WorldWideScience

Sample records for carbon ion-implanted diamond

  1. Ion-implanted Mechanism of the Deposition Process for Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-Min; WU Wei-Dong; WANG Yu-Ying; WANG Hai-Ping; GE Fang-Fang; TANG Yong-Jian; JU Xin

    2011-01-01

    Due to the local densification, high-energy C and doped ions can greatly affect the bonding configurations of diamond-like carbon films. We investigate the corresponding affection of different incident ions with energy from WeV to 600eV by Monte Carlo methods. The ion-implanted mechanism called the subplantation (for C, N, O, W, Y, etc.) is confirmed. Obvious thermal effect could be induced by the subplantation of the incident ions. Further, the subplantation of C ions is proved by in situ reflection high energy electron diffraction (RHEED). The observation from an atomic force microscope (AFM) indicates that the initial implantation of C ions might result in the final primitive-cell-like morphology of the smooth film (in an area of 1.2 mm × 0.9 mm, rms roughness smaller than 20 nm by Wyko).

  2. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    Science.gov (United States)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  3. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation

    Science.gov (United States)

    Flege, S.; Hatada, R.; Hoefling, M.; Hanauer, A.; Abel, A.; Baba, K.; Ensinger, W.

    2015-12-01

    The addition of nitrogen to diamond-like carbon films affects properties such as the inner stress of the film, the conductivity, biocompatibility and wettability. The nitrogen content is limited, though, and the maximum concentration depends on the preparation method. Here, plasma immersion ion implantation was used for the deposition of the films, without the use of a separate plasma source, i.e. the plasma was generated by a high voltage applied to the samples. The plasma gas consisted of a mixture of C2H4 and N2, the substrates were silicon and glass. By changing the experimental parameters (high voltage, pulse length and repetition rate and gas flow ratio) layers with different N content were prepared. Additionally, some samples were prepared using a DC voltage. The nitrogen content and bonding was investigated with SIMS, AES, XPS, FTIR and Raman spectroscopy. Their influence on the electrical resistivity of the films was investigated. Depending on the preparation conditions different nitrogen contents were realized with maximum contents around 11 at.%. Those values were compared with the nitrogen concentration that can be achieved by implantation of nitrogen into a DLC film.

  4. Diamond-like carbon films synthesized on bearing steel surface by plasma immersion ion implantation and deposition

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-xi; TANG Bao-yin; WANG Lang-ping; WANG Xiao-feng; YU Yong-hao; SUN Tao; HU Li-guo

    2004-01-01

    Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.

  5. Effective Stress Reduction in Diamond Films on Alumina by Carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    方志军; 夏义本; 王林军; 张伟丽; 马哲国; 张明龙

    2002-01-01

    We show the effective stress reduction in diamond films by implanting carbon ions into alumina substrates prior to the diamond deposition. Residual stresses in the films are evaluated by Raman spectroscopy and a more reliable method for stress determination is presented for the quantitative measurement of stress evolution. It is found that compressive stresses in the diamond films can be partly offset by the compressive stresses in the alumina substrates, which are caused by the ion pre-implantation. At the same time, the difference between the offset by the pre-stressed substrates and the total stress reduction indicates that some other mechanisms are also active.

  6. Preparation of Diamond-Like carbon Films in methane by Electron Cyclotron Resonance Microwave Plasma Source Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    李新; 唐祯安; 马国佳; 吴志猛; 邓新绿

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on Si (100) substrates by ion implantation from an electron cyclotron resonance microwave plasma source. During the implantation, 650 W microwave power was used to produce discharge plasma with methane as working gas, and -20 kV voltage pulses were applied to the substrate holder to accelerate ions in the plasma. Confocal Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared characterization indicates that the DLC films were composed of sp3 and sp2 carbonbonded hydrogen. The hardness of the films was evaluated with a Nano Indenter-XP System. The result shows that the highest hardness value was 14.6GPa. The surface rms roughness of the films was as low as 0. 104nm measured with an atomic force microscope. The friction coefficient of the films was checked using a ball-on-disk microtribometer. The average friction coefficient is approximately 0.122.

  7. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  8. Preparation of diamond-like carbon films in methane by electron cyclotron resonance microwave plasma source ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared on Si(100) substrates by ion implantation from an electron cyclotron resonance microwave plasma source. During the implantation, 650 W microwave power was used to produce discharge plasma with methane as working gas, and -20 kV voltage pulses were applied to the substrate holder to accelerate ions in the plasma. Confocal Raman spectra confirmed the DLC characteristics of the films. Fourier-transform infrared characterization indicates that the DLC films were composed of sp3 and sp2 carbon-bonded hydrogen. The hardness of the films was evaluated with a Nano Indenter-XP System. The result shows that the highest hardness value was 14.6 GPa. The surface rms roughness of the films was as low as 0.104 nm measured with an atomic force microscope. The friction coefficient of the films was checked using a ball-on-disk microtribometer. The average friction coefficient is approximately 0.122

  9. Ion implantation of diamond: Damage, doping, and lift-off

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, N.R.; McGucken, E.; Swanson, M.L. [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Physics and Astronomy; Hunn, J.D.; White, C.W.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    In order to make good quality economical diamond electronic devices, it is essential to grow films and to dope these films to obtain n- and p- type conductivity. This review talk discuss first doping by ion implantation plus annealing of the implantation damage, and second flow to make large area single crystal diamonds. C implantation damage below an estimated Frenkel defect concentration of 7% could be recovered almost completely by annealing at 950C. For a defect concentration between 7 and 10%, a stable damage form of diamond (``green diamond``) was formed by annealing. At still higher damage levels, the diamond graphitized. To introduce p-type doping, we have co-implanted B and C into natural diamond at 77K, followed by annealing up to 1100C. The resulting semiconducting material has electrical properties similar to those of natural B-doped diamond. To create n-type diamond, we have implanted Na{sup +}, P+ and As{sup +} ions and have observed semiconducting behavior. This has been compared with carbon or noble element implantation, in an attempt to isolate the effect of radiation damage. Recently, in order to obtain large area signal crystals, we have developed a novel technique for removing thin layers of diamond from bulk or homoepitaxial films. This method consists of ion implantation, followed by selective etching. High energy (4--5 MeV) implantation of carbon or oxygen ions creates a well-defined layer of damaged diamond buried at a controlled depth. This layer is graphitized and selectivity etched either by heating at 550C in an oxygen ambient or by electrolysis. This process successfully lifts off the diamond plate above the graphite layer. The lift-off method, combined with well-established homoepitaxial growth processes, has potential for fabrication of large area single-crystal diamond sheets.

  10. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hatada, R., E-mail: hatada@ca.tu-darmstadt.de [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Sawase, T.; Watamoto, T. [Nagasaki University, Department of Applied Prosthodontics, Nagasaki 852-8523 (Japan); Matsutani, T. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Kinki University, Department of Electric and Electronic Engineering, Higashi-osaka 577-2332 (Japan)

    2014-08-15

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C{sub 2}H{sub 4} plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C{sub 2}H{sub 4} was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  11. Ion-implanted diamond films and their tribological properties

    International Nuclear Information System (INIS)

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 μm) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C+ (m/e=12) at an ion energy of 160 eV and a fluence of 6.72 x 1017 ions cm-2. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10-7 Pa), dry nitrogen and humid air (40% RH) environments. The effects of C+ ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments. (orig.)

  12. Evidence of light guiding in ion-implanted diamond

    CERN Document Server

    Lagomarsino, S; Bosia, F; Vannoni, M; Calusi, S; Giuntini, L; Massi, M

    2016-01-01

    We demonstrate the feasibility of fabricating light-waveguiding microstructures in bulk single-crystal diamond by means of direct ion implantation with a scanning microbeam, resulting in the modulation of the refractive index of the ion-beam damaged crystal. Direct evidence of waveguiding through such buried microchannels is obtained with a phase-shift micro-interferometric method allowing the study of the multi-modal structure of the propagating electromagnetic field. The possibility of defining optical and photonic structures by direct ion writing opens a range of new possibilities in the design of quantum-optical devices in bulk single crystal diamond.

  13. Simulation and visualization of ion-implantation in diamond

    International Nuclear Information System (INIS)

    We have explored aspects of ion implantation in diamonds with molecular dynamics and tightbinding atomistic simulations. Relevant experiments and their potential applications as well as our computer models and computational approaches are described. Our simulations have been designed to answer questions proposed by experimental researchers concerning optimal laboratory schedules for the preparation of samples with potential applications to diamond membranes and NV centers for quantum computers. Simulation and visualization of results enable us to peek inside samples where experimental techniques cannot tread. In order to provide the requisite Brazilian component a new connection between these models and bootstrap percolation is made

  14. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp3 ratio, i.e., the intensity ratio of sp3/(sp3+sp2) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  15. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  16. Effect of Mo ion-implantation on the adhesion of diamond coatings

    CERN Document Server

    Yang Shie; Wang Xiao Ping; Li Hui; Ma Bing Xian; Qin Guang Yong; Zhang Bing Lin

    2002-01-01

    Diamond coatings were deposited on the cobalt-cemented tungsten carbide (YG6) substrates, which have been implanted with Mo ions, by microwave plasma CVD (MPCVD) method. The effect of ion-implantation on the adhesion of diamond coatings was studied. The results showed that the chemical compositions of cemented carbide substrate surfaces change obviously after Mo ion-implantation; and the adhesion strength between the CVD diamond coatings and the substrates implanted with Mo ions in proper concentration is improved remarkably

  17. Engineering single photon emitters by ion implantation in diamond

    OpenAIRE

    Naydenov, B.; Kolesov, R.; Batalov, A.; Meijer, J; Pezzagna, S.; Rogalla, D.; Jelezko, F.; Wrachtrup, J.

    2009-01-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in qua...

  18. Engineering single photon emitters by ion implantation in diamond.

    Science.gov (United States)

    Naydenov, B; Kolesov, R; Batalov, A; Meijer, J; Pezzagna, S; Rogalla, D; Jelezko, F; Wrachtrup, J

    2009-11-01

    Diamond provides unique technological platform for quantum technologies including quantum computing and communication. Controlled fabrication of optically active defects is a key element for such quantum toolkit. Here we report the production of single color centers emitting in the blue spectral region by high energy implantation of carbon ions. We demonstrate that single implanted defects show sub-poissonian statistics of the emitted photons and can be explored as single photon source in quantum cryptography. Strong zero phonon line at 470.5 nm allows unambiguous identification of this defect as interstitial-related TR12 color center. PMID:19956415

  19. The role of ion-implantation in the realization of spintronic devices in diamond

    International Nuclear Information System (INIS)

    The application of single photons emitted by specific quantum systems is promising for quantum computers, cryptography and for other future nano-applications. These heavily rely on ion implantation both for selective single ion implantations as well as for the introduction of controlled damage with specific properties. Of particular promise is the negatively charged nitrogen-vacancy (NV−) defect center in diamond. This center has many desirable luminescence properties required for spintronic devices operational at room temperature, including a long relaxation time of the color center, emission of photons in the visible and the fact that it is produced in diamond, a material with outstanding mechanical and optical properties. This center is usually realized by nitrogen and/or vacancy producing ion implantations into diamond which, following annealing, leads to the formation of the desired NV− center. The single photons emitted by the decay of this center have to be transported to allow their exploitation. This can be best done by realizing very thin wave guides in single crystal diamond with/or without nano-scale cavities in the same diamond in which NV centers are produced. For this, advantage is taken of the unique property of heavily ion-damaged diamond to be converted, following annealing, to etchable graphite. Thus a free standing submicron thick diamond membrane containing the NV center can be obtained. If desirable, specific photonic crystal structures can be realized in them by the use of FIB. The various ion-implantation schemes used to produce NV centers in diamond, free standing diamond membranes, and photonic crystal structures in them are reviewed. The scientific problems and the technological challenges that have to be solved before actual practical realization of diamond based spintronic devices can be produced are discussed.

  20. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  1. Lattice sites of ion-implanted Cu atoms in diamond

    International Nuclear Information System (INIS)

    Radioactive 67Cu atoms were accelerated to 60 keV at the online isotope separator ISOLDE at CERN, and implanted into a type IIa natural diamond sample to a dose of 2x1012 cm-2. The channeling of β--particles and conversion electrons emitted in the decay of 67Cu and 67Zn*, respectively, were monitored about the three major axial directions with a two-dimensional position-sensitive detector. The electron emission channeling data were collected from the room-temperature-implanted sample and after annealing at 1200 K. The observed channeling patterns were fitted with simulations based on the many beam formalism of electron motion through a crystal lattice. In the as-implanted sample, 25% of the Cu atoms were located a mean, isotropic displacement of 0.25(5) A from substitutional sites, and the remainder, fR=75%, at sites that gave an isotropic emission yield. Annealing at 1200 K results in enhanced axial and planar channeling effects. The fits to the data yield either a fraction f1=45(5)% of Cu atoms located 0.24(4) A from substitutional sites and fR=57%, or a fraction f1=10(2)% at substitutional sites, a fraction f2=50(5)% at mean isotropic displacement of 0.5 A from substitutional sites, and a 'random' fraction fR=40%

  2. Lattice sites of ion implanted Cu atoms in diamond

    CERN Document Server

    Bharuth-Ram, K; Correia, J G

    2003-01-01

    Radioactive $^{67}$Cu atoms were accelerated to 60 keV at the online isotope separator ISOLDE at CERN, and implanted into a type IIa natural diamond sample to a dose of 2 $\\times 10^{12}$ cm$^{-2}$. The channeling of $\\beta^{-}$-particles and conversion electrons emitted in the decay of $^{67}$Cu and $^{67}$Zn*, respectively, were monitored about the three major axial directions with a two dimensional position-sensitive detector. The electron emission channeling data were collected from the room temperature implanted sample and after annealing at 1200$^\\circ$ K. The observed channeling patterns were fitted with simulations based on the many beam formalism of electron motion through a crystal lattice. In the as-implanted sample, 25% of the Cu atoms were located a mean, isotropic displacement of 0.25(5) from substitutional sites, and the remainder, fR=75%, at sites that gave an isotropic emission yield. Annealing at 1200$^\\circ$ K results in enhanced axial and planar channeling effects. The fits to the data yie...

  3. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    International Nuclear Information System (INIS)

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 1017 ions-cm− 2, 2.4 × 1017 ions-cm− 2, and 4.8 × 1017 ions-cm− 2. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation

  4. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  5. Ion implanted pyrolitic carbon for the hip prosthesis

    International Nuclear Information System (INIS)

    Full text: Hip joint arthroplasty is a successful surgical procedure, but loosening induced by polyethylene wear debris continues to be a problem. Fine grained isotropic graphite (POCO ZXF-5Q) coated with Pyrolite (trademark of Carbomedics Inc.) combines biocompatibility, strength and tribological properties which could be utilised in a hip prosthesis. Some preliminary work has been conducted on this material, and the effect nitrogen ion implantation has on its wear resistance. Finite element analysis was conducted on a femoral head of a canine hip prosthesis with diameter 19mm made from POCO ZXF-5Q . An optimum design was obtained after design variables such as taper angle and width, internal recess radius, crown thickness were varied so that internal stresses were minimised. This was then translated into an human sized femoral head with diameter 28mm, which was subjected to mechanical testing. Loading was at 20 deg C to the taper, with loading rate 10kN/s used in static loading, whilst fatigue testing was carried out between 300 - 3000N at 30Hz for 107 cycles. Pin-on-disc wear testing was carried out using a CSEM Tribometer. A 1N load was applied to 6mm diameter pins. Wear track radii were 11 and 13mm, with linear velocity 5cm/s and sliding distance 2.5km. Test temperature was 37±1degC with Ringer solution and bovine serum being used as lubricant. Nitrogen implanted samples were irradiated to a dose of 5x1016 ions.cm-2 at 50keV. Static testing was carried out to loads of 8000N and all five POCO ZXF-5Q femoral heads tested survived. Then three of these pre-tested femoral heads were subjected to fatigue testing and no failures occured before 107 cycles. Wear was reduced by nitrogen ion implantation only when an irradiated pin was tested against as polished Pyrolite. Nitrogen ion implanted Pyrolite on a POCO ZXF-5Q substrate may have clinical potential. The substrate has appropriate mechanical properties, and nitrogen ion implantation can improve the already

  6. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    International Nuclear Information System (INIS)

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)−1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices

  7. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K. J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek (Belgium); Sundaravel, B. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tai, N. H., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu Taiwan 300, Taiwan (China); Lin, I. N., E-mail: nhtai@mx.nthu.edu.tw, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui, Taiwan 251, Taiwan (China)

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  8. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    Science.gov (United States)

    Sankaran, K. J.; Sundaravel, B.; Tai, N. H.; Lin, I. N.

    2015-08-01

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm)-1, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm2 (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of the UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.

  9. P掺杂类金刚石薄膜的制备及生物学行为研究%Phosphorus doped diamond-like carbon films fabricated by plasma immersion ion implantation - deposition and study of biological behavior

    Institute of Scientific and Technical Information of China (English)

    王进; 杨萍; 陈俊英; 冷永祥; 万国江; 孙鸿; 赵安莎; 黄楠

    2004-01-01

    应用等离子体浸没离子注入与沉积方法合成了磷掺杂的类金刚石(diamond like carbon,DLC)薄膜.结构分析表明磷以微米级岛状结构分散于DLC薄膜表层,P的掺杂增加了DLC薄膜的无序性,俄歇能谱表明岛型区域是由P、C、O三种元素形成的化合物.掺杂表面表现出强烈的亲水性(水接触角为16.9°),体外血小板粘附实验结果显示,P掺杂DLC薄膜表面粘附的血小板少且变形小,表现出的血液相容性优于热解碳和未改性DLC.

  10. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  11. The microstructural evolution of ultrananocrystalline diamond films due to P ion implantation process—the annealing effect

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Sheng-Chang; Yeh, Chien-Jui; Leou, Keh-Chyang, E-mail: kcleou@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kurian, Joji; Lin, I.-Nan, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Dong, Chung-Li [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Niu, Huan [Nuclear Science and Technology, Development Center Accelerator Division, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-11-14

    The microstructural evolution of UNCD films which are P-ion implanted and annealed at 600 °C (or 800 °C) is systematically investigated. The difference of interaction that the UNCD content undergoes along the trajectory of the incident P-ions is reflected in the alteration of the granular structure. In regions where the P-ions reside, the “interacting zone,” which is found at about 300 nm beneath the surface of the films, coalescence of diamond grains occurs inducing nano-graphitic clusters. The annealing at 600 °C (or 800 °C) heals the defects and, in some cases, forms interconnected graphitic filaments that result in the decrease in surface resistance. However, the annealing at 600 °C (800 °C) induces marked UNCD-to-Si layers interaction. This interaction due to the annealing processes hinders the electron transport across the interface and degrades the electron field emission properties of the UNCD films. These microstructural evolution processes very well account for the phenomenon elaborating that, in spite of enhanced conductivity of the UNCD films along the film's surface due to the P-ion implantation and annealing processes, the electron field emission properties for these UNCD films do not improve.

  12. Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing

    Institute of Scientific and Technical Information of China (English)

    Yan-Yan Shen; Yi-Xin Zhang; Ting Qi; Yu Qiao; Yu-Xin Jia; Hong-Jun Hei; Zhi-Yong He

    2016-01-01

    Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1 S-1 for microcrystalline diamond (MCD) films.Its electrical field emission behavior can be turned on at Eo =2.6 V/μm,attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/μm.Field emission scanning electron microscopy combined with Raman and x-ray photoelectron microscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films,forming conduction channels for electron transportation.

  13. High temperature annealing studies of strontium ion implanted glassy carbon

    Science.gov (United States)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  14. Ion implantation inhibits cell attachment to glassy polymeric carbon

    International Nuclear Information System (INIS)

    Implantation of MeV gold, oxygen, carbon ions into GPC alters the surface topography of GPC and enhances the already strong tendency for cells to attach to GPC. We have shown that implantation of silver ions near the surface strongly inhibits cell growth on GPC. Both enhanced adhesion of and inhibition of cell growth are desirable improvements on cardiac implants that have long been successfully fabricated from biocompatible glassy polymeric carbon (GPC). In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that ion beam assisted deposition (IBAD) of silver, as well as silver ion bombardment, can favorably influence the surface of GPC for biomedical applications

  15. Synthesis of amorphous carbon nitride by ion implantation

    Institute of Scientific and Technical Information of China (English)

    ChenZ.; OlofinjanaA.; BellJ

    2001-01-01

    N2+ were implanted into diamondlike carbon (DLC) films in an attempt to synthesizeamorphous carbon nitride. The DLC films were previously deposited on steel substrate by using anion beam sputtering deposition (IBSD) where a single Kaufman type ion gun with argon sourcewas used to sputter a graphite target and simultaneously bombard the growing film. Parallel to theion implantation route, amorphous carbon nitride films were also synthesized by directly using thereactive ion beam sputtering deposition (RIBSD) with nitrogen source to incorporate nitrogen intothe film. The structure and properties of the films were determined by using Raman spectroscopy,XPS and nano-indentation. The implantation of N2+ into a-C films offers a higher hardness thanthat directly synthesized by RIBSD, probably through an increase in sp3/sp2 ratio and in the pro-portion of nitrogen atoms chemically bonding to carbon atoms. The results show that althoughthere are differences in film composition, structure and properties between these two processes,both methods can be used for synthesis of nitrogen-containing amorphous DLC thin films whichsignificantly modify the substrate surface.

  16. Ion implantation into concave polymer surface

    International Nuclear Information System (INIS)

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification

  17. Ion implantation into concave polymer surface

    Science.gov (United States)

    Sakudo, N.; Shinohara, T.; Amaya, S.; Endo, H.; Okuji, S.; Ikenaga, N.

    2006-01-01

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification.

  18. Investigation of low-resistivity from hydrogenated lightly B-doped diamond by ion implantation

    Directory of Open Access Journals (Sweden)

    Cui Xia Yan et al

    2008-01-01

    Full Text Available We have implanted boron (B ions (dosage: 5×1014 cm-2 into diamond and then hydrogenated the sample by implantating hydrogen ions at room temperature. A p-type diamond material with a low resistivity of 7.37 mΩ cm has been obtained in our experiment, which suggests that the hydrogenation of B-doped diamond results in a low-resistivity p-type material. Interestingly, inverse annealing, in which carrier concentration decreased with increasing annealing temperature, was observed at annealing temperatures above 600 °C. In addition, the formation mechanism of a low-resistivity material has been studied by density functional theory calculation using a plane wave method.

  19. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J. [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H.; Morita, Y.; Ohshima, T.

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  20. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kosobrodova, E., E-mail: elenak@physics.usyd.edu.au [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Kondyurin, A. [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Chrzanowski, W. [Faculty of Pharmacy, University of Sydney, NSW 2006 (Australia); Department of Nanobiomedical Science and BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); McCulloch, D.G. [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia); McKenzie, D.R.; Bilek, M.M.M. [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia)

    2014-06-01

    Highlights: • Structure and properties of polycarbonate films spin-coated on silicon are studied. • The films have two thicknesses: thicker and thinner than a depth of ion penetration. • Effect of radio frequency plasma and plasma immersion ion implantation is compared. - Abstract: At ion fluences higher than 5 · 10{sup 15} ions/cm{sup 2}, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 10{sup 16} ions/cm{sup 2}, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of C=O bonds and much lower concentration of O–H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 10{sup 16} ions/cm{sup 2}, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 10{sup 16} ions/cm{sup 2}. At

  1. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    Energy Technology Data Exchange (ETDEWEB)

    Himics, L., E-mail: himics.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Tóth, S.; Veres, M. [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Tóth, A. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Koós, M. [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2015-02-15

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp{sup 2} carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation.

  2. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  3. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    Science.gov (United States)

    Derry, T. E.; Nshingabigwi, E. K.; Levitt, M.; Neethling, J.; Naidoo, S. R.

    2009-08-01

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels "graphitize" (above about 5.2 × 10 15 ions/cm 2). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to ˜40 μm thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  4. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    Science.gov (United States)

    Kosobrodova, E.; Kondyurin, A.; Chrzanowski, W.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2014-06-01

    At ion fluences higher than 5 · 1015 ions/cm2, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 1016 ions/cm2, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of Cdbnd O bonds and much lower concentration of O-H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 1016 ions/cm2, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 1016 ions/cm2. At this and higher fluence, areas of an ordered island-like structure were observed.

  5. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    Science.gov (United States)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Luk, Camille M. Y.; Liu, Xuanyong; Chung, Jonathan C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C2H2-PIII&D and C2H2-PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance.

  6. The tribological properties of nanometre carbon films prepared by plasma-based ion implantation at various implanting voltages

    International Nuclear Information System (INIS)

    About 30 nm thick nanometre carbon films have been prepared on Si wafers by plasma-based ion implantation at various implanting voltages. The ball-on-disc sliding friction experiments show that the tribological properties of these carbon films are in good agreement with the corresponding structure characteristics which strongly depend on the implanting voltage. These structure characteristics include the film roughness, the film thickness, the C-Si transition layer between the carbon film and the Si substrate and the sp3/sp2 ratio. As the implanting voltage increases, the roughness and the thickness decrease, the C-Si transition layer thickens and the sp3/sp2 ratio first increases to the maximum value at about 30 kV and then decreases. 3 kV and below correspond to bad tribological properties owing to polymer-like carbon (PLC) film and no C-Si transition layer with poor adhesion to the Si substrate. When the implanting voltage increases to over 3 kV, a C-Si transition layer is gradually formed and thickens with increasing adhesion, and the PLC film is gradually turned into a diamond-like carbon (DLC) film, and hence the tribological properties are gradually improved and reach the best values at 30 kV. 10-50 kV correspond to two orders of increase in wear life, close to zero volume wear rate, but about 0.3 friction coefficient at 0.1 N applied load. With the increase in the applied load, the wear life and the friction coefficient decrease and the wear rate increases. For Si wafers coated with the DLC films at 30 kV, in the range of 0.5-1 N, there is an appropriate value corresponding to the wear life of above 18 000 s, friction coefficient of about 0.1 and wear rate of 10-9 mm3 N-1 m-1 level. Additionally, the wear mechanism is discussed

  7. Immobilization of extracellular matrix on polymeric materials by carbon-negative-ion implantation

    Science.gov (United States)

    Tsuji, Hiroshi; Sommani, Piyanuch; Muto, Takashi; Utagawa, Yoshiyuki; Sakai, Shun; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2005-08-01

    Effects of ion implantation into polystyrene (PS), silicone rubber (SR) and poly-L-lactic acid (PLA) have been investigated for immobilization of extracellular matrix. Carbon negative ions were implanted into PS and SR sheets at various energies between 5-30 keV and various doses between 1.0 × 1014-1.0 × 1016 ions/cm2. Contact angles of pure water on C-implanted surfaces of PS and SR were decreased as increase in ion energy and in dose due to formation of functional groups such as OH and C-O. Selective attachment of nerve cells was observed on C-implanted them at 10 keV and 3 × 1015 ions/cm2 after in vitro cell culture of nerve cells of PC-12 h. Neurite outgrowth also extended over the implanted area. After dipping in a serum medium and in a fibronectin solution for 2 h, the detection of N 1s electrons by X-ray induced photoelectron spectroscopic (XPS) revealed a significant distinction of protein adhesion on the implanted area. Thus, immobilization of proteins on surface is used for considering the selective cell-attachment. For PLA, the selective attachment of cells and protein depended on the implantation conditions.

  8. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M.N. [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1993-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  9. Structure and tribological properties of modified layer on 2024 aluminum alloy by plasma-based ion implantation with nitrogen/titanium/carbon

    Institute of Scientific and Technical Information of China (English)

    张玲召; 廖家轩; 夏立芳; 刘维民; 徐洮; 薛群基

    2003-01-01

    2024 aluminum alloy was implanted with nitrogen then titanium finally carbon by plasma-based ion implantatio to form a gradient layer.The structure and tribological properties of the layer were investigated.Its composition profiles and chemical states were analyzed with X-ray photoelectron spectroscopy(XPS).The surface carbonlayer was analyzed by Raman spectrum.The appearances were observed by atomic force microscope(AFM).Thesurface hardness was measured with the mechanical property microprobe.The dry wear tests against GCr15 steelball at various sliding loads were performed with a ball-on-disk wear tester in ambient environment.The resultsshow that the thickness of the modified layer is 1 200 nm,the carbon layer is a smooth and compact diamond-likecarbon(DLC)films,and the carbon-titanium interface is broadened due to carbon ions implantation,resulting in agood composition and structure transition between DLC films and titanium layer.Surface hardness is improvedmarkedly,with a slow and uniform change.Tribological properties are improved greatly although they reduce withthe increase of sliding loads because the modified layer becomes thin rapidly.

  10. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    International Nuclear Information System (INIS)

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV–Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV–Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10−10 (Ω-cm)−1 (pristine) to (0.32 ± 0.01) × 10−5 (Ω-cm)−1 (irradiated sample)

  11. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    Science.gov (United States)

    Abraham, J. B. S.; Aguirre, B. A.; Pacheco, J. L.; Vizkelethy, G.; Bielejec, E.

    2016-08-01

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. The ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantation process.

  12. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    International Nuclear Information System (INIS)

    Application of pulsed high negative voltage (∼10 μs pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron microscopy, and its structure characteristics are examined by XPS and laser Raman spectroscopy. Subsequent processing using acetylene or acetylene and Ar (20%) produced thin carbon layers that are confirmed to be graphite-dominated DLC. Also, this PSII method is employed in order to deposit the DLC layer on the inside surface of the PET bottle and to reduce oxygen permeation rate by 40%

  13. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    Science.gov (United States)

    Tanaka, T.; Yoshida, M.; Shinohara, M.; Takagi, T.

    2002-05-01

    Application of pulsed high negative voltage (~10 μs pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron microscopy, and its structure characteristics are examined by XPS and laser Raman spectroscopy. Subsequent processing using acetylene or acetylene and Ar (20%) produced thin carbon layers that are confirmed to be graphite-dominated DLC. Also, this PSII method is employed in order to deposit the DLC layer on the inside surface of the PET bottle and to reduce oxygen permeation rate by 40%.

  14. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    CERN Document Server

    Tanaka, T; Shinohara, M; Takagi, T

    2002-01-01

    Application of pulsed high negative voltage (approx 10 mu s pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N sub 2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N sub 2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron mic...

  15. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    Science.gov (United States)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  16. The n-type conduction and microstructural properties of phosphorus ion implanted nanocrystalline diamond films%磷离子注入纳米金刚石薄膜的n型导电性能与微结构研究

    Institute of Scientific and Technical Information of China (English)

    胡晓君; 胡衡; 陈小虎; 许贝

    2011-01-01

    Phosphorus ions are implanted into nanocrystalline diamond ( NCD) films followed by being annealed at different temperatures. The results show that the samples exhibit good n-type conductivity when annealing temperature is increased to 800 ℃ and above. Raman spectroscopy and electron paramagnetic resonance measurements display that the sample with a larger quantity of diamond phase with better lattice perfection has a lower resistivity. It is indicated that nano-sized diamond grains make contributions to the n-type conductivity in the films. After 1000 ℃ annealing, the amorphous carbon grain boundaries become more ordered, which leads the dangling carbon bonds to decrease and the resistivity of the film to increases. It is revealed that the amorphous carbon grain boundaries supply a conduction path to the n-type phosphorus ion implanted nanocrystalline diamond grains.%系统研究了磷离子注入并在不同温度退火后的纳米金刚石薄膜的微结构和电学性能.研究表明,当退火温度达到800℃以上时,薄膜呈良好的n型电导.Raman光谱和电子顺磁共振谱的结果表明,薄膜中金刚石相含量越高和完整性越好,薄膜电阻率越低.这说明纳米金刚石晶粒为薄膜提供了电导.1000℃退火后,薄膜晶界中的非晶石墨相有序度提高,碳悬键数量降低,薄膜电阻率升高.薄膜导电机理为磷离子注入的纳米金刚石晶粒提供了n型电导,非晶碳晶界为其电导提供了传输路径.

  17. Influence of Zn ion implantation on structures and field emission properties of multi-walled carbon nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The structures and field emission properties of multi-walled carbon nanotube arrays implanted with Zn+ by MEVVA ion implanter have been investigated.The results revealed that Zn+implantation induced structural damage and that the top of carbon nanotubes with multi-layered graphite structure were transformed into carbon nanowires with amorphous structure.Meanwhile,C:Zn solid solution was synthesized after Zn+ implantation.The turn-on field and threshold field were 0.80 and 1.31 V/μm,respectively for original multi-walled carbon nanotube arrays and were reduced to 0.66 and 1.04 V/μm due to the synthesis of C and Zn composite,in which the work function was reduced after low doses of Zn+implantation.It is indicated that low doses of Zn+implantation can improve field emission performance of multi-walled carbon nanotube arrays.Otherwise,high doses of Zn+implantation can reduce field emission properties of multi-walled carbon nanotube arrays,because radiation damage reduces the electric field enhancement factor.

  18. Mechanical properties of amorphous hydrogenated carbon films fabricated on polyethylene terephthalate foils by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Amorphous hydrogenated carbon (a-C:H) films have been deposited on polyethylene terephthalate by plasma immersion ion implantation and deposition. The influence of deposition parameters such as gas pressure, bias voltage, and nitrogen incorporation on the mechanical properties of the a-C:H films are investigated. X-ray photoelectron spectroscopy reveals that the ratio of sp3 to sp2 is 0.24 indicating that the film is mainly composed of graphitelike carbon. Nanoindentation tests disclose enhanced surface hardness of ∼6 GPa. The friction coefficient of the film deposited at higher gas pressure, for instance, 2.0 Pa, is lower than that of the film deposited at a lower pressure such as 0.5 Pa. The films deposited using a low bias voltage tend to fail easily in the friction tests and nitrogen incorporation into the a-C:H films decreases the friction coefficient. Mechanical folding tests show that deformation failure is worse on a thinner a-C:H film

  19. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  20. In-situ observation of sputtered particles for carbon implanted tungsten during energetic isotope ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Y.; Sato, M.; Uchimura, H.; Okuno, K. [Graduate School of Science, Shizuoka University, Shizuoka (Japan); Ashikawa, N.; Sagara, A. [National Institute for Fusion Science, Gifu (Japan); Yoshida, N. [Institute for Applied Mechanics, Kyushu University, Kasuga (Japan); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan)

    2015-03-15

    Tungsten is a candidate for plasma facing materials in future fusion reactors. During DT plasma operations, carbon as an impurity will bombard tungsten, leading to the formation of tungsten-carbon (WC) layer and affecting tritium recycling behavior. The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, has been investigated using in-situ sputtered particle measurements. The C{sup +} implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H{sub 2}{sup +} irradiation. It has been found that the major hydrocarbon species for C{sup +} implanted tungsten is CH{sub 3}, while for WC and HOPG (Highly Oriented Pyrolytic Graphite) it is CH{sub 4}. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H{sub 2}{sup +} irradiation and the desorption of CH{sub 3} and CH{sub 2} are due to chemical sputtering, although that for CH is physical sputtering. The activation energy for CH{sub 3} desorption has been estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It is concluded that the chemical states of hydrocarbon sputtered by H{sub 2}{sup +} irradiation for W is determined by the amount of C-H bond on the W surface. (authors)

  1. Raman microprobe measurements of stress in ion implanted materials

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.W.; Prawer, S.; Weiser, P.S.; Dooley, S.P. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    Raman microprobe measurements of ion implanted diamond and silicon have shown significant shifts in the Raman line due to stresses in the materials. The Raman line shifts to higher energy if the stress is compressive and to lower energy for tensile stress{sup 1}. The silicon sample was implanted in a 60 {mu}m square with 2.56 x 10{sup 17} ions per square centimeter of 2 MeV Helium. This led to the formation of raised squares with the top 370mm above the original surface. In Raman studies of silicon using visible light, the depth of penetration of the laser beam into the sample is much less than one micron. It was found that the Raman line is due to the silicon overlying the damage region. The diamond sample was implanted with 2 x 10{sup 15} ions per square centimeter of 2.8 MeV carbon. It was concluded that the Raman spectrum could provide information concerning both the magnitude and the direction of stress in an ion implanted sample. It was possible in some cases to determine whether the stress direction is parallel or perpendicular to the sample surface. 1 refs., 2 figs.

