid (IL), i.e. ethyl-methylimidazolium hexylsulfate, on the spontaneous formation of microemulsions with ionic surfactants. The influence of the ionic liquid on structure formation in the optically clear phase region in water/toluene/pentanol mixtures in presence of the cationic surfactant CTAB was studied in more detail. The results show a significant increase of the transparent phase region by adding the ionic liquid. Conductometric investigations demonstrate that adding the ionic liquid can drastically reduce the droplet-droplet interactions in the L(2) phase. (1)H nuclear magnetic resonance ((1)H NMR) diffusion coefficient measurements in combination with dynamic light scattering measurements clearly show that inverse microemulsion droplets still exist, but the droplet size is decreased to 2 nm. A more detailed characterisation of the isotropic phase channel by means of conductivity measurements, dynamic light scattering (DLS), (1)H NMR and cryo-scanning electron microscopy (SEM), allows the identification of a bicontinuous sponge phase between the L(1) and L(2) phase. When the poly(ethyleneimine) is added, the isotropic phase range is reduced drastically, but the inverse microemulsion range still exists. PMID:19278685

  2. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids.

    Science.gov (United States)

    Megaw, Julianne; Thompson, Thomas P; Lafferty, Ryan A; Gilmore, Brendan F

    2015-11-01

    The larval form of the Greater Wax Moth (Galleria mellonella) was evaluated as a model system for the study of the acute in vivo toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. 24-h median lethal dose (LD50) values for nine of these ionic liquids bearing alkyl chain substituents ranging from 2 to 18 carbon atoms were determined. The in vivo toxicity of the ionic liquids was found to correlate directly with the length of the alkyl chain substituent, and the pattern of toxicity observed was in accordance with previous studies of ionic liquid toxicity in other living systems, including a characteristic toxicity 'cut-off' effect. However, G. mellonella appeared to be more susceptible to the toxic effects of the ionic liquids tested, possibly as a result of their high body fat content. The results obtained in this study indicate that G. mellonella represents a sensitive, reliable and robust in vivo model organism for the evaluation of ionic liquid toxicity.

  3. Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids.

    Science.gov (United States)

    E Silva, Francisca A; Siopa, Filipa; Figueiredo, Bruna F H T; Gonçalves, Ana M M; Pereira, Joana L; Gonçalves, Fernando; Coutinho, João A P; Afonso, Carlos A M; Ventura, Sónia P M

    2014-10-01

    Cholinium-based ionic liquids are receiving crescent interest in diverse areas of application given their biological compatibility and potential for industrial application. In this work, mono and dicationic cholinium ionic liquids as well as cholinium derivatives were synthesized and their toxicity assessed using the luminescent bacteria Vibrio fischeri. A range of cholinium derivatives was synthesized, using different amines and the correspondent brominated derivatives, through the alkylation of the amine with the halide in MeCN. The results indicate that their toxicity is highly dependent on the structural modifications of the cholinium cation, mainly related to the alkyl side or linkage chain length, number of hydroxyethyl groups and insertion of carbon-carbon multiple bonds. The data indicated that it is possible to perform environmentally advantageous structural alterations, namely the addition of double bonds, which would not negatively affect V. fischeri. Moreover, the dicationic compounds revealed a significantly lower toxicity than the monocationic counterparts. The picture emerging from the results supports the idea that cholinium derivatives are promising ionic liquids with a low environmental impact, emphasizing the importance of a careful and directed design of ionic liquid structures.

  4. Ionic liquids: the link to high-temperature molten salts?

    Science.gov (United States)

    El Abedin, Sherif Zein; Endres, Frank

    2007-11-01

    Due to their wide thermal windows, ionic liquids can be regarded as the missing link between aqueous/organic solutions and high-temperature molten salts. They can be employed efficiently for the coating of other metals with thin layers of tantalum, aluminum, and presumably many others at reasonable temperatures by electrochemical means. The development of ionic liquids, especially air and water stable ones, has opened the door for the electrodeposition of reactive elements such as, for example, Al, Ta, and Si, which in the past were only accessible using high-temperature molten salts or, in part, organic solvents. PMID:17521159

  5. Electrodeposition of Lithium from Lithium-Containing Solvate Ionic Liquids

    OpenAIRE

    Vanhoutte, Gijs; Brooks, Neil R.; Schaltin, Stijn; Opperdoes, Bastiaan; Van Meervelt, Luc; Locquet, Jean-Pierre; Vereecken, Philippe M.; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Lithium-containing solvate ionic liquids [Li(L)n][X], with ligands L = 1,2-dimethoxyethane (G1, monoglyme) or 1-methoxy-2-(2-methoxyethyl)ether (G2, diglyme) (with n = 1, 2 or 3) and with anions X = bis(trifluoromethylsulfonyl)imide (Tf2N–), bromide (Br–) or iodide (I–), were synthesized and used as electrolytes for the electrodeposition of lithium metal. Very high lithium-ion concentrations could be obtained, since the lithium ion is part of the cationic structure of the solvate ionic liquid...

  6. Hydrolysis and Partial Recycling of a Chloroaluminate Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Li-Sheng Wang

    2007-06-01

    Full Text Available Hydrolysis of the ionic liquid Et3NHCl-2AlCl3 and a process for recycling thetriethylamine were studied. When the hydrolysis was carried out at a relatively hightemperature, the released HCl could be absorbed more easily. With addition of sodiumhydroxide to the aqueous hydrolysis solution, a feasible process for recycling triethylaminewas developed, involving first distillation of triethylamine, followed by filtration of thealuminium hydroxide. The yield of recovered triethylamine was about 95%. Thetriethylhydrogenammonium chloride prepared from the recycled triethylamine was of goodpurity and could be reused to synthesize new chloroaluminate ionic liquids.

  7. Preparation and Characterization of New Type Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new type of ionic liquids containing cation of diacetone acrylamide [or N-(1,1- bismethyl-3-oxo-butyl)acrylamide] and anions such as CH3COO-(Ac), CF3COO(-(TF), BF4-(BF), PF6-(PF), HSO4-(SO) and Cl-(Cl) were prepared by normal neutralization.The obtained ionic liquids were identified by FT-IR and 1H NMR spectroscopy.However, their properties such as melting point, conductivity, viscosity etc.were determined.

  8. Analysis of ionic conductance of carbon nanotubes

    CERN Document Server

    Biesheuvel, P M

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, $G$, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as function of pore size, salt concentration $c$, and pH. Using realistic values for surface site density and pK, SC theory well describes published experimentally data on the conductance of CNTs. At extremely low salt concentration, when the electric potential becomes uniform across the pore, and surface ionization is low, we derive the scaling $G\\sim \\sqrt{c}$, while for realistic salt concentrations, SC theory does not lead to a simple power law for $G(c)$.

  9. Video-microscopic observation of ionic liquid/alcohol interface and the corresponding molecular simulation study

    Science.gov (United States)

    Zhu, Peixi

    addition to 1-butyl-3-methylimidazolium tetrafluoroborate, the generalization was tested also on tetraethyl ammonium tetrafluoroborate in propylene carbonate from low to high concentrations, and on the corresponding primitive model. Such generalization helps us understand paring of ions in electrolyte solution, especially for elevated concentrations. Two cases of 1-hexyl-3-methylimidazolium tetrafluoroborate ionic liquid/n-pentanol system were studied, which are (i) liquid-liquid interface; and (ii) solution of the former in the latter. Computation of biphasic interface revealed interaction at the liquid-liquid junction, e.g., the transport of molecules from one phase to another, and lead to evaluation of diffusion coefficient that has good agreement with experimental measurement. The simulation of dilute electrolyte solution, i.e., an ionic liquid pair in n-pentanol, gives free energy change as a function of ion separation distance. The dissociation constant K was evaluated and found to be closed to experimental value that was obtained from solution conductivity measurement. The investigation of ion dynamics, especially the memory function transformed from velocity autocorrelation function, lead to the finding of dielectric friction in the system. Furthermore, precise evaluation of D gives satisfied agreement with experimental measurement from micropipette technique.

