WorldWideScience

Sample records for carbon ion-implanted diamond

  1. Ion-implanted Mechanism of the Deposition Process for Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-Min; WU Wei-Dong; WANG Yu-Ying; WANG Hai-Ping; GE Fang-Fang; TANG Yong-Jian; JU Xin

    2011-01-01

    Due to the local densification, high-energy C and doped ions can greatly affect the bonding configurations of diamond-like carbon films. We investigate the corresponding affection of different incident ions with energy from WeV to 600eV by Monte Carlo methods. The ion-implanted mechanism called the subplantation (for C, N, O, W, Y, etc.) is confirmed. Obvious thermal effect could be induced by the subplantation of the incident ions. Further, the subplantation of C ions is proved by in situ reflection high energy electron diffraction (RHEED). The observation from an atomic force microscope (AFM) indicates that the initial implantation of C ions might result in the final primitive-cell-like morphology of the smooth film (in an area of 1.2 mm × 0.9 mm, rms roughness smaller than 20 nm by Wyko).

  2. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    Science.gov (United States)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  3. Effective Stress Reduction in Diamond Films on Alumina by Carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    方志军; 夏义本; 王林军; 张伟丽; 马哲国; 张明龙

    2002-01-01

    We show the effective stress reduction in diamond films by implanting carbon ions into alumina substrates prior to the diamond deposition. Residual stresses in the films are evaluated by Raman spectroscopy and a more reliable method for stress determination is presented for the quantitative measurement of stress evolution. It is found that compressive stresses in the diamond films can be partly offset by the compressive stresses in the alumina substrates, which are caused by the ion pre-implantation. At the same time, the difference between the offset by the pre-stressed substrates and the total stress reduction indicates that some other mechanisms are also active.

  4. The surface modification of diamond by ion implantation

    International Nuclear Information System (INIS)

    The surface modification of diamonds by ion implantation was studied by using Ar+, N2+, Zn+ and Cr+ ions. The surface layer of diamonds becomes conductive by ion implantation. The effect of ions implanted and the variation of crystal structure near surface were investigated. The ion implantation changes the color of the surface of diamonds to dark black and makes the surface layer amorphous. The distribution of implantet atoms in the surface layer was in good agreement with that estimated by the LSS theory, and the thickness of the amorphous layer was about 1.8 times of the depth of the maximum concentration. From this fact, the thickness of amorphous layer can be estimated from the LSS theory. The electric resistivity of the surface layer of diamonds decreased by the implantation of ions, and becomes a saturated value for the amount of implantation of 1 x 1016 ions/cm2. The saturated sheet resistivity was in inverse proportion to the thickness of amorphous layer. It was found that the resistivity of the produced amorphous layer was similar to that of the ordinary glassy carbon. The implanted metallic ions contributed to the electric conductivity of the matrix. The electro-chemical properties of ion-implanted diamonds were also studied. (Kato, T.)

  5. Preparation of diamond-like carbon films in methane by electron cyclotron resonance microwave plasma source ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared on Si(100) substrates by ion implantation from an electron cyclotron resonance microwave plasma source. During the implantation, 650 W microwave power was used to produce discharge plasma with methane as working gas, and -20 kV voltage pulses were applied to the substrate holder to accelerate ions in the plasma. Confocal Raman spectra confirmed the DLC characteristics of the films. Fourier-transform infrared characterization indicates that the DLC films were composed of sp3 and sp2 carbon-bonded hydrogen. The hardness of the films was evaluated with a Nano Indenter-XP System. The result shows that the highest hardness value was 14.6 GPa. The surface rms roughness of the films was as low as 0.104 nm measured with an atomic force microscope. The friction coefficient of the films was checked using a ball-on-disk microtribometer. The average friction coefficient is approximately 0.122

  6. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hatada, R., E-mail: hatada@ca.tu-darmstadt.de [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Sawase, T.; Watamoto, T. [Nagasaki University, Department of Applied Prosthodontics, Nagasaki 852-8523 (Japan); Matsutani, T. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Kinki University, Department of Electric and Electronic Engineering, Higashi-osaka 577-2332 (Japan)

    2014-08-15

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C{sub 2}H{sub 4} plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C{sub 2}H{sub 4} was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  7. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    International Nuclear Information System (INIS)

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria

  8. Ion-implanted diamond films and their tribological properties

    International Nuclear Information System (INIS)

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 μm) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C+ (m/e=12) at an ion energy of 160 eV and a fluence of 6.72 x 1017 ions cm-2. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10-7 Pa), dry nitrogen and humid air (40% RH) environments. The effects of C+ ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments. (orig.)

  9. Simulation and visualization of ion-implantation in diamond

    International Nuclear Information System (INIS)

    We have explored aspects of ion implantation in diamonds with molecular dynamics and tightbinding atomistic simulations. Relevant experiments and their potential applications as well as our computer models and computational approaches are described. Our simulations have been designed to answer questions proposed by experimental researchers concerning optimal laboratory schedules for the preparation of samples with potential applications to diamond membranes and NV centers for quantum computers. Simulation and visualization of results enable us to peek inside samples where experimental techniques cannot tread. In order to provide the requisite Brazilian component a new connection between these models and bootstrap percolation is made

  10. Evidence of light guiding in ion-implanted diamond

    CERN Document Server

    Lagomarsino, S; Bosia, F; Vannoni, M; Calusi, S; Giuntini, L; Massi, M

    2016-01-01

    We demonstrate the feasibility of fabricating light-waveguiding microstructures in bulk single-crystal diamond by means of direct ion implantation with a scanning microbeam, resulting in the modulation of the refractive index of the ion-beam damaged crystal. Direct evidence of waveguiding through such buried microchannels is obtained with a phase-shift micro-interferometric method allowing the study of the multi-modal structure of the propagating electromagnetic field. The possibility of defining optical and photonic structures by direct ion writing opens a range of new possibilities in the design of quantum-optical devices in bulk single crystal diamond.

  11. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp3 ratio, i.e., the intensity ratio of sp3/(sp3+sp2) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  12. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  13. Engineering single photon emitters by ion implantation in diamond

    OpenAIRE

    Naydenov, B.; Kolesov, R.; Batalov, A.; Meijer, J; Pezzagna, S.; Rogalla, D.; Jelezko, F.; Wrachtrup, J.

    2009-01-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in qua...

  14. Engineering single photon emitters by ion implantation in diamond.

    Science.gov (United States)

    Naydenov, B; Kolesov, R; Batalov, A; Meijer, J; Pezzagna, S; Rogalla, D; Jelezko, F; Wrachtrup, J

    2009-11-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in quantum cryptography. Strong zero phonon line at 470.5 nm allows unambiguous identification of this defect as interstitial-related TR12 color center. PMID:19956415

  15. The role of ion-implantation in the realization of spintronic devices in diamond

    International Nuclear Information System (INIS)

    The application of single photons emitted by specific quantum systems is promising for quantum computers, cryptography and for other future nano-applications. These heavily rely on ion implantation both for selective single ion implantations as well as for the introduction of controlled damage with specific properties. Of particular promise is the negatively charged nitrogen-vacancy (NV−) defect center in diamond. This center has many desirable luminescence properties required for spintronic devices operational at room temperature, including a long relaxation time of the color center, emission of photons in the visible and the fact that it is produced in diamond, a material with outstanding mechanical and optical properties. This center is usually realized by nitrogen and/or vacancy producing ion implantations into diamond which, following annealing, leads to the formation of the desired NV− center. The single photons emitted by the decay of this center have to be transported to allow their exploitation. This can be best done by realizing very thin wave guides in single crystal diamond with/or without nano-scale cavities in the same diamond in which NV centers are produced. For this, advantage is taken of the unique property of heavily ion-damaged diamond to be converted, following annealing, to etchable graphite. Thus a free standing submicron thick diamond membrane containing the NV center can be obtained. If desirable, specific photonic crystal structures can be realized in them by the use of FIB. The various ion-implantation schemes used to produce NV centers in diamond, free standing diamond membranes, and photonic crystal structures in them are reviewed. The scientific problems and the technological challenges that have to be solved before actual practical realization of diamond based spintronic devices can be produced are discussed.

  16. Surface damage on diamond membranes fabricated by ion implantation and lift-off

    International Nuclear Information System (INIS)

    Thin membranes with excellent optical properties are essential elements in diamond based photonic systems. Due to the chemical inertness of diamond, ion beam processing must be employed to carve photonic structures. One method to realize such membranes is ion-implantation graphitization followed by chemical removal of the sacrificial graphite. The interface revealed when the sacrificial layer is removed has interesting properties. To investigate this interface, we employed the surface sensitive technique of grazing angle channeled Rutherford backscattering spectroscopy. Even after high temperature annealing and chemical etching a thin layer of damaged diamond remains, however, it is removed by hydrogen plasma exposure.

  17. Lattice sites of ion implanted Cu atoms in diamond

    CERN Document Server

    Bharuth-Ram, K; Correia, J G

    2003-01-01

    Radioactive $^{67}$Cu atoms were accelerated to 60 keV at the online isotope separator ISOLDE at CERN, and implanted into a type IIa natural diamond sample to a dose of 2 $\\times 10^{12}$ cm$^{-2}$. The channeling of $\\beta^{-}$-particles and conversion electrons emitted in the decay of $^{67}$Cu and $^{67}$Zn*, respectively, were monitored about the three major axial directions with a two dimensional position-sensitive detector. The electron emission channeling data were collected from the room temperature implanted sample and after annealing at 1200$^\\circ$ K. The observed channeling patterns were fitted with simulations based on the many beam formalism of electron motion through a crystal lattice. In the as-implanted sample, 25% of the Cu atoms were located a mean, isotropic displacement of 0.25(5) from substitutional sites, and the remainder, fR=75%, at sites that gave an isotropic emission yield. Annealing at 1200$^\\circ$ K results in enhanced axial and planar channeling effects. The fits to the data yie...

  18. Lattice sites of ion-implanted Cu atoms in diamond

    International Nuclear Information System (INIS)

    Radioactive 67Cu atoms were accelerated to 60 keV at the online isotope separator ISOLDE at CERN, and implanted into a type IIa natural diamond sample to a dose of 2x1012 cm-2. The channeling of β--particles and conversion electrons emitted in the decay of 67Cu and 67Zn*, respectively, were monitored about the three major axial directions with a two-dimensional position-sensitive detector. The electron emission channeling data were collected from the room-temperature-implanted sample and after annealing at 1200 K. The observed channeling patterns were fitted with simulations based on the many beam formalism of electron motion through a crystal lattice. In the as-implanted sample, 25% of the Cu atoms were located a mean, isotropic displacement of 0.25(5) A from substitutional sites, and the remainder, fR=75%, at sites that gave an isotropic emission yield. Annealing at 1200 K results in enhanced axial and planar channeling effects. The fits to the data yield either a fraction f1=45(5)% of Cu atoms located 0.24(4) A from substitutional sites and fR=57%, or a fraction f1=10(2)% at substitutional sites, a fraction f2=50(5)% at mean isotropic displacement of 0.5 A from substitutional sites, and a 'random' fraction fR=40%

  19. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    International Nuclear Information System (INIS)

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 1017 ions-cm− 2, 2.4 × 1017 ions-cm− 2, and 4.8 × 1017 ions-cm− 2. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation

  20. Electrical resistance of diamond implanted at liquid nitrogen temperature with carbon ions

    International Nuclear Information System (INIS)

    Carbon ion implantation of diamond to high fluence, below the temperature at which diamond growth can occur, usually leads to black layers of high conductivity. This study shows that for a low enough temperature of the diamond during implantation, a black layer with high electrical resistance can develop. In particular, carbon ion implantation at liquid nitrogen temperature, leads to an implanted layer with electrical resistance about one million times higher than the resistance obtained for implantation at temperatures above room temperature. (author)

  1. Resolution, masking capability and throughput for direct-write, ion implant mask patterning of diamond surfaces using ion beam lithography

    International Nuclear Information System (INIS)

    Direct-write, ion implant top surface imaging is a two-step nanopatterning method that simplifies and improves processing of diamond for various applications. The technique utilizes a low-dose (non-milling) gallium ion implant into the first few nanometers of the surface using a focused ion beam. The implanted regions form a hard mask to plasma etching allowing production of well-controlled high relief structures over the exposed surface. We demonstrate the ability of the process to fabricate high aspect ratio, high-resolution patterns over millimetre-size areas in all varieties of diamond including natural, synthetic HPHT and CVD films, at various levels of doping, for industrial scale applications. This paper sets significant new limits of resolution and masking capability for the technique, and compares throughput in comparison to other high resolution lithographic techniques. (paper)

  2. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  3. Ion implanted pyrolitic carbon for the hip prosthesis

    International Nuclear Information System (INIS)

    Full text: Hip joint arthroplasty is a successful surgical procedure, but loosening induced by polyethylene wear debris continues to be a problem. Fine grained isotropic graphite (POCO ZXF-5Q) coated with Pyrolite (trademark of Carbomedics Inc.) combines biocompatibility, strength and tribological properties which could be utilised in a hip prosthesis. Some preliminary work has been conducted on this material, and the effect nitrogen ion implantation has on its wear resistance. Finite element analysis was conducted on a femoral head of a canine hip prosthesis with diameter 19mm made from POCO ZXF-5Q . An optimum design was obtained after design variables such as taper angle and width, internal recess radius, crown thickness were varied so that internal stresses were minimised. This was then translated into an human sized femoral head with diameter 28mm, which was subjected to mechanical testing. Loading was at 20 deg C to the taper, with loading rate 10kN/s used in static loading, whilst fatigue testing was carried out between 300 - 3000N at 30Hz for 107 cycles. Pin-on-disc wear testing was carried out using a CSEM Tribometer. A 1N load was applied to 6mm diameter pins. Wear track radii were 11 and 13mm, with linear velocity 5cm/s and sliding distance 2.5km. Test temperature was 37±1degC with Ringer solution and bovine serum being used as lubricant. Nitrogen implanted samples were irradiated to a dose of 5x1016 ions.cm-2 at 50keV. Static testing was carried out to loads of 8000N and all five POCO ZXF-5Q femoral heads tested survived. Then three of these pre-tested femoral heads were subjected to fatigue testing and no failures occured before 107 cycles. Wear was reduced by nitrogen ion implantation only when an irradiated pin was tested against as polished Pyrolite. Nitrogen ion implanted Pyrolite on a POCO ZXF-5Q substrate may have clinical potential. The substrate has appropriate mechanical properties, and nitrogen ion implantation can improve the already

  4. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    International Nuclear Information System (INIS)

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)−1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices

  5. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K. J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek (Belgium); Sundaravel, B. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tai, N. H., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Lin, I. N., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui, Taiwan 251, Taiwan (China)

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  6. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Science.gov (United States)

    Sankaran, K. J.; Sundaravel, B.; Tai, N. H.; Lin, I. N.

    2015-08-01

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)-1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  7. Improvement of polydimethylsiloxane guide tube for nerve regeneration treatment by carbon negative-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, H. E-mail: tsuji@kuee.kyoto-u.ac.jp; Izukawa, M.; Ikeguchi, R.; Kakinoki, R.; Sato, H.; Gotoh, Y.; Ishikawa, J

    2003-05-01

    Modification of polydimethylsiloxane (PDMS) rubber by negative ion-implantation was investigated for improvement of nerve regeneration property. The PDMS rubber surface was found to have more hydrophilic property after carbon negative-ion implantation than before. At the conditions of 10 keV and 3.0 x 10{sup 15} ions/cm{sup 2}, the contact angle decreased to 83 deg. from 100 deg. . The reason of the hydrophilic modification is due to hydrophilic functional groups such as hydroxyl formed at the surface by radiation effect of ion implantation. The in vivo regeneration test of rat sciatic nerve was performed by using 18-mm-long PDMS rubber tubes with inner diameter of 2 mm, the inner surface of which was implanted with carbon negative ions at the above conditions. At 24 weeks after the clinical surgery, the sciatic nerve was regenerated through the tube between the proximal and distal nerve stumps.

  8. Characterization of silicon and carbon dual ion-implanted metals with a nano-indentation

    International Nuclear Information System (INIS)

    The dual ion implantation of silicon and carbon into copper (99.9%), iron (99.9%), SKD11 steel and SUS304 austenitic stainless steels was carried out with a MeV energy ion accelerator. The cross-section of the implanted layer were observed with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The surface layers of the implanted substrates were investigated with X-ray photoelectron spectroscopy (XPS) and a transmission electron microscope (TEM). The hardness of the samples was tested with a nano-indentation. It was found with XPS Si (2p) spectra and TEM that a part of the Si ions and C ions formed an amorphous layer of SiC, carbide and metals by dual ion-implantation. The hardness of the dual ion-implanted steels were improved. The mechanism of hardness was suggested by cross-sectional TEM images. (author)

  9. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  10. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shuwen; Jiang Bin; Li Yan; Li Yanrong; Yin Guangfu; Zheng Changqiong

    2004-09-15

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy.

  11. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    International Nuclear Information System (INIS)

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm−2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600–900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics

  12. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    International Nuclear Information System (INIS)

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. (paper)

  13. Effects of Mo ion implantation on rolling contact fatigue behavior of carbon steel

    International Nuclear Information System (INIS)

    Rolling Contact Fatigue (RCF) is one of the most serious material surface damage problems encountered by many critical components, especially in ball-bearing applications. RCF is sensitive to the material strength, hardness, surface morphology, microstructure and stress status, which may be dramatically changed by surface modifications. In present work, the surface modification of molybdenum ion implantation into quenched carbon steel was employed, and RCF tests on the implanted specimens, as well as the unimplanted, were performed. It was found out that carbon steel specimens, with and without ion implantation, have the same fatigue damage characteristics. They both have circular and fan-like pits on the fatigue failed surfaces, with many spherical debris existing in the fan-like pits. However, molybdenum ion implantation reduced the rolling contact fatigue life of quenched carbon steel. The possible reasons are the following: the ion beam current is too large, which causes the specimen to undergo the annealing process and soften during the implantation process; the incident angles of ions are different for different spots of curve specimen surface, which causes the uneven distribution of residual stress. These will promote the crack initiation and propagation

  14. Ion implantation inhibits cell attachment to glassy polymeric carbon

    International Nuclear Information System (INIS)

    Implantation of MeV gold, oxygen, carbon ions into GPC alters the surface topography of GPC and enhances the already strong tendency for cells to attach to GPC. We have shown that implantation of silver ions near the surface strongly inhibits cell growth on GPC. Both enhanced adhesion of and inhibition of cell growth are desirable improvements on cardiac implants that have long been successfully fabricated from biocompatible glassy polymeric carbon (GPC). In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that ion beam assisted deposition (IBAD) of silver, as well as silver ion bombardment, can favorably influence the surface of GPC for biomedical applications

  15. Creation and characterization of buried microstructures in diamond by ion implantation

    International Nuclear Information System (INIS)

    At the end of range of MeV ions in diamond, black spots are created corresponding to the Bragg peak in the stopping power; the characteristics of which are not well understood but which may have application in the micromachining of diamond. This paper reports on the initial findings of studies to determine the physical properties of these buried black spots, while exploring how to optimally fabricate microstructures within the diamond. We have created buried 3-D structures in single crystal diamond by means of deep implantation with a focussed ion microbeam, over a wide range of fluences. Characterization is performed by confocal Raman spectroscopy. (author). 13 refs., 6 figs

  16. Patterned electrical conductance and electrode formation in ion-implanted diamond films

    International Nuclear Information System (INIS)

    Selective implantation of 140 keV Co ions into self-supporting diamond films converts the surface into a conductive region at which redox electron transfer and metal deposition have been accomplished. Simple masking allows precise definition of the area to be plated within the insulating diamond matrix. Formation and electrochemical characterization of a rotating disk electrode in this manner are demonstrated

  17. Ion implantation into concave polymer surface

    International Nuclear Information System (INIS)

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification

  18. Ion implantation into concave polymer surface

    Science.gov (United States)

    Sakudo, N.; Shinohara, T.; Amaya, S.; Endo, H.; Okuji, S.; Ikenaga, N.

    2006-01-01

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification.

  19. Mechanical properties of nickel ion-implanted with titanium and carbon and their relation to microstructure

    International Nuclear Information System (INIS)

    Dual ion implantation of titanium and carbon into nickel was shown to produce an amorphous layer with exceptionally high strength and hardness and substantially improved tribological properties. Indentation testing at submicrometer penetrations combined with finite-element modeling permitted quantification of the intrinsic elastic and plastic properties of the amorphous layer, which was found to have a yield strength near 5 GPa. During unlubricated sliding contact with a steel pin, the implantation treatment reduced friction, suppressed adhesion-and-fracture wear, and reduced wear depth. These tribological effects may enhance the performance and lifetime of microelectromechanical systems constructed from nickel

  20. Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property

    Science.gov (United States)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kojima, Hiroyuki; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo; Takaoka, Gikan H.

    2010-10-01

    We have investigated the irradiation effect of negative-ion implantation on the changes of physical surface property of polytetrafluoroethylene (PTFE) for controlling the adhesion property of stem cells. Carbon negative ions were implanted into PTFE sheets at fluences of 1 × 10 14-1 × 10 16 ions/cm 2 and energies of 5-20 keV. Wettability and atomic bonding state including the ion-induced functional groups on the modified surfaces were investigated by water contact angle measurement and XPS analysis, respectively. An initial value of water contact angles on PTFE decreased from 104° to 88° with an increase in ion influence to 1 × 10 16 ions/cm 2, corresponding to the peak shifting of XPS C1s spectra from 292.5 eV to 285 eV with long tail on the left peak-side. The change of peak position was due to decrease of C-F 2 bonds and increase of C-C bonds with the formation of hydrophilic oxygen functional groups of OH and C dbnd O bonds after the ion implantation. After culturing rat mesenchymal stem cells (MSC) for 4 days, the cell-adhesion properties on the C --patterned PTFE were observed by fluorescent microscopy with staining the cell nuclei and their actin filament (F-actin). The clear adhesion patterning of MSCs on the PTFE was obtained at energies of 5-10 keV and a fluence of 1 × 10 15 ions/cm 2. While the sparse patterns and the uncontrollable patterns were found at a low fluence of 3 × 10 14 ions/cm 2 and a high fluence of 3 × 10 15 ions/cm 2, respectively. As a result, we could improve the surface wettability of PTFE to control the cell-adhesion property by carbon negative-ion implantation.

  1. Narrow-Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation

    Science.gov (United States)

    Evans, Ruffin E.; Sipahigil, Alp; Sukachev, Denis D.; Zibrov, Alexander S.; Lukin, Mikhail D.

    2016-04-01

    The negatively charged silicon-vacancy (SiV-) center in diamond is a bright source of indistinguishable single photons and a useful resource in quantum-information protocols. Until now, SiV- centers with narrow optical linewidths and small inhomogeneous distributions of SiV- transition frequencies have only been reported in samples doped with silicon during diamond growth. We present a technique for producing implanted SiV- centers with nearly lifetime-limited optical linewidths and a small inhomogeneous distribution. These properties persist after nanofabrication, paving the way for the incorporation of high-quality SiV- centers into nanophotonic devices.

  2. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J. [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H.; Morita, Y.; Ohshima, T.

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  3. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Highlights: • Structure and properties of polycarbonate films spin-coated on silicon are studied. • The films have two thicknesses: thicker and thinner than a depth of ion penetration. • Effect of radio frequency plasma and plasma immersion ion implantation is compared. - Abstract: At ion fluences higher than 5 · 1015 ions/cm2, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 1016 ions/cm2, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of C=O bonds and much lower concentration of O–H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 1016 ions/cm2, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 1016 ions/cm2. At this and higher fluence, areas of an ordered

  4. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kosobrodova, E., E-mail: elenak@physics.usyd.edu.au [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Kondyurin, A. [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Chrzanowski, W. [Faculty of Pharmacy, University of Sydney, NSW 2006 (Australia); Department of Nanobiomedical Science and BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); McCulloch, D.G. [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia); McKenzie, D.R.; Bilek, M.M.M. [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia)

    2014-06-01

    Highlights: • Structure and properties of polycarbonate films spin-coated on silicon are studied. • The films have two thicknesses: thicker and thinner than a depth of ion penetration. • Effect of radio frequency plasma and plasma immersion ion implantation is compared. - Abstract: At ion fluences higher than 5 · 10{sup 15} ions/cm{sup 2}, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 10{sup 16} ions/cm{sup 2}, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of C=O bonds and much lower concentration of O–H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 10{sup 16} ions/cm{sup 2}, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 10{sup 16} ions/cm{sup 2}. At

  5. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    Science.gov (United States)

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts. PMID:15585228

  6. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  7. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    Energy Technology Data Exchange (ETDEWEB)

    Himics, L., E-mail: himics.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Tóth, S.; Veres, M. [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Tóth, A. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Koós, M. [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2015-02-15

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp{sup 2} carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation.

  8. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    Science.gov (United States)

    Kosobrodova, E.; Kondyurin, A.; Chrzanowski, W.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2014-06-01

    At ion fluences higher than 5 · 1015 ions/cm2, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 1016 ions/cm2, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of Cdbnd O bonds and much lower concentration of O-H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 1016 ions/cm2, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 1016 ions/cm2. At this and higher fluence, areas of an ordered island-like structure were observed.

  9. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    Science.gov (United States)

    Derry, T. E.; Nshingabigwi, E. K.; Levitt, M.; Neethling, J.; Naidoo, S. R.

    2009-08-01

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels "graphitize" (above about 5.2 × 10 15 ions/cm 2). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to ˜40 μm thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  10. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    International Nuclear Information System (INIS)

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels 'graphitize' (above about 5.2 x 1015 ions/cm2). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to ∼40 μm thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  11. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Derry, T.E. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)], E-mail: Trevor.Derry@wits.ac.za; Nshingabigwi, E.K. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Department of Physics, National University of Rwanda, P.O. Box 117, Huye (Rwanda); Levitt, M. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Neethling, J. [DST/NRF CoE-SM and Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Naidoo, S.R. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)

    2009-08-15

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels 'graphitize' (above about 5.2 x 10{sup 15} ions/cm{sup 2}). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to {approx}40 {mu}m thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  12. Ion implantation

    International Nuclear Information System (INIS)

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  13. B and N ion implantation into carbon nanotubes: Insight from atomistic simulations

    International Nuclear Information System (INIS)

    By employing atomistic computer simulations with empirical potential and density functional force models, we study B/N ion implantation onto carbon nanotubes. We simulate irradiation of single-walled nanotubes with B and N ions and show that up to 40% of the impinging ions can occupy directly the sp2 positions in the nanotube atomic network. We further estimate the optimum ion energies for direct substitution. Ab initio simulations are used to get more insight into the structure of the typical atomic configurations which appear under the impacts of the ions. As annealing should further increase the number of sp2 impurities due to dopant atom migration and annihilation with vacancies, we also study migration of impurity atoms over the tube surface. Our results indicate that irradiation-mediated doping of nanotubes is a promising way to control the nanotube electronic and even mechanical properties due to impurity-stimulated crosslinking of nanotubes

  14. Reduction of friction and wear by ion-implanted carbonized photoresist

    International Nuclear Information System (INIS)

    The influence of ion-implanted carbonized photoresist layers (AZ 5210) on wear and friction is discussed in this paper. Photoresist, an organic resin, was used because of the simplicity of coating the sample, accurate control of the layer thickness, and high amount of carbon. The samples investigated were coated by conventional spin-on techniques with layer thicknesses varying from 0.2 μm to 2.2μm. Subsequent ion bombardment at energies of 200 keV and 1.4 MeV with doses ranging from 1x1016 cm-2 to 1x1017 cm-2 caused carburization, densification, and a mixing of the layer with the steel substrate. Transmission electron microscopy investigations, Raman spectroscopy, elastic recoil detection analysis, and microhardness measurements confirmed the production of a hard, amorphous, hydrogen-containing (about 17%) carbon layer after implantation. The layers were deposited onto different steels (AISI 52100, AISI 440 B unhardened, and AISI M2) and after implantation of boron, aluminium, phosphorus, arsenic and titanium, showed a strongly reduced friction coefficient (lower than 0.2) and drastically reduced wear behaviour. The duration of the wear reduction depended on both the thickness of the carbonized photoresist layer and on the implanted ion dose. Doses of 5x1016 cm-2 for hard steels and doses of 1x1017 cm-2 for soft steels are necessary to produce a sufficient layer adhesion by ion beam mixing. (orig.)

  15. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    Science.gov (United States)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Luk, Camille M. Y.; Liu, Xuanyong; Chung, Jonathan C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C2H2-PIII&D and C2H2-PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance.

  16. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid

    International Nuclear Information System (INIS)

    Modification of a bioabsorbable polymer of poly-lactic acid (PLA) by negative carbon ion implantation was investigated with resect to radiation effects on surface physical properties and nerve-cell attachment properties. Carbon negative ions were implanted to PLA at energy of 5-30 keV with a dose of 1014-1016 ions/cm2. Most C-implanted PLA samples showed contact angles near 80 deg. and almost same as that of unimplanted PLA, although a few samples at 5 keV and less 3x1014 ions/cm2 had contact angles larger than 90 deg. The attachment properties of nerve cells of PC-12h (rat adrenal phechromocytoma) in vitro were studied. PC-12h cells attached on the unimplanted region in C-implanted PLA samples at 5 and 10 keV. On the contrary, the nerve cells attached on only implanted region for the C-implanted PLA sample at 30 keV and 1x1015 ions/cm2

  17. The tribological properties of nanometre carbon films prepared by plasma-based ion implantation at various implanting voltages

    International Nuclear Information System (INIS)

    About 30 nm thick nanometre carbon films have been prepared on Si wafers by plasma-based ion implantation at various implanting voltages. The ball-on-disc sliding friction experiments show that the tribological properties of these carbon films are in good agreement with the corresponding structure characteristics which strongly depend on the implanting voltage. These structure characteristics include the film roughness, the film thickness, the C-Si transition layer between the carbon film and the Si substrate and the sp3/sp2 ratio. As the implanting voltage increases, the roughness and the thickness decrease, the C-Si transition layer thickens and the sp3/sp2 ratio first increases to the maximum value at about 30 kV and then decreases. 3 kV and below correspond to bad tribological properties owing to polymer-like carbon (PLC) film and no C-Si transition layer with poor adhesion to the Si substrate. When the implanting voltage increases to over 3 kV, a C-Si transition layer is gradually formed and thickens with increasing adhesion, and the PLC film is gradually turned into a diamond-like carbon (DLC) film, and hence the tribological properties are gradually improved and reach the best values at 30 kV. 10-50 kV correspond to two orders of increase in wear life, close to zero volume wear rate, but about 0.3 friction coefficient at 0.1 N applied load. With the increase in the applied load, the wear life and the friction coefficient decrease and the wear rate increases. For Si wafers coated with the DLC films at 30 kV, in the range of 0.5-1 N, there is an appropriate value corresponding to the wear life of above 18 000 s, friction coefficient of about 0.1 and wear rate of 10-9 mm3 N-1 m-1 level. Additionally, the wear mechanism is discussed

  18. Immobilization of extracellular matrix on polymeric materials by carbon-negative-ion implantation

    Science.gov (United States)

    Tsuji, Hiroshi; Sommani, Piyanuch; Muto, Takashi; Utagawa, Yoshiyuki; Sakai, Shun; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2005-08-01

    Effects of ion implantation into polystyrene (PS), silicone rubber (SR) and poly-L-lactic acid (PLA) have been investigated for immobilization of extracellular matrix. Carbon negative ions were implanted into PS and SR sheets at various energies between 5-30 keV and various doses between 1.0 × 1014-1.0 × 1016 ions/cm2. Contact angles of pure water on C-implanted surfaces of PS and SR were decreased as increase in ion energy and in dose due to formation of functional groups such as OH and C-O. Selective attachment of nerve cells was observed on C-implanted them at 10 keV and 3 × 1015 ions/cm2 after in vitro cell culture of nerve cells of PC-12 h. Neurite outgrowth also extended over the implanted area. After dipping in a serum medium and in a fibronectin solution for 2 h, the detection of N 1s electrons by X-ray induced photoelectron spectroscopic (XPS) revealed a significant distinction of protein adhesion on the implanted area. Thus, immobilization of proteins on surface is used for considering the selective cell-attachment. For PLA, the selective attachment of cells and protein depended on the implantation conditions.

  19. Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment

    Science.gov (United States)

    Xu, Ruizhen; Yang, Xiongbo; Zhang, Xuming; Wang, Mei; Li, Penghui; Zhao, Ying; Wu, Guosong; Chu, Paul K.

    2013-12-01

    Plasma immersion ion implantation (PIII) is conducted to improve the intrinsically poor corrosion properties of biodegradable AZ31 magnesium alloy in the physiological environment. Carbon dioxide is implanted into the samples and X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize the materials. The corrosion properties are systematically studied by potentiodynamic polarization tests in two simulated physiological environments, namely simulated body fluids and cell culture medium. The plasma-implanted materials exhibit a lower initial corrosion rate. Being a gaseous ion PIII technique, conformal ion implantation into an object with a complex shape such as an orthopedic implant can be easily accomplished and CO2 PIII is a potential method to improve the biological properties of magnesium and its alloys in clinical applications.

  20. Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment

    International Nuclear Information System (INIS)

    Plasma immersion ion implantation (PIII) is conducted to improve the intrinsically poor corrosion properties of biodegradable AZ31 magnesium alloy in the physiological environment. Carbon dioxide is implanted into the samples and X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize the materials. The corrosion properties are systematically studied by potentiodynamic polarization tests in two simulated physiological environments, namely simulated body fluids and cell culture medium. The plasma-implanted materials exhibit a lower initial corrosion rate. Being a gaseous ion PIII technique, conformal ion implantation into an object with a complex shape such as an orthopedic implant can be easily accomplished and CO2 PIII is a potential method to improve the biological properties of magnesium and its alloys in clinical applications.

  1. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    International Nuclear Information System (INIS)

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs

  2. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M.N. [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1993-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  3. Structure and tribological properties of modified layer on 2024 aluminum alloy by plasma-based ion implantation with nitrogen/titanium/carbon

    Institute of Scientific and Technical Information of China (English)

    张玲召; 廖家轩; 夏立芳; 刘维民; 徐洮; 薛群基

    2003-01-01

    2024 aluminum alloy was implanted with nitrogen then titanium finally carbon by plasma-based ion implantatio to form a gradient layer.The structure and tribological properties of the layer were investigated.Its composition profiles and chemical states were analyzed with X-ray photoelectron spectroscopy(XPS).The surface carbonlayer was analyzed by Raman spectrum.The appearances were observed by atomic force microscope(AFM).Thesurface hardness was measured with the mechanical property microprobe.The dry wear tests against GCr15 steelball at various sliding loads were performed with a ball-on-disk wear tester in ambient environment.The resultsshow that the thickness of the modified layer is 1 200 nm,the carbon layer is a smooth and compact diamond-likecarbon(DLC)films,and the carbon-titanium interface is broadened due to carbon ions implantation,resulting in agood composition and structure transition between DLC films and titanium layer.Surface hardness is improvedmarkedly,with a slow and uniform change.Tribological properties are improved greatly although they reduce withthe increase of sliding loads because the modified layer becomes thin rapidly.