  2. Enhanced Photocatalytic Activity of C-TiO2 Thin Films Prepared by Magnetron Sputtering and Post-carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    LUO Shengyun; YAN Bingxi; CAO Minjian; SHEN Jie

    2015-01-01

    TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant influence on film’s micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×1017 ion/cm2, which gives rise to a 150%increased photocurrent and degradation rate.

  3. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  4. Ion implantation in polymers

    Science.gov (United States)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  5. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    International Nuclear Information System (INIS)

    The carbon vacancy (VC) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the VC-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (Ci's) and annihilation of VC's in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the VC annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating VC's. Concentrations of VC below ∼2 × 1011 cm−3 can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the VC-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote Ci-clustering and reduce dynamic defect annealing. These Ci-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced Ci injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the VC-concentration, which limit the net effect of the Ci injection, and a competition between the two processes occurs

  6. Surface properties of diamond-like carbon films prepared by CVD and PVD methods

    Institute of Scientific and Technical Information of China (English)

    Liu Dong-Ping; Liu Yan-Hong; Chen Bao-Xiang

    2006-01-01

    Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance-plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered-pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp3 hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.

  7. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  8. Quantum information process with nanometre precession ion implantation

    International Nuclear Information System (INIS)

    The spin state of a single nitrogen-vacancy centre in diamond is one of the most attractive candidate for quantum information processing because of its long spin coherence time. Further more coupling (magnetic dipole) between the spins are required for scalable quantum computing (2-qbit operation). This process requires a high implantation positioning accuracy and nitrogen free clean diamond (<0.1 ppm nitrogen concentration). Here we report recent progress towards single ion implantation within nanometre scale accuracies. (orig.)

  9. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    Energy Technology Data Exchange (ETDEWEB)

    Ayedh, H. M.; Svensson, B. G. [University of Oslo, Department of Physics/Center for Materials Science and Nanotechnology, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Hallén, A. [School of Information and Communication Technology (ICT), Royal Institute of Technology, SE-164 40 Kista-Stockholm (Sweden)

    2015-11-07

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.

  10. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He+-ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  11. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    This book, the thirteenth in the series ''Cambridge Studies in Modern Optics,'' represents the first attempt to provide a detailed description of the factors and processes that govern the optical properties of ion implanted materials. It begins with a survey of the basic physics and practical methods involved, then goes on to discuss the topics of optical absorption and luminescence. The authors present the basic theory of optical waveguides and their analysis and examine how ion implantation can be used in the production of optical waveguides. The concluding chapter deals with the progress being made in the development of device-oriented waveguide structures and how ion implantation is being used to achieve these ends

  12. Mutation breeding by ion implantation

    Science.gov (United States)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  13. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  14. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...

  15. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  16. Characterization of the Diamond-like Carbon Based Functionally Gradient Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their goodphysical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasmaimmersion ion implantation (PIll) was adopted to fabricate diamond-like carbon-based functionally gradient film,N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopyand glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed usingAFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surfaceroughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness andinterfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa,3.75 MPa.m1/2 and 5.68 MPa@m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer,this DLC gradient film has better qualities as a solid lubricating coating.

  17. Ion implantation facility for precision doping of semiconductor devices

    International Nuclear Information System (INIS)

    Full text: We have developed an ion implantation system for application to: the nano-fabrication of p-type and n-type silicon devices; the fabrication of silicon nano-resistors; single phosphorus doping of silicon-based quantum computer devices; the doping of diamond-based devices; the study of ion beam physics of low energy ion interactions with solids. The system reliably delivers a wide range of ion spices, including B+, Te+, P+, C+, N+ and H+ with an energy up to 15 keV. The ion implanter operates in the mode of beam-on-demand control triggered by signals from the substrate and the beam current is adjustable in a wide range from ∼mA to a few ions per-second. The beam purity of each ion species is routinely monitored and analysed using micro-ERDA/PIXE/RBS. Copyright (2005) Australian Institute of Physics

  18. Plasma immersion ion implantation and deposition of DLC coating for modification of orthodontic magnets

    International Nuclear Information System (INIS)

    This study was aimed to use the plasma immersion ion implantation and deposition (PIII-D) technique to form diamond-like carbon (DLC) thin films on orthodontic magnets to solve the corrosion problem. To search for the optimal material modification effect, PIII-D conditions including gases, processing time, and pulsing mode were varied. The formation of DLC films was confirmed and characterized with Raman spectra. The intensity of the remnant magnetic field of the magnets and the hardness, adhesion and thickness of the thin films were then measured. A corrosion test was carried out using clinic dental fluid. Improved benefits including a satisfying hardness, adhesion, remnant magnetic strength and corrosion resistance of the DLC coating could be achieved by using a higher interrupting time ratio and shorter processing time.

  19. Plasma immersion ion implantation and deposition of DLC coating for modification of orthodontic magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wongsarat, W. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Bangkok 12120 (Thailand); Aukkaravittayapun, S. [National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Bangkok 12120 (Thailand); Jotikasthira, D. [Department of Odontology-Oral Pathology, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    This study was aimed to use the plasma immersion ion implantation and deposition (PIII-D) technique to form diamond-like carbon (DLC) thin films on orthodontic magnets to solve the corrosion problem. To search for the optimal material modification effect, PIII-D conditions including gases, processing time, and pulsing mode were varied. The formation of DLC films was confirmed and characterized with Raman spectra. The intensity of the remnant magnetic field of the magnets and the hardness, adhesion and thickness of the thin films were then measured. A corrosion test was carried out using clinic dental fluid. Improved benefits including a satisfying hardness, adhesion, remnant magnetic strength and corrosion resistance of the DLC coating could be achieved by using a higher interrupting time ratio and shorter processing time.

  20. New Superhard Carbon Phases Between Graphite and Diamond

    OpenAIRE

    He, Chaoyu; Sun, L. Z.; Zhang, C. X.; Zhang, K. W.; Peng, Xiangyang; Zhong, Jianxin

    2012-01-01

    Two new carbon allotropes (H-carbon and S-carbon) are proposed, as possible candidates for the intermediate superhard phases between graphite and diamond obtained in the process of cold compressing graphite, based on the results of first-principles calculations. Both H-carbon and S-carbon are more stable than previously proposed M-carbon and W-carbon and their bulk modulus are comparable to that of diamond. H-carbon is an indirect-band-gap semiconductor with a gap of 4.459 eV and S-carbon is ...

  1. Effects of N+ ion implantation into cubic BN film for tribological usages

    International Nuclear Information System (INIS)

    Cubic boron nitride (c-BN) film was deposited onto a silicon substrate by means of the magnetically enhanced ion-plating method developed by the authors, and ion implantation was performed as a post-treatment using N+ under various conditions. In this study, the crystal structure and tribological properties against diamond of the c-BN film treated by ion implantation were investigated. The results showed that implantation depth increased with an increase in implanting energy even on this c-BN, and it was found that ion damage to the c-BN phase was less when the dosage fell below 8 x 1015 ions cm-2. It was also found that ion implantation was effective in decreasing the friction coefficient when the treated film was contacted with diamond. (orig.)

  2. Annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    The newer uses of ion implantation require a higher dose rate. This has led to the introduction of high beam current implanters; the wafers move in front of a stationary beam to give a scanning effect. This can lead to non-uniform heating of the wafer. Variations in the sheet resistance of the layers can be very non-uniform following thermal annealing. Non-uniformity in the effective doping both over a single wafer and from one wafer to another, can affect the usefulness of ion implantation in high dose rate applications. Experiments to determine the extent of non-uniformity in sheet resistance, and to see if it is correlated to the annealing scheme have been carried out. Details of the implantation parameters are given. It was found that best results were obtained when layers were annealed at the maximum possible temperature. For arsenic, phosphorus and antimony layers, improvements were observed up to 12000C and boron up to 9500C. Usually, it is best to heat the layer directly to the maximum temperature to produce the most uniform layer; with phosphorus layers however it is better to pre-heat to 10500C. (U.K.)

  3. Diamond-like carbon coated ultracold neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Heule, S. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland) and Physik-Institut der Universitaet Zuerich (Switzerland)]. E-mail: stefan.heule@psi.ch; Atchison, F. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Daum, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Foelske, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Henneck, R. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Kasprzak, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Stefan Meyer Institut fuer subatomare Physik, Austrian Academy of Sciences, Vienna (Austria); Kirch, K. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Knecht, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Physik-Institut der Universitaet Zuerich (Switzerland); Kuzniak, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Jagellonian University, Cracow (Poland); Lippert, T. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Pichlmaier, A. [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Straumann, U. [Physik-Institut der Universitaet Zuerich (Switzerland)

    2007-07-31

    It has been shown recently that diamond-like carbon (DLC) with a sp{sup 3} fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp{sup 3} fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate.

  4. Diamond-like carbon for data and beer storage

    Directory of Open Access Journals (Sweden)

    Cinzia Casiraghi

    2007-01-01

    Full Text Available Carbon is a very versatile element that can crystallize in the forms of diamond or graphite. There are many noncrystalline carbons, known as amorphous carbons. An amorphous carbon with a high fraction of diamond-like (sp3 bonds is named diamond-like carbon (DLC. Unlike diamond, DLC can be deposited at room temperature. Furthermore, its properties can be tuned by changing the sp3 content, the organization of the sp2 sites, and the hydrogen content. This makes DLC ideal for a variety of different applications. We review the use of ultrathin DLC films for ultrahigh-density data storage in magnetic and optical disks and ultralong beer storage in plastic bottles.

  5. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2015-12-07

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing

  6. Novel phase of carbon, ferromagnetism, and conversion into diamond

    Science.gov (United States)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-12-01

    We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp3 (75%-85%) with the rest being threefold sp2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed

  7. Mantle Degassing and Diamond Genesis:A Carbon Isotope Perspective

    Institute of Scientific and Technical Information of China (English)

    郑永飞

    1994-01-01

    The effect of Co2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation.Assuming the δ13 C value of -5‰ for the mantle,the outgassing of CO2 can result in the large negative δ13 C values of diamond,whereas the outgassing of CH4 can drive the δ13C values of diamond in the positive direction.The theoretical expectations can be used to explain the full range of δ13 C values from-34.4‰5 to+5‰ observed for natural diamonds.It is possible that diamond formation was triggered by the degassing of Co2 and/or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.

  8. Morphological analysis and cell viability on diamond-like carbon films containing nanocrystalline diamond particles

    Science.gov (United States)

    Almeida, C. N.; Ramos, B. C.; Da-Silva, N. S.; Pacheco-Soares, C.; Trava-Airoldi, V. J.; Lobo, A. O.; Marciano, F. R.

    2013-06-01

    The coating of orthopedic prostheses with diamond like-carbon (DLC) has been actively studied in the past years, in order to improve mechanical, tribological properties and promote the material's biocompatibility. Recently, the incorporation of crystalline diamond nanoparticles into the DLC film has shown effective in combating electrochemical corrosion in acidic medias. This study examines the material's biocompatibility through testing by LDH release and MTT, on in vitro fibroblasts; using different concentrations of diamond nanoparticles incorporated into the DLC film. Propounding its potential use in orthopedics in order to increase the corrosion resistance of prostheses and improve their relationship with the biological environment.

  9. Raman spectra of electrochemically hydrogenated diamond like carbon surface

    OpenAIRE

    Biswas, Hari Shankar; Datta, Jagannath; Sen, Pintu; Ghosh, Uday Chand; Ray, Nihar Ranjan

    2013-01-01

    Raman spectroscopy has been employed to distinguish between the Raman spectrum of pristine hydrogenated diamond like carbon (PHDLC) and that of electrochemically hydrogenated diamond like carbon (ECHDLC). The enhancement of the background photoluminescence (PL) in the Raman spectrum and broadening of PL spectrum of ECHDLC are identified to be due to increase of sp3 C-H density onto the PHDLC surface, during novel electrochemical process of hydrogenation of sp2 C=C into sp3 C-H.

  10. Dislocation climb in copper after ion implantation

    International Nuclear Information System (INIS)

    At present, ion implantation is used widely for the modification of subsurface layers of metallic materials to improve the service characteristics of machine components and tools. The aim of this work was the experimental examination of the 'long-range effect' in coarse-grain copper in high-dose ion implantation. In this method, special attention is given to the preparation of specimens both for the case and for the examination by the method of electron microscopy and also to the ion implantation conditions

  11. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  12. Graphene diamond-like carbon films heterostructure

    Science.gov (United States)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ˜25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  13. Graphene diamond-like carbon films heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology, Electronic and Electrical Engineering Department, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  14. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  15. In vitro evaluation of diamond-like carbon coatings with a Si/SiC {sub x} interlayer on surgical NiTi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Yang, D.Z. [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2007-04-15

    Diamond-like carbon (DLC) coatings were produced with a Si/SiC {sub x} interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiC {sub x} interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiC {sub x} interlayer have high potential as protective coatings for biomedical NiTi materials.

  16. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  17. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  18. Modification of mechanical properties through ion implantation

    International Nuclear Information System (INIS)

    Fatigue, internal friction, and cavitation-erosion properties of plain steel, containing 0.18 wt.% carbon (AISI 1018), have been modified by implantation with nitrogen molecules of 150 KeV energy. It is suggested that these phenomena are related to the interactions of the implant with dislocations. Specifically, room temperature, high-cycle fatigue-lifetime can be significantly extended when the implanted specimens are aged for times sufficiently long to enable interstitial migration to and association with near-surface dislocations. Acoustically-induced cavitation-erosion behavior in distilled water at ambient temperature is also found to be improved by implantation. The role played by interstitial-dislocation association in improving these properties is examined with ultra-high sensitive internal friction and with scanning and transmission electron microscopy. Such experiments are aiding in an elucidation of the fate of the implanted nitrogen in body-centered cubic steels. These preliminary results indicate the potential applications of ion implantation for the improvement of surface-related mechanical properties. (author)

  19. Improving Sustainability of Ion Implant Modules

    Science.gov (United States)

    Mayer, Jim

    2011-01-01

    Semiconductor fabs have long been pressured to manage capital costs, reduce energy consumption and increasingly improve efforts to recycle and recover resources. Ion implant tools have been high-profile offenders on all three fronts. They draw such large volumes of air for heat dissipation and risk reduction that historically, they are the largest consumer of cleanroom air of any process tool—and develop energy usage and resource profiles to match. This paper presents a documented approach to reduce their energy consumption and dramatically downsize on-site facilities support for cleanroom air manufacture and abatement. The combination produces significant capital expenditure savings. The case entails applying SAGS Type 1 (sub-atmospheric gas systems) toxic gas packaging to enable engineering adaptations that deliver the energy savings and cost benefits without any reduction in environmental health and safety. The paper also summarizes benefits as they relate to reducing a fabs carbon emission footprint (and longer range advantages relative to potential cap and trade programs) with existing technology.

  20. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny;

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...

  1. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  2. Panel 2 - properties of diamond and diamond-like-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.; Clausing, R.E. [Oak Ridge National Lab., TN (United States); Ajayi, O.O.; Liu, Y.Y.; Purohit, A. [Argonne National Lab., IL (United States); Bartelt, P.F. [Deere & Co., Moline, IL (United States); Baughman, R.H. [Allied Signal, Morristown, NJ (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Cooper, C.V. [United Technologies Research Center, East Hartford, CT (United States); Dugger, M.T. [Sandia National Laboratories, Albuquerque, NM (United States); Freedman, A. [Aerodyne Research, Inc., Billerica, MA (United States); Larsen-Basse, J. [National Science Foundation, Washington, DC (United States); McGuire, N.R. [Caterpillar, Peoria, IL (United States); Messier, R.F. [Pennsylvania State Univ., University Park (United States); Noble, G.L.; Ostrowki, M.H. [John Crane, Inc., Morton Grove, IL (United States); Sartwell, B.D. [Naval Research Lab., Washington, DC (United States); Wei, R. [Colorado State Univ., Fort Collins (United States)

    1993-01-01

    This panel attempted to identify and prioritize research and development needs in determining the physical, mechanical and chemical properties of diamond and diamond-like-carbon films (D/DLCF). Three specific goals were established. They were: (1) To identify problem areas which produce concern and require a better knowledge of D/DLCF properties. (2) To identify and prioritize key properties of D/DLCF to promote transportation applications. (3) To identify needs for improvement in properties-measurement methods. Each of these goals is addressed subsequently.

  3. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 1013/cm2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  4. Stoichiometric disturbances in ion implanted silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, E.; Monserrat, J.; Rebollo, J.; Flores, D.; Jorda, X. [Centro Nacional de Microelectronica, Barcelona (Spain); Locatelli, M.L.; Ottaviani, L. [CEGELY ECPA, INSA de Lyon, Villeurbanne (France)

    1998-08-01

    Monte Carlo simulations of stoichiometric disturbances induced by ion implantation into 6H-SiC single crystal are presented. By following the recoils trajectories during the implantation simulation it is possible to construct C and Si related point defects distributions, which in turns give the post implantation stoichiometry of the SiC crystal. The results show net concentrations of ``stable`` point defects and stoichiometric disturbances of the order of the chemical concentration of the implanted impurity. This phenomenon could play an important role during subsequent annealing steps. Some practical examples of ion implantation are simulated and discussed. (orig.) 4 refs.

  5. HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix

    Science.gov (United States)

    Kis, Viktoria K.; Shumilova, Tatyana; Masaitis, Victor

    2016-07-01

    High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp 2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.

  6. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    Science.gov (United States)

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  7. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  8. Single atom devices by ion implantation

    International Nuclear Information System (INIS)

    To expand the capabilities of semiconductor devices for new functions exploiting the quantum states of single donors or other impurity atoms requires a deterministic fabrication method. Ion implantation is a standard tool of the semiconductor industry and we have developed pathways to deterministic ion implantation to address this challenge. Although ion straggling limits the precision with which atoms can be positioned, for single atom devices it is possible to use post-implantation techniques to locate favourably placed atoms in devices for control and readout. However, large-scale devices will require improved precision. We examine here how the method of ion beam induced charge, already demonstrated for the deterministic ion implantation of 14 keV P donor atoms in silicon, can be used to implant a non-Poisson distribution of ions in silicon. Further, we demonstrate the method can be developed to higher precision by the incorporation of new deterministic ion implantation strategies that employ on-chip detectors with internal charge gain. In a silicon device we show a pulse height spectrum for 14 keV P ion impact that shows an internal gain of 3 that has the potential of allowing deterministic implantation of sub-14 keV P ions with reduced straggling. (paper)

  9. Ion implantation of silicon nitride ball bearings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M. [Oak Ridge National Lab., TN (United States); Miner, J.R. [United Technologies, Pratt and Whitney, West Palm Beach, FL (United States)

    1996-09-01

    Hypothesis for ion implantation effect was that stress concentrations reflected into the bulk due to topography such as polishing imperfections, texture in the race, or transferred material, might be reduced due to surface amorphization. 42 control samples were tested to an intended runout period of 60 h. Six ion implanted balls were tested to an extended period of 150 h. Accelerated testing was done in a V groove so that wear was on two narrow wear tracks. Rutherford backscattering, XRPS, profilometry, optical microscopy, nanoindentation hardness, and white light interferometry were used. The balls were implanted with 150-keV C ions at fluence 1.1x10{sup 17}/cm{sup 2}. The samples had preexisting surface defects (C-cracks), so the failure rate of the control group was unacceptable. None of the ion-implanted samples failed in 150 h of testing. Probability of randomly selecting 6 samples from the control group that would perform this well is about 5%, so there is good probability that ion implantation improved performance. Possible reasons are discussed. Wear tracks, microstructure, and impurity content were studied in possible relation to C-cracks.

  10. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C1, C2, and C4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  11. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han-Shen; Endrino, Jose L.; Anders, Andre

    2008-07-10

    In this study we have deposited silver-containing hydrogenated and hydrogen-free diamond-like carbon (DLC) nanocomposite thin films by plasma immersion ion implantation-deposition methods. The surface and nano-tribological characteristics were studied by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and nano-scratching experiments. The silver doping was found to have no measurable effect on sp2-sp3 hybridization of the hydrogenated DLC matrix and only a slight effect on the hydrogen-free DLC matrix. The surface topography was analyzed by surface imaging. High- and low-order roughness determined by AFM characterization was correlated to the DLC growth mechanism and revealed the smoothing effect of silver. The nano-tribological characteristics were explained in terms of friction mechanisms and mechanical properties in correlation to the surface characteristics. It was discovered that the adhesion friction was the dominant friction mechanism; the adhesion force between the scratching tip and DLC surface was decreased by hydrogenation and increased by silver doping.

  12. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  13. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  14. Surface microanalytical studies of nitrogen ion-implanted steel

    Science.gov (United States)

    Dodd, Charles G.; Meeker, G. P.; Baumann, Scott M.; Norberg, James C.; Legg, Keith O.

    1985-03-01

    Five types of industrial steels, 1018, 52100, M-2, 440C, and 304 were ion implanted with nitrogen and subjected to surface microanalysis by three independent surface techniques: AES, RBS, and SIMS. The results provided understanding for earlier observations of the properties of various types of steel after nitrogen implantation. The steels that retained the most nitrogen and that have been reported to benefit the most in improved tribological properties from ion implantation were ferritic carbon and austenitic stainless steels, such as soft 1018 and 304, respectively. Heat-treated martensitic carbon steels such as 52100 and M-2 tool steel were found to retain the least nitrogen, and they have been reported to benefit less from nitrogen implantation; however, the interaction of transition metal carbides in M-2 with nitrogen has not been clarified. The data showed that 440C steel retained as much nitrogen as 1018 and 304, but treatment benefits may be limited to improvements in properties related to toughness and impact resistance.

  15. Improving electric contacts by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shiru; Zhang Ying; Zheng Tiampi

    1989-01-01

    This article studies the improvement of electric contacts by ion implantation. 1 x 10/sup 17/ cm/sup -2/ of N/sup +/ and N/sub 2//sup +/ was implanted into two kinds of electric contacts, then a make-and-break test was made with the low voltage electrical apparatus. The weight loss of the contacts, temperature rise, contact resistance and transfer of material between the two contacts were measured. The contacts implanted by ions have improved electrical erosion properties.

  16. Radioactive ion implantation of thermoplastic elastomers

    OpenAIRE

    Borcea, Veronica

    2008-01-01

    The radioactive ion implantation wear measuring method (RII) has been used for many years as a tool to make highly sensitive real-time in-situ measurements of wear and corrosion in metallic or ceramic materials. The method consists of the controlled implantation of radioactive ions of limited decay time in a thin layer at the surface of the material. The progressive abrasion of the material results in a decline in radioactivity which is followed to monitor material losses. The application ...

  17. Preparation and Thermal Characterization of Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; Yu Jun; WANG Jing; LIU Gui-Chang

    2009-01-01

    Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.

  18. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  19. Diamond nanospherulite: A novel material produced at carbon-water interface by pulsed-laser ablation

    Institute of Scientific and Technical Information of China (English)

    王育煌; 黄群健; 陈忠; 黄荣彬; 郑兰荪

    1997-01-01

    Formation of carbon nanoparticles with perfectly spherical.shape and diamond structure (diamond nanospherulite) by laser-ablating a variety of carbon samples in water is reported for the first time The studies reveal that molten carbon nanoparticles generated by laser ablation are quenched directly by water and end up as diamond nanospherulites,possibly due to the high pressure arising from surface tension and the high stability resulting from termination of dangling bonds with hydrogen atoms.

  20. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  1. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Science.gov (United States)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  2. Synthesis of copper nanoparticles in polycarbonate by ion implantation

    Indian Academy of Sciences (India)

    Annu Sharma; Suman Bahniwal; Sanjeev Aggarwal; S Chopra; D Kanjilal

    2011-07-01

    Copper nanoparticles have been synthesized in polycarbonate by 75 KeV Cu– ion implantation with various doses ranging from 6.4 × 1015 to 1.6 × 1017 ions/cm2 with a beam current density of 800 nA/cm2. The composites formed were structurally characterized using Ultraviolet-Visible (UV-Visible) absorption spectroscopy. The appearance of particle plasmon resonance peak, characteristic of copper nanoparticles at 603 nm in absorption spectra of polycarbonate implanted to a dose of 1.6 × 1017 ions/cm2, indicates towards the formation of copper nanoparticles in polycarbonate. Transmission electron microscopy further confirms the formation of copper nanoparticles having size ∼ 3.15 nm. The formation of copper nanoparticles in the layers carbonized by Cu– implantation has been discussed. The synthesized copper-polycarbonate nanocomposite has been found to be more conducting than polycarbonate as ascertained using current–voltage characteristics.

  3. Properties of nitrogen containing diamond-like carbon films

    International Nuclear Information System (INIS)

    Optical and mechanical properties of nitrogen containing diamond- like carbon (NC-DLC) films deposited by RF plasma decomposition of CH4:H2:N2 gas mixture were investigated. Nitrogen was incorporated into DLC films both during film growth and after deposition of film by implantation of nitrogen ions. It was shown that both optical and mechanical properties of the films strongly depend on nitrogen content in the films. In some cases the mechanical properties of nitrogen implanted films were improved in comparison with unimplanted samples. (author). 7 refs., 2 figs

  4. Tribocorrosion of Diamond Like Carbon (DLC) coatings for biomedical applications

    OpenAIRE

    Sanchez Adam, Jorge

    2015-01-01

    Tribocorrosion has arisen as one of the most important material degradation processes in biomedical applications; thus, the improvement of the materials used in hip or knee prosthesis is very relevant. The aim of this project is to test the outstanding properties of the diamond like carbon material as a coating; a comparison between CoCrMo with several types of DLC as ta-C, a-C:H and metal doped with Ti and Si. Also different deposition methods will be compared like Physical Vapour Deposit...

  5. Method and apparatus for making diamond-like carbon films

    Science.gov (United States)

    Pern, Fu-Jann; Touryan, Kenell J.; Panosyan, Zhozef Retevos; Gippius, Aleksey Alekseyevich

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  6. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  7. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  8. PLEPS study of ions implanted RAFM steels

    Science.gov (United States)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  9. Ion implantations of oxide dispersion strengthened steels

    Science.gov (United States)

    Sojak, S.; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-01

    This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors - Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 1017 ions/cm2. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  10. Plasma immersion ion implantation for silicon processing

    Science.gov (United States)

    Yankov, Rossen A.; Mändl, Stephan

    2001-04-01

    Plasma Immersion Ion Implantation (PIII) is a technology which is currently widely investigated as an alternative to conventional beam line implantation for ultrashallow doping beyond the 0.15 m technology. However, there are several other application areas in modern semiconductor processing. In this paper a detailed discussion of the PIII process for semiconductors and of actual as well as future applications is given. Besides the well known advantages of PIII - fast process, implantation of the whole surface, low cost of ownership - several peculiarities - like spread of the implantation energy due to finite rise time or collisions, no mass separation, high secondary electron emission - must be mentioned. However, they can be overcome by adjusting the system and the process parameters. Considering the applications, ultrashallow junction formation by PIII is an established industrial process, whereas SIMOX and Smart-Cut by oxygen and hydrogen implantation are current topics between research and introduction into industry. Further applications of PIII, of which some already are research topics and some are only investigated by conventional ion implantation, include seeding for metal deposition, gettering of metal impurities, etch stop layers and helium implantation for localized lifetime control.

  11. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    Science.gov (United States)

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime. PMID:24224845

  12. Paramagnetic defects in multistage ion-implanted polyamide films

    International Nuclear Information System (INIS)

    The growing interest in the recent years in the ion implantation of polymer materials is due to the possibility of its using as a new materials for functional electronic and optic elements fabrication. The last investigations show that the ion implantation to polymer films allows to form a buried conductive layers and opens up the possibility for transistor-like devices creation. Therefore the necessity to estimate the correlation between the polymer structure transformation and optimal implantation regimes exist. Thin (40-50 μm) two-layer polymer films consisted of polyethylene and polyamide-6 are investigated. Implantation with boron ions to doses of 3*1016 cm-2 carried out into polyamide layer in multistage regimes with energies of 60, 80 and 100 keV. For first group of samples energies are increased from 60 to 100 keV for each subsequent stage. For second one - energies are decreased from stage to stage. The thick of radiation-damaged layer are estimated from TRIM-code calculation and experimental results on the boron ions ranges and amount of 500 nm for energy of 100 keV, 430 nm for 80 keV and 350 nm for 60 keV. It was found that the multistage implantation performed under conditions where the implantation energy increases from step to step results in the decrease of the paramagnetic centres concentration in the implanted layer and narrowing of the ESR linewidth. It can be inferred that under these implantation conditions the lattice-order of the polymer layer which ions pass repeatedly occurs. This restructurization being accompanied with the compensation of the terminated carbon bonds and strong exchange interaction between π-electrons in the implanted polymer. By contrast, the decrease in the ion energy during the implantation leads to the progressive accumulation of the paramagnetic centres in the implanted layers, i.e. the radicals produced in the earlier implantation steps do not exhibit serious degradation during the subsequent implantation. The

  13. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  14. Effects of ion implantation on the hardness and friction behaviour of soda-lime silica glass

    International Nuclear Information System (INIS)

    Ion implantation-induced changes in the near-surface mechanical properties of soda-lime silica glass have been investigated by indentation and scratch testing and have been found to be more complicated than changes in the corresponding properties of crystalline ceramic materials. Argon, nitrogen, carbon and potassium ions were used with energies in the range 45-300 keV. Hardness and scratch friction tests were performed under ambient laboratory conditions. At low doses, a decrease in hardness and an increase in both friction and surface stress are observed which are attributed to the electronic damage produced by ion implantation. At higher doses, the hardness increases again and a maximum is produced similar to the behaviour observed for crystalline materials. Similarly there is found to be a second stress and friction peak at this dose. This behaviour is shown to be due to the build-up of displacement damage produced by ion implantation and is thus very similar to the radiation hardening (and eventual amorphization) behaviour of ion-implanted crystalline ceramics. For glass, ''amorphization'' probably corresponds to some change in the existing amorphous state which, in turn, is responsible for the reduction in hardness, stress and friction at the highest doses. (author)

  15. Studying of ion implantation effect on the biology in China

    International Nuclear Information System (INIS)

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  16. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  17. Simulation of ion implantation for ULSI technology

    CERN Document Server

    Hoessinger, A

    2000-01-01

    approximately constant an almost linear performance gain could be achieved by the parallelization method, even if a fairly slow network connects the workstations. Finally, the developed Monte-Carlo ion implantation simulator is applied to a set of examples making use of some of the special features of the simulator. Additionally a small operating manual for the simulator is included in the appendix. been developed and implemented. These methods enable to treat the implantation of molecular ions and atom clusters and thus the implantation of BF, which is a widely used for the doping with boron atoms. By providing two methods for the simulation of molecular ions the functionality of the simulator can be adapted to the problem requirements. While the simplified molecular method needs less computation time, the full molecular method provides more precise results. Another part of this work was the design and the implementation of a point response interface method. It allows to interface Monte-Carlo simulation resu...

  18. Ion implantation of boron in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.S.

    1985-05-01

    Ion implantation of /sup 11/B/sup +/ into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of /sup 11/B/sup +/ into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10/sup 11//cm/sup 2/ to 1 x 10/sup 14//cm/sup 2/) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses (<1 x 10/sup 12//cm/sup 2/). Three damage related hole traps are produced by ion implantation of /sup 11/B/sup +/. Two of these hole traps have also been observed in ..gamma..-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures (<300/sup 0/C). Boron, from room temperature implantation of BF/sub 2//sup +/ into Ge, is not substitutionally active prior to a post implant annealing step of 250/sup 0/C for 30 minutes. After annealing additional shallow acceptors are observed in BF/sub 2//sup +/ implanted samples which may be due to fluorine or flourine related complexes which are electrically active.

  19. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  20. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    Science.gov (United States)

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  1. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  2. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T

    2002-01-01

    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  3. Development of Diamond-like Carbon Fibre Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口勝美; 洞口巌; 竹内雅之

    2004-01-01

    A unique diamond-like carbon (DLC) grinding wheel was developed, in which the DLC fibres were made by rolling Al sheets coated with DLC films and aligned normally to the grinding wheel surface by laminating Al sheets together with DLC fibres. In this paper, the formation process of DLC fibres and the fabrication process of a DLC fibre wheel were investigated. Many grinding experiments were also carried out on a precision NC plane milling machine using a newly developed DLC wheel. Grinding of specimens of silicon wafers, optical glasses, quartz, granites and hardened die steel SKD11 demonstrated the capabilities of nanometer surface finish. A smooth surface with a roughness value of Ra2.5nm (Ry26nm) was achieved.

  4. Cell attachment on diamond-like carbon coating

    Indian Academy of Sciences (India)

    D J Li; H Q Gu

    2002-02-01

    Preliminary results of diamond-like carbon (DLC) coating with its novel properties with no toxicity have caused a strong interest of commercial manufacturers of surgical implants. DLC coatings were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). It could be shown by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Raman spectroscopy that DLC coating prepared by 800 eV CH+ beam bombardment possessed a higher fraction of 3 bonds in the structure of mixed 3 + 2 bonding, resulting in a higher hydrophobicity. The results of the cell attachment tests indicated that DLC coatings exhibited low macrophage attachment and provided desirable surface for the normal cellular growth and morphology of the fibroblasts. At the same time, the number of both neutral granulocytes and platelets adhering to DLC coatings decreased significantly. These findings showed that DLC was a better coating with desirable tissue and blood compatibility.

  5. Plasma protein adsorption onto cell attachment controlled ion implanted collagen

    International Nuclear Information System (INIS)

    Ion implantation into collagen (Type I) coated inner surfaces of test tubes with a length of 50 mm and inner diameter of 2 and 3 mm were performed to develop hybrid type small-diameter artificial vascular grafts. He+ ion implanted collagen coated grafts with a fluence of 1x1014 ions/cm2 replacing femoral arteries exhibited excellent graft patency. To obtain information about the relationship between plasma protein adsorption and antithrombogenicity of ion implanted collagen surfaces, protein adsorption measurements, platelet adhesion test, and animal study were performed. The amount of fibrinogen, fibronectin and albumin showed minimum value at a fluence of 1x1014 ions/cm2. The adsorption of fibrinogen and fibronectin to surfaces is known to promote the adhesion of platelets. The results indicated that antithrombogenicity of He+ ion-implanted collagen with a fluence of 1x1014 ions/cm2 was caused by the reduction of the amount of adsorbed proteins

  6. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  7. Industrial applications of ion implantation into metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  8. Ion-implanted GaAs slow wave monolithic structure

    International Nuclear Information System (INIS)

    The use of MeV ion-implantation for realization of a GaAs monolithically compatible device is demonstrated. Ion implants up to 6 MeV in energy are used employing Si and S atoms. The fabricated device is an electromagnetic slow wave microstrip-like structure designed for performance into the millimeter wave regime. Phase shift theta and insertion loss L measurements are performed for frequencies 2-18 GHz at room temperature. Comparison of the experimental ion-implanted device results to epitaxial device results indicates comparable electrical performance, with no more than a 30% reduction in theta but with an improvement in loss behavior, namely a L reduction up to 40%. These theta and L differences between the ion-implanted and epitaxial devices are attributed to differences in doping profiles. Theoretical modelling of theta characteristics produces agreement with experimental data to within a few percent. (author)

  9. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  10. /sup 252/Cf plasma desorption in ion implanted mica

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M. (Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse); Banifatemi, A.; Della-Negra, S.; Le Beyec, Y. (Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire)

    1983-05-12

    The potential of heavy-ion stimulated desorption of ions (HISD) for investigating ion implantation effects in insulators is outlined, and a very strong enhancement in HISD of ionized species from ion implanted mica is reported. This enhancement, which generates heavy-ion clusters up to mass approximately equal to 500 AMU, grows around a critical fluence of implanted ions, and originates from two distinct types of radiation damage defects.