  10. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  11. Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Swapnil A. Dharaskar

    2013-01-01

    Full Text Available A new class of green solvents, known as ionic liquids (ILs, has recently been the subject of intensive research on the extractive desulfurization of liquid fuels because of the limitation of traditional hydrodesulfurization method. In present work, eleven Lewis acid ionic liquids were synthesized and employed as promising extractants for deep desulfurization of the liquid fuel containing dibenzothiophene (DBT to test the desulfurization efficiency. [Bmim]Cl/FeCl3 was the most promising ionic liquid and performed the best among studied ionic liquids under the same operating conditions. It can remove dibenzothiophene from the model liquid fuel in the single-stage extraction process with the maximum desulfurization efficiency of 75.6%. It was also found that [Bmim]Cl/FeCl3 may be reused without regeneration with considerable extraction efficiency of 47.3%. Huge saving on energy can be achieved if we make use of this ionic liquids behavior in process design, instead of regenerating ionic liquids after every time of extraction.

  12. Concentration and electrode material dependence of the voltammetric response of iodide on platinum, glassy carbon and boron-doped diamond in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

    International Nuclear Information System (INIS)

    The electro-oxidation of iodide has been investigated as a function of concentration using steady-state microelectrode voltammetry, transient cyclic voltammetry and linear-sweep semi-integral voltammetry on platinum, glassy carbon and boron-doped diamond electrodes in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Two oxidation processes are observed on all of the investigated electrode materials, with the first being assigned to the oxidation of iodide to triiodide (confirmed by UV/visible spectroscopy) and the second being attributed to the oxidation of triiodide to iodine. Iodide oxidation is kinetically more facile on platinum compared to glassy carbon or boron-doped diamond. At elevated bulk iodide concentrations, the nucleation and growth of sparingly soluble electrogenerated iodine at the electrode surface was observed and imaged in situ using optical microscopy. The diffusion coefficient of iodide was determined to be 2.59 (±0.04) × 10−7 cm2 s−1 and independent of the bulk concentration of iodide. The steady-state iodide oxidation current measured at a platinum microelectrode was found to be a linear function of iodide concentration, as expected if there are no contributions from non-Stokesian mass-transport processes (electron hopping and/or Grotthuss-type exchange) under the investigated conditions

  13. Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt

    Science.gov (United States)

    Morita, Masayuki; Shirai, Takahiro; Yoshimoto, Nobuko; Ishikawa, Masashi

    A new polymeric gel electrolyte system conducting magnesium ion has been proposed. The gel electrolytes consisted of poly(ethylene oxide)-modified polymethacrylate (PEO-PMA) dissolving ionic liquid mixed with magnesium salt, Mg[(CF 3SO 2) 2N] 2. The polymeric gel films were self-standing, transparent and flexible with enough mechanical strength. The ionic conductance and the electrochemical properties of the gel films were investigated. Thermal analysis results showed that the polymeric gel is homogeneous and amorphous over a wide temperature range. The highest conductivity, 1.1 × 10 -4 S cm -1 at room temperature (20 °C), was obtained for the polymeric gel containing 50 wt.% of the ionic liquid in which the content of the magnesium salt was 20 mol%. The dc polarization of a Pt/Mg cell using the polymeric gel electrolyte proved that the magnesium ion (Mg 2+) is mobile in the present polymeric system.

  14. Blending ionic liquids: how physico-chemical properties change.

    Science.gov (United States)

    Castiglione, Franca; Raos, Guido; Appetecchi, Giovanni Battista; Montanino, Maria; Passerini, Stefano; Moreno, Margherita; Famulari, Antonino; Mele, Andrea

    2010-02-28

    Ionic liquids offer the opportunity of tailoring their properties by changing the chemical structure of the cation and anion. Blending of two or more liquids adds a further dimension to this "chemical space". Here we present the results of a study of three binary and one ternary mixture of the ionic liquids formed by the N-butyl-N-methylpyrrolidinium cation with bis(trifluoromethanesulfonyl) imide, bis(pentafluoroethanesulfonyl) imide and (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl) imide. We have collected viscosity and NMR-based data on ionxion correlations (NOE) and diffusion (DOSY). We also attempt to establish a quantitative correlation between mixture and the corresponding pure liquid properties. We find that the binary mixture containing the two very different anions has an intriguing and somewhat anomalous behaviour. PMID:20145843

  15. Ambient Ionic Liquids Used in the Reduction ofAldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Dan Qian XU; Shu Ping LUO; Bao You LIU; Zhen Yuan XU; Yin Chu SHEN

    2004-01-01

    The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.

  16. Application of ionic liquid as a reaction field of radiation chemistry

    International Nuclear Information System (INIS)

    Radiation induced polymerizations and reductions in ionic liquids are introduced in this report. Ionic liquids are suitable substitutes not only for organic solvents as media for radiation induced reactions but also enhance their reactivities. (author)

  17. Influence of the molecular-oriented structure of ionic liquids on the crystallinity of aluminum hydroxide prepared by a sol-gel process in ionic liquids.

    Science.gov (United States)

    Kinoshita, K; Yanagimoto, H; Suzuki, T; Minami, H

    2015-07-28

    The influence of the structure of ionic liquids on the crystallinity of aluminum hydroxide (Al(OH)3) prepared by a sol-gel process with aluminum isopropoxide (Al(OPr(i))3) in imidazolium-based ionic liquids was investigated. When Al(OH)3 was prepared in ionic liquids having long alkyl chains, such as 1-butyl-3-methylimidazolium salts and 1-methyl-3-octylimidazolium salts, highly crystalline products were obtained. In contrast, Al(OH)3 obtained using the 1-ethyl-3-methylimidazolium salt was an amorphous material, indicating that hydrophobic interaction of the alkyl tail of the imidazolium cation of the ionic liquid strongly affects the crystallinity of sol-gel products and the local structure of the ionic liquid. Moreover, the crystallinity of Al(OH)3 prepared in ionic liquids increased relative to the amount of additional water (ionic liquid/water = 1.28/2.0-3.5/0.2, w/w). In the case of addition of a small amount of water (ionic liquid/water = 3.5/0.2, w/w), the product was amorphous. These results implied that the presence of an ionic liquid and a sufficient amount of water was crucial for the successful synthesis of sol-gel products with high crystallinity. (1)H NMR analyses revealed a shift of the peak associated with the imidazolium cation upon addition of water, which suggested that the molecular orientation of the ionic liquid was similar to that of a micelle.

  18. First Binary Mixture Ionic Liquids Containing EMIMBr and IM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new series of binary mixture ionic liquids comprising 1-ethyl-3-methylimidozaliumbromide (EMIMBr) and imidazole (IM) have been synthesized. The melting points of the ionicliquids vary with the different content of IM while they still keep satisfactory conductivity andviscosity. According to the analysis of its phase diagram, the eutectic point is about 16.5℃ withthe mass percentage of IM 29%.

  19. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mahesh K. Potdar

    2015-09-01

    Full Text Available Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  20. Ionic liquid-facilitated preparation of lignocellulosic composites

    Science.gov (United States)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  1. Finkelstein Reaction in Functionalized Crown-ether Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Xiao Hua WANG; Han Zhi WANG; Hui LIU; Yuan KOU

    2006-01-01

    Functional crown-ether ionic liquids were used as catalytic green solvents of Finkelstein reaction of 1-bromooctane and iodide. The rate and yield of the reaction were obvious improved compared with that using crown ether in water. No free crown ether loss was observed after reaction.

  2. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  3. Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids.

    Science.gov (United States)

    Podgoršek, A; Jacquemin, J; Pádua, A A H; Costa Gomes, M F

    2016-05-25

    A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

  4. Enzymatic isomerization of glucose and xylose in ionic liquids

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Woodley, John; Riisager, Anders

    2012-01-01

    Glucose isomerase has been found for the first time to catalyze the isomerization of glucose to fructose in the ionic liquid N, N-dibutylethanolammonium octanoate (DBAO). Isomerization was achieved at temperatures of 60-80 degrees C although a substantial amount of mannose was formed at elevated...

  5. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    Science.gov (United States)

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-09-15

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  6. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    Science.gov (United States)

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  7. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    Science.gov (United States)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  8. EVALUATING THE GREENNESS OF IONIC LIQUIDS VIA LIFE CYCLE ASSESSMENT

    Science.gov (United States)

    Ionic Liquids have been suggested as "greener" replacements to traditional solvents. However, the environmental impacts of the life cycle phases have not been studied. Such a "cradle to gate" Life Cycle Assessment (LCA) for comparing the environmental impact of various solvents...