  4. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Shafaq, E-mail: sarif2005@gmail.com [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Rafique, M. Shahid [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan); Saleemi, Farhat; Sagheer, Riffat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Naab, Fabian; Toader, Ovidiu [Department of Nuclear Engineering and Radiological Sciences, Michigan Ion Beam Laboratory, University of Michigan, MI 48109-2104 (United States); Mahmood, Arshad; Rashid, Rashad [National Institute of Lasers and Optronics (NILOP), P.O. Nilore, Islamabad (Pakistan); Mahmood, Mazhar [Department of Metallurgy & Materials Engineering, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan)

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C{sup +} ion implantation effects on PMMA at different fluences ranging from 5 × 10{sup 13} to 5 × 10{sup 15} ions/cm{sup 2}. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV–Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 10{sup 14} to 5 × 10{sup 15} ions/cm{sup 2}. The existence of amorphization and sp{sup 2}-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV–Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10{sup −10} (Ω-cm){sup −1} (pristine) to (0.32 ± 0.01) × 10{sup −5} (Ω-cm){sup −1} (irradiated sample)

  5. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    International Nuclear Information System (INIS)

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV–Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV–Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10−10 (Ω-cm)−1 (pristine) to (0.32 ± 0.01) × 10−5 (Ω-cm)−1 (irradiated sample)

  6. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    Science.gov (United States)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  7. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    International Nuclear Information System (INIS)

    Application of pulsed high negative voltage (∼10 μs pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron microscopy, and its structure characteristics are examined by XPS and laser Raman spectroscopy. Subsequent processing using acetylene or acetylene and Ar (20%) produced thin carbon layers that are confirmed to be graphite-dominated DLC. Also, this PSII method is employed in order to deposit the DLC layer on the inside surface of the PET bottle and to reduce oxygen permeation rate by 40%

  8. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    Science.gov (United States)

    Tanaka, T.; Yoshida, M.; Shinohara, M.; Takagi, T.

    2002-05-01

    Application of pulsed high negative voltage (~10 μs pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron microscopy, and its structure characteristics are examined by XPS and laser Raman spectroscopy. Subsequent processing using acetylene or acetylene and Ar (20%) produced thin carbon layers that are confirmed to be graphite-dominated DLC. Also, this PSII method is employed in order to deposit the DLC layer on the inside surface of the PET bottle and to reduce oxygen permeation rate by 40%.

  9. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    International Nuclear Information System (INIS)

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon

  10. Fabrication of silicon carbide nanowires/carbon nanotubes heterojunction arrays by high-flux Si ion implantation.

    Science.gov (United States)

    Liu, Huaping; Cheng, Guo-An; Liang, Changlin; Zheng, Ruiting

    2008-06-18

    An array of silicon carbide nanowire (SiCNW)-carbon nanotube (CNT) heterojunctions was fabricated by high-flux Si ion implantation into a multi-walled carbon nanotube (MWCNT) array with a metal vapor vacuum arc (MEVVA) ion source. Under Si irradiation, the top part of a CNT array was gradually transformed into an amorphous nanowire array with increasing Si dose while the bottom part still remained a CNT structure. X-ray photoelectron spectroscopy (XPS) analysis shows that the SiC compound was produced in the nanowire part even at the lower Si dose of 5 × 10(16) ions cm(-2), and the SiC amount increased with increasing the Si dose. Therefore, the fabrication of a SiCNW-CNT heterojunction array with the MEVVA technique has been successfully demonstrated. The corresponding formation mechanism of SiCNWs was proposed. PMID:21825818

  11. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    Science.gov (United States)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  12. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    CERN Document Server

    Tanaka, T; Shinohara, M; Takagi, T

    2002-01-01

    Application of pulsed high negative voltage (approx 10 mu s pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N sub 2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N sub 2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron mic...

  13. Influence of Zn ion implantation on structures and field emission properties of multi-walled carbon nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The structures and field emission properties of multi-walled carbon nanotube arrays implanted with Zn+ by MEVVA ion implanter have been investigated.The results revealed that Zn+implantation induced structural damage and that the top of carbon nanotubes with multi-layered graphite structure were transformed into carbon nanowires with amorphous structure.Meanwhile,C:Zn solid solution was synthesized after Zn+ implantation.The turn-on field and threshold field were 0.80 and 1.31 V/μm,respectively for original multi-walled carbon nanotube arrays and were reduced to 0.66 and 1.04 V/μm due to the synthesis of C and Zn composite,in which the work function was reduced after low doses of Zn+implantation.It is indicated that low doses of Zn+implantation can improve field emission performance of multi-walled carbon nanotube arrays.Otherwise,high doses of Zn+implantation can reduce field emission properties of multi-walled carbon nanotube arrays,because radiation damage reduces the electric field enhancement factor.

  14. Mechanical properties of amorphous hydrogenated carbon films fabricated on polyethylene terephthalate foils by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Amorphous hydrogenated carbon (a-C:H) films have been deposited on polyethylene terephthalate by plasma immersion ion implantation and deposition. The influence of deposition parameters such as gas pressure, bias voltage, and nitrogen incorporation on the mechanical properties of the a-C:H films are investigated. X-ray photoelectron spectroscopy reveals that the ratio of sp3 to sp2 is 0.24 indicating that the film is mainly composed of graphitelike carbon. Nanoindentation tests disclose enhanced surface hardness of ∼6 GPa. The friction coefficient of the film deposited at higher gas pressure, for instance, 2.0 Pa, is lower than that of the film deposited at a lower pressure such as 0.5 Pa. The films deposited using a low bias voltage tend to fail easily in the friction tests and nitrogen incorporation into the a-C:H films decreases the friction coefficient. Mechanical folding tests show that deformation failure is worse on a thinner a-C:H film

  15. Nucleation and growth of carbon onions by means of simultaneous electron microscopic observation under ion implantation

    International Nuclear Information System (INIS)

    In-situ and ex-situ TEM observation was performed in copper implanted with carbon ions at temperature from 570 K to 973 K. Carbon clusters, such as carbon onions (concentric graphic spheres) and nanocapsules (concentric graphitic spheres with cavities), were observed with amorphous carbon layers. Statistics of cluster size as a function of implantation temperature, ion fluence and substrate crystallinity revealed the nucleation processes of the clusters. One is the formation of graphitic layers on grain boundaries. The other is the nucleation of graphitic cages, probably fullerenes, due to both high concentration of carbon atoms and high amount of radiation damage. Simultaneous observation of microstructural evolution under implantation revealed that onions were formed inside the substrate not surface and that they segregate at surface due to radiation-enhanced evaporation. (author)

  16. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  17. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm-2 and 2 GeV xenon ion with a dose of 1E12 ions.cm-2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C3N4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C3N4 matrix was predominantly sp2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  18. In-situ observation of sputtered particles for carbon implanted tungsten during energetic isotope ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Y.; Sato, M.; Uchimura, H.; Okuno, K. [Graduate School of Science, Shizuoka University, Shizuoka (Japan); Ashikawa, N.; Sagara, A. [National Institute for Fusion Science, Gifu (Japan); Yoshida, N. [Institute for Applied Mechanics, Kyushu University, Kasuga (Japan); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan)

    2015-03-15

    Tungsten is a candidate for plasma facing materials in future fusion reactors. During DT plasma operations, carbon as an impurity will bombard tungsten, leading to the formation of tungsten-carbon (WC) layer and affecting tritium recycling behavior. The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, has been investigated using in-situ sputtered particle measurements. The C{sup +} implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H{sub 2}{sup +} irradiation. It has been found that the major hydrocarbon species for C{sup +} implanted tungsten is CH{sub 3}, while for WC and HOPG (Highly Oriented Pyrolytic Graphite) it is CH{sub 4}. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H{sub 2}{sup +} irradiation and the desorption of CH{sub 3} and CH{sub 2} are due to chemical sputtering, although that for CH is physical sputtering. The activation energy for CH{sub 3} desorption has been estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It is concluded that the chemical states of hydrocarbon sputtered by H{sub 2}{sup +} irradiation for W is determined by the amount of C-H bond on the W surface. (authors)

  19. Modification of tribomechanical properties of commercial TiN coatings by carbon ion implantation

    International Nuclear Information System (INIS)

    Physical vapour deposited commercial TiN coatings of about 2μm thickness on high speed steel substrates were implanted at room temperature with 95keV carbon ions at nominal doses between 1x1017 and 8x1017ionscm-2. An ultra-microhardness apparatus (UMIS-2000) was used to measure hardness, and a pin-on-disc machine (CSEM tribometer) with a sapphire ball was used to measure wear, friction and adhesion. Carbon implantation induced a significant improvement in ultra-microhardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose φcrit is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by implantation. Proton elastic scattering (PES) measurements show loss of nitrogen after implantation by up to 27%. Rutherford backscattering (RBS) analysis indicated that some implanted carbon has diffused out from the implanted region towards the TiN surface. The changes in tribomechanical properties are discussed in terms of radiation damage and possible second phase formation. ((orig.))

  20. Cell growing on ion implanted polytetrafluorethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurina, I., E-mail: i.kondyurina@gmail.com [School of Medicine, University of Sydney, Sydney (Australia); Shardakov, I. [Institute of Continuous Media Mechanics, Russian Academy of Science, Perm (Russian Federation); Nechitailo, G. [Institute of Biochemical Physics, Russian Academy of Science, Moscow (Russian Federation); Terpugov, V. [Perm State University, Perm (Russian Federation); Kondyurin, A. [School of Physics, University of Sydney, Sydney (Australia)

    2014-09-30

    Highlights: • PTFE surface becomes rough, carbonized and oxidized after ion implantation. • Ion implanted PTFE contains chemically active free radicals. • Cells adherence on ion implanted PTFE is improved. - Abstract: Polytetrafluorethylene (PTFE and ePTFE) substrates were treated by ion implantation with nitrogen ions of 20 keV energies and 10{sup 13}–10{sup 16} ions/cm{sup 2} ion fluences. The modification of the polymer surface was analyzed by FTIR and XPS spectroscopy, water wetting angle measurements and AFM images. The surface morphology, wettability and chemical activity were changed due to surface modification. The growing of endothelial cells of modified surfaces was improved in comparison with untreated PTFE and ePTFE substrates. The improved cell adherence on the modified surface is based on the improved adhesion of cell proteins.

  1. Effects of H2 gas addition into process and H ion implantation on the microstructure of hydrogenated amorphous carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon films are deposited on Si(1 0 0) and SiO2 glass substrates by a bipolar-type plasma based ion implantation system. The films are prepared using toluene gas at a constant flow rate of 2 sccm. The effects of H2 gas addition during deposition on the microstructure of the films are examined by electrical conductivity measurements, Raman spectroscopy, elastic recoil detection analysis (ERDA) and optical spectroscopy. In addition, H implantation is also carried out using H2 plasma discharge. Thickness of the films is approximately 60 nm for all samples. It is found that electrical conductivity slightly increases with increasing additive H2 flow rate. However, the conductivity drastically decreases after H implantation. Raman analysis reveals that H2 gas addition slightly causes the film graphitization, but the H implantation does it amorphization. The results of ERDA show that the H concentration in the films slightly decreases with increasing H2 gas addition, but increases by H implantation. In spite of H2 gas addition, the optical band gap is not changed and kept approximately 0.7 eV. However, H implantation makes it increase up to approximately 1.0 eV

  2. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  3. Ion implantation for combating wear and corrosion

    International Nuclear Information System (INIS)

    Ion implantation provides a means of introducing chosen atomic species into the surface layers of a material or component without the need for heating. Atoms which form strong interatomic bonds, such as nitrogen or carbon, will harden a metal surface and improve wear resistance. Species which impart protection against corrosion, such as nickel, chromium or rare earths can be implanted. Various mechanisms result in a protective layer which far exceeds in thickness the range of implanted ions. Ion implantation is not a coating technique: there is no interface which could form a plane of weakness, nor are there dimensional changes. It is applied to finished components using equipment which will be described. (author)

  4. Graphitic structure formation in ion implanted polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Tavenner, E., E-mail: tazman1492@gmail.com [Creative Polymers Pty. Ltd., 41 Wilkinson Street, Toowoomba, Queensland 4350 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Wood, B. [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072 (Australia); Chemical Committee, Surface Chemical Analysis, Standards (Australia); Curry, M.; Jankovic, A.; Patel, R. [Center for Applied Science and Engineering, Missouri State University, 524 North Boonville Avenue, Springfield, MO 65806 (United States)

    2013-10-15

    Ion implantation is a technique that is used to change the electrical, optical, hardness and biocompatibility of a wide range of inorganic materials. This technique also imparts similar changes to organic or polymer based materials. With polymers, ion implantation can produce a carbon enriched volume. Knowledge as to the nature of this enrichment and its relative concentration is necessary to produce accurate models of the physical properties of the modified material. One technique that can achieve this is X-ray photoelectron spectroscopy. In this study the formation of graphite like structures in the near surface of polyetheretherketone by ion implantation has been elucidated from detailed analysis of the C 1s and valence band peak structures generated by X-ray photoelectron spectroscopy. Further evidence is given by both Rutherford backscatter spectroscopy and elastic recoil detection.

  5. Surface modification of steel by high-dose pulse-ion implantation of titanium, tungsten, molybdenum and carbon

    International Nuclear Information System (INIS)

    Ions of Ti, Mo, W, and C, produced by a pulsed metal (MEVVA) ion source were implanted into H13 steel. Energies were from 25-50 keV. Hardness were increased by as much as 40% and wear resistances were improved by factors of 3 to 5 by the implantations. Rutherford backscattering (RBS) measurements demonstrated that implanted Mo can penetrate to depths of 1400 A into steel during the implantation period of 25 min for the fluence of 1x1017/cm2. This depth is greater than the calculated range. The average doping concentration was greater than 15 at.% for the various implants. It was observed by X-ray diffraction and by transmission electron microscopy that intermetallic compounds such as FeTi, Fe2Ti and FeMo were formed. It was concluded that the MEVVA type of ion source shows promise for metal-ion implantations into steel components for industrial application. (orig.)

  6. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    International Nuclear Information System (INIS)

    The carbon vacancy (VC) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the VC-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (Ci's) and annihilation of VC's in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the VC annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating VC's. Concentrations of VC below ∼2 × 1011 cm−3 can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the VC-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote Ci-clustering and reduce dynamic defect annealing. These Ci-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced Ci injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the VC-concentration, which limit the net effect of the Ci injection, and a competition between the two processes occurs

  7. Surface properties of diamond-like carbon films prepared by CVD and PVD methods

    Institute of Scientific and Technical Information of China (English)

    Liu Dong-Ping; Liu Yan-Hong; Chen Bao-Xiang

    2006-01-01

    Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance-plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered-pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp3 hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.

  8. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel

  9. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Science.gov (United States)

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  10. Quantum information process with nanometre precession ion implantation

    International Nuclear Information System (INIS)

    The spin state of a single nitrogen-vacancy centre in diamond is one of the most attractive candidate for quantum information processing because of its long spin coherence time. Further more coupling (magnetic dipole) between the spins are required for scalable quantum computing (2-qbit operation). This process requires a high implantation positioning accuracy and nitrogen free clean diamond (<0.1 ppm nitrogen concentration). Here we report recent progress towards single ion implantation within nanometre scale accuracies. (orig.)

  11. Changes in friction characteristics and microstructure of steel by ion implantation of titanium and additional carbon in various doses. Pt. 1

    International Nuclear Information System (INIS)

    Changes in the macroscopic tribology of Ti+Ci ion-implanted steel depending on the supplemental carbon dose were studied. Titanium ions were implanted at 5 x1017 ions cm-2 followed by carbon ions at 0, 1 x1016, 4 x1016, 1 x1017 and 4 x1017 ions cm-2, into quenched and tempered steel. The coefficient of friction and amount of wear were evaluated through a reciprocating ball-on-disc wear test, at weight loads of 0.98 N, 1.96 N, 4.9 N and 9.8 N. The maximum weight load to accomplish the reduced friction coefficient increased with increase in the dose of supplemental carbon. Scanning electron microscopy observation of the wear tracks revealed that a decrease in wear was achieved when the coefficient of friction was kept at 0.2 - 0.3, and the morphology of the wear tracks appeared to be ploughing. The maximum depth of the wear tracks was kept below 0.1 μm when the type of wear was ploughing. (orig.)

  12. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  13. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    Energy Technology Data Exchange (ETDEWEB)

    Ayedh, H. M.; Svensson, B. G. [University of Oslo, Department of Physics/Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Hallén, A. [School of Information and Communication Technology (ICT), Royal Institute of Technology, SE-164 40 Kista-Stockholm (Sweden)

    2015-11-07

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.

  14. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  15. Semiconductor Ion Implanters

    International Nuclear Information System (INIS)

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  16. Ion implantation: Science and technology

    International Nuclear Information System (INIS)

    This book is a tutorial presentation of the science, techniques, and machines of ion implantation. The first section of this book concerns the science of ion implantation. It covers the historical development of the field, and the basic theory of energetic ion penetration of solids. The major concentration of this section is to explain the nature of the creation of damage in crystaline silicon during ion implantation, and the methods which can be used to recover the original crystalinity. Especially helpful are the TEM photographs scattered throughout this section which show the many phases of the morphology of ion implantation damage. Methods are described which allow the quantitative evaluation of the success of the implantation and the recovery of the semiconductor. The last half of this book describes the ion accelerators (implanters) used in ion implantation, with a detailed presentation of the major components which require maintenance. A large part of this section concerns the methods of quantitatively evaluating the performance of ion implanters. A chapter is devoted to the extensive safety hazards of implanters and methods to maintain safe operation

  17. Nanoindentation of ion-implanted crystalline germanium

    International Nuclear Information System (INIS)

    Most indentation studies to date on crystalline germanium (c-Ge) and related covalent semiconductors have been carried out on pristine defect-free material. This paper addresses the paucity of studies on imperfect crystalline materials by exploring the impact of defects generated by ion implantation, prior to contact damage, upon the mechanical properties of c-Ge. Implantation with Ge ions is carried out to generate a layer of highly defective but still-crystalline Ge. Under nanoindentation with a sharp diamond tip, enhanced plasticity is observed relative to pristine material. Characterization by cross-sectional transmission electron microscopy, atomic force microscopy, and load curve analysis shows softening, quasiductile extrusion, and cracking suppression taking place. These changes can be explained by the high density of defects, and dangling bonds in particular, created by ion implantation and revealed by positron-annihilation spectroscopy, and are proportional to the fraction of 'missing bonds' or vacancies in the material. A thermal annealing step at 200 deg. C is sufficient to restore the mechanical response of pristine material, despite incomplete recovery of the original pristine crystal structure.

  18. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He+-ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  19. Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank's solution

    Science.gov (United States)

    Mohan, L.; Anandan, C.; Grips, V. K. William

    2012-06-01

    Diamond like carbon (DLC) coatings posses high hardness and low friction coefficient and also biocompatible, hence, they are of interest for enhancing the wear and corrosion resistance of bio-implant materials. Beta stabilized titanium alloys are attractive for biomedical applications because of their high specific strength and low modulus. In this work Beta-21S alloy (Ti-15Mo-3Nb-3Al-0.2Si) was implanted with carbon ions by plasma immersion ion implantation using methane and hydrogen gas mixture followed by DLC deposition by plasma enhanced chemical vapour deposition (PECVD). The implanted layers enabled deposition of adherent diamond-like carbon coatings on the titanium alloy which was otherwise not possible. The corrosion behavior of the treated and untreated samples was investigated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in simulated body fluid (Hank's solution). XPS, micro Raman and EDAX investigation of the samples showed the formation of a thin oxide layer on the treated samples after corrosion experiments. Corrosion resistance of the DLC coated sample is comparable with that of the untreated samples. Electrochemical impedance data of the substrate and implanted samples were fitted with two time constant equivalent circuits and that of DLC coated samples with two-layer model.

  20. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    This book, the thirteenth in the series ''Cambridge Studies in Modern Optics,'' represents the first attempt to provide a detailed description of the factors and processes that govern the optical properties of ion implanted materials. It begins with a survey of the basic physics and practical methods involved, then goes on to discuss the topics of optical absorption and luminescence. The authors present the basic theory of optical waveguides and their analysis and examine how ion implantation can be used in the production of optical waveguides. The concluding chapter deals with the progress being made in the development of device-oriented waveguide structures and how ion implantation is being used to achieve these ends

  1. Mutation breeding by ion implantation

    Science.gov (United States)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  2. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  3. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  4. Preparation of targets by ion implantation

    International Nuclear Information System (INIS)

    Various factors are described which are involved in target preparation by direct ion implantation and the limitations and pitfalls of the method are emphasized. Examples are given of experiments for which ion implanted targets are well suited. (author)

  5. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite and...

  6. Surface analysis of antithrombogenic ion-implanted silicone rubber

    International Nuclear Information System (INIS)

    The chemical and physical structure of ion-implanted silicone rubbers has been studied with regard to blood compatibility such as the reduction of platelet accumulation owing to ion implantation. In particular, the accumulation ratio of platelets in the superior vena cava revealed that O2+ (1x1017 ions/cm2) implantation was most effective in reducing platelet accumulation. H2+, He+, C+, O+, O2+, N+, N2+, Ne+, Na+, Ar+, K+, and Kr+ ion implantations were performed at an energy of 150 keV with fluences between 1x1017 and 2x1017 ions/cm2 at room temperature. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH, and CH2. The formation of these radicals depended on the ion species employed: ....C=O formation by O+ or O2+ implantation and formation of amines by N+ or N2+ implantation. The results of Raman spectroscopy showed that ion implantation always produced a peak at near 1500 cm-1, although the intensity of this peak was dependent on the ion species. The light ions like H2+ and He+ were more effective than heavy ions in producing this peak, and O2+ implantation was the most effective at producing amorphous carbon. These results indicated that ....C=O and amorphous carbon, generated by O2+ implantation, may improve the antithrombogenicity. (orig.)

  7. Effects of CPII implantation on the characteristics of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ya-Chi [Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Weng, Ko-Wei, E-mail: wl2426@ms26.hinet.net [Department of Materials Science and Engineering, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China); Chao, Ching-Hsun; Lien, Shui-Yang [Department of Materials Science and Engineering, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China); Han, Sheng [Department of Leisure and Recreation Management, National Taichung Institute of Technology 129 San-min Road, Section 3, Taichung 404, Taiwan (China); Chen, Tien-Lai [Department of Holistic Wellness, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China); Lee, Ying-Chieh [Department of Materials Engineering,Nationla Pingtung University of Science and Technology 1, Hseuh Fu Road, Nei Pu, Pingtung, 91201, Taiwan (China); Shih, Han-Chang [Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Wang, Da-Yung [Department of Materials Science and Engineering, MingDao University, 369-B, Wen-Hua Road, Peetow, Chang-Hwa 523, Taiwan (China)

    2009-05-30

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 x 10{sup 17} ions/cm{sup 2} and 2 x 10{sup 17} ions/cm{sup 2}, respectively.

  8. Effects of CPII implantation on the characteristics of diamond-like carbon films

    International Nuclear Information System (INIS)

    A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 x 1017 ions/cm2 and 2 x 1017 ions/cm2, respectively.

  9. High dose metal ion implantation

    International Nuclear Information System (INIS)

    To affect non-electronic surface properties (wear, corrosion and so on) the implanted material must reach measureable atom percentages, on the order of 10%, requiring ion implantation does in the range of 1017/cm2. For this reason, the MEVVA metallic ion source, developed at Lawrence Berkeley Laboratory, has been modified to provide metal ions for high dose metal ion implantation. The modifications inlcude increasing the arc efficiency, increasing beam spot size, and increasing beam divergence. The extracted beams have been characterized as to beam cross section and the depth profiles of implants. Time-average beam currents in excess of 20 mA have been extracted. Beams of titanium, tantalum, and other refractory metal ions, plus other refractory materials, such as titanium carbide, have been extracted and used to produce modifications in the surface properties of materials. (orig.)

  10. Reflectivity modification of polymethylmethacrylate by silicon ion implantation

    International Nuclear Information System (INIS)

    The effect of silicon ion implantation on the optical reflection of bulk polymethylmethacrylate (PMMA) was examined in the visible and near UV. A low-energy (30 and 50 keV) Si+ beam at fluences in the range from 1013 to 1017 cm-2 was used for ion implantation of PMMA. The results show that a significant enhancement of the reflectivity from Si+-implanted PMMA occurs at appropriate implantation energy and fluence. The structural modifications of PMMA by the silicon ion implantation were characterized by means of photoluminescence and Raman spectroscopy. Formation of hydrogenated amorphous carbon (HAC) layer beneath the surface of the samples was established and the corresponding HAC domain size was estimated

  11. Ion implantation at elevated temperatures

    International Nuclear Information System (INIS)

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al+ and Si+ ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail

  12. Ion implantation facility for precision doping of semiconductor devices

    International Nuclear Information System (INIS)

    Full text: We have developed an ion implantation system for application to: the nano-fabrication of p-type and n-type silicon devices; the fabrication of silicon nano-resistors; single phosphorus doping of silicon-based quantum computer devices; the doping of diamond-based devices; the study of ion beam physics of low energy ion interactions with solids. The system reliably delivers a wide range of ion spices, including B+, Te+, P+, C+, N+ and H+ with an energy up to 15 keV. The ion implanter operates in the mode of beam-on-demand control triggered by signals from the substrate and the beam current is adjustable in a wide range from ∼mA to a few ions per-second. The beam purity of each ion species is routinely monitored and analysed using micro-ERDA/PIXE/RBS. Copyright (2005) Australian Institute of Physics

  13. Plasma immersion ion implantation and deposition of DLC coating for modification of orthodontic magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wongsarat, W. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Bangkok 12120 (Thailand); Aukkaravittayapun, S. [National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Bangkok 12120 (Thailand); Jotikasthira, D. [Department of Odontology-Oral Pathology, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    This study was aimed to use the plasma immersion ion implantation and deposition (PIII-D) technique to form diamond-like carbon (DLC) thin films on orthodontic magnets to solve the corrosion problem. To search for the optimal material modification effect, PIII-D conditions including gases, processing time, and pulsing mode were varied. The formation of DLC films was confirmed and characterized with Raman spectra. The intensity of the remnant magnetic field of the magnets and the hardness, adhesion and thickness of the thin films were then measured. A corrosion test was carried out using clinic dental fluid. Improved benefits including a satisfying hardness, adhesion, remnant magnetic strength and corrosion resistance of the DLC coating could be achieved by using a higher interrupting time ratio and shorter processing time.

  14. Plasma immersion ion implantation and deposition of DLC coating for modification of orthodontic magnets

    International Nuclear Information System (INIS)

    This study was aimed to use the plasma immersion ion implantation and deposition (PIII-D) technique to form diamond-like carbon (DLC) thin films on orthodontic magnets to solve the corrosion problem. To search for the optimal material modification effect, PIII-D conditions including gases, processing time, and pulsing mode were varied. The formation of DLC films was confirmed and characterized with Raman spectra. The intensity of the remnant magnetic field of the magnets and the hardness, adhesion and thickness of the thin films were then measured. A corrosion test was carried out using clinic dental fluid. Improved benefits including a satisfying hardness, adhesion, remnant magnetic strength and corrosion resistance of the DLC coating could be achieved by using a higher interrupting time ratio and shorter processing time.

  15. Ion implantation to reduce wear on polyethylene prosthetic devices. Rept. for Aug 89-Jan 91

    International Nuclear Information System (INIS)

    Researchers studied the use of ion implantation to improve the wear performance of ultra high molecular weight polyethylene (UHMWPE). UHMWPE samples were implanted with high energy ions, tested for wear performance, and compared to unimplanted control samples. Surface friction and hardness measurements, Raman scattering, Rutherford backscattering (RBS), water contact angle, and film transfer tests were performed to characterize the surface property changes of implanted UHMWPE samples. Results indicated a 90% reduction in wear on implanted UHMWPE disks. Implantation increased surface microhardness and surface energy. The Raman spectrum revealed a diamond-like signature, indicting carbon bonds of a different nature than those found in unimplanted polyehtylene. Photographic analysis of pins used in wear testing revealed differences between implanted and unimplanted samples in the polyethylene film transferred in the initial stages of wear from the disk to the pin

  16. New Superhard Carbon Phases Between Graphite and Diamond

    OpenAIRE

    He, Chaoyu; Sun, L. Z.; Zhang, C. X.; Zhang, K. W.; Peng, Xiangyang; Zhong, Jianxin

    2012-01-01

    Two new carbon allotropes (H-carbon and S-carbon) are proposed, as possible candidates for the intermediate superhard phases between graphite and diamond obtained in the process of cold compressing graphite, based on the results of first-principles calculations. Both H-carbon and S-carbon are more stable than previously proposed M-carbon and W-carbon and their bulk modulus are comparable to that of diamond. H-carbon is an indirect-band-gap semiconductor with a gap of 4.459 eV and S-carbon is ...

  17. Ion implantation and bio-compatibility

    International Nuclear Information System (INIS)

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 1015 to 3 x 1017 ions/cm2 to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author)

  18. Computation of ion implantation uniformity

    International Nuclear Information System (INIS)

    Commercial ion implanters employ a variety of different systems to scan the ion beam over the target. In many of the target scanning systems employed the achievable uniformity of dose has been limited by the chosen geometry. This paper describes a computer program which has been used to calculate the dose uniformity of a number of these systems. The results are presented as iso-dose lines relative to the dose at the centre of the target. The non-uniformities are then directly apparent and the parameters controlling their magnitude can be readily considered by equipment designers, purchasers or users. (author)

  19. Formation mechanism of diamond nanocrystal from catalysed carbon black

    International Nuclear Information System (INIS)

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, α-Fe, γ-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in γ-Fe is separated out, and n-diamond nuclei form and grow

  20. Formation mechanism of diamond nanocrystal from catalysed carbon black

    Science.gov (United States)

    Wen, Bin; Li, Tingju; Dong, Chuang; Zhang, Xingguo; Yao, Shan; Cao, Zhiqiang; Wang, Dehe; Ji, Shouhua; Jin, Junze

    2004-10-01

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, agr-Fe, ggr-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in ggr-Fe is separated out, and n-diamond nuclei form and grow.

  1. Formation mechanism of diamond nanocrystal from catalysed carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bin [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Li Tingju [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Dong Chuang [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Zhang Xingguo [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Yao Shan [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Cao Zhiqiang [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China); Wang Dehe [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Ji Shouhua [Department of Materials Engineering, Dalian University of Technology, Dalian 116023 (China); Jin Junze [Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023 (China)

    2004-10-06

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH){sub 3} into Fe{sub 2}O{sub 3}, {alpha}-Fe, {gamma}-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in {gamma}-Fe is separated out, and n-diamond nuclei form and grow.

  2. Effects of N+ ion implantation into cubic BN film for tribological usages

    International Nuclear Information System (INIS)

    Cubic boron nitride (c-BN) film was deposited onto a silicon substrate by means of the magnetically enhanced ion-plating method developed by the authors, and ion implantation was performed as a post-treatment using N+ under various conditions. In this study, the crystal structure and tribological properties against diamond of the c-BN film treated by ion implantation were investigated. The results showed that implantation depth increased with an increase in implanting energy even on this c-BN, and it was found that ion damage to the c-BN phase was less when the dosage fell below 8 x 1015 ions cm-2. It was also found that ion implantation was effective in decreasing the friction coefficient when the treated film was contacted with diamond. (orig.)

  3. Current trends in ion implantation

    International Nuclear Information System (INIS)

    As semiconductor device dimensions continue to shrink, the drive beyond 250 nm is creating significant problems for the device processor. In particular, trends toward shallower-junctions, lower thermal budgets and simplified processing steps present severe challenges to ion implantation. In parallel with greater control of the implant process goes the need for a better understanding of the physical processes involved during implantation and subsequent activation annealing. For instance, the need for an understanding of dopant-defect interaction is paramount as defects mediate a number of technologically important phenomena such as transient enhanced diffusion and impurity gettering. This paper will outline the current trends in the ion implantation and some of the challenges it faces in the next decade, as described in the semiconductor roadmap. It will highlight some recent positron annihilation work that has made a contribution to addressing one of these challenges, namely the need for tighter control of implant uniformity and dose. Additionally, some vacancy-mediated processes are described with the implication that these may provide areas in which positron annihilation spectroscopy could make a significant contribution. (orig.)

  4. Annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    The newer uses of ion implantation require a higher dose rate. This has led to the introduction of high beam current implanters; the wafers move in front of a stationary beam to give a scanning effect. This can lead to non-uniform heating of the wafer. Variations in the sheet resistance of the layers can be very non-uniform following thermal annealing. Non-uniformity in the effective doping both over a single wafer and from one wafer to another, can affect the usefulness of ion implantation in high dose rate applications. Experiments to determine the extent of non-uniformity in sheet resistance, and to see if it is correlated to the annealing scheme have been carried out. Details of the implantation parameters are given. It was found that best results were obtained when layers were annealed at the maximum possible temperature. For arsenic, phosphorus and antimony layers, improvements were observed up to 12000C and boron up to 9500C. Usually, it is best to heat the layer directly to the maximum temperature to produce the most uniform layer; with phosphorus layers however it is better to pre-heat to 10500C. (U.K.)

  5. Diamond-like carbon coated ultracold neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Heule, S. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland) and Physik-Institut der Universitaet Zuerich (Switzerland)]. E-mail: stefan.heule@psi.ch; Atchison, F. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Daum, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Foelske, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Henneck, R. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Kasprzak, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, Vienna (Austria); Kirch, K. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Knecht, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Physik-Institut der Universitaet Zuerich (Switzerland); Kuzniak, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Jagellonian University, Cracow (Poland); Lippert, T. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Pichlmaier, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Straumann, U. [Physik-Institut der Universitaet Zuerich (Switzerland)

    2007-07-31

    It has been shown recently that diamond-like carbon (DLC) with a sp{sup 3} fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp{sup 3} fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate.

  6. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Science.gov (United States)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-12-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp3 (75%-85%) with the rest being threefold sp2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed

  7. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2015-12-07

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing

  8. Formation of low friction and wear-resistant carbon coatings on tool steel by 75keV, high-dose carbon ion implantation

    International Nuclear Information System (INIS)

    Hardened AISI D2 steel samples were subjected to mass-separated C+ ion bombardment at 75keV with ion doses in the range 0.5-15x1018C+cm-2. It was observed that sputtering was still limited, and the system exhibited internal growth, because most of the ions penetrated more than 0.1μm into the growing carbon film. At the lowest ion doses applied, carbon was implanted into the steel, while higher doses resulted in the implanted carbon concentration near the surface being almost 100%. For the highest doses applied, Rutherford backscattering spectrometry and surface profilometry analyses showed that layers about 0.5-1μm thick of almost pure carbon grew outward from the steel substrate. Transmission electron microscopy showed that the carbon layers were amorphous and exhibited an intermixed layer-substrate interface. The layers were hard and exhibited pronounced elastic recovery when subjected to ultralow load indentation. Low friction and excellent wear properties were measured when tested under dry conditions with a ball-on-disc tribometer. ((orig.))