  11. Characterisation of polystyrene coatings after plasma immersion ion implantation and adsorption of protein

    CERN Document Server

    Dekker, S; Steel, B; Bilek, M M M; McKenzie, D R; James, M

    2012-01-01

    A polystyrene film spun onto polished silicon substrates was implanted with either nitrogen or argon ions using plasma immersion ion implantation (PIII) and subsequently investigated by X-ray and neutron reflectometry, UV-VIS and FTIR ellipsometry, as well as by FTIR and Raman spectroscopy. The depth profile of the densified carbon structures resulting from the ion collision cascades in the polystyrene coating are clearly observed by both X-ray and neutron reflectometry. Argon ions produce a higher density modified layer at a shallower depth than nitrogen ions. The thickness measured for these graded layers agrees with the expected depths of ion implantation as calculated by SRIM. The sensitivity of X-ray and neutron reflectometry allows resolution of density and hydrogen content gradients within the graphitized layers. The treated layers were found to covalently immobilized protein directly from solution. The tropoelastin protein monolayers immobilized on the surface were characterized. Tropoelastin remained...

  12. Influence of Si ion implantation on structure and morphology of g-C3N4

    Science.gov (United States)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  13. Diamond-like carbon/epoxy low-friction coatings to replace electroplated chromium

    OpenAIRE

    Podgoric, S; Jones, Benjamin; Bulpett, R; Troisi, G.; Franks, J

    2009-01-01

    A series of layered structures based on epoxy-resins coated with diamond-like carbon (DLC) are examined as potential replacements for electroplated chromium in aerospace applications. Diamond-like carbon coatings can offer superior mechanical properties and tribological performance; however, in some applications high internal stresses and poor adhesion limit their practical use. A DLC / epoxy system is developed and studied utilising pin-on-disk testing, analysis with scanning electron micr...

  14. Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, O. E-mail: schaefer@mrs1.ukl.uni-freiburg.de; Lohrmann, C.; Winterer, J.; Kotter, E.; Langer, M

    2004-12-01

    A major consideration in the reduction of early stent thrombosis and in-stent restenosis is the improvement of biocompatibility of the devices. Diamond-like carbon is a novel material for coating stent surfaces in order to increase biocompatibility. The authors report on the endovascular treatment of two individuals with superficial femoral artery occlusions, using stents coated with diamond-like carbon. Technical and clinical success was achieved in both cases, with primary patency rates of 100% 12 months after intervention.

  15. Endovascular treatment of superficial femoral artery occlusive disease with stents coated with diamond-like carbon

    International Nuclear Information System (INIS)

    A major consideration in the reduction of early stent thrombosis and in-stent restenosis is the improvement of biocompatibility of the devices. Diamond-like carbon is a novel material for coating stent surfaces in order to increase biocompatibility. The authors report on the endovascular treatment of two individuals with superficial femoral artery occlusions, using stents coated with diamond-like carbon. Technical and clinical success was achieved in both cases, with primary patency rates of 100% 12 months after intervention

  16. Effect of Carbon Source with Different Graphitization Degrees on the Synthesis of Diamond

    Institute of Scientific and Technical Information of China (English)

    LIU Wan-Qiang; MA Hong-AN; LI Xiao-Lei; LINAG Zhong-Zhu; LIU Mi-Lan; LI Rui; JIA Xiao-Peng

    2007-01-01

    Using three kinds of graphites with different graphitization degrees as carbon source and Fe-Ni alloy powder as catalyst, the synthesis of diamond crystals is performed in a cubic anvil high-pressure and high-temperature apparatus (SPD-6×1200). Diamond crystals with perfect hexoctahedron shape are successfully synthesized at pressure from 5.0 to 5.5GPa and at temperature from 1570 to 1770K. The synthetic conditions, nucleation, morphology, inclusion and granularity of diamond crystals are studied. The temperature and pressure increase with the increase of the graphitization degree of graphite. The quantity of nucleation and granularity of diamonds decreases with the increase of graphitization degree of graphite under the same synthesis conditions. Moreover, according to the results of the Mossbauer spectrum, the composition of inclusions is mainly Fes C and Fe-Ni alloy phases in diamond crystals synthesized with three kinds of graphites.

  17. Nanometer structure and conductor mechanism of polymer modified by metal ion implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Ti, Cu and Si ion implanta-tion with a dose ranging from 1 × l016 to 2 x 1017 ions/cm2 using a metal vapor vacuum arc (MEVVA)source. The electrical properties of PET have been improved by metal ion implantation. The resistivityof implanted PET decreased obviously with an increase in ion dose. The results show that the conduc-tive behavior of a metal ion implanted sample is different from Si-implantation samples. In order to un-derstant the mechanism of electrical conduction, the structures of implanted layer were observed in de-tail by XRD and TEM. The nano carbon particles were dispersed in implanted PET. The nano metallicparticles were built up in metallic ion implanted layers with dose range from 1 × 1016 to 1 x 1017 ions/cm2. The nanometer metal net structure was formed in implanted layer when a dose of 2 x 1017ions/cm2 is reached. Anomalous fractal growths were observed. These surface structure changes revealedconducting mechanism evolution, lt is believed that the change would result in an improvement of theconductive properties. The conducting mechanism will be changed with increasing metal ion dose.

  18. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  19. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices. PMID:17285609

  20. The irradiation studies on diamond-like carbon films

    CERN Document Server

    LiuGuIang; Xie Er Qin

    2002-01-01

    Diamond-like carbon (DLC) films have been deposited on glass substrates using radio-frequency (r.f.) plasma deposition method. gamma-ray, ultraviolet (UV) ray and neutron beam were used to irradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were used to characterize the changing characteristics of SP sup 3 C-H bond and hydrogen content in the films due to the irradiations. It showed that, the damage degrees of the gamma-ray, UV ray and neutron beam on the SP sup 3 C-H bonds are different. Among them, the damage of gamma-ray on the SP sup 3 C-H bond is the weakest. When the irradiation dose of gamma-ray reaches 10x10 sup 4 Gy, the SP sup 3 C-H bond reduces about 50% in number. The square resistance of the films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of the films. Compared with that of the as-deposited one, the IR transmittance of the films irradiated by both gamma-ray and neutron beam is increased to some extent. By using the results on optical...

  1. Growth stress in tungsten carbide-diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  2. Synthesis of Boron-doped Diamond/Porous Ti Composite Materials——Effect of Carbon Concentration

    Institute of Scientific and Technical Information of China (English)

    MA Ming; CHANG Ming; LI Xiaowei

    2012-01-01

    Highly boron-doped diamond films were deposited on porous titanium substrates by hot filament chemical vapor deposition technique.The morphology variation of highly boron-doped diamond films grown on porous titanium substrates was investigated,and the effects of carbon concentration on nucleation density and diamond growth were also studied.The continuous change of surface morphology and structure of diamond film were characterized by scanning electron microscopy.The structures of diamond film and interlayer were analyzed by X-ray diffraction.The quality of boron-doped diamond film was confirmed by visible Raman spectroscopy.The experimental results reveal that surface morphology and quality of boron-doped diamond films are various due to the change of carbon concentration.The thickness of intermediate layer decreases with the carbon concentration increasing.

  3. Experimental Investigation and Numerical Simulation on Interfacial Carbon Diffusion of Diamond Tool and Ferrous Metals

    Institute of Scientific and Technical Information of China (English)

    ZOU Lai; ZHOU Ming

    2016-01-01

    We numerically simulated and experimentally studied the interfacial carbon diffusion between diamond tool and workpiece materials. A diffusion model with respect to carbon atoms of diamond tool penetrating into chips and machined surface was established. The numerical simulation results of the diffusion process reveal that the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance, the diffusion time, and the original carbon concentration of the work material. In addition, diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results. The micro-morphology of the chips is detected by scanning electron microscopy. Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface. The experimental results of this work are of beneift to a better understanding on the diffusion wear mechanism in single crystal diamond cutting of ferrous metals. Moreover, the experimental results show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting tool compared with conventional turning.

  4. Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

    Science.gov (United States)

    Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S

    2012-07-01

    Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively. PMID:22966673

  5. Ion implantation for manufacturing bent and periodically bent crystals

    International Nuclear Information System (INIS)

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams

  6. Accelerating degradation rate of pure iron by zinc ion implantation.

    Science.gov (United States)

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  7. Emission Characteristics of Ion-Implanted Silicon Emitter Tips

    Science.gov (United States)

    Hirano, Takayuki; Kanemaru, Seigo; Tanoue, Hisao; Itoh, Junji

    1995-12-01

    An ion implantation technique has been applied to control the energy band structure of Si field-emitter tip surface. B+ or P+ ions were implanted after fabrication of a gated emitter structure. No changes in emitter structure were observed after ion implantation and successive annealing at 800° C. Current-voltage ( I-V ) characteristics of n, p, p/n and n/p emitter tips were measured: p/n indicates an n-type tip with B+ ions implanted into the tip surface. It was found from the experimental results that n and p/n tips had I-V characteristics in agreement with the Fowler-Nordheim theory. The p and n/p tips, on the other hand, exhibited a current saturation property in high electric field. The present saturation mechanism is explained by considering the energy band structure of the tip surface.

  8. Ion implantation for manufacturing bent and periodically bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it; Mazzolari, Andrea; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara, Italy and INFN, Section of Ferrara (Italy); Mattei, Giovanni, E-mail: giovanni.mattei@unipd.it; Scian, Carlo [Department of Physics and Astronomy Galileo Galilei, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Lanzoni, Luca [Dipertimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44, 47890 San Marino Città (San Marino)

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  9. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  10. Rolling contact fatigue life of ion-implanted GCr15

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents an experimental research into the rooling contact fatigue life of GCr15 steel with Tix N, TiX N + Ag and Tix N + DLC layers ion-implanted using the plasma ion-implantation technology on a ball-rod style high-speed con tact fatigue tester, and concludes with test results that the fatigue life increases to varying degrees with Tix N, Tix N + Ag, and Tix N + DLC layers implanted, and increases 1.8 times with Tix N + Ag layer implanted, hairline cracks grow continuously into fatigue pits under the action of shear stress in the superficial layer of material, and ion-implantation acts to prevent initiation of cracks and slow down propagation of cracks.

  11. Effects of ion implantation on the abrasive wear of WC-Co

    International Nuclear Information System (INIS)

    An explanation of the improved abrasive wear resistance of ion-implanted WC-Co components has been sought. X-ray analysis is reported of scratches produced on polished implanted and non-implanted WC-Co surfaces by a single pass scratch test. It can be inferred from the results that extrusion of cobalt from a WC-Co surface under the stress of an abrading diamond is easier in the non-implanted than in the implanted case; this is the first stage of the abrasion wear process. Transmission electron diffraction of a WC-Co foil, before and after implantation by nitrogen ions, indicated the formation of Co2N microprecipitates during implantation. Precipitation hardening, hindering cobalt extrusion, is offered therefore as the explanation of the improved service life of the components. (U.K.)

  12. Friction of diamond-like carbon films in different atmospheres

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films constitute a class of new materials with a wide range of compositions, properties, and performance. In particular, the tribological properties of these films are rather intriguing and can be strongly influenced by the test conditions and environment. In this paper, we performed a series of model experiments in high vacuum and with various added gases to elucidate the influence of different test environments on the tribological behavior of three DLC films. Specifically, we studied the behavior of a hydrogen-free film produced by a cathodic arc process and two highly hydrogenated films produced by plasma-enhanced chemical-vapor deposition. Flats and balls used in our experiments were coated with DLC and tested in a pin-on-disc machine under a load of 1 N and at constant rotational frequency. With a low background pressure, in the 10(sup -6) Pa range, the highly hydrogenated films exhibited a friction coefficient of less than 0.01, whereas the hydrogen-free film gave a friction coefficient of approximately 0.6. Adding oxygen or hydrogen to the experimental environment changed the friction to some extent. However, admission of water vapor into the test chamber caused large changes: the friction coefficient decreased drastically for the hydrogen-free DLC film whereas it increased a bit for one of the highly hydrogenated films. These results indicate that water molecules play a prominent role in the frictional behavior of DLC films-most notably for hydrogen-free films but also for highly hydrogenated films

  13. Effect of ion implantation on apple wine yeast

    International Nuclear Information System (INIS)

    The wild type apple wine yeast Y02 was treated by ion implantation with the dose of 8 x 1015 ion/cm2. As results, a special mutant strain, IONII-11 dry, was obtained. The morphology characters, partial biochemistry characters, mycelium protein of the mutant strain were distinctively changed compared with original strain Y02. After the fermentation test ,the apple wine producing rate of the mutant strain increased 22.4% compared with original strain. These results showed that ion implantation was an effective method for mutagenesis

  14. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  15. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  16. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  17. Semiconductor applications of plasma immersion ion implantation technology

    Indian Academy of Sciences (India)

    Mukesh Kumar; Rajkumar; Dinesh Kumar; P J George

    2002-11-01

    Many semiconductor integrated circuit manufacturing processes require high dose of implantation at very low energies. Conventional beam line ion implantation system suffers from low beam current at low energies, therefore, cannot be used economically for high dose applications. Plasma immersion ion implantation (PIII) is emerging as a potential technique for such implantations. This method offers high dose rate irrespective of implantation energy. In the present study nitrogen ions were implanted using PIII in order to modify the properties of silicon and some refractory metal films. Oxidation behaviour of silicon was observed for different implantation doses. Diffusion barrier properties of refractory barrier metals were studied for copper metallization.

  18. Multi-energy ion implantation from high-intensity laser

    Directory of Open Access Journals (Sweden)

    Cutroneo Mariapompea

    2016-06-01

    Full Text Available The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high energy increasing the ion charge state. The accelerated ions are emitted with the high directivity, depending on the ion charge state and ion mass, along the normal to the target surface. The ion fluencies depend on the ablated mass by laser, indeed it is low for thin targets. Ions accelerated from plasma can be implanted on different substrates such as Si crystals, glassy-carbon and polymers at different fluences. The ion dose increment of implanted substrates is obtainable with repetitive laser shots and with repetitive plasma emissions. Ion beam analytical methods (IBA, such as Rutherford backscattering spectroscopy (RBS, elastic recoil detection analysis (ERDA and proton-induced X-ray emission (PIXE can be employed to analyse the implanted species in the substrates. Such analyses represent ‘off-line’ methods to extrapolate and to character the plasma ion stream emission as well as to investigate the chemical and physical modifications of the implanted surface. The multi-energy and species ion implantation from plasma, at high fluency, changes the physical and chemical properties of the implanted substrates, in fact, many parameters, such as morphology, hardness, optical and mechanical properties, wetting ability and nanostructure generation may be modified through the thermal-assisted implantation by multi-energy ions from laser-generated plasma.

  19. Diamond and diamondlike carbon as wear-resistant, self-lubricating coatings for silicon nitride

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1995-01-01

    Recent work on the friction and wear properties of as-deposited fine-grain diamond, polished coarse-grain diamond, and as-deposited diamondlike carbon (DLC) films in humid air at a relative humidity of approximately 40 percent and in dry nitrogen is reviewed. Two types of chemical vapor deposition (CVD) processes are used to deposit diamond films on silicon nitride (Si3N4) substrates: microwave-plasma and hot-filament. Ion beams are used to deposit DLC films of Si3N4 substrates. The diamond and DLC films in sliding contact with hemispherical bare Si3N4 pins have low steady-state coefficients of friction (less than 0.2) and low wear rates (less than 10(exp -7) mm(exp 2)/N-m), and thus, can be used effectively as wear-resistant, self-lubricating coatings for Si3N4 in the aforementioned two environments.

  20. Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Hu Mei-Hua; Li Shang-Sheng; Ma Hong-An; Su Tai-Chao; Li Xiao-Lei; Hu Qiang; Jia Xiao-Peng

    2012-01-01

    Large diamond crystals were successfully synthesized by a FeNi-C system using the temperature gradient method under high-pressure high-temperature conditions.The assembly of the growth cell was improved and the growth process of diamond was investigated.Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent.The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature.Moreover,the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal.This work is helpful for understanding the growth mechanism of diamond.

  1. Deposition of DLC Coating on Biomedical TiNi Alloys by Plasma Based Ion Implantation to Improve Surface Properties

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Diamond-like carbon ( DLC ) -films were successfully deposited on Ti- 50.8at% Ni using plasma based ion implantation (PBII) technique. The influence of the pulsed negative bias voltage applied to the substrate from 12 kV to 40 kV on the microstructure, nano- indentation hardness and Young' s modulus, the surface characteristics and corrosion resistant property as well as hemocompatibility were investigated. The experimental results showed that C 1 s peak depended heavily on the bias voltage. With the increase of bias voltage , the ratio of sp2 / sp3 -first decreased, renching a minimum value at 20 kV, and then increased. The DLC coating deposited at20 kV showed the highest hardness and elastic modulus values as a result of lower sp2 / sp3 ratio. The RMS values first decreased from 7.202 nm( 12 kV) to 5.279 nm(20 kV), and then increased to 11.449 nm(30 kV) and7.060 nm(40 kV). The uncoated TiNi alloy showed severe pitting corrosion, due to the presence of Cl-ions in the solution. On the contrary, the DLC coated sample showed very little pitting corrosion and behaved better corrosion resistant property especially for the specimens deposited at 20 kV bias voltages. The platelet adhesion test show that the hemocompatibility of DLC coated TiNi alloy is much better than that of bare TiNi alloy, and the hemocompatibility performauce of DLC coated TiNi alloy deposited at 20 kV is superior to that of other coated specimens.

  2. Plasma immersion ion implantation. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The bibliography contains citations concerning plasma immersion ion implantation (PIII) and equipment. PIII is a new technique to implant plasma ions into materials for surface modification and treatment. Topics include plasma nitriding, semiconductor doping, ion energy distribution, ion dose, pulsed plasma, metal plasma, and defect passivation. References also review applications in semiconductor device and integrated circuit manufacture, silicon material fabrication, aerospace bearings, carbon coatings on metals, and ceramic coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  4. Software for goniometer control in the Triple Ion Implantation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Allen, W.R.

    1994-02-01

    A computer program is described tat controls the goniometer employed in the ion scattering chamber of the Triple Ion Implantation Facility (TIF) in the Metals and Ceramics Division at Oak Ridge National Laboratory. Details of goniometer operation and its incorporation into the ion scattering setup specific to the TIF are also discussed.

  5. Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes

    NARCIS (Netherlands)

    Dubois, Philippe; Rosset, Samuel; Koster, Sander; Stauffer, Johann; Mikhailov, Serguei; Dadras, Massoud; de Rooij, Nico-F.; Shea, Herbert

    2006-01-01

    We report on the first successfully microfabricated and tested ion implanted dielectric electroactive polymer (DEAP) actuators. Dielectric EAP (DEAP) actuators combine exceptionally high energy-density with large amplitude displacements [S. Ashley, Artificial muscles, Sci. Am. 289 (2003) 52-59: R. P

  6. Cathodoluminescence characterization of ion implanted GaAs

    Science.gov (United States)

    Cone, M. L.

    1980-03-01

    The unique properties of GaAs make it possible to construct integrated circuit devices that are impossible in Si. The Air Force Avionics Laboratory/AADR has been developing this technology for a number of years. The difficulty of introducing dopants by diffusion has lead ion implantation to play an increasing role in the fabrication process. The present production technique for high performance devices is to fabricate large quantities and select those few that meet the desired specifications. Having a nondestructive technique that can be used to characterize the implantation process during fabrication of the device so as to reject faulty device structures can save valuable time as well as money. Depth-resolved cathodoluminescence is a process that can be used for this purpose. This research develops and verifies a model of cathodoluminescence in ion implanted GaAs. This model can now be used as a tool for further study of ion implanted GaAs. This is the first step in developing cathodoluminescence as a tool for deducing the shape of the ion implanted depth profile in semiconductor materials.

  7. Lithium ion implantation effects in MgO (100)

    NARCIS (Netherlands)

    van Huis, MA; Fedorov, AV; van Veen, A; Labohm, F; Schut, H; Mijnarends, PE; Kooi, BJ; De Hosson, JTM; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorp

  8. Mechanical and Surface Characterization of Diamond-Like Carbon Coatings onto Polymeric Substrate

    OpenAIRE

    Martí-González, Joan; Bertran, Enric

    2015-01-01

    In this master thesis, diamond-like carbon DLC/Cr bilayer systems, with thickness up to 1278 nm were formed on ABS, glass and Si substrates. Substrates surface were prepared by oxygen plasma cleaning process. The chromium thin film, which acts as a buffer layer, was grown by magnetron sputtering deposition. Diamond-like carbon was deposited by pulsed-DC PECVD, with methane and hydrogen as reactants. A Plackett-Burman experimental design was carried out in order to determine the influence of t...

  9. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton

    Science.gov (United States)

    Wiggers de Vries, D. F.; Bulanova, G. P.; De Corte, K.; Pearson, D. G.; Craven, J. A.; Davies, G. R.

    2013-01-01

    The internal structure and growth history of six macro-diamonds from kimberlite pipes in Yakutia (Russia) were investigated with cathodoluminescence imaging and coupled carbon isotope and nitrogen abundance analyses along detailed core to rim traverses. The diamonds are characterised by octahedral zonation with layer-by-layer growth. High spatial resolution SIMS profiles establish that there is no exchange of the carbon isotope composition across growth boundaries at the μm scale and that isotopic variations observed between (sub)zones within the diamonds are primary. The macro-diamonds have δ13C values that vary within 2‰ of -5.3‰ and their nitrogen contents range between 0-1334 at. ppm. There are markedly different nitrogen aggregation states between major growth zones within individual diamonds that demonstrate Yakutian diamonds grew in multiple growth events. Growth intervals were punctuated by stages of dissolution now associated with <10 μm wide zones of nitrogen absent type II diamond. Across these resorption interfaces carbon isotope ratios and nitrogen contents record shifts between 0.5-2.3‰ and up to 407 at. ppm, respectively. Co-variation in δ13C value-nitrogen content suggests that parts of individual diamonds precipitated in a Rayleigh process from either oxidised or reduced fluids/melts, with two single diamonds showing evidence of both fluid types. Modelling the co-variation establishes that nitrogen is a compatible element in diamond relative to its growth medium and that the nitrogen partition coefficient is different between oxidised (3-4.1) and reduced (3) sources. The reduced sources have δ13C values between -7.3‰ and -4.6‰, while the oxidised sources have higher δ13C values between -5.8‰ and -1.8‰ (if grown from carbonatitic media) or between -3.8‰ and +0.2‰ (if grown from CO2-rich media). It is therefore concluded that individual Yakutian diamonds originate from distinct fluids/melts of variable compositions. The

  10. Development of vertical compact ion implanter for gemstones applications

    Science.gov (United States)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  11. Development of vertical compact ion implanter for gemstones applications

    Energy Technology Data Exchange (ETDEWEB)

    Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  12. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  13. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    Science.gov (United States)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  14. Energy loss of electrons impinging upon glassy carbon, amorphous carbon, and diamond: Comparison between two different dispersion laws

    International Nuclear Information System (INIS)

    In this paper, we compare and discuss calculated inelastic mean free path, stopping power, range, and reflection electron energy loss spectra obtained using two different and popular dispersion laws. We will present and discuss the results we obtained investigating the interaction of electron beams impinging upon three allotropic forms of carbon, i.e. solid glassy carbon, amorphous carbon, and diamond. We will compare numerical results with experimental reflection electron energy loss spectra

  15. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  16. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  17. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15. C

  18. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan;

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...

  19. Diamond-like carbon coatings for orthopaedic applications: an evaluation of tribological performance.

    Science.gov (United States)

    Xu, T; Pruitt, L

    1999-02-01

    A detailed investigation of the tribological behaviour of vacuum arc diamond-like carbon coated Ti-6Al-4V against a medical grade ultra-high molecular weight polyethylene is conducted in this work in order to investigate the potential use of diamond-like carbon coatings for orthopaedic appplications. Lubricated and non-lubricated wear experiments are performed using a standard pin-on-disc wear tester. The coefficient of friction is monitored continuously during testing and wear rate calculations are performed using surface profilometry measurements of worn disc surfaces. Sliding wear tests show the existence of two distinct friction and wear regimes distinguished by physically different mechanisms. In the first stages of wear, adhesion and abrasion are the dominant mechanisms of wear while fatigue processes are activated later in the tests. The effects of diamond-like carbon coating structure, surface roughness and lubrication on tribological behaviour are presented. Optimal process-structure-property design for vacuum arc plasma deposition is utilized in order to obtain strong adhesion to the titanium alloy substrate. Diamond-like carbon coatings significantly improve the friction and wear performance of the orthopaedic bearing pair and show exceptional promise for biomedical applications. PMID:15347929

  20. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition plas

  1. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute of...... Physics....

  2. Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steel

    NARCIS (Netherlands)

    Soininen, Antti; Tiainen, Veli-Matti; Konttinen, Yrjo T.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2009-01-01

    Recent studies suggest that diamond-like carbon (DLC) coatings are suitable candidates for application on biomedical devices and implants, due to their high hardness, low friction, high wear and corrosion resistance, chemical inertness, smoothness, and tissue and blood compatibility. However, most s

  3. Studies of diamond-like carbon and diamond-like carbon polymer hybrid coatings deposited with filtered pulsed arc discharge method for biomedical applications

    OpenAIRE

    Soininen, Antti

    2015-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been the subject of investigation all around the world for the last 30 years. One of the major problems in producing of thick high-quality DLC coatings has been the inadequate adhesion of the deposited film to the substrate. This obstacle is finally overcome by depositing an intermediate adhesion layer produced with high energy (>2 keV) carbon plasma before application of a high-quality coating produced with a low energy unit. To the best ...

  4. Nanocrystalline diamond in carbon implanted SiO{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, K.A.; Prawer, S.; Nugent, K.W.; Walker, R. J.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently, it was reported that nanocrystalline diamond can be produced via laser annealing of a high dose C implanted fused quartz (SiO{sub 2}) substrate. The aim of this investigation is to reproduce this result on higher C{sup +} dose samples and the non-implanted silicon sample, as well as optimise the power range and annealing time for the production of these nanocrystals of diamond. In order to provide a wide range of laser powers the samples were annealed using an Ar ion Raman laser. The resulting annealed spots were analysed using scanning electron microscopy (SEM) and Raman analysis. These techniques are employed to determine the type of bonding produced after laser annealing has occurred. 4 refs., 5 figs.

  5. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Verona, C.; Verona-Rinati, G. [INFN—Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy); Ciocca, M.; Mirandola, A.; Mairani, A. [Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Raffaele, L. [INFN—Laboratori Nazionali del Sud, Via S. Sofia 62, Catania 95123, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN—Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy)

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  6. Niobium oxide thin films formed by plasma immersion oxygen ion implantation

    International Nuclear Information System (INIS)

    In analogy to conventional beam-line ion implantation, plasma immersion ion implantation can be combined with a deposition technique to an ion assisted coating process. The structure and composition of a coating and its interface to the substrate can be modified by ion implantation. By means of electron beam evaporation and oxygen plasma immersion ion implantation niobium oxide films were prepared at low substrate temperatures (< 200 C). The film composition and thickness were determined by Rutherford backscattering spectrometry. The results show that oxygen plasma immersion ion implantation leads to incorporation of oxygen into niobium in several steps, corresponding to niobium oxide phases with different stoichiometries. By contrast to conventional beam-line ion implantation at low pressures, two channels for oxidation can be distinguished, ion implantation of high-energy species and radiation enhanced in-diffusion of low-energy species from the plasma. The latter is driven by thermodynamic forces. (orig.)

  7. Characterization of duplex hard coatings with additional ion implantation

    Directory of Open Access Journals (Sweden)

    B. Škorić

    2012-01-01

    Full Text Available In this paper, we present the results of a study of TiN thin fi lms which are deposited by a Physical Vapour Deposition (PVD and Ion Beam Assisted Deposition (IBAD. In the present investigation the subsequent ion implantation was provided with N+2 ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of eff ects such as crystallographic orientation, morphology, topography, densifi cation of the fi lms. The evolution of the microstructure from porous and columnar grains to densel packed grains is accompanied by changes in mechanical and physical properties. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM, Atomic Force Microscope (AFM, X-ray diff raction (XRD and Energy Dispersive X-ray analysis (EDAX.

  8. 金刚石与深部碳循环%Diamond and deep carbon cycle.

    Institute of Scientific and Technical Information of China (English)

    张舟; 张宏福

    2011-01-01

    深部碳循环是全球碳循环研究中不可或缺的部分.较之表层碳,人类对地球深部碳储库的储量、碳的迁移方式和交换量都缺乏清晰认识.作为来自地球深部的碳单质矿物,金刚石是研究深部碳循环的绝佳样品.近年来原位微区分析技术的突飞猛进为研究金刚石及深部碳循环提供了良好条件.文中对表层与深部碳交换、深部碳储库及金刚石矿物学性质进行了介绍,并通过金刚石及其包裹体的稳定同位素组成,探讨了金刚石的形成机制及含碳流体/熔体的性质与来源问题.%Deep carbon cycle is an indispensable part of global carbon cycle While extensive research has been done on surface carbon cycle, there is still little understanding of the carbon in deep earth. We do not know bow much carbon is stored in deep repository, nor do we quantify the migration of carbon between different repositories and its exchange with earth's surface. As a simple substance mineral of carbon from deep earth, diamond is a wonderful window of glimpsing deep carbon cycle. Recent rapid development of in-situ micro-analysis techniques provides strong support for diamond and deep carbon cycle research. This article makes a brief introduction on carbon exchange between surface and deep earth, deep carbon repositories and mineral characteristics of diamond. Subsequently, a discussion is made for mechanism of diamond formation, characteristics and sources ot deep earth's carbon-containing fluid/melt through stable isotopes compositions of diamond and its inclusion.

  9. Low energy negative ion implanter facility at IUAC, New Delhi

    International Nuclear Information System (INIS)

    A low energy negative ion implanter facility had been developed at IUAC. The typical ion energies of this facility are in the range of 30 KeV to 200 KeV. It is capable of delivering ion species having masses 1H to 197Au. The facility is equipped with a sputter base negative ion source namely MC- SNICS (multi cathode -source of negative ion by cesium sputtering) placed on a high voltage platform (200 kV) for generating negative ion beams. The beam line essentially consists of a negative ion source, an accelerating column, focusing devices such as electrostatic quadruple triplets, an analyzer magnet for selecting the particular ion beam as well as transporting in a particular direction and finally, an ion implantation chamber. The analyzer magnet has a maximum rigidity, R =mE/Z2 of 34 (where m- mass in a.m.u., E- energy in MeV, Z- charge state) thereby, it restricts the energies of the higher mass ions at 150 keV. The ion beam optics for this facility was calculated using GIOS and GICOSY software codes. The control system used for its operation is indigenously developed. The optimized or minimum ion beam spot size obtained is 5 mm x 5 mm (but, variable with ion energy and mass). An electrostatic scanner placed in front of the implantation chamber allows a uniform ion implantation on the samples of sizes up to 15 mm x 15 mm. The facility is in regular operation for ion implantation purposes especially for material science experiments. (author)

  10. Single versus double ion implantation: a deep level study

    Energy Technology Data Exchange (ETDEWEB)

    Alfieri, G. [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan); Kimoto, T. [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan); Photonics and Electronics Science and Engineering Center, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto (Japan)

    2009-02-15

    We performed a comparison study of electrically active defects generated in single and double ion implantated 4H-SiC epilayers. Capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements revealed that dou- ble implantation, is responsible for a different compensation mechanism of the net-acceptor concentration, and for the different nature and annealing behavior of the detected deep levels. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  12. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    CERN Document Server

    Chen, ChienHsu; Jian, Hui-Shan; Niu, H

    2016-01-01

    Here we present a simple physical method to produce magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are distributed inside the NDs without affecting their crystal structure. So the NDs can be still functionalized through surface modification for targeted chemotherapy and the added magnetic property will make the NDs suitable for localized thermal treatment for cancer cells without the toxicity from the Fe atoms being directly in contact with the living tissue.

  13. GaAs Hall devices produced by local ion implantation

    Science.gov (United States)

    Pettenpaul, E.; Huber, J.; Weidlich, H.; Flossmann, W.; von Borcke, U.

    1981-08-01

    GaAs Hall devices were produced by complete planar technology using two selective silicon ion implantation steps. The fundamental characteristics of these devices with respect to reproducible implantation dose and geometry of cross-shaped elements are obtained both by experiment and calculation. The prominent properties of the GaAs Hall elements presented are high sensitivity and linearity, small temperature dependence of sensitivity and resistance, and low residual voltage.

  14. Quantum-dot composite silicate glasses obtained by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a useful technique to obtain composite materials such as nanocluster-containing silicate glasses. Depending on the choice of the pair 'implanted atom-dielectric host', ion implantation of metals in glass gives rise to the formation of new compounds and/or metallic nanoparticles. In spite of the great interest, processes governing the chemical and physical interaction between the implanted atoms and the atoms in the host matrix are not completely understood. In this paper, metal, alloy and binary compound nanocluster formation is studied after ion implantation in silica and soda-lime glass. Particular emphasis is given to the comparison among different existing approaches to the understanding of the chemical interactions in these systems. As the physical properties of these composites depend on the cluster structure, composition and size, it is important to set procedures for modifying these characteristics. Recent results indicate that thermal treatments in controlled atmosphere of gold + copper double-implanted silica favor the formation of either alloy nanoclusters or copper compounds, depending on the annealing atmosphere

  15. Iron ion implantation into C60 layer

    International Nuclear Information System (INIS)

    Complete text of publication follows. The soccer ball shaped carbon molecule consisting of 60 carbon atoms (C60, fullerene) was discovered in 1985. Since that time the fullerene has become intensively studied. This special molecule has much potential in medical care, biotechnology and nanotechnology. We are motivated to produce special type fullerenes, so called endohedral fullerenes (some alien atoms are encapsulated inside the fullerene cage). The spring of our motivation is that the Fe at C60 could be applied as a contrast material for MRI (Magnetic Resonance Imaging) or microwave heat therapy. One way to make X at C60 is the surface production using an ECRIS (Electron Cyclotron Resonance Ion Source). An evaporated or preprepared fullerene layer is irradiated by ions to form a new material during the implantation. By this method several kinds of atomic species, such as Li, Na, K, Rb, Xe were encapsulated into the fullerenes. However evidence for the Fe at C60 has not been found yet. During the analysis of the irradiated samples three questions must be answered. 1. Are there iron atoms in the layer and where? 2. Does the iron bond to the fullerene? 3. How does the iron bond to the fullerene, inside or outside? Using different investigation tools, SNMS (Secondary Neural Mass Spectrometer), MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time of Flight), XPS (Xray Photoelectron Spectroscopy) or HPLC (High-Performance Liquid Chromatography), all these questions could be clarified step by step. In this paper we made the first steps to answer the first question: fullerene layers irradiated by iron ion beam delivered by the ATOMKI-ECRIS have been analyzed by the ATOMKI-SNMS. The evaporated 90 - 120 nm thick fullerene layers on Si holder were irradiated by Fe5+ and Fe+ ion beams produced from Ferrocene vapor. Samples were irradiated with two different doses (5 1018 ion/cm3 and 1022 ion/cm3) at four ion energies (65 keV, 6.5 keV, 0.2 keV and two of these samples

  16. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  17. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  18. Osteopontin (OPN is an important protein to mediate improvements in the biocompatibility of C ion-implanted silicone rubber.