  9. A novel cellulose hydrogel prepared from its ionic liquid solution

    Institute of Scientific and Technical Information of China (English)

    LI Lu; LIN ZhangBi; YANG Xiao; WAN ZhenZhen; CUI ShuXun

    2009-01-01

    A novel cellulose hydrogel is prepared by regenerating cellulose from its ionic liquid solution. The transparency cellulose hydrogel presents a good chemical stability and an acceptable mechanical property. This non-toxic cellulose hydrogel should be biocompatibie and may be useful in the future as a biomaterial.

  10. Dissolution of agro-waste in ionic liquids

    International Nuclear Information System (INIS)

    Full text: There are abundant of agro-wastes being produced in Malaysia. One of the largely produced agro wastes is the sago hampas. It is known as a strong environmental pollutant due to its cellulosic fibrous material. However, the presence of the starch, cellulose and hemicelluloses in the hampas can be converted into valuable products such as reducing sugars. Hence, this study was performed to investigate the ability of ionic liquids in hydrolysing the ligno celluloses biomass into reducing sugars. Three types of ionic liquids were used, 1-butyl-3-methylimidazolium chloride (BMIM Cl), 1-ethyl-3- methylimidazolium acetate (EMIM Ac) and 1-ethyl-3-methylimidazolium diethyl phosphate (EMIM DEP). The reaction was performed by heating the reaction mixture of sago hampas and ionic liquids at 100 degree Celsius. The concentrations of reducing sugars in the hydrolysates were determined by DNS method. Maximum concentration of reducing sugars were 0.424, 0.299, 0.260 mg/ml for BmimCl, EmimAc and EmimDEP respectively. These concluded that the selected ionic liquids were inefficient in hydrolysing the sago hampas to reducing sugars. (author)

  11. Synthesis of multi-hydroxyl and sulfonyl dual-functionalized room temperature ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Guo Yang Zhu; Rong Wang; Guo Hua Liu; Li Qun Xu; Bei Zhang; Xia Qin Wu

    2007-01-01

    Starting from the hydroxylamine (dimethyl amino ethanol, triethanolamine) and 1,3-propane sultone, a series of hydroxyl and sulfonyl dual-functionalized zwitterionic salts and corresponding acidic room temperature ionic liquids have been synthesized.The hydroxyl groups of the synthesized substances were confirmed by the 1H NMR measurement.These zwitterionic salts and ionic liquids may be used for synthesizing other functionalized ionic liquids or ionic liquid-polymer (polyelectrolyte).

  12. Solubilities of isobutane and cyclopropane in ionic liquids

    International Nuclear Information System (INIS)

    Graphical abstract: Henry’s constants for isobutane and cyclopropane in [HMIM][Tf2N] and [P(14)666][TMPP]. - Highlights: • Solubilities of isobutane and cyclopropane in two ionic liquids were reported. • Solubilities were measured from T = (302 to 344) K and from (0.03 to 1.16) MPa. • The effects of temperature and pressure on the solubilities were investigated. • Solubilities of hydrocarbons in [HMIM][Tf2N] and [P(14)666][TMPP] were compared. • A modified Krichevsky–Kasarnovsky equation was used to model experimental data. - Abstract: In this work, we presented the solubilities of isobutane and cyclopropane in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][Tf2N]) and trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P(14)666][TMPP]) from T = (302 to 344) K up to 1.16 MPa. Henry’s constants for isobutane and cyclopropane in [HMIM][Tf2N] and [P(14)666][TMPP] were calculated from experimental results. Solubilities of isobutane and cyclopropane in [HMIM][Tf2N] are apparently smaller than those in [P(14)666][TMPP]. The effects of temperature, pressure and the number of carbon atoms in the hydrocarbons on the solubility were investigated in detail. A modified Krichevsky–Kasarnovsky equation was successfully applied to correlate the experimental results. The mean absolute relative deviations and the maximum absolute relative deviations are less than (2.4 and 4.6)%, respectively

  13. Hydroxycarbonylation of olefins and alcohols in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Eliseev, O.L.; Bondarenko, T.N.; Stepin, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2006-07-01

    Palladium-catalysed hydroxycarbonylation of olefins and alcohols proceeds in ionic liquid media. Terminal and internal olefins, cyclohexene, styrene, methanol, ethanol, n-butanol, cyclohexanol, benzyl alcohol and 1-phenylethanol were tested as substrates for the reaction. A number of molten salts were applied as a reaction medium and tetrabutylammonium bromide (m.p. 103 C) seemed to be the best. Carbon monoxide pressure of 2 MPa and reaction temperature of 110 C are suitable conditions to furnish the reaction in 2 hours in the presence of palladium acetate as a precursor. Triphenylphosphine added as a ligand reduces reaction rate. The critical role of counter anion in molten salt was also recognised. Yield of acids decreased in the order: Br{sup -} > Cl{sup -} > BF{sub 4} {approx}PF{sub 6}{sup -}. A two-route reaction scheme is proposed to explain the regularities of styrene and 1-phenylethanol hydroxycarbonylation. The catalytic system can be used repeatedly by simple extraction of products with diethyl ether. Nine cycles were carried out without loss of activity. (orig.)

  14. Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

    Science.gov (United States)

    Datta, R. S.; Said, S. M.; Sahamir, S. R.; Karim, M. R.; Sabri, M. F. M.; Nakajo, T.; Kubouchi, M.; Hayashi, K.; Miyazaki, Y.

    2014-06-01

    Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10-1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.

  15. Ionic liquid supported acid-catalysed esterification of lauric acid

    International Nuclear Information System (INIS)

    Ionic Liquid (IL) based on 1-n-butyl-3-methylimidazolium bis(trifluoro methylsulfonyl)imide (BMI.NTf2) under acidic condition was used as catalyst for the esterification reaction of fatty acid. Various acids namely sulphuric acid, perchloric acid, p-toulene sulphonic acid and various chloride salts such as zinc chloride (ZnCl2) and iron (III) chloride (FeCl3) immobilized in ionic liquid BMI.NTf2 gave acidic ILs. These acidic ILs were tested as catalysts for esterification reactions. Esterification of alcohol (methanol) with fatty acid (lauric acid) using ionic liquid BMI.NTf2 combined with H2SO4 (BMI.NTf2(H2SO4)) gave high activity (>85 %) and selectivity (100 %) observed over a period of 2 hours reaction with reaction temperature 70 degree Celsius. The ester became easily separated due to IL forming biphasic with product after the reaction where ester accumulated as the upper phase and IL with water produced after reaction at lower phase. Catalytic activities comparison also be studied between acidic ionic liquid BMI.NTf2 with acidic ionic liquid ChCl.2ZnCl2 and conventional acid catalyst. These ILs were characterised by using FTIR, NMR and TGA. Results from FTIR were showed no significant difference between ILs with ILs in acidic condition. The TGA curve show BMI.NTf2 thermals decomposition is ≥400 degree Celsius but when BMI.NTf2 combination with H2SO4, TGA curve show weight loss increase and becomes unstable. The advantages of ILs as catalyst are clean process and green chemistry due to its behaviour such as non-volatile, no loss of solvent through evaporation and reduced environmentally impact. This ILs-catalyst system can be recycle for further reaction. (author)

  16. Immobilization of Pd(Ⅱ) Catalysts for Cyclopropanation in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    YANG,Fan(杨帆); ZHANG,Yang-Ming(张仰明); QIU,Wen-Wei(仇文卫); TANG,Jie(汤杰); HE,Ming-Yuan(何鸣元)

    2002-01-01

    Cyclopropanation of styrene with ethyl diazoacetate catalyzed by Pd(Ⅱ)in ionic liquid [omim] [BF4] was investigated. Palladium catalysts can be effectively immobilized in ionic liquid.The catalysts PdCl2 and cyclopalladated complex 2 contained in ionic liquid could be recycled for 6 and 7 times, respectively, without losing the efficiency.

  17. Measurement and Correlation of the Ionic Conductivity of Ionic Liquid-Molecular Solvent Solutions

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Jing; HAN,Bu-Xing; TAO,Ran-Ting; ZHANG,Zhao-Fu; ZHANG,Jian-Ling

    2007-01-01

    The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.