  9. Raman spectra of electrochemically hydrogenated diamond like carbon surface

    OpenAIRE

    Biswas, Hari Shankar; Datta, Jagannath; Sen, Pintu; Ghosh, Uday Chand; Ray, Nihar Ranjan

    2013-01-01

    Raman spectroscopy has been employed to distinguish between the Raman spectrum of pristine hydrogenated diamond like carbon (PHDLC) and that of electrochemically hydrogenated diamond like carbon (ECHDLC). The enhancement of the background photoluminescence (PL) in the Raman spectrum and broadening of PL spectrum of ECHDLC are identified to be due to increase of sp3 C-H density onto the PHDLC surface, during novel electrochemical process of hydrogenation of sp2 C=C into sp3 C-H.

  10. Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles

    Science.gov (United States)

    Almeida, C. N.; Ramos, B. C.; Da-Silva, N. S.; Pacheco-Soares, C.; Trava-Airoldi, V. J.; Lobo, A. O.; Marciano, F. R.

    2013-06-01

    The coating of orthopedic prostheses with diamond like-carbon (DLC) has been actively studied in the past years, in order to improve mechanical, tribological properties and promote the material's biocompatibility. Recently, the incorporation of crystalline diamond nanoparticles into the DLC film has shown effective in combating electrochemical corrosion in acidic medias. This study examines the material's biocompatibility through testing by LDH release and MTT, on in vitro fibroblasts; using different concentrations of diamond nanoparticles incorporated into the DLC film. Propounding its potential use in orthopedics in order to increase the corrosion resistance of prostheses and improve their relationship with the biological environment.

  11. Dislocation climb in copper after ion implantation

    International Nuclear Information System (INIS)

    At present, ion implantation is used widely for the modification of subsurface layers of metallic materials to improve the service characteristics of machine components and tools. The aim of this work was the experimental examination of the 'long-range effect' in coarse-grain copper in high-dose ion implantation. In this method, special attention is given to the preparation of specimens both for the case and for the examination by the method of electron microscopy and also to the ion implantation conditions

  12. Graphene diamond-like carbon films heterostructure

    Science.gov (United States)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ˜25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  13. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  14. Graphene diamond-like carbon films heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology, Electronic and Electrical Engineering Department, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  15. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    Science.gov (United States)

    Liu, C. L.; Chu, Paul K.; Yang, D. Z.

    2007-04-01

    Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.

  16. In vitro evaluation of diamond-like carbon coatings with a Si/SiC x interlayer on surgical NiTi alloy

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) coatings were produced with a Si/SiC x interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiC x interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiC x interlayer have high potential as protective coatings for biomedical NiTi materials

  17. Carbon isotope ratios and impurities in diamonds from Southern Africa

    Science.gov (United States)

    Kidane, Abiel; Koch-Müller, Monika; Morales, Luiz; Wiedenbeck, Michael; De Wit, Maarten

    2015-04-01

    We are investigating the sources of diamonds from southern Africa by studying both their carbon isotopic composition and chemical impurities. Our samples include macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Helam and Klipspringer kimberlitic deposits from South Africa, as well as micro-sized diamonds from Klipspringer and Premier kimberlites in South Africa. We have characterized the samples for their structurally bounded nitrogen, hydrogen and platelets defect using a Fourier Transmission Infrared Spectroscopy (FTIR). Using the DiaMap routine, open source software (Howell et al., 2012), IR spectra were deconvulated and quantified for their nitrogen (A, B and D components) and hydrogen contents. High to moderate nitrogen concentrations (1810 to 400 µg/g; 400 to 50 µg/g respectively) were found in diamonds from Klipspringer and Helam. Moderate to low (isotope studies is the development of calibration materials for SIMS carbon isotopic analyses. We have investigated candidate materials both from a polycrystalline synthetic diamond sheet and two natural gem quality diamonds from Juina (Brazil). Electron-based images of the synthetic diamond sheet, obtained using GFZ Potsdam's dual beam FIB instrument, show many diamond grains with diameters greater than 35 µm. SIMS testing of the isotopic homogeneity of the back and front sides of the synthetic sheets reveal similar 13C/12C ratio within a RSD of isotopic analyses of the two natural diamond RMs yield a constant 13C/12C ratio with RSD of better than 0.5 ‰ . Using the natural diamond as calibratrant, a preliminary result on a selected diamond from the four kimberlitic sample suites yields a δ13C in range between -3 to -7 ‰ . Reference: Howell, D., O'Neill, C. J., Grant, K. J., Griffin, W. L., Pearson, N. J., & O'Reilly, S. Y. (2012). μ-FTIR mapping: Distribution of impurities in different types of diamond growth. Diamond and Related Materials, 29, 29-36. doi:10.1016/j.diamond.2012.06.003.

  18. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  19. Application of ion implantation in stevia breeding

    International Nuclear Information System (INIS)

    Dry seed of stevia were implanted with 60-100 keV nitrogen ion and 75 keV carbon ion of various doses, and the effects of the composition and yield of stevioside were studied. The results showed that ion beam could induce variation in total stevioside yield and the composition of the plant. The best treatment was 75 keV nitrogen ion with 5 x 1014 N+/cm2, the stevioside yield and Rebaudioside A (R-A) content were increased by 4.74% and 14.08% respectively. The effects induced by implantation of carbon ion were higher than those induced by implantation of nitrogen ion. Effects of Feng1 x Ri Yuan and Ri Yuan x Feng2 are higher than those of Ji Ning and Feng2. Seven mutation lines were selected from the mutation progenies. The stevioside composition of these lines were previously improved. The results suggest a potential application of ion implantation in stevia breeding

  20. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  1. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  2. Ion implantation in semiconductors and other materials

    International Nuclear Information System (INIS)

    The evolution of ion implantation techniques in the field of semiconductors and its extension to various fields such as metallurgy, mechanics, superconductivity and opto-electronics are considered. As for semiconductors ion implantation is evoked as: a means of predeposition of impurities at low doping level (1011 to 1014cm-2); a means for obtaining profiles of controlled concentration; a means of reaching high doping levels with using 'strong current' implantation machines of the second generation. Some results obtained are presented

  3. Thermal Behaviour of W+C Ion Implanted Ultra High Molecular Weight Polyethylene (UHMWPE)

    International Nuclear Information System (INIS)

    The aim of this work was to examine thermal behavior of the surface modified Ultra High Molecular Weight Poly Ethylene (UHMWPE ) in order to understand the effect of ion implantation on the properties of this polymer which is widely used especially for biomedical applications. UHMWPE samples were Tungsten and Carbon (W+C) hybrid ion implanted by using Metal Vapour Vacuum Arc (MEVVA) ion implantation technique with a fluence of 10 17 ions/cm2 and extraction voltage of 30 kV. Untreated and surface-treated samples were investigated by Rutherford Back Scattering (RBS) Analysis, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrometry, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). This study has shown that ion implantation represents a powerful tool on modifying thermal properties of UHMWPE surfaces. This combination of properties can make implanted UHMWPE a preferred material for biomedical applications.

  4. Modification of mechanical properties through ion implantation

    International Nuclear Information System (INIS)

    Fatigue, internal friction, and cavitation-erosion properties of plain steel, containing 0.18 wt.% carbon (AISI 1018), have been modified by implantation with nitrogen molecules of 150 KeV energy. It is suggested that these phenomena are related to the interactions of the implant with dislocations. Specifically, room temperature, high-cycle fatigue-lifetime can be significantly extended when the implanted specimens are aged for times sufficiently long to enable interstitial migration to and association with near-surface dislocations. Acoustically-induced cavitation-erosion behavior in distilled water at ambient temperature is also found to be improved by implantation. The role played by interstitial-dislocation association in improving these properties is examined with ultra-high sensitive internal friction and with scanning and transmission electron microscopy. Such experiments are aiding in an elucidation of the fate of the implanted nitrogen in body-centered cubic steels. These preliminary results indicate the potential applications of ion implantation for the improvement of surface-related mechanical properties. (author)

  5. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  6. Laws of phase formation in ion-implanted metals

    International Nuclear Information System (INIS)

    Full text: Main laws of ordered structures formation at molybdenum implantation by elements forming phases of introduction (B, C, N, 0, Si, P, S) are discovered in this work. According to them the character of structural and phase transformations in molybdenum at ion implantation is determined not by kinetic parameters of bombarding particles and their chemical activity but by size factor ηx/Me (ratio of nuclear radii of introduced elements and atoms of a matrix). At change of its meaning in the certain limits the following can be observed: superstructures formation (ηx/Mox/Mox/Mo>0.69). In the latter case at the further implantation doze increasing recrystallization of molybdenum monocrystalline layers amorphized during previous bombarding with chemical connection formation takes place, characterized by us as ion-inducted synthesis. The phenomenon discovered on the samples implanted by phosphorus ions. As the result, the high-temperature phase of molybdenum monophosphide MoP having densely situated lattice was synthesized. The complete confirmation of the main laws of structural and phased transformations at ion implantation established by results on molybdenum monocrystals with OCC lattice was achieved at realization of similar researches on the other transitive metal - zirconium which differs from molybdenum according to a number of attributes: a type of an initial lattice structural condition (large scaled polycrystal), presence of interparticle borders and high solubility of atmospheric impurities (nitrogen, carbon, oxygen). The discovered laws have proved to be true also according to ion implanted samples of monocrystal tungsten and polycrystal tantalum

  7. In-situ deposition of sacrificial layers during ion implantation

    International Nuclear Information System (INIS)

    The retained dose of implanted ions is limited by sputtering. It is known that a sacrificial layer deposited prior to ion implantation can lead to an enhanced retained dose. However, a higher ion energy is required to obtain a similar implantation depth due to the stopping of ions in the sacrificial layer. It is desirable to have a sacrificial layer of only a few monolayers thickness which can be renewed after it has been sputtered away. We explain the concept and describe two examples: (i) metal ion implantation using simultaneously a vacuum arc ion source and filtered vacuum arc plasma sources, and (ii) Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). In MePIIID, the target is immersed in a metal or carbon plasma and a negative, repetitively pulsed bias voltage is applied. Ions are implanted when the bias is applied while the sacrificial layer suffers sputtering. Low-energy thin film deposition - repair of the sacrificial layer -- occurs between bias pulses. No foreign atoms are incorporated into the target since the sacrificial film is made of the same ion species as used in the implantation phase

  8. Panel 2 - properties of diamond and diamond-like-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Clausing, R.E. [Oak Ridge National Lab., TN (United States); Ajayi, O.O.; Liu, Y.Y.; Purohit, A. [Argonne National Lab., IL (United States); Bartelt, P.F. [Deere & Co., Moline, IL (United States); Baughman, R.H. [Allied Signal, Morristown, NJ (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Cooper, C.V. [United Technologies Research Center, East Hartford, CT (United States); Dugger, M.T. [Sandia National Laboratories, Albuquerque, NM (United States); Freedman, A. [Aerodyne Research, Inc., Billerica, MA (United States); Larsen-Basse, J. [National Science Foundation, Washington, DC (United States); McGuire, N.R. [Caterpillar, Peoria, IL (United States); Messier, R.F. [Pennsylvania State Univ., University Park (United States); Noble, G.L.; Ostrowki, M.H. [John Crane, Inc., Morton Grove, IL (United States); Sartwell, B.D. [Naval Research Lab., Washington, DC (United States); Wei, R. [Colorado State Univ., Fort Collins (United States)

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  9. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

    Science.gov (United States)

    Kis, Viktoria K.; Shumilova, Tatyana; Masaitis, Victor

    2016-07-01

    High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

  10. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  11. Ion-implantation damage in silicate glasses

    Science.gov (United States)

    Arnold, G. W.

    Ion implantation is a rapid technique for simulating damage induced by alpha recoil nuclei in nuclear waste forms. The simulation has been found to be quite good in TEM comparisons with natural alpha decay damage in minerals, but leach rate differences have been observed in glass studies and were attributed to dose rate differences. The similarities between ion implantation and recoil nuclei as a means of producing damage suggest that insights into the long term behavior of glass waste forms can be obtained by examination of what is known about ion implantation damage in silicate glasses. This paper briefly reviews these effects and shows that leaching results in certain nuclear waste glasses can be understood as resulting from plastic flow and track overlap. Phase separation is also seen to be a possible consequence of damage induced compositional changes.

  12. Development of industrial ion implantation technology

    International Nuclear Information System (INIS)

    On a cooperation between KAERI, Kurchatov Institute (Russia), and Mirae Co., development of a metal ion implanter and ion implantation technology is performed on a basic idea of popularization and refinement of ion implantation technology applied to the industrial components. The developed implanter is a two beam type: the mass separation line produces several mA of metal ion beams and the non-separation line produces several tens of mA gas ion beams, thus making the synergistic effect possible by the irradiation of beams from both lines. The target is made of a rotating plate of 60cm in radius and can treat various types of industrial components or parts. About 60 kinds of specimens were treated for the development of implantation technology. Two or five times lengthening of longevities were achieved on the PCB drills, razor blades, cutters, and precision dies. (Author)

  13. Mutagenic mechanism on ion implantation of plants

    International Nuclear Information System (INIS)

    Ion beam implantation, as a new mutation technique, has been widely used in mutation breeding, and great achievements have been attained in agriculture and fermentation industry. The mechanism underlying ion beam induced mutagenic effects has been the topic of research in recent years. In this paper, we focus on the initial physical process of ion implantation into organisms, discussing that energy deposit, mass deposit and charge transfer of the implanted ions into target organisms are the main contributions to the bio-effects. Recent advances in the study of transferring of damaging signals in plant sample are also included. It has been observed that targeted ion implantation of shoot apical meristem (SAM) of Arabidopsis embryos induces damage of root apical meristem (RAM), indicating a long distant bystander effect in intact organism. Further studies showed that generation of reactive oxygen species upon ion implantation and auxin-dependent transcription processes could play important roles in the observed bystander effect. (author)

  14. Mutagenic Mechanisms of Ion Implantation in Plants

    International Nuclear Information System (INIS)

    Ion beam implantation, as a new mutation technique, has been widely used in mutation breeding, and great achievements have been made for both the agriculture and fermentation industry. The mechanism underlying ion beam-induced mutagenesis has been a topic of research in recent years. In this paper, we focus on the initial physical process of ion implantation into organisms, noting that energy deposit, mass deposit and charge transfer of the implanted ions into target organisms are the main contributors to the biological effects. Recent studies of remote damage following ion beam implantation in plant samples are also included. It was observed that targeted ion implantation of the shoot apical meristem (SAM) of Arabidopsis embryos induces damage to the root apical meristem (RAM), indicating long distance systemic effects in intact organisms. Further studies showed that the generation of reactive oxygen species upon ion implantation could play important roles in the observed systemic effects. (author)

  15. The growth environments of sloan diamonds: inferences based on their carbon isotope composition

    International Nuclear Information System (INIS)

    Carbon isotope compositions have been determined from the Sloan diatremes of the Colorado-Wyoming State Line kimberlite district (North America). The diamonds were previously broken for a study of their mineral inclusions. Based on mineral inclusion composition, the Sloan diamonds are divided into the broad peridotitic and eclogitic categories found for diamonds worldwide. Group I is comprised entirely of peridotitic diamonds whereas most of the diamonds in Group II and Group III are of eclogitic affinity. Differences in diamond morphology and mass are found between the three groups. Significant variation in δ13C was documented within single diamonds. Carbon isotope modelling of the Sloan diamond data suggests that the ranges in δ13C found for Group I and Group II diamonds at Sloan could have been produced from relatively homogeneous carbon reservoirs undergoing Rayleigh fractionation. The Group III diamonds were probably not produced from a single, isotopically homogeneous carbon reservoir. It is possible that the wide range of δ13C values for Group III diamonds was formed from an initially inhomogeneous (primordial or recycled) carbon source. Alternatively, the Group III diamonds may have crystallized from a less inhomogeneous, 13C-depleted fraction remaining after crystallization of Group I and Group II diamonds. The latter posibility suggests that the full range of δ13C values found for Sloan diamonds could have been produced in stages from an initially homogeneous carbon source. 2 figs., 3 refs

  16. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces. PMID:21934113

  17. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 1013/cm2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  18. Stoichiometric disturbances in ion implanted silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, E.; Monserrat, J.; Rebollo, J.; Flores, D.; Jorda, X. [Centro Nacional de Microelectronica, Barcelona (Spain); Locatelli, M.L.; Ottaviani, L. [CEGELY ECPA, INSA de Lyon, Villeurbanne (France)

    1998-08-01

    Monte Carlo simulations of stoichiometric disturbances induced by ion implantation into 6H-SiC single crystal are presented. By following the recoils trajectories during the implantation simulation it is possible to construct C and Si related point defects distributions, which in turns give the post implantation stoichiometry of the SiC crystal. The results show net concentrations of ``stable`` point defects and stoichiometric disturbances of the order of the chemical concentration of the implanted impurity. This phenomenon could play an important role during subsequent annealing steps. Some practical examples of ion implantation are simulated and discussed. (orig.) 4 refs.

  19. Ion implantation of silicon nitride ball bearings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M. [Oak Ridge National Lab., TN (United States); Miner, J.R. [United Technologies, Pratt and Whitney, West Palm Beach, FL (United States)

    1996-09-01

    Hypothesis for ion implantation effect was that stress concentrations reflected into the bulk due to topography such as polishing imperfections, texture in the race, or transferred material, might be reduced due to surface amorphization. 42 control samples were tested to an intended runout period of 60 h. Six ion implanted balls were tested to an extended period of 150 h. Accelerated testing was done in a V groove so that wear was on two narrow wear tracks. Rutherford backscattering, XRPS, profilometry, optical microscopy, nanoindentation hardness, and white light interferometry were used. The balls were implanted with 150-keV C ions at fluence 1.1x10{sup 17}/cm{sup 2}. The samples had preexisting surface defects (C-cracks), so the failure rate of the control group was unacceptable. None of the ion-implanted samples failed in 150 h of testing. Probability of randomly selecting 6 samples from the control group that would perform this well is about 5%, so there is good probability that ion implantation improved performance. Possible reasons are discussed. Wear tracks, microstructure, and impurity content were studied in possible relation to C-cracks.

  20. Lattice damage during ion implantation of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T.E.

    1993-08-01

    The temperature dependence of the lattice damage created during ion implantation of Si, Ge, Si-Ge alloys, and various III-V compounds is reviewed and interpreted in terms of a transition between two different damage formation mechanisms. Implications of this transition for control of damage, annealing, and electrical activation are discussed, particularly in GaAs.

  1. Single atom devices by ion implantation

    International Nuclear Information System (INIS)

    To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling. (paper)

  2. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C1, C2, and C4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  3. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han-Shen; Endrino, Jose L.; Anders, Andre

    2008-07-10

    In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp2-sp3 hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping.

  4. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  5. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  6. X-ray photoelectron study of Si+ ion implanted polymers

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si+ ions (E=30 keV, D= 1.1017 cm-2). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si+ ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  7. Electrochemical properties of carbon materials implanted with high energy heavy ions

    International Nuclear Information System (INIS)

    Carbon materials have some allotropes such as diamond, graphite and amorphous carbon. These allotropes show significantly different natures depending on their structures. Ion implantation has two different effects on the modification of material surface layers, that is, the structural modification induced by the energy radiation accompanying ion beam bombardment, and the composition change introduced by doping surface layers with different elements. Carbon materials have been used as fuel, tools, electrical conductors, chemical instruments, electrochemical electrodes and composite materials because of their natures, such as the brightness and hardness of diamond and the chemical stability and electro-conductivity of black carbon. For all these uses, the surface properties are important, accordingly, ion implantation is an important technique for modifying the surface layers. In this paper, the main features of the ion implantation on the surface modification of diamond and glassy carbon substrates, and the chemical and electrochemical properties of glassy carbon implanted with various elements are reported. The electrode characteristics of ion-implanted glassy carbon are affected by the composition change and the change to amorphous form. (K.I.)

  8. Wear resistance of ion-implanted metallic materials

    International Nuclear Information System (INIS)

    The present work is devoted to the study of the effect of ion implantation on the wear resistance of materials. Steel 3 and copper cylinder specimens were irradiated with 40 keV carbon, zirconium, titanium, niobium, lead, molybdenum and chromium continuous ion beams and a 200 keV pulsed carbon ion beam with fluences of 1017 ions cm-2 and 1013 ions cm-2 respectively. The loss of mass during friction of the butt surface against the rotating disk was taken as the measure of wear. For materials irradiated with continuous ion beams the depth of the layer with increased wear resistance was about 80-100μm, which is two orders of magnitude greater than the depth of penetration of the implanted ions. In the case of ion implantation with a pulsed ion beam for a short period of time, a great amount of heat was generated. The speed of its dissipation into the bulk of a specimen depends on the thermal conductivity of the material, and hardening of the wear-surface layer starts with cooling at some speed. (orig.)

  9. Surface microanalytical studies of nitrogen ion-implanted steel

    International Nuclear Information System (INIS)

    Five types of industrial steels, 1018, 52100, M-2, 440C, and 304 were ion implanted with nitrogen and subjected to surface microanalysis by three independent surface techniques: AES, RBS, and SIMS. The results provided understanding for earlier observations of the properties of various types of steel after nitrogen implantation. The steels that retained the most nitrogen and that have been reported to benefit the most in improved tribological properties from ion implantation were ferritic carbon and austenitic stainless steels, such as soft 1018 and 304, respectively. Heat-treated martensitic carbon steels such as 52100 and M-2 tool steel were found to retain the least nitrogen, and they have been reported to benefit less from nitrogen implantation; however, the interaction of transition metal carbides in M-2 with nitrogen has not been clarified. The data showed that 440C steel retained as much nitrogen as 1018 and 304, but treatment benefits may be limited to improvements in properties related to toughness and impact resistance. (orig.)

  10. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    OpenAIRE

    Konrad Suschke; René Hübner; Peter Paul Murmu; Prasanth Gupta; John Futter; Andreas Markwitz

    2015-01-01

    Diamond-like carbon (DLC) coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by...

  11. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  12. Microstructure of metal Ion implanted ceramics

    International Nuclear Information System (INIS)

    Microstructure of alumina and silicon nitride after metal ion implantation has been studied. A metal vapour vacuum arc (MEVVA) ion source was employed to implant Ti ions into alumina with 7.6x1016 and 3.1x1017 ions/cm2 at 40 keV. Ti ions were also implanted into silicon nitride at a dose of 4x1017 ions/cm2 at 70 keV. The characterisation of ion implanted ceramics by Rutherford Backscattering Spectrometry (RBS) and cross-sectional transmission electron microscopy (XTEM) showed low dose Ti implantation into alumina resulted in a highly defective surface layer. At higher dose, TiO2 precipitates in an amorphous matrix were detected. In contrast, Ti implantation into silicon nitride produced a layered structure. The upper most layer consisted of extremely fine TiN particles in an amorphous matrix. Underneath this layer, an amorphous layer was formed. (authors)

  13. Radioactive ion implantation of thermoplastic elastomers

    OpenAIRE

    Borcea, Veronica

    2008-01-01

    The radioactive ion implantation wear measuring method (RII) has been used for many years as a tool to make highly sensitive real-time in-situ measurements of wear and corrosion in metallic or ceramic materials. The method consists of the controlled implantation of radioactive ions of limited decay time in a thin layer at the surface of the material. The progressive abrasion of the material results in a decline in radioactivity which is followed to monitor material losses. The application ...

  14. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Science.gov (United States)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  15. Molecular ion sources for low energy semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described

  16. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  17. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jan; Voss, A.; Kozarova, R.; Kocourek, Tomáš; Písařík, Petr; Ceccone, G.; Kulisch, W.; Jelínek, Miroslav; Apostolova, M.D.; Reithmaier, J.P.; Popov, C.

    2014-01-01

    Roč. 297, APR (2014), s. 95-102. ISSN 0169-4332 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : ultrananocrystalline diamond films * diamond-like carbon films * surface modification * direct contact cell tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169433214001251

  18. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na+, N2+, O2+, Ar+ and Kr+ were implanted to the polymer surface with ion fluences between 1 x 1015 and 3 x 1017 ions/cm2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  19. Mutagenesis of Arabidopsis Thaliana by N+ Ion Implantation

    Science.gov (United States)

    Zhang, Genfa; Shi, Xiaoming; Nie, Yanli; Jiang, Shan; Zhou, Hongyu; Lu, Ting; Zhang, Jun

    2006-05-01

    Ion implantation, as a new biophysically mutagenic technique, has shown a great potential for crop breeding. By analyzing polymorphisms of genomic DNA through RAPD-based DNA analysis, we compared the frequency and efficiency of somatic and germ-line mutations of Arabidopsis thaliana treated with N+ ion implantation and γ-rays radiation. Our data support the following conclusions: (1) N+ ion implantation can induce a much wider spectrum of mutations than γ-rays radiation does; (2) Unlike the linear correlation between the doses and their effect in γ-rays radiation, the dose-effect correlation in N+ ion implantation is nonlinear; (3) Like γ-rays radiation, both somatic and germ-line mutations could be induced by N+ ion implantation; and (4) RAPD deletion patterns are usually seen in N+ ion implantation induced mutation.

  20. Experimental investigation of ion-implanted magnetic recording material

    International Nuclear Information System (INIS)

    The structure changes in ion implanted Permalloy have been observed by reflection high energy electron diffraction and X-ray photoelectron spectrometry. Amorphous phase and metal compound are formed in the surface layer. The magnetic property, mechanical property and surface roughness of the ion implanted samples and frequency response of the ion implanted magnetic head have been measured. The experimental results show that the hardening layer could be formed on the surface of an implanted sample without any degradation of the magnetic property

  1. A percolation theory approach to the implantation induced diamond to amorphous-carbon transition

    International Nuclear Information System (INIS)

    The physical fact that diamond is electrically insulating while amorphous carbon and graphite are conducting is used in the present work to study the local damage that each implanted ion creates around its track and to conclude about the processes through which implanted diamond turns amorphous. Experimental data for the conductivity of Sb implanted diamond for various geometries, energies and doses are analyzed by the use of percolation theory. It seems that the amorphization of implanted diamond proceeds gradually with no well defined amorphous regions formed around the ion track. Amorphization in implanted diamond seems to occur in a way different than is believed to be the case for implanted silicon, where some direct amorphization around an ion track is suggested. This major difference can be attributed to the abnormally large change in densities between diamond and amorphous carbon or graphite which suppresses the growth of local amorphous regions in diamond. (author)

  2. Damage accumulation in ceramics during ion implantation

    International Nuclear Information System (INIS)

    The damage structures of α-Al2O3 and α-SiC were examined as functions of ion implantation parameters using Rutherford backscattering-channeling, analytical electron microscopy, and Raman spectroscopy. Low temperatures or high fluences of cations favor formation of the amorphous state. At 3000K, mass of the bombarding species has only a small effect on residual damage, but certain ion species appear to stabilize the damage microstructure and increase the rate of approach to the amorphous state. The type of chemical bonding present in the host lattice is an important factor in determining the residual damage state

  3. Aligned ion implantation using scanning probes

    OpenAIRE

    Persaud, Arun

    2007-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an...

  4. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    Directory of Open Access Journals (Sweden)

    Konrad Suschke

    2015-07-01

    Full Text Available Diamond-like carbon (DLC coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by tailoring the deposition parameters. The coatings show good promise for industrial use due to their high hardness, low friction and excellent adhesion to the surface of the samples.

  5. Properties of nitrogen containing diamond-like carbon films

    International Nuclear Information System (INIS)

    Optical and mechanical properties of nitrogen containing diamond- like carbon (NC-DLC) films deposited by RF plasma decomposition of CH4:H2:N2 gas mixture were investigated. Nitrogen was incorporated into DLC films both during film growth and after deposition of film by implantation of nitrogen ions. It was shown that both optical and mechanical properties of the films strongly depend on nitrogen content in the films. In some cases the mechanical properties of nitrogen implanted films were improved in comparison with unimplanted samples. (author). 7 refs., 2 figs

  6. Method and apparatus for making diamond-like carbon films

    Science.gov (United States)

    Pern, Fu-Jann; Touryan, Kenell J.; Panosyan, Zhozef Retevos; Gippius, Aleksey Alekseyevich

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  7. Tribocorrosion of Diamond Like Carbon (DLC) coatings for biomedical applications

    OpenAIRE

    Sanchez Adam, Jorge

    2015-01-01

    Tribocorrosion has arisen as one of the most important material degradation processes in biomedical applications; thus, the improvement of the materials used in hip or knee prosthesis is very relevant. The aim of this project is to test the outstanding properties of the diamond like carbon material as a coating; a comparison between CoCrMo with several types of DLC as ta-C, a-C:H and metal doped with Ti and Si. Also different deposition methods will be compared like Physical Vapour Deposit...

  8. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    Science.gov (United States)

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime. PMID:24224845

  9. Synthesis of copper nanoparticles in polycarbonate by ion implantation

    Indian Academy of Sciences (India)

    Annu Sharma; Suman Bahniwal; Sanjeev Aggarwal; S Chopra; D Kanjilal

    2011-07-01

    Copper nanoparticles have been synthesized in polycarbonate by 75 KeV Cu– ion implantation with various doses ranging from 6.4 × 1015 to 1.6 × 1017 ions/cm2 with a beam current density of 800 nA/cm2. The composites formed were structurally characterized using Ultraviolet-Visible (UV-Visible) absorption spectroscopy. The appearance of particle plasmon resonance peak, characteristic of copper nanoparticles at 603 nm in absorption spectra of polycarbonate implanted to a dose of 1.6 × 1017 ions/cm2, indicates towards the formation of copper nanoparticles in polycarbonate. Transmission electron microscopy further confirms the formation of copper nanoparticles having size ∼ 3.15 nm. The formation of copper nanoparticles in the layers carbonized by Cu– implantation has been discussed. The synthesized copper-polycarbonate nanocomposite has been found to be more conducting than polycarbonate as ascertained using current–voltage characteristics.

  10. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  11. PLEPS study of ions implanted RAFM steels

    Science.gov (United States)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  12. Ion implantations of oxide dispersion strengthened steels

    Science.gov (United States)

    Sojak, S.; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-01

    This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors - Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 1017 ions/cm2. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  13. Plasma immersion ion implantation for silicon processing

    Science.gov (United States)

    Yankov, Rossen A.; Mändl, Stephan

    2001-04-01

    Plasma Immersion Ion Implantation (PIII) is a technology which is currently widely investigated as an alternative to conventional beam line implantation for ultrashallow doping beyond the 0.15 m technology. However, there are several other application areas in modern semiconductor processing. In this paper a detailed discussion of the PIII process for semiconductors and of actual as well as future applications is given. Besides the well known advantages of PIII - fast process, implantation of the whole surface, low cost of ownership - several peculiarities - like spread of the implantation energy due to finite rise time or collisions, no mass separation, high secondary electron emission - must be mentioned. However, they can be overcome by adjusting the system and the process parameters. Considering the applications, ultrashallow junction formation by PIII is an established industrial process, whereas SIMOX and Smart-Cut by oxygen and hydrogen implantation are current topics between research and introduction into industry. Further applications of PIII, of which some already are research topics and some are only investigated by conventional ion implantation, include seeding for metal deposition, gettering of metal impurities, etch stop layers and helium implantation for localized lifetime control.

  14. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  15. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Since laser action was first demonstrated in titanium sapphire (Ti:Al2O3) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al2O3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al2O3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti3+. Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al2O3 waveguide. (authors)

  16. Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa

    International Nuclear Information System (INIS)

    The carbon isotopic composition of 66 inclusion-containing diamonds from the Premier kimberlite, South Africa, 93 inclusion-containing diamonds and four diamonds of two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa was measured. The data suggest a relationship between the carbon isotopic composition of the diamonds and the chemical composition of the associated silicates. For both kimberlites similar trends are noted for diamonds containing peridotite-suite inclusions (P-type) and for diamonds containing eclogite-suite inclusions (E-type): Higher delta13C P-type diamonds tend to have inclusions lower in SiO2, Al2O3, Cr2O3, MgO, Mg/(Mg + Fe) and higher in FeO and CaO. Higher delta13C E-type diamonds tend to have inclusions lower in SiO2, Al2O3, MgO, Mg/(Mg + Fe), Na2O, K2O, TiO2 and higher in CaO, Ca/(Ca + Mg). Consideration of a number of different models that have been proposed for the genesis of kimberlites, their zenoliths and diamonds shows that they are all consistent with the conclusion that in the mantle, regions exist that are characterized by different mean carbon isotopic compositions. (author)

  17. Preparation of diamond nanocrystals from catalysed carbon black in a high magnetic field

    International Nuclear Information System (INIS)

    Under a static high magnetic field of 10 T, diamond-like carbon (DLC) nanocrystals and graphite-coated n-diamond nanoparticles have been synthesized after a pyrogenation of carbon black and a nanometre-sized iron catalyst at atmospheric pressure and a temperature of 1100 C. The product is analysed by x-ray diffraction, Raman spectroscopy, transmission electron microscopy and electron-probe microanalysis. The average size of the DLC nanopowders is about 20 nm, and that of the graphite-coated n-diamond particles is about 100 nm. The yield of diamond is as high as 30%

  18. Paramagnetic defects in multistage ion-implanted polyamide films

    International Nuclear Information System (INIS)

    The growing interest in the recent years in the ion implantation of polymer materials is due to the possibility of its using as a new materials for functional electronic and optic elements fabrication. The last investigations show that the ion implantation to polymer films allows to form a buried conductive layers and opens up the possibility for transistor-like devices creation. Therefore the necessity to estimate the correlation between the polymer structure transformation and optimal implantation regimes exist. Thin (40-50 μm) two-layer polymer films consisted of polyethylene and polyamide-6 are investigated. Implantation with boron ions to doses of 3*1016 cm-2 carried out into polyamide layer in multistage regimes with energies of 60, 80 and 100 keV. For first group of samples energies are increased from 60 to 100 keV for each subsequent stage. For second one - energies are decreased from stage to stage. The thick of radiation-damaged layer are estimated from TRIM-code calculation and experimental results on the boron ions ranges and amount of 500 nm for energy of 100 keV, 430 nm for 80 keV and 350 nm for 60 keV. It was found that the multistage implantation performed under conditions where the implantation energy increases from step to step results in the decrease of the paramagnetic centres concentration in the implanted layer and narrowing of the ESR linewidth. It can be inferred that under these implantation conditions the lattice-order of the polymer layer which ions pass repeatedly occurs. This restructurization being accompanied with the compensation of the terminated carbon bonds and strong exchange interaction between π-electrons in the implanted polymer. By contrast, the decrease in the ion energy during the implantation leads to the progressive accumulation of the paramagnetic centres in the implanted layers, i.e. the radicals produced in the earlier implantation steps do not exhibit serious degradation during the subsequent implantation. The

  19. Effects of ion implantation on the hardness and friction behaviour of soda-lime silica glass

    International Nuclear Information System (INIS)

    Ion implantation-induced changes in the near-surface mechanical properties of soda-lime silica glass have been investigated by indentation and scratch testing and have been found to be more complicated than changes in the corresponding properties of crystalline ceramic materials. Argon, nitrogen, carbon and potassium ions were used with energies in the range 45-300 keV. Hardness and scratch friction tests were performed under ambient laboratory conditions. At low doses, a decrease in hardness and an increase in both friction and surface stress are observed which are attributed to the electronic damage produced by ion implantation. At higher doses, the hardness increases again and a maximum is produced similar to the behaviour observed for crystalline materials. Similarly there is found to be a second stress and friction peak at this dose. This behaviour is shown to be due to the build-up of displacement damage produced by ion implantation and is thus very similar to the radiation hardening (and eventual amorphization) behaviour of ion-implanted crystalline ceramics. For glass, ''amorphization'' probably corresponds to some change in the existing amorphous state which, in turn, is responsible for the reduction in hardness, stress and friction at the highest doses. (author)

  20. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  1. Influence of Ro radiation upon ion-implanted MOS structures

    International Nuclear Information System (INIS)

    The interaction of Ro radiation with defects in ion-implanted MOS structures is studied using the method of thermally stimulated charge release and C/V method. It is shown that preliminary treatment with Ro radiation decreases the temperature of thermal annealing of the radiation defects introduced by ion-implantation up to 4500C. (author)

  2. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  3. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    Science.gov (United States)

    Luo, J.; Li, L. H.; Liu, H. T.; Yu, K. M.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Fu, Ricky K. Y.; Chu, Paul K.