    Directory of Open Access Journals (Sweden)

    Shao-liang Wang

    Full Text Available Medical device implants are drawing increasing amounts of interest from modern medical practitioners. However, this attention is not evenly spread across all such devices; most of these implantable devices can cause adverse reactions such as inflammation, fibrosis, thrombosis, and infection. In this work, the biocompatibility of silicone rubber (SR was improved through carbon (C ion implantation. Scanning electron microscopy (SEM, atomic force microscopy (AFM, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD results confirmed that these newly generated carbon-implanted silicone rubbers (C-SRs had large, irregular peaks and deep valleys on their surfaces. The water contact angle of the SR surface decreased significantly after C ion implantation. C ion implantation also changed the surface charge distribution, silicone oxygen rate, and chemical-element distribution of SR to favor cell attachment. The dermal fibroblasts cultured on the surface C-SR grew faster and showed more typical fibroblastic shapes. The expression levels of major adhesion proteins, including talin-1, zyxin, and vinculin, were significantly higher in dermal fibroblasts cultured on C-SR coated plates than in dermal fibroblasts cultured on SR. Those same dermal fibroblasts on C-SRs showed more pronounced adhesion and migration abilities. Osteopontin (OPN, a critical extracellular matrix (ECM protein, was up-regulated and secreted from dermal fibroblasts cultured on C-SR. Matrix metalloproteinase-9 (MMP-9 activity was also increased. These cells were highly mobile and were able to adhere to surfaces, but these abilities were inhibited by the monoclonal antibody against OPN, or by shRNA-mediated MMP-9 knockdown. Together, these results suggest that C ion implantation significantly improves SR biocompatibility, and that OPN is important to promote cell adhesion to the C-SR surface.

  19. 不同消毒方法对碳离子改性硅橡胶表面自由能及邵氏硬度的影响%Effect of different disinfection methods on surface free energy and Shore hardness of carbon ion-implanted silicone rubber

    Institute of Scientific and Technical Information of China (English)

    周鑫; 陈兴; 石小花; 王韶亮; 雷泽源; 樊东力; 张一鸣

    2016-01-01

    目的 初步探讨碳离子硅橡胶经过不同消毒试剂与方法处理后其表面亲疏水性、表面自由能以及邵氏硬度的变化情况.方法 碳离子硅橡胶经过70%酒精、2%碱性戊二醛、0.5%碘伏、5.25%次氯酸钠、3%过氧化氢以及134℃高温、高压等消毒试剂或方法处理后,采用静态接触角测定仪检测其表面水、甘油接触角以及邵氏硬度变化情况,采用Owen-Wendt公式计算表面自由能γs、极性分量γsp以及非极性分量γsd变化.结果 碳离子硅橡胶经过5.25%次氯酸钠以及3%过氧化氢处理后,其表面接触角以及表面自由能发生明显变化,前者使得其表面呈现出完全的亲水性;70%酒精、2%碱性戊二醛、0.5%碘伏以及134℃高温、高压等方法对材料表面接触角以及表面自由能等影响较小.不同处理组材料表面邵氏硬度差异均无统计学意义.结论 70%酒精以及134℃高温、高压等消毒方法对碳离子硅橡胶表面性能影响最小,结合操作便利性等因素,70%酒精可认为是该材料最适宜的消毒处理方式.而次氯酸钠消毒液极不利于该材料表面形貌维持,不宜采用.%Objective To study the changes of surface contact angle,surface free energy and Shore hardness of carbon ion-implanted silicone rubber disinfected by different methods.Methods Carbon ionimplanted silicone rubber was treated with 70% alcohol,2% alkaline glutaraldehyde,0.5% iodine volts,5.25% sodium hypochlorite,3% hydrogen peroxide respectively,and high temperature of 134℃ under high pressure for 2 h,and then the surface contact angle and Shore hardness were tested with a contact angle instrument and a Shore durometer (type A).Surface free energy,polar component and nonpolar component were calculated with Owen-Wendt methods.Results The surface quality of carbon ion-implanted silicone rubber was changed after disinfection with 3% hydrogen peroxide and 5.25% sodium

  20. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  1. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, we made prototype sliding bearings from functionally-graded, diamond-coated carbon-fiber reinforced composite. In dry-sliding experiments, the friction...

  2. Non-Lubricated Diamond-Coated Bearings Reinforced by Carbon Fibers to Work in Lunar Dust Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop low cost diamond composite bearings utilizing our new high pressure technology for carbon fiber reinforced 3-D C/C composites and mixtures of...

  3. Diamond-like carbon formation for various positions by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)]. E-mail: ssyap@mmu.edu.my; Tou, Teck-Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)

    2005-07-30

    Pulsed laser ablation of pyrolytic graphite target was carried out by an Nd-YAG laser with {lambda} = 1064 nm and fluence in the range of 1-10 J/cm{sup 2}. The plume was produced by focusing the laser beam and rastering over a 6.5 mm x 6.5 mm area on the graphite target. The substrates were placed at two positions: on-axis position facing the target and off-axis position in the target plane with 2 mm offset from the ablation site. Diamond-like carbon was formed on the substrates at both positions and on the ablated area as detected by Raman spectroscopy. Rough and granular surface was observed for the samples placed in the target plane and smooth diamond-like carbon films for the samples placed facing the target as observed by SEM and optical microscopy.

  4. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  5. PROPERTIES OF DIAMOND-LIKE CARBON COATINGS DEPOSITED ON CoCrMo ALLOYS

    OpenAIRE

    Madej, Monika; Ozimina, Dariusz; Kurzydłowski, Krzysztof; Płociński, Tomasz; Wieciński, Piotr; Styp-Rekowski, Michał; Matuszewski, Maciej

    2015-01-01

    This paper presents results of the structure analysis and tribological testing of a-C:H type diamond-like carbon (DLC) coatings produced by the Plasma Assisted Chemical Vapour Deposition (PACVD) technology on CoCrMo specimens. The DLC coating structure was studied by observing the surface topography using a scanning electron microscope (SEM) in the SE and STEM modes and a profilometer. Raman spectroscopy provided information on hybridized covalent bonds. The structural analysis involved obser...

  6. Improved wear performance of ultra high molecular weight polyethylene coated with hydrogenated diamond like carbon

    OpenAIRE

    Puértolas, J. A.; Martínez-Nogués, V.; Martínez-Morlanes, M. J.; Mariscal, M. D.; Medel, F. J.; López-Santos, Carmen; Yubero, Francisco

    2010-01-01

    Hydrogenated diamond like carbon (DLCH) thin films were deposited on medical grade ultra high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition. The DLCH coating thicknesses ranged from 250 to 700. nm. The substrates were disks made of UHMWPEs typically used for soft components in artificial joints, namely virgin GUR 1050 and highly crosslinked (gamma irradiated in air to 100. kGy) UHMWPEs. Mechanical and tribological properties under bovine s...

  7. Characterisation of Diamond-Like Carbon (DLC) laser targets by Raman spectroscopy

    Science.gov (United States)

    Haddock, D.; Parker, T.; Spindloe, C.; Tolley, M.

    2016-04-01

    The search for target materials suitable for High Power Laser Experiments at ultralow thicknesses (below ten nanometres) is ongoing. Diamond-Like Carbon is investigated as an answer for a low-Z material that can survive target chamber pump-down and laser prepulse. DLC was produced using Plasma-Enhanced Chemical Vapour Deposition, using with varying gas flow mixtures of argon and methane. The methane plasma deposits amorphous carbon onto the substrate and the argon plasma re-sputters the weakly bonded carbon leaving a high proportion of diamond-like bonding. Bonding natures were probed using Raman spectroscopy; analysis of the resulting spectrum showed that flow rates of 40sccm/60sccm methane to argon produced DLC films with a diamond-like (sp 3) content of ∼20%. Increasing the methane gas flow decreased this value to less than 5%. DLC foils were processed into laser targets by method of float off; using a sodium chloride release layer and lowering into water, this was then lifted onto an array of apertures allowing for laser irradiation of the material with no backing. DLC with 20% sp 3 content showed superior yield when compared to other materials such as metals and some plastics of the same thickness, with ∼70% of the target positions surviving the float off procedure at <10nm. As a result of this work DLC targets have been available for a number of experiments at the Central Laser Facility.

  8. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  9. Temperature-dependant study of phosphorus ion implantation in germanium

    Science.gov (United States)

    Razali, M. A.; Smith, A. J.; Jeynes, C.; Gwilliam, R. M.

    2012-11-01

    We present experimental results on shallow junction formation in germanium by phosphorus ion implantation and standard rapid thermal processing. An attempt is made to improve phosphorus activation by implanting phosphorus at high and low temperature. The focus is on studying the germanium damage and phosphorus activation as a function of implant temperature. Rutherford backscattering spectrometry with channelling and Hall Effect measurements are employed for characterisation of germanium damage and phosphorus activation, respectively. High and low temperature implants were found to be better compared to room temperature implant.

  10. Effects of COOH+ ion implantation on hemocompatibility of polypropylene

    Institute of Scientific and Technical Information of China (English)

    LI; Dejun(李德军); NIU; Lifang(牛丽芳)

    2002-01-01

    Carboxyl ion (COOH+) implantation was performed at 50 keV with different fluences for polypropylene. Hemocompatibility tests show that blood coagulation time and recalcification time of polypropylene were enhanced significantly with the increasing fluence. At the same time, the human endothelial cells grown on the surface of the implanted samples exhibited normal cellular growth and morphology. X-ray photoelectron spectroscopy and water contact angle analysis showed that COOH+ ion implantation rearranges chemical bonds and produces some new polar O-containing groups on the surface. The formation of polar functional groups, together with increase of roughness, induced an increase in hydrophilicity, which in turn improved the surface hemocompatibility of polypropylene.

  11. Hardening of WC-Co alloys by ion implantation

    International Nuclear Information System (INIS)

    The hardening effect on the surface layers of WC-Co alloys after Ar+- and N+-ion implantation with the fluence in the range 1 divided by 8.7 x 1017 cm-2 has been investigated at room temperature and under heating with an ion beam. The depth of the Auger distribution profiles and the microhardness of implanted samples were measured. The radiation-stimulated diffusion of nitrogen atoms and the microhardness enhancement were observed. The contribution of the polymorphic Co-phase transformation and the production of Co-N compounds is discussed. (author)

  12. The Mechanical and Tribological Properties or Ion Implanted Ceramics

    OpenAIRE

    Bull, Stephen John

    1988-01-01

    The mechanical properties of ion implanted ceramics are primarily a function of the radiation damage produced by the implantation process. For crystalline ceramics this damage is chiefly nuclear displacements, though for glasses electronic effects have also been observed. In this study a number of single crystal and polycrystalline ceramics and a soda-lime-silica glass have been implanted with a range of ions in the energy range 90keV to 400keV and the changes in mechanical properties prod...

  13. Improvement of graphene quality synthesized by cluster ion implantation

    International Nuclear Information System (INIS)

    Graphene was prepared by negative C4 cluster ion implantation at 5 keV/atom followed by vacuum thermal annealing and cooling. The surface morphology and structure of samples were studied by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. Improvement of the graphene quality was realized by optimization of the post thermal processes. 1–2 layer graphene was obtained with I2D/IG ratio of 1.43 and ID/IG ratio of 0.07 at the implantation dose of 12 × 1015 atoms/cm2 and annealed at 900 °C followed by cooling at 20 °C/min

  14. Titanium and aluminium ions implanted by plasma on polyethylene

    International Nuclear Information System (INIS)

    The ion implantation by plasma of titanium and aluminum on polyethylene thin films (PE) is presented. The results indicate that the polymers reacted firstly with the oxygen and/or nitrogen carrying gases, and later its received the metallic particles that formed thin films. The stainless steel and the titanium formed a single phase. The metallic layers grew in the interval of 1 to 2 nm/min, its are thin, but enough to change the hardness of the polymer that it is increased in more of 20 times. (Author)

  15. Proceedings of the conference on electrochemistry of carbon allotropes: Graphite, fullerenes and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.] [Lawrence Berkeley National Lab., CA (United States); Scherson, D. [ed.] [Case Western Reserve Univ., Cleveland, OH (United States)

    1998-02-01

    This conference provided an opportunity for electrochemists, physicists, materials scientists and engineers to meet and exchange information on different carbon allotropes. The presentations and discussion among the participants provided a forum to develop recommendations on research and development which are relevant to the electrochemistry of carbon allotropes. The following topics which are relevant to the electrochemistry of carbon allotropes were addressed: Graphitized and disordered carbons, as Li-ion intercalation anodes for high-energy-density, high-power-density Li-based secondary batteries; Carbons as substrate materials for catalysis and electrocatalysis; Boron-doped diamond film electrodes; and Electrochemical characterization and electrosynthesis of fullerenes and fullerene-type materials. Abstracts of the presentations are presented.

  16. Optical properties of nano-structured material in ion-implanted polymer

    International Nuclear Information System (INIS)

    Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communication, we have studied the optical properties (controlled through the complex refractive index) of nano-structured material in silicon ion (Si+) implanted polymethylmethacrylate (PMMA). PMMA was implanted with Si+ ions accelerated to a relatively low energy of 50 keV at a high fluence of 3.2×1015 Si+/cm2. The carbon nano-clustered material in the ion-modified surface layer of Si+-implanted PMMA of a thickness of about 100 nm was optically characterized by reflectance measurements, as well as by reflection ellipsometry at a wavelength of 632.8 nm (He-Ne laser)

  17. Etching and structure changes in PMMA coating under argon plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurin, Alexey, E-mail: kond@mailcity.com [Applied and Plasma Physics, School of Physics A28, University of Sydney, New South Wales 2006 (Australia); Bilek, Marcela [Applied and Plasma Physics, School of Physics A28, University of Sydney, New South Wales 2006 (Australia)

    2011-06-15

    A thin (120 nm) polymethylmethacrylate coating was treated by plasma immersion ion implantation with Ar using pulsed bias at 20 kV. Ellipsometry and FTIR spectroscopy and gel-fraction formation were used to detect the structure transformations as a function of ion fluence. The kinetics of etching, variations in refractive index and extinction coefficient in 400-1000 nm of wavelength, concentration changes in carbonyl, ether, methyl and methylene groups all as a function of ion fluence were analyzed. A critical ion fluence of 10{sup 15} ions/cm{sup 2} was observed to be a border between competing depolymerization and carbonization processes. Chemical reactions responsible for reorganization of the PMMA chemical structure under ion beam treatment are proposed.

  18. Experimental investigation of plasma-immersion ion implantation treatment for biocompatible polyurethane implants production

    Science.gov (United States)

    Iziumov, R. I.; Beliaev, A. Y.; Kondyurina, I. V.; Shardakov, I. N.; Kondyurin, A. V.; Bilek, M. M.; McKenzie, D. R.

    2016-04-01

    Modification of the surface layer of polyurethane with plasma-immersion ion implantation (PIII) and studying its physical and chemical changes have been discussed in this paper. The goal of the research was to obtain carbonized layer allowing creating biocompatible polyurethane implants. The experiments of PIII treatment in various modes were performed. The investigation of the modified surface characteristics was carried out by observing the kinetics of free surface energy for two weeks after treatment. The regularities between treatment time and the level of free surface energy were detected. The explanation of high energy level was given through the appearance of free radicals in the surface layer of material. The confirmation of the chemical activation of the polyurethane surface after PIII treatment was obtained.

  19. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  20. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  1. Co-axial ECR plasma system for radioactive ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, M A [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Marion, F [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Stansfield, B [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Paynter, R W [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Sarkar, D [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Sarkissian, A [Plasmionique Inc., 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Terreault, B [INRS-EMT (Universite du Quebec), 1650 boul. Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2005-08-01

    A pulsed, co-axial electron cyclotron resonance (ECR, 2.45 GHz) plasma reactor was designed and tested to demonstrate the feasibility of plasma-based radioactive ion implantation ({sup 32}P radioisotope). The geometry of the reactor was designed to produce an efficient implantation of cylindrical implants. Therefore, the reactor is cylindrical in shape, and is equipped with a cylindrical grid in a co-axial geometry. The plasma is created between the wall and the grid; the plasma surrounds the implant, allowing for a radial implantation. A 1 ms microwave pulse creates a plasma in argon, which sputters material from a radioactive cathode. A fraction of the radioisotopes is then ionized, and the ions are implanted into negatively biased metal samples. The plasma was characterized by means of electrostatic probes, giving spatial evaluations of the electron temperature, plasma potential and electron density. Titanium samples were implanted with {sup 32}P during a study that aimed at optimizing the position of the radioactive sputter cathode in the plasma. From an analysis of the distribution of the radioactive fragments, we deduce that the plasma potential has a marked effect on the ion trajectories. In particular, it provides a more uniform implantation distribution than one would otherwise expect. For plasma densities {approx}8 x 10{sup 10} cm{sup -3}, implantation efficiencies as high as 1% are measured; this is about 100 times higher than conventional beam-line ion implantation.

  2. Mechanical properties of ion-implanted tungsten-5 wt% tantalum

    International Nuclear Information System (INIS)

    Ion implantation has been used to simulate neutron damage in W-5wt%Ta alloy manufactured by arc melting. Implantations were carried out at damage levels of 0.07, 1.2, 13 and 33 displacements per atom (dpa). The mechanical properties of the ion-implanted layer were investigated by nanoindentation. The hardness increases rapidly from 7.3 GPa in the unimplanted condition to 8.8 GPa at 0.07 dpa. Above this damage level, the increase in hardness is lower, and the hardness change saturates by 13 dpa. In the initial portion of the load-displacement curves, the indentations in unimplanted material show a large 'initial pop-in' corresponding to the onset of plasticity. This is not seen in the implanted samples at any doses. The change in plasticity has also been studied using the nanoindenter in scanning mode to produce a topographical scan around indentations. In the unimplanted condition there is an extensive pile-up around the indentation. At damage levels of 0.07 and 1.2 dpa the extent and height of pile-up are much less. The reasons for this are under further investigation.

  3. Compression of self-ion implanted iron micropillars

    International Nuclear Information System (INIS)

    Highlights: ► Self-ion implantation used to cause cascade damage in pure iron. ► Increase in hardness measured in implanted region using nanoindentation. ► Micropillars manufactured and tested in both implanted and unimplanted material. ► Marked difference in deformation mechanisms in each set of pillars seen using scanning electron microscopy. ► No difference in yield stress seen, suggesting it is difficult to use micro-compression to understand bulk properties. - Abstract: Ion implantation causes displacement damage in materials, leading to the formation of small dislocation loops and can cause changes to the material’s mechanical properties. Samples of pure Fe were subjected to Fe+ implantation at 275 °C, producing damage of ∼6 dpa to ∼1 μm depth. Nanoindentation into implanted material shows an increase in hardness compared to unimplanted material. Micropillars were manufactured in cross-section specimens of implanted and unimplanted material and compressed using a nanoindenter. The implanted pillars have a deformation mode which differs markedly from the unimplanted pillars but show no change in yield-stress. This suggests that the controlling mechanism for deformation is different between nanoindentation and micropillar compression and that care is needed if using micropillar compression to extract bulk properties of irradiated materials.

  4. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  5. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  6. Industrial plasma immersion ion implanter and its applications

    CERN Document Server

    Tong Hong Hui; Huo Yan Feng; Wang Ke; Mu Li Lan; Feng Tie Min; Zhao Jun; Yan Bing; Geng Man

    2002-01-01

    A new generation industrial plasma immersion ion implanter was developed recently in South-western Institute of Physics and some experimental results are reported. The vacuum chamber with 900 mm in diameter and 1050 mm in height stands vertically. The pumping system includes turbo -pump and mechanical pump and it can be automatically controlled by PLC. The background pressure is less than 4 x 10 sup - sup 4 Pa. The plasma in the chamber can be generated by hot-filament discharge and three high-efficiency magnetic filter metal plasma sources, so that the plasma immersion ion implantation and enhanced deposition can be done. The maximum pulse voltage output is 80 kV, maximum pulse current is 60 A, repetition frequency is 50-500 Hz, and the pulse rise time is less than 2 mu s. The power modulator can operate in the pulse bunching mode if necessary. In general, the plasma density is 10 sup 8 -10 sup 1 sup 0 cm sup - sup 3 , the film deposition rate is 0.1-0.5 nm/s

  7. Self-organized surface ripple pattern formation by ion implantation

    Science.gov (United States)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  8. Stabilization of organic thin film transistors by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fraboni, B., E-mail: beatrice.fraboni@unibo.it [CNISM and Dipartimento di Fisica, Universita di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Cosseddu, P. [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, piazza d' Armi, 09123 Cagliari, Italy and CNR-INFM S3 via Campi 213/a 41100 Modena (Italy); Wang, Y.Q.; Schulze, R.K. [Los Alamos National Laboratory MS-K771 Los Alamos NM 87545 (United States); Cavallini, A. [CNISM and Dipartimento di Fisica, Universita di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Nastasi, M. [Los Alamos National Laboratory MS-K771 Los Alamos NM 87545 (United States); Bonfiglio, A. [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita di Cagliari, piazza d' Armi, 09123 Cagliari, Italy and CNR-INFM S3 via Campi 213/a 41100 Modena (Italy)

    2012-08-01

    We report on the effects of low energy ion implantation (N and Ne) in the reduction and control of the degradation of pentacene organic thin film transistors (OTFTs) due to the exposure to atmosphere (i.e. oxygen and water). We have observed that a controlled damage depth distribution preserves the functionality of the devices, even if ion implantation induces significant molecular structure modifications, in particular a combination of dehydrogenation and carbonification effects. No relevant changes in the pentacene thin film thickness have been observed. The two major transport parameters that characterize OTFT performance are the carrier mobility and the threshold voltage. We have monitored the effectiveness of this process in stabilizing the device by monitoring the carrier mobility and the threshold voltage over a long time (over 2000 h). Finally, we have assessed by depth resolved X-ray Photoemission Spectroscopy analyses that, by selectively implanting with ions that can react with the hydrocarbon matrix (e.g. N{sup +}), it is possible to locally modify the charge distribution within the organic layer.

  9. Surface modification by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    After its successful applications in the semiconductor industry, ion implantation is being employed for other technical applications. The main process in ion implantation is the introduction of additive elements to change the composition and properties of the surface region of a material. We present results demonstrating the important improvement of the wear resistance and friction in a NiTi alloy implanted with nitrogen. The formation of hard TiN precipitates embedded in an amorphous layer is responsible for such modifications. The generation of many atomic displacements in collision cascades during implantation can be also employed as a modification process itself. For instance, the chemical disordering in an implanted Fe60Al40 alloy induces a para- to ferromagnetic transition. The formation of an amorphous surface alloy by ion irradiation at a temperature of 15 K has been shown in Ni50Al50 by in situ RBS, channelling and TEM. The new method of dynamic ion mixing (DIM) combines ion bombardment with simultaneous material deposition and allows thicker adherent coatings to be built up, this is shown for both metallic Cu50Ni50 and ceramic TiB2 coatings. Recent results demonstrating a significant increase in fatigue lifetime of a coated 316 L stainless steel are also reported and discussed. (orig.)

  10. Structural modification of tantalum crystal induced by nitrogen ion implantation

    Indian Academy of Sciences (India)

    A H RAMEZANI; M R HANTEHZADEH; M GHORANNEVISS; E DARABI

    2016-06-01

    This paper investigates the effect of nitrogen ion implantation on tantalum surface structure. In this experiment, nitrogen ions which had an energy of 30 keV and doses of $1 \\times 10^{17}$ to $10 \\times 10^{17}$ ions cm$^{−2}$ were used. X-ray diffraction analysis (XRD) was applied for both the metallic Ta substrate and the study of new structures that have been created through the nitrogen ion implantation. Atomic force microscopy (AFM) was also used tocheck the roughness variations prior to and also after the implantation phase. The experimental results show the formation of hexagonal tantalum nitride (TaN$_{0.43}$) in addition to the fact that by increasing the ion dose, the nitrogen atoms occupy more interstitial spaces in the target crystal. The nitride phase also seen for $3\\times 10^{17}$ and $5\\times 10^{17}$ ions cm$^{−2}$, while it disappeared for higher dose of $7\\times 10^{17}$ and $1\\times 10^{18}$ ions cm$^{−2}$. The FWHM of the dominant peak of tantalum nitride suggest the growth of the crystallite’s size, which is in agreement with the AFM results ofthe grains.

  11. Terahertz generation from Cu ion implantation into lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhua, E-mail: wyh61@163.com [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan university of Science and Technology, Wuhan 430081 (China); Wang, Ruwu; Yuan, Jie [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan university of Science and Technology, Wuhan 430081 (China); Wang, Yumei [Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2014-03-15

    In this letter, the authors present first observation of terahertz generation from Cu implantation of lithium niobate crystal substrate. Lithium niobate single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Cu ion implantation were implanted into lithium niobate single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulse centred at 800 nm was focused onto the samples. The supercontinuum spectra of the sample are obtained. Terahertz was generated via this kind of sample and investigated using the electro-optical sampling technique. The findings suggest that under the investigated implantation parameter, a strong spectral component in excess of 0.46 THz emission was found from Cu ion implantation of lithium niobate. -- Highlights: • We first observation of terahertz generation from Cu implantation of lithium niobate crystal substrate. • Lithium niobate single crystal is grown by Czochralski method. Cu nanoparticles in lithium niobate have been formed by using MEVVA ion source. • The THz bandwidth and center from this kind of sample were determined.

  12. Highly tunable formation of nitrogen-vacancy centers via ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sangtawesin, S.; Brundage, T. O.; Atkins, Z. J.; Petta, J. R. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-08-11

    We demonstrate highly tunable formation of nitrogen-vacancy (NV) centers using 20 keV {sup 15}N{sup +} ion implantation through arrays of high-resolution apertures fabricated with electron beam lithography. By varying the aperture diameters from 80 to 240 nm, as well as the average ion fluences from 5×10{sup 10} to 2 × 10{sup 11} ions/cm{sup 2}, we can control the number of ions per aperture. We analyze the photoluminescence on multiple sites with different implantation parameters and obtain ion-to-NV conversion yields of 6%–7%, consistent across all ion fluences. The implanted NV centers have spin dephasing times T{sub 2}{sup *} ∼ 3 μs, comparable to naturally occurring NV centers in high purity diamond with natural abundance {sup 13}C. With this technique, we can deterministically control the population distribution of NV centers in each aperture, allowing for the study of single or coupled NV centers and their integration into photonic structures.

  13. Single ion implantation for single donor devices using Geiger mode detectors

    Science.gov (United States)

    Bielejec, E.; Seamons, J. A.; Carroll, M. S.

    2010-02-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 µm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of 98% for counting one and only one ion for a false count probability of 10-4 at an average ion number per gated window of 0.015.

  14. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  15. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    International Nuclear Information System (INIS)

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp3 bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp3-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity

  16. Study of facing target sputtered diamond-like carbon overcoats for hard disk drive media

    Energy Technology Data Exchange (ETDEWEB)

    Seet, H.L., E-mail: SEET_Hang_Li@dsi.a-star.edu.sg [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore); Ng, K.K.; Chen, X.Y. [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore); Yang, P. [Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, 117603 (Singapore); Shen, L. [Institute of Materials Research and Engineering, A*STAR Agency for Science, Technology and Research, 3 Research Link, 117602 (Singapore); Ji, R.; Ng, H.X.; Lim, C.B. [Data Storage Institute, A*STAR Agency for Science, Technology and Research, 5 Engineering Drive 1, 117608 (Singapore)

    2015-07-01

    The demand for higher areal density in the hard disk drive industry has fuelled extensive research efforts and focuses on magnetic spacing reduction. In the head–disk interface arena, one of the key focuses is to reduce the carbon overcoat thickness without compromising the overcoat protection performance. Thus, in the search for alternative methods to reduce the carbon overcoat thickness, the facing target sputtering (FTS) process for diamond-like carbon deposition has been investigated. The resulting properties have been presented in this paper, with comparison to conventional diamond-like carbon (DLC) layers by other processes such as chemical vapor deposition and reactive sputtering with nitrogen. X-ray reflectometry results showed that facing target sputtered DLC samples displayed significantly higher density, at 2.87 g/cm{sup 3}, as compared to hydrogenated and nitrogenated DLC samples. This was attributed to the higher sp{sup 3} content, as obtained by X-ray photoelectron spectroscopy measurements. As a result of the high sp{sup 3} content, hardness of the FTS deposited samples was higher than that of the hydrogenated and nitrogenated DLC samples. In addition, the surface energy of FTS samples was observed to be comparable, but lower, than that of nitrogenated DLC samples through contact angle measurements. Clearances comparable to that of conventional DLC samples were achieved and the sample disks were flyable. Wear performance tests also revealed more wear resistance for the FTS deposited DLC samples, but also higher head wear. - Highlights: • Facing target sputtered (FTS) diamond-like carbon (DLC) samples were studied. • FTS DLC samples possess higher density and hardness. • Surface conditions and flyability performances for FTS DLC samples were comparable. • Wear tests on FTS DLC samples showed lower media wear, but higher head wear.

  17. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  18. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  19. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    Science.gov (United States)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  20. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy

    International Nuclear Information System (INIS)

    Diamond-like carbon films were deposited by electrolysis of a water-ethanol solution on Cu at low voltages (60-100 V) at 2 mm interelectrode separation. The films were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy. The films were found to be continuous and compact with uniform grain distribution. Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1580 cm-1. The downshift of the G band of graphite is indicative of the presence of DLC. For XRD analysis, the three strong peaks located at 2θ values of 43.2 deg., 74.06 deg. and 89.9 deg. can be identified with reflections form (1 1 1), (2 2 0) and (3 1 1) plane of diamond.

  1. Preparation and Investigation of Diamond-like Carbon Stripper Foils

    Institute of Scientific and Technical Information of China (English)

    FAN; Qi-wen; DU; Ying-hui; ZHANG; Rong; XU; Guo-ji

    2013-01-01

    1 Preparation of DLC stripper foils For DLC stripper foils of about 5μg/cm2 thickness,the following methods were used.The DLC foils of about 4μg/cm2 thicknesses were produced by FCVA onto glass slides coated with betaine-saccharose as releasing agent,which was previously covered with the evaporated carbon layers of about 1μg/cm2

  2. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton (Gossypium hirsutum L.) Pollen

    Institute of Scientific and Technical Information of China (English)

    YUE Jieyu; YU Lixiang; WU Yuejin; TANG Canming

    2008-01-01

    Effect of parameters of ion implantation machine,including ion energy,total dose,dose rate,impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied.The best parameters were screened out.The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  3. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  4. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    International Nuclear Information System (INIS)

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp3/sp2 after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp3/sp2 after laser treatment

  5. Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: A new constraint for the depth of metamorphic diamond crystallization

    Science.gov (United States)

    Dobrzhinetskaya, Larissa F.; Wirth, Richard; Green, Harry W.

    2006-03-01

    Previous studies have revealed that microdiamonds from the Kokchetav ultra-high pressure metamorphic terrane of Kazakhstan contain nanometric scale inclusions of Si-, Fe-, Ti-, and Cr-oxides. Because the structure of SiO 2 inclusions was not confirmed to be coesite or stishovite due to their very small size, such diamonds formerly served only as an indicator of a minimum pressure, ca. 4 GPa. Geothermobarometry applied to Kokchetav diamond-bearing rocks yielded a wide range of conditions: T = 700 °C-1250 °C, and P = 4-9 GPa. Our paper presents transmission electron microscopy studies with focused ion beam assistance that indicate that diamonds from marbles contain inclusions of aragonite (CaCO 3) and magnesite (MgCO 3), and that aragonite and nitrogen-bearing nanometric particles are associated with dislocations reflecting diamond growth at relatively high-temperature conditions. We determined the boundary of dolomite stability using the reaction CaMg(CO 3) 2 (dolomite) = CaCO 3 (aragonite) + MgCO 3. This allowed us to utilize available experimental data to evaluate the pressure at which diamond was crystallized. Taking into consideration uncertainties existing between experimental data produced in different laboratories, we propose the pressure for Kokchetav diamond crystallization to be ˜ 6 to 9 GPa. This evaluation is based on the assumption that temperature was determined correctly as 980 °C (minimum) and 1250 °C (maximum) for diamond-grade dolomitic marbles. Our data provide strong evidence that the metasedimentary rocks of the Kokchetav massif containing diamonds were subducted to the depth of ˜ 190-280 km.

  6. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  7. Effect of lanthanum ion implantation on oxidation behavior of zircaloy

    Institute of Scientific and Technical Information of China (English)

    Xiaoyang Liu; Xinde Bai

    2004-01-01

    In order to investigate the effect of lanthanum ion imprantation on the oxidation behavior of zircaloy at 500℃, Zircaloy specimens were implanted by lanthanum ions with a dose range from 5×1016 to 2×1017 ions/cm2 at room temperature, and then oxidized at 500℃ for 100 min. The valence of the oxides in the scale was analyzed by X-ray Photoelectron Spectroscopy (XPS). The phase structures of the oxides in the scale were examined by Glancing Angle X-ray Diffraction (GAXRD). With the increase of implanted lanthanum ions dose, the phase structures in the oxide scale are transformed from monoclinic zirconia to hexagonal one and then to monoclinic one again. The measurement of weight gain showed that a similar change from the decreased gain to increased one again is achieved in the oxidation behavior of lanthanum ion implanted zircaloy compared with that of as-received zircaloy.

  8. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  9. Surface induced reactivity for titanium by ion implantation.

    Science.gov (United States)

    Pham, M T; Reuther, H; Matz, W; Mueller, R; Steiner, G; Oswald, S; Zyganov, I

    2000-06-01

    Calcium and phosphorus storage in a thin layer of titanium surface was achieved by ion implantation. We study the reactivity of this surface in response to a hydrothermal treatment. The incipient implanted species are observed to convert to Ca(2+) and PO(4)(3-), the precursors for generating calcium phosphate polymorphs. Hydroxyapatite is formed from these precursors by an interface-liquid mediated mineralization preceded by the hydrolysis of oxygen compounds of Ca and P from the solid phase. The morphology and organization of apatite mineral is controlled by the fluid dynamics reflecting the surface remodeling to adapt to the available local environment. Exposed to calcium and phosphate ion containing solution, the hydrothermally treated surface templates hydroxyapatite deposition. Ca and P implanted Ti surface was shown to be chemically and morphologically actively involved in the interfacial reactions.

  10. Dry Machining Tool Design via Chlorine Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    TatsuhikoAizawa; AtsushiMitsuo; ShigeoYamamoto; ShinjiMuraishi; TaroSumitomo

    2004-01-01

    Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface. This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.

  11. Dry Machining Tool Design via Chlorine Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    Tatsuhiko Aizawa; Atsushi Mitsuo; Shigeo Yamamoto; Shinji Muraishi; Taro Sumitomo

    2004-01-01

    Dry machining has become a key issue to significantly reduce the wastes of used lubricants and cleaning agents and to improve the environmental consciousness for medical and food applications of special tooling. Since the tools and metallic works are in direct contact in dry, severe adhesive wear and oxidation are thought to occur even at the presence of hard protective coatings. Self-lubrication mechanism with use of lubricous oxide films is found to be effective for dry machining. Through the chlorine ion implantation to tools, titanium base oxides are in-situ formed on the tool surface.This oxide deforms elasto-plastically so that both friction coefficient and wear volume are reduced even in the high-speed cutting.

  12. ADFA/ANU 150 keV radioactive ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.X.; Chaplin, D.H.; Hutchinson, W.D.; Stewart, G.A. [University College, UNSW, Sydney, NSW (Australia). School of Physics; Byrne, A.P. [Australian National University, Canberra, ACT (Australia). Department of Nuclear Physics, RSPhysSE and Department of Physics, the Faculties

    1998-12-31

    Full text: As foreshadowed at the 10th Australian Conference on Nuclear Techniques of Analysis (Byrne et al), the collaborative project to build a radioactive ion implanter, within the custom designed Radiation Laboratories at Australian Defence Force Academy (ADFA), has recently led to the initial commissioning tests of the instrument described in that report. Primary aims are to serve the hyperfine interactions community interested in Materials Science with particular emphasis on magnetic and semiconductor materials. 2.8 day {sup 111}In will be the first radioactive probe implanted following optimization of beam transport with stable indium. The implanted {sup 111}In samples will be prepared for both time-differential, gamma-gamma, PAC studies at ANU and bruteforce NMRON spectroscopies using the top loading dilution refrigerator at ADFA. In this paper we provide further information on the capabilities of the instrument and the results of the initial commissioning tests

  13. Bacterial adhesion on ion-implanted stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Q. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom)]. E-mail: q.zhao@dundee.ac.uk; Liu, Y. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, C. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, S. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Peng, N. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom); Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom)

    2007-08-31

    Stainless steel disks were implanted with N{sup +}, O{sup +} and SiF{sub 3} {sup +}, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF{sub 3} {sup +}-implanted stainless steel performed much better than N{sup +}-implanted steel, O{sup +}-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  14. Investigations on the characterization of ion implanted hexagonal boron nitride

    Science.gov (United States)

    Aradi, E.; Naidoo, S. R.; Erasmus, R. M.; Julies, B.; Derry, T. E.

