WorldWideScience

Sample records for carbon ion therapy

  1. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus;

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... to the surface where the beam enters) are examined. For each plan the minimum,  maximum and the dose averaged LET of the PTV is calculated. The numbers are translated to OER using several sets of data found in literature for various cell lines. Results: We find a strong dependence of the dose average LET and OER...... effect. All cell lines investigated here did not reach an OER of 1, even for the smaller structures, which may indicate that the achievable dose average LET of carbon ions is too low, and heavier ions than carbon may be considered for functional LET-painting....

  2. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  3. Evaluation of neutron radiation field in carbon ion therapy

    Science.gov (United States)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  4. Study on neutron radiation field of carbon ions therapy

    CERN Document Server

    Xu, Jun-Kui; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2015-01-01

    Carbon ions offer significant advantages for deep-seated local tumors therapy due to their physical and biological properties. Secondary particles, especially neutrons caused by heavy ion reactions should be carefully considered in treatment process and radiation protection. For radiation protection purposes, the FLUKA Code was used in order to evaluate the radiation field at deep tumor therapy room of HIRFL in this paper. The neutron energy spectra, neutron dose and energy deposition of carbon ion and neutron in tissue-like media was studied for bombardment of solid water target by 430MeV/u C ions. It is found that the calculated neutron dose have a good agreement with the experimental date, and the secondary neutron dose may not exceed one in a thousand of the carbon ions dose at Bragg peak area in tissue-like media.

  5. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  6. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  7. Gunma University Heavy Ion Medical Center. Evolution of carbon therapy

    International Nuclear Information System (INIS)

    Cancer treatments with high energy carbon beams have been initiated at Gunma University Heavy Ion Medical Center, GHMC, in March of this year. Aiming the wide spread of the carbon therapy, the grand design of the facility and a variety of R and D studies were conducted by HIMAC group of National Institute of Radiological Sciences, NIRS, in collaboration with Gunma University. The design concepts of the facility include the high reliability, high efficiency, and low construction and operation cost. The success of the facility will open up new era of the carbon therapy. (author)

  8. Protontherapy versus carbon ion therapy advantages, disadvantages and similarities

    CERN Document Server

    d’Ávila Nunes, Marcos

    2015-01-01

    This book presents a comparison analysis of two cancer treatment therapies: carbon ion therapy and protontherapy. It is divided in 5 sections. The first ones gives the reader a brief history of Radiotherapy and types of radiation. In the second section, the techniques and equipments, including new ones in development such as Cyclinac , Laser and DWA, are described. The third section describes biophysical (such as stopping power and LET) and biological (such as RBE and OER) properties, the fundamental experiments and clinical area. The fourth section presents models and the fifth section compares both techniques, showing advantages and disadvantages of each, and their similarities.

  9. Precise measurement of prompt photon emission for carbon ion therapy

    CERN Document Server

    Agodi, C; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Voena, C

    2011-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments is still a matter of research. A possible technique exploits the information provided by single photon emission from nuclear decays induced by the irradiation. This paper reports the measurements of the spectrum and rate of such photons produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud of INFN, Catania, with a Poly-methyl methacrylate target. The differential production rate for photons with energy E > 2 MeV and emitted