    2014-06-01

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  4. Ion implantation applied to fusion research

    International Nuclear Information System (INIS)

    Ion implantation and microanalysis have been used to investigate plasma-surface interactions relevant to fusion applications. Previous results for pure metals are reviewed and current results are presented for TiB2 and B4C coatings for tokamak surfaces. Enhanced trapping of implanted, low-energy hydrogen has been shown to occur at room temperature in W, Au, Pd, Mo, Nb, TiB2, and B4C for He or other ion predamage. Hydrogen depth profiles obtained using 1H(19F, αγ)16O resonant nuclear reaction show that the H decorates the He damage profiles at traps whose concentration is proportional to the amount of He-induced damage

  5. Ion implanted Bragg endash Fresnel lens

    International Nuclear Information System (INIS)

    We have investigated the feasibility of widening the bandpath of the Bragg endash Fresnel optical element through the use of ion implantation. The focusing properties of Bragg endash Fresnel lenses (BFLs) were studied as a function of the implantation dose and energy. An enhancement of the focus intensity of up to 15% was found, which is less than expected. Due to the complicated scattering of the low energy ions inside the micrometer- and submicrometer-sized crystal features that make up the BFL relief, the implantation technology destroys the peripheral zones of the BFL more than it increases the intensity in the focus. Nevertheless we believe that high energy implantation can be successfully used to modify the BFL reflectivity, especially in the case of nearly backscattering reflection. copyright 1996 American Institute of Physics

  6. Simulation of ion implantation for ULSI technology

    CERN Document Server

    Hoessinger, A

    2000-01-01

    approximately constant an almost linear performance gain could be achieved by the parallelization method, even if a fairly slow network connects the workstations. Finally, the developed Monte-Carlo ion implantation simulator is applied to a set of examples making use of some of the special features of the simulator. Additionally a small operating manual for the simulator is included in the appendix. been developed and implemented. These methods enable to treat the implantation of molecular ions and atom clusters and thus the implantation of BF, which is a widely used for the doping with boron atoms. By providing two methods for the simulation of molecular ions the functionality of the simulator can be adapted to the problem requirements. While the simplified molecular method needs less computation time, the full molecular method provides more precise results. Another part of this work was the design and the implementation of a point response interface method. It allows to interface Monte-Carlo simulation resu...

  7. Mutagenic effects of ion implanted rice seed

    International Nuclear Information System (INIS)

    Dry seeds of rice were implanted with 15∼30 keV N+, H+, Ar+ ion beam of various doses. The biological effects in M1 and mutation in M2 were studied. The results showed that ion beam could induce the variation on the chromosome structure and inhibit mitosis in root tip cell. The chromosomal aberration rate of cells tended to be increased with increase of implanted ion dose. Compared with 60Co γ-rays, ion implantation induced lower rate of cells with chromosome aberration. However, there was a similar inhibitory effect on mitosis between ion beam and γ-rays. The electrophoretic banding patterns of peroxidase enzymes were altered by both mutagens and varied. Frequency of the chlorophyll mutation implanted by ion beam was higher than that induced by γ-rays. Mutation frequencies of heading date and plant height were similar between ion beam implanting and γ-rays irradiation. (11 tabs., 2 figs.)

  8. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    Science.gov (United States)

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  9. Ion implantation of boron in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  10. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T

    2002-01-01

    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  11. Modification of diamond-like carbon by ion irradiation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were irradiated with swift heavy ion beams of varying energy and angles of incidence. The irradiation created electrically conducting tracks in the DLC-films by transforming sp3 into sp2 bonds. The DLC-films were analyzed by conductive atomic force microscopy. The images were used to identify ion impact sites, and I-V-Spectroscopy was applied to determine the conductivity of the tracks. High energy ions (2.2 GeV, Au25+) created tracks with ohmic conductivity in the case of perpendicular bombardment, whereas grazing irradiation results in tracks that show mainly tunneling behavior. Low energy ions (100 MeV, Xe23+) created tracks which exhibit tunneling behaviour after perpendicular incidence irradiation, but irradiation under 1 did not result in conductive tracks.

  12. Cell attachment on diamond-like carbon coating

    Indian Academy of Sciences (India)

    D J Li; H Q Gu

    2002-02-01

    Preliminary results of diamond-like carbon (DLC) coating with its novel properties with no toxicity have caused a strong interest of commercial manufacturers of surgical implants. DLC coatings were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). It could be shown by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Raman spectroscopy that DLC coating prepared by 800 eV CH+ beam bombardment possessed a higher fraction of 3 bonds in the structure of mixed 3 + 2 bonding, resulting in a higher hydrophobicity. The results of the cell attachment tests indicated that DLC coatings exhibited low macrophage attachment and provided desirable surface for the normal cellular growth and morphology of the fibroblasts. At the same time, the number of both neutral granulocytes and platelets adhering to DLC coatings decreased significantly. These findings showed that DLC was a better coating with desirable tissue and blood compatibility.

  13. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  14. The enhancement in wear resistance of W18Cr4V steel by ion implantation

    International Nuclear Information System (INIS)

    Two new methods of ion implantation were adopted in comparison with nitrogen implantation: carbon monoxide was implanted directly into W18Cr4V steel, and nitrogen was implanted into a deposited titanium film about 1000 A thick. It is shown that higher surface hardness and wear resistance have been achieved. The composition and phase structure of the implanted layer was determined in detail. The wear mechanisms were discussed

  15. Plasma source ion implantation research at southwestern institute of physics

    International Nuclear Information System (INIS)

    The PSII-EX device and PSII-IM device for research and development of plasma source ion implantation (PSII) technology are described briefly. The functions, main technical specifications and properties of the devices are also discussed. After ion implantation by PSII, the improvements of the surface-mechanical properties (such as microhardness, wear-resistance, friction factor, biological compatibility, etc) for some materials, microanalysis and numerical simulation of modified layers of materials, the technical developments for the practical workpiece treatments and the preliminary experiments for plasma source ion implantation-enhanced deposition are introduced too. As last, the future work about PSII have been proposed

  16. n-diamond from catalysed carbon nanotubes: synthesis and crystal structure

    International Nuclear Information System (INIS)

    The phase composition and morphology of black powder samples synthesized by pyrogenation of carbon nanotubes and colloidal Fe(OH)3 were investigated using x-ray diffraction (XRD) and transmission electron microscopy. A new kind allotrope of carbon, 'new diamond' (n-diamond), was obtained in the final black powder when the treatment temperature was higher than 1000 deg. C. As the treatment temperature reached 1400 deg. C, the peak intensity of the n-diamond achieved its maximal value and the estimated yield rate was about 20%. The average size of the n-diamond nanometric particles was around 20 nm. Using the least squares refinement method and XRD pattern simulation technology, the crystal structure of n-diamond was studied. (letter to the editor)

  17. Diamond-like carbon/epoxy low-friction coatings to replace electroplated chromium

    OpenAIRE

    Podgoric, S; Jones, Benjamin; Bulpett, R; Troisi, G.; Franks, J

    2009-01-01

    A series of layered structures based on epoxy-resins coated with diamond-like carbon (DLC) are examined as potential replacements for electroplated chromium in aerospace applications. Diamond-like carbon coatings can offer superior mechanical properties and tribological performance; however, in some applications high internal stresses and poor adhesion limit their practical use. A DLC / epoxy system is developed and studied utilising pin-on-disk testing, analysis with scanning electron micr...

  18. Characterisation of nanostructured diamond-like carbon coatings deposited in single and dual frequency capacitive discharges

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Peřina, Vratislav; Sobota, Jaroslav; Grossman, Jan; Klapetek, P.; Buršík, Jiří; Franta, D.; Ohlídal, I.; Zajíčková, L.; Havel, J.; Janča, J.

    Taipei : IAMS Academia Sinica, 2008, s. 414. ISBN N. [New Diamond and Nano Carbons /2./ - NDNC 2008. Taipei (TW), 26.05.2008-29.05.2008] R&D Projects: GA ČR GA202/07/1669 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z10480505; CEZ:AV0Z20410507 Keywords : characterization * nanostructured diamond-like carbon coatings * single * dual frequency capacitive discharge Subject RIV: JI - Composite Materials

  19. Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, O. E-mail: schaefer@mrs1.ukl.uni-freiburg.de; Lohrmann, C.; Winterer, J.; Kotter, E.; Langer, M

    2004-12-01

    A major consideration in the reduction of early stent thrombosis and in-stent restenosis is the improvement of biocompatibility of the devices. Diamond-like carbon is a novel material for coating stent surfaces in order to increase biocompatibility. The authors report on the endovascular treatment of two individuals with superficial femoral artery occlusions, using stents coated with diamond-like carbon. Technical and clinical success was achieved in both cases, with primary patency rates of 100% 12 months after intervention.

  20. Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon

    International Nuclear Information System (INIS)

    A major consideration in the reduction of early stent thrombosis and in-stent restenosis is the improvement of biocompatibility of the devices. Diamond-like carbon is a novel material for coating stent surfaces in order to increase biocompatibility. The authors report on the endovascular treatment of two individuals with superficial femoral artery occlusions, using stents coated with diamond-like carbon. Technical and clinical success was achieved in both cases, with primary patency rates of 100% 12 months after intervention

  1. n-type chalcogenides by ion implantation.

    Science.gov (United States)

    Hughes, Mark A; Fedorenko, Yanina; Gholipour, Behrad; Yao, Jin; Lee, Tae-Hoon; Gwilliam, Russell M; Homewood, Kevin P; Hinder, Steven; Hewak, Daniel W; Elliott, Stephen R; Curry, Richard J

    2014-01-01

    Carrier-type reversal to enable the formation of semiconductor p-n junctions is a prerequisite for many electronic applications. Chalcogenide glasses are p-type semiconductors and their applications have been limited by the extraordinary difficulty in obtaining n-type conductivity. The ability to form chalcogenide glass p-n junctions could improve the performance of phase-change memory and thermoelectric devices and allow the direct electronic control of nonlinear optical devices. Previously, carrier-type reversal has been restricted to the GeCh (Ch=S, Se, Te) family of glasses, with very high Bi or Pb 'doping' concentrations (~5-11 at.%), incorporated during high-temperature glass melting. Here we report the first n-type doping of chalcogenide glasses by ion implantation of Bi into GeTe and GaLaSO amorphous films, demonstrating rectification and photocurrent in a Bi-implanted GaLaSO device. The electrical doping effect of Bi is observed at a 100 times lower concentration than for Bi melt-doped GeCh glasses. PMID:25376988

  2. Cd ion implantation in AlN

    International Nuclear Information System (INIS)

    Highlights: ► Cd ion implanted in AlN thin films. ► XRD shows damage produced during implantation. ► Annealing recovers damage in low fluence sample. ► RBS/C measurements show that Cd occupies substitutional sites. ► Cd can be a good candidate for p-type doping. - Abstract: AlN thin films were implanted with cadmium, to fluences of 1 × 1013 and 8 × 1014 at/cm2. The implanted samples were annealed at 950 °C under flowing nitrogen. Although implantation damage in AlN is known to be extremely stable the crystal could be fully recovered at low fluences. At high fluences the implantation damage was only partially removed. Implantation defects cause an expansion of the c-lattice parameter. For the high fluence sample the lattice site location of the ions was studied by Rutherford Backscattering/Channelling Spectrometry. Cd ions are found to be incorporated in substitutional Al sites in the crystal and no significant diffusion is seen upon thermal annealing. The observed high solubility limit and site stability are prerequisite for using Cd as p-type dopant in AlN.

  3. Waveguide formation by ion implantation in Er doped optical materials

    International Nuclear Information System (INIS)

    High energy medium-light ion implantation was applied on both z-cut Er:LiNbO3 and Er3+-Yb3+ co-doped phosphate glasses, in order to fabricate optical waveguides on optically amplifying media. Preliminary results obtained with Er:LiNbO3, implanted with 3.9 MeV Carbon ions, have demonstrated the possibility to fabricate good quality waveguides, the optical characteristics of which depend on implantation fluence and post-annealing process. Er3+-Yb3+ co-doped phosphate glass substrates were implanted with both 2.8 MeV Carbon ions, at fluences ranging from 3 x 1014 ions/cm2 to 1 x 1015 ions/cm2, and with 3.4 MeV Oxygen ions at a fluence of 1 x 1015 ions/cm2. Also in this case, planar optical waveguides were formed, but, under the as-reported implantation conditions, the possibility to tailor the refractive index profiles was very reduced. In this work, the optical properties of the integrated optical waveguides obtained on different doped substrates are examined

  4. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  5. Plasma protein adsorption onto cell attachment controlled ion implanted collagen

    International Nuclear Information System (INIS)

    Ion implantation into collagen (Type I) coated inner surfaces of test tubes with a length of 50 mm and inner diameter of 2 and 3 mm were performed to develop hybrid type small-diameter artificial vascular grafts. He+ ion implanted collagen coated grafts with a fluence of 1x1014 ions/cm2 replacing femoral arteries exhibited excellent graft patency. To obtain information about the relationship between plasma protein adsorption and antithrombogenicity of ion implanted collagen surfaces, protein adsorption measurements, platelet adhesion test, and animal study were performed. The amount of fibrinogen, fibronectin and albumin showed minimum value at a fluence of 1x1014 ions/cm2. The adsorption of fibrinogen and fibronectin to surfaces is known to promote the adhesion of platelets. The results indicated that antithrombogenicity of He+ ion-implanted collagen with a fluence of 1x1014 ions/cm2 was caused by the reduction of the amount of adsorbed proteins

  6. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  7. Industrial applications of ion implantation into metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  8. Structural, electrical and catalytic properties of ion-implanted oxides

    OpenAIRE

    Hassel, van, E Edwin; Burggraaf, A.J.

    1989-01-01

    The potential application of ion implantation to modify the surfaces of ceramic materials is discussed. Changes in the chemical composition and microstructure result in important variations of the electrical and catalytic properties of oxides.

  9. Ion-implanted GaAs slow wave monolithic structure

    International Nuclear Information System (INIS)

    The use of MeV ion-implantation for realization of a GaAs monolithically compatible device is demonstrated. Ion implants up to 6 MeV in energy are used employing Si and S atoms. The fabricated device is an electromagnetic slow wave microstrip-like structure designed for performance into the millimeter wave regime. Phase shift theta and insertion loss L measurements are performed for frequencies 2-18 GHz at room temperature. Comparison of the experimental ion-implanted device results to epitaxial device results indicates comparable electrical performance, with no more than a 30% reduction in theta but with an improvement in loss behavior, namely a L reduction up to 40%. These theta and L differences between the ion-implanted and epitaxial devices are attributed to differences in doping profiles. Theoretical modelling of theta characteristics produces agreement with experimental data to within a few percent. (author)

  10. Interfacial sliding in carbon nanotube/diamond matrix composites

    International Nuclear Information System (INIS)

    Carbon matrix-carbon nanotube (CNT) composites have a broad range of applications because of the exceptional mechanical properties of both matrix and fibers. Since interfacial sliding plays a key role in determining the strength and toughness of ceramic composites, here interface behavior during nanotube pull-out is studied using molecular dynamics models. The degree of interfacial coupling/adhesion between a diamond matrix and a carbon nanotube is captured through interstitial carbon atoms located in the interface, which can form bonds with both the matrix and CNT atoms. Bonding is accurately captured using the modified REBO potential of Pastewka et al. that introduces an environmental screening coefficient to better capture covalent bond breaking and reforming. Pull-out tests reveal that, after an initial transient, the pull-out force becomes constant, mimicking frictional sliding. The pull-out force is directly proportional to the number of interstitial atoms per unit area in the interface, showing that 'friction' is generated by the energy dissipated during breaking and reforming of bonds involving the interstitial atoms. The effective friction stresses are quite high (several GPa) for interstitial areal densities of 0.72-2.18 nm-2 and the energy dissipated during pull-out can thus be substantial. No differences were found in the pull-out of single wall nanotubes and double wall nanotubes having interwall sp3 bonding. These results demonstrate that 'friction-like' behavior can emerge from non-smooth interfaces and that chemical control of interfacial bonding in CNT can yield substantial sliding resistance and high potential toughening in nanoceramic composites.

  11. /sup 252/Cf plasma desorption in ion implanted mica

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M. (Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse); Banifatemi, A.; Della-Negra, S.; Le Beyec, Y. (Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire)

    1983-05-12

    The potential of heavy-ion stimulated desorption of ions (HISD) for investigating ion implantation effects in insulators is outlined, and a very strong enhancement in HISD of ionized species from ion implanted mica is reported. This enhancement, which generates heavy-ion clusters up to mass approximately equal to 500 AMU, grows around a critical fluence of implanted ions, and originates from two distinct types of radiation damage defects.

  12. Ion implantation of titanium alloys for improved fretting resistance

    International Nuclear Information System (INIS)

    Fretting is a major problem with titanium alloy aerospace components. A fretting apparatus was designed to generate low amplitude motions for testing of various flat and cylindrical geometries. Using it, ion-implanted coupons of Ti-6Al-4V and Ti-Al alloys were compared for fretting performance against untreated specimens. Surface profilometry was used as the primary method of analytical evaluation. The ion implantation treatment provided improvements in fretting reduction. (orig.)

  13. Electrochemical investigation of ion implanted p-Si

    OpenAIRE

    Spiegel, Adrian; Schmuki, Patrick

    2005-01-01

    The present work investigates the possibility of selective electrochemical metal deposition on ion implanted p-Si. The idea is that defects introduced into the substrate by ion implantation make it more susceptible to electrochemical reactions compared to intact Si; this increased sensitivity is to be used for selective reactions at the defect sites. It is believed that the increased reactivity is due to a lowering of the Schottky barrier breakdown potential, Ubd, of the semiconductor-electro...

  14. Electrochemical investigation of ion implanted p-Si

    OpenAIRE

    Spiegel, Adrian

    2003-01-01

    The present work investigates the possibility of selective electrochemical metal deposition on ion implanted p-Si. The idea is that defects introduced into the substrate by ion implantation make it more susceptible to electrochemical reactions compared to intact Si; this increased sensitivity is to be used for selective reactions at the defect sites. It is believed that the increased reactivity is due to a lowering of the Schottky barrier breakdown potential, Ubd, of the semiconductor-electro...

  15. Characterisation of polystyrene coatings after plasma immersion ion implantation and adsorption of protein

    CERN Document Server

    Dekker, S; Steel, B; Bilek, M M M; McKenzie, D R; James, M

    2012-01-01

    A polystyrene film spun onto polished silicon substrates was implanted with either nitrogen or argon ions using plasma immersion ion implantation (PIII) and subsequently investigated by X-ray and neutron reflectometry, UV-VIS and FTIR ellipsometry, as well as by FTIR and Raman spectroscopy. The depth profile of the densified carbon structures resulting from the ion collision cascades in the polystyrene coating are clearly observed by both X-ray and neutron reflectometry. Argon ions produce a higher density modified layer at a shallower depth than nitrogen ions. The thickness measured for these graded layers agrees with the expected depths of ion implantation as calculated by SRIM. The sensitivity of X-ray and neutron reflectometry allows resolution of density and hydrogen content gradients within the graphitized layers. The treated layers were found to covalently immobilized protein directly from solution. The tropoelastin protein monolayers immobilized on the surface were characterized. Tropoelastin remained...

  16. The mechanism of transforming diamond nanowires to carbon nanostructures

    International Nuclear Information System (INIS)

    The transformation of diamond nanowires (DNWs) with different diameters and geometries upon heating is investigated with density-functional-based tight-binding molecular dynamics. DNWs of 〈100〉 and 〈111〉 oriented cross-section with projected average line density between 7 and 20 atoms Å−1 transform into carbon nanotubes (CNTs) under gradual heating up to 3500–4000 K. DNWs with projected average line density larger than 25 atoms Å−1 transform into double-wall CNTs. The route of transformation into CNTs clearly exhibits three stages, with the intriguing intermediate structural motif of a carbon nanoscroll (CNS). Moreover, the morphology plays an important role in the transformation involving the CNS as one important intermediate motif to form CNTs. When starting with 〈 2-bar 11〉 oriented DNWs with a square cross-section consisting of two {111} facets facing each other, one interesting structure with ‘nano-bookshelf’ shape emerges: a number of graphene ‘shelves’ located inside the CNT, bonding to the CNT walls with sp3 hybridized atoms. The nano-bookshelf structures exist in a wide range of temperatures up to 3000 K. The further transformation from nano-bookshelf structures depends on the strength of the joints connecting shelves with CNT walls. Notably, the nano-bookshelf structure can evolve into two end products: one is CNT via the CNS pathway, the other is graphene transformed directly from the nano-bookshelf structure at high temperature. This work sheds light on the microscopic insight of carbon nanostructure formation mechanisms with the featured motifs highlighted in the pathways. (paper)

  17. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  18. Deposition And Characterization Of Ultra Thin Diamond Like Carbon Films

    Science.gov (United States)

    Tomcik, B.

    2010-07-01

    Amorphous hydrogenated and/or nitrogenated carbon films, a-C:H/a-C:N, in overall thickness up to 2 nm are materials of choice as a mechanical and corrosion protection layer of the magnetic media in modern hard disk drive disks. In order to obtain high density and void-free films the sputtering technology has been replaced by different plasma and ion beam deposition techniques. Hydrocarbon gas precursors, like C2H2 or CH4 with H2 and N2 as reactive gases are commonly used in Kaufman DC ion and RF plasma beam sources. Optimum incident energy of carbon ions, C+, is up to 100 eV while the typical ion current densities during the film formation are in the mA/cm2 range. Other carbon deposition techniques, like filtered cathodic arc, still suffer from co-deposition of fine nanosized carbon clusters (nano dust) and their improvements are moving toward arc excitation in the kHz and MHz frequency range. Non-destructive film analysis like μ-Raman optical spectroscopy, spectroscopic ellipsometry, FTIR and optical surface analysis are mainly used in the carbon film characterization. Due to extreme low film thicknesses the surface enhanced Raman spectroscopy (SERS) with pre-deposited layer of Au can reduce the signal collection time and minimize photon-induced damage during the spectra acquisition. Standard approach in the μ-Raman film evaluation is the measurement of the position (shift) and area of D and G-peaks under the deconvoluted overall carbon spectrum. Also, a slope of the carbon spectrum in the 1000-2000 cm-1 wavenumber range is used as a measure of the hydrogen intake within a film. Diamond like carbon (DLC) film should possess elasticity and self-healing properties during the occasional crash of the read-write head flying only couple of nanometers above the spinning film. Film corrosion protection capabilities are mostly evaluated by electrochemical tests, potentio-dynamic and linear polarization method and by business environmental method. Corrosion mechanism

  19. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  20. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices. PMID:17285609

  1. Growth stress in tungsten carbide-diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  2. Nanometer structure and conductor mechanism of polymer modified by metal ion implantation

    Institute of Scientific and Technical Information of China (English)

    吴瑜光; 张通和; 张燕文; 张荟星; 张孝吉; 周固

    2001-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Ti, Cu and Si ion implanta-tion with a dose ranging from 1 × l016 to 2 x 1017 ions/cm2 using a metal vapor vacuum arc (MEVVA)source. The electrical properties of PET have been improved by metal ion implantation. The resistivityof implanted PET decreased obviously with an increase in ion dose. The results show that the conduc-tive behavior of a metal ion implanted sample is different from Si-implantation samples. In order to un-derstant the mechanism of electrical conduction, the structures of implanted layer were observed in de-tail by XRD and TEM. The nano carbon particles were dispersed in implanted PET. The nano metallicparticles were built up in metallic ion implanted layers with dose range from 1 × 1016 to 1 x 1017 ions/cm2. The nanometer metal net structure was formed in implanted layer when a dose of 2 x 1017ions/cm2 is reached. Anomalous fractal growths were observed. These surface structure changes revealedconducting mechanism evolution, lt is believed that the change would result in an improvement of theconductive properties. The conducting mechanism will be changed with increasing metal ion dose.

  3. Complex dielectric function of ion implantation amorphized SiC determined by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Lohner, T.; Zolnai, Z.; Petrik, P.; Battistig, G.; Koos, A.; Osvath, Z.; Fried, M. [Research Institute for Technical Physics and Materials Science, Konkoly Thege Miklos ut 29-33, 1121 Budapest (Hungary); Garcia Lopez, J.; Morilla, Y. [Centro Nacional de Aceleradores, Av. Thomas A. Edison 7, 41092 Sevilla (Spain)

    2008-05-15

    Measuring with a spectroscopic ellipsometer we determined the complex dielectric function of completely amorphous silicon carbide prepared by ion implantation. 860 keV Ni{sup +} ions were implanted into single crystalline 4H-SiC to produce thick amorphized layer. Ion beam analysis was applied to assess total amorphization. For this purpose {sup 4}He{sup +} ion beam of 3.5 MeV was selected taking the advantage that the scattering cross section of carbon at this energy at 165 detection angle is about six times larger than the Rutherford type. Atomic force microscopy was performed to characterize the roughness of the ion-implanted surfaces. Multiple energy Ar{sup +} implantation was used to produce homogeneous amorphous layer. The Tauc-Lorentz model was applied for the evaluation of the ellipsometric results. The implantation-induced swelling was obtained through the measurement of the step height across the masked and implanted areas. Comparison was made among the complex dielectric functions of amorphized SiC studied by us and by different research groups. It is found that the complex dielectric functions of amorphized SiC differ considerably if different ion implantation conditions were applied. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Measurement of the Fermi potential of diamond-like carbon and other materials

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Blau, B. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Daum, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland)]. E-mail: manfred.daum@psi.ch; Fierlinger, P. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Physik-Institut, Universitaet Zuerich (Switzerland); Geltenbort, P. [ILL, Institut Laue-Langevin, Grenoble (France); Gupta, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Henneck, R. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Heule, S. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Physik-Institut, Universitaet Zuerich (Switzerland); Kasprzak, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); SMI, Stefan-Meyer-Institut, Vienna (Austria); Knecht, A. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Physik-Institut, Universitaet Zuerich (Switzerland); Kuzniak, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Jagiellonian University, Cracow (Poland); Kirch, K. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Meier, M. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Pichlmaier, A. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Reiser, R. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Theiler, B. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland); Zimmer, O. [Physik-Department E18, Technische Universitaet Muenchen (Germany); Zsigmond, G. [PSI, Paul Scherrer Institut, CH 5232 Villigen PSI (Switzerland)

    2007-07-15

    The Fermi potential V {sub f} of diamond-like carbon (DLC) coatings produced with laser-controlled vacuum arc deposition and that of diamond, Al, Si, Be, Cu, Fe and Ni was measured using two different methods, (i) transmission of slow neutrons through foils in a time-of-flight experiment and (ii) cold neutron reflectometry (CNR). For diamond-like carbon in transmission we obtain V {sub f} = (249 {+-} 14) neV. This is approximately the same as for beryllium and consistent with the theoretical expectations for the measured diamond (sp{sup 3}) content of 45%. For an sp{sup 3}-content of 67%, we find V {sub f} (271 {+-} 13) neV from reflectometry, again in agreement with theory. These findings open new perspectives in using DLC as storage volume and neutron guide coatings for ultracold neutron sources.

  5. Experimental Investigation and Numerical Simulation on Interfacial Carbon Diffusion of Diamond Tool and Ferrous Metals

    Institute of Scientific and Technical Information of China (English)

    ZOU Lai; ZHOU Ming

    2016-01-01

    We numerically simulated and experimentally studied the interfacial carbon diffusion between diamond tool and workpiece materials. A diffusion model with respect to carbon atoms of diamond tool penetrating into chips and machined surface was established. The numerical simulation results of the diffusion process reveal that the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance, the diffusion time, and the original carbon concentration of the work material. In addition, diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results. The micro-morphology of the chips is detected by scanning electron microscopy. Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface. The experimental results of this work are of beneift to a better understanding on the diffusion wear mechanism in single crystal diamond cutting of ferrous metals. Moreover, the experimental results show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting tool compared with conventional turning.

  6. Nanoscale triboactivity of functionalized c-Si surfaces by Fe+ ion implantation

    Science.gov (United States)

    Nunes, B.; Alves, E.; Colaço, R.

    2016-04-01

    In the present work, we present a study of the effect of Fe+ ion implantation on the tribological response at nanoscale contact lengths of crystalline silicon (c-Si) surfaces. (1 0 0) silicon wafers were implanted with Fe+ at a fluence of 2  ×  1017 cm-2, followed by annealing treatments at temperatures of 800 °C and 1000 °C. After microstructural characterization, nanoabrasive wear tests were performed with an atomic force microscope (AFM) using an AFM diamond tip with a stiff steel cantilever that enables the application of loads between 1 μN and 8 μN. After the nanowear tests, the same AFM was used to visualize and measure the worn craters. It was observed that the as-implanted samples present the poorest nanowear response, i.e. the highest wear rate, even higher than that of the unimplanted Si wafers used as a reference. Nevertheless, annealing treatments result in a measurable increase in the nanowear resistance. In this way we show that Fe+ ion implantation of c-Si, followed by the proper post-heat treatment, results in the formation of FeSi2 nanoprecipitates finely dispersed in a recrystallized matrix. This can be a valuable way of optimizing the nanotribological behavior of silicon.

  7. Surface modification of silicone rubber by ion implantation

    International Nuclear Information System (INIS)

    A study has been made on the wettability, structure, and chemical states of ion implanted silicone rubbers. C+, N2+, O2+, and Ar+ ion implantations were performed at energies of 50 and 100 keV at room temperature. The fluences ranged from 1012 to 1017 ions/cm2. Ion implantation caused the surface roughness to increase 2-3 times. Wettability was estimated by means of the sessile drop method using water, of which the results showed that the contact angle of water decreased from 98.90 to 480 as the fluence increased. The results of XPS measurements showed that implanted elements formed a Gaussian-like distribution, host elements were redistributed and no change in binding energies of O1s, C1s and Si2p occurred. Results of FT-IR-ATR showed that ion implantation broke up original chemical bonds to form new radicals, the amounts of which are related to the fluences. It is concluded that the change in wettability may be caused by formation of new radicals rather than roughening of the surface under ion implantation. (orig.)

  8. Surface modification of silicone rubber by ion implantation

    International Nuclear Information System (INIS)

    A study has been made on the wettability, structure, and chemical states of ion implanted silicone rubber. C+-, N2+-, O2+, and Ar+ ion implantations were performed at energies of 50, 100, and 150 keV at room temperature. The doses ranged from 1 x 1012 to 1 x 1017 ions/cm2. Ion implantation caused the surface roughness to increase by 1∼5 times. Wettability was estimated by means of a sessile drop method using water. The contact angle of water immediately after ion-implantation decreased from 98.8deg to 48deg, as the dose increased. As the time elapsed, the contact angle gradually increased to approach the initial angle value. The results of XPS measurements showed that implanted elements formed a Gaussian-like distribution. The results of FT-IR-ATR showed that ion implantation broke original chemical bonds to form new radicals. The amounts of these radicals are related to the doses. Changes in wettability are mainly caused by formation of new radicals and their aging effects. (author)

  9. Corrosion resistance behavior of nitrogen ion-implanted in tantalum

    Science.gov (United States)

    Ramezani, Amir Hoshang; Hantehezadeh, Mohammad Reza; Ghoranneviss, Mahmood; Darabi, Elham

    2016-03-01

    This paper investigates the effect of nitrogen ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, nitrogen ions which had energy of 30 keV and were in doses of 1 × 1017 to 9 × 1017 ions/cm2 were used. The X-ray diffraction analysis was applied for both the metallic analysis and the study of new structures having been created through the nitrogen ion implantation. Atomic force microscopy was also used to check the roughness variations prior to and also after the implantation phase. Moreover, the corrosion analysis apparatus was applied in order to compare resistance against tantalum corrosion in advance to and after the ion implantation. The results indicate that nitrogen ion implantation has a significant impact on increasing resistance against tantalum corrosion. After the corrosion test, the surface morphology of samples was analyzed by scanning electron microscopy. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this article is to obtain the perfect condition of the formation of tantalum corrosion resistance. The corrosion potential curves and roughness values obviously indicate that corrosion potential variations caused by the different doses of nitrogen ion bombardment are proportional to surface roughness in an inverse manner. The EDX analysis demonstrates the existence of the elemental composition of nitrogen ion implantation in the samples.