    2013-07-01

    The effect of ion implantation on hexagonal boron nitride (h-BN) is studied herein. We use boron as an ion of choice to introduce radiation damage into h-BN, at fluences ranging from 1 × 1014-1 × 1016 ions/cm2 and implantation energy ranges from 40 to 160 keV. The thermal dependence is also investigated by varying the annealing temperature from room temperature to 400 °C after implantation. Raman spectroscopy showed Raman active defects one of which is possibly related to the formation of cubic boron nitride nanocrystals (nc-BN) within the implanted range. The relationship of these defect induced Raman active peaks was investigated by varying the implantation parameters. The preliminary Transmission Electron Microscopy (TEM) results also are reported briefly.

  15. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 12000C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author)

  16. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  17. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  18. A theory of the ion-implanted metal semiconductor contact

    International Nuclear Information System (INIS)

    A one-dimensional diffusion theory has been used for calculating the current-voltage characteristic of an ion-implanted aluminium-p-silicon contact. The characteristic feature of this contact is the presence of a disordered intermediate layer of about 1,000 A between the pure metal and the semiconductor substrate. The contact resistance of this MaS structure is two orders of magnitude lower than that of an abrupt system. A variation method is given to evaluate the internal potential PHI and the width L of space charge in the case of thermodynamic equilibrium. From the non-linear system of basic equations of diffusion theory a compact expression for the stationary current density is derived in a self-consitent way. (author)

  19. Nitrogen ion implantation of silicon in dense plasma focus

    International Nuclear Information System (INIS)

    A low energy (1.45 kJ) Mather type plasma focus device is used for nitrogen ion implantation in mono-crystalline silicon. The silicon specimens are exposed to different number of focus shots by placing the targets in front of the anode at a fixed distance. Raman spectroscopy and X-ray diffraction are employed to characterize the implanted specimens. The results indicate that mono-crystalline silicon transforms into amorphous structure through micro-crystalline phase on increasing the implantation dose. Further irradiation of the specimens results in the formation of amorphous Si3N4 layers. High temperature annealing in argon ambient transforms the amorphous Si3N4 into β-Si3N4

  20. Self-diffusion of ion-implanted tracers

    International Nuclear Information System (INIS)

    Tracer self-diffusion studies with ion-implanted stable isotopes require a high fluence of implanted ions (>1015 ions/cm2) due to the natural tracer background concentration present in a sample. Such a high fluence leads to considerable implantation damage, where a large part of the tracer is immobilized and does not take place in the diffusion process. As a consequence, diffusion profiles are observed which cannot be described with Fick's second law. In this study, a set of differential equations is presented, describing the diffusion of implanted isotopes as a trap-limited process with a sink and a source term, where the tracer atoms form immobile complexes with implantation damage-induced defects. These equations are solved numerically for the example of nitrogen diffusion in amorphous Si-B-C-N ceramics in order to illustrate diffusivity determination. The results are compared to the analytical solution of Fick's second law

  1. Nanocrystalline diamond/carbon felt as a novel composite for electrochemical storage energy in capacitor

    Science.gov (United States)

    Almeida, E. C.; Azevedo, A. F.; Baldan, M. R.; Braga, N. A.; Rosolen, J. M.; Ferreira, N. G.

    2007-04-01

    A nanocrystalline diamond (NCD) grown on carbon fibers substrate (CF), has been developed for electric double-layer capacitor. Carbon fibers were treated at 1300 and 2300 K by using the temperature steps of 60 K/h in a nitrogen atmosphere. NCD films were grown from Ar/H 2/CH 4 mixtures on a hot-filament chemical vapor (HFCVD) deposition reactor. Scanning electron microscopy (SEM) images of NCD showed faceted diamond grains for both substrates. Raman spectra are characteristic of NCD films and confirm the existence of sp 2-bonded carbon in grain boundaries due to significant reduction of grain size. NCD/CF samples showed the characteristic behavior of an ideal current-potential capacitor with rectangular current-potential responses curves in 0.5 M sulfuric acid. The NCD/CF composite treated at 1300 K has the largest cathodic current and retains the rectangular-shaped CV up to a high scan rate of 100 mV/s.

  2. Visible photoluminescence from ZnO/diamond-like carbon thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-chun; LI Qing-shan; DONG Yan-feng; MA Zi-xia

    2012-01-01

    ZnO/diamond-like carbon (DLC) thin films are deposited by pulsed laser deposition (PLD) on Si (111) wafer.Visible room-temperature photoluminescence (PL) is observed from ZnO/DLC thin films by fluorescence spectrophotometer.The Gaussian curve fitting of PL spectra reveals that the broadband visible emission contains three components with λ=508 nm,554 nm and 698 nm.The origin and possible mechanism of the visible PL are discussed,and they can be attributed to the PL recombination of ZnO and DLC thin films.

  3. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring

    Science.gov (United States)

    Yasumaru, Naoki; Miyazaki, Kenzo; Kiuchi, Junsuke

    2008-02-01

    This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS 2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.

  4. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    OpenAIRE

    De Barros Bouchet, M. I.; Matta, C.; Le-Mogne, Th.; Martin, J. Michel; Zhang, Q.; Goddard, W., III; Kano, M; Mabuchi, Y.; J Ye

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations us...

  5. Diamond-like carbon coatings deposited by vacuum arc in artificial hip joints

    OpenAIRE

    Ren, Ying

    2014-01-01

         For biomedical application in the field of artificial hip joints diamond-like carbon (DLC) coatings have been widely studied due to their excellent mechanical, tribological and biological properties. At present the lifetime of such joints is just about 15 years and some (10%) of patients require second replacementent. In consequence, it is currently an urgent need to extend the life expectancy especially for younger patients under 50 years old. As is well known, the wear particles as the...

  6. The effect of RF power on tribological properties of the diamond-like carbon films

    International Nuclear Information System (INIS)

    DLC thin films were prepared by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method on silicon substrates using methane (CH4), hydrogen (H2) and gas mixture. We have checked the influence of varying RF power on DLC film. The Raman spectroscopy shows the diamond-like carbon (DLC) amorphous structure of the films. AFM images show the surface roughness of the DLC film decrease with increasing RF power. Also, the friction coefficients were investigated by atomic force microscope (AFM) in friction force microscope (FFM) mode

  7. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  8. Study of relationship between structure and transmittance of diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    LIN; Song-sheng; HOU; Hui-jun; ZHU; Xia-gao; YUAN; Zhen-hai; DAI; Da-huang; LI; Hong-wu

    2005-01-01

    In this paper, the transparent hard diamond-like carbon (DLC) films were deposited on glass substrate by magnetic confined radio-frequency plasma chemical vapor deposition. The structure of films was studied by Raman spectra and X-ray photoelectron spectra (XPS), the transmittance of films by Spectrophotometer. The mechanism of the influence of films structure on transmittance of the films was discussed. The results show that the thickness of films was lower than 100nm, and the transmittance was over 90% in 380-780 nm region. Discussion in theory on the influence of film structure on transmittance was correspondence to experiment results.

  9. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications

    Institute of Scientific and Technical Information of China (English)

    FU Di; XIE Dan; ZHANG Chen-Hui; ZHANG Di; NIU Jie-Bin; QIAN He; LIU Li-Tian

    2010-01-01

    @@ We propose diamond-like carbon(DLC)as the resistance change material for nonvolatile memory applications.Nanoscale DLC films are prepared by filtered cathodic vacuum arc technique and integrated to W/DLC/W structure devices.The deposited DLC film has a thickness of about 2O nm and high sp3 fraction content.Reversible bistable resistive switching from a high resistance state to a low resistance state,and vice versa,is observed under appropriate unipolar stimulation pulses.

  10. Conditions of diamond formation beneath the Sino-Korean craton: paragenesis, temperatures and the isotopic composition of carbon

    International Nuclear Information System (INIS)

    Mineral inclusions (23 pyrope garnets, 30 chromites) have been extracted from 28 diamonds selected from the Pipe 50 kimberlite in Liaoning Province, and the pipes of the Shengli 1 and Hongqi 6 kimberlites in Shandong province. These inclusions, and several from the collection of Meyer et al., (1994), have been analysed for major elements using EMP and for trace elements using the proton microprobe. Carbon-isotope compositions have been measured on 44 diamonds (23 from Liaoning, 21 from Shandong), of which 32 contained identified inclusions. The δ13C values range from +0.9 to -6.0 per mill; the heaviest carbon is found in stones with very low-Ca garnets. This implies that the isotopic composition of carbon in harzburgitic rocks is related to the primary depletion process, which suggests ancient formation of the diamonds

  11. X-ray photoelectron study of Si{sup +} ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkova, T; Balabanov, S; Bischoff, L; Krastev, V; Stefanov, P; Avramova, I, E-mail: tania_tsvetkova@yahoo.co.u

    2010-11-01

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si{sup +} ions (E=30 keV, D= 1.10{sup 17} cm{sup -2}). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si{sup +} ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  12. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  13. Electrical and structural properties of diamond films implanted by various doses of oxygen ions

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Jun; Ye Jian-Song; Zheng Guo-Qu; Cao Hua-Zhen; Tan Hong-Chuan

    2006-01-01

    Oxygen-doped diamond films are prepared by implanting various dose oxygen ions into the diamond films synthesized by hot filament chemical vapour deposition, and their electrical and structural properties are investigated. Hall effect measurements show that lower dose xygen ion implantation is beneficial to preparing n-type diamonds. The carrier concentration increases with the dose increasing, indicating that oxygen ions supply electrons to the diamonds.The results of AES spectrum indicate that oxygen ions are doped into the diamond films, and the O-implanted depth is around 0.1μm. Raman spectrum measurements indicate that the lower dose oxygen ion implantation at 1014 cm-2or 1015 cm-2 is favourable for producing less damaged O-doped diamond films.

  14. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.L. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Tang, Y.; Yang, L.; Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y.; Cui, X. [Canadian Light Source Inc., 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada)

    2015-08-31

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B{sub 4}C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B{sub 4}C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp{sup 3} bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp{sup 3} bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp{sup 3} bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films.

  15. Low temperature crystallization of diamond-like carbon films to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tinchev, Savcho, E-mail: stinchev@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Valcheva, Evgenia [Physics Department, Sofia University, J. Bourchier 5, 1164 Sofia (Bulgaria); Petrova, Elitza [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia (Bulgaria)

    2013-09-01

    Plasma surface modification was used to fabricate graphene on the top of insulating diamond-like carbon films. It is shown that by a combination of pulsed argon plasma treatment and thermal annealing at 350{sup o}C it is possible to achieve crystallization of amorphous carbon to graphene. The observed Raman spectra are typical for defected graphene-splitted D- and G-peaks and a broad 2D-peak. Because interpretation of Raman spectra of such complicated system is not easy we have calculated Raman signals of graphene on an amorphous hydrogenated carbon film deposited on a Si substrate. Our simulation results show that multiple reflections and interference effects lead to enhancement of Raman signal of the system. The characteristic for graphene G and 2D bands reach maximal enhancement for thicknesses of the amorphous hydrogenated carbon film of about 75 nm and 230 nm. We estimate that the interference enhancement of the 2D graphene Raman signal is very weak in contrast to that of the G band signal simulated for the underlying diamond-like carbon films on silicon substrate only. Therefore experimentally measured Raman spectra of the whole graphene/a-C:H/Si system probably will consist of interference enhanced but still weak 2D graphene peak and stronger D and G peaks dominated by G and D Raman bands of the a-C:H. This conclusion is in line with observed experimental Raman spectra. Electrical field effect measurements of the samples show ambipolar dependence, typical for single-layer graphene.

  16. Improving nanocrystalline diamond coatings for micro end mills

    Science.gov (United States)

    Heaney, Patrick J.

    A new method is presented for coating 300 mum diameter tungsten carbide (WC) micro end mills with diamond using a hot filament chemical vapor deposition (HF-CVD) method. This method has been developed to create uniform, conformal and continuous diamond coatings. Initial work is shown to prove the feasibility and concept of the project. This was the first work known to coat and evaluate the machining performance WC micro end mills. The performance of uncoated and coated micro end mills was evaluated by dry machining channels in 6061-T6 aluminum. The test results showed a 75% and 90% decrease in both cutting and trust forces for machining, respectfully. The coated tools produced a more predictable surface finish with no burring. These improved results are due to the superior tribological properties of diamond against aluminum. Initial results indicated severe problems with coating delamination causing complete tool failure. After proving the initial concept, new methods for optimizing the coating and improving performance were studied. Each optimization step is monitored through surface analysis techniques to monitor changes in coating morphology and diamond quality. Nucleation density was increased by improving the seed method, using ultra dispersed diamond (UDD) seed. The increase in nucleation density allowed the synthesis of coatings as thin as 60 nm. The adhesion of the coating to the tool was improved through carbon ion implantation (CII). CII is a different surface preparation technique that deactivates the effect of Co, while not weakening the tool. CII also creates a great nucleation layer which diamond can directly grow from, allowing the diamond coating to chemically bond to the substrate improving adhesion and eliminating the need for a seed layer. These thin coatings were shown to be of high quality sp3 trigonaly bonded diamond that resulted in lower machining forces with less delamination. The 90% reduction in machining forces that thin conformal

  17. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    Science.gov (United States)

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest.

  18. Formation of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films in Vacuum Using Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshida, Tomohiro; Nakagawa, You; Yoshitake, Tsuyoshi

    2010-12-01

    Ultrananocrystalline diamond (UNCD)/nonhydrogenated amorphous carbon (a-C) composite films were grown in vacuum using a coaxial arc plasma gun. From the X-ray diffraction measurement, the UNCD crystallite size was estimated to be 1.6 nm. This size is dramatically reduced from that (2.3 nm) of UNCD/hydrogenated amorphous carbon (a-C:H) composite films grown in a hydrogen atmosphere. The sp3/(sp3 + sp2) value, which was estimated from the X-ray photoemission spectrum, was also reduced to be 41%. A reason for it might be the reduction in the UNCD crystallite size. From the near-edge X-ray absorption fine-structure (NEXAFS) spectrum, it was found that the π*C=C and π*C≡C bonds are preferentially formed instead of the σ*C-H bonds in the UNCD/a-C:H films. Since the extremely small UNCD crystallites (1.6 nm) correspond to the nuclei of diamond, we consider that UNCD crystallite formation should be due predominantly to nucleation. The supersaturated condition required for nucleation is expected to be realized in the deposition using the coaxial arc plasma gun.

  19. Surface characterization of diamond-like carbon for ultracold neutron storage

    Science.gov (United States)

    Atchison, F.; Bergmaier, A.; Daum, M.; Döbeli, M.; Dollinger, G.; Fierlinger, P.; Foelske, A.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuźniak, M.; Pichlmaier, A.; Schelldorfer, R.; Zsigmond, G.

    2008-03-01

    We report the characterization of diamond-like carbon (DLC) surfaces to be used for the storage of ultracold neutrons (UCN). The samples investigated were 100-300-nm-thick tetragonal amorphous carbon (ta-C) coatings produced by vacuum-arc technology on thin foils (0.1-0.2 mm aluminum, stainless steel, PET). The diamond sp 3 fraction was determined by X-ray photoelectron spectroscopy (XPS) to be in the range 45-65%. Secondary-ion mass spectroscopy (SIMS) and elastic recoil detection analysis (ERDA) yielded consistent results for the hydrogen contribution (about 1×10 16 cm -2 within the top 20 nm), strongly concentrated within a surface layer of 1 nm thickness. The boron contamination was found to be around 50 at. ppm. The fractional hole area of the coatings is on a level of about 1×10 -4. Temperature cycling of mechanically pre-stressed samples between 77 and 380 K revealed no detrimental effect.

  20. The local crystallization in nanoscale diamond-like carbon films during annealing

    International Nuclear Information System (INIS)

    The local crystallization during annealing at 600 °C in nanoscale diamond-like carbon coatings films grown by pulsed vacuum-arc deposition method was observed using modern techniques of high-resolution transmission electron microscopy. The crystallites formed by annealing have a face-centred cubic crystal structure and grow in the direction [01¯1¯] as a normal to the film surface. The number and size of the crystallites depend on the initial values of the intrinsic stresses before annealing, which in turn depend on the conditions of film growth. The sizes of crystallites are 10 nm for films with initial compressive stresses of 3 GPa and 17 nm for films with initial compressive stresses of 12 GPa. Areas of local crystallization arising during annealing have a structure different from the graphite. Additionally, the investigation results of the structure of nanoscale diamond-like carbon coatings films using Raman spectroscopy method are presented, which are consistent with the transmission electron microscopy research results

  1. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    Science.gov (United States)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  2. Thermal Diffusion Doping of Single Crystal Diamond

    OpenAIRE

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin; Ma, Zhenqiang

    2014-01-01

    With the best overall electronic and thermal properties, single-crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors faces doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion-implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstr...

  3. Atomic oxygen resistant behaviors of Mo/diamond-like carbon nanocomposite lubricating films

    International Nuclear Information System (INIS)

    Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.

  4. Tribological properties of ion beam deposited diamond-like carbon film on silicon nitride

    International Nuclear Information System (INIS)

    The present article reports on the physical characterization and tribological properties of diamond-like carbon (DLC) films deposited on structural Si3N4 substrates. The films were deposited by the direct ion beam deposition technique. The ion beam was produced by plasma discharge of pre-mixed methane and hydrogen gas in a Kaufman-type ion source. The deposited films were found to be amorphous and contained about 70% carbon and 30% hydrogen. The friction coefficient of an uncoated Si3N4 ball on a DLC coated Si3N4 disc starts at about 0.2, then decreases rapidly to 0.1-0.15 with increasing sliding distance. Increasing humidity results in a slight increase in friction coefficient, but a significant decrease in wear factor. The wear factor for the tests at ≅60% rh (relative humidity) are about an order of magnitude smaller than the tests at 3% rh. (orig.)

  5. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  6. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  7. MAGNESIUM PRECIPITATION AND DIFUSSION IN Mg+ ION IMPLANTED SILICON CARBIDE

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-02

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. Calculations by Sawan et al. predict that at a dose of ~100 dpa (displacements per atom), there is ~0.5 at.% Mg generated in SiC. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <100> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4E-19 m2/s.

  8. Metal ion implantation in inert polymers for strain gauge applications

    International Nuclear Information System (INIS)

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1 x 1016 and 1 x 1017 ions/cm2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (16 ions/cm2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (∼50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  9. TEM study of amorphous alloys produced by ion implantation

    International Nuclear Information System (INIS)

    Ion implantation is a technique for introducing foreign elements into surface layers of solids. Ions, as a suitably accelerated beam, penetrate the surface, slow down by collisions with target atoms to produce a doped layer. This non-equilibrium technique can provide a wide range of alloys without the restrictions imposed by equilibrium phase diagrams. This paper reports on the production of some amorphous transition metal-metalloid alloys by implantation. Thinned foils of Ni, Fe and stainless steel were implanted at room temperature with Dy+ and P+ ions at doses between 1013 - 1017 ions/cm2 at energies of 20 and 40 keV respectively. Transmission electron microscopy and selected area diffraction analysis were used to investigate the implanted specimens. Radial diffracted intensity measurements confirmed the presence of an amorphous implanted layer. The peak positions of the maxima are in good agreement with data for similar alloys produced by conventional techniques. Only certain ion/target combinations produce these amorphous layers. Implantations at doses lower than those needed for amorphization often result in formation of new crystalline phases such as an h.c.p. phase in nickel and a b.c.c. phase in stainless steel. (Auth.)

  10. Plasma ion implantation technology at Hughes Research Laboratories

    International Nuclear Information System (INIS)

    The plasma ion implantation (PII) project at Hughes Research Laboratories (HRL) has as its main objective the evaluation and application of PII technology to improve the tribological properties of metal and nonmetal materials used in aerospace, defense, and commercial applications. The HRL PII facility consists of a 4-ft-diamx8-ft-long vacuum chamber capable of implanting objects weighing up to 7000 lbs, and a high-power (100-kW), high-voltage (100-kV) pulse modulator to provide voltage pulses for implantation. Advanced plasma sources have been developed to produce atomic, as well as molecular, nitrogen and oxygen ions, and PII processes have been developed to treat metal and nonmetal materials. The HRL PII facility has been operational since 1989 and has been used for prototype demonstrations of PII technology to achieve (1) a 2--3x improved wear life of Co/WC drill bits used for printed-wiring-board fabrication, (2) an 8x reduced wear rate for TiN-coated cutting tools, and (3) a 2x increased surface hardness for a 7000-lb polymer object, 3 ft by 5 ft by 1 ft

  11. Channel waveguides formed by ion implantation of PECVD grown silica

    International Nuclear Information System (INIS)

    Low loss channel waveguides have been formed in silica-on-silicon by implantation with 5 MeV Si and Ge ions. In these experiments, the substrate was comprised of an undoped layer of silica (30 μm thick) which was grown by plasma enhanced chemical vapour deposition (PECVD). The optical loss characteristics of the waveguides, as measured at both λ 1300 and 1550 nm, were independent of the implanted ion species. A minimum in the attenuation loss (α) of ∼0.10-0.20 dB/cm was obtained following both a pre-implant (1050oC) and a post-implant (400-500oC) anneal of the waveguides. The ability to produce a minimum in α by pre-implant annealing has been attributed to the thermally induced relaxation of the densified structure in the as-grown layer. Only a comparatively small degree of compaction was measured for Si-implanted samples which did not receive a pre-implant anneal. In contrast, the much larger degree of compaction in the pre-implant annealed samples was similar in magnitiude to that observed in fused silica. These are the first reported examples of ion-implanted waveguides using a substrate of silica grown by PECVD. (author)

  12. The compaction of fused silica resulting from ion implantation

    International Nuclear Information System (INIS)

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x1012 - 6x10l6 ions/cm2), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than ∼1015 ions/cm2. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from ∼0.1-0.2 μ to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs

  13. The compaction of fused silica resulting from ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.M.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia); Leech, P.L. [Telstra Research Laboratories, Clayton, Victoria (Australia)

    1996-12-31

    Ion implantation of fused silica results in compaction and consequently an increase in refractive index. This method of modifying the near-surface region has been shown as a potential means for fabricating single mode channel waveguides. This study has measured the compaction of the implanted regions for Si implantations as a function of dose (2x10{sup 12} - 6x10{sup l6} ions/cm{sup 2}), energy (1-9 MeV) and post-implantation annealing temperature (200-900 degree C). For a given energy, a dose-dependence of the step height (depth of compacted region) is observed for doses less than {approx}10{sup 15} ions/cm{sup 2}. At higher doses the step height saturates. For a given dose, a linear trend is evident for the step height as a function of energy suggesting that the major mechanism for this compaction is electronic stopping. As the annealing temperature increases, the step height gradually decreases from {approx}0.1-0.2 {mu} to -10-20% of the original value. From the annealing data, it is possible to extract an activation energy of 0.08 eV associated with the thermal removal of the compacted region. 4 refs., 4 figs.

  14. Surface properties of nitrogen-ion-implanted TiNi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface properties of the N+-ion-implanted TiNi alloy.There is a high nitrogen content region at the outermost surface of the N+-ion-implanted TiNi alloy.The detected nitrogen exists mainly in the form of TiN.Small amounts of Ti3O5 and TiO2 also exist on the surface of the N+-ion-implanted TiNi sample.The modified layer of the N+-ion-implanted sample can work as an obstacle layer of the nickel's dissolution, which obstructs Ni dissolving from the TiNi surface effectively.

  15. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  16. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  17. Single-Ion Implantation for the Development of Si-Based MOSFET Devices with Quantum Functionalities

    Directory of Open Access Journals (Sweden)

    Jeffrey C. McCallum

    2012-01-01

    Full Text Available Interest in single-ion implantation is driven in part by research into development of solid-state devices that exhibit quantum behaviour in their electronic or optical characteristics. Here, we provide an overview of international research work on single ion implantation and single ion detection for development of electronic devices for quantum computing. The scope of international research into single ion implantation is presented in the context of our own research in the Centre for Quantum Computation and Communication Technology in Australia. Various single ion detection schemes are presented, and limitations on dopant placement accuracy due to ion straggling are discussed together with pathways for scale-up to multiple quantum devices on the one chip. Possible future directions for ion implantation in quantum computing and communications are also discussed.

  18. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; Hosson, J.Th.M. De

    2009-01-01

    For reduction of friction and enhancement of wear resistance of dynamic rubber seals, thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma trea

  19. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the unc

  20. A simple ion implanter for material modifications in agriculture and gemmology

    Science.gov (United States)

    Singkarat, S.; Wijaikhum, A.; Suwannakachorn, D.; Tippawan, U.; Intarasiri, S.; Bootkul, D.; Phanchaisri, B.; Techarung, J.; Rhodes, M. W.; Suwankosum, R.; Rattanarin, S.; Yu, L. D.

    2015-12-01

    In our efforts in developing ion beam technology for novel applications in biology and gemmology, an economic simple compact ion implanter especially for the purpose was constructed. The designing of the machine was aimed at providing our users with a simple, economic, user friendly, convenient and easily operateable ion implanter for ion implantation of biological living materials and gemstones for biotechnological applications and modification of gemstones, which would eventually contribute to the national agriculture, biomedicine and gem-industry developments. The machine was in a vertical setup so that the samples could be placed horizontally and even without fixing; in a non-mass-analyzing ion implanter style using mixed molecular and atomic nitrogen (N) ions so that material modifications could be more effective; equipped with a focusing/defocusing lens and an X-Y beam scanner so that a broad beam could be possible; and also equipped with a relatively small target chamber so that living biological samples could survive from the vacuum period during ion implantation. To save equipment materials and costs, most of the components of the machine were taken from decommissioned ion beam facilities. The maximum accelerating voltage of the accelerator was 100 kV, ideally necessary for crop mutation induction and gem modification by ion beams from our experience. N-ion implantation of local rice seeds and cut gemstones was carried out. Various phenotype changes of grown rice from the ion-implanted seeds and improvements in gemmological quality of the ion-bombarded gemstones were observed. The success in development of such a low-cost and simple-structured ion implanter provides developing countries with a model of utilizing our limited resources to develop novel accelerator-based technologies and applications.

  1. Electrical properties of amorphous chalcogenide/silicon heterojunctions modified by ion implantation

    OpenAIRE

    Fedorenko, Yanina G.; Hughes, Mark A.; Colaux, Julien L.; Jeynes, C.; Gwilliam, Russell M.; Homewood, Kevin P.; Yao, Jin; Hewak, Dan W.; Lee, Tae-Hoon; Elliott, Stephen R; Gholipour, B.; Curry, Richard J.

    2014-01-01

    Doping of amorphous chalcogenide films of rather dissimilar bonding type and resistivity, namely, Ga-La-S, GeTe, and Ge-Sb-Te by means of ion implantation of bismuth is considered. To characterize defects induced by ion-beam implantation space-charge-limited conduction and capacitance-voltage characteristics of amorphous chalcogenide/silicon heterojunctions are investigated. It is shown that ion implantation introduces substantial defect densities in the films and their interfaces with silico...

  2. Electrical doping of Hg Cd Te by ion implantation and heat treatments

    International Nuclear Information System (INIS)

    The general properties of junctions made by ion implantation in Hg Cd Te semiconductor are recalled structure of junctions made by implantation damage, defects, anneals, junctions made by active impurities. The effect of acceptor evolution in this semiconductor after heat treatments and a study of the kinetics are presented. Very high quality devices with very small size and large two-dimensional arrays are shown to be possibly achieved using ion implantation technique of junction formation in the semiconductor epilayers grown by LPE

  3. Direction-dependent RBS channelling studies in ion implanted LiNbO3

    Science.gov (United States)

    Wendler, E.; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-01

    Damage formation in ion implanted LiNbO3 was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO3 crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO3 lattice structure and most likely also form NbLi antisite defects.

  4. Large area buried nanopatterning by broad ion implantation without any mask or direct writing

    OpenAIRE

    Karmakar, Prasanta; Satpati, Biswarup

    2013-01-01

    We have introduced here a simple, single step and cost effective broad ion beam technique for preparation of nanoscale electronic, magnetic, optical and mechanical devices without the need of resist, mask, or focused electron and ion beams. In this approach, broad beam ion implantation of desired atom on a prefabricated ion beam patterned surface promotes site selective deposition by adjusting the local angle of ion implantation. We show that implantation of Fe ions on an O+ induced pre fabri...

  5. Synthesis of functional diamond-like carbon nanocomposite films containing titanium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuo-Cheng [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.t [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Taiwan (China)

    2010-10-01

    Synthesis of diamond-like carbon (DLC) films with UV-induced-hydrophilicity function was studied by inductively-coupled plasma (ICP) chemical vapor deposition. Titanium tetraisopropoxide (TTIP) and oxygen gases were employed as the precursors to deposit diamond-like nanocomposite films containing titanium dioxide (TiO{sub 2}) nanoparticles. X-ray diffraction and high-resolution transmission electron microscopy revealed that TiO{sub 2} nanocrystallites were formed in the DLC films when oxygen concentration was higher than TTIP concentration during deposition. The DLC nanocomposite film was hydrophobic without ultraviolet (UV) irradiation, and became highly hydrophilic under UV irradiation, exhibiting the self-cleaning effect. A very broad peak centered at 1580 cm{sup -1} was observed in the Raman spectra confirming the formation of DLC films. The hardness of the film was about 8 GPa with a stress of 3 GPa. ICP was essential in forming the photocatalytic TiO{sub 2} nanoparticles in the DLC matrix.

  6. N and Cr ion implantation of natural ruby surfaces and their characterization

    Science.gov (United States)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  7. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp3) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp2 and sp1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  8. Diamond like carbon coatings deposited by microwave plasma CVD: XPS and ellipsometric studies

    Indian Academy of Sciences (India)

    R M Dey; M Pandey; D Bhattacharyya; D S Patil; S K Kulkarni

    2007-12-01

    Diamond-like carbon (DLC) films were deposited by microwave assisted chemical vapour deposition system using d.c. bias voltage ranging from –100 V to –300 V. These films were characterized by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry techniques for estimating 3/2 ratio. The 3/2 ratio obtained by XPS is found to have an opposite trend to that obtained by spectroscopic ellipsometry. These results are explained using sub-plantation picture of DLC growth. Our results clearly indicate that the film is composed of two different layers, having entirely different properties in terms of void percentage and 3/2 ratio. The upper layer is relatively thinner as compared to the bottom layer.

  9. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag87.5Cu12.5-alloy (10 nm)/DLC (140 nm)/Ag87.5Cu12.5-alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  10. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    Science.gov (United States)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  11. Characterization and development of diamond-like carbon coatings for storing ultracold neutrons

    CERN Document Server

    Grinten, M G D; Shiers, D; Baker, C A; Green, K; Harris, P G; Iaydjiev, P S; Ivanov, S N; Geltenbort, P

    1999-01-01

    In order to determine the suitability of diamond-like carbon (DLC) as a material for storing ultracold neutrons to use in neutron electric-dipole moment (EDM) experiments, a number of tests on DLC coatings have been performed. Thin DLC layers deposited on quartz and aluminium substrates by chemical vapour deposition have been characterised by neutron transmission, neutron reflectometry, electron microscopy and neutron and mercury storage and depolarisation lifetime measurements. Two types of DLC have been compared; DLC made by chemical vapour deposition from natural methane and DLC made by chemical vapour deposition from deuterated methane. With these samples we determined the density, hydrogen concentration and Fermi potential of the coatings. DLC coatings made from deuterated methane are now successfully being used in an experiment to measure the EDM of the neutron.

  12. Tantalum as a buffer layer in diamond-like carbon coated artificial hip joints.

    Science.gov (United States)

    Kiuru, Mirjami; Alakoski, Esa; Tiainen, Veli-Matti; Lappalainen, Reijo; Anttila, Asko

    2003-07-15

    The acid resistance of tantalum coated and uncoated human hip joint prostheses was studied with commercial CrCoMo acetabular cups. The samples were exposed to 10% HCl solution and the quantities of dissolved Cr, Co, and Mo were measured with proton-induced X-ray emission (PIXE). The absolute quantities were obtained with the use of Cr and Se solution standards. Tantalum coatings (thicknesses 4-6 microm) were prepared in vacuum with magnetron sputtering. Tantalum coating decreased the corrosion rate by a factor of 10(6). As a spinoff from recent wear tests on artificial hip joints it was shown that tantalum has excellent mechanical properties as an intermediate layer of diamond-like carbon (DLC) coatings. When tantalum was tested together with DLC on three metal-on-metal hip joint pairs in a hip simulator, no observable defects occurred during 15 million walking cycles with a periodic 50-300-kg load (Paul curve). PMID:12808604

  13. Experimental Study of Diamond Like Carbon (DLC) Coated Electrodes for Pulsed High Gradient Electron Gun

    CERN Document Server

    Paraliev, M; Ivkovic, S; Le Pimpec, F

    2010-01-01

    For the SwissFEL Free Electron Laser project at the Paul Scherrer Institute, a pulsed High Gradient (HG) electron gun was used to study low emittance electron sources. Different metals and surface treatments for the cathode and anode were studied for their HG suitability. Diamond Like Carbon (DLC) coatings are found to perform exceptionally well for vacuum gap insulation. A set of DLC coated electrodes with different coating parameters were tested for both vacuum breakdown and photo electron emission. Surface electric fields over 250MV/m (350 - 400kV, pulsed) were achieved without breakdown. From the same surface, it was possible to photo-emit an electron beam at gradients up to 150MV/m. The test setup and the experimental results are presented

  14. Low-friction behaviour of boundary-lubricated diamond-like carbon coatings containing tungsten

    International Nuclear Information System (INIS)

    It is generally accepted and well described that the mechanism by which extreme-pressure (EP) and antiwear (AW) additives reduce the friction and wear of metallic surfaces under boundary lubrication is the formation of tribochemical films. Although investigations of diamond-like carbon (DLC)-coated surfaces showed improved tribological properties when lubricated by additivated oil, the mechanism responsible is not fully understood. Therefore, the aim of the investigation was to determine the mechanism responsible for the low-friction behaviour of W-containing DLC coatings when lubricated with polyalphaolefin (PAO) oil containing EP or AW additives and to obtain some further understanding to this important area. The results of the present investigation clearly show that low-friction behaviour of boundary-lubricated W-DLC coatings is governed by formation of WS2-containing tribofilms on the steel countersurface or exposed steel substrate, which reduce friction by up to 50%

  15. Influences of ultraviolet irradiation on structure and tribological properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Two types of diamond-like carbon (DLC) films with different bonding configurations were produced by pulse-assisted and DC-assisted plasma chemical vapor deposition. The chemical composition, surface morphology, microstructure, internal stress and tribological properties of the two films before and after the ultraviolet (UV) irradiation were investigated and compared. It was found that the UV irradiation had little effects on the chemical composition and surface morphology of both the films, but greatly influenced their tribological properties in the opposite trends. This result was attributed to the different changing outcomes of the bonding configuration induced by the UV actions of primary photo-dissociation and secondary recombination, wherein the inherent bonding configuration and internal stress played important roles.

  16. Hydrogenated diamond-like carbon film deposited on UHMWPE by RF-PECVD

    International Nuclear Information System (INIS)

    In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 deg. C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO2 ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp3 content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.