  18. Ionic Liquid-Assisted Synthesis of a NiO/CNTs Composite and Its Electrochemical Capacitance

    OpenAIRE

    Yitong Chen; Xiangjun Lu; Bo Gao

    2014-01-01

    A novel solid-state method has been developed for synthesizing nickel oxide (NiO)/carbon nanotubes (CNTs) composite using an ionic liquid (IL, 1-butyl-3-methylimidazolium chloride) as the reaction medium. Ultraviolet-visible (UV-vis) absorbance spectroscopy, infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to investigate the structure, morphology, and formation mechanism of the synthesized sample. The results demonstrated that the IL is effective for dispersing...

  19. Ionic liquids as foaming agents of semi-crystalline natural-based polymers

    OpenAIRE

    Duarte, Ana Rita C.; SILVA, S. S.; Mano, J.F; Reis, R. L.

    2012-01-01

    In this work, the ability to foam semi-crystalline natural-based polymers by supercritical fluid technology is evaluated. The application of this technique to natural polymers has been limited due to the fact that they are normally semi-crystalline polymers, which do not plasticize in the presence of carbon dioxide. This can be overcome by the use of plasticizers, such as glycerol, which is a commonly used plasticizer, or ionic liquids, which have recently been proposed as plastic...

  20. Force microscopy of layering and friction in an ionic liquid.

    Science.gov (United States)

    Hoth, Judith; Hausen, Florian; Müser, Martin H; Bennewitz, Roland

    2014-07-16

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface. PMID:24919549

  1. Pretreatment of rice hulls by ionic liquid dissolution.

    Science.gov (United States)

    Lynam, Joan G; Reza, M Toufiq; Vasquez, Victor R; Coronella, Charles J

    2012-06-01

    As a highly available waste product, rice hulls could be a starting block in replacing liquid fossil fuels. However, their silica covering can make further use difficult. This preliminary study investigates effects of dissolving rice hulls in the ionic liquids 1-ethyl-3-methylimidazolium acetate (EMIM Ac), 1-hexyl-3-methylimidazolium chloride, (HMIM Cl), and 1-allyl-3-methylimidazolium chloride (AMIM Cl), and what lignocellulosic components can be precipitated from the used ionic liquid with water and ethanol. EMIM Ac dissolution at 110 °C for 8 h was found to completely remove lignin from rice hulls, while ethanol was capable of precipitating lignin out of the used EMIM Ac. With 8h dissolution at 110 °C using HMIM Cl, approximately 20% of the cellulose in the rice hull sample can be precipitated out using water as co-solvent, while more than 60% of the hemicellulose can be precipitated with ethanol.

  2. Acrylate Functionalized Tetraalkylammonium Salts with Ionic Liquid Properties

    Directory of Open Access Journals (Sweden)

    Silvia Janietz

    2012-05-01

    Full Text Available Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF6], [OTf] or [TFSI] reduces the melting points significantly and leads to an ion conductivity of about 10−4 S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10−3 S/cm was observed.

  3. Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples

    Institute of Scientific and Technical Information of China (English)

    Yun Chang Fan; Zheng Liang Hu; Mei Lan Chen; Chao Shen Tu; Yan Zhu

    2008-01-01

    In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.

  4. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.

    Science.gov (United States)

    Liu, Yu; Zhao, Ercheng; Zhu, Wentao; Gao, Haixiang; Zhou, Zhiqiang

    2009-02-01

    A novel microextraction method termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209-276) and accepted recoveries (79-110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2-100 microg/L, and the relative standard deviations (RSDs, n=5) were 4.5-10.7%. The limits of detection for the four insecticides were 0.53-1.28 microg/L at a signal-to-noise ratio (S/N) of 3.

  5. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    International Nuclear Information System (INIS)

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  6. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.

    Science.gov (United States)

    He, Wenshan; Sun, Yimin; Xi, Jiangbo; Abdurhman, Abduraouf Alamer Mohamed; Ren, Jinghua; Duan, Hongwei

    2016-01-15

    The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene-carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene-CNT-IL nanocomposite (graphene-CNT-IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene-CNT-IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene-CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties. PMID:26709299

  7. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  8. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.

    Science.gov (United States)

    He, Wenshan; Sun, Yimin; Xi, Jiangbo; Abdurhman, Abduraouf Alamer Mohamed; Ren, Jinghua; Duan, Hongwei

    2016-01-15

    The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene-carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene-CNT-IL nanocomposite (graphene-CNT-IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene-CNT-IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene-CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties.

  9. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  10. Synthesis and Characterization of Ammonium-, Pyridinium-, and Pyrrolidinium-Based Sulfonamido Functionalized Ionic Liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Fehrmann, Rasmus; Riisager, Anders

    2012-01-01

    New homologous ammonium-, pyridinium-, and pyrrolidinium-based sulfonamido functionalized ionic liquids have been synthesized in two steps using monoethanolamine, methanesulfonyl chloride, and tosyl chloride as precursors with ethanol as solvent. Attempts to synthesize dual amino functionalized...... ionic liquid containing both a primary and a secondary amine group in the same ionic liquid are also reported. All functionalized ionic liquids were characterized by 1H and 13C NMR. Melting point and thermal stability of the functionalized ionic liquids were measured by differential scanning calorimetry...

  11. Polysiloxane ionic liquids as good solvents for β-cyclodextrin-polydimethylsiloxane polyrotaxane structures

    OpenAIRE

    Narcisa Marangoci; Rodinel Ardeleanu; Laura Ursu; Constanta Ibanescu; Maricel Danu; Mariana Pinteala; Simionescu, Bogdan C.

    2012-01-01

    An ionic liquid based on polydimethylsiloxane with imidazolium salt brushes was synthesized as a good solvent for β-cyclodextrin-polydimethylsiloxane rotaxane. As expected the PDMS-Im/Br ionic liquid had a liquid-like non-Newtonian behavior with rheological parameters dependent on frequency and temperature. The addition of rotaxane to the ionic liquid strengthened the non-Newtonian character of the sample and a type of stable liquid-like network was formed due to the contribution of weak...

  12. Polysiloxane ionic liquids as good solvents for β-cyclodextrin-polydimethylsiloxane polyrotaxane structures

    OpenAIRE

    Marangoci, Narcisa; Ardeleanu, Rodinel; Ursu, Laura; Ibanescu, Constanta; Danu, Maricel; Pinteala, Mariana; Simionescu, Bogdan C.

    2012-01-01

    An ionic liquid based on polydimethylsiloxane with imidazolium salt brushes was synthesized as a good solvent for β-cyclodextrin-polydimethylsiloxane rotaxane. As expected the PDMS-Im/Br ionic liquid had a liquid-like non-Newtonian behavior with rheological parameters dependent on frequency and temperature. The addition of rotaxane to the ionic liquid strengthened the non-Newtonian character of the sample and a type of stable liquid-like network was formed due to the contribution of weak ioni...

  13. Ionic Conductivity and Gas Permeability of Polymerized Ionic Liquid Block Copolymer Membranes

    Science.gov (United States)

    Evans, Christopher; Sanoja, Gabriel; Schneider, Yanika; Modestino, Miguel; Segalman, Rachel; Joint CenterArtificial Photosynthesis Team

    2014-03-01

    Polymer membranes for many energy applications, such as solar-to-hydrogen fuel production, require ionic conductivity while acting as gas diffusion barriers. We have synthesized a diblock copolymer consisting of poly(styrene-block-(4-(2-methacrylamidoethyl)-imidazolium trifluoroacetate) by treating poly(styrene-block-histamine methacrylamide) (PS- b-PHMA) with trifluoroacetic acid. The PS block serves as the structural support while the imidazolium derivative is an ion conducting polymerized ionic liquid (PIL). Small angle X-ray scattering and transmission electron microscopy demonstrate that the block copolymer self-assembles into well-ordered nanostructures, with lamellae and hexagonally packed cylindrical morphologies. The ionic conductivities of the PS-b-PHMA materials were as high as 2 x 10-4 S/cm while an order of magnitude increase in conductivity was observed upon conversion to PS-b-PIL. The ionic conductivity of the PS-b-PIL increased by a factor of ~ 4 up to 1.2 x 10-3 S/cm as the PIL domain size increased from 20 to 40 nm. These insights allow for the rational design of high performance ion conducting membranes with even greater conductivities via precise morphological control. Additionally, the role of thermal annealing on the ionic conductivity and gas permeability of copolymer membranes was investigated.