  10. Friction of diamond-like carbon films in different atmospheres

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films constitute a class of new materials with a wide range of compositions, properties, and performance. In particular, the tribological properties of these films are rather intriguing and can be strongly influenced by the test conditions and environment. In this paper, we performed a series of model experiments in high vacuum and with various added gases to elucidate the influence of different test environments on the tribological behavior of three DLC films. Specifically, we studied the behavior of a hydrogen-free film produced by a cathodic arc process and two highly hydrogenated films produced by plasma-enhanced chemical-vapor deposition. Flats and balls used in our experiments were coated with DLC and tested in a pin-on-disc machine under a load of 1 N and at constant rotational frequency. With a low background pressure, in the 10(sup -6) Pa range, the highly hydrogenated films exhibited a friction coefficient of less than 0.01, whereas the hydrogen-free film gave a friction coefficient of approximately 0.6. Adding oxygen or hydrogen to the experimental environment changed the friction to some extent. However, admission of water vapor into the test chamber caused large changes: the friction coefficient decreased drastically for the hydrogen-free DLC film whereas it increased a bit for one of the highly hydrogenated films. These results indicate that water molecules play a prominent role in the frictional behavior of DLC films-most notably for hydrogen-free films but also for highly hydrogenated films

  11. The effect of ion implantation on the lifetime of punches

    International Nuclear Information System (INIS)

    The electronics industry demands stamped parts with high performance. Therefore, punching tools like cutting punches with very high precision have to be used. In the case reported, the punches are mounted in a modular system and have to be resharpened or replaced after a certain number of strokes. To increase the lifetime of the punches made of Vasco Wear steel, implantations with carbon, nitrogen, boron and titanium, and co-implantation with titanium and carbon were performed at energies from 50 keV to 200 keV and 600 keV and 700 keV with different doses in the region of several times 1018 cm-2, measured perpendicular to the ion beam. A maximum increase in lifetime of a factor of 3.6 was reached. The surface roughness had a large influence on the increase lifetime and the improvement caused by specific ion species. The maximum improvement was obtained for the lowest surface roughness (Ra=0.04 μm). Therefore, when performing the implants, punches with low surface roughness should be used. The most successful ion species were boron and nitrogen for the lowest surface roughness used (Ra=0.04 μm), and after changing the polishing procedure (Ra=0.14 μm) titanium and nitrogen at medium energies (100-200 keV). High energy implantation (700 keV) resulted in an increase of a factor of 2.1 at lower doses (5.6x1017 cm-2), but is uneconomical owing to the low current density. In laboratory wear tests (ball on disk) no improvement by ion implantation could be found. These results prove that it is difficult to compare field tests and laboratory tests because of different testing conditions. (orig.)

  12. Improved tribology of tool steel by zirconium ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Akbas, N.; Oztarhan, A.; Monteiro, O.R.; Brown, I.G.

    2001-02-01

    AISI D3 tool steel was ion implanted with zirconium and the improvement in surface tribological properties investigated. The Zr ion implantation was done using a metal vapor vacuum arc broad-beam ion source, with a mean ion energy of 130 keV and at doses of 3.6 x 10(sup 16), 5 x 10(sup 16) and 1 x 10(sup 17) ions/cm2. Wear, friction and hardness of the implanted samples were measured and compared to the performance of unimplanted steel. The wear resistance was increased by about a factor of two, the friction remained about the same or was possibly increased by a small amount, and the hardness was improved by a factor of five or more by the ion implantation. We also investigated the effect on the Zr implantation profile of the multi-component energy distribution of the ion beam used here.

  13. Ion implantation for manufacturing bent and periodically bent crystals

    International Nuclear Information System (INIS)

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams

  14. Accelerating degradation rate of pure iron by zinc ion implantation.

    Science.gov (United States)

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  15. Chromium plating pollution source reduction by plasma source ion implantation

    International Nuclear Information System (INIS)

    There is growing concern over the environmental toxicity and workers' health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case

  16. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  17. Rolling contact fatigue life of ion-implanted GCr15

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents an experimental research into the rooling contact fatigue life of GCr15 steel with Tix N, TiX N + Ag and Tix N + DLC layers ion-implanted using the plasma ion-implantation technology on a ball-rod style high-speed con tact fatigue tester, and concludes with test results that the fatigue life increases to varying degrees with Tix N, Tix N + Ag, and Tix N + DLC layers implanted, and increases 1.8 times with Tix N + Ag layer implanted, hairline cracks grow continuously into fatigue pits under the action of shear stress in the superficial layer of material, and ion-implantation acts to prevent initiation of cracks and slow down propagation of cracks.

  18. Ion implantation for manufacturing bent and periodically bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it; Mazzolari, Andrea; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara, Italy and INFN, Section of Ferrara (Italy); Mattei, Giovanni, E-mail: giovanni.mattei@unipd.it; Scian, Carlo [Department of Physics and Astronomy Galileo Galilei, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Lanzoni, Luca [Dipertimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44, 47890 San Marino Città (San Marino)

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  19. Effects of ion implantation on the abrasive wear of WC-Co

    International Nuclear Information System (INIS)

    An explanation of the improved abrasive wear resistance of ion-implanted WC-Co components has been sought. X-ray analysis is reported of scratches produced on polished implanted and non-implanted WC-Co surfaces by a single pass scratch test. It can be inferred from the results that extrusion of cobalt from a WC-Co surface under the stress of an abrading diamond is easier in the non-implanted than in the implanted case; this is the first stage of the abrasion wear process. Transmission electron diffraction of a WC-Co foil, before and after implantation by nitrogen ions, indicated the formation of Co2N microprecipitates during implantation. Precipitation hardening, hindering cobalt extrusion, is offered therefore as the explanation of the improved service life of the components. (U.K.)

  20. Nitrogen ion implantation effect on friction coefficient of tool steel

    International Nuclear Information System (INIS)

    Effect of nitrogen molecular ion implantation into KhVSG steel on the friction coefficient in the air and vacuum is investigated. Irradiation is carried out by the N2+ beam with energy 120 keV and flux density 5 μ/cm2 at room temperature in vacuum 5x10-4Pa. The integral dose of irradiation is 1017 particle/cm2. Nitrogen ion implantation is shown to provide the formation of the modified layer changing friction properties of steel. The friction coefficient can either increase or decrease depending on implantation and test conditions. 4 refs.; 2 figs

  1. Chromium redistribution in ion-implanted GaAs

    International Nuclear Information System (INIS)

    In this paper an attempt is made to find systematic differences between the annealing conditions for ion implanted GaAs where Cr is observed to redistribute and the conditions where it does not. For samples where Cr redistribution was observed, electrical and chemical and/or strain interactions were separated. The results indicate that electrical interactions are at least a limiting factor and in most cases a dominant factor in Cr redistribution. For this reason it appears that Cr redistribution in ion implanted samples can be minimized or eliminated by annealing at temperatures such that the background free carrier concentration screens out any internal electric fields. (author)

  2. Nanocavities induced by neon Plasma Based Ion Implantation in silicon

    International Nuclear Information System (INIS)

    Nanocavities formed by neon Plasma Based Ion Implantation (PBII) in Si have been studied in comparison with conventional ion implantation (CI). Interstitial-type defects are also investigated. To avoid amorphisation, neon implantations were performed at 250 deg. C with a fluence of ∼5 x 1016 cm-2. Using PBII a rather uniform layer of cavities is observed from the surface while a three layer structure is present using the CI. However, the mean diameter of cavities is smaller due to the interaction with the interstitial-type defects. After annealing at 800 deg. C, bubbles grow and extended defects identified as {1 1 3} defects are formed

  3. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  4. Semiconductor applications of plasma immersion ion implantation technology

    Indian Academy of Sciences (India)

    Mukesh Kumar; Rajkumar; Dinesh Kumar; P J George

    2002-11-01

    Many semiconductor integrated circuit manufacturing processes require high dose of implantation at very low energies. Conventional beam line ion implantation system suffers from low beam current at low energies, therefore, cannot be used economically for high dose applications. Plasma immersion ion implantation (PIII) is emerging as a potential technique for such implantations. This method offers high dose rate irrespective of implantation energy. In the present study nitrogen ions were implanted using PIII in order to modify the properties of silicon and some refractory metal films. Oxidation behaviour of silicon was observed for different implantation doses. Diffusion barrier properties of refractory barrier metals were studied for copper metallization.

  5. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  6. Characterization of ion implanted silicon by the electrolytic reverse current

    International Nuclear Information System (INIS)

    The current voltage behaviour of ion implanted silicon electrodes in HF electrolyte is investigated. The electrolytic reverse current, i.e. the reaction rate of the minority carrier limited reactions is found to increase. The current increase depends on the implanted dose and layer stripping. Reason for the increased reverse current can be referred to radiation damage acting as generation centres for minority carriers. Measurement of the electrolytic reverse current can be used for determining damage profiles. Layer stripping is carried out by anodic dissolution in the same electrolyte. The sensitivity of this new method for characterizing ion implanted silicon layers lies at 1011 to 1012 atoms/cm2. (author)

  7. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  8. Effect of ion implantation on apple wine yeast

    International Nuclear Information System (INIS)

    The wild type apple wine yeast Y02 was treated by ion implantation with the dose of 8 x 1015 ion/cm2. As results, a special mutant strain, IONII-11 dry, was obtained. The morphology characters, partial biochemistry characters, mycelium protein of the mutant strain were distinctively changed compared with original strain Y02. After the fermentation test ,the apple wine producing rate of the mutant strain increased 22.4% compared with original strain. These results showed that ion implantation was an effective method for mutagenesis

  9. Multi-energy ion implantation from high-intensity laser

    Directory of Open Access Journals (Sweden)

    Cutroneo Mariapompea

    2016-06-01

    Full Text Available The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high energy increasing the ion charge state. The accelerated ions are emitted with the high directivity, depending on the ion charge state and ion mass, along the normal to the target surface. The ion fluencies depend on the ablated mass by laser, indeed it is low for thin targets. Ions accelerated from plasma can be implanted on different substrates such as Si crystals, glassy-carbon and polymers at different fluences. The ion dose increment of implanted substrates is obtainable with repetitive laser shots and with repetitive plasma emissions. Ion beam analytical methods (IBA, such as Rutherford backscattering spectroscopy (RBS, elastic recoil detection analysis (ERDA and proton-induced X-ray emission (PIXE can be employed to analyse the implanted species in the substrates. Such analyses represent ‘off-line’ methods to extrapolate and to character the plasma ion stream emission as well as to investigate the chemical and physical modifications of the implanted surface. The multi-energy and species ion implantation from plasma, at high fluency, changes the physical and chemical properties of the implanted substrates, in fact, many parameters, such as morphology, hardness, optical and mechanical properties, wetting ability and nanostructure generation may be modified through the thermal-assisted implantation by multi-energy ions from laser-generated plasma.

  10. Mechanical and Surface Characterization of Diamond-Like Carbon Coatings onto Polymeric Substrate

    OpenAIRE

    Martí-González, Joan; Bertran, Enric

    2015-01-01

    In this master thesis, diamond-like carbon DLC/Cr bilayer systems, with thickness up to 1278 nm were formed on ABS, glass and Si substrates. Substrates surface were prepared by oxygen plasma cleaning process. The chromium thin film, which acts as a buffer layer, was grown by magnetron sputtering deposition. Diamond-like carbon was deposited by pulsed-DC PECVD, with methane and hydrogen as reactants. A Plackett-Burman experimental design was carried out in order to determine the influence of t...

  11. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton

    Science.gov (United States)

    Wiggers de Vries, D. F.; Bulanova, G. P.; De Corte, K.; Pearson, D. G.; Craven, J. A.; Davies, G. R.

    2013-01-01

    The internal structure and growth history of six macro-diamonds from kimberlite pipes in Yakutia (Russia) were investigated with cathodoluminescence imaging and coupled carbon isotope and nitrogen abundance analyses along detailed core to rim traverses. The diamonds are characterised by octahedral zonation with layer-by-layer growth. High spatial resolution SIMS profiles establish that there is no exchange of the carbon isotope composition across growth boundaries at the μm scale and that isotopic variations observed between (sub)zones within the diamonds are primary. The macro-diamonds have δ13C values that vary within 2‰ of -5.3‰ and their nitrogen contents range between 0-1334 at. ppm. There are markedly different nitrogen aggregation states between major growth zones within individual diamonds that demonstrate Yakutian diamonds grew in multiple growth events. Growth intervals were punctuated by stages of dissolution now associated with <10 μm wide zones of nitrogen absent type II diamond. Across these resorption interfaces carbon isotope ratios and nitrogen contents record shifts between 0.5-2.3‰ and up to 407 at. ppm, respectively. Co-variation in δ13C value-nitrogen content suggests that parts of individual diamonds precipitated in a Rayleigh process from either oxidised or reduced fluids/melts, with two single diamonds showing evidence of both fluid types. Modelling the co-variation establishes that nitrogen is a compatible element in diamond relative to its growth medium and that the nitrogen partition coefficient is different between oxidised (3-4.1) and reduced (3) sources. The reduced sources have δ13C values between -7.3‰ and -4.6‰, while the oxidised sources have higher δ13C values between -5.8‰ and -1.8‰ (if grown from carbonatitic media) or between -3.8‰ and +0.2‰ (if grown from CO2-rich media). It is therefore concluded that individual Yakutian diamonds originate from distinct fluids/melts of variable compositions. The

  12. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  13. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were deposited on a Si substrate by electrolysis in a methanol solution at ambient pressure and low temperature. The morphology and microstructure of the resulting DLC films were analysed using atomic force microscopy, Raman spectroscopy, Fourier transformation infrared spectrometry, x-ray photoelectron spectroscopy (XPS), and x-ray excited Auger electron spectroscopy (XAES). The surface energy and mechanical properties of the DLC films were examined, and the growth mechanism of the DLC films in liquid phase electro-deposition is discussed as well. The results of the study show that the hydrogenated diamond-like carbon films are smooth and compact. The percentage of sp3 carbon in the DLC films is determined as 55-60%, based on the corresponding XPS and first-derivative XAES spectra of graphite, diamond, and the tested films. The DLC films show low surface free energy, good mechanical properties, excellent friction-reduction and wear-resistance. It is suggested that methanol dissociates to generate the active species of CH3+ and C2H4 at high voltage applied to the electrode, followed by the generation of the alkyl chain [-CH2-CH2-]n whose C-C and C-H bond lengths and C-C-C and H-C-H bond angles are close to that of diamond. Subsequently, a diamond-like structure was formed by the ordered dehydrogenation of a short-chain [-CH2-CH2-]n in the electrolysis process

  14. Ion implantation induced by Cu ablation at high laser fluence

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Mezzasalma, A. M.; Gammino, S.; Badziak, J.; Parys, P.; Wolowski, J.; Láska, Leoš; Franco, G.

    2006-01-01

    Roč. 252, - (2006), s. 8533-8538. ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : plasma laser * laser ablation * ion implantation * RBS analysis * AES analysis Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.436, year: 2006

  15. Surface ion implantation induced by laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Giuffrida, L.; Torrisi, L.; Gammino, S.; Wolowski, J.; Ullschmied, Jiří

    2010-01-01

    Roč. 165, 6-10 (2010), s. 534-542. ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional support: RVO:61389021 Keywords : laser ablation * laser plasma * ion implantation * RBS analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.660, year: 2010

  16. Lithium ion implantation effects in MgO (100)

    NARCIS (Netherlands)

    van Huis, MA; Fedorov, AV; van Veen, A; Labohm, F; Schut, H; Mijnarends, PE; Kooi, BJ; De Hosson, JTM; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorp

  17. Software for goniometer control in the Triple Ion Implantation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Allen, W.R.

    1994-02-01

    A computer program is described tat controls the goniometer employed in the ion scattering chamber of the Triple Ion Implantation Facility (TIF) in the Metals and Ceramics Division at Oak Ridge National Laboratory. Details of goniometer operation and its incorporation into the ion scattering setup specific to the TIF are also discussed.

  18. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Science.gov (United States)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; de Maeztu, Miguel Ángel

    2014-08-01

    Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40-80 keV), fluence (1-2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted surfaces, without surface chemistry modification, are in the same range and that such modifications, in certain conditions, do have a statistically significant effect on bone tissue forming cell adhesion.

  19. Modification of medical metals by ion implantation of copper

    Science.gov (United States)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  20. Threshold voltage shift of mos transistors by ion implantation

    International Nuclear Information System (INIS)

    The simple theory of the use of ion implantation of mos transistors to shift threshold voltage is outlined. Discrepancies between theory and practice are discussed. A modified model is proposed in which all implanted ions contribute to the threshold voltage shift irrespective of energy levels. (U.K.)

  1. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  2. Cathodoluminescence characterization of ion implanted GaAs

    Science.gov (United States)

    Cone, M. L.

    1980-03-01

    The unique properties of GaAs make it possible to construct integrated circuit devices that are impossible in Si. The Air Force Avionics Laboratory/AADR has been developing this technology for a number of years. The difficulty of introducing dopants by diffusion has lead ion implantation to play an increasing role in the fabrication process. The present production technique for high performance devices is to fabricate large quantities and select those few that meet the desired specifications. Having a nondestructive technique that can be used to characterize the implantation process during fabrication of the device so as to reject faulty device structures can save valuable time as well as money. Depth-resolved cathodoluminescence is a process that can be used for this purpose. This research develops and verifies a model of cathodoluminescence in ion implanted GaAs. This model can now be used as a tool for further study of ion implanted GaAs. This is the first step in developing cathodoluminescence as a tool for deducing the shape of the ion implanted depth profile in semiconductor materials.

  3. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny;

    2015-01-01

    grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  4. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  5. Energy loss of electrons impinging upon glassy carbon, amorphous carbon, and diamond: Comparison between two different dispersion laws

    International Nuclear Information System (INIS)

    In this paper, we compare and discuss calculated inelastic mean free path, stopping power, range, and reflection electron energy loss spectra obtained using two different and popular dispersion laws. We will present and discuss the results we obtained investigating the interaction of electron beams impinging upon three allotropic forms of carbon, i.e. solid glassy carbon, amorphous carbon, and diamond. We will compare numerical results with experimental reflection electron energy loss spectra

  6. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    Science.gov (United States)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  7. Catalyst-free synthesis of transparent, mesoporous diamond monoliths from periodic mesoporous carbon CMK-8

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li [Carnegie Inst. of Washington, Washington, DC (United States); Mohanty, Paritosh [Lehigh Univ., Bethlehem, PA (United States); Coombs, Neil [Univ. of Toronto, ON (Canada); Fei, Yingwei [Carnegie Inst. of Washington, Washington, DC (United States); Mao, Ho-kwang [Carnegie Inst. of Washington, Washington, DC (United States); Landskrom, Kai [Lehigh Univ., Bethlehem, PA (United States)

    2010-07-19

    We report on the synthesis of optically transparent, mesoporous, monolithic diamond from periodic mesoporous carbon CMK-8 at a pressure of 21 GPa. The phase transformation is already complete at a mild synthesis temperature of 1,300 °C without the need of a catalyst. Surprisingly, the diamond is obtained as a mesoporous material despite the extreme pressure. X-ray diffraction, SEM, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and Z-contrast experiments suggest that the mesoporous diamond is composed of interconnected diamond nanocrystals having diameters around 5–10 nm. The Brunauer Emmett Teller surface area was determined to be 33 m2 g-1 according Kr sorption data. The mesostructure is diminished yet still detectable when the diamond is produced from CMK-8 at 1,600 °C and 21 GPa. The temperature dependence of the porosity indicates that the mesoporous diamond exists metastable and withstands transformation into a dense form at a significant rate due to its high kinetic inertness at the mild synthesis temperature. The findings point toward ultrahard porous materials with potential as mechanically highly stable membranes.

  8. Development of vertical compact ion implanter for gemstones applications

    International Nuclear Information System (INIS)

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented

  9. Development of vertical compact ion implanter for gemstones applications

    Energy Technology Data Exchange (ETDEWEB)

    Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  10. Development of vertical compact ion implanter for gemstones applications

    Science.gov (United States)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  11. Isotopic enrichment of diamond using microwave plasma-assisted chemical vapor deposition with high carbon conversion efficiency

    International Nuclear Information System (INIS)

    Isotopically-controlled diamond crystals were grown using microwave plasma-assisted chemical vapor deposition. First, the highest carbon isotopic enrichment and their controllability were examined. Although the highest 12C isotopic ratio of 99.998% was achieved using methane with an isotopic ratio of 99.999%, the memory effect of an unintended carbon isotope was found to be considerable when the carbon isotopic ratio of feeding methane was tuned for isotopic multilayer formation. Secondly, a unique gas feeding sequence was proposed for increasing the carbon conversion efficiency from methane to diamond. Increasing the conversion efficiency is done by finding a suitable balance between the methane feeding rate and the carbon consumption rate for diamond growth. A high conversion efficiency of 70% was obtained for a polycrystalline diamond with a high 12C isotopic ratio of 99.997%. - Highlights: • Isotopic control of diamond films was investigated. • A high microwave power density condition was applied for diamond growth. • The controllable range of the carbon isotopic ratio was demonstrated. • Diamond films having the highest 12C carbon isotopic enrichment were grown. • High carbon conversion efficiency of 70% was achieved

  12. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  13. Studies of diamond-like carbon and diamond-like carbon polymer hybrid coatings deposited with filtered pulsed arc discharge method for biomedical applications

    OpenAIRE

    Soininen, Antti

    2015-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been the subject of investigation all around the world for the last 30 years. One of the major problems in producing of thick high-quality DLC coatings has been the inadequate adhesion of the deposited film to the substrate. This obstacle is finally overcome by depositing an intermediate adhesion layer produced with high energy (>2 keV) carbon plasma before application of a high-quality coating produced with a low energy unit. To the best ...

  14. Diamond-like carbon coatings for orthopaedic applications: an evaluation of tribological performance.

    Science.gov (United States)

    Xu, T; Pruitt, L

    1999-02-01

    A detailed investigation of the tribological behaviour of vacuum arc diamond-like carbon coated Ti-6Al-4V against a medical grade ultra-high molecular weight polyethylene is conducted in this work in order to investigate the potential use of diamond-like carbon coatings for orthopaedic appplications. Lubricated and non-lubricated wear experiments are performed using a standard pin-on-disc wear tester. The coefficient of friction is monitored continuously during testing and wear rate calculations are performed using surface profilometry measurements of worn disc surfaces. Sliding wear tests show the existence of two distinct friction and wear regimes distinguished by physically different mechanisms. In the first stages of wear, adhesion and abrasion are the dominant mechanisms of wear while fatigue processes are activated later in the tests. The effects of diamond-like carbon coating structure, surface roughness and lubrication on tribological behaviour are presented. Optimal process-structure-property design for vacuum arc plasma deposition is utilized in order to obtain strong adhesion to the titanium alloy substrate. Diamond-like carbon coatings significantly improve the friction and wear performance of the orthopaedic bearing pair and show exceptional promise for biomedical applications. PMID:15347929

  15. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute of...... Physics....

  16. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88. ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  17. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  18. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, K.A.; Prawer, S.; Nugent, K.W.; Walker, R. J.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  19. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Verona, C.; Verona-Rinati, G. [INFN—Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy); Ciocca, M.; Mirandola, A.; Mairani, A. [Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Raffaele, L. [INFN—Laboratori Nazionali del Sud, Via S. Sofia 62, Catania 95123, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN—Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy)

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  20. 金刚石与深部碳循环%Diamond and deep carbon cycle.

    Institute of Scientific and Technical Information of China (English)

    张舟; 张宏福

    2011-01-01

    深部碳循环是全球碳循环研究中不可或缺的部分.较之表层碳,人类对地球深部碳储库的储量、碳的迁移方式和交换量都缺乏清晰认识.作为来自地球深部的碳单质矿物,金刚石是研究深部碳循环的绝佳样品.近年来原位微区分析技术的突飞猛进为研究金刚石及深部碳循环提供了良好条件.文中对表层与深部碳交换、深部碳储库及金刚石矿物学性质进行了介绍,并通过金刚石及其包裹体的稳定同位素组成,探讨了金刚石的形成机制及含碳流体/熔体的性质与来源问题.%Deep carbon cycle is an indispensable part of global carbon cycle While extensive research has been done on surface carbon cycle, there is still little understanding of the carbon in deep earth. We do not know bow much carbon is stored in deep repository, nor do we quantify the migration of carbon between different repositories and its exchange with earth's surface. As a simple substance mineral of carbon from deep earth, diamond is a wonderful window of glimpsing deep carbon cycle. Recent rapid development of in-situ micro-analysis techniques provides strong support for diamond and deep carbon cycle research. This article makes a brief introduction on carbon exchange between surface and deep earth, deep carbon repositories and mineral characteristics of diamond. Subsequently, a discussion is made for mechanism of diamond formation, characteristics and sources ot deep earth's carbon-containing fluid/melt through stable isotopes compositions of diamond and its inclusion.

  1. Niobium oxide thin films formed by plasma immersion oxygen ion implantation

    International Nuclear Information System (INIS)

    In analogy to conventional beam-line ion implantation, plasma immersion ion implantation can be combined with a deposition technique to an ion assisted coating process. The structure and composition of a coating and its interface to the substrate can be modified by ion implantation. By means of electron beam evaporation and oxygen plasma immersion ion implantation niobium oxide films were prepared at low substrate temperatures (< 200 C). The film composition and thickness were determined by Rutherford backscattering spectrometry. The results show that oxygen plasma immersion ion implantation leads to incorporation of oxygen into niobium in several steps, corresponding to niobium oxide phases with different stoichiometries. By contrast to conventional beam-line ion implantation at low pressures, two channels for oxidation can be distinguished, ion implantation of high-energy species and radiation enhanced in-diffusion of low-energy species from the plasma. The latter is driven by thermodynamic forces. (orig.)

  2. Current capabilities and future needs for semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    For many years the largest commercial application for particle accelerators has been semiconductor ion implantation. These tools differ from other accelerators in many respects. In particular they are automated to a very high degree and, in addition to technical performance requirements their success depends on other key metrics including productivity, availability and cost of ownership. These tools also operate with a large variety of species, four orders of magnitude of energy range and five orders of magnitude of dose range. The ion source is a key component of implanters with its own performance metrics that include beam current, lifetime, and materials cost. In this paper, we describe the primary applications for ion implantation and some of the beam line architectures that are used. We describe the ion source that has evolved for this application. Some key future challenges for implanter ion source development are also discussed.

  3. Characterization of duplex hard coatings with additional ion implantation

    Directory of Open Access Journals (Sweden)

    B. Škorić

    2012-01-01

    Full Text Available In this paper, we present the results of a study of TiN thin fi lms which are deposited by a Physical Vapour Deposition (PVD and Ion Beam Assisted Deposition (IBAD. In the present investigation the subsequent ion implantation was provided with N+2 ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of eff ects such as crystallographic orientation, morphology, topography, densifi cation of the fi lms. The evolution of the microstructure from porous and columnar grains to densel packed grains is accompanied by changes in mechanical and physical properties. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM, Atomic Force Microscope (AFM, X-ray diff raction (XRD and Energy Dispersive X-ray analysis (EDAX.

  4. An RFQ accelerator system for MeV ion implantation

    Science.gov (United States)

    Hirakimoto, Akira; Nakanishi, Hiroaki; Fujita, Hiroyuki; Konishi, Ikuo; Nagamachi, Shinji; Nakahara, Hiroshi; Asari, Masatoshi

    1989-02-01

    A 4-vane-type Radio-Frequency Quadrupole (RFQ) accelerator system for MeV ion implantation has been constructed and ion beams of boron and nitrogen have been accelerated successfully up to an energy of 1.01 and 1.22 MeV, respectively. The acceleration of phosphorus is now ongoing. The design was performed with two computer codes called SUPERFISH and PARMTEQ. The energy of the accelerated ions was measured by Rutherford backscattering spectroscopy. The obtained values agreed well with the designed ones. Thus we have confirmed the validity of our design and have found the possibility that the present RFQ will break through the production-use difficulty of MeV ion implantation.

  5. X-ray irradiation of ion-implanted MOS capacitors

    International Nuclear Information System (INIS)

    He+ ion-implanted metal-oxide-semiconductor (MOS) capacitors with two different oxide thickness have been irradiated by X-rays and the depth distribution of the implant damage in the Si-SiO2 structures have been examined. The efficiency of X-ray annealing of electronic traps caused by implantation and changes in charge populations are reported. The experiment shows that (in the case when defects introduced by implantation are located at the Si-SiO2 interface) only defects corresponding to the deep levels in the Si can be affected by X-ray irradiation. When defects introduced by ion implantation are located deeper within the Si substrate complete annealing of these defects is observed

  6. Phosphorus ion implantation gettering effects in Mos structures

    International Nuclear Information System (INIS)

    The influence of some variables of phosphorus ion implantation gettering efficiency in Mos capacitors was investigated by the C-t measurement technique. The Si wafers were gettered by a 120 keV backside P ion implantation, into bare silicon and into silicon covered by a screen oxide 600-1200 Angstroms thick, with subsequent annealing at 900 Centigrade degrees for 30-150 min in N2. The generation lifetime was found to show maximum value after 120 min anneal. A marked tendency in the behavior of generation lifetime, when P was implanted into bare silicon and when it was implanted into silicon covered by an oxide, was not found. In both cases, the generation lifetime increases with the increase of oxide thickness. (Author)

  7. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  8. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    CERN Document Server

    Chen, ChienHsu; Jian, Hui-Shan; Niu, H

    2016-01-01

    Here we present a simple physical method to produce magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are distributed inside the NDs without affecting their crystal structure. So the NDs can be still functionalized through surface modification for targeted chemotherapy and the added magnetic property will make the NDs suitable for localized thermal treatment for cancer cells without the toxicity from the Fe atoms being directly in contact with the living tissue.

  9. Ion implantation induced blistering of rutile single crystals

    Science.gov (United States)

    Xiang, Bing-Xi; Jiao, Yang; Guan, Jing; Wang, Lei

    2015-07-01

    The rutile single crystals were implanted by 200 keV He+ ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He+ ion implantation with appropriate fluence and the following thermal annealing.

  10. Erbium ion implantation into different crystallographic cuts of lithium niobate

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Švecová, B.; Cajzl, J.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Kolitsch, A.; Špirková, J.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 652-659. ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125; GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : Lithium niobate * Erbium * Ion implantation * Luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.918, year: 2012

  11. Single versus double ion implantation: a deep level study

    Energy Technology Data Exchange (ETDEWEB)

    Alfieri, G. [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan); Kimoto, T. [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan); Photonics and Electronics Science and Engineering Center, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan)

    2009-02-15

    We performed a comparison study of electrically active defects generated in single and double ion implantated 4H-SiC epilayers. Capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements revealed that dou- ble implantation, is responsible for a different compensation mechanism of the net-acceptor concentration, and for the different nature and annealing behavior of the detected deep levels. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Er+ medium energy ion implantation into lithium niobate

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Nekvindová, P.; Macková, Anna; Oswald, Jiří; Vacík, Jiří; Grotzschel, R.; Spirkova, J.

    2009-01-01

    Roč. 267, 8-9 (2009), s. 1332-1335. ISSN 0168-583X R&D Projects: GA MŠk(CZ) LC06041; GA AV ČR IAA200480702 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100521 Keywords : lithium niobate * erbium * ion implantation Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders Impact factor: 1.156, year: 2009

  13. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  14. Low energy negative ion implanter facility at IUAC, New Delhi

    International Nuclear Information System (INIS)

    A low energy negative ion implanter facility had been developed at IUAC. The typical ion energies of this facility are in the range of 30 KeV to 200 KeV. It is capable of delivering ion species having masses 1H to 197Au. The facility is equipped with a sputter base negative ion source namely MC- SNICS (multi cathode -source of negative ion by cesium sputtering) placed on a high voltage platform (200 kV) for generating negative ion beams. The beam line essentially consists of a negative ion source, an accelerating column, focusing devices such as electrostatic quadruple triplets, an analyzer magnet for selecting the particular ion beam as well as transporting in a particular direction and finally, an ion implantation chamber. The analyzer magnet has a maximum rigidity, R =mE/Z2 of 34 (where m- mass in a.m.u., E- energy in MeV, Z- charge state) thereby, it restricts the energies of the higher mass ions at 150 keV. The ion beam optics for this facility was calculated using GIOS and GICOSY software codes. The control system used for its operation is indigenously developed. The optimized or minimum ion beam spot size obtained is 5 mm x 5 mm (but, variable with ion energy and mass). An electrostatic scanner placed in front of the implantation chamber allows a uniform ion implantation on the samples of sizes up to 15 mm x 15 mm. The facility is in regular operation for ion implantation purposes especially for material science experiments. (author)

  15. Plasma source ion implantation of ammonia into electroplated chromium

    International Nuclear Information System (INIS)

    Ammonia gas (NH3) has been used as a nitrogen source for plasma source ion implantation processing of electroplated chromium. No evidence was found of increased hydrogen concentrations in the bulk material, implying that ammonia can be used without risking hydrogen embrittlement. The retained nitrogen dose of 2.1 x 1017 N-at/cm2 is sufficient to increase the surface hardness of electroplated Cr by 24% and decrease the wear rate by a factor of 4

  16. Effects ofMeV ion implantation on metal films

    International Nuclear Information System (INIS)

    Au films on optically flat Pyrex glasses or MgO single crystals were implanted with Si, Ni and Au ions with ion energies from 0.75 to 3MeV and doses from of 5x1013 to 5x1016ionscm-2. The changes of their surfaces were investigated from measurements of the surface profiles and light reflection and/or scattering, and from observations by scanning electron microscopy (SEM). After ion implantation the surface showed a depression. The depression increased with increasing dose and mass of implanted ions. The ion-implanted surface became smoother than that of the as-deposited one. The intensity of light scattering was decreased and a metallic brilliance was observed after the implantation. The depression and the morphology changes were caused by sputtering and grain growth. In the SEM observations, the implanted regions were contrasted with as-deposited regions as blacker in secondary electron images and as whiter in composition images of reflected electrons. The impurity level of the films appeared to diminish after the ion implantation. ((orig.))

  17. Quantum-dot composite silicate glasses obtained by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a useful technique to obtain composite materials such as nanocluster-containing silicate glasses. Depending on the choice of the pair 'implanted atom-dielectric host', ion implantation of metals in glass gives rise to the formation of new compounds and/or metallic nanoparticles. In spite of the great interest, processes governing the chemical and physical interaction between the implanted atoms and the atoms in the host matrix are not completely understood. In this paper, metal, alloy and binary compound nanocluster formation is studied after ion implantation in silica and soda-lime glass. Particular emphasis is given to the comparison among different existing approaches to the understanding of the chemical interactions in these systems. As the physical properties of these composites depend on the cluster structure, composition and size, it is important to set procedures for modifying these characteristics. Recent results indicate that thermal treatments in controlled atmosphere of gold + copper double-implanted silica favor the formation of either alloy nanoclusters or copper compounds, depending on the annealing atmosphere

  18. Extreme Precipitation Strengthening in Ion-Implanted Nickel

    International Nuclear Information System (INIS)

    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550''C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550''C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable -A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure

  19. Architecture and control of a high current ion implanter system

    International Nuclear Information System (INIS)

    The design of an ion implant system for use in production requires that special attention be given to areas of design which normally are not emphasized on research or development type ion implanters. Manually operated, local controls are replaced by remote controls, automatic sequencing, and digital displays. For ease of maintenance and replication the individual components are designed as simply as possible and are contained in modules of separate identities, joined only by the beam line and electrical interconnections. A production environment also imposes requirements for the control of contamination and maintainability of clean room integrity. For that reason the major portion of the hardware is separated from the clean operator area and is housed in a maintenance core area. The controls of a production system should also be such that relatively unskilled technicians are able to operate the system with optimum repeatability and minimum operator intervention. An extensive interlock system is required. Most important, for use in production the ion implant system has to have a relatively high rate of throughput. Since the rate of throughput at a given dose is a function of beam current, pumpdown time and wafer handling capacity, design of components affecting these parameters has been optimized. Details of the system are given. (U.K.)