  17. Structure and mechanical properties of tungsten-containing hydrogenated diamond like carbon coatings for space applications

    Science.gov (United States)

    Jun, Zheng; Hui, Zhou; Zhi-hua, Wan; Rui-peng, Sang

    Tungsten-containing diamond like carbon (W-C:H) coatings were prepared by unbalanced magnetron sputtering (UBM) using tungsten carbide targets in Ar/C2H2 atmosphere. The structure and mechanical properties of these coatings with different C2H2 flow (from 40 sccm to 140 sccm) were studied. According to the analysis of Raman spectroscopy and the measurement of hardness and Young's modulus about the coatings, it was showed that sp3/sp2 ratio in the coatings changed and the hardness and Young's modulus decreased with increase of the C2H2 flow. Besides, the adhension and friction wear properties of the coatings were evaluated using the scratch test and dry sliding tests respectively. It was found that the coatings exhibited very good adhension and the C2H2 flow (actually the hydrogen) played a very important role in the tribological behavior of the W-C:H coatings in vacuum.

  18. In Vitro Durability - Pivot bearing with Diamond Like Carbon for Ventricular Assist Devices

    CERN Document Server

    de Sá, Rosa Corrêa Leoncio; Leão, Tarcísio Fernandes; da Silva, Evandro Drigo; da Fonseca, Jeison Willian Gomes; da Silva, Bruno Utiyama; Leal, Edir Branzoni; Moro, João Roberto; de Andrade, Aron José Pazin; Bock, Eduardo Guy Perpétuo

    2015-01-01

    Institute Dante Pazzanese of Cardiology (IDPC) develops Ventricular Assist Devices (VAD) that can stabilize the hemodynamics of patients with severe heart failure before, during and/or after the medical practice; can be temporary or permanent. The ADV's centrifugal basically consist of a rotor suspended for system pivoting bearing; the PIVOT is the axis with movement of rotational and the bearing is the bearing surface. As a whole system of an implantable VAD should be made of long-life biomaterial so that there is no degradation or deformation during application time; surface modification techniques have been widely studied and implemented to improve properties such as biocompatibility and durability of applicable materials. The Chemical Vapour Deposition technique allows substrates having melting point higher than 300 {\\deg}C to be coated, encapsulated, with a diamond like carbon film (DLC); The test simulated the actual conditions in which the system of support remains while applying a ADV. The results hav...

  19. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  20. Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2015-01-01

    Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.

  1. Fabrication of Diamond-like Carbon Films by Ion Assisted Middle Frequency Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-chen; SUN Shao-ni; ZHOU Yi; MA Sheng-ge; BA De-chun

    2006-01-01

    Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.

  2. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Cui; LI Guo-Qing; GOU Wei; MU Zong-Xin; ZHANG Cheng-Wu

    2004-01-01

    @@ Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  3. Tribological Characteristic of Diamond-like Carbon Films Investigated by Lateral Force Microscope

    Institute of Scientific and Technical Information of China (English)

    DINGJian-ning; ZHUShou-xing; FANZhen; LIChang-sheng; CAILan; YANGJi-chang

    2004-01-01

    Tribological characteristic of different thick diamond- like carbon (DLC) fihns was stymied. A geometrical method was applied to calibrate the cantilever spring constant and to calculate tbe normal and lateral forces, respectively. Experimental results show that the lateral force under different applied loads is proportional to the normal force for the DLC films with the thickness of 153.4nm and 64.9nm. However, for the thickness of 4.48nm and 2.78nm DLC films, lateral force is nonlinear to normal force, which is opposed to the Amonton's law. The single asperity regime and the DMT model were put forward to predict the possible nanotribological mecb-anism between the probe and DLC film.

  4. Role of atomic transverse migration in growth of diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    Ma Tian-Bao; Hu Yuan-Zhong; Wang Hui

    2007-01-01

    The growth of diamond-like carbon (DLC) films is studied using molecular dynamics simulations. The effect of impact angle on film structure is carefully studied, which shows that the transverse migration of the incident atoms is the main channel of film relaxation. A transverse-migration-induced film relaxation model is presented to elucidate the process of film relaxation which advances the original model of subplantation. The process of DLC film growth on a rough surface is also investigated, as well as the evolution of microstructure and surface morphology of the film. A preferential-to-homogeneous growth mode and a smoothing of the film are observed, which are due to the transverse migration of the incident atoms.

  5. Kinetics and thermodynamics of human serum albumin adsorption on silicon doped diamond like carbon

    International Nuclear Information System (INIS)

    To gain a better understanding of protein adsorption onto biomaterial surfaces is required for the control of biocompatibility and bioactivity. Various samples of diamond like carbon (DLC) and silicon-doped DLC were synthesised using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of human serum albumin (HSA) with doped and undoped DLC films was investigated using spectroscopic ellipsometry (SE) and other surface analysis techniques. The results highlighted an increase in both contact angle and hydrophobicity with increasing silicon dopant levels. A reduction on the contact angle values. After adsorption of HSA, the films showed a reduction in the contact angle with a significant change in the cosΔ and this gap increased with increasing surface coverage of HSA. The adsorption kinetics of HSA were also investigated and revealed that the maximum adsorption occurred at pH 5.0 and the process involved chemisorption. The experimental isotherm data were analysed using the Langmuir and Freundlich‎ models. The amount of HSA adsorbed increased with contact time and reached saturation ‎after 30 min. The adsorption ‎process was found to be pseudo first order with respect to the bulk concentration and was dependent on both the concentration of protein and surface characteristics of the samples. The amount of adsorbed HSA was higher with higher levels of silicon doping of the DLC. Therefore, doping DLC may provide an approach to controlling the protein adsorption. - Graphical abstract: The average thickness layer of HSA measurement onto surfaces of DLC and Si-DLC. - Highlights: • Diamond Like Carbon (DLC) and Silicon doped DLC were synthesised and characterised. • Si-DLC increases the hydrophobicity and decreases the surface free energy. • Adsorption study using human serum albumin (HSA). • The adsorbed amount of HSA increases with increasing of Silicon content DLC. • Adsorption process follow pseudo

  6. Kinetics and thermodynamics of human serum albumin adsorption on silicon doped diamond like carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mukhtar H., E-mail: ahmed-m@email.ulster.ac.uk; Byrne, John A.; McLaughlin, James

    2015-03-15

    To gain a better understanding of protein adsorption onto biomaterial surfaces is required for the control of biocompatibility and bioactivity. Various samples of diamond like carbon (DLC) and silicon-doped DLC were synthesised using plasma enhanced chemical vapour deposition (PECVD). The effects of surface morphology on the interaction of human serum albumin (HSA) with doped and undoped DLC films was investigated using spectroscopic ellipsometry (SE) and other surface analysis techniques. The results highlighted an increase in both contact angle and hydrophobicity with increasing silicon dopant levels. A reduction on the contact angle values. After adsorption of HSA, the films showed a reduction in the contact angle with a significant change in the cosΔ and this gap increased with increasing surface coverage of HSA. The adsorption kinetics of HSA were also investigated and revealed that the maximum adsorption occurred at pH 5.0 and the process involved chemisorption. The experimental isotherm data were analysed using the Langmuir and Freundlich‎ models. The amount of HSA adsorbed increased with contact time and reached saturation ‎after 30 min. The adsorption ‎process was found to be pseudo first order with respect to the bulk concentration and was dependent on both the concentration of protein and surface characteristics of the samples. The amount of adsorbed HSA was higher with higher levels of silicon doping of the DLC. Therefore, doping DLC may provide an approach to controlling the protein adsorption. - Graphical abstract: The average thickness layer of HSA measurement onto surfaces of DLC and Si-DLC. - Highlights: • Diamond Like Carbon (DLC) and Silicon doped DLC were synthesised and characterised. • Si-DLC increases the hydrophobicity and decreases the surface free energy. • Adsorption study using human serum albumin (HSA). • The adsorbed amount of HSA increases with increasing of Silicon content DLC. • Adsorption process follow pseudo

  7. Metal ion implantation for large scale surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  8. XPS and micro-mechanical characterisation of nitrogen ion implanted low alloy steel

    Institute of Scientific and Technical Information of China (English)

    A.O.Olofinjana; Z.Chen; J.M.Bell

    2001-01-01

    The surface composition of low alloy steel after N2+ implantation was studied with X-rayphoto-electron spectroscopy (XPS). The effect of the implantation on the mechanical hardnesswas evaluated by ultra-micro hardness indentation. Chemical characterisation of the surface indi-cated that a thin layer rich in N, C and Si was formed. It is shown that Fe played little role in thechemical composition and the structure of the modified surface. The mechanical hardness of N2+implanted surface was 35-50 GPa compared with a value of 10 GPa for the untreated sample. Itis thought that the high hardness observed on the surface and in the sub-surface was as a resultof chemical modification to form a film of Si doped carbon nitride. There is strong evidence fromthe XPS and the nanoindentation studies that the bonding structure of the C-N in the near surfaceis essentially sp3 types expected in crystalline C3N4. The value of nitrogen ion implantation asprocess for improving the wear resistance of low alloy steels is emphasized.

  9. Screening of Bioflocculant-Producing Strain by Ion Implantation and Flocculating Characteristics of Bioflocculants

    Science.gov (United States)

    Li, Peirui; Li, Zongwei; Li, Zongyi; Qin, Guangyong; Huo, Yuping

    2008-06-01

    A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into FJ-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the flocculating rate increased by 34.26% than that of the original. Sucrose, complex nitrogen source contained yeast extract, urea and pH 7.0 ~ 9.0 were chosen as the best carbon source, nitrogen source and initial solution pH for bioflocculant production, respectively. The bioflocculant kept high and stable flocculating activity at alkalinous reaction mixture with a pH beyond 7.0, while the flocculating activity was remarkably reduced when the reaction pH was lower than 7.0. Addition of many cations could obviously increase the flocculating rate, among which Ca2+ demonstrated the best effect. The bioflocculant had very strong acid-base stability and thermo-stability. The flocculating rate kept over 86% when pH of the bioflocculant was in a range of 3.0 ~ 12.0, and the change of flocculating activity was not great when heated at 100°C for 60 min.

  10. Effect of ion implantation upon erosion resistance of polyimide films in space environment

    Institute of Scientific and Technical Information of China (English)

    DUO Shu-wang; LI Mei-shuan; ZHOU Yan-chun

    2006-01-01

    The atomic oxygen (AO) resistance of Si ion implanted polyimide films in the ground-based AO simulation facility was investigated by scanning electron microscopy (SEM),X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The results show that at the initial stage of AO exposure the implanted sample has a small mass change,and then is stabilized. The erosion yield of the implanted polyimide film decreases by about two orders of magnitude compared with that of the polyimide film. The analysis through XPS and AES indicates that a continuous high-quality protective oxide-based (SiO2) surface layer is formed on the implanted polyimide films after the AO exposure. It can provide high-quality erosion protection for these materials. The implanted polyimide fully restores its original color and the carbonization effect disappears on the whole after AO exposure. Thermal-optical properties and surface morphology of the implanted polyimide materials are not altered. The modified materials have a markedly increased erosion resistance in AO environment.

  11. Effects of N + B ion implantation on the tribological behaviour of GCr15 bearing steel

    International Nuclear Information System (INIS)

    The ion implantation of N + B (3.1 x 1017 N ions cm-2 at 90 keV followed by 3.2 x 1017 B ions cm-2 at 90 keV) into GCr15 bearing steel was carried out. The phase structure and the distribution and binding energy of elements in the implanted layer were investigated using X-ray diffraction. Auger electron spectroscopy and X-ray photoelectron spectroscopy. The dry sliding friction and wear behaviour of the implanted layer and GCr15 bearing steel substrate was also examined in detail using a friction and wear machine. It is found that a surface layer with a lower friction coefficient and a higher wear resistance than the substrate was obtained by implanting N + B into GCr15 bearing steel. Because of dispersion strengthening of the hexagonal BN phase and ε-Fe2N-Fe3N phase and solid solution strengthening of B atoms, the surface hardness of the implanted layer is increased. As a result of the increased hardness and the existence of a graphite-like carbon film on the surface of the implanted layer, the antiadhesive and antiabrasive properties of the implanted layer were considerably enhanced. The friction coefficient was reduced from 0.60 to 0.20 and the wear resistance was also greatly improved. (orig.)

  12. Screening of Bioflocculant-Producing Strain by Ion Implantation and Flocculating Characteristics of Bioflocculants

    Institute of Scientific and Technical Information of China (English)

    LI Peirui; LI Zongwei; LI Zongyi; QIN Guangyong; HUO Yuping

    2008-01-01

    A bioflocculant-producing mutator strain, NIM-192, was screened out through nitro-gen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the flocculating rate increased by 34.26% than that of the orig-inal. Sucrose, complex nitrogen source contained yeast extract, urea and pH 7.0 ~ 9.0 were chosen as the best carbon source, nitrogen source and initial solution pH for bioflocculant production, respectively. The bioflocculant kept high and stable flocculating activity at alkalinous reaction mixture with a pH beyond 7.0, while the flocculating activity was remarkably reduced when the reaction pH was lower than 7.0. Addition of many cations could obviously increase the flocculating rate, among which Ca2+ demonstrated the best effect. The bioflocculant had very strong acid-base stability and thermo-stability.The flocculating rate kept over 86% when pH of the bioflocculant was in a range of 3.0 ~ 12.0, and the change of flocculating activity was not great when heated at 100℃ for 60 min.

  13. Multiple ion implantation effects on hardness and fatigue properties of Fe13Cr15Ni alloys

    Science.gov (United States)

    Rao, G. R.; Lee, E. H.; Boatner, L. A.; Chin, B. A.; Mansur, L. K.

    1992-09-01

    Eight complex alloys based on the composition Fe13Cr15Ni2Mo2Mn0.2Ti0.8Si0.06C were implanted simultaneously with 400 keV boron and 550 keV nitrogen, and investigated for microhardness changes and bending fatigue life. The dual implantation was found to decrease the fatigue life of all eight alloys although the implantation increased near-surface hardness of all eight alloys. This result was in contrast to the significant improvements found in the fatigue life of four B, N implanted simple Fe13Cr15Ni alloys. It was determined that the implantation suppressed surface slip band formation, the usual crack initiation site, but in the complex alloys, this suppression promoted a shift to grain boundary cracking. A similar phenomenon was also observed when the simple Fe13Cr15Ni alloys were simultaneously implanted with boron, nitrogen and carbon wherein fatigue life decreased, and gain, grain boundary cracks were observed. To test the hypothesis that ion implantation made the overall surface more fatigue resistant but led to a shift to grain boundary cracking, single crystal specimens of the ternary Fe15Cr15Ni were also implanted with boron and nitrogen ions. The fatigue life decreased for the single crystal specimens also, due to concentration of applied stress along fewer slip bands as compared to the control single crystal specimens were applied stress was relieved by slip band formation over the entire gauge region.

  14. Preparation and investigation of diamond-like carbon nanocomposite thin films for nanophotonics

    Science.gov (United States)

    Panosyan, Zh.; Gharibyan, A.; Sargsyan, A.; Panosyan, H.; Hayrapetyan, D.; Yengibaryan, Y.

    2010-08-01

    Flexible Plasma Enhanced Chemical Vapor Deposition (PECVD) technology of Diamond Like Carbon (DLC) thin film preparation on the surface of Si and organic glasses has been elaborated. Modification of PECVD equipment has been implemented by integrating ion and magnetron sources. In this paper toluene (C7H8) has been used as a nanocmposite film forming hydrocarbon which decomposition yields to the multi component plasma in vacuum chamber. Nitrogen has been used as a dopand. Investigation of plasma composition influence to the optical and mechanical properties of DLC films has been observed. The presence of sp3 and sp2 hybridization states have been proven by Raman spectroscopy and their ratios have been estimated with the help of ID, IG characteristic lines for different technological conditions. High precision refractive index and thickness measurements of DLC films have been implemented by means of laser ellipsometer. Refractive indices of prepared films have been varied in the region 1.5-3.1 and thicknesses have been varied in the region 50-250 nm. Extraordinary change in refractive index has been explained with the help of formation of differently sized sp2 carbon based clusters in the sp3 matrix. Different types of carbon and hydrogen bonds have been observed in the obtained structures by means of FTIR. Obvious prospectives of DLC nanocomposite film as a promissing nanophotonic material has been discussed.

  15. Effect of source gas chemistry on tribological performance of diamond-like carbon films.

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Eryilmaz, O. L.; Fenske, G. R.; Nilufer, I. B.

    1999-08-23

    In this study, we investigated the effects of various source gases (i. e., methane, ethane, ethylene, acetylene and methane + hydrogen) on friction and wear performance of diamond-like carbon (DLC) films. Specifically, we described the anomalous nature and fundamental friction and wear mechanisms of DLC films derived from gas discharge plasmas with very low to very high hydrogen content. The films were deposited on steel substrates by a plasma enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. The results of tribological tests revealed a close correlation between the friction and wear coefficients of the DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than the films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.002) was achieved with a film derived from 25% methane--75% hydrogen while the films derived from acetylene had a coefficient of 0.15. Similar correlations were observed on wear rates. Specifically, the films derived from hydrogen rich plasmas had the least wear while the films derived from pure acetylene suffered the highest wear. We used a combination of scanning and transmission electron microscopy and Raman spectroscopy to characterize the structural chemistry of the resultant DLC films.

  16. Electron transport in W-containing amorphous carbon-silicon diamond-like nanocomposites

    International Nuclear Information System (INIS)

    The electron transport in amorphous hydrogenated carbon-silicon diamond-like nanocomposite films containing tungsten over the concentration range 12-40 at.% was studied in the temperature range 80-400 K. The films were deposited onto polycrystalline substrates, placed on the RF-biased substrate holder, by the combination of two methods: PECVD of siloxane vapours in the stimulated dc discharge and dc magnetron sputtering of tungsten target. The experimental dependences of the conductivity on the temperature are well fitted by the power-law dependences over the entire temperature range. The results obtained are discussed in terms of the model of inelastic tunnelling of the electrons in amorphous dielectrics. The average number of localized states (n) in the conducting channels between metal clusters calculated in the framework of this model is characterized by the non-monotonic dependence on the tungsten concentration in the films. The qualitative explanation of the results on the basis of host carbon-silicon matrix structural modifications is proposed. The evolution of the carbon-silicon matrix microstructure by the increase in the tungsten concentration is confirmed by the Raman spectroscopy data

  17. Adsorption of glycine on diamond (001): Role of bond angle of carbon atoms

    Science.gov (United States)

    Li, Lin; Xu, Jing; Xu, Li-Fang; Lian, Chao-Sheng; Li, Jun-Jie; Wang, Jian-Tao; Gu, Chang-Zhi

    2015-05-01

    The adsorption behaviors of glycine on diamond (001) are systematically investigated by first-principles calculations. We have considered all possible adsorption configurations without a surface dangling bond and give a quantitative analysis for the relationship between the deviation of carbon bond angle and adsorption energy. We found that a smaller distortion of carbon covalent bond angle results in a more stable adsorption structure, and the most stable adsorption has a benzene-ring-like structure with the highest adsorption energy of 5.11 eV per molecule and the minimum distortion of carbon covalent bond angle. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272278, 91323304, 10774177, and 11374341), the National Basic Research Program of China (Grand No. 2009CB930502), the Knowledge Innovation Project of Chinese Academy of Sciences (Grand No. KJCX2-EW-W02), the Fundamental Research Funds for the Central Universities of Ministry of Education of China, and the Research Funds of Renmin University of China.

  18. Molecular dynamics simulation of the deposition process of hydrogenated diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    ZHANG YuJun; DONG GuangNeng; MAO JunHong; XIE YouBai

    2008-01-01

    The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and itbecomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.

  19. Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography

    Directory of Open Access Journals (Sweden)

    Federico Picollo

    2014-12-01

    Full Text Available The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm by exploiting the metastable nature of this allotropic form of carbon. A 16‑channels MEA (Multi Electrode Array suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3 to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.

  20. Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography

    CERN Document Server

    Picollo, F; Carbone, E; Croin, L; Enrico, E; Forneris, J; Gosso, S; Olivero, P; Pasquarelli, A; Carabelli, V

    2016-01-01

    The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity Ohm cm) by exploiting the metastable nature of this allotropic form of carbon. A 16 channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5x4.5x0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks t...

  1. Technology for boron-doped layers formation on the diamond

    Directory of Open Access Journals (Sweden)

    Zyablyuk K. N.

    2012-10-01

    Full Text Available The authors investigated natural type IIa diamond crystals and CVD diamond films. The article presents electrophysical parameters of the structures obtained in different modes of ion implantation of boron into the crystal with further annealing. Parameters of the crystals with a high nitrogen impurity density indicate that they can be used for the manufacture of microwave field-effect transistors operating at room temperature. CVD diamond films doped with boron during the growth process also have the required for MOSFET manufacture carrier mobility. However, due to the high activation energy of boron, the required channel conductivity is achieved at high operating temperatures.

  2. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation

    International Nuclear Information System (INIS)

    In the present study, low energy ion implantation was employed to engineer the surface of a Zr-based bulk metallic glass (BMG), aiming at improving the biocompatibility and imparting bioactivity to the surface. Ca- or Ar-ions were implanted at 10 or 50 keV at a fluence of 8 × 1015 ions/cm2 to (Zr0.55Al0.10Ni0.05Cu0.30)99Y1 (at.%) BMG. The effects of ion implantation on material properties and subsequent cellular responses were investigated. Both Ar- and Ca-ion implantations were suggested to induce atom displacements on the surfaces according to the Monte-Carlo simulation. The change of atomic environment of Zr in the surface regions as implied by the alteration in X-ray absorption measurements at Zr K-edge. X-ray photoelectron spectroscopy revealed that the ion implantation process has modified the surface chemical compositions and indicated the presence of Ca after Ca-ion implantation. The surface nanohardness has been enhanced by implantation of either ion species, with Ca-ion implantation showing more prominent effect. The BMG surfaces were altered to be more hydrophobic after ion implantation, which can be attributed to the reduced amount of hydroxyl groups on the implanted surfaces. Higher numbers of adherent cells were found on Ar- and Ca-ion implanted samples, while more pronounced cell adhesion was observed on Ca-ion implanted substrates. The low energy ion implantation resulted in concurrent modifications in atomic structure, nanohardness, surface chemistry, hydrophobicity, and cell behavior on the surface of the Zr-based BMG, which were proposed to be mutually correlated with each other. - Highlights: • Low energy ion implantation of a Zr-based BMG for bone implant applications • Concurrent modifications in surface structure and properties after irradiation • Promoted adhesion of bone-forming cells after Ar- or Ca-ion implantation

  3. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom-Su; Kim, Jin Seong [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Young Min [DIO Corporation, 66, Centum seo-ro, Haeundae-gu, Busan (Korea, Republic of); Choi, Bo-Young [Department of Oral and maxillofacial Surgery, Wonkwang University Daejeon Dental Hospital, Daejeon 302-830 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-ro, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10{sup 16} ions/cm{sup 2} was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation

  4. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    International Nuclear Information System (INIS)

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 1016 ions/cm2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  5. Engineering analysis of diamond-like carbon coated polymeric materials for biomedical applications.

    Science.gov (United States)

    Alanazi, A; Nojiri, C; Kido, T; Noguchi, T; Ohgoe, Y; Matsuda, T; Hirakuri, K; Funakubo, A; Sakai, K; Fukui, Y

    2000-08-01

    Diamond-like carbon (DLC) films have received much attention recently owing to their properties, which are similar to diamond: hardness, thermal conductivity, corrosion resistance against chemicals, abrasion resistance, good biocompatibility, and uniform flat surface. Furthermore, DLC films can be deposited easily on many substrates for wide area coat at room temperature. DLC films were developed for applications as biomedical materials in blood contacting-devices (e.g., rotary blood pump) and showed good biocompatibility for these applications. In this study, we investigated the surface roughness by Atomic Force Microscopy (AFM) and Hi-vision camera, SEM for surface imaging. The DLC films were produced by radio frequency glow discharge plasma decomposed of hydrocarbon gas at room temperature and low pressure (53 Pa) on several kinds of polycarbonate substrates. For the evaluation of the relation between deposition rate and platelet adhesion that we investigated in a previous study, DLC films were deposited at the same methane pressure for several deposition times, and film thickness was investigated. In addition, the deposition rate of DLC films on polymeric substrates is similar to the deposition rate of those deposited on Si substrates. There were no significant differences in substrates' surface roughness that were coated by DLC films in different deposition rates (16-40 nm). The surface energy and the contact angle of the DLC films were investigated. The chemical bond of DLC films also was evaluated. The evaluation of surface properties by many methods and measurements and the relationship between the platelet adhesion and film thickness is discussed. Finally, the presented DLC films appear to be promising candidates for biomedical applications and merit investigation. PMID:10971249

  6. SEM analysis of ion implanted SiC

    Energy Technology Data Exchange (ETDEWEB)

    Malherbe, Johan B., E-mail: johan.malherbe@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Berg, N.G. van der; Botha, A.J.; Friedland, E.; Hlatshwayo, T.T.; Kuhudzai, R.J. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Wendler, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität, 07743 Jena (Germany); Chakraborty, P. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Silveira, E.F. da [Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro (Brazil)

    2013-11-15

    SiC is a material used in two future energy production technologies, firstly as a photovoltaic layer to harness the UV spectrum in high efficient power solar cells, and secondly as a diffusion barrier material for radioactive fission products in the fuel elements of the next generation of nuclear power plants. For both applications, there is an interest in the implantation of reactive and non-reactive ions into SiC and their effects on the properties of the SiC. In this study 360 keV Ag{sup +}, I{sup +} and Xe{sup +} ions were separately implanted into 6H–SiC and in polycrystalline SiC at various substrate temperatures. The implanted samples were also annealed in vacuum at temperatures ranging from 900 °C to 1600 °C for various times. In recent years, there had been significant advances in scanning electron microscopy (SEM) with the introduction of an in-lens detector combined with field emission electron guns. This allows defects in solids, such as radiation damage created by the implanted ions, to be detected with SEM. Cross-sectional SEM images of 6H–SiC wafers implanted with 360 keV Ag{sup +} ions at room temperature and at 600 °C and then vacuum annealed at different temperatures revealed the implanted layers and their thicknesses. A similar result is shown of 360 keV I{sup +} ions implanted at 600 °C into 6H–SiC and annealed at 1600 °C. The 6H–SiC is not amorphized but remained crystalline when implanting at 600 °C. There are differences in the microstructure of 6H–SiC implanted with silver at the two temperatures as well as with reactive iodine ions. Voids (bubbles) are created in the implanted layers into which the precipitation of silver and iodine can occur after annealing of the samples. The crystallinity of the substrate via implantation temperature caused differences in the distribution and size of the voids. Implantation of xenon ions in polycrystalline SiC at 350 °C does not amorphize the substrate as is the case with room

  7. Surface transformations of carbon (graphene, graphite, diamond, carbide), deposited on polycrystalline nickel by hot filaments chemical vapour deposition

    International Nuclear Information System (INIS)

    The deposition of carbon has been studied at high temperature on polycrystalline nickel by hot filaments activated chemical vapor deposition (HFCVD). The sequences of carbon deposition are studied by surface analyses: Auger electron spectroscopy (AES), electron loss spectroscopy (ELS), X-ray photoelectron spectroscopy (XPS) in a chamber directly connected to the growth chamber. A general scale law of the (C/Ni) intensity lines is obtained with a reduced time. Both, shape analysis of the AES C KVV line and the C1s relative intensity suggest a three-step process: first formation of graphene and a highly graphitic layer, then multiphase formation with graphitic, carbidic and diamond-like carbon and finally at a critical temperature that strongly depends on the pretreatment of the polycrystalline nickel surface, a rapid transition to diamond island formation. Whatever the substrate diamond is always the final product and some graphene layers the initial product. Moreover it is possible to stabilize a few graphene layers at the initial sequences of carbon deposition. The duration of this stabilization step is strongly depending however on the pre-treatment of the Ni surface.

  8. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Seouk [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of); Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Lee, Seung Wook, E-mail: Seunglee@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  9. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    Science.gov (United States)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  10. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  11. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research

  12. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, M I De Barros [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Matta, C [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Le-Mogne, Th [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Martin, J Michel [Laboratory of Tribology and System Dynamics, Ecole Centrale de Lyon, 69134 Ecully (France); Zhang, Q [Materials and Process Simulation Center, California Institute of Technology, Pasadena CA (United States); III, W Goddard [Materials and Process Simulation Center, California Institute of Technology, Pasadena CA (United States); Kano, M [Nissan Research Center, to Kanagawa Industrial Technology Center, 705-1, 1 Shimo-imaizumi, Ebina, Kanagawa 243-0435 (Japan); Mabuchi, Y [Materials Engineering Department, Nissan Motor Co., Ltd., 6-1, Daikoku-cho, Tsurumi-ku, Yokohama (Japan); Ye, J [Research Department, NISSAN ARC LTD., 1 Natsushima-cho, Yokosuka 237-8523 (Japan)

    2007-11-15

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and {sup 13}C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp{sup 3}) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp{sup 2} and sp{sup 1} character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp{sup 1} atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface.

  13. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Qiwen, E-mail: fanqiwen0926@163.com [Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(62), Beijing 102413 (China); Du, Yinghui; Zhang, Rong; Xu, Guoji [Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(62), Beijing 102413 (China)

    2013-04-21

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm{sup 2} in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm{sup 2} in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm{sup 2} in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the {sup 197}Au{sup −} (∼9MeV, ∼1μA) and {sup 63}Cu{sup −} (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp{sup 3} bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I{sub D}/I{sub G}) measured by the Raman spectroscopy is 0.78.

  14. Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V.

    Science.gov (United States)

    Oliveira, Luciane Y S; Kuromoto, Neide K; Siqueira, Carlos J M

    2014-10-01

    Prostheses are subject to various forms of failing mechanisms, including wear from ordinary patient motion. Superficial treatments can improve tribological properties of the contact pair, minimizing wear and increasing prostheses lifetime. One possibility is the diamond-like carbon (DLC) coating, where Carbon is deposited with variable ratio of sp(2)/sp(3) structures, leading to an increase in surface hardness. So in this research Ti6Al4V samples were coated with DLC using sputtering process to evaluate the debris release. The Ti6Al4V and Ti6Al4V plus DLC coating surfaces were analyzed using Raman spectroscopy and instrumented indentation (hardness). The wear behavior was tested using a reciprocating linear tribometer. The wear rate was smaller in the coated samples, producing less debris than the untreated Ti6Al4V alloy. Debris morphology was also evaluated, using scanning electronic microscopy, and it was observed that debris size from the coated samples were bigger than those observed from the uncoated Ti6Al4V alloy, above the size that generally triggers biological response from the host. PMID:24948374

  15. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Wu, Y.F.; Yang, H.; Cang, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Song, G.H. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning, 110178 (China); Li, Z.X.; Zhou, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China)

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp{sup 3} carbon content and mechanical properties of the deposited DLC films. A maximum sp{sup 3} content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  16. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    International Nuclear Information System (INIS)

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  17. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Science.gov (United States)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  18. Tribological behaviors of hydrogenated diamond-like carbon films in different testing environments

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-min; LI Hong-xuan; XU Tao; ZHOU Hui-di; LIU Hui-wen

    2004-01-01

    Hydrogenated diamond-like carbon (DLC) films were deposited on Si substrate using plasma enhanced chemical vapor deposition(PECVD) technique with CH4 plus H2 as the feedstock. The tribological properties of the hydrogenated DLC films were measured on a ball-on-disk tribometer in different testing environments (humid air,dry air, dry O2, dry Ar and dry N2 ) sliding against Si3 N4 balls. The friction surfaces of the films and Si3 N4 balls were observed on a scanning electron microscope (SEM) and investigated by X-ray photoelectron spectroscopy (XPS). The results show that the tribological properties of the hydrogenated DLC films are strongly dependent on the testing environments. In dry Ar and dry N2 environments, the hydrogenated DLC films provide a superlow friction coefficient of about 0. 008 -0.01 and excellent wear resistance (wear life of above 56 km). In dry air and dry O2, the friction coefficient is increased to 0. 025 - 0.04 and the wear life is decreased to about 30 km. When sliding in moist air, the friction coefficient of the films is further increased to 0. 08 and the wear life is decreased to 10. 4 km. SEM and XPS analyses show that the tribological behaviors appear to rely on the transferred carbon-rich layer processes on the Si3 N4 balls and on the friction-induced oxidation of the films controlled by the nature of the testing environments.

  19. Graphite-like and Diamond-like Carbon Coatings with Exceptional Tribological Properties

    Institute of Scientific and Technical Information of China (English)

    M.Jarratt; S.K.Field; S.Yang; D.G.Teer

    2004-01-01

    Two hard, carbon-based solid lubricant coatings, Graphit-iCTM and Dymon-iCTM, have been developed that offer considerable benefits for industry. Both of these new coatings have a high tribological load-bearing capacity, exceptional wear resistance and very low friction, even in dry or lubricant-starved contact. This is in contrast to many commercial diamond-like carbon, DLC coatings, which tend to be highly stressed and therefore brittle, making them unsuitable for high load bearing industrial applications. The development of the new solid lubricant coatings is described, and details of their tribological performance in dry, water and oil-lubricated environments are given. The structure of the coatings has been investigated and related to the tribological properties, and the mechanism for the low friction and wea rrates is discussed. The coatings have been used to successfully improve the lifetime and efficiency of many highly loaded mechanical parts, including automotive fuel injection components, gears, bearings, tappets (cam followers), gudgeon (wrist) pins, etc. They also offer benefits for tooling and are widely used in forming or machining of non-ferrous alloys, and extensively on dies and moulds. Other industrial application areas include electrical devices that require either high conductivity or insulation, optical devices requiring abrasion resistance and surgical tools and implants.

  20. Graphite-like and Diamond-like Carbon Coatings with Exceptional Tribological Properties

    Institute of Scientific and Technical Information of China (English)

    M. Jarratt; S. K. Field; S. Yang; D.G. Teer

    2004-01-01

    Two hard, carbon-based solid lubricant coatings, Graphit-iCTM and Dymon-iCTM, have been developed that offer considerable benefits for industry. Both of these new coatings have a high tribological load-bearing capacity,exceptional wear resistance and very low friction, even in dry or lubricant-starved contact. This is in contrast to many commercial diamond-like carbon, DLC coatings, which tend to be highly stressed and therefore brittle, making them unsuitable for high load bearing industrial applications. The development of the new solid lubricant coatings is described,and details of their tribological performance in dry, water and oil-lubricated environments are given. The structure of the coatings has been investigated and related to the tribological properties, and the mechanism for the low friction and wear rates is discussed. The coatings have been used to successfully improve the lifetime and efficiency of many highly loaded mechanical parts, including automotive fuel injection components, gears, bearings, tappets (cam followers), gudgeon (wrist)pins, etc. They also offer benefits for tooling and are widely used in forming or machining of non-ferrous alloys, and extensively on dies and moulds. Other industrial application areas include electrical devices that require either high conductivity or insulation, optical devices requiring abrasion resistance and surgical tools and implants.

  1. Target-plane deposition of diamond-like carbon in pulsed laser ablation of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Tou, T.Y. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: tytou@mmu.edu.my

    2007-10-15

    In pulsed Nd:YAG laser ablation of highly oriented pyrolytic graphite (HOPG) at 10{sup -6} Torr, diamond-like carbon (DLC) are deposited at laser wavelengths of 1064, 532, and 355 nm on substrates placed in the target-plane. These target-plane samples are found to contain varying sp{sup 3} content and composed of nanostructures of 40-200 nm in size depending on the laser wavelength and laser fluence. The material and origin of sp{sup 3} in the target-plane samples is closely correlated to that in the laser-modified HOPG surface layer, and hardly from the backward deposition of ablated carbon plume. The surface morphology of the target-plane samples shows the columnar growth and with a tendency for agglomeration between nanograins, in particular for long laser wavelength at 1064 nm. It is also proposed that DLC formation mechanism at the laser-ablated HOPG is possibly via the laser-induced subsurface melting and resolidification.

  2. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  3. Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Pei-Zeng; Li Rui-Shan; Pan Xiao-Jun; Xie Er-Qing

    2013-01-01

    ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electrochemical deposition in ambient conditions.The morphology,composition,and microstructure of the films have been investigated.The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure,and the content and size of the ZnO nanoparticles increase with increasing deposition voltage,which are confirmed by X-ray photoelectron spectroscopy (XPS),Raman,and transmission electron microscope (TEM).Furthermore,a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.