  14. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  15. Mars Propellant Production with Ionic Liquids Project

    Science.gov (United States)

    Falker, John; Thompson, Karen; Zeitlin, Nancy; Muscatello, Anthony

    2015-01-01

    This project seeks to develop a single vessel for carbon dioxide (CO2) capture and electrolysis for in situ Mars propellant production by eliminating several steps of CO2 processing, two cryocoolers, a high temperature reactor, a recycle pump, and a water condenser; thus greatly reducing mass, volume, and power.

  16. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems.

    Science.gov (United States)

    Passos, Helena; Luís, Andreia; Coutinho, João A P; Freire, Mara G

    2016-02-04

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  17. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    Science.gov (United States)

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-02-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  18. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; Christian, Brianna; White, John;

    2012-01-01

    mixture. Several group contribution property models available in literature have been used along with a newly developed group contribution solubility parameter model and UNIFAC model for ionic liquids (UNIFAC-IL). For a given azeotropic mixture, an ionic liquid is designed using a computer-aided molecular...... design (CAMD) method and the UNIFAC-IL model is used to screen design candidates based on minimum ionic liquid concentration needed to break the azeotrope. Once the ionic liquid has been designed, the extractive distillation column for the azeotropic mixture is designed using the driving force method...... with a new proposed feed stage scaling to minimize energy inputs. Along with the distillation column, an ionic liquid recovery stage is designed and simulations are used to determine the overall heat duty for the entire process for the best ionic liquid candidates. Use of a designed ionic liquid reduces...

  19. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  20. Investigation of polymer electrolyte based on agar and ionic liquids

    Directory of Open Access Journals (Sweden)

    M. M. Silva

    2012-12-01

    Full Text Available The possibility to use natural polymer as ionic conducting matrix was investigated in this study. Samples of agarbased electrolytes with different ionic liquids were prepared and characterized by physical and chemical analyses. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][C2SO4], 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc] and trimethyl-ethanolammonium acetate, [Ch][OAc]. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction, scanning electron microscopy and Fourier Transform infrared spectroscopy. Electrolyte samples are thermally stable up to approximately 190°C. All the materials synthesized are semicrystalline. The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. The preliminary studies carried out with electrochromic devices (ECDs incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of ‘smart windows’, as well as ECD-based devices.

  1. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  2. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  3. Reactions of Lignin Model Compounds in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  4. Hopping conduction via ionic liquid induced silicon surface states

    Science.gov (United States)

    Nelson, J.; Reich, K. V.; Sammon, M.; Shklovskii, B. I.; Goldman, A. M.

    2015-08-01

    In order to clarify the physics of the gating of solids by ionic liquids (ILs) we have gated lightly doped p -Si, which is so well studied that it can be called the "hydrogen atom of solid state physics" and can be used as a test bed for ionic liquids. We explore the case where the concentration of induced holes at the Si surface is below 1012cm-2 , hundreds of times smaller than record values. We find that in this case an excess negative ion binds a hole on the interface between the IL and Si becoming a surface acceptor. We study the surface conductance of holes hopping between such nearest neighbor acceptors. Analyzing the acceptor concentration dependence of this conductivity, we find that the localization length of a hole is in reasonable agreement with our direct variational calculation of its binding energy. The observed hopping conductivity resembles that of well studied Na+ implanted Si MOSFETs.

  5. Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids.

    Science.gov (United States)

    Pernak, Juliusz; Niemczak, Michał; Chrzanowski, Łukasz; Ławniczak, Łukasz; Fochtman, Przemysław; Marcinkowska, Katarzyna; Praczyk, Tadeusz

    2016-08-16

    This study focused on the synthesis and subsequent characterization of herbicidal ionic liquids based on betaine and carnitine, two derivatives of amino acids, which were used as cations. Four commonly used herbicides (2,4-D, MCPA, MCPP and Dicamba) were used as anions in simple (single anion) and oligomeric (two anions) salts. The obtained salts were subjected to analyzes regarding physicochemical properties (density, viscosity, refractive index, thermal decomposition profiles and solubility) as well as evaluation of their herbicidal activity under greenhouse and field conditions, toxicity towards rats and biodegradability. The obtained results suggest that the synthesized herbicidal ionic liquids displayed low toxicity (classified as category 4 compounds) and showed similar or improved efficacy against weed compared to reference herbicides. The highest increase was observed during field trials for salts containing 2,4-D as the anion, which also exhibited the highest biodegradability (>75 %). PMID:27374836

  6. Ionic liquids for separation of olefin-paraffin mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  7. Electrowinning of UO2 from ionic liquid medium

    International Nuclear Information System (INIS)

    This paper deals with the dissolution of UO3 and UO2 by chlorination reaction in bmimCI medium and recovery of uranium by electrodeposition. The electrochemical behavior of U(VI) in ionic liquid was investigated by cyclic voltammetry as a prelude to electrodeposition. About 100 mg of uranium oxide (UO3 and UO2) (average particle size 10 mm) was mixed with 20 g of bmimCI ionic liquid, which is taken in a leak tight electrochemical cell. Dry chlorine gas was bubbled through the melt at the flow rate of 5ml/min, at 353 K, for a pre-determined time. The amount of uranium dissolved in the melt was studied by measuring the absorbance of U(VI) as well as by ICP-OES measurements

  8. Syntheses of CuO nanostructures in ionic liquids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple and efficient approach is developed to fabricate single-crystalline CuO nanostructures through an ionic liquid assisted one-step low-temperature solid-state route.Both nanoparticles(5 nm in size)and nanorods(5-10 nm in diameter and 50-100 nm in length)of monoclinic CuO were obtained. These synthesized CuO nanostructures were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),selected area electron diffraction(SAED),X-ray photoelectron spectros- copy(XPS),energy dispersive spectroscopy(EDS)and nitrogen adsorption analysis.The morpholo- gies of the nanostructures can be controlled by tuning the amount of NaOH and ionic liquids.The growth mechanism of CuO nanostructures is investigated.

  9. Syntheses of CuO nanostructures in ionic liquids

    Institute of Scientific and Technical Information of China (English)

    WANG Li; ZHAO Bin; YUAN ZhongYong; ZHANG XueJun; Wu QingDuan; CHANG LiXian; ZHENG WenJun

    2007-01-01

    A simple and efficient approach is developed to fabricate single-crystalline CuO nanostructures through an ionic liquid assisted one-step low-temperature solid-state route. Both nanoparticles (5 nm in size) and nanorods (5-10 nm in diameter and 50-100 nm in length) of monoclinic CuO were obtained. These synthesized CuO nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and nitrogen adsorption analysis. The morphologies of the nanostructures can be controlled by tuning the amount of NaOH and ionic liquids. The growth mechanism of CuO nanostructures is investigated.

  10. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    Energy Technology Data Exchange (ETDEWEB)

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  11. Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids

    Science.gov (United States)

    Fei, Teng; Cai, Huiwu; Zhang, Yanqiang; Liu, Long; Zhang, Suojiang

    2016-04-01

    Four energetic salts (including two ionic liquids) based on 2-(dimethylamino)-N,N,N-trimethylethanaminium and N,N‧-dialkyl-N,N,N‧,N‧-tetramethylethane-1,2-diaminium was prepared and characterized by 1H- and 13C-NMR, infrared and Raman spectroscopies, and elemental analysis. Their physicochemical properties such as melting and decomposition temperatures, density, viscosity, heat of formation, detonation performance, and specific impulse were measured or calculated. With thermal stability up to 200°C, the resulting ionic liquids show densities from 1.02 to 1.19 g cm-3 and heats of formation from 85.1 to 154.4 kJ mol-1. Moreover, 2-(dimethylamino)-N,N,N-trimethylethanaminium dicyanamide is hypergolic with the oxidizer (100% HNO3) and exhibits potential as a green fuel for bipropellants.