  20. Mutagenic effects of ion implantation on stevia

    International Nuclear Information System (INIS)

    Dry seeds of Stevia were implanted by 75 keV nitrogen and carbon ions with various doses. The biological effects in M1 and mutation in M2 were studied. The results showed that ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with ion beam dose. The rate of cells with chromosomal aberration was lower than that induced with γ-rays. Frequency of the mutation induced by implantation of N+ and C+ ions were higher than those induced by γ-rays. The rate of cell with chromosome aberration and in M2 useful mutation induced by implantation of C+ ion was higher than those induced by implantation of N+ ion. Mutagenic effects Feng1 x Riyuan and Riyuan x Feng2 by implantation of N+ and C+ were higher than that of Jining and Feng2

  1. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  2. Osteopontin (OPN is an important protein to mediate improvements in the biocompatibility of C ion-implanted silicone rubber.

    Directory of Open Access Journals (Sweden)

    Shao-liang Wang

    Full Text Available Medical device implants are drawing increasing amounts of interest from modern medical practitioners. However, this attention is not evenly spread across all such devices; most of these implantable devices can cause adverse reactions such as inflammation, fibrosis, thrombosis, and infection. In this work, the biocompatibility of silicone rubber (SR was improved through carbon (C ion implantation. Scanning electron microscopy (SEM, atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD results confirmed that these newly generated carbon-implanted silicone rubbers (C-SRs had large, irregular peaks and deep valleys on their surfaces. The water contact angle of the SR surface decreased significantly after C ion implantation. C ion implantation also changed the surface charge distribution, silicone oxygen rate, and chemical-element distribution of SR to favor cell attachment. The dermal fibroblasts cultured on the surface C-SR grew faster and showed more typical fibroblastic shapes. The expression levels of major adhesion proteins, including talin-1, zyxin, and vinculin, were significantly higher in dermal fibroblasts cultured on C-SR coated plates than in dermal fibroblasts cultured on SR. Those same dermal fibroblasts on C-SRs showed more pronounced adhesion and migration abilities. Osteopontin (OPN, a critical extracellular matrix (ECM protein, was up-regulated and secreted from dermal fibroblasts cultured on C-SR. Matrix metalloproteinase-9 (MMP-9 activity was also increased. These cells were highly mobile and were able to adhere to surfaces, but these abilities were inhibited by the monoclonal antibody against OPN, or by shRNA-mediated MMP-9 knockdown. Together, these results suggest that C ion implantation significantly improves SR biocompatibility, and that OPN is important to promote cell adhesion to the C-SR surface.

  3. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, we made prototype sliding bearings from functionally-graded, diamond-coated carbon-fiber reinforced composite. In dry-sliding experiments, the friction...

  4. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop low cost diamond composite bearings utilizing our new high pressure technology for carbon fiber reinforced 3-D C/C composites and mixtures of...

  5. Effect of ion implantation on surface energy of ultrahigh molecular weight polyethylene

    International Nuclear Information System (INIS)

    The effect of ion implantation including ion species (N2+ and C3H8+) and the fluences (1x1014-5x1015 ions/cm2) on the surface energy of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. The total surface energy increases significantly after implanting with the fluence of 1x1014 ions/cm2 regardless of ion species, then, the total surface energy slightly increases for N2+ implanted UHMWPE and decreases slightly for C3H8+ implanted UHMWPE with a further increase of fluence. The structural changes of UHMWPE with different fluence for different ion species are very similar. The linear chains of UHMWPE are damaged and cross linking is generated after implantation. As the fluence increases, the polymer surface becomes more disordered, and the surface becomes hydrogenated amorphous carbon when the fluence exceeds 1x1015 ions/cm2. The surface roughness increases with the increase of the fluence regardless of ion implantation species

  6. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  7. Iron ion implantation into C60 layer

    International Nuclear Information System (INIS)

    Complete text of publication follows. The soccer ball shaped carbon molecule consisting of 60 carbon atoms (C60, fullerene) was discovered in 1985. Since that time the fullerene has become intensively studied. This special molecule has much potential in medical care, biotechnology and nanotechnology. We are motivated to produce special type fullerenes, so called endohedral fullerenes (some alien atoms are encapsulated inside the fullerene cage). The spring of our motivation is that the Fe at C60 could be applied as a contrast material for MRI (Magnetic Resonance Imaging) or microwave heat therapy. One way to make X at C60 is the surface production using an ECRIS (Electron Cyclotron Resonance Ion Source). An evaporated or preprepared fullerene layer is irradiated by ions to form a new material during the implantation. By this method several kinds of atomic species, such as Li, Na, K, Rb, Xe were encapsulated into the fullerenes. However evidence for the Fe at C60 has not been found yet. During the analysis of the irradiated samples three questions must be answered. 1. Are there iron atoms in the layer and where? 2. Does the iron bond to the fullerene? 3. How does the iron bond to the fullerene, inside or outside? Using different investigation tools, SNMS (Secondary Neural Mass Spectrometer), MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time of Flight), XPS (Xray Photoelectron Spectroscopy) or HPLC (High-Performance Liquid Chromatography), all these questions could be clarified step by step. In this paper we made the first steps to answer the first question: fullerene layers irradiated by iron ion beam delivered by the ATOMKI-ECRIS have been analyzed by the ATOMKI-SNMS. The evaporated 90 - 120 nm thick fullerene layers on Si holder were irradiated by Fe5+ and Fe+ ion beams produced from Ferrocene vapor. Samples were irradiated with two different doses (5 1018 ion/cm3 and 1022 ion/cm3) at four ion energies (65 keV, 6.5 keV, 0.2 keV and two of these samples

  8. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    Energy Technology Data Exchange (ETDEWEB)

    Himics, L., E-mail: himics.laszlo@wigner.mta.hu; Tóth, S.; Veres, M.; Koós, M. [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Balogh, Z. [Uzhhorod National University, 88000 Uzhhorod (Ukraine)

    2014-03-03

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He{sup +} ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N{sub 2}{sup +} ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp{sup 2} carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modification of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies.

  9. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    International Nuclear Information System (INIS)

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He+ ion implantation into nanosized diamond “layer” was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N2+ ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp2 carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modification of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies

  10. Creation of deep blue light emitting nitrogen-vacancy center in nanosized diamond

    Science.gov (United States)

    Himics, L.; Tóth, S.; Veres, M.; Balogh, Z.; Koós, M.

    2014-03-01

    This paper reports on the formation of complex defect centers related to the N3 center in nanosized diamond by employing plasma immersion and focused ion beam implantation methods. He+ ion implantation into nanosized diamond "layer" was performed with the aim of creating carbon atom vacancies in the diamond structure, followed by the introduction of molecular N2+ ion and heat treatment in vacuum at 750 °C to initiate vacancy diffusion. To decrease the sp2 carbon content of nanosized diamond formed during the implantation processes, a further heat treatment at 450 °C in flowing air atmosphere was used. The modification of the bonding properties after each step of defect creation was monitored by Raman scattering measurements. The fluorescence measurements of implanted and annealed nanosized diamond showed the appearance of an intensive and narrow emission band with fine structures at 2.98 eV, 2.83 eV, and 2.71 eV photon energies.

  11. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  12. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  13. Fast deposition of diamond-like carbon films by radio frequency hollow cathode method

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films were deposited on p-type Si (100) substrates by RF hollow cathode method under different RF power and pressure, using ethane as the precursor gas. The deposition rate of 45 nm/min was achieved, almost 4 times higher than by conventional radio frequency plasma enhanced chemical vapor deposition. The mechanism of fast DLC films deposition is attributed to high plasma density in RF hollow cathode method, discussed in this paper. Scanning electron microscopy and Raman spectroscopy were used to investigate the microstructure of DLC films. The film hardness and Young's modulus were measured by nanoindentation. - Highlights: • Diamond-like carbon thin films were deposited by RF hollow cathode method. • The deposition rate of 45 nm/min was achieved. • A higher plasma density results in a higher deposition rate

  14. PROPERTIES OF DIAMOND-LIKE CARBON COATINGS DEPOSITED ON CoCrMo ALLOYS

    OpenAIRE

    Madej, Monika; Ozimina, Dariusz; Kurzydłowski, Krzysztof; Płociński, Tomasz; Wieciński, Piotr; Styp-Rekowski, Michał; Matuszewski, Maciej

    2015-01-01

    This paper presents results of the structure analysis and tribological testing of a-C:H type diamond-like carbon (DLC) coatings produced by the Plasma Assisted Chemical Vapour Deposition (PACVD) technology on CoCrMo specimens. The DLC coating structure was studied by observing the surface topography using a scanning electron microscope (SEM) in the SE and STEM modes and a profilometer. Raman spectroscopy provided information on hybridized covalent bonds. The structural analysis involved obser...

  15. Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon

    OpenAIRE

    Puértolas, J. A.; Martínez-Nogués, V.; Martínez-Morlanes, M. J.; Mariscal, M. D.; Medel, F. J.; López-Santos, Carmen; Yubero, Francisco

    2010-01-01

    Hydrogenated diamond like carbon (DLCH) thin films were deposited on medical grade ultra high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition. The DLCH coating thicknesses ranged from 250 to 700. nm. The substrates were disks made of UHMWPEs typically used for soft components in artificial joints, namely virgin GUR 1050 and highly crosslinked (gamma irradiated in air to 100. kGy) UHMWPEs. Mechanical and tribological properties under bovine s...

  16. Three-layer antireflection diamond-like carbon films on glass

    International Nuclear Information System (INIS)

    Three-layered diamond-like carbon films were grown on the glass from decomposition of toluene and nitrogen by Plasma Enhanced Chemical Vapor Deposition technique. Using the generalized transfer-matrix technique, the optimal parameters of three-layered structures, for which the reflection in the range of 400-750 nm has a minimum, were calculated theoretically. A dependence of the grown films refractive index on the plasma power and nitrogen concentration in the gas mixture was investigated

  17. Wear modelling of diamond-like carbon coatings against steel in deionised water

    OpenAIRE

    Sutton, Daniel Christopher

    2014-01-01

    Diamond-Like Carbon (DLC) coatings are thin protective surface coatings used to reduce friction and minimise wear in a wide range of applications. The focus of this work is the use of DLC coatings within Rolls-Royce’s pressurised water reactors. A strong understanding of material behaviour in this environment is compulsory due to the stringent safety requirements of the nuclear industry. Wear testing of a range of commercial DLC coatings against steel in water, and the dependence of the tribo...

  18. Nanocomposite Diamond-Like Carbon Coatings Studied by AEM and Depth Sensing Indentation Test

    Czech Academy of Sciences Publication Activity Database

    Buršíková, V.; Buršík, Jiří

    Karlsruhe : ECJRC-ITE, 2006, s. 311-311. [EMAS Regional Workshop on Electron Probe Microanalysis of Materials Today - EMAS 2006 /7./. Karlsruhe (DE), 13.05.2006-16.05.2006] R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20410507 Keywords : Nanocomposite Diamond-Like Carbon * AEM * Depth Sensing Indentation Test Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    OpenAIRE

    Seong Shan Yap; Chen Hon Nee; Seong Ling Yap; Teck Yong Tou

    2015-01-01

    Nanostructured diamond-like carbon (DLC) films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional depos...

  20. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH4/H2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H2. The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  1. Migration behaviour of carbon atoms on clean diamond (0 0 1) surface: A first principle study

    Science.gov (United States)

    Liu, Xuejie; Xia, Qing; Li, Wenjuan; Luo, Hao; Ren, Yuan; Tan, Xin; Sun, Shiyang

    2016-01-01

    The adsorption and migration energies of a single carbon atom and the configuration evolution energies of two carbon atoms on a clean diamond (0 0 1) surface were calculated using the first principle method based on density functional theory to investigate the formation of ultra-nanocrystalline diamond (UNCD) film. The activation energy of a single atom diffusing along a dimer row is 1.96 eV, which is almost the same as that of a CH2 migrating along a dimer row under hydrogen-rich conditions. However, the activation energy of a single atom diffusing along a dimer chain is 2.66 eV, which is approximately 1.55 times greater than that of a CH2 migrating along a dimer chain in a hydrogen-rich environment. The configuration evolution of the two carbon atoms is almost impossible at common diamond film deposition temperatures (700-900 °C) because the activation energies reach 4.46 or 5.90 eV. Therefore, the high-energy barrier could result in insufficient migration of adatoms, leading to the formation of amorphous in UNCD films in hydrogen-poor CVD environment.

  2. Simulation of charging phenomena in ion implantation into the micro structure pattern

    International Nuclear Information System (INIS)

    The charging of devices in high current ion implantation has become a serious problem. We have suggested that the negative ion has an effect on this problem. We have calculated the charging-up potential of insulated region considering the micro device structure, and compared the positive and negative ion implantation. We have reached the following results: the larger the grounded area and the bigger the secondary electron emission factor of grounded region, the surface potential of insulated region is lower in both positive and negative ion implantation. Especially in negative ion implantation the saturated surface potential is getting near zero volt. In negative ion implantation to the micro structure pattern, the surface voltage saturates at a low voltage, which is suitable to the ion implantation into semiconductor devices. (author)

  3. Formation of intermetallic surface layers with high intensity ion implantation

    International Nuclear Information System (INIS)

    Full text: Ion implantation is an effective method to produce the intermetallic phases and for improving of surface properties of the construction materials. From the variety of the well-known methods, the high intensity ion implantation is the most attractive one, since it allows us to obtain in the target materials the ion ion-alloyed layers with the thickness several orders greater than the ion projected range. The increase of the thickness of ion-alloyed surface layers at high intensity implantation can be achieved by the means of controlled heating of target by the ion beam, as well as by the saturation of the surface layer by high concentrated ion beam, followed by radiation-stimulated diffusion. Now the task of obtaining of high intensity ion beams is successfully solved not only for the gas ions, but also for the metals ions. The new vacuum-arc beam and plasma flow source 'Raduga-5' has the opportunity to carry out the implantation of the conductive material ions in the high intensity mode. The high intensity ion implantation allows us to form in the surface layer the fine dispersed intermetallic phases in order to improve the wear resistance and the heat resistance of the metallic work pieces. In the present work, titanium was used as a target for ion implantation. Ion implantation of aluminum ions into titanium was carried out using the 'Raduga-5' ion source at the accelerating voltage 20 kV. The surface sputtering was compensated by plasma deposition of ions. The variation of the time of the ion implantation allowed us to change the dose of the implanted aluminium ions. The chemical and phase composition, as well as morphologic structure of the ion-alloyed surface layers were analyzed by the Auger spectroscopy and by the transmission electron microscopy. Additionally, the tests of the tribological and mechanical properties of the implanted materials have been carried out. It was found out that increasing of the dose of aluminum ions from 2.2·1017 up to

  4. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B10H14) and carborane (C2B10H12) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  5. Laboratory based space experiments using an ion implanter

    International Nuclear Information System (INIS)

    The Accelerator Centre at the University of Manitoba has been active in recent years in the study of materials relevant to the space industry and in the characterization of such materials. Plans are in place to extend this work on the ion implantation of materials to new areas of research in which more esoteric physical processes are examined on Earth prior to the development of structures for space vehicles or planetary study. This paper consists of two parts, the first a summary of recent research to be published in refereed scientific literature, the second an outline of future plans using existing facilities. (author)

  6. Raman scattering in silicon disordered by gold ion implantation

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Vorlíček, Vladimír; Voseček, Václav

    2010-01-01

    Roč. 247, č. 8 (2010), s. 2022-2026. ISSN 0370-1972. [8th International Conference on Optics of Surfaces and Interfaces (OSI-VIII). Ischia, 07.09.2009-11.09.2009] R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100520 Keywords : ion implantation * Raman spectra * Rutherford backscattering spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.344, year: 2010

  7. Metastable phases produced by ion implantation in metals

    International Nuclear Information System (INIS)

    Experimental evidence for the formation of metastable phases in metals using ion implantation is reviewed. Ion channeling and transmission electron microscopy are the main experimental techniques which have been used to investigate these materials. For heavy metallic implanted species at low implanted concentrations (less than or equal to 1 at. percent), the materials are generally substitutional solid solutions, often exceeding equilibrium solid solubilities. At higher concentrations both metastable solid solutions and amorphous structures can be produced. Examples from the Ag : Cu, Ta : Cu, Dy : Ni, and Au : Pt systems are shown to illustrate specific points. A thermal spike-type mechanism has been proposed to explain these behaviors

  8. Metastable phases produced by ion implantation in metals

    Energy Technology Data Exchange (ETDEWEB)

    Borders, J.A.

    1977-01-01

    Experimental evidence for the formation of metastable phases in metals using ion implantation is reviewed. Ion channeling and transmission electron microscopy are the main experimental techniques which have been used to investigate these materials. For heavy metallic implanted species at low implanted concentrations (less than or equal to 1 at. percent), the materials are generally substitutional solid solutions, often exceeding equilibrium solid solubilities. At higher concentrations both metastable solid solutions and amorphous structures can be produced. Examples from the Ag : Cu, Ta : Cu, Dy : Ni, and Au : Pt systems are shown to illustrate specific points. A thermal spike-type mechanism has been proposed to explain these behaviors.

  9. The Mechanical and Tribological Properties or Ion Implanted Ceramics

    OpenAIRE

    Bull, Stephen John

    1988-01-01

    The mechanical properties of ion implanted ceramics are primarily a function of the radiation damage produced by the implantation process. For crystalline ceramics this damage is chiefly nuclear displacements, though for glasses electronic effects have also been observed. In this study a number of single crystal and polycrystalline ceramics and a soda-lime-silica glass have been implanted with a range of ions in the energy range 90keV to 400keV and the changes in mechanical properties prod...

  10. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  11. Improvement of graphene quality synthesized by cluster ion implantation

    International Nuclear Information System (INIS)

    Graphene was prepared by negative C4 cluster ion implantation at 5 keV/atom followed by vacuum thermal annealing and cooling. The surface morphology and structure of samples were studied by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. Improvement of the graphene quality was realized by optimization of the post thermal processes. 1–2 layer graphene was obtained with I2D/IG ratio of 1.43 and ID/IG ratio of 0.07 at the implantation dose of 12 × 1015 atoms/cm2 and annealed at 900 °C followed by cooling at 20 °C/min

  12. Improving the properties of titanium alloys by ion implantation

    International Nuclear Information System (INIS)

    The 'Ionguard' ion-implantation process for the enhancement of Ti alloys' wear, corrosion-resistance, and other surface properties has found use in orthopedic implant, ball valve, turbine blade, specialty fastener, and threaded component applications. The application of the Ironguard process to finished components does not jeopardize their dimensional integrity or surface finish. Ironguard is, moreover, a low-temperature process which leaves the bulk properties of products unaffected. Nitrogen is often used as an implant by the process; attention is given to results obtained for the Ti-6Al-4V alloy. 6 refs

  13. Cytological effect of nitrogen ion implantation into Stevia

    International Nuclear Information System (INIS)

    Dry seeds of Stevia were implanted by 35∼150 keV nitrogen ion with various doses. The cytological effect on M1 was studied. The results showed that nitrogen ion beam was able to induce variation on chromosome structure in root tip cells. The rate of cells with chromosome aberration was increased with the increased with the increase of ion beam energy and dose. However, there was no significant linear regression relationship between ion dose and aberration rate. The cytological effect of nitrogen ion implantation was lower than that of γ-rays

  14. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  15. Ion implantation. It's role in silicon device technology

    International Nuclear Information System (INIS)

    During the past four years, as a result of the severe demands placed on the production of metal oxide, large-scale integrated circuits (MOS/LSI), ion implantation has moved from the research laboratory on to the factory floor. The success of this activity can be judged by the large number of different types of MOS/LSI circuits on the market. In this article, the author assesses the factors which have made this industrial application possible, the present extent of development and the likely technical trends in the future. (orig.)

  16. Surface modification of yttria stabilized zirconia by ion implantation

    International Nuclear Information System (INIS)

    The results of investigations of surface modification by ion implantation in zirconia are described. As dopant material, iron was investigated thoroughly. The depth distribution of implanted ions depends on implantation parameters and the dopant-matrix system. The investigations of thermal stability of some implanted iron profiles by RBS and AES are described. Special interest lies in the thermal stability under working conditions of the zirconia material (400-10000C). Radiation damage introduced in the implanted layer was investigated using transmission electron microscopy on polycrystalline material and channeling experiments on a single crystal implanted with iron. 179 refs.; 87 figs.; 20 tabs

  17. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  18. High-Tc SQUIDs fabricated by inhibiting ion implantation

    International Nuclear Information System (INIS)

    We have fabricated YBaCuO superconducting quantum interference devices (SQUIDs) using an inhibiting ion implantation method. The devices were patterned by implanting silicon or boron ions through photoresist masks to locally inhibit the conductivity. The implantation was performed at energies of 40-120 keV and doses of 1015-1016 cm-2. The DC SQUIDs consist of step-edge junctions on SrTiO3 substrates. Operational SQUIDs fabricated with this new patterning method were demonstrated at 77 K. Line widths of 2 μm have been achieved and sharp superconducting-normal boundaries were observed. The surface of the patterned device remained planar. (author)

  19. Modification of plasma polymer films by ion implantation

    OpenAIRE

    Santos Deborah Cristina Ribeiro dos; Rangel Rita de Cássia Cipriano; Mota Rogério Pinto; Cruz Nilson Cristino da; Schreiner Wido Herwig; Rangel Elidiane Cipriano

    2004-01-01

    In this work, thin polymer films were prepared from acetylene and argon radiofrequency (13.56 MHz, 80 W) glow discharges. Post-deposition treatment was performed by plasma immersion ion implantation in nitrogen or helium glow discharges (13.56 MHz, 70 W). In these cases, samples were biased with 25 kV negative pulses. Exposure time to the bombardment plasma, t, ranged from 900 to 7200 s. Chemical composition of the film surfaces was investigated by X-ray Photoelectron Spectroscopy and the res...

  20. Optical contrast in ion-implanted amorphous silicon carbide nanostructures

    International Nuclear Information System (INIS)

    Topographic and optical contrasts formed by Ga+ ion irradiation of thin films of amorphous silicon carbide have been investigated with scanning near-field optical microscopy. The influence of ion-irradiation dose has been studied in a pattern of sub-micrometre stripes. While the film thickness decreases monotonically with ion dose, the optical contrast rapidly increases to a maximum value and then decreases gradually. The results are discussed in terms of the competition between the effects of ion implantation and surface milling by the ion beam. The observed effects are important for uses of amorphous silicon carbide thin films as permanent archives in optical data storage applications

  1. Hardening of WC-Co alloys by ion implantation

    International Nuclear Information System (INIS)

    The hardening effect on the surface layers of WC-Co alloys after Ar+- and N+-ion implantation with the fluence in the range 1 divided by 8.7 x 1017 cm-2 has been investigated at room temperature and under heating with an ion beam. The depth of the Auger distribution profiles and the microhardness of implanted samples were measured. The radiation-stimulated diffusion of nitrogen atoms and the microhardness enhancement were observed. The contribution of the polymorphic Co-phase transformation and the production of Co-N compounds is discussed. (author)

  2. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm3+ and Er3+ traces. The results include absorption and emission curves as well as decay time rates.

  3. Directional distribution of Burgers vectors of dislocation loops in ion-implanted silicon

    International Nuclear Information System (INIS)

    The possible directional distributions of Burgers vectors of perfect dislocation loops and dipoles formed in the silicon single crystals after ion implantation and annealing have been studied. (author)

  4. Plasma immersion ion implantation of a pea seed and its RBS spectra

    International Nuclear Information System (INIS)

    Plasma immersion ion implantation (PI3) is a new technique with certain advantages over biological samples developed in CTU. argon as well as nitrogen ion implantation of a pea seed has been carried out with the PI3 implanter. Their RBS spectra were studied. The results show that the mass deposition effect of ion implantation into biological samples can be achieved with our PI3 implanter. In addition, there is an optimal implantation time for a given treatment condition. The PI3 technique opens up new possibilities for the ion implantation into biological samples

  5. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  6. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan;

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  7. Origin of Ultra-Deep Diamonds: Chemical Interaction of Ca-CARBONATE and the Earth's Lower Mantle Minerals

    Science.gov (United States)

    Spivak, A. V.; Dubrovinsky, L. S.; Litvin, Yu. A.

    2012-04-01

    The main goal of the work is experimental study of physicochemical conditions of origin of ultra-deep diamonds in the substance of the Earth's lower mantle (LM) based on the experimental criterium of syngenesis of diamond and primary inclusions of LM mineral. Magnesiowustite (Mg,Fe)O, Mg-Fe perovskite (Mg,Fe)(Si,Al)O3 and Ca-perovskite CaSiO3 mainly present the LM substance and are frequently disclosed as primary inclusions in ultra-deep diamonds together with Ca-, (Ca, Mg, Fe)-, Na-Ca-carbonates. For the upper mantle conditions, the mantle-carbonatite conception of diamond genesis was developed based on the effects of congruent melting of carbonates and complete liquid miscibility of carbonate-silicate melts. Melting of Ca-carbonate and CaCO3 - (Mg,Fe)O, CaCO3 - (Mg,Fe)(Si,Al)O3 systems, stability of the melts and their decomposition were studied in static high pressure experiments at pressures of 16 to 55 GPa and temperatures of 1600 to 3900 K using diamond anvil cell technique with laser heating. It was determined that melting of Ca-carbonate is congruent at the PT-conditions of the lower mantle and characterized by an expanded field of liquid Ca-carbonate phase. We observed formation of graphite (below 16 GPa) and diamond (between 16 and 43 GPa) on decomposition of the CaCO3 melt at temperatures above 3400 K. At temperatures below 3400 K congruent melting of calcium carbonate was confirmed. Also it was shown that CaCO3 - (Mg,Fe)O - (Mg,Fe)(Si,Al)O3 system is capable to form diamonds together with Ca-carbonate, magnesiowustite and perovskite as syngenesis minerals at PT-conditions of the lower mantle. We observed formation diamond (between 40 and 55 GPa) on decomposition of the CaCO3 from CaCO3 - (Mg,Fe)(Si,Al)O3 melt at temperatures above 2000 K. The experimental data on phase relations at the melting and decomposition of CaCO3 and CaCO3-(Mg,Fe)O-(Mg,Fe)(Si,Al)O3 system as well as diamond crystallization are applied to the problem of formation of natural ultra

  8. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  9. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Science.gov (United States)

    Ren, Wei; Iyer, Ajai; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Avchaciov, Konstantin; Nordlund, Kai

    2015-11-01

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp3 bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp3-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40-70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  10. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    International Nuclear Information System (INIS)

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp3 bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp3-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity

  11. Optical properties of nano-structured material in ion-implanted polymer

    International Nuclear Information System (INIS)

    Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communication, we have studied the optical properties (controlled through the complex refractive index) of nano-structured material in silicon ion (Si+) implanted polymethylmethacrylate (PMMA). PMMA was implanted with Si+ ions accelerated to a relatively low energy of 50 keV at a high fluence of 3.2×1015 Si+/cm2. The carbon nano-clustered material in the ion-modified surface layer of Si+-implanted PMMA of a thickness of about 100 nm was optically characterized by reflectance measurements, as well as by reflection ellipsometry at a wavelength of 632.8 nm (He-Ne laser)

  12. Etching and structure changes in PMMA coating under argon plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurin, Alexey, E-mail: kond@mailcity.com [Applied and Plasma Physics, School of Physics A28, University of Sydney, New South Wales 2006 (Australia); Bilek, Marcela [Applied and Plasma Physics, School of Physics A28, University of Sydney, New South Wales 2006 (Australia)

    2011-06-15

    A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 10{sup 15} ions/cm{sup 2} was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.

  13. Experimental investigation of plasma-immersion ion implantation treatment for biocompatible polyurethane implants production

    Science.gov (United States)

    Iziumov, R. I.; Beliaev, A. Y.; Kondyurina, I. V.; Shardakov, I. N.; Kondyurin, A. V.; Bilek, M. M.; McKenzie, D. R.

    2016-04-01

    Modification of the surface layer of polyurethane with plasma-immersion ion implantation (PIII) and studying its physical and chemical changes have been discussed in this paper. The goal of the research was to obtain carbonized layer allowing creating biocompatible polyurethane implants. The experiments of PIII treatment in various modes were performed. The investigation of the modified surface characteristics was carried out by observing the kinetics of free surface energy for two weeks after treatment. The regularities between treatment time and the level of free surface energy were detected. The explanation of high energy level was given through the appearance of free radicals in the surface layer of material. The confirmation of the chemical activation of the polyurethane surface after PIII treatment was obtained.

  14. Wettability conversion of an aluminum-hydroxide nanostructure by ion implantation

    Science.gov (United States)

    Jeon, Jihoon; Choi, Dukhyun; Kim, Hyungdae; Park, Yong Tae; Choi, Min-Jun; Chung, Kwun-Bum

    2016-04-01

    This work presents a method for controlling the wettability of an aluminum-hydroxide (Al(OH)3) nanostructure by using ion implantation. We implant Xe ions into Al(OH)3 nanostructures at dosages between 5 × 1014 to 1 × 1016 ions/cm2. The microscopic surface morphology of the nanostructure after implantation does not change under our dosing conditions. However, a drastic increase in the surface contact angle (CA) from 0° to 100° is observed at a dosage of 5 × 1015 ions/cm2. We attribute this significant change in CA to the composition and chemical bonding states of carbon contained within the Al(OH)3 nanostructure.

  15. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    Science.gov (United States)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  16. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy

    International Nuclear Information System (INIS)

    Diamond-like carbon films were deposited by electrolysis of a water-ethanol solution on Cu at low voltages (60-100 V) at 2 mm interelectrode separation. The films were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy. The films were found to be continuous and compact with uniform grain distribution. Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1580 cm-1. The downshift of the G band of graphite is indicative of the presence of DLC. For XRD analysis, the three strong peaks located at 2θ values of 43.2 deg., 74.06 deg. and 89.9 deg. can be identified with reflections form (1 1 1), (2 2 0) and (3 1 1) plane of diamond.

  17. Single ion implantation for single donor devices using Geiger mode detectors

    Science.gov (United States)

    Bielejec, E.; Seamons, J. A.; Carroll, M. S.

    2010-02-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 µm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of 98% for counting one and only one ion for a false count probability of 10-4 at an average ion number per gated window of 0.015.

  18. Mechanical properties of ion-implanted tungsten-5 wt% tantalum

    International Nuclear Information System (INIS)

    Ion implantation has been used to simulate neutron damage in W-5wt%Ta alloy manufactured by arc melting. Implantations were carried out at damage levels of 0.07, 1.2, 13 and 33 displacements per atom (dpa). The mechanical properties of the ion-implanted layer were investigated by nanoindentation. The hardness increases rapidly from 7.3 GPa in the unimplanted condition to 8.8 GPa at 0.07 dpa. Above this damage level, the increase in hardness is lower, and the hardness change saturates by 13 dpa. In the initial portion of the load-displacement curves, the indentations in unimplanted material show a large 'initial pop-in' corresponding to the onset of plasticity. This is not seen in the implanted samples at any doses. The change in plasticity has also been studied using the nanoindenter in scanning mode to produce a topographical scan around indentations. In the unimplanted condition there is an extensive pile-up around the indentation. At damage levels of 0.07 and 1.2 dpa the extent and height of pile-up are much less. The reasons for this are under further investigation.

  19. Compression of self-ion implanted iron micropillars

    International Nuclear Information System (INIS)

    Highlights: ► Self-ion implantation used to cause cascade damage in pure iron. ► Increase in hardness measured in implanted region using nanoindentation. ► Micropillars manufactured and tested in both implanted and unimplanted material. ► Marked difference in deformation mechanisms in each set of pillars seen using scanning electron microscopy. ► No difference in yield stress seen, suggesting it is difficult to use micro-compression to understand bulk properties. - Abstract: Ion implantation causes displacement damage in materials, leading to the formation of small dislocation loops and can cause changes to the material’s mechanical properties. Samples of pure Fe were subjected to Fe+ implantation at 275 °C, producing damage of ∼6 dpa to ∼1 μm depth. Nanoindentation into implanted material shows an increase in hardness compared to unimplanted material. Micropillars were manufactured in cross-section specimens of implanted and unimplanted material and compressed using a nanoindenter. The implanted pillars have a deformation mode which differs markedly from the unimplanted pillars but show no change in yield-stress. This suggests that the controlling mechanism for deformation is different between nanoindentation and micropillar compression and that care is needed if using micropillar compression to extract bulk properties of irradiated materials.

  20. Co-axial ECR plasma system for radioactive ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, M A [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Marion, F [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Stansfield, B [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Paynter, R W [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Sarkar, D [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Sarkissian, A [Plasmionique Inc., 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Terreault, B [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2005-08-01

    A pulsed, co-axial electron cyclotron resonance (ECR, 2.45 GHz) plasma reactor was designed and tested to demonstrate the feasibility of plasma-based radioactive ion implantation ({sup 32}P radioisotope). The geometry of the reactor was designed to produce an efficient implantation of cylindrical implants. Therefore, the reactor is cylindrical in shape, and is equipped with a cylindrical grid in a co-axial geometry. The plasma is created between the wall and the grid; the plasma surrounds the implant, allowing for a radial implantation. A 1 ms microwave pulse creates a plasma in argon, which sputters material from a radioactive cathode. A fraction of the radioisotopes is then ionized, and the ions are implanted into negatively biased metal samples. The plasma was characterized by means of electrostatic probes, giving spatial evaluations of the electron temperature, plasma potential and electron density. Titanium samples were implanted with {sup 32}P during a study that aimed at optimizing the position of the radioactive sputter cathode in the plasma. From an analysis of the distribution of the radioactive fragments, we deduce that the plasma potential has a marked effect on the ion trajectories. In particular, it provides a more uniform implantation distribution than one would otherwise expect. For plasma densities {approx}8 x 10{sup 10} cm{sup -3}, implantation efficiencies as high as 1% are measured; this is about 100 times higher than conventional beam-line ion implantation.

  1. Stabilization of organic thin film transistors by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fraboni, B., E-mail: beatrice.fraboni@unibo.it [CNISM and Dipartimento di Fisica, Universita di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Cosseddu, P. [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, piazza d' Armi, 09123 Cagliari, Italy and CNR-INFM S3 via Campi 213/a 41100 Modena (Italy); Wang, Y.Q.; Schulze, R.K. [Los Alamos National Laboratory MS-K771 Los Alamos NM 87545 (United States); Cavallini, A. [CNISM and Dipartimento di Fisica, Universita di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Nastasi, M. [Los Alamos National Laboratory MS-K771 Los Alamos NM 87545 (United States); Bonfiglio, A. [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, piazza d' Armi, 09123 Cagliari, Italy and CNR-INFM S3 via Campi 213/a 41100 Modena (Italy)

    2012-08-01

    We report on the effects of low energy ion implantation (N and Ne) in the reduction and control of the degradation of pentacene organic thin film transistors (OTFTs) due to the exposure to atmosphere (i.e. oxygen and water). We have observed that a controlled damage depth distribution preserves the functionality of the devices, even if ion implantation induces significant molecular structure modifications, in particular a combination of dehydrogenation and carbonification effects. No relevant changes in the pentacene thin film thickness have been observed. The two major transport parameters that characterize OTFT performance are the carrier mobility and the threshold voltage. We have monitored the effectiveness of this process in stabilizing the device by monitoring the carrier mobility and the threshold voltage over a long time (over 2000 h). Finally, we have assessed by depth resolved X-ray Photoemission Spectroscopy analyses that, by selectively implanting with ions that can react with the hydrocarbon matrix (e.g. N{sup +}), it is possible to locally modify the charge distribution within the organic layer.