  4. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  5. A planar diamond-like carbon nanostructure for a low-voltage field emission cathode with a developed surface

    Science.gov (United States)

    Aban'shin, N. P.; Avetisyan, Yu. A.; Akchurin, G. G.; Loginov, A. P.; Morev, S. P.; Mosiyash, D. S.; Yakunin, A. N.

    2016-05-01

    Issues pertaining to the effective solution of problems related to the creation of durable low-voltage field emission cathodes with developed working surface and high density of emission current are considered. Results of practical implementation of the concept of multielectrode field emission planar nanostructures based on diamond-like carbon are presented. High average current density (0.1-0.3 A cm-2) is ensured by the formation of a controlled zone of electrostatic field localization at the planar-edge structure. The working life of cathode samples reaches 700-3000 h due to several positive factors, such as the stabilizing properties of a diamond-like carbon film, protection of the emitter from ion bombardment, use of a system of ballast resistors, and low-voltage operation of submicron interelectrode gaps.

  6. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    International Nuclear Information System (INIS)

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range

  7. Real contact temperatures as the criteria for the reactivity of diamond-like carbon coatings with oil additives

    OpenAIRE

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    The operating conditions under which chemical reactions between diamond-like-carbon (DLC) coatings and oil additives occur and the main driving forces, i.e., the activation criteria for these chemical reactions, have not yet been defined. In order to clarify the difference between the test temperature and real contact temperature, and to determine the effect of the real contact temperature for these reactions, we have calculated the contact temperatures using two well-known models and compare...

  8. The influence of anti-wear additive ZDDP on doped and undoped diamond-like carbon coatings

    OpenAIRE

    Austin, L.; Liskiewicz, T; Kolev, I; Zhao, H.; Neville, A.

    2015-01-01

    Diamond-like carbon (DLC) coatings are recognised as a promising way to reduce friction and improve wear performance of automotive engine components. DLC coatings provide new possibilities in the improvement of the tribological performance of automotive components beyond what can be achieved with lubricant design alone. Lubricants are currently designed for metallic surfaces, the tribology of which is well defined and documented. DLC does not share this depth of tribological knowledge; thus, ...

  9. Interpreting the effects of interfacial chemistry on the tribology of diamond-like carbon coatings against steel in distilled water

    OpenAIRE

    Sutton, Daniel; Limbert, Georges; Burdett, Bary; R.J.K. Wood

    2013-01-01

    Three commercially available Diamond?Like Carbon (DLC) coatings were investigated to help understand the dynamics of transfer layer formation and decay, when sliding against AISI 52100 steel balls in distilled water. Optimum tribological behaviour was observed during interfacial sliding between the transfer layer and DLC coating. Alternatively, shear of the carbonaceous transfer layer from the contact region resulted in growth of an iron oxide layer comprised of magnetite, maghemite and hemat...

  10. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    OpenAIRE

    Tadas Juknius; Modestas Ružauskas; Tomas Tamulevičius; Rita Šiugždinienė; Indrė Juknienė; Andrius Vasiliauskas; Aušrinė Jurkevičiūtė; Sigitas Tamulevičius

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using micro...

  11. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation

    Science.gov (United States)

    Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.

    2014-08-01

    The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.

  12. Studies on the physiologic effects of ion implantation on rice seed of single and twin seedlings

    International Nuclear Information System (INIS)

    Dry rice seeds of single and twin seedlings were treated by ion implantation. These seeds have differences as compared with control seeds in respect to the physilogic effects. The germination percentage and the survival seedling rate were lower than the check, but higher than those for γ-roy treated seeds. Ultra weak bioluminescence value of dry seeds treated by ion implantation was higher than that of the check, lower than that of seeds treated by γ-ray. The results also show that seeds treated by ion implantation possess a lower percentage of twin seedling than the comparisons do. It is worthy mentioning that there are more twin seedlings possessed independent two-mesocotyls which is a very meaningful apomictic material in rice selecting

  13. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  14. FATIGUE LIFE PREDICTION OF COMMERCIALLY PURE TITANIUM AFTER NITROGEN ION IMPLANTATION

    Directory of Open Access Journals (Sweden)

    Nurdin Ali

    2013-06-01

    Full Text Available Prediction of fatigue life has become an interesting issue in biomaterial engineering and design for reliability and quality purposes, particularly for biometallic material with modified surfaces. Commercially pure titanium (Cp-Ti implanted with nitrogen ions is a potential metallic biomaterial of the future. The effect of nitrogen ion implantation on fatigue behavior of Cp-Ti was investigated by means of axial loading conditions. The as-received and nitrogen-ion implanted specimens with the energy of 100 keV and dose of 2 × 1017 ions cm-2, were used to determine the fatigue properties and to predict the life cycle of the specimens. The effect of nitrogen ion implantation indicated revealed improved the tensile strength due to the formation of nitride phases, TiN and Ti2N. The fatigue strength of Cp-Ti and Nii-Ti was 250 and 260 MPa, respectively. The analytical results show good agreement with experimental results.

  15. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guosong; Xu Ruizhen; Feng Kai; Wu Shuilin; Wu Zhengwei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Sun Guangyong; Zheng Gang; Li Guangyao [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  16. FRACTAL PATTERN GROWTH OF METAL ATOM CLUSTERS IN ION IMPLANTED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHANG TONG-HE; WU YU-GUANG; SANG HAI-BO; ZHOU GU

    2001-01-01

    The fractal and multi-fractal patterns of metal atoms are observed in the surface layer and cross section of a metal ion implanted polymer using TEM and SEM for the first time. The surface structure in the metal ion implanted polyethylene terephthalane (PET) is the random fractal. Certain average quantities of the random geometric patterns contain self-similarity. Some growth origins appeared in the fractal pattern which has a dimension of 1.67. The network structure of the fractal patterns is formed in cross section, having a fractal dimension of 1.87. So it can be seen that the fractal pattern is three-dimensional space fractal. We also find the collision cascade fractal in the cross section of implanted nylon, which is similar to the collision cascade pattern in transverse view calculated by the TRIM computer program. Finally, the mechanism for the formation and growth of the fractal patterns during ion implantation is discussed.

  17. Optical and magnetic properties of nitrogen ion implanted MgO single crystal

    Institute of Scientific and Technical Information of China (English)

    Liu Chun-Ming; Gu Hai-Quan; Xiang Xia; Zhang Yan; Jiang Yong; Chen Meng; Zu Xiao-Tao

    2011-01-01

    The microstructure, optical property and magnetism of nitrogen ion implanted single MgO crystals are studied.A parallel investigation is also performed in an iron ion implanted single MgO sample as a reference. Large structural,optical and magnetic differences are obtained between the nitrogen and iron implanted samples. Room temperature ferromagnetism with a fairly large coercivity field of 300 Oe (1 Oe=79.5775 A/m), a remanence of 38% and a slightly changed optical absorption is obtained in the sample implanted using nitrogen with a dose of 1×1018 ions/cm2. Transition metal contamination and defects induced magnetism can be excluded when compared with those of the iron ion implanted sample, and the nitrogen doping is considered to be the main origin of ferromagnetism.

  18. Advanced transmission electron microscopy studies in low-energy ion implanted Si Semiconductors; Junctions; Silicon

    CERN Document Server

    Wang, T S

    2002-01-01

    As the dimensions of semiconductor devices shrink down to 0.1 mu m and beyond, low energy ion implantation is required to introduce shallower junctions to match such small devices. In this work, transmission electron microscopy (TEM) is employed to analyse low energy implanted junctions with both structural and chemical analyses. High resolution transmission electron microscopy (HRTEM) has been employed to observe Si crystal damage and amorphization due to low energy B sup + /As sup + ion implantations, and also, defect formation/annihilation during rapid thermal annealing (RTA). The damage effects due to different implant temperatures between 300 deg C and -150 deg C are also discussed. Since knowledge of the distribution of low energy ion implanted dopants in Si is extremely important for semiconductor device processing, energy filtered transmission electron microscopy (EFTEM) has been employed to determine implanted B distributions in Si while Z-contrast imaging and X-ray analytical mapping techniques are ...

  19. Cell attachment of polypropylene surface-modified by COOH+ ion implantation

    International Nuclear Information System (INIS)

    Carboxy ion (COOH+) implantation was performed at the energy of 50 keV with fluences ranging from 1x1014 to 1x1015 ions/cm2 at room temperature for polypropylene (PP). The effects of ion implantation on cells (immune macrophages, 3T3 mouse fibroblasts and human endothelial cells) were studied in vitro. Tests of cell attachment gave interesting results that the 3T3 mouse fibroblasts and human endothelial cells cultured on the surface of the implanted PP showed much better attachment and proliferation than that on pristine PP. At the same time, the COOH+ ion implantation also induced low macrophage attachment with normal cellular morphology. Results of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) analysis showed that COOH+ ion implantation caused the rearrangement of chemical bonds and the formation of some new O-containing groups, which was responsible for the enhancement of the biocompatibility of PP

  20. Electrochemical study of the corrosion behaviour of copper surfaces modified by nitrogen ion implantation

    International Nuclear Information System (INIS)

    Electrochemical impedance spectroscopy (EIS) and d.c. polarization resistance measurements (Rp) were used to study the corrosion resistance of surface layers produced by nitrogen ion implantation into copper substrates. Ion implantation was carried out using a Wickham ion beam generator, applying an acceleration voltage of 100 keV, a mean current of 0.40 mA and a nitrogen dosage of 4 x 1017 ions cm-2. Surface analyses were made by Auger electron spectroscopy (AES). Electrochemical measurements (EIS and Rp) performed in a 0.6 M sodium chloride solution show nitrogen-implanted specimens have greater a.c. and d.c. apparent polarization resistance than nonimplanted specimens. The results obtained with electrochemical measurements indicate that nitrogen ion implantation in copper forms a protective surface layer which improves the corrosion resistance of the pristine material, a feature of great interest for the design of new contact materials for the electricity and electronic industries. (author)

  1. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  2. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pacha-Olivenza, Miguel A. [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); Calzado-Martín, Alicia [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Multigner, Marta [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vera, Carolina [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M. [Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); González-Carrasco, José Luis [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); and others

    2014-08-15

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10{sup 16} ions/cm{sup 2}; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  3. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Science.gov (United States)

    Manojkumar, P. A.; Chirayath, V. A.; Balamurugan, A. K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A. K.; Raj, Baldev

    2016-09-01

    Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  4. Simulation methods of ion sheath dynamics in plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Jiuli; ZHANG Guling; WANG Younian; LIU Yuanfu; LIU Chizi; YANG Size

    2004-01-01

    Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

  5. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  6. A study on V+ ion-implanted TiO2 photocatalytic films

    International Nuclear Information System (INIS)

    In order to improve photocatalytic property of TiO2 films, the films were implanted with 40 keV V+ ions to doses of 0.6 x l016, l x l016, 3 x l016 or 6 x l016 ions/cm2. Optical band gap of the V+ ion-implanted TiO2 films were measured by a spectrophotometer. The results show that the optical band gap of TiO2 films decreased with the increasing implantion dose. Methyl orange (MO) in aqueous solution was catalyzed by the ion-implanted TiO2 films under visible light. (authors)

  7. Influences of Low Energy Ion Implantation on Properties of Polyaniline/Si Heterojunction Solar Cells

    Institute of Scientific and Technical Information of China (English)

    WU Chang-jiang; ZHENG Jian-bang; LI En-pu

    2005-01-01

    Ion implantation may favorably modify the properties ofpolyaniline/Si heterojunction solar cells fabricated by the electrochemical method. Influences of the implantation on the absorption spectrum and the thermal stability were discussed and output properties were measured. The results show that the absorption spectrum of the polyaniline films modified by ion implantation is much wider; its pyrolytic temperature increases by 40℃, and the polyaniline/Si cell efficiency increases 18 and 3 times under the illumination of 10.92 and 37.2 W/m2, respectively.

  8. Effect of disorder and defects in ion-implanted semiconductors electrical and physiochemical characterization

    CERN Document Server

    Willardson, Robert K; Christofides, Constantinos; Ghibaudo, Gerard

    2014-01-01

    Defects in ion-implanted semiconductors are important and will likely gain increased importance in the future as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer afterhigh temperature annealing.Electrical and Physicochemical Characterization focuses on the physics of the annealing kine

  9. Fundamental Discovery of New Phases and Direct Conversion of Carbon into Diamond and hBN into cBN and Properties

    Science.gov (United States)

    Narayan, Jagdish; Bhaumik, Anagh

    2016-04-01

    We review the discovery of new phases of carbon (Q-carbon) and BN (Q-BN) and address critical issues related to direct conversion of carbon into diamond and hBN into cBN at ambient temperatures and pressures in air without any need for catalyst and the presence of hydrogen. The Q-carbon and Q-BN are formed as a result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram ( P vs T) of carbon, and show that by rapid quenching, kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. Similarly, the hBN-cBN-Liquid triple point is shifted from 3500 K/9.5 GPa to as low as 2800 K and atmospheric pressure. It is shown that nanosecond laser heating of amorphous carbon and nanocrystalline BN on sapphire, glass, and polymer substrates can be confined to melt in a super undercooled state. By quenching this super undercooled state, we have created a new state of carbon (Q-carbon) and BN (Q-BN) from which nanocrystals, microcrystals, nanoneedles, microneedles, and thin films are formed depending upon the nucleation and growth times allowed and the presence of growth template. The large-area epitaxial diamond and cBN films are formed, when appropriate planar matching or lattice matching template is provided for growth from super undercooled liquid. The Q-phases have unique atomic structure and bonding characteristics as determined by high-resolution SEM and backscatter diffraction, HRTEM, STEM-Z, EELS, and Raman spectroscopy, and exhibit new and improved mechanical hardness, electrical conductivity, and chemical and physical properties, including room-temperature ferromagnetism and enhanced field emission. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. We have also deposited diamond on cBN by using a novel

  10. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-02-01

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 {approx} 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies.

  11. Plasma post-processing of diamond-like carbon nano-coated long-period gratings

    Science.gov (United States)

    Śmietana, Mateusz; Krysiński, Adrian; Bock, Wojtek J.; Mikulic, Predrag

    2013-09-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive-index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). The technique allows for an efficient and well controlled etching of the DLC by means of O2 and CF4 plasma. The effect of DLC nanocoating etching on spectral properties of the LPGs is discussed. We correlated the decrease in DLC thickness with the shift of the LPG resonance wavelength. The thinning of the overlay effectively changes the distribution of the cladding modes and thus it also has an impact on the device's RI sensitivity. The advantage of this approach is a capability for post-processing of the nano-coated structures with a good precision (etching rate from 4.6 to 8.1 nm/min for O2 plasma), cleaning the samples and their re-coating according to requested needs.

  12. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P coating without increasing the risk of implant-related infections. PMID:21243516

  13. High rate PLD of diamond-like-carbon utilizing high repetition rate visible lasers

    Energy Technology Data Exchange (ETDEWEB)

    McLean, W. II; Fehring, E.J.; Dragon, E.P.; Warner, B.E.

    1994-09-15

    Pulsed Laser Deposition (PLD) has been shown to be an effective method for producing a wide variety of thin films of high-value-added materials. The high average powers and high pulse repetition frequencies of lasers under development at LLNL make it possible to scale-up PLD processes that have been demonstrated in small systems in a number of university, government, and private laboratories to industrially meaningful, economically feasible technologies. A copper vapor laser system at LLNL has been utilized to demonstrate high rate PLD of high quality diamond-like-carbon (DLC) from graphite targets. The deposition rates for PLD obtained with a 100 W laser were {approx} 2000 {mu}m{center_dot}cm{sup 2}/h, or roughly 100 times larger than those reported by chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods. Good adhesion of thin (up to 2 pm) films has been achieved on a small number of substrates that include SiO{sub 2} and single crystal Si. Present results indicate that the best quality DLC films can be produced at optimum rates at power levels and wavelengths compatible with fiber optic delivery systems. If this is also true of other desirable coating systems, this PLD technology could become an extremely attractive industrial tool for high value added coatings.

  14. Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver.

    Science.gov (United States)

    Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2016-12-01

    In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out. PMID:26979724

  15. Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD

    Indian Academy of Sciences (India)

    S B Singh; M Pandey; N Chand; A Biswas; D Bhattacharya; S Dash; A K Tyagi; R M Dey; S K Kulkarni; D S Patil

    2008-10-01

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power. DLC films deposited at three different bias voltages (–60 V, –100 V and –150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and –150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.

  16. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  17. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp3 content of the coatings

  18. Modifying surface properties of diamond-like carbon films via nanotexturing

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Portal-Marco, S; Rubio-Roy, M; Bertran, E; Andujar, J L [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain); Oncins, G [Serveis CientIfico-Tecnics, Universitat de Barcelona, c/ Marti i Franques s/n, 08028 Barcelona (Spain); Vallve, M A; Ignes-Mullol, J, E-mail: corberoc@hotmail.com [SOC and SAM Group, IN2UB, Departament de Quimica Fisica, Universitat de Barcelona, c/ Marti i Franques 1, 08028 Barcelona (Spain)

    2011-10-05

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres ({approx}300 nm) on monocrystalline silicon ({approx}5 cm{sup 2}) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  19. Segment-Structured Diamond-Like Carbon Coatings on Polymer Catheter

    Science.gov (United States)

    Nakagawa, Taku; Ohishi, Ryusuke; Ohtake, Naoto; Takai, Osamu; Tsutsui, Nobumasa; Tsutsui, Yasuhiro; Muraki, Yasuhiro; Ogura, Jyunpei

    Diamond-like carbon (DLC) has remarkable mechanical and tribological properties. Besides those mechanical properties, it has been clarified that DLC shows high biocompatibility in recent years. DLC coating can give high strength, abrasion resistance, and biocompatibility for surface of substrates. Hence DLC is a candidate for the coating material for medical devices such as artificial organ, joint, catheter, etc. The objective of this study is to develop safety protection films for implantable medical polymer devices utilizing segment-structured DLC (S-DLC) coatings. S-DLC and continuous-structured DLC were deposited on polyurethane and nylon sheet for balloon catheters. As a result, friction coefficient of DLC coated polyurethane sheet was approximately one-sixth of that of pristine polyurethane sheet, and S-DLC showed very low friction coefficient of μ=0.1-0.15. DLC coating can prevent polyurethane sheet from worn out. The puncture-resistance of nylon sheets increased 0.2MPa on average by DLC coatings regardless of the film structure. It was confirmed that DLC inhibits adsorption of blood coagulation factor. In conclusion, we succeed to verify that these DLC films can improve tribological property, abrasion-resistance, puncture-resistance, and anti-thrombogenicity of polymer catheters. Moreover, segment-structured DLC films exhibits high performance for protection of polymer material for polymer catheters.

  20. Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films are characterized by, among other properties, very low friction coefficients, high wear resistance, and high corrosion resistance. Depending upon the testing environment, the coefficient of friction can be as low as 0.01. As-deposited films are wear resistant in vacuum as well as in atmospheric ambient. This paper will discuss the general tribological behavior, in different environments, of DLC films deposited under a variety of conditions, and proposed mechanisms explaining the very low friction coefficients observed. The specific properties of DLC films deposited from acetylene by r.f. plasma-enhanced chemical vapor deposition will then be presented. The films were deposited at substrate temperatures between 100degC and 250degC, at various substrate biases. The films were annealed in vacuum at temperatures up to 590degC. The tribological properties of the as-deposited as well as annealed DLC films will be presented as a function of the deposition parameters. The observed behavior will be discussed and related to other physical properties of the films. (orig.)

  1. Modifying surface properties of diamond-like carbon films via nanotexturing

    Science.gov (United States)

    Corbella, C.; Portal-Marco, S.; Rubio-Roy, M.; Bertran, E.; Oncins, G.; Vallvé, M. A.; Ignés-Mullol, J.; Andújar, J. L.

    2011-10-01

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres (~300 nm) on monocrystalline silicon (~5 cm2) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  2. Fatigue Properties and Fracture Mechanism of Steel Coated with Diamond-Like Carbon Films

    Science.gov (United States)

    Akebono, Hiroyuki; Kato, Masahiko; Sugeta, Atsushi

    Diamond-like carbon (DLC) films have attracted much attention in many industrial fields because of their excellent tribological properties, high hardness, chemical inertness and biocompatibility. In order to examine the fatigue properties and to clear the fracture mechanism of DLC coated materials, AISI4140 steel coated with DLC films by using unbalanced magnetron sputtering method was prepared and two types of fatigue test were carried out by using a tension and compression testing machine with stress ratio -1 and a bending testing machine with stress ratio -1 with a focused on the fatigue crack behavior in detail. The fracture origin changed from the slip deformation to micro defects at surface whose size didn't affect the fatigue crack initiation behavior in the case of Virgin series because the hard coating like DLC films make the defect sensitivity of coated material higher. However, DLC series indicated higher fatigue strengths in finite life region and fatigue limit compared with Virgin series. From the continuously observation by using a plastic replicas technique, it is clear that there are no noticeable differences on fatigue crack propagation rate between the Virgin and DLC series, however the fatigue crack initiation of DLC series was delayed significantly by existence of DLC films compared with Virgin series.

  3. The nano-scratch behaviour of different diamond-like carbon film-substrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Huang Liye [State-Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China); Lu Jian [LASMIS, Universite de Technologie de Troyes, 10010 Troyes (France); Xu Kewei [State-Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2004-08-07

    The nano-scratch behaviour of diamond-like carbon films on a Ti alloy and Si substrate was evaluated. For both samples, three processes-fully elastic recovery, plastic deformation, and delamination and pulling-off of the films, occur successively with increasing load during scratching. The loads (Lc{sub L}) corresponding to the peeling-off of the films during the up-loading were 75 and 70 mN for Ti alloy and Si. However, the films on Si were delaminated during unloading, and the relevant load (Lc{sub U}) was only 45 mN. This probably originates from the distribution status of the plastic deformation both in the films and the substrates. Therefore, the nano-scratch test can be applied not only to obtain the cracking resistance (Lc{sub L}) characterizing the cohesion strength of films during up-loading but also to determine the delamination resistance (Lc{sub U}) related to the adhesion strength of the film-substrate during unloading.

  4. Modifying surface properties of diamond-like carbon films via nanotexturing

    International Nuclear Information System (INIS)

    Diamond-like amorphous carbon (DLC) films have been grown by pulsed-dc plasma-enhanced chemical vapour deposition on silicon wafers, which were previously patterned by means of colloidal lithography. The substrate conditioning comprised two steps: first, deposition of a self-assembled monolayer of silica sub-micrometre spheres (∼300 nm) on monocrystalline silicon (∼5 cm2) by Langmuir-Blodgett technique, which acted as lithography template; second, substrate patterning via ion beam etching (argon) of the colloid samples (550 eV) at different incidence angles. The plasma deposition of a DLC thin film on the nanotextured substrates resulted in hard coatings with distinctly different surface properties compared with planar DLC. Also, in-plane anisotropy was generated depending on the etching angle. The samples were morphologically characterized by scanning electron microscopy and atomic force microscopy. The anisotropy introduced by the texture was evidenced in the surface properties, as shown by the directional dependences of wettability (water contact angle) and friction coefficient. The latter was measured using a nanotribometer and a lateral force microscope. These two techniques showed how the nanopatterns influenced the tribological properties at different scales of load and contact area. This fabrication technique finds applications in the industry of microelectromechanical systems, anisotropic tribological coatings, nanoimprint lithography, microfluidics, photonic crystals, and patterned surfaces for biomedicine.

  5. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  6. X-ray reflectivity study of bias graded diamond like carbon film synthesized by ECR plasma

    Indian Academy of Sciences (India)

    R M Dey; S K Deshpande; S B Singh; N Chand; D S Patil; S K Kulkarni

    2013-02-01

    Diamond like carbon (DLC) coatings were deposited on silicon substrates by microwave electron cyclotron resonance (ECR) plasma CVD process using plasma of Ar and CH4 gases under the influence of negative d.c. self bias generated on the substrates by application of RF (13.56 MHz) power. The negative bias voltage was varied from −60 V to −150 V during deposition of DLC films on Si substrate. Detailed X-ray reflectivity (XRR) study was carried out to find out film properties like surface roughness, thickness and density of the films as a function of variation of negative bias voltage. The study shows that the DLC films constituted of composite layer i.e. the upper sub surface layer followed by denser bottom layer representing the bulk of the film. The upper layer is relatively thinner as compared to the bottom layer. The XRR study was an attempt to substantiate the sub-plantation model for DLC film growth.

  7. Synthesis and Characteristics of Diamond-like Carbon Films Deposited on Quartz Substrate

    Institute of Scientific and Technical Information of China (English)

    黄卫东; 丁鼎; 詹如娟

    2004-01-01

    Diamond-like carbon (DLC) films are deposited on quartz substrate using pure CH4 in the surface wave plasma equipment. A direct current negative bias up to -90 V is applied to the substrate to investigate the bias effect on the film characteristics. Deposited films are characterized by Raman spectroscopy, infrared (IR) and ultraviolet-visible absorption techniques.There are two broad Raman peaks around 1340 cm-1 and 1600 cm-1 and the first one has a greater sp3 component with an increased bias. Infrared spectroscopy has three sp3 C-H modes at 2852 cm-1, 2926 cm- 1 and 2962 cm-1, respectively and also shows an intensity increase with the negative bias. Optical band gap is calculated from the ultraviolet-visible absorption spectroscopy and the increased values with negative bias and deposition time are obtained. After a thermal anneal at about 500 ℃ for an hour to the film deposited under the bias of-90 V, we get an almost unchanged Raman spectrum and a peak intensity-reduced IR signal, which indicates a reduced H-content in the film. Meanwhile the optical band gap changed from 0.85 eV to 1.5 eV.

  8. Bacterial attachment and removal properties of silicon- and nitrogen-doped diamond-like carbon coatings.

    Science.gov (United States)

    Zhao, Qi; Su, Xueju; Wang, Su; Zhang, Xiaoling; Navabpour, Parnia; Teer, Dennis

    2009-01-01

    Si- and N-doped diamond-like carbon (DLC) coatings with various Si and N contents were deposited on glass slides using magnetron sputter ion-plating and plasma-enhanced chemical vapour deposition. Surface energy analysis of the DLC coatings revealed that with increasing Si content, the electron acceptor gamma(s)(+) value decreased while the electron donor gamma(s)(-) value increased. The antifouling property of DLC coatings was evaluated with the bacterium, Pseudomonas fluorescens, which is one of the most common microorganisms forming biofilms on the surface of heat exchangers in cooling water systems. P. fluorescens had a high value of the gamma(s)(-) component (69.78 mN m(-1)) and a low value of the gamma(s)(+) component (5.97 mN m(-1)), and would be negatively charged with the zeta potential of -16.1 mV. The experimental results showed that bacterial removal by a standardised washing procedure increased significantly with increasing electron donor gamma(s)(-) values and with decreasing electron acceptor gamma(s)(+) values of DLC coatings. The incorporation of 2%N into the Si-doped DLC coatings further significantly reduced bacterial attachment and significantly increased ease of removal. The best Si-N-doped DLC coatings reduced bacterial attachment by 58% and increased removal by 41%, compared with a silicone coating, Silastic T2. Bacterial adhesion strength on the DLC coatings is explained in terms of thermodynamic work of adhesion. PMID:19283517

  9. High-frequency, scaled graphene transistors on diamond-like carbon.

    Science.gov (United States)

    Wu, Yanqing; Lin, Yu-ming; Bol, Ageeth A; Jenkins, Keith A; Xia, Fengnian; Farmer, Damon B; Zhu, Yu; Avouris, Phaedon

    2011-04-01

    Owing to its high carrier mobility and saturation velocity, graphene has attracted enormous attention in recent years. In particular, high-performance graphene transistors for radio-frequency (r.f.) applications are of great interest. Synthesis of large-scale graphene sheets of high quality and at low cost has been demonstrated using chemical vapour deposition (CVD) methods. However, very few studies have been performed on the scaling behaviour of transistors made from CVD graphene for r.f. applications, which hold great potential for commercialization. Here we report the systematic study of top-gated CVD-graphene r.f. transistors with gate lengths scaled down to 40 nm, the shortest gate length demonstrated on graphene r.f. devices. The CVD graphene was grown on copper film and transferred to a wafer of diamond-like carbon. Cut-off frequencies as high as 155 GHz have been obtained for the 40-nm transistors, and the cut-off frequency was found to scale as 1/(gate length). Furthermore, we studied graphene r.f. transistors at cryogenic temperatures. Unlike conventional semiconductor devices where low-temperature performance is hampered by carrier freeze-out effects, the r.f. performance of our graphene devices exhibits little temperature dependence down to 4.3 K, providing a much larger operation window than is available for conventional devices. PMID:21475197

  10. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  11. Strength and Fracture Resistance of Amorphous Diamond-Like Carbon Films for MEMS

    Directory of Open Access Journals (Sweden)

    K. N. Jonnalagadda

    2009-01-01

    Full Text Available The mechanical strength and mixed mode I/II fracture toughness of hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C films, grown by pulsed laser deposition, are discussed in connection to material flaws and its microstructure. The failure properties of ta-C were obtained from films with thicknesses 0.5–3 μm and specimen widths 10–20 μm. The smallest test samples with 10 μm gage section averaged a strength of 7.3 ± 1.2 GPa, while the strength of 20-μm specimens with thicknesses 0.5–3 μm varied between 2.2–5.7 GPa. The scaling of the mechanical strength with specimen thickness and dimensions was owed to deposition-induced surface flaws, and, only in the smallest specimens, RIE patterning generated specimen sidewall flaws. The mode I fracture toughness of ta-C films is KIc=4.4±0.4 MPam, while the results from mixed mode I/II fracture experiments with cracks arbitrarily oriented in the plane of the film compared very well with theoretical predictions.

  12. Effects of diamond-like carbon thin film in organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan; Yong, Thian-Khok [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia); Tou, Teck-Yong, E-mail: tytou@mmu.edu.m [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia)

    2009-07-01

    Ultrathin diamond-like carbon (DLC) was deposited by pulsed Nd:YAG laserablation of graphite target on the indium tin oxide (ITO) surface that functioned as the buffered anode for single-layer organic light emitting devices (OLEDs). Deposited by 355 nm Nd:YAG laser, DLC films were characterized by the Raman spectroscopy and the bulk resistivity measurement. Insertion of DLC in the hole-transport ITO/DLC/TPD/Al device slightly increased the injection current density and reduced the turn-on voltage. But DLC insertion in the electron-transport ITO/DLC/Alq{sub 3}/Al device greatly decreased the injection current density and increased the turn-on voltage. For the ITO/DLC/(TPD + Alq{sub 3} + PVK)/Al device, that was doped with Alq{sub 3} and TPD, improved performance with a higher current density and brightness were consistently obtained. Possible mechanisms for the DLC effect in these single-layer devices were discussed.

  13. Friction force microscopy study of annealed diamond-like carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Seok; Joung, Yeun-Ho [School of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Heo, Jinhee [Materials Safety Evaluation Group, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Hong, Byungyou, E-mail: byhong@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  14. Metal-doped diamond-like carbon films synthesized by filter-arc deposition

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp3/sp2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films

  15. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Science.gov (United States)

    Cheng, Feng; Jiang, Shuyun

    2014-02-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (-200 V/80 A, labeled DLC-1, and -100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  16. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  17. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  18. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton(Gossypium hirsutum L.) Pollen

    Science.gov (United States)

    Yue, Jieyu; Yu, Lixiang; Wu, Yuejin; Tang, Canming

    2008-10-01

    Effect of parameters of ion implantation machine, including ion energy, total dose, dose rate, impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied. The best parameters were screened out. The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  19. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Uslu, Bengi; Topal, Burcu Dogan; Ozkan, Sibel A

    2008-02-15

    The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2x10(-6) to 2x10(-4)M in 0.5M H(2)SO(4) at about +1.20V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.

  20. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties

    International Nuclear Information System (INIS)

    A diamond-based nano-carbon composite (d/NCC) material, which contains needle-like diamond grains encased with the nano-graphite layers, was synthesized at low substrate temperature via a bias enhanced growth process using CH4/N2 plasma. Such a unique granular structure renders the d/NCC material very conductive (σ = 714.8 S/cm), along with superior electron field emission (EFE) properties (E0 = 4.06 V/μm and Je = 3.18 mA/cm2) and long lifetime (τ = 842 min at 2.41 mA/cm2). Moreover, the electrical conductivity and EFE behavior of d/NCC material can be tuned in a wide range that is especially useful for different kind of applications

  1. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  2. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-07-13

    Ultrathin (< 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in{sup 2}. These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested.

  3. The characterization of low energy molecular hydrogen ion—induced defects in synthetic diamond by optical absorption

    Institute of Scientific and Technical Information of China (English)

    MaZhong-Quan; AokiY; 等

    1998-01-01

    The results of optical absorption analysis of the synthetic diamonds(type Ib) which were implanted with 40 keV molecular hydrogen ions at doses of 1015-1017H/cm2(at 100K),showed that the increase of optical density(OD) of modified layer(-140nm) in UV-VIS region was dependent upon the damage level caused by ion implantation process.The range of relative optical band gap(Er.opt) around 2.0eV suggested that an amorphous carbon network structure like a-C film,which probably contains some localized subtetrabedral-coordinated clusters embedded in the fourflod(sp3) sites.was tentatively found in this layer,basing on the optical gap of carbon materials.The evolution of Er,opt with ion fluence indicated that no more hydrogenated carbon compositions were produced in as -implanted samples,while the increase of Er,opt with annealing temperature was very similar to that of hydrogen content dependence of Eopt in hydrogenately amorphous carbon(a-C:H):In addition the optical inhomogeneity of type Ib diamond has been revealed by a 2-dimension topograph in transmission mode at λ=430nm。

  4. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    Science.gov (United States)

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Yang, J. K.; Song, D. G.; Lim, T. J.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.

    2006-11-01

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  5. SURFACE MODIFICATION OF TITANIUM FILMS WITH SODIUM ION IMPLANTATION: SURFACE PROPERTIES AND PROTEIN ADSORPTION

    Institute of Scientific and Technical Information of China (English)

    K. Y. Cai

    2007-01-01

    Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techniques of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and light microscopy (LM). The surface presented increased sodium concentration on treated titanium films with ion dose increasing, except for the group with the highest ion dose of 4× 1017 ions/cm2. XPS depth profiling displayed that sodium entered titanium film around 25-50 nm depth depending on its implantation ion dose. AFM characterization showed that sodium ion implantation treatment changed the surface morphology from a relatively smooth titanium film to rough surfaces corresponding to different implantation doses.After sodium implantation, implanted titanium films presented big particles with island structure morphology. The surface morphology and particle growth displayed the corresponding trend.Fibrinogen adsorption on these titanium films was performed to correlate with the surface properties of treated titanium films. The results show that protein adsorption on ion-implanted samples with dose of 2 × 1017 and 4 × 1017 are statistically higher (p < 0. 01) than samples treated with dose of 5×1016 and 1 ×1017, as well as the control samples.

  6. Comparative investigation of damage induced by diatomic and monoatomic ion implantation in silicon

    NARCIS (Netherlands)

    Lohner, T.; Toth, L.; Fried, M.; Khanh, N.Q.; Yang, Gen Qing; Lu, Lin Chen; Zou, Shichang; Hanekamp, L.J.; Silfhout, van A.; Gyulai, J.

    1994-01-01

    The damaging effect of mono- and diatomic phosphorus and arsenic ions implanted into silicon was investigated by spectroscopic ellipsometry (SE) and high-depth-resolution Rutherford backscattering and channeling techniques. A comparison was made between the two methods to check the capability of ell

  7. Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium.