  12. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  13. Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate esters

    Directory of Open Access Journals (Sweden)

    A. Fainleib

    2016-09-01

    Full Text Available The polycyclotrimerization reaction of dicyanate ester of bisphenol E (DCBE in the presence of varying amounts (from 0.5 to 5 wt% of 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIm][BF4] ionic liquid has been investigated using differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR techniques, after a curing stage at 150 °C for 6 h. It is noteworthy that an amount of [OMIm][BF4] as low as 0.5 wt% accelerates dramatically the thermal curing process leading to the formation of a polycyanurate network. The conversion of DCBE increased with increasing [OMIm][BF4] content in the temperature range studied. A reaction mechanism associated with the ionic liquid-catalyzed DCBE polycyclotrimerization is newly proposed via the involvement of a [CN]δ+–[OMIm]δ– complex as a key intermediate.

  14. Biocomposites obtained from wood saw dust using ionic liquids

    Directory of Open Access Journals (Sweden)

    Croitoru Catalin

    2014-12-01

    Full Text Available The paper presents a new method of wood composites obtaining, as a potential alternative to traditional non-ecological processes involving the use of phenol-based resins. The novelty of the method consists in using only two components, namely wood and an alkylimidazolium chloride ionic liquid. A fraction of wood sawdust dissolves in the ionic liquid, and by water addition it precipitates, acting as a natural binder for the remaining wood particles. FTIR and XRD spectroscopy analysis confirmed the presence of the dominating amorphous cellulose II anomer in the structure of the wood composites. By comparing to the reference, the obtained composites present lower wettability and higher resistance to compression

  15. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS

    International Nuclear Information System (INIS)

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  16. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.;

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  17. Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids.

    Science.gov (United States)

    Brunel, Frédéric; Lautard, Christelle; Garzino, Frédéric; Giorgio, Suzanne; Raimundo, Jean M; Bolla, Jean M; Camplo, Michel

    2016-08-01

    Staphylococcus aureus, a Gram positive coccal bacterium is a major cause of nosocomial infection. We report the synthesis of new triphenylamine phosphonium ionic liquids which are able to self-assemble into multiwall nanoassemblies and to reveal a strong bactericidal activity (MIC=0.5mg/L) for Gram positive bacteria (including resistant strains) comparable to that of standard antibiotics. Time kill, metabolism and fluorescence confocal microscopy studies show a quasi-instantaneously penetration of the nanoassemblies inside the bacteria resulting of a rapid blocking (30min) of their proliferation. As confirmed by rezasurin reduction monitoring, these compounds strongly affect the bacterial metabolism and a Gram positive versus Gram negative selectivity is clearly observed. These fluorescent phosphonium ionic liquid might constitute a useful tool for both translocation studies and to tackle infectious diseases related to the field of implantology. PMID:27287371

  18. Stable and water-tolerant ionic liquid ferrofluids.

    Science.gov (United States)

    Jain, Nirmesh; Zhang, Xiaoli; Hawkett, Brian S; Warr, Gregory G

    2011-03-01

    Ionic liquid ferrofluids have been prepared containing both bare and sterically stabilized 8-12 nm diameter superparamagnetic iron oxide nanoparticles, which remain stable for several months in both protic ethylammonium and aprotic imidazolium room-temperature ionic liquids. These ferrofluids exhibit spiking in static magnetic fields similar to conventional aqueous and nonaqueous ferrofluids. Ferrofluid stability was verified by following the flocculation and settling behavior of dilute nanoparticle dispersions. Although bare nanoparticles showed excellent stability in some ILs, they were unstable in others, and exhibited limited water tolerance. Stability was achieved by incorporating a thin polymeric steric stabilization layer designed to be compatible with the IL. This confers the added benefit of imbuing the ILF with a high tolerance to water. PMID:21338083

  19. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation

  20. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    Science.gov (United States)

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient.

  1. PρT Measurements of Imidazolium-Based Ionic Liquids

    OpenAIRE

    Gardas, Ramesh L.; Freire, Mara G.; Carvalho, Pedro J.; Marrucho, Isabel M.; Fonseca, Isabel M. A.; Ferreira, Abel G. M.; Coutinho, João A. P.

    2007-01-01

    Experimental density measurements are reported, and the derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, and the thermal pressure coefficient are presented as Supporting Information for several imidazolium-based ionic liquids (ILs), namely, 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [C2mim][NTf2], 1-heptyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [C7mim][NTf2], 1-octyl-3-methyl-imidazolium bis(trifluoromethyl...

  2. Comparative study on the biodegradability of morpholinium herbicidal ionic liquids

    OpenAIRE

    Ławniczak, Łukasz; Materna, Katarzyna; Framski, Grzegorz; Szulc, Alicja; Syguda, Anna

    2015-01-01

    This study focused on evaluating the toxicity as well as primary and ultimate biodegradability of morpholinium herbicidal ionic liquids (HILs), which incorporated MCPA, MCPP, 2,4-D or Dicamba anions. The studied HILs were also subjected to determination of surface active properties in order to assess their influence on toxicity and biodegradability. The study was carried out with microbiota isolated from different environmental niches: sediments from river channel, garden soil, drainage trenc...

  3. The electrochemistry of arylated anthraquinones in room temperature ionic liquids

    OpenAIRE

    Gomis Berenguer, Alicia; Gómez Mingot, María; García Cruz, Leticia; Thiemann, Thies; Banks, Craig E.; Montiel Leguey, Vicente; Iniesta Valcárcel, Jesús

    2013-01-01

    Arylated anthraquinone derivatives of different sizes and different π-basicities have been prepared, and the electrochemical behaviour of these substances has been studied on screen printed graphite electrodes in the three room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]). Half redox potentials for the first and...

  4. Corrosion inhibition performance of a ionic liquid surfactant Br

    OpenAIRE

    Jing LIU; Dishun ZHAO; LIU, RAN; Wang, Ming; Peibing REN

    2016-01-01

    In order to study the novel green organic mercury-substituting inhibitors, the ionic liquid surfactant 1-methyl-3-dodecyl imidazole bromide ( Br) is synthesized with N-methyl imidazole and 1-bromodecane as raw materials. The corrosion inhibition of Br for zinc in zinc-manganese batteries is investigated using electrochemical methods and weight loss methods. The results show that corrosion inhibition efficiency increases with the increase of the concentration of Br, and when the concentration ...

  5. Ionic liquids as catalysts of lignocellulosic biomass processing

    OpenAIRE

    Carvalho, Ana Vanessa Antunes

    2014-01-01

    The present work is devoted to study the pre-treatment of lignocellulosic biomass, especially wheat straw, by the application of the acidic ionic liquid (IL) such as 1-butyl-3-methylimidazolium hydrogen sulphate. The ability of this IL to hydrolysis and conversion of biomass was scrutinised. The pre-treatment with hydrogen sulphate-based IL allowed to obtain a liquor rich in hemicellulosic sugars, furans and organic acids, and a solid fraction mainly constituted by cellulose and lignin. Quant...

  6. Density profiles of ionic liquids at a hard wall

    OpenAIRE

    Schramm, Sebastian M.

    2008-01-01

    In this work a high energy x-ray reflectivity study of deeply buried interfaces between room temperature ionic liquids (RTILs) and a sapphire hard wall is reported. For the first time the interfacial structure was obtained with molecular resolution. The experiments have been carried out at beamline ID15A (ESRF, Grenoble) using the HEMD (High Energy Micro Diffraction) instrument. The thorough analysis of the experimental reflectivities gives clear evidence of a pronounced molecular layering at...

  7. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  8. Alicyclic ammonium ionic liquids as lithium battery electrolytes A review

    OpenAIRE

    Puga, A.V.

    2013-01-01

    Ionic liquids are reasonable alternatives to electrolytes used in energy storage devices, such as lithium batteries, both lithium-ion and lithium-metal, given the safety advantages they provide. This is due to the favourable properties they often possess, mainly non­flammability and non­volatility. Candidates with alicyclic ammonium cations exhibit high electrochemical stabilities, especially towards lithium, a unique feature which enables the fabrication of reversible lithium-metal batteries...

  9. Facile synthesis of thiourea derivatives in ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Min Liang Xiao; Feng Huang Chen; Zhi Juan Chen; Bao Shou Guo; Xian Hai Lv; Wen Ming Tang

    2007-01-01

    The synthesis of cinnamoyl thiourea derivatives from cinnamoyl isothiocyanate (CIT) with substituted aniline (RC6H4NH2) was investigated in the mostly used ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim][BF4]. Significant enhancements in reactivity, yield and reaction rate were achieved. The products could be recovered by simple filtration. [Bmim][BF4] could be recycled simply by removing water under vacuum and reused at least 9 times without significant decrease in activity.