  2. Ion sources for energy extremes of ion implantation (invited)

    International Nuclear Information System (INIS)

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P2+ [8.6 pmA (particle milliampere)], P3+ (1.9 pmA), and P4+ (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb3+Sb4+, Sb5+, and Sb6+ respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources

  3. A high-energy, high-current ion implantation system

    International Nuclear Information System (INIS)

    High current (Pre-Depsup(TM)) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-Dpsup(TM) Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. Datalocksup(TM), a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 x 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160. (orig.)

  4. A high-energy, high-current ion implantation system

    Science.gov (United States)

    Rose, Peter H.; Faretra, Ronald; Ryding, Geoffery

    1985-01-01

    High current (Pre-DepTM) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-DepTM Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. DatalockTM, a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 × 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  5. Mass spectrometry improvement on an high current ion implanter

    International Nuclear Information System (INIS)

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x–y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  6. Transformation of YSZ under high fluence argon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Usov, I.O. [Los Alamos National Laboratory, Los Alamos, NM (United States); Rubanov, S. [Bio21 Institute, The University of Melbourne, Melbourne (Australia); Won, J. [Division of Electron Microscopic Research, Korea Basic Science Institute, Deajeon (Korea, Republic of); Suvorova, A.A., E-mail: alexandra.suvorova@uwa.edu.au [Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley (Australia)

    2014-05-01

    In this work, we present the effect of extremely high fluence ion implantation on microstructure of single crystalline YSZ samples with three major low index orientations: (1 0 0), (1 1 0) and (1 1 1). The samples were implanted at room temperature with 150 keV Ar{sup +} ions to a fluence of 1 × 10{sup 17} Ar/cm{sup −2} corresponding to the peak damage level of ∼120 dpa and peak Ar atom concentration of ∼12 at.%. Rutherford backscattering/channeling spectrometry (RBS/C), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and associated analytical tools were used to determine the orientation dependent damage, surface morphology, and microstructure modifications of the implanted layers. Ar{sup +} ion implantation resulted in formation of severely damaged layers, which however remained crystalline. The damage peak maximum, determined by RBS/C, indicated that the fourth damage accumulation stage, previously predicted for Ar-implanted YSZ, was achieved. The (1 1 0) oriented YSZ demonstrated slightly better radiation tolerance, as observed by RBS/C, compared to the other low index orientations. Microstructural studies revealed large cavities aligned parallel to the specimen surface, which emerged in a form of circular blisters on the surface. The origin of the cavities was related to the segregation of Ar atoms into pressurized gas filled bubbles. The crystallographic anisotropy of microstructural parameters (thickness of the damages layer, surface blister density and diameter, cavity dimensions) remains uncertain.

  7. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  8. Development of Metal Ion Implanter and it's Application

    International Nuclear Information System (INIS)

    PEFP(Proton Engineering Frontier Project) has been developed some test facilities using domestic accelerators for the basic experiments and pilot studies of proton and ion beam application technology developments. Metal ion implanter has been designed and manufactured for studies of surface modification by metal ion beam. The purpose of design is domestic development of the basic technology for the application field using by metal ion beam. The main point of design and manufacture is production, acceleration and transportation of metal ion beam current up to 1mA and ion energy up to 100keV and beam size on target up to 10cm x 10cm. Metal ion implanter consists of modified Burnas ion source, mass separation magnet, slit, acceleration tube, magnetic quadrupole, electrostatic scanner and target. It includes fiber optic links for the monitoring and control of the ion source parameters in the high voltage zone, and a computer system for the characterization of the ion beam and the whole control of an implantation process. Also, this equipment used for diverse application areas, like gem coloring, photo-catalyst, solar cell, lighting LED, medical material, and so on, by modifying the surface characteristics of materials such as polymers, metals, and ceramics

  9. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  10. Structural modification of tantalum crystal induced by nitrogen ion implantation

    Indian Academy of Sciences (India)

    A H RAMEZANI; M R HANTEHZADEH; M GHORANNEVISS; E DARABI

    2016-06-01

    This paper investigates the effect of nitrogen ion implantation on tantalum surface structure. In this experiment, nitrogen ions which had an energy of 30 keV and doses of $1 \\times 10^{17}$ to $10 \\times 10^{17}$ ions cm$^{−2}$ were used. X-ray diffraction analysis (XRD) was applied for both the metallic Ta substrate and the study of new structures that have been created through the nitrogen ion implantation. Atomic force microscopy (AFM) was also used tocheck the roughness variations prior to and also after the implantation phase. The experimental results show the formation of hexagonal tantalum nitride (TaN$_{0.43}$) in addition to the fact that by increasing the ion dose, the nitrogen atoms occupy more interstitial spaces in the target crystal. The nitride phase also seen for $3\\times 10^{17}$ and $5\\times 10^{17}$ ions cm$^{−2}$, while it disappeared for higher dose of $7\\times 10^{17}$ and $1\\times 10^{18}$ ions cm$^{−2}$. The FWHM of the dominant peak of tantalum nitride suggest the growth of the crystallite’s size, which is in agreement with the AFM results ofthe grains.

  11. Mechanical properties of ion-implanted tungsten-5 wt% tantalum

    Science.gov (United States)

    Armstrong, D. E. J.; Wilkinson, A. J.; Roberts, S. G.

    2011-12-01

    Ion implantation has been used to simulate neutron damage in W-5wt%Ta alloy manufactured by arc melting. Implantations were carried out at damage levels of 0.07, 1.2, 13 and 33 displacements per atom (dpa). The mechanical properties of the ion-implanted layer were investigated by nanoindentation. The hardness increases rapidly from 7.3 GPa in the unimplanted condition to 8.8 GPa at 0.07 dpa. Above this damage level, the increase in hardness is lower, and the hardness change saturates by 13 dpa. In the initial portion of the load-displacement curves, the indentations in unimplanted material show a large 'initial pop-in' corresponding to the onset of plasticity. This is not seen in the implanted samples at any doses. The change in plasticity has also been studied using the nanoindenter in scanning mode to produce a topographical scan around indentations. In the unimplanted condition there is an extensive pile-up around the indentation. At damage levels of 0.07 and 1.2 dpa the extent and height of pile-up are much less. The reasons for this are under further investigation.

  12. Optimal pulse modulator design criteria for plasma source ion implanters

    International Nuclear Information System (INIS)

    This paper describes what are believed to be the required characteristics of a high-voltage modulator for efficient and optimal ion deposition from the ''Plasma Source Ion Implantation'' (PSII) process. The PSII process is a method to chemically or physically alter and enhance surface properties of objects by placing them in a weakly ionized plasma and pulsing the object with a high negative voltage. The attracted ions implant themselves and form chemical bonds or are interstitially mixed with the base material. Present industrial uses of implanted objects tends to be for limited-production, high-value-added items. Traditional implanting hardware uses the typical low-current (ma) semiconductor ''raster scan'' implanters. The targets must also be manipulated to maintain a surface normal to the ion beam. The PSII method can provide ''bulk'' equipment processing on a large industrial scale. For the first generation equipment, currents are scaled from milliamps to hundreds of amps, voltages to -175kV, at kilohertz rep-rates, and high plasma ion densities

  13. Method For Silicon Surface Texturing Using Ion Implantation

    Science.gov (United States)

    Kadakia, Nirag; Naczas, Sebastian; Bakhru, Hassaram; Huang, Mengbing

    2011-06-01

    As the semiconductor industry continues to show more interest in the photovoltaic market, cheaper and readily integrable methods of silicon solar cell production are desired. One of these methods—ion implantation—is well-developed and optimized in all commercial semiconductor fabrication facilities. Here we have developed a silicon surface texturing technique predicated upon the phenomenon of surface blistering of H-implanted silicon, using only ion implantation and thermal annealing. We find that following the H implant with a second, heavier implant markedly enhances the surface blistering, causing large trenches that act as a surface texturing of c-Si. We have found that this method reduces total broadband Si reflectance from 35% to below 5percent;. In addition, we have used Rutherford backscattering/channeling measurements investigate the effect of ion implantation on the crystallinity of the sample. The data suggests that implantation-induced lattice damage is recovered upon annealing, reproducing the original monocrystalline structure in the previously amorphized region, while at the same time retaining the textured surface.

  14. Terahertz generation from Cu ion implantation into lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhua, E-mail: wyh61@163.com [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan university of Science and Technology, Wuhan 430081 (China); Wang, Ruwu; Yuan, Jie [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan university of Science and Technology, Wuhan 430081 (China); Wang, Yumei [Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2014-03-15

    In this letter, the authors present first observation of terahertz generation from Cu implantation of lithium niobate crystal substrate. Lithium niobate single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Cu ion implantation were implanted into lithium niobate single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulse centred at 800 nm was focused onto the samples. The supercontinuum spectra of the sample are obtained. Terahertz was generated via this kind of sample and investigated using the electro-optical sampling technique. The findings suggest that under the investigated implantation parameter, a strong spectral component in excess of 0.46 THz emission was found from Cu ion implantation of lithium niobate. -- Highlights: • We first observation of terahertz generation from Cu implantation of lithium niobate crystal substrate. • Lithium niobate single crystal is grown by Czochralski method. Cu nanoparticles in lithium niobate have been formed by using MEVVA ion source. • The THz bandwidth and center from this kind of sample were determined.

  15. Influence of ion implantation on titanium surfaces for medical applications

    Science.gov (United States)

    Krischok, Stefan; Blank, Claudia; Engel, Michael; Gutt, Richard; Ecke, Gernot; Schawohl, Jens; Spieß, Lothar; Schrempel, Frank; Hildebrand, Gerhard; Liefeith, Klaus

    2007-09-01

    The implantation of ions into the near surface layer is a new approach to improve the osseointegration of metallic biomaterials like titanium. Meanwhile it is well known that surface topography and surface physico-chemistry as well as visco-elastic properties influence the cell response after implantation of implants into the human body. To optimize the cell response of titanium, ion implantation techniques have been used to integrate calcium and phosphorus, both elements present in the inorganic bone phase. In this context, the concentration profile of the detected elements and their chemical state have been investigated using X-ray photoelectron spectroscopy and Auger electron spectroscopy depth profiling. Ion implantation leads to strong changes of the chemical composition of the near surface region, which are expected to modify the biofunctionality as observed in previous experiments on the cell response. The co-implantation of calcium and phosphorus samples, which showed best results in the performed tests (biological and physical), leads to a strong modification of the chemical surface composition.

  16. Surface modification by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    After its successful applications in the semiconductor industry, ion implantation is being employed for other technical applications. The main process in ion implantation is the introduction of additive elements to change the composition and properties of the surface region of a material. We present results demonstrating the important improvement of the wear resistance and friction in a NiTi alloy implanted with nitrogen. The formation of hard TiN precipitates embedded in an amorphous layer is responsible for such modifications. The generation of many atomic displacements in collision cascades during implantation can be also employed as a modification process itself. For instance, the chemical disordering in an implanted Fe60Al40 alloy induces a para- to ferromagnetic transition. The formation of an amorphous surface alloy by ion irradiation at a temperature of 15 K has been shown in Ni50Al50 by in situ RBS, channelling and TEM. The new method of dynamic ion mixing (DIM) combines ion bombardment with simultaneous material deposition and allows thicker adherent coatings to be built up, this is shown for both metallic Cu50Ni50 and ceramic TiB2 coatings. Recent results demonstrating a significant increase in fatigue lifetime of a coated 316 L stainless steel are also reported and discussed. (orig.)

  17. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  18. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  19. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  20. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    International Nuclear Information System (INIS)

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp3/sp2 after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp3/sp2 after laser treatment

  1. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin T [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  2. Metalorganic Chemical Vapor Deposition of Ruthenium-Doped Diamond like Carbon Films

    Science.gov (United States)

    Sunkara, M. K.; Ueno, M.; Lian, G.; Dickey, E. C.

    2001-01-01

    We investigated metalorganic precursor deposition using a Microwave Electron Cyclotron Resonance (ECR) plasma for depositing metal-doped diamondlike carbon films. Specifically, the deposition of ruthenium doped diamondlike carbon films was investigated using the decomposition of a novel ruthenium precursor, Bis(ethylcyclopentadienyl)-ruthenium (Ru(C5H4C2H5)2). The ruthenium precursor was introduced close to the substrate stage. The substrate was independently biased using an applied RF power. Films were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Four Point Probe. The conductivity of the films deposited using ruthenium precursor showed strong dependency on the deposition parameters such as pressure. Ruthenium doped sample showed the presence of diamond crystallites with an average size of approx. 3 nm while un-doped diamondlike carbon sample showed the presence of diamond crystallites with an average size of 11 nm. TEM results showed that ruthenium was atomically dispersed within the amorphous carbon network in the films.

  3. Controlling the work function of a diamond-like carbon surface by fluorination with XeF2

    International Nuclear Information System (INIS)

    Thin diamond-like carbon films were subjected to fluorination with gaseous XeF2 under ultrahigh vacuum conditions in order to increase the work function of the diamond-like carbon surface. Changes in the work function and surface composition were monitored with UV photoemission spectroscopy and x-ray photoemission spectroscopy, respectively. Successive XeF2 exposures raised the work function by as much as 1.55 eV. Surprisingly, approximately half of the increase in the work function occurred while the coverage of fluorine remained below 0.02 monolayers (ML). This suggests that initial doses of XeF2 remove extrinsic adsorbates from the diamond-like carbon film and that fluorine desorbs with the reaction products. Increasing the exposure of the diamond-like carbon to XeF2 leads to the expected covalent fluorination of the surface, which saturates at fluorine coverages of 6 F atoms/nm2 (∼0.3 ML). Annealing of the diamond-like carbon to temperatures above 850 K was required to reduce the surface fluorine concentration to undetectable levels. This did not, however, cause the work function to return to its original, prefluorination value.

  4. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 1017 ions cm-2 and 5 x 1016 ions cm-2, respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  5. Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: A new constraint for the depth of metamorphic diamond crystallization

    Science.gov (United States)

    Dobrzhinetskaya, Larissa F.; Wirth, Richard; Green, Harry W.

    2006-03-01

    Previous studies have revealed that microdiamonds from the Kokchetav ultra-high pressure metamorphic terrane of Kazakhstan contain nanometric scale inclusions of Si-, Fe-, Ti-, and Cr-oxides. Because the structure of SiO 2 inclusions was not confirmed to be coesite or stishovite due to their very small size, such diamonds formerly served only as an indicator of a minimum pressure, ca. 4 GPa. Geothermobarometry applied to Kokchetav diamond-bearing rocks yielded a wide range of conditions: T = 700 °C-1250 °C, and P = 4-9 GPa. Our paper presents transmission electron microscopy studies with focused ion beam assistance that indicate that diamonds from marbles contain inclusions of aragonite (CaCO 3) and magnesite (MgCO 3), and that aragonite and nitrogen-bearing nanometric particles are associated with dislocations reflecting diamond growth at relatively high-temperature conditions. We determined the boundary of dolomite stability using the reaction CaMg(CO 3) 2 (dolomite) = CaCO 3 (aragonite) + MgCO 3. This allowed us to utilize available experimental data to evaluate the pressure at which diamond was crystallized. Taking into consideration uncertainties existing between experimental data produced in different laboratories, we propose the pressure for Kokchetav diamond crystallization to be ˜ 6 to 9 GPa. This evaluation is based on the assumption that temperature was determined correctly as 980 °C (minimum) and 1250 °C (maximum) for diamond-grade dolomitic marbles. Our data provide strong evidence that the metasedimentary rocks of the Kokchetav massif containing diamonds were subducted to the depth of ˜ 190-280 km.

  6. Characterization of green electroluminescent diodes obtained by boron ion implantation into ZnTe

    International Nuclear Information System (INIS)

    Reproducible electroluminescent ZnTe diodes were made by boron ion implantation. ZnTe crystals were obtained by the Bridgman method in solution at 920 deg C, or by the travelling solvent method at lower temperatures. Their physical properties are shortly described as well as the ion implantation technics used

  7. Surface modification by ion implantation of 304 stainless steel, orthopedic implants

    International Nuclear Information System (INIS)

    In order to improve the wear and corrosion resistance as well as the hardness of 304 stainless steel (S S) from mechanical use, surface treatment derived from those applied in mechanical engineering industries were investigated. Surface characterization according to the different ion implantation showed that corrosion and wear resistances were strongly improved. In same way,microhardness was significantly increased after ion implantation

  8. Nanocrystalline diamond/carbon felt as a novel composite for electrochemical storage energy in capacitor

    Science.gov (United States)

    Almeida, E. C.; Azevedo, A. F.; Baldan, M. R.; Braga, N. A.; Rosolen, J. M.; Ferreira, N. G.

    2007-04-01

    A nanocrystalline diamond (NCD) grown on carbon fibers substrate (CF), has been developed for electric double-layer capacitor. Carbon fibers were treated at 1300 and 2300 K by using the temperature steps of 60 K/h in a nitrogen atmosphere. NCD films were grown from Ar/H 2/CH 4 mixtures on a hot-filament chemical vapor (HFCVD) deposition reactor. Scanning electron microscopy (SEM) images of NCD showed faceted diamond grains for both substrates. Raman spectra are characteristic of NCD films and confirm the existence of sp 2-bonded carbon in grain boundaries due to significant reduction of grain size. NCD/CF samples showed the characteristic behavior of an ideal current-potential capacitor with rectangular current-potential responses curves in 0.5 M sulfuric acid. The NCD/CF composite treated at 1300 K has the largest cathodic current and retains the rectangular-shaped CV up to a high scan rate of 100 mV/s.

  9. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  10. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring

    Science.gov (United States)

    Yasumaru, Naoki; Miyazaki, Kenzo; Kiuchi, Junsuke

    2008-02-01

    This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS 2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.

  11. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    OpenAIRE

    De Barros Bouchet, M. I.; Matta, C.; Le-Mogne, Th.; Martin, J. Michel; Zhang, Q.; Goddard, W., III; Kano, M; Mabuchi, Y.; J Ye

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations us...

  12. Diamond-like carbon coatings deposited by vacuum arc in artificial hip joints

    OpenAIRE

    Ren, Ying

    2014-01-01

         For biomedical application in the field of artificial hip joints diamond-like carbon (DLC) coatings have been widely studied due to their excellent mechanical, tribological and biological properties. At present the lifetime of such joints is just about 15 years and some (10%) of patients require second replacementent. In consequence, it is currently an urgent need to extend the life expectancy especially for younger patients under 50 years old. As is well known, the wear particles as the...

  13. The effect of RF power on tribological properties of the diamond-like carbon films

    International Nuclear Information System (INIS)

    DLC thin films were prepared by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method on silicon substrates using methane (CH4), hydrogen (H2) and gas mixture. We have checked the influence of varying RF power on DLC film. The Raman spectroscopy shows the diamond-like carbon (DLC) amorphous structure of the films. AFM images show the surface roughness of the DLC film decrease with increasing RF power. Also, the friction coefficients were investigated by atomic force microscope (AFM) in friction force microscope (FFM) mode

  14. Cleaning of diamond nanoindentation probes with oxygen plasma and carbon dioxide snow

    International Nuclear Information System (INIS)

    Diamond nanoindentation probes may perform thousands of indentations over years of service life. There is a broad agreement that the probes need frequent cleaning, but techniques for doing so are mostly anecdotes shared between experimentalists. In preparation for the measurement of the shape of a nanoindentation probe by a scanning probe microscope, cleaning by carbon dioxide snow jets and oxygen plasma was investigated. Repeated indentation on a thumbprint-contaminated surface formed a compound that was very resistant to removal by solvents, CO2 snow, and plasma. CO2 snow cleaning is found to be a generally effective cleaning procedure.

  15. A Steinberg-Guinan model for High-Pressure Carbon, Diamond Phase

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D; Correa, A; Schwegler, E; Klepeis, J

    2007-07-27

    Since the carbon, diamond phase has such a high yield strength, dynamic simulations must account for strength even for strong shock waves ({approx} 3 Mbar). We have determined an initial parametrization of two strength models: Steinberg-Guinan (SG) and a modified or improved SG, that captures the high pressure dependence of the calculated shear modulus up to 10 Mbar. The models are based upon available experimental data and on calculated elastic moduli using robust density functional theory. Additionally, we have evaluated these models using hydrodynamic simulations of planar shocks experiments.

  16. Femtosecond pulsed laser ablation of diamond-like carbon films on silicon

    International Nuclear Information System (INIS)

    Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were φ th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage

  17. Visible photoluminescence from ZnO/diamond-like carbon thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-chun; LI Qing-shan; DONG Yan-feng; MA Zi-xia

    2012-01-01

    ZnO/diamond-like carbon (DLC) thin films are deposited by pulsed laser deposition (PLD) on Si (111) wafer.Visible room-temperature photoluminescence (PL) is observed from ZnO/DLC thin films by fluorescence spectrophotometer.The Gaussian curve fitting of PL spectra reveals that the broadband visible emission contains three components with λ=508 nm,554 nm and 698 nm.The origin and possible mechanism of the visible PL are discussed,and they can be attributed to the PL recombination of ZnO and DLC thin films.

  18. Conditions of diamond formation beneath the Sino-Korean craton: paragenesis, temperatures and the isotopic composition of carbon

    International Nuclear Information System (INIS)

    Mineral inclusions (23 pyrope garnets, 30 chromites) have been extracted from 28 diamonds selected from the Pipe 50 kimberlite in Liaoning Province, and the pipes of the Shengli 1 and Hongqi 6 kimberlites in Shandong province. These inclusions, and several from the collection of Meyer et al., (1994), have been analysed for major elements using EMP and for trace elements using the proton microprobe. Carbon-isotope compositions have been measured on 44 diamonds (23 from Liaoning, 21 from Shandong), of which 32 contained identified inclusions. The δ13C values range from +0.9 to -6.0 per mill; the heaviest carbon is found in stones with very low-Ca garnets. This implies that the isotopic composition of carbon in harzburgitic rocks is related to the primary depletion process, which suggests ancient formation of the diamonds

  19. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  20. Ion implantation of erbium into polycrystalline cadmium telluride

    International Nuclear Information System (INIS)

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries

  1. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  2. Tailored surface modification by ion implantation and laser treatment

    International Nuclear Information System (INIS)

    An important trend in materials science is the use of increasingly sophisticated methods to control composition and microstructure during processing. Near-surface modification by ion implantation and laser treatment is one of these new methods for tailoring material properties. Novel materials have been formed which are far from thermodynamic equilibrium and which exhibit unexpected and useful properties. The most extensively studied property changes include modified electrical properties of semiconductors and improved wear, hardness, and corrosion resistance of metals. The high degree of control available with energetic beams allows relations between microstructure and properties to be systematically investigated at the atomic level. This article illustrates how ion and laser beam modification is being applied to advance both the technology and the exploratory science of materials

  3. Optical waveguides fabricated by nitrogen ion implantation in fused silica

    Science.gov (United States)

    Liu, Chun-Xiao; Fu, Li-Li; Zheng, Rui-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-02-01

    We report on the fabrication of waveguides in fused silica using 4.5-MeV nitrogen ion implantation with a fluence of 5.0×1014 ions/cm2. The prism-coupling method was employed to measure the effective refractive indices of guiding modes at the wavelengths of 632.8 and 1539 nm. The effective refractive indices of the first few modes were higher than that of the substrate. The refractive index profiles at 632.8 and 1539 nm were reconstructed by the reflectivity calculation method. Positive index changes were induced in the waveguide layers. The end-face coupling method was used to measure the near-field light intensity distributions at the wavelength of 632.8 nm and the finite-difference beam propagation method was applied to simulate the guided mode profile at the wavelength of 1539 nm. The waveguide structures emerge as candidates for integrated photonic devices.

  4. Investigations on the characterization of ion implanted hexagonal boron nitride

    Science.gov (United States)

    Aradi, E.; Naidoo, S. R.; Erasmus, R. M.; Julies, B.; Derry, T. E.

    2013-07-01

    The effect of ion implantation on hexagonal boron nitride (h-BN) is studied herein. We use boron as an ion of choice to introduce radiation damage into h-BN, at fluences ranging from 1 × 1014-1 × 1016 ions/cm2 and implantation energy ranges from 40 to 160 keV. The thermal dependence is also investigated by varying the annealing temperature from room temperature to 400 °C after implantation. Raman spectroscopy showed Raman active defects one of which is possibly related to the formation of cubic boron nitride nanocrystals (nc-BN) within the implanted range. The relationship of these defect induced Raman active peaks was investigated by varying the implantation parameters. The preliminary Transmission Electron Microscopy (TEM) results also are reported briefly.

  5. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  6. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  7. A theory of the ion-implanted metal semiconductor contact

    International Nuclear Information System (INIS)

    A one-dimensional diffusion theory has been used for calculating the current-voltage characteristic of an ion-implanted aluminium-p-silicon contact. The characteristic feature of this contact is the presence of a disordered intermediate layer of about 1,000 A between the pure metal and the semiconductor substrate. The contact resistance of this MaS structure is two orders of magnitude lower than that of an abrupt system. A variation method is given to evaluate the internal potential PHI and the width L of space charge in the case of thermodynamic equilibrium. From the non-linear system of basic equations of diffusion theory a compact expression for the stationary current density is derived in a self-consitent way. (author)

  8. Electrical and structural characterization of ion implanted GaN

    International Nuclear Information System (INIS)

    Ion implantation induced defects and their consequent electrical impact have been investigated. Unintentionally doped n-type gallium nitride was implanted with 100 keV Si+ and 300 keV Ar+ ions in a fluence range of 1014-1015 ions/cm2. The samples were characterized with Rutherford backscattering/Channeling method for damage buildup. Time of flight elastic recoil detection analysis was implied on the Si implanted samples to see the ion depth distribution. Ar implanted GaN samples were studied electrically with scanning spreading resistance microscopy. Our results show that an Ar fluence of 5 x 1014 cm-2 increases the resistance by five orders of magnitude to a maximum value. For the highest fluence, 6 x 1015 cm-2, the resistivity decreases by two orders of magnitude.

  9. ADFA/ANU 150 keV radioactive ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.X.; Chaplin, D.H.; Hutchinson, W.D.; Stewart, G.A. [University College, UNSW, Sydney, NSW (Australia). School of Physics; Byrne, A.P. [Australian National University, Canberra, ACT (Australia). Department of Nuclear Physics, RSPhysSE and Department of Physics, the Faculties

    1998-12-31

    Full text: As foreshadowed at the 10th Australian Conference on Nuclear Techniques of Analysis (Byrne et al), the collaborative project to build a radioactive ion implanter, within the custom designed Radiation Laboratories at Australian Defence Force Academy (ADFA), has recently led to the initial commissioning tests of the instrument described in that report. Primary aims are to serve the hyperfine interactions community interested in Materials Science with particular emphasis on magnetic and semiconductor materials. 2.8 day {sup 111}In will be the first radioactive probe implanted following optimization of beam transport with stable indium. The implanted {sup 111}In samples will be prepared for both time-differential, gamma-gamma, PAC studies at ANU and bruteforce NMRON spectroscopies using the top loading dilution refrigerator at ADFA. In this paper we provide further information on the capabilities of the instrument and the results of the initial commissioning tests

  10. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 12000C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author)

  11. Surface modification of polymeric materials by plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Polymer surfaces typically have low surface tension and high chemical inertness and so they usually have poor wetting and adhesion properties. The surface properties can be altered by modifying the molecular structure using plasma immersion ion implantation (PIII). In this work, Nylon-6 was treated using oxygen/nitrogen PIII. The observed improvement in the wettability is due to the oxygenated and nitrogen (amine) functional groups created on the polymer surface by the plasma treatment. X-ray photoelectron spectroscopy (XPS) results show that nitrogen and oxygen plasma implantation result in C-C bond breaking to form the imine and amine groups as well as alcohol and/or carbonyl groups on the surface. The water contact angle results reveal that the surface wetting properties depend on the functional groups, which can be adjusted by the ratio of oxygen-nitrogen mixtures

  12. Planar transistors and impatt diodes with ion implantation

    International Nuclear Information System (INIS)

    Low frequency planar npn and pnp transistors have been developed in which the base and emitter have been fabricated using ion implantation of boron and phosphorus by a drive-in diffusion. Electrical parameters of the transistors are comparable with conventionally produced transistors; the noise figure was improved and production tolerances were significantly reduced. Silicon-impatt diodes for the microwave range were also fabricated with implanted pn junctions and tested for their high frequency characteristics. These diodes, made in an improved upside down technology, delivered output power up to 40 mW (burn out power) at 30 GHz. Reverse leakage current and current carrying capability of these diodes were comparable to diffused structures. (orig.) 891 ORU 892 MB

  13. Self-diffusion of ion-implanted tracers

    International Nuclear Information System (INIS)

    Tracer self-diffusion studies with ion-implanted stable isotopes require a high fluence of implanted ions (>1015 ions/cm2) due to the natural tracer background concentration present in a sample. Such a high fluence leads to considerable implantation damage, where a large part of the tracer is immobilized and does not take place in the diffusion process. As a consequence, diffusion profiles are observed which cannot be described with Fick's second law. In this study, a set of differential equations is presented, describing the diffusion of implanted isotopes as a trap-limited process with a sink and a source term, where the tracer atoms form immobile complexes with implantation damage-induced defects. These equations are solved numerically for the example of nitrogen diffusion in amorphous Si-B-C-N ceramics in order to illustrate diffusivity determination. The results are compared to the analytical solution of Fick's second law

  14. Etching effects in ion implanted SiO2

    International Nuclear Information System (INIS)

    Chemical and physical transformations involved in ion implantation processes in glasses determine changes in mechanical and tribological properties, in network dilatation, in induced optical absorption and luminescence and in the composition and chemical behaviour as a function of different experimental conditions (ion, energy, dose, target temperature). Variations of chemical etch rate in HF are related to radiation damage and formation of compounds. A systematic study of etch rate changes in silica due to Ar, N, Si plus N implants has been performed. Structure modifications at depths greater than the corresponding implanted ion ranges are evidenced for nuclear deposited energy values greater than 1022 keV cm-3. Formation of silicon oxynitrides reduces the etch rate values. (author). 8 refs., 3 figs., 1 tab

  15. Nitrogen ion implantation of silicon in dense plasma focus

    International Nuclear Information System (INIS)

    A low energy (1.45 kJ) Mather type plasma focus device is used for nitrogen ion implantation in mono-crystalline silicon. The silicon specimens are exposed to different number of focus shots by placing the targets in front of the anode at a fixed distance. Raman spectroscopy and X-ray diffraction are employed to characterize the implanted specimens. The results indicate that mono-crystalline silicon transforms into amorphous structure through micro-crystalline phase on increasing the implantation dose. Further irradiation of the specimens results in the formation of amorphous Si3N4 layers. High temperature annealing in argon ambient transforms the amorphous Si3N4 into β-Si3N4

  16. Dry Machining Tool Design via Chlorine Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    TatsuhikoAizawa; AtsushiMitsuo; ShigeoYamamoto; ShinjiMuraishi; TaroSumitomo

    2004-01-01

    Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface. This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.

  17. Dry Machining Tool Design via Chlorine Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    Tatsuhiko Aizawa; Atsushi Mitsuo; Shigeo Yamamoto; Shinji Muraishi; Taro Sumitomo

    2004-01-01

    Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface.This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.

  18. Luminescence of a titanate compound under europium ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Plantevin, O., E-mail: plantevin@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière CSNSM, Univ Paris-Sud, CNRS/IN2P3, 91405 Orsay Cedex (France); Oliviero, E. [Centre de Sciences Nucléaires et de Sciences de la Matière CSNSM, Univ Paris-Sud, CNRS/IN2P3, 91405 Orsay Cedex (France); Dantelle, G.; Mayer, L. [Laboratoire de Physique de la Matière Condensée LPMC, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)

    2014-05-01

    The ability to incorporate europium ions in a near-surface layer of a nonlinear optical material KTiOPO{sub 4} by ion implantation is reported here. Europium diffusion as well as surface modification were characterized after annealing using RBS. The photoluminescence of the as-implanted samples indicates that the creation of defects gives rise to green visible emission centered about 550 nm. Annealing up to 1000 °C does not allow the oxidation to the 3+ valence state of the europium ion. However it is shown that annealing up to such high temperature gives rise to an intense near infra-red photoluminescence in the range 800–1100 nm in implanted samples at an optimal fluence of 2 × 10{sup 13} europium ions/cm{sup 2}.

  19. Luminescence of a titanate compound under europium ion implantation

    International Nuclear Information System (INIS)

    The ability to incorporate europium ions in a near-surface layer of a nonlinear optical material KTiOPO4 by ion implantation is reported here. Europium diffusion as well as surface modification were characterized after annealing using RBS. The photoluminescence of the as-implanted samples indicates that the creation of defects gives rise to green visible emission centered about 550 nm. Annealing up to 1000 °C does not allow the oxidation to the 3+ valence state of the europium ion. However it is shown that annealing up to such high temperature gives rise to an intense near infra-red photoluminescence in the range 800–1100 nm in implanted samples at an optimal fluence of 2 × 1013 europium ions/cm2

  20. High-energy, high-current ion implantation system

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.H.; Faretra, R.; Ryding, G. (Eaton Corp., Beverly, MA (USA). Ion Beam Systems Div.)