    Science.gov (United States)

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Barcz, A; Sobczak, J W; Biliński, A; Lewandowska-Szumieł, M; Rajchel, B

    2002-08-01

    This work presents data on the structure and corrosion resistance of titanium after phosphorus-ion implantation with a dose of 10(17)P/cm2. The ion energy was 25keV. Transmission electron microscopy was used to investigate the microstructure of the implanted layer. The chemical composition of the surface layer was examined by X-ray photoelectron spectroscopy and secondary ion mass spectrometry. The corrosion resistance was examined by electrochemical methods in a simulated body fluid at a temperature of 37 C. Biocompatibility tests in vitro were performed in a culture of human derived bone cells in direct contact with the materials tested. Both, the viability of the cells determined by an XTT assay and activity of the cells evaluated by alkaline phosphatase activity measurements in contact with implanted and non-implanted titanium samples were detected. The morphology of the cells spread on the surface of the materials examined was also observed. The results confirmed the biocompatibility of both phosphorus-ion-implanted and non-implanted titanium under the conditions of the experiment. As shown by transmission electron microscope results, the surface layer formed during phosphorus-ion implantation was amorphous. The results of electrochemical examinations indicate that phosphorus-ion implantation increases the corrosion resistance after short-term as well as long-term exposures.

  8. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    International Nuclear Information System (INIS)

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 1014 350 keV Ar/cm2 + 1 x 1015 500 keV Ne/cm2 is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity

  9. (n,p) emission channeling measurements on ion-implanted beryllium

    CERN Multimedia

    Jakubek, J; Uher, J

    2007-01-01

    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  10. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  11. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    Science.gov (United States)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Saint-Laurent, F.; Steckmeyer, J. C.

    1998-02-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered 93Nb, 100Mo, 116Sn, 120Sn and 129Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature.

  12. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A.A. [Istituto Nazionale di Fisica Nucleare, Florence (Italy)]|[Univ. of Florence (Italy); Saint-Laurent, F. [DRFC/STEP, CEN Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Steckmeyer, J.C. [Laboratoire de Physique Corpuscolaire, ISMRA, 14050 Caen Cedex (France)

    1998-03-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered {sup 93}Nb, {sup 100}Mo, {sup 116}Sn, {sup 120}Sn and {sup 129}Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature. (orig.). 14 refs.

  13. Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite.

    Science.gov (United States)

    Shanthini, G M; Sakthivel, N; Menon, Ranjini; Nabhiraj, P Y; Gómez-Tejedor, J A; Meseguer-Dueñas, J M; Gómez Ribelles, J L; Krishna, J B M; Kalkura, S Narayana

    2016-11-20

    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications. PMID:27561534

  14. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  15. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    Science.gov (United States)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  16. Thermal Diffusion Boron Doping of Single-Crystal Diamond

    OpenAIRE

    Seo, Jung-Hun; Wu, Henry; Mikael, Solomon; Mi, Hongyi; Blanchard, James P.; Venkataramanan, Giri; Zhou, Weidong; Gong, Sarah; Morgan, Dane; Ma, Zhenqiang

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping str...

  17. Friction and wear properties of diamonds and diamond coatings

    International Nuclear Information System (INIS)

    The recent development of chemical vapor deposition techniques for diamond growth enables bearings to be designed which exploit diamond's low friction and extreme resistance to wear. However, currently produced diamond coatings differ from natural diamond surfaces in that they are polycrystalline and faceted, and often contain appreciable amounts of non-diamond material (i.e. graphitic or amorphous carbon). Roughness, in particular, influences the friction and wear properties; rough coatings severely abrade softer materials, and can even wear natural diamond sliders. Nevertheless, the best available coatings exhibit friction coefficients as low as those of natural diamond and are highly resistant to wear. This paper reviews the tribological properties of natural diamond, and compares them with those of chemical vapor deposited diamond coatings. Emphasis is placed on the roles played by roughness and material transfer in controlling frictional behavior. (orig.)

  18. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    International Nuclear Information System (INIS)

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes of the bias voltage. Raman measurements show a similar bonding regardless of the voltages used. A columnar growth and a tile-like microstructure of the DLC films were identified by scanning electron microscopy. Patch sizes can be correlated with the deposition conditions. The coefficient of friction (CoF) of DLC film coated HNBR was found to be much lower than that of the unprotected rubber, and more reduced for the DLC films with smaller patch sizes, which is explained by a better flexibility and conformity of the film during testing. In one of the samples, unexpected low CoF was observed, which was attributed to a modification of the mechanical properties of the rubber during the plasma treatment at high voltage. This issue was confirmed by X-ray photoelectron spectroscopy, which indicated a modification of the cross linking in the rubber. - Highlights: ► Bias voltage does not vary the chemical bonding and surface morphology of films. ► Film structure is patched, whose size depends on the etching and deposition voltages. ► The frictional behavior can be correlated with the patch size of the films. ► Surface analysis showed that rubber x-linking is modified by etching at high voltage. ► Modification of rubber x-linking leads to a different frictional behavior.

  19. Characterization of laboratory and industrial CrN/CrCN/diamond-like carbon coatings

    International Nuclear Information System (INIS)

    This work reports on laboratorial and experimental wear behaviour studies about a multi-layered film deposited by PVD (Physical Vapour Deposition) unbalanced magnetron sputtering. The film consists of three different layers: CrN in the bottom, CrCN as intermediate layer and DLC (diamond-like carbon) on the top. Film characterization was done using techniques such as Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Atomic Force Microscopy and X-ray diffraction. Scratch-tests, nanoindentation analysis and ball-cratering wear tests were used in order to measure the adhesion critical load, hardness and wear coefficient, respectively. Experimental tests were developed letting one to realise the suitability of this film for mould cavities used on injection moulding machines that produce automotive parts in polypropylene reinforced with 30% (wt.) glass fibres, because this composite material performs severe abrasion on injection moulding which brings important challenges to surface wear resistance. Experimental tests revealed that, after 135,000 injection cycles, multi-layer coating improved significantly the performance previously revealed by uncoated samples. The good results achieved by this film can be partially assigned to DLC top layer due to its low friction coefficient. This paper discusses these results, comparing them with some other PVD coatings already tested in the same conditions. - Highlights: • This coating presents a very good adhesion to the P20 steel substrate. • Surface wear performance is largely improved by the use of this coating. • Coating wear resistance is about 58.2 times higher than the uncoated substrate. • This film presents high suitability for application in mould cavities

  20. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  1. Diamond-like carbon coatings for the protection of metallic artefacts: effect on the aesthetic appearance

    Science.gov (United States)

    Faraldi, Federica; Angelini, Emma; Caschera, Daniela; Mezzi, Alessio; Riccucci, Cristina; Caro, Tilde De

    2014-03-01

    Plasma-enhanced chemical vapour deposition (PECVD) is an environmentally friendly process used to deposit a variety of nano-structured coatings for the protection or the surface modification of metallic artefacts like the SiO2-like films that have been successfully tested on ancient silver, bronze and iron artefacts as barriers against aggressive agents. This paper deals with the preliminary results of a wider investigation aimed to the development of eco-sustainable coatings for the protection of Cu and Ag-based artefacts of archaeological and historic interest. Diamond-like carbon (DLC) coatings have been deposited by PECVD in different experimental conditions, in a capacitively coupled asymmetric plasma reactor, placing the substrates either on electrically powered electrode (cathodic mode) or grounded electrode (anodic mode) with and without hydrogen addition in the gas mixture. The final goal is to develop a coating with good protective effectiveness against aggressive atmospheres and contemporarily with negligible effects on the aesthetic appearance of the artefacts. The evaluation of possible colour changes of the surface patinas, due to coating process, was performed by optical microscopy and colorimetric measurements. Furthermore, to evaluate the reversibility of the thin DLC layer, an etching treatment in oxygen plasma has been successfully carried out and optimized. The chemical-physical characterization of the deposited DLC coatings was performed by means of the combined use of micro-Raman and XPS spectroscopies. The results show that the DLC films obtained in the anodic mode, may be proposed as a viable alternative to polymeric coatings for the protection of metallic ancient objects.

  2. Most diamonds were created equal

    Science.gov (United States)

    Jablon, Brooke Matat; Navon, Oded

    2016-06-01

    Diamonds crystallize deep in the mantle (>150 km), leaving their carbon sources and the mechanism of their crystallization debatable. They can form from elemental carbon, by oxidation of reduced species (e.g. methane) or reduction of oxidized ones (e.g. carbonate-bearing minerals or melts), in response to decreasing carbon solubility in melts or fluids or due to changes in pH. The mechanism of formation is clear for fibrous diamonds that grew from the carbonate-bearing fluids trapped in their microinclusions. However, these diamonds look different and, based on their lower level of nitrogen aggregation, are much younger than most monocrystalline (MC) diamonds. In the first systematic search for microinclusions in MC diamonds we examined twinned crystals (macles), assuming that during their growth, microinclusions were trapped along the twinning plane. Visible mineral inclusions (>10 μm) and nitrogen aggregation levels in these clear macles are similar to other MC diamonds. We found 32 microinclusions along the twinning planes in eight out of 30 diamonds. Eight inclusions are orthopyroxene; four contain >50% K2O (probably as K2(Mg, Ca)(CO3)2); but the major element compositions of the remaining 20 are similar to those of carbonate-bearing high-density fluids (HDFs) found in fibrous diamonds. We conclude that the source of carbon for these macles and for most diamonds is carbonate-bearing HDFs similar to those found here and in fibrous diamonds. Combined with the old ages of MC diamonds (up to 3.5 Ga), our new findings suggest that carbonates have been introduced into the reduced lithospheric mantle since the Archaean and that the mechanism of diamond formation is the same for most diamonds.

  3. Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain)]. E-mail: corbella@ub.edu; Pascual, E. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain); Oncins, G. [Serveis Cientificotecnics, Universitat de Barcelona, PCB, c/ Josep Samitier 1-5, E08028 Barcelona (Spain); Canal, C. [Departamento de Tecnologia de Tensioactivos IQAB-CSIC, c/ Jordi Girona 18-26, E08034 Barcelona (Spain); Andujar, J.L. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain); Bertran, E. [FEMAN Group, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E08028 Barcelona (Spain)

    2005-06-22

    The addition of metal atoms within the matrix of diamond-like carbon films leads to the improvement of their mechanical properties. The present paper discusses the relationship between the composition and morphology of metal-containing (W, Nb, Mo, Ti) diamond-like carbon thin films deposited at room temperature by reactive magnetron sputtering from a metal target in an argon and methane atmosphere. Composition was measured either by electron microprobe technique or by X-ray photoelectron spectroscopy and shows a smooth variation with relative methane flow. High relative methane flows lead to a bulk saturation of carbon atoms, which leads to a lack of homogeneity in the films as confirmed by secondary ion mass spectrometry. Cross-section micrographs were observed by transmission electron microscopy and revealed a structure strongly influenced by the metal inserted and its abundance. The surface pattern obtained by scanning electrochemical potential microscopy provided the metallicity distribution. These measurements were completed with atomic force microscopy of the surface. Selected area electron diffraction and X-ray diffraction measurements provided data of the crystalline structure along with nano-crystallite size. High-resolution transmission electron microscopy provided images of these crystallites.

  4. Effect of nitrogen pressure on optical properties and microstructure of diamond-like carbon films grown by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    DING Xu-Li; LI Qing-Shan; KONG Xiang-he

    2009-01-01

    The effect of nitrogen pressure on optical properties of hydrogen-free diamond-like carbon (DLC) films deposited by pulsed laser ablation graphite in different background pressures of nitrogen is reported. By varying nitrogen pressures from 0.05 to 15.00 Pa, the photoluminescence is gradually increased and optical transmittance is gradually decreased. Atomic force microscopy (AFM) is used to observe the surface morphology of the DLC films. The results indicate that the surface becomes unsmoothed and there are some globose particles on the films surface with the rise of nitrogen pressures. The microstructure of the films is characterized using Raman spectroscopy.

  5. Molecular dynamics simulations of the structures and mechanical properties of ZDOL polymer films on diamond-like carbon

    OpenAIRE

    Zhang, Yong-Wei

    2014-01-01

    One of the core technologies in the design and manufacture of the next-generation hard disk drives is the head-disk interface (HDI). The design of HDI must provide sufficient stability and durability for tens of thousands of hard drive start/stop cycles. However, the intermittent contacts between the head and disk are often unavoidable. To avoid and minimize disk damage, the surface of hard drive disks is often protected by a diamond-like carbon (DLC) coating, which is in turn covered by a th...

  6. Evolution of deep-level centers in p-type silicon following ion implantation at 85 K

    International Nuclear Information System (INIS)

    In situ deep-level transient spectroscopy measurements have been carried out on p-type silicon following MeV He, Si, and Ge ion implantation at 85 K. Deep levels corresponding to intrinsic and impurity-related point defects are only detected after annealing at temperatures above 200 K. In addition to divacancies, interstitial carbon, and a carbon endash oxygen complex, the formation of another defect, denoted as K2, has been observed during annealing at 200 endash 230 K in epitaxial wafers, and at 200 endash 300 K in Czochralski grown material. The energy level of the K2 defect is located 0.36 eV above the valence band, which is very close to a previously observed level of the carbon endash oxygen pair. The relative concentration of this defect is ∼10 times higher in samples implanted with Ge than in those implanted with He. Due to its formation temperature, equal concentration in epitaxial and Czochralski grown wafers, and absence in n-type samples, the K2 trap has been tentatively identified as a vacancy-related complex which probably contains boron. copyright 1999 American Institute of Physics

  7. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lu; Zhu, Chao [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Muntele, Claudiu I. [Center for Irradiation Materials, Alabama A and M University, P. O. Box 1447, Normal, AL 35762 (United States); Zhang, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Department of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); He, Wei, E-mail: whe5@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996-2210 (United States)

    2015-02-01

    In the present study, low energy ion implantation was employed to engineer the surface of a Zr-based bulk metallic glass (BMG), aiming at improving the biocompatibility and imparting bioactivity to the surface. Ca- or Ar-ions were implanted at 10 or 50 keV at a fluence of 8 × 10{sup 15} ions/cm{sup 2} to (Zr{sub 0.55}Al{sub 0.10}Ni{sub 0.05}Cu{sub 0.30}){sub 99}Y{sub 1} (at.%) BMG. The effects of ion implantation on material properties and subsequent cellular responses were investigated. Both Ar- and Ca-ion implantations were suggested to induce atom displacements on the surfaces according to the Monte-Carlo simulation. The change of atomic environment of Zr in the surface regions as implied by the alteration in X-ray absorption measurements at Zr K-edge. X-ray photoelectron spectroscopy revealed that the ion implantation process has modified the surface chemical compositions and indicated the presence of Ca after Ca-ion implantation. The surface nanohardness has been enhanced by implantation of either ion species, with Ca-ion implantation showing more prominent effect. The BMG surfaces were altered to be more hydrophobic after ion implantation, which can be attributed to the reduced amount of hydroxyl groups on the implanted surfaces. Higher numbers of adherent cells were found on Ar- and Ca-ion implanted samples, while more pronounced cell adhesion was observed on Ca-ion implanted substrates. The low energy ion implantation resulted in concurrent modifications in atomic structure, nanohardness, surface chemistry, hydrophobicity, and cell behavior on the surface of the Zr-based BMG, which were proposed to be mutually correlated with each other. - Highlights: • Low energy ion implantation of a Zr-based BMG for bone implant applications • Concurrent modifications in surface structure and properties after irradiation • Promoted adhesion of bone-forming cells after Ar- or Ca-ion implantation.

  8. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  9. The effect of temperature on the tribological mechanisms and reactivity of hydrogenerated, amorphous diamond-like carbon coatings under oil-lubricated conditions

    OpenAIRE

    Roman, E.; Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    In this work we present the wear and friction behaviour of boundary-lubricated, hydrogenated, amorphous, diamond-like carbon coatings (a-C:H), in self-mated a-C:H/a-C:H contacts, at three different testing temperaturesČ 20, 80, 150 °C. We present results from Auger electron spectroscopy, X-ray photoelectron spectroscopy and Raman analyses relating to the chemical and structural changes in the diamond-like carbon coatings duringsliding in the presence of mineral oil, with and without additives...

  10. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  11. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  12. n{sup +}/p diodes by ion implantation: Dopant, extended defects, and impurity concerns

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Venables, D.; Christensen, K.N.; Maher, D.M. [North Carolina State Univ., Raleigh, NC (United States)

    1995-08-01

    The present study is concerned with the formation of defect structures resulting from phosphorus ion implantation into p-type, <100> silicon and with the rearrangement as well as removal of defect structures following high temperature annealing. The problematic interaction of background impurities with extended defects also is included in this study, as are the non-illuminated and illuminated electrical characteristics of n+/p diodes that are fabricated using ion implantation. Wafers and diodes that are fabricated using a phosphorus planar diffusion technique are run in parallel and serve as the controls. In this contribution, preliminary results for the cases of a 50 keV implant followed by an anneal at 900{degrees}C/30 min and a diffusion at 825{degrees}C/60 min are summarized.

  13. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Hiroshi, E-mail: oka@asf.mls.eng.osaka-u.ac.jp; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji [Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  14. The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation

    International Nuclear Information System (INIS)

    Polyethylene terephthalate (PET) film is modified by Ag ion implantation with a fluence 1 x 1016 ions/cm2. The results of X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that silver has been successfully implanted into the surface of PET. The PET samples modified by silver ion implantation have significantly bactericidal property. The capacity of the staphylococcus epidermidis (SE) adhered on the Ag+ implanted PET surface is 5.3 x 106 CFU/ml, but the capacity of the SE adhered on the untreated PET film is 2.23 x 107 CFU/ml. The thromboembolic property is evaluated by in vitro platelet adhesion test, and there is not statistically difference between the untreated PET and the Ag+ implanted PET for the number of adhered and activated platelets. The PET implanted by silver ion has not acute toxicity to endothelial cell (EC) which was evaluated by the release of lactate dehydrogenase (LDH) test

  15. Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation

    International Nuclear Information System (INIS)

    Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N+ into Taikonglian No.1, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.1, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.

  16. Simulation two-beam high-dose ion implantation in solid-state targets

    CERN Document Server

    Komarov, A F

    2001-01-01

    The physicomathematical model and the program on the BEAM2HD dynamic modeling make it possible to model the process of the single- or two-beam high-dose ion implantation into the multilayer and multicomponent targets, is developed. The number of layer thereby does not exceed three and the number of various types of atoms in each layer does not exceed seven. The modeling is realized through the Monte-Carlo method. The numerical results of the work on formation of the C sub x sub-> sub 3 N sub y sub-> sub 4 supersolid layers through the nitrogen two-beam high-dose ion implantation into the Si sub 3 N sub 4 /C/Si sub 3 N sub 4 /Si multilayer system are presented

  17. Novel Si ion implantation technique for improving the radiation hardness of SOI pseudo-MOS transistor

    International Nuclear Information System (INIS)

    The pseudo-MOS transistor is a quick and effective technique for characterizing the electrical properties of silicon-on-insulator (SOI) wafer. We investigated the total ionizing dose (TID) response of pseudo-MOS transistors fabricated on SOI wafers hardened by single or multiple step Si ion implantation. It is demonstrated that the two Si ion implantation methods can both improve the radiation hardness of SOI wafers owing to the generation of deep electron traps in the buried oxide (BOX). However, the lattice damage of top silicon film caused by the single step implantation compared with the multiple degenerates the electrical properties of transistors, especially for the sub-threshold swing. The high resolution transmission electron microscopy (HRTEM) was used to observe the lattice quality

  18. Behaviour of radiation defects under the influence of mechanical strain in ion-implanted silicon

    Science.gov (United States)

    Suprun-Belevich, Yu.; Palmetshofer, L.

    1997-05-01

    The interactions between radiation defects and internal mechanical strain in ion-implanted semiconductor crystals have been investigated by means of Hall-effect measurements, deep-level transient spectroscopy (DLTS) and X-ray diffraction. The mechanical strain had been intentionally introduced into silicon crystals by 320 keV Ge-ion implantation (10 15-3 × 10 16 cm -2) and subsequent annealing. The samples were then subjected to H + - or Si +-ion bombardment for the introduction of radiation defects. Both Hall-effect and DLTS measurements showed a decrease of the defect production rate in a wide dose interval and accelerated annealing of the radiation defects in strained samples compared to unstrained reference samples. The reduction of the defect concentration during implantation and annealing under the influence of strain is supposed to be connected with an energy transfer from the elastic mechanical strain field to the defects.

  19. Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation

    Science.gov (United States)

    Zhang, Jianhua; Wang, Naiyan; Zhang, Fengshou

    2012-05-01

    Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N+ into Taikonglian No.1, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.1, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.

  20. Influence of Cu ion implantation on the microstructure and cathodoluminescence of ZnS nanostructures

    Science.gov (United States)

    Shang, L. Y.; Zhang, D.; Liu, B. Y.

    2016-07-01

    The microstructure and optical properties of as-synthesized and Cu ion implanted ZnS nanostructures with branched edges are studied by using high-resolution transmission electron microscope (TEM) and spatially-resolved cathodoluminescence measurement. Obvious crystalline deterioration has been observed in Cu-doped ZnS nanostructures due to the invasion of Cu ions into ZnS lattice. It was found that the optical emissions of ZnS nanostructures can be selectively modified through the control of Cu ion dose and subsequent heat treatment. An increase of Cu dopant content will lead to an apparent red-shift of the intrinsic band-gap emission in the UV range and the broadening of defect-related emission in visible range. The influences of Cu ion implantation on the microstructure and related optical properties were discussed.

  1. Influence of Temperature on Nitrogen Ion Implantation of Ti6Al4V Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4× 1018 ions. cm-2. Using the Plasma Source Ion Implantation (PSⅡ) device, specimens of Ti6Al4V alloy were implanted at elevated temperatures, using the ion flux as the heating source. Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), micro-hardness measurements and pin-on-disk wearing tester were utilized to evaluate the surface property improvements. The thickness of the implanted layer increased by about an order of magnitude when the temperature was elevated from 100 to 600℃. Higher surface hardness and wearing resistance was also obtained in implantation under higher temperature. XRD image showed the presence of titanium nitrides on the implanted surface.

  2. Measurement of lattice damage caused by ion-implantation doping of semiconductors.

    Science.gov (United States)

    Hunsperger, R. G.; Wolf, E. D.; Shifrin, G. A.; Marsh, O. J.; Jamba, D. M.

    1971-01-01

    Discussion of two new techniques used to measure the lattice damage produced in GaAs by the implantation of 60 keV cadmium ions. In the first method, optical reflection spectra of the ion-implanted samples were measured in the wavelength range from 2000 to 4600 A. The decrease in reflectivity resulting from ion-implantation was used to determine the relative amount of lattice damage as a function of ion dose. The second technique employed the scanning electron microscope. Patterns very similar in appearance to Kikuchi electron diffraction patterns are obtained when the secondary and/or backscattered electron intensity is displayed as a function of the angle of incidence of the electron beam on a single crystal surface. The results of measurements made by both methods are compared with each other and with data obtained by the method of measuring lattice damage by Rutherford scattering of 1 MeV helium ions.

  3. The fabrication of metal silicide nanodot arrays using localized ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo, E-mail: bkmin@yonsei.ac.kr [School of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-12-03

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  4. Ion implantation reinforcement of the protective efficiency of nickel in artificial sea-water

    CERN Document Server

    Leroy, L; Grosseau-Poussard, J L; Dinhut, J F

    2002-01-01

    Ni bulk specimens have been implanted with Cr, Cu and Ar ions (4x10 sup 1 sup 6 ions/cm sup 2 , 60 keV) in order to distinguish between chemical and radiation damage effects on protection corrosion. The corrosion behaviour in artificial sea-water of ion-implanted and pure Ni has been studied at room temperature by electrochemical impedance spectroscopy (EIS) technique. EIS spectra of ion-implanted Ni exhibit one capacitance loop while in pure Ni two distinct loops are observed. Moreover an important increase in the polarisation resistance is noticed for all implanted ions. Theses changes in EIS behaviour with implantation is related to the increase of the superficial layer density resulting in a decrease of heterogeneity of the passive layer. Equivalent circuits are proposed to fit the impedance spectra and corresponding electrochemical parameters are deduced.

  5. Novel Si ion implantation technique for improving the radiation hardness of SOI pseudo-MOS transistor

    Science.gov (United States)

    Zhang, Yanwei; Huang, Huixiang; Bi, Dawei; Tang, Minghua; Zhang, Zhengxuan

    2014-01-01

    The pseudo-MOS transistor is a quick and effective technique for characterizing the electrical properties of silicon-on-insulator (SOI) wafer. We investigated the total ionizing dose (TID) response of pseudo-MOS transistors fabricated on SOI wafers hardened by single or multiple step Si ion implantation. It is demonstrated that the two Si ion implantation methods can both improve the radiation hardness of SOI wafers owing to the generation of deep electron traps in the buried oxide (BOX). However, the lattice damage of top silicon film caused by the single step implantation compared with the multiple degenerates the electrical properties of transistors, especially for the sub-threshold swing. The high resolution transmission electron microscopy (HRTEM) was used to observe the lattice quality.

  6. The influence of ion implantation on the corrosion behaviour of iron in acid solution

    International Nuclear Information System (INIS)

    The influence of ion implantation on the aqueous corrosion of pure iron in 1N H2SO4 was studied. The iron was bombarded with 5 x 1015 to 1017 ions.cm-2 of Ne, Ar, Cu, Pb and Au. The current density-potential curves of the implanted samples were measured and compared with that of untreated pure iron. Ne+ and Cu+ bombardments lead to a slightly higher corrosion rate in comparison with untreated iron. Pb+ depressed the corrosion rate by orders of magnitude. Au+ enhanced it by a factor of more than ten. The effect is attributed to a reduction or an increase of the activity of the electrode surface with respect to the cathodic hydrogen evolution reaction, i.e. the ion implantation influences strongly the exchange current density of the hydrogen evolution reaction. A marked influence of the implantation on the anodic behaviour of the corroding metal could also be observed. (author)

  7. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates

    International Nuclear Information System (INIS)

    In this work we show that improved performances of terahertz emitters can be obtained using an ion implantation process. Our photoconductive materials consist of high-resistivity GaAs substrates. Terahertz pulses are generated by exciting our devices with ultrashort near-infrared laser pulses. The ion implantation introduces non-radiative centres, which reduce the carrier lifetime in GaAs. The presence of the charged defects also induces a redistribution of the electric field between the antenna electrodes. This effect has a huge influence on the amplitude of the radiated terahertz field. Results obtained as a function of the laser excitation power are discussed and a comparison of the performance of these devices with a conventional antenna-type emitter is given

  8. Electrical and optical switching properties of ion implanted VO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, Emily M., E-mail: emily.heckman@wpafb.af.mi [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Dayton, Ohio 45430 (United States); Gonzalez, Leonel P. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Dayton, Ohio 45430 (United States); Guha, Shekhar [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Barnes, Jacob O.; Carpenter, Amelia [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Dayton, Ohio 45430 (United States)

    2009-11-02

    The metal-insulator transition in vanadium dioxide thin films implanted with O{sup +} ions was studied. Ion implantation lowered the metal-insulator transition temperature of the VO{sub 2} films by 12 {sup o}C compared to the unimplanted ones, as measured both optically and electrically. The lowering of the transition temperature was accomplished without significantly reducing the mid-wave infrared optical transmission in the insulating state for wavelengths > 4.3 {mu}m. Raman spectroscopy was used to examine changes to the crystalline structure of the implanted films. The Raman spectra indicate that ion implantation effects are not annealed out for temperatures up to 120 {sup o}C.

  9. An All Solid-State Pulsed Power Generator for Plasma Immersion Ion Implantation (PⅢ)

    Institute of Scientific and Technical Information of China (English)

    LIU Kefu; QIU Jian; WU Yifan

    2009-01-01

    An all solid-state pulsed power generator for plasma immersion ion implantation (PⅢ) is described. The pulsed power system is based on a Marx circuit configuration and semi-conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers.The operation of PⅢ with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs.The proposed system and its performance, as used to drive a plasma ion implantation chamber,axe described in detail on the basis of the experimental results.

  10. Diffusion of nitrogen and phase transformations in subsurface region of monocrystalline molybdenum after ion implantation

    International Nuclear Information System (INIS)

    Results of the study of structural features and annealing process kinetics in monocrystalline molybdenum subsurface layers after ion implantation of nitrogen ions are presented. It has been established by X-ray diffraction analysis that a coarse-grained tetragonal β-Mo2N phase is formed as a result of ion implantation. The dynamics of change of subsurface nitrogen concentration was examined by Auger spectroscopy and by secondary ions mass-spectrometry. Diffusion constant of nitrogen was estimated by the time of appearance of nitrogen concentration maximum on the sample surfaces. The main particularity of the obtained diffusion constants are their low values which are less than the constants of nitrogen bulk diffusion in a molybdenum-nitrogen solid solution by 6-7 orders of magnitude

  11. Synthesis and characterisation of ion-implanted epoxy composites for X-ray shielding

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azman, N.Z. [Department of Imaging and Applied Physics, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Siddiqui, S.A. [Department of Imaging and Applied Physics, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Ionescu, M. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Low, I.M., E-mail: j.low@curtin.edu.au [Department of Imaging and Applied Physics, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2012-09-15

    The epoxy samples were implanted with heavy ions such as tungsten (W), gold (Au) and lead (Pb) to investigate the attenuation characteristics of these composites. Near-surface composition depth profiling of ion-implanted epoxy systems was studied using Rutherford Backscattering Spectroscopy (RBS). The effect of implanted ions on the X-ray attenuation was studied with a general diagnostic X-ray machine with X-ray tube voltages from 40 to 100 kV at constant exposure 10 mAs. Results show that the threshold of implanted ions above which X-ray mass attenuation coefficient, {mu}{sub m} of the ion-implanted epoxy composite is distinguishably higher than the {mu}{sub m} of the pure epoxy sample is different for W, Au and Pb.

  12. Gas Permeation, Mechanical Behavior and Cytocompatibility of Ultrathin Pure and Doped Diamond-Like Carbon and Silicon Oxide Films

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-12-01

    Full Text Available Protective ultra-thin barrier films gather increasing economic interest for controlling permeation and diffusion from the biological surrounding in implanted sensor and electronic devices in future medicine. Thus, the aim of this work was a benchmarking of the mechanical oxygen permeation barrier, cytocompatibility, and microbiological properties of inorganic ~25 nm thin films, deposited by vacuum deposition techniques on 50 µm thin polyetheretherketone (PEEK foils. Plasma-activated chemical vapor deposition (direct deposition from an ion source was applied to deposit pure and nitrogen doped diamond-like carbon films, while physical vapor deposition (magnetron sputtering in pulsed DC mode was used for the formation of silicon as well as titanium doped diamond-like carbon films. Silicon oxide films were deposited by radio frequency magnetron sputtering. The results indicate a strong influence of nanoporosity on the oxygen transmission rate for all coating types, while the low content of microporosity (particulates, etc. is shown to be of lesser importance. Due to the low thickness of the foil substrates, being easily bent, the toughness as a measure of tendency to film fracture together with the elasticity index of the thin films influence the oxygen barrier. All investigated coatings are non-pyrogenic, cause no cytotoxic effects and do not influence bacterial growth.

  13. Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production

    International Nuclear Information System (INIS)

    Amorphous hydrogenated carbon (a-C:H) thin films were obtained at room temperature via asymmetric bipolar pulsed-dc methane glow discharge. The power frequency values were varied from 100 to 200 kHz and the maximum amplitude voltage from -600 to -1400 V. Such films present diamond-like carbon (DLC) properties [J.L. Andujar, M. Vives, C. Corbella, E. Bertran, Diamond Relat. Mater. 12 (2003) 98]. The plasma, powered by a pulse frequency of 100 kHz, was electrically studied by a Langmuir probe. The next parameters were calculated within the pulse cycle from I-V measurements with 1 μs resolution: plasma and floating potentials, electron temperature, and electron and ion densities. The presence of a population of hot electrons (10 eV) was detected at high bias voltage region. The density of cold electrons grows one order of magnitude after each negative pulse, whereas the ion density suffers a prompt increase during each positive pulse. The surface topography of DLC films was scanned by atomic force microscopy (AFM). A smoothly varying friction coefficient (between 0.2 and 0.3) was measured by AFM in contact mode. X-ray reflectivity (XRR) analysis provided a wide characterization of the films, involving density, thickness and roughness. The C/H ratio, as directly obtained by elemental analysis (EA), shows an increase at higher bias voltages. All these features are discussed in terms of process parameters varied in film growth

  14. Structure analysis of silicon-doped diamond-like carbon films by X-ray and neutron reflectivity measurements

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) is an amorphous material with an intermediate chemical structure between diamond and graphite. While the DLC coatings show low friction and little wear, the tribological properties are improved by doping of silicon. Since the effect of the silicon on the improvement is not unveiled, we coated silicon wafers with Si-doped DLC (DLC-Si) films by direct-current plasma CVD process, evaluated their friction coefficient and wear depth, and investigated the cross-section profiles of the films. Ball-on-disk test revealed that the tribological properties improved most when silicon is added by 6-10 at.% against carbon in the DLC-Si films. X-ray reflectometry suggested the existence of a thin layer with a different scattering length density (SLD) on the surfaces of the DLC-Si films. The thickness of the layers is around 20 nm. Neutron reflectivity measurements confirmed the formation similar SLD structure, the composition and mass density of the films. It is concluded that the surface thin layers, which are not observed for a DLC film free from or without silicon, should be responsible for the enhanced tribological properties. (author)

  15. Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications.

    Science.gov (United States)

    Caschera, Daniela; Cortese, Barbara; Mezzi, Alessio; Brucale, Marco; Ingo, Gabriel Maria; Gigli, Giuseppe; Padeletti, Giuseppina

    2013-02-26

    A stable and improved control of the wettability of textiles was obtained by using a coating of diamond like carbon (DLC) films on cotton by PECVD. By controlling different plasma pretreatments of argon, oxygen, and hydrogen on the cotton fibers' surface, we have shown that the pretreatments had a significant impact on wettability behavior resulting from an induced nanoscale roughness combined with an incorporation of selected functional groups. Upon subsequent deposition of diamond like carbon (DLC) films, the cotton fibers yield to a highly controlled chemical stability and hydrophobic state and could be used for self-cleaning applications. By controlling the nature of the plasma pretreatment we have shown that the oxygen plasma pretreatment was more effective than the argon and hydrogen for the superhydrophilic/ultra hydrophobic properties. The chemical and morphological changes of the cotton fibers under different treatments were characterized using X-ray photoelectron and Raman spectroscopy, AFM, and water contact angle measurements. The mechanism underlying the water-repellent properties of the cotton fibers provides a new and innovative pathway into the development of a range of advanced self-cleaning textiles. PMID:23379650

  16. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  17. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    Science.gov (United States)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  18. Some features of ion mixing during simultaneous ion implantation and deposition of metallic coatings

    CERN Document Server

    Pogrebnyak, A D; Mikhalev, A D; Shablya, V T; Yanovskij, V P

    2001-01-01

    The results on the Ta, Cu ions implantation into the aluminium substrate by simultaneous deposition of these ions in the form of coatings are presented. The complex structure of these coatings from the given elements in the substrate, as well as the increase in the microhardness, adhesion and corrosion resistance growth are determined. It is shown on the basis of the results of the secondary ions energy distribution, that intermetallic phases are formed in the substrate surface layer

  19. Capacitance of High-Voltage Coaxial Cable in Plasma Immersion Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Plasma immersion ion implantation (PIII) is an excellent technique for the surface modification of complex-shaped components. Owing to pulsed operation mode of the high voltage and large slew rate, the capacitance on the high-voltage coaxial cable can be detrimental to the processand cannot be ignored. In fact, a significant portion of the rise-time/fall-time of the implantation voltage pulse and big initial current can be attributed to the coaxial cable.

  20. Variable-temperature sample system for ion implantation at -192 to +500/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, C.T.

    1978-04-01

    A variable-temperature sample system based on exchange-gas coupling was developed for ion-implantation use. The sample temperature can be controlled from -192/sup 0/C to +500/sup 0/C with rapid cooling. The system also has provisions for focusing and alignment of the ion beam, electron suppression, temperature monitoring, sample current measuring, and cryo-shielding. Design considerations and operating characteristics are discussed. 5 figures.