  10. The Electrochemical Investigation of MEH-PPV in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The electrochemical properties of MEH-PPV were studied in ionic liquid ( [bmim]+[PF6]- ) by cyclic voltammetry, chronoamperometry and AC impedance measurements.Both p- and n-doping of MEH-PPV were observed in the cyclic voltammograms.The chronoamperometric and AC impedance results indicate that the p-doping of MEH-PPV was controlled by the linear diffusion of counterions.

  11. Extraction and Esterification of Low-Titer Short-Chain Volatile Fatty Acids from Anaerobic Fermentation with Ionic Liquids.

    Science.gov (United States)

    Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V

    2016-08-23

    Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis.

  12. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  13. Synthesis and mesomorphic properties of rigid-core ionic liquid crystals

    NARCIS (Netherlands)

    Kouwer, P.H.J.; Swager, T.M.

    2007-01-01

    Ionic liquid crystals combine the unique solvent properties of ionic liquids with self-organization found for liquid crystals. We report a detailed analysis of the structure-property relationship of a series of new imidazolium-based liquid crystals with an extended aromatic core. Investigated parame

  14. Preparation of metal oxide nanoparticles in ionic liquid medium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Cabo, Borja; Rodil, Eva; Soto, Ana; Arce, Alberto, E-mail: alberto.arce@usc.es [University of Santiago de Compostela, Department of Chemical Engineering, School of Engineering (Spain)

    2012-07-15

    In the present study, a facile, rapid, and environmentally friendly method was used for the preparation of metal oxide nanoparticles in an ionic liquid medium. This technique involves mixing and heating the corresponding powder material (cadmium oxide, anatase, and hematite) and the selected ionic liquid (trihexyl(tetradecyl)phosphonium chloride, [P{sub 6,6,6,14}]Cl), without any other precursors or solvents. The confirmation of the existence of nanoparticles in the ionic liquid was carried out using UV-Vis absorption spectroscopy, and its concentration was determined by X-ray fluorescence. In order to analyze the shape and size distribution, transmission electron microscopy and a ZetaSizer (DLS technique) were used; finding out that the size of the hematite nanoparticles was 10-55 nm. Nevertheless, for the cadmium oxide and the anatase nanoparticles, the size was between 2 and 15 nm. The composition of the prepared nanoparticles was studied by Raman spectroscopy. The structure of solids did not suffer any modification in their transformation to the nanoscale, as concluded from the X-ray powder diffraction analysis.

  15. Tetraalkylphosphonium polyoxometalate ionic liquids : novel, organic-inorganic hybrid materials.

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, P. G.; Antonio, M. P.; Firestone, M. A.; Kubatko, K.-A.; Szreder, T.; Wishart, J. F.; Dietz, M. L.; Chemistry; Univ. of Notre Dame; BNL

    2007-01-01

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature 'liquid POM' comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  16. Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic-inorganic hybrid materials.

    Science.gov (United States)

    Rickert, Paul G; Antonio, Mark R; Firestone, Millicent A; Kubatko, Karrie-Ann; Szreder, Tomasz; Wishart, James F; Dietz, Mark L

    2007-05-10

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature "liquid POM" comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  17. Predictive model for ionic liquid extraction solvents for rare earth elements

    Science.gov (United States)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  18. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rodil, Eva; Aldous, Leigh; Hardacre, Christopher; Lagunas, M Cristina [School of Chemistry and Chemical Engineering/QUILL, Queen' s University, Belfast BT9 5AG (United Kingdom)], E-mail: erodil@usc.es, E-mail: c.lagunas@qub.ac.uk

    2008-03-12

    Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

  19. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids

    Science.gov (United States)

    Rodil, Eva; Aldous, Leigh; Hardacre, Christopher; Lagunas, M. Cristina

    2008-03-01

    Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

  20. Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Rongying [Universite Paul Sabatier, Toulouse Cedex, France.; Taberna, Pierre-Louis [Universite Paul Sabatier, Toulouse Cedex, France.; Santini, Sebastien [SOLVIONIC Company, Toulouse, France; Presser, Volker [ORNL; Perez, Carlos R. [Drexel University; Malbosc, Francois [SOLVIONIC Company, Toulouse, France; Rupesinghe, Nalin L. [AIXTRON, Cambridge, UK; Teo, Kenneth B. K. [AIXTRON, Cambridge, UK; Gogotsi, Yury G. [Drexel University; Simon, Patrice [Universite Paul Sabatier, Toulouse Cedex, France.

    2011-01-01

    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

  1. A new Cd(II)-containing ionic liquid: Synthesis, characterization and electrocatalysis

    Indian Academy of Sciences (India)

    Ruirui Zhuang; Fangfang Jian; Kefei Wang

    2010-07-01

    The present work reports on the synthesis, characterization and performance of a new metal-containing ionic liquid [(C4H9)2-bta][(C4H9-bta)CdCl3] (bta = benzotriazole) as electrocatalyst for hydrogen peroxide reduction. The structure of the Cd(II)-containing ionic liquid (Cd-IL) has been characterized by X-ray crystallography, IR spectroscopy and elemental analysis. The molecule contains one 1,3-dibutyl-benzotriazolium cation and an anionic Cd coordination entry. The electrochemical property of Cd-IL bulk-modified carbon paste electrode (Cd-IL/CPE) has been studied by cyclic voltammetry. The Cd-IL has functions both as a binder and an electrocatalyst. The Cd-IL/CPE shows good electrocatalytic activity towards the reduction of hydrogen peroxide.

  2. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.

    Science.gov (United States)

    Ma, Yibo; Asaadi, Shirin; Johansson, Leena-Sisko; Ahvenainen, Patrik; Reza, Mehedi; Alekhina, Marina; Rautkari, Lauri; Michud, Anne; Hauru, Lauri; Hummel, Michael; Sixta, Herbert

    2015-12-01

    Composite fibres that contain cellulose and lignin were produced from ionic liquid solutions by dry-jet wet spinning. Eucalyptus dissolving pulp and organosolv/kraft lignin blends in different ratios were dissolved in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate to prepare a spinning dope from which composite fibres were spun successfully. The composite fibres had a high strength with slightly decreasing values for fibres with an increasing share of lignin, which is because of the reduction in crystallinity. The total orientation of composite fibres and SEM images show morphological changes caused by the presence of lignin. The hydrophobic contribution of lignin reduced the vapour adsorption in the fibre. Thermogravimetric analysis curves of the composite fibres reveal the positive effect of the lignin on the carbonisation yield. Finally, the composite fibre was found to be a potential raw material for textile manufacturing and as a precursor for carbon fibre production.

  3. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    OpenAIRE

    Wang, Silu; Johan JACQUEMIN; Husson, Pascale; Hardacre, Christpher; Costa Gomes, Margarita F.

    2009-01-01

    The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methy...

  4. Conditions for and characteristics of nonaqueous micellar solutions and microemulsions with ionic liquids

    OpenAIRE

    Zech, Oliver; Kunz, Werner

    2011-01-01

    Research on nonaqueous microemulsions containing ionic liquids as polar and/or apolar phase, respectively, is growing at a fast rate. One key property of ionic liquids that highlights their potential and their diversification compared to water is their wide liquid temperature range. In this emerging-area review article we survey recent developments in the field of nonaqueous micellar solutions and microemulsions containing ionic liquids in general with a strong emphasis on the effect of tempe...

  5. Ionic Liquids as Mobile Phase Additives for Separation of Nucleotides in High-Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Wen-Zhu(张文珠); HE,Li-Jun(何丽君); LIU,Xia(刘霞); JIANG,Sheng-Xiang(蒋生祥)

    2004-01-01

    Ionic liquids are a type of salts that are liquid at low temperature (< 100 ℃). Because of their some special properties, they have been widely used as new "green solvents" for many chemical reactions and liquid-liquid extraction in the past several years. In this paper, a new method for the separation of nucleotides is developed and the essential feature of the method is that 1-alkyl-3-methylimidazolium salts are used as mobile phase additives, resulting in a baseline separation of nucleotides without need of gradient elution and need of organic solvent addition as currently used in RP-HPLC. This study shows the potential application of ionic liquids as mobile phase additives in reversed-phase liquid chromatography.