    1985-01-01

    High current (Pre-Depsup(TM)) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-Dpsup(TM) Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (10/sup 11/ ions cm/sup -2/) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. Datalocksup(TM), a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 x 10/sup 15/ ions/cm/sup 2/. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  1. Ion implantation and MOS structures in SiC

    International Nuclear Information System (INIS)

    A theoretical study of stoichiometric disturbance (SMD) due to ion implantation in SiC is reported. In addition, experimental work on the material characterization of 3C SiC layers using Schottky diodes and metal-oxide-semiconductor (MOS) structures are presented. In studying theoretical aspects of ion implantation in SiC, a method is developed to calculate the depth distribution of the stoichiometric disturbance (SMD) resulting from this process. Projectile range distributions at intermediate energies are deduced from look-up tables of known range statistics. This results in a simpler method with little loss of accuracy as compared to existing procedures which use the Boltzmann transport equation. A calculation of the SMD for implantation of Al in SiC suggests that the SMD may be responsible for otherwise unexplained distortions in the annealed Al profile. In the efforts of the characterization of the 3C SiC material, the effects of oxidation of the SiC substrate have been studied at room temperature by capacitance-voltage (C-V) measurements on MOS structures formed by a double-contact mercury probe. Standard methods have been implemented to extract various device parameters from the C-V characteristics. These include the calculation of substrate doping profile, effective fixed oxide trap density, N1, and interface trap density, D/sub it/. The effective N/sub f/ value was found to be 4 to 7 x 1011 cm-2. The value of d/sub it/ is obtained from a comparison of the measured characteristics to a theoretical high-frequency curve and it reveals a concentration of approximately 1011 cm-2eV-1 across the energy gap, with a peak on the order of 1012 cm-2eV-1, centered at 0.6 eV below the conduction band edge

  2. X-ray photoelectron study of Si{sup +} ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkova, T; Balabanov, S; Bischoff, L; Krastev, V; Stefanov, P; Avramova, I, E-mail: tania_tsvetkova@yahoo.co.u

    2010-11-01

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si{sup +} ions (E=30 keV, D= 1.10{sup 17} cm{sup -2}). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si{sup +} ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  3. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  4. Low temperature crystallization of diamond-like carbon films to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tinchev, Savcho, E-mail: stinchev@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Valcheva, Evgenia [Physics Department, Sofia University, J. Bourchier 5, 1164 Sofia (Bulgaria); Petrova, Elitza [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria)

    2013-09-01

    Plasma surface modification was used to fabricate graphene on the top of insulating diamond-like carbon films. It is shown that by a combination of pulsed argon plasma treatment and thermal annealing at 350{sup o}C it is possible to achieve crystallization of amorphous carbon to graphene. The observed Raman spectra are typical for defected graphene-splitted D- and G-peaks and a broad 2D-peak. Because interpretation of Raman spectra of such complicated system is not easy we have calculated Raman signals of graphene on an amorphous hydrogenated carbon film deposited on a Si substrate. Our simulation results show that multiple reflections and interference effects lead to enhancement of Raman signal of the system. The characteristic for graphene G and 2D bands reach maximal enhancement for thicknesses of the amorphous hydrogenated carbon film of about 75 nm and 230 nm. We estimate that the interference enhancement of the 2D graphene Raman signal is very weak in contrast to that of the G band signal simulated for the underlying diamond-like carbon films on silicon substrate only. Therefore experimentally measured Raman spectra of the whole graphene/a-C:H/Si system probably will consist of interference enhanced but still weak 2D graphene peak and stronger D and G peaks dominated by G and D Raman bands of the a-C:H. This conclusion is in line with observed experimental Raman spectra. Electrical field effect measurements of the samples show ambipolar dependence, typical for single-layer graphene.

  5. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  6. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B4C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B4C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  7. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  8. Ellipsometry studies on nitrogenated diamond-like carbon (DLC) thin films produced by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Nitrogen doped Diamond-like carbon thin films were deposited on n-Si and SiO2 substrates by rf magnetron sputtering using pure graphite (99.999%) as the target material and mixtures of Ar, N2 and H2 for plasma generation. The dependence of structural and optical properties on nitrogen content was investigated using XPS, Raman spectroscopy, FT-IR spectroscopy, and Ellipsometry studies. It was found that as the nitrogen content was increased in the plasma, sp2 bonding favored. Also it was observed that oxygen contamination increased with nitrogen content. Typical C-H stretching modes connected with diamond-like carbon could be seen in FT-IR spectra. The ID and IG bands were well defined and it was observed that as nitrogen content increased IG band was enhanced. Ellipsometry studies revealed that the optical constants like refractive index (n) and extinction co-efficient (k) increased with increase in nitrogen content as well as substrate temperature. (author)

  9. The local crystallization in nanoscale diamond-like carbon films during annealing

    International Nuclear Information System (INIS)

    The local crystallization during annealing at 600 °C in nanoscale diamond-like carbon coatings films grown by pulsed vacuum-arc deposition method was observed using modern techniques of high-resolution transmission electron microscopy. The crystallites formed by annealing have a face-centred cubic crystal structure and grow in the direction [01¯1¯] as a normal to the film surface. The number and size of the crystallites depend on the initial values of the intrinsic stresses before annealing, which in turn depend on the conditions of film growth. The sizes of crystallites are 10 nm for films with initial compressive stresses of 3 GPa and 17 nm for films with initial compressive stresses of 12 GPa. Areas of local crystallization arising during annealing have a structure different from the graphite. Additionally, the investigation results of the structure of nanoscale diamond-like carbon coatings films using Raman spectroscopy method are presented, which are consistent with the transmission electron microscopy research results

  10. Improving nanocrystalline diamond coatings for micro end mills

    Science.gov (United States)

    Heaney, Patrick J.

    A new method is presented for coating 300 mum diameter tungsten carbide (WC) micro end mills with diamond using a hot filament chemical vapor deposition (HF-CVD) method. This method has been developed to create uniform, conformal and continuous diamond coatings. Initial work is shown to prove the feasibility and concept of the project. This was the first work known to coat and evaluate the machining performance WC micro end mills. The performance of uncoated and coated micro end mills was evaluated by dry machining channels in 6061-T6 aluminum. The test results showed a 75% and 90% decrease in both cutting and trust forces for machining, respectfully. The coated tools produced a more predictable surface finish with no burring. These improved results are due to the superior tribological properties of diamond against aluminum. Initial results indicated severe problems with coating delamination causing complete tool failure. After proving the initial concept, new methods for optimizing the coating and improving performance were studied. Each optimization step is monitored through surface analysis techniques to monitor changes in coating morphology and diamond quality. Nucleation density was increased by improving the seed method, using ultra dispersed diamond (UDD) seed. The increase in nucleation density allowed the synthesis of coatings as thin as 60 nm. The adhesion of the coating to the tool was improved through carbon ion implantation (CII). CII is a different surface preparation technique that deactivates the effect of Co, while not weakening the tool. CII also creates a great nucleation layer which diamond can directly grow from, allowing the diamond coating to chemically bond to the substrate improving adhesion and eliminating the need for a seed layer. These thin coatings were shown to be of high quality sp3 trigonaly bonded diamond that resulted in lower machining forces with less delamination. The 90% reduction in machining forces that thin conformal

  11. Atomic oxygen resistant behaviors of Mo/diamond-like carbon nanocomposite lubricating films

    International Nuclear Information System (INIS)

    Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.

  12. Tribological properties of ion beam deposited diamond-like carbon film on silicon nitride

    International Nuclear Information System (INIS)

    The present article reports on the physical characterization and tribological properties of diamond-like carbon (DLC) films deposited on structural Si3N4 substrates. The films were deposited by the direct ion beam deposition technique. The ion beam was produced by plasma discharge of pre-mixed methane and hydrogen gas in a Kaufman-type ion source. The deposited films were found to be amorphous and contained about 70% carbon and 30% hydrogen. The friction coefficient of an uncoated Si3N4 ball on a DLC coated Si3N4 disc starts at about 0.2, then decreases rapidly to 0.1-0.15 with increasing sliding distance. Increasing humidity results in a slight increase in friction coefficient, but a significant decrease in wear factor. The wear factor for the tests at ≅60% rh (relative humidity) are about an order of magnitude smaller than the tests at 3% rh. (orig.)

  13. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications

    International Nuclear Information System (INIS)

    We propose diamond-like carbon (DLC) as the resistance change material for nonvolatile memory applications. Nanoscale DLC films are prepared by filtered cathodic vacuum arc technique and integrated to W/DLC/W structure devices. The deposited DLC film has a thickness of about 20 nm and high sp3 fraction content. Reversible bistable resistive switching from a high resistance state to a low resistance state, and vice versa, is observed under appropriate unipolar stimulation pulses. High resistance switching ratio (larger than a thousand times) and low level of switching power (about 11 μW) are demonstrated. We propose that the mechanism of the repetitive resistive switching is the growth and breakage of conductive sp2-like filaments in the predominantly sp3-type insulating carbon upon applications of voltage pulses, which is consistent with the experimental results

  14. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  15. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  16. Thermal Diffusion Doping of Single Crystal Diamond

    OpenAIRE

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang

    2014-01-01

    With the best overall electronic and thermal properties, single-crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors faces doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion-implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstr...

  17. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    Science.gov (United States)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  18. Studies of iron exposed to heavy ion implantation using positron annihilation spectroscopy

    Science.gov (United States)

    Horodek, P.; Dryzek, J.; Skuratov, V. A.

    2016-05-01

    Variable energy positron beam and positron lifetime spectroscopy were used to study pure iron exposed to irradiation with 167 MeV Xe26+ heavy ions with different doses of 1012, 1013, 5×1013, 1014 ions/cm2. The positron lifetime spectroscopy revealed the presence of large cluster of about 15-27 vacancies and dislocations. The dislocations are distributed at the depth of about 18 μm i.e. almost twice deeper than the ion implantation range from the surface exposed to the heavy ions implantation. Possible explanation is the long-range effect attributed to the ion implantation into materials.

  19. Influence of ion-implantation on physical properties of silicon

    International Nuclear Information System (INIS)

    Full text: Last years the ion-implantation is widely used for creation heteroepitaxial films, diffusion barriers and ohmic contacts. In this connection, scientific and practical interest represents studying physical properties ion-implanted materials. In this work the specific resistance and Schottky barrier height of Si surface, implanted by Ba+, Na+ and Co+ ions is investigated. Ions energy are E0=1-5 keV. In all cases high doses ion-implantation (D≥1016 cm-2) in combination with annealing result in formation of compounds such as BaSi2, NaSi2, and CoSi2. Measuring has shown, that resistance silicides films prove lower in comparison with the surface resistance of a substrate (silicon). It is shown, that values of a specific resistance and Schottky barrier height for all studied silicides films are given. These data apply to monocrystal films, obtained at optimum conditions. As evident, that among silicides films the greatest specific resistance has Mn2Si3. Besides it is necessary to note, that value ρ not always strongly depends on correlation of concentration of atoms Me/Si. Apparently, it depends also on type of bond between atoms Me-Si, crystalline and electronic structure of silicide. On dependence, ρ(T) for film Mn2Si3/Si which in area T=300-1100 K, little increases ρ, two obvious maximums are detect at T1=600 and T2=750 K, it is probably the bound with depletion of impurity levels. It is necessary to note, that such maximums for thick sample silicides are not detect. It is possible, that in Mn2Si3 forbidden zone is present two impurity levels located near to a bottom of conduction band (Eg=0.056 and 0.064 eV). In interval T=1100-1300 K are occurred small decrease ρ. The last is bound to some decomposition Mn2Si3 and enrichment of surface by metal atoms. With increase T, starting with T=1300 K intensive decomposition Mn2Si3 and evaporation of silicide components from surface is observed, that result in sharp increases ρ. By formula Eg=T·K·ln(NcNv/Nd2

  20. Tl and OSL dosimetry of diamond films CVD pure and unpurified with boron-carbon

    International Nuclear Information System (INIS)

    The diamond is a material that possesses extreme physical properties, such as its hardness to the radiation, its low chemical reactivity besides its equivalence to the human tissue, which qualify him as an ideal material for radiation dosimetry. In this work, it was studied the thermal and optically stimulated response (Tl and OSL) of polycrystalline diamond films grown by the technique of CVD pure and contaminated with Boron-carbon (B/C) with the intention of characterizing their efficiency like a dosemeter for radiation in a range of 0 - 3000 Gy. For the case of the films without impurities, the Tl curve presents four main peaks, two of them in an interval of temperatures of 150-200 C and other two additional around of 250-400 C. The dependence of the response of integrated Tl and that of OSL always maintained a lineal relationship with the exhibition dose up to 100 Gy. The behavior of the films contaminated with B/C (2000 - 20000 ppm) was established through experiments that involved the signal of OSL and their relationship with the Tl response. It was found that this processes are correlated, since the electrons caught in the traps of low temperature (50 - 250 C) of the Tl they are the electrons that recombining with more probability to provide the signal of OSL. According to these results it is possible to propose the diamond films as a good candidate for dosimetry to, using the traditional technique of Tl so much as well as the but recent of OSL. (Author)

  1. Single ion implantation for single donor devices using Geiger mode detectors

    International Nuclear Information System (INIS)

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10-4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10-4 at an average ion number per gated window of 0.015.

  2. Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air.

    Science.gov (United States)

    Marino, Matthew J; Hsiao, Erik; Chen, Yongsheng; Eryilmaz, Osman L; Erdemir, Ali; Kim, Seong H

    2011-10-18

    The friction behavior of diamond-like carbon (DLC) is very sensitive to the test environment. For hydrogen-rich DLC tested in dry argon and hydrogen, there was always an induction period, so-called "run-in" period, during which the friction coefficient was high and gradually decreased before DLC showed an ultralow friction coefficient (less than 0.01) behavior. Regardless of friction coefficients and hydrogen contents, small amounts of wear were observed in dry argon, hydrogen, oxygen, and humid argon environments. Surprisingly, there were no wear or rubbing scar on DLC surfaces tested in n-pentanol vapor conditions, although the friction coefficient was relatively high among the five test environments. Ex situ X-ray photoelectron and near-edge X-ray absorption fine-structure spectroscopy analyses failed to reveal any differences in chemical composition attributable to the environment dependence of DLC friction and wear. The failure of getting chemical information of oxygenated surface species from the ex situ analysis was found to be due to facile oxidation of the DLC surface upon exposure to air. The removal or wear of this surface oxide layer is responsible for the run-in behavior of DLC. It was discovered that the alcohol vapor can also prevent the oxidized DLC surface from wear in humid air conditions. PMID:21888344

  3. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved....

  4. Synthesis of functional diamond-like carbon nanocomposite films containing titanium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuo-Cheng [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.t [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Taiwan (China)

    2010-10-01

    Synthesis of diamond-like carbon (DLC) films with UV-induced-hydrophilicity function was studied by inductively-coupled plasma (ICP) chemical vapor deposition. Titanium tetraisopropoxide (TTIP) and oxygen gases were employed as the precursors to deposit diamond-like nanocomposite films containing titanium dioxide (TiO{sub 2}) nanoparticles. X-ray diffraction and high-resolution transmission electron microscopy revealed that TiO{sub 2} nanocrystallites were formed in the DLC films when oxygen concentration was higher than TTIP concentration during deposition. The DLC nanocomposite film was hydrophobic without ultraviolet (UV) irradiation, and became highly hydrophilic under UV irradiation, exhibiting the self-cleaning effect. A very broad peak centered at 1580 cm{sup -1} was observed in the Raman spectra confirming the formation of DLC films. The hardness of the film was about 8 GPa with a stress of 3 GPa. ICP was essential in forming the photocatalytic TiO{sub 2} nanoparticles in the DLC matrix.

  5. Chemomechanical effect in ion-implanted magnesium oxide

    International Nuclear Information System (INIS)

    This letter reports the results of an investigation into the way in which ion implantation has been observed to alter the chemomechanical sensitivity of MgO surfaces. Samples of single crystal brace 100 brace habit MgO were implanted to doses of approx. 1014 and 3.33 x 1015 Ti+ cm-2 at 300 keV. Rather than measure the hardness directly a dislocation etch-pitting technique was used to monitor both the hardness of the surface and the anomalous indentation creep effects. Testing was carried out under the environments of moist air (ambient conditions) and the n-hexadecane, the latter being chosen as one known to produce a large chemomechanical effect in MgO. Indentations were made at a load of 10 gf on a (001) MgO surface. Figures show typical micrographs of etch-pitted indentations on the unimplanted and implanted MgO specimens indented both in air and under n-hexadecane for dwell times of 5 and 300 sec. For the unimplanted specimens the 300-sec dwell-time indentations in both air and n-hexadecane show more extensive dislocation motion than those made in air, for the approx. 1014Ti+ cm-2 implanted specimen under both environments for both dwell times, the indentation rosettes are much smaller than those in unimplanted MgO. The results are discussed. (author)

  6. The compaction of fused silica resulting from ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.M.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia); Leech, P.L. [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1996-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  7. Sources for Low Energy Extreme of Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development effort focusing on the design of steady state, intense ion sources has been in progress for the past four and a half years. The ultimate goal is to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has resulted in record steady state output currents of higher charge state Antimony and Phosphorous ions: P2+(8.6 pmA), P3+(1.9 pmA), and P4+(0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb3+ Sb4+, Sb5+, and Sb6+ respectively. During the past year the effort was channeled towards low energy implantation, for which the effort involved molecular ions and a novel plasmaless/gasless deceleration method. To date, 3 emA of positive Decaborane ions were extracted at 14 keV and a smaller current of negative Decaborane ions were also extracted. Additionally, a Boron fraction of over 70% was extracted from a Bernas-Calutron ion source.

  8. Enhancing antibacterial properties of UHMWPE via ion implantation

    Science.gov (United States)

    Nassisi, Vincenzo; Delle Side, Domenico; Velardi, Luciano; Alifano, Pietro; Talà, Adelfia; Maurizio Tredici, Salvatore

    2012-10-01

    In the last decades, the demand for biomaterials of antimicrobial quality sensibly increased. The essential properties of these materials must be the biocompatibility, wettability, durability and their antibacterial characteristics. One of the most important biomaterial for medical applications is the ultra high molecular weight polyethylene (UHMWPE) that it is used to make components of prosthetic knee, hip and shoulder. It is well known that the presence in UHMWPE of Ag atoms increase its antibacterial properties while Cu and its alloys are known as natural antimicrobial materials. In this work it is proposed a dedicated laser ion source (LIS) accelerator to perform ion implantation together with a systematic study of the surface properties of UHMWPE samples treated with different metals in order to modify their antibacterial characteristics. The proposed technique consists in the application of a dose of specific ions inside the first layer of the sample to be treated. This goal can be effectively achieved if the ions are preventively accelerated. This technique seems to be interesting, since it can open the way to an easier realization of antibacterial materials using various metal ions.

  9. EPR of ion-implanted, laser-annealed silicon

    International Nuclear Information System (INIS)

    Electron paramagnetic resonance and ion backscattering measurements were made on ion-implanted, pulsed laser-annealed silicon. For phosphorus-implanted silicon (3 x 1013 200 keV P+/cm2) the electrical activity of the implanted donors is restored after laser annealing with greater than or equal to 1.8 J/cm2. Silicon made amorphous with 2 x 1015 200 keV Si+/cm2 and implanted with 3 x 1013 200 keV P+/cm2 can be restored to crystallinity after laser annealing, but electrical activity of the P was not restored due to residual defects for laser energies less than or equal to 3 J/cm2. Electrical activity can be restored, at least in part, for amorphous silicon implanted at lower energies (approx. = 50 keV). We also observed that N2 reacts with amorphous silicon surfaces to form silicon-nitride. Under laser annealing the N is redistributed and exists as an N interstitial within the implanted layer

  10. Metal ion implantation in inert polymers for strain gauge applications

    International Nuclear Information System (INIS)

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1 x 1016 and 1 x 1017 ions/cm2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (16 ions/cm2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (∼50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  11. Modification of plasma polymer films by ion implantation

    Directory of Open Access Journals (Sweden)

    Deborah Cristina Ribeiro dos Santos

    2004-09-01

    Full Text Available In this work, thin polymer films were prepared from acetylene and argon radiofrequency (13.56 MHz, 80 W glow discharges. Post-deposition treatment was performed by plasma immersion ion implantation in nitrogen or helium glow discharges (13.56 MHz, 70 W. In these cases, samples were biased with 25 kV negative pulses. Exposure time to the bombardment plasma, t, ranged from 900 to 7200 s. Chemical composition of the film surfaces was investigated by X-ray Photoelectron Spectroscopy and the resistance to oxidation by the etching process, in reactive oxygen plasmas. Oxygen and nitrogen were detected in all the samples. While the concentration of the former continuously changed with t, that of N kept practically constant in small proportions. The film is predominantly formed by sp² states, but the proportion of sp³ hybridization slightly increased with t. The etching rate dropped under certain conditions of nitrogen bombardment whereas helium implantation has not significantly improved it. These results are ascribed to the crosslinking degree of the polymeric chains, ruled by the total amount of energy delivered to the film.

  12. Experiments and Theory of Ablation Plasma Ion Implantation

    Science.gov (United States)

    Gilgenbach, R. M.; Qi, B.; Lau, Y. Y.; Johnston, M. D.; Doll, G. L.; Lazarides, A.

    2000-10-01

    Research is underway to accelerate laser ablation plume ions for implantation into substrates. Ablation plasma ion implantation (APII) biases the deposition substrate to a large negative voltage. APII has the advantages of direct acceleration and implantation of ions from metals or any other solid targets. This process is environmentally friendly because it avoids the use of toxic gaseous precursors. Initial experiments are directed towards the implantation of iron ions into silicon substrates at negative voltages from 2-10 kV. A KrF laser ablates iron targets at pulse energies up to 600 mJ and typical repetition rates of 10 Hz. Parameters which can be varied include laser fluence, relative timing of laser and high voltage pulse, and target-to-substrate distance. Spectroscopic diagnostics yield Fe plasma plume electron temperatures up to about 10 eV. Analysis of films will compare surface morphology, hardness and adhesion between deposited Vs accelerated-implanted plumes. A simple one dimensional theory is developed [1] to calculate the implanted ion current, extracted from the ion matrix sheath, as a function of time for various substrate-plume separations. This model accurately recovers Lieberman's classic results when the plume front is initially in contact with the substrate. [1] B. Qi, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. (to be published). * This research is supported by the National Science Foundation.

  13. Channel waveguides formed by ion implantation of PECVD grown silica

    International Nuclear Information System (INIS)

    Low loss channel waveguides have been formed in silica-on-silicon by implantation with 5 MeV Si and Ge ions. In these experiments, the substrate was comprised of an undoped layer of silica (30 μm thick) which was grown by plasma enhanced chemical vapour deposition (PECVD). The optical loss characteristics of the waveguides, as measured at both λ 1300 and 1550 nm, were independent of the implanted ion species. A minimum in the attenuation loss (α) of ∼0.10-0.20 dB/cm was obtained following both a pre-implant (1050oC) and a post-implant (400-500oC) anneal of the waveguides. The ability to produce a minimum in α by pre-implant annealing has been attributed to the thermally induced relaxation of the densified structure in the as-grown layer. Only a comparatively small degree of compaction was measured for Si-implanted samples which did not receive a pre-implant anneal. In contrast, the much larger degree of compaction in the pre-implant annealed samples was similar in magnitiude to that observed in fused silica. These are the first reported examples of ion-implanted waveguides using a substrate of silica grown by PECVD. (author)

  14. The compaction of fused silica resulting from ion implantation

    International Nuclear Information System (INIS)

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x1012 - 6x10l6 ions/cm2), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than ∼1015 ions/cm2. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from ∼0.1-0.2 μ to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs

  15. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ(3) vertical stroke , of Sn+ ion-implanted silica glass was found to be similar 10-6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn+ ions at an acceleration energy of 400 keV to a dose of 2x1017 ions/cm2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ(3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ(3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  16. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    International Nuclear Information System (INIS)

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (α,α) backscattering and the resonant nuclear reaction 1H(15N,αγ)12C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of marrow bone cells on the implanted sample surface with that of titanium

  17. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy+ and P+ ions at doses between 1013 - 1017 ions/cm2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  18. Antibacterial PVD coatings doped with silver by ion implantation

    Science.gov (United States)

    Osés, J.; Palacio, J. F.; Kulkarni, S.; Medrano, A.; García, J. A.; Rodríguez, R.

    2014-08-01

    The antibacterial effect of certain metal ions, like silver, has been exploited since antiquity. Obviously, the ways to employ the biocide activity of this element have evolved throughout time and it is currently used in a wide range of clinical applications. The work presented here reports the results of an investigation focused on combining the protective properties of PVD coatings with the biocide property of silver, applied by ion implantation. For this purpose, chromium nitride layers were doped with silver implanted at two different doses (5 × 1016 and 1 × 1017 ion/cm2) at 100 keV of energy and perpendicular incidence. Full characterization of the coatings was performed to determine its topographical and mechanical properties. The concentration profile of Ag was analyzed by GD-OES. The thickness of the layers, nano-hardness, roughness, wear resistance and coefficient of friction were measured. Finally, the anti-bacterial efficacy of the coatings was determined following the JIS Z-2801:2010 Standard. The results provide clear insights into the efficacy of silver for antibacterial purposes, as well as on its influence in the mechanical and tribological behaviour of the coatings matrix.

  19. Nanocomposite formed by titanium ion implantation into alumina

    International Nuclear Information System (INIS)

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ0, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ0 = 2.2 × 1016 cm−2, and the corresponding saturation conductivity is σ0 = 480 S/m. The percolation dose φc, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φc = 0.84 × 1016 cm−2. The experimental results are discussed and compared with a percolation theory model

  20. Plasma ion implantation technology at Hughes Research Laboratories

    International Nuclear Information System (INIS)

    The plasma ion implantation (PII) project at Hughes Research Laboratories (HRL) has as its main objective the evaluation and application of PII technology to improve the tribological properties of metal and nonmetal materials used in aerospace, defense, and commercial applications. The HRL PII facility consists of a 4-ft-diamx8-ft-long vacuum chamber capable of implanting objects weighing up to 7000 lbs, and a high-power (100-kW), high-voltage (100-kV) pulse modulator to provide voltage pulses for implantation. Advanced plasma sources have been developed to produce atomic, as well as molecular, nitrogen and oxygen ions, and PII processes have been developed to treat metal and nonmetal materials. The HRL PII facility has been operational since 1989 and has been used for prototype demonstrations of PII technology to achieve (1) a 2--3x improved wear life of Co/WC drill bits used for printed-wiring-board fabrication, (2) an 8x reduced wear rate for TiN-coated cutting tools, and (3) a 2x increased surface hardness for a 7000-lb polymer object, 3 ft by 5 ft by 1 ft

  1. [Improve wear resistance of UHMWPE by O+ ion implanted].

    Science.gov (United States)

    Xiong, Dangsheng

    2003-12-01

    Ultra high molecular weight polyethylene (UHMWPE) was implanted with 450 keV and 100 keV O+ ions at dosage of 1 x 10(15)/cm2, 5 x 10(15)/cm2, 3 x 10(14)/cm2, respectively. Its wear behaviors were studied under dry friction condition and lubrication by means of distilled water using a pin-on-disk tribometer with a Si3N4 ceramic ball as a counterface. The wear surfaces were examined with SEM. The experimental results showed that the wear rate of implanted UHMWPE is lower than that of un-implanted UHMWPE under both dry and distilled friction conditions, especially for 450 keV energy and 5 x 10(15)/cm2 dose implantation. The friction coefficient of O+ ions implanted UHMWPE is higher than that of un-implanted UHMWPE under both dry and distilled friction conditions. The adhesive, plow and plastic deformation are the wearing mechanism for un-implanted UHMWPE; the fatigue and abrasive wear are that for implanted UHMWPE. PMID:14716850

  2. Ion implantation and annealing studies in III-V nitrides

    International Nuclear Information System (INIS)

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n+-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 1016 cm-2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material

  3. Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics

    International Nuclear Information System (INIS)

    Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm−2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined

  4. Surface properties of nitrogen-ion-implanted TiNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of the N+-ion-implanted TiNi alloy.There is a high nitrogen content region at the outermost surface of the N+-ion-implanted TiNi alloy.The detected nitrogen exists mainly in the form of TiN.Small amounts of Ti3O5 and TiO2 also exist on the surface of the N+-ion-implanted TiNi sample.The modified layer of the N+-ion-implanted sample can work as an obstacle layer of the nickel's dissolution, which obstructs Ni dissolving from the TiNi surface effectively.

  5. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  6. Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities

    Directory of Open Access Journals (Sweden)

    Jeffrey C. McCallum

    2012-01-01

    Full Text Available Interest in single-ion implantation is driven in part by research into development of solid-state devices that exhibit quantum behaviour in their electronic or optical characteristics. Here, we provide an overview of international research work on single ion implantation and single ion detection for development of electronic devices for quantum computing. The scope of international research into single ion implantation is presented in the context of our own research in the Centre for Quantum Computation and Communication Technology in Australia. Various single ion detection schemes are presented, and limitations on dopant placement accuracy due to ion straggling are discussed together with pathways for scale-up to multiple quantum devices on the one chip. Possible future directions for ion implantation in quantum computing and communications are also discussed.

  7. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp3) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp2 and sp1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  8. Diffusive relaxation of carbon and nitrogen isotope heterogeneity in diamond: determination of D, and prospects of a new thermochronometer

    Science.gov (United States)

    Koga, K. T.; van Orman, J. A.; Walter, M. J.

    2003-04-01

    The spatial distribution of carbon and nitrogen isotopes in diamonds provides information on mantle residence time. Diamonds with long residence at high temperature will gradually lose their initial zoning patterns due to diffusion. Using experimentally determined carbon self-diffusion coefficients and nitrogen diffusion coefficients derived from aggregation experiments, we have modeled the diffusive relaxation of zoning profiles with a spectrum of wavelengths. Carbon self-diffusion coefficients determined by experiments conducted at 10GPa, 2073 to 2373 K upto 76 hours on un-oriented, clear, Ia diamond chips. Diffusion profiles were obtained using depth profiling mode of the ion probe (Cameca 5f) at ISEI (Okayama University, Japan) with 16O- primary beam. Diffusion coefficients for nitrogen were determined from second order rate constants for nitrogen aggregation, assuming that the aggregation process is diffusion controlled. The results of relaxation calculation show that carbon isotope heterogeneity will be preserved on wavelengths greater than 1 μm after one billion years residence at 1400 K, and on wavelengths greater than 200 μm after one million years residence at 2000 K. Nitrogen isotope zoning is relaxed much more slowly, with 0.1 μm zoning preserved over the age of the Earth at 1400 K and 1 μm zoning preserved after one million years at 2000 K. The large difference in diffusive relaxation times between carbon and nitrogen isotopes means that initially correlated carbon and nitrogen profiles will lose their correlation after sufficient diffusion of carbon has taken place. Carbon isotope heterogeneity in diamonds associated with lower mantle mineral assemblages has significantly smaller amplitude than nitrogen isotope heterogeneity, consistent with diffusive relaxation at high temperatures in the lower mantle.

  9. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  10. Development of physical fundamentals and computer design of technology of ion implantation of metals

    International Nuclear Information System (INIS)

    The unique possibilities of controlled modification of the chemical composition, structure and properties of thin surface films of metals and alloys are offered by the method of high-dose ion implantation (Hll). Modification of the surface of materials by ion implantation has been used on an increasing scale as an industrial technology of ensuring a large increase of the service life of components and tools. It is urgent to investigate the physical fundamentals of this promising technology

  11. Picosecond nonlinear optical response of copper clusters created by ion implantation in fused silica

    International Nuclear Information System (INIS)

    This paper reports that, the authors have embedded nm-size Cu clusters in optically dense, thin (∼150 nm) layers using standard ion implantation techniques. The size and size distribution of the clusters can be altered by varying such ion-implantation parameters as total dose and current density. The layers exhibit both a thermo-optic and an electronic nonlinear optical response, depending on the mode of laser excitation. The electronic nonlinearity has a response time no longer than 5 ps

  12. Electrical doping of Hg Cd Te by ion implantation and heat treatments

    International Nuclear Information System (INIS)

    The general properties of junctions made by ion implantation in Hg Cd Te semiconductor are recalled structure of junctions made by implantation damage, defects, anneals, junctions made by active impurities. The effect of acceptor evolution in this semiconductor after heat treatments and a study of the kinetics are presented. Very high quality devices with very small size and large two-dimensional arrays are shown to be possibly achieved using ion implantation technique of junction formation in the semiconductor epilayers grown by LPE

  13. Electrical properties of amorphous chalcogenide/silicon heterojunctions modified by ion implantation

    OpenAIRE

    Fedorenko, Yanina G.; Hughes, Mark A.; Colaux, Julien L.; Jeynes, C.; Gwilliam, Russell M.; Homewood, Kevin P.; Yao, Jin; Hewak, Dan W.; Lee, Tae-Hoon; Elliott, Stephen R; Gholipour, B.; Curry, Richard J.

    2014-01-01

    Doping of amorphous chalcogenide films of rather dissimilar bonding type and resistivity, namely, Ga-La-S, GeTe, and Ge-Sb-Te by means of ion implantation of bismuth is considered. To characterize defects induced by ion-beam implantation space-charge-limited conduction and capacitance-voltage characteristics of amorphous chalcogenide/silicon heterojunctions are investigated. It is shown that ion implantation introduces substantial defect densities in the films and their interfaces with silico...

  14. Direction-dependent RBS channelling studies in ion implanted LiNbO3

    Science.gov (United States)

    Wendler, E.; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-01

    Damage formation in ion implanted LiNbO3 was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO3 crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO3 lattice structure and most likely also form NbLi antisite defects.

  15. Large area buried nanopatterning by broad ion implantation without any mask or direct writing

    OpenAIRE

    Karmakar, Prasanta; Satpati, Biswarup

    2013-01-01

    We have introduced here a simple, single step and cost effective broad ion beam technique for preparation of nanoscale electronic, magnetic, optical and mechanical devices without the need of resist, mask, or focused electron and ion beams. In this approach, broad beam ion implantation of desired atom on a prefabricated ion beam patterned surface promotes site selective deposition by adjusting the local angle of ion implantation. We show that implantation of Fe ions on an O+ induced pre fabri...

  16. MODIFICATION OF WETTING PROPERTIES OF PMMA BY IMMERSION PLASMA ION IMPLANTATION

    OpenAIRE

    N. MIREAULT; Ross, G. G.

    2008-01-01

    Advancing and receding contact angles below 5° have been obtained on PMMA surfaces with the implantation of argon and oxygen ions. The ion implantations were performed by means of the Immersion Plasma Ion Implantation (IPII) technique, a hybrid between ion beams and immersion plasmas. Characterization of treated PMMA surfaces by means of XPS and its combination with chemical derivatization (CD-XPS) have revealed the depletion of oxygen and the creation of dangling bonds, together with the for...

  17. A simple ion implanter for material modifications in agriculture and gemmology

    Science.gov (United States)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  18. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  19. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Cui; LI Guo-Qing; GOU Wei; MU Zong-Xin; ZHANG Cheng-Wu

    2004-01-01

    @@ Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  20. Tantalum as a buffer layer in diamond-like carbon coated artificial hip joints.

    Science.gov (United States)

    Kiuru, Mirjami; Alakoski, Esa; Tiainen, Veli-Matti; Lappalainen, Reijo; Anttila, Asko

    2003-07-15

    The acid resistance of tantalum coated and uncoated human hip joint prostheses was studied with commercial CrCoMo acetabular cups. The samples were exposed to 10% HCl solution and the quantities of dissolved Cr, Co, and Mo were measured with proton-induced X-ray emission (PIXE). The absolute quantities were obtained with the use of Cr and Se solution standards. Tantalum coatings (thicknesses 4-6 microm) were prepared in vacuum with magnetron sputtering. Tantalum coating decreased the corrosion rate by a factor of 10(6). As a spinoff from recent wear tests on artificial hip joints it was shown that tantalum has excellent mechanical properties as an intermediate layer of diamond-like carbon (DLC) coatings. When tantalum was tested together with DLC on three metal-on-metal hip joint pairs in a hip simulator, no observable defects occurred during 15 million walking cycles with a periodic 50-300-kg load (Paul curve). PMID:12808604