  6. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water. PMID:19700165

  7. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel

    2009-12-01

    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type). PMID:19779926

  8. Phosphonium chloromercurate room temperature ionic liquids of variable composition.

    Science.gov (United States)

    Metlen, Andreas; Mallick, Bert; Murphy, Richard W; Mudring, Anja-Verena; Rogers, Robin D

    2013-12-16

    The system trihexyl(tetradecyl)phosphonium ([P66614]Cl)/mercury chloride (HgCl2) has been investigated by varying the stoichiometric ratios from 4:1 to 1:2 (25, 50, 75, 100, 150, and 200 mol % HgCl2). All investigated compositions turn out to give rise to ionic liquids (ILs) at room temperature. The prepared ionic liquids offer the possibility to study the structurally and compositionally versatile chloromercurates in a liquid state at low temperatures in the absence of solvents. [P66614]2[HgCl4] is a simple IL with one discrete type of anion, while [P66614]{HgCl3} (with {} indicating a polynuclear arrangement) is an ionic liquid with a variety of polyanionic species, with [Hg2Cl6](2-) apparently being the predominant building block. [P66614]2[Hg3Cl8] and [P66614][Hg2Cl5] appear to be ILs at ambient conditions but lose HgCl2 when heated in a vacuum. For the liquids with the compositions 4:1 and 4:3, more than two discrete ions can be evidenced, namely, [P66614](+), [HgCl4](2-), and Cl(-) and [P66614](+), [HgCl4](2-), and the polynuclear {HgCl3}(-), respectively. The different stoichiometric compositions were characterized by (199)Hg NMR, Raman- and UV-vis spectroscopy, and cyclic voltammetry, among other techniques, and their densities and viscosities were determined. The [P66614]Cl/HgCl2 system shows similarities to the well-known chloroaluminate ILs (e.g., decrease in viscosity with increasing metal content after addition of more than 0.5 mol of HgCl2/mol [P66614]Cl, increasing density with increasing metal content, and the likely formation of polynuclear/polymeric/polyanionic species) but offer the advantage that they are air and water stable. PMID:24274831

  9. Homogeneous liquid-liquid extraction of rare earths with the betaine-betainium bis(trifluoromethylsulfonyl)imide ionic liquid system.

    Science.gov (United States)

    Vander Hoogerstraete, Tom; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  10. Hg⁰ removal from flue gas by ionic liquid/H₂O₂.

    Science.gov (United States)

    Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

    2014-09-15

    1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase.

  11. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    Energy Technology Data Exchange (ETDEWEB)

    Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my [PETRONAS Ionic Liquids Center, Universiti Teknologi PETRONAS (Malaysia); Wilfred, Cecilia Devi; Taha, M. F. [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Thanabalan, M. [Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  12. Predictive model for ionic liquid extraction solvents for rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz; Oleszek, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze (Poland); Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Eckert, Franck [COSMOlogic GmbH & Co KG, Imbacher Weg 46, 50379 Leverkusen (Germany)

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  13. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L−1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L−1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract. - Highlights: • Efficient retention and preconcentration of As by combining an IL with MWCNTs • Determination of As by ETAAS with direct injection of MWCNTs • Thermal degradation of MWCNTs in the graphite furnace of ETAAS • Highly sensitive speciation and determination of As in garlic

  14. Production of 5-Hydroxymethylfurfural from Inulin Catalyzed by Sulfonated Amorphous Carbon in an Ionic Liquid%离子液体中磺化无定形炭催化菊糖制备5-羟甲基糠醛

    Institute of Scientific and Technical Information of China (English)

    公艳艳; 刘民; 贾松岩; 冯建萍; 宋春山; 郭新闻

    2012-01-01

    The production of 5-hydroxylmethylfurfural (HMF) from inulin over sulfonated amorphous carbon was studied in an ionic liquid, 1-butyl-3-methylimidazolium chloride ([Bmim]CI). The effects of reaction solvent, water content, reaction temperature, reaction time, and catalyst dosage on the yield of HMF were investigated. Experimental results indicated that optimum reaction conditions required a reaction temperature of 100℃, a reaction time of 60 min, an R value of 5 (R represents the molar ratio of added water to fructose units in inulin), and a mass ratio of catalyst to inulin of 1:3, affording HMF in yields of up to 50%.%研究了以1-丁基-3-甲基咪唑氯盐([Bmim]CI)离子液体作溶剂,磺化无定形炭为催化剂催化菊糖脱水制5-羟甲基糠醛(HMF)的反应.考察了溶剂、水量、反应温度、反应时间和催化剂用量对HMF收率的影响.实验结果表明,反应温度为100℃,反应时间60 min,R=5(R为水的物质的量与菊糖中所含果糖单位的物质的量的比值),m(催化剂)∶m(菊糖)=1∶3时,HMF的收率可达50%.

  15. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L{sup −1} and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L{sup −1} of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract. - Highlights: • Efficient retention and preconcentration of As by combining an IL with MWCNTs • Determination of As by ETAAS with direct injection of MWCNTs • Thermal degradation of MWCNTs in the graphite furnace of ETAAS • Highly sensitive speciation and determination of As in garlic.

  16. Ionic liquids in separations of azeotropic systems – A review

    International Nuclear Information System (INIS)

    Highlights: ► This paper provides a review of methods using ionic liquids as azeotrope breakers. ► Azeotrope breaking potential of ILs was compared to that of conventional solvents. ► The influence of ILs structure on the azeotrope breaking capacity was accomplished. ► Guidelines to select the most suitable ILs as azeotrope breakers were established. - Abstract: Efforts to make existing separation methods more efficient and eco-friendly may get a boost from the use of a relatively new class of compounds known as ionic liquids (ILs). The separation of azeotropic mixtures has conventionally been one of the most challenging tasks in industrial processes due to the fact that their separation by simple distillation is basically impossible. This paper provides a critical review of methods using ILs as azeotrope breakers. Three separation processes were addressed: liquid–liquid extraction, extractive distillation, and supported liquid membranes. We examine the azeotrope breaking potential of ILs and compare their performance to that of conventional solvents. A systematic analysis of the influence of the structure of ILs on their azeotrope breaking capacity contributes to the establishment of guidelines for selecting the most suitable ILs for the separation of specific azeotropic mixtures.

  17. Nanostructure of an ionic liquid-glycerol mixture.

    Science.gov (United States)

    Murphy, Thomas; Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

    2014-07-14

    The nanostructure of a 50 : 50 vol% mixture of glycerol and ethylammonium formate (EAF), a protic ionic liquid (IL), has been investigated using neutron diffraction and empirical potential structure refinement (EPSR) fits. EPSR fits reveal that the mixture is nanostructured. Electrostatic interactions between IL charge groups leads to the formation of ionic regions. These solvophobically repel cation alkyl groups which cluster together to form apolar domains. The polar glycerol molecules are preferentially incorporated into the charged domains, and form hydrogen bonds with EAF groups rather than with other glycerol molecules. However, radial distribution functions reveal that glycerol molecules pack around each other in a fashion similar to that found in pure glycerol. This suggests that a glycerol channel runs through the ionic domain of EAF. The absence of significant glycerol-glycerol hydrogen bonding indicates that glycerol molecules are able to span the polar domain, bridging EAF charge groups. Glycerol can adopt six distinct conformations. The distribution of conformers in the EAF mixture is very different to that found in the pure liquid because hydrogen bonds form with EAF rather than with other glycerol molecules, which imparts different packing constraints.

  18. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    Directory of Open Access Journals (Sweden)

    Wentao Bi

    2009-06-01

    Full Text Available Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC. Ionic liquids demonstrate advantages and potential in chromatographic field.

  19. Rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography using a monolithic column

    Institute of Scientific and Technical Information of China (English)

    Xu Huang; Hong Yu; Ying Jie Dong

    2012-01-01

    A method for rapid and simultaneous determination of imidazolium and pyridinium ionic liquid cations by ion-pair chromatography with ultraviolet detection was developed.Chromatographic separations were performed on a reversed-phase silica-based monolithic column using 1-heptanesulfonic acid sodium-acetonitrile as mobile phase.The effects of ion-pair reagent and acetonitrile concentration on retention of the cations were investigated.The retention times of the cations accord with carbon number rule.The method has been successfully applied to the determination of four ionic liquids synthesized by organic chemistry laboratory.

  20. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    OpenAIRE

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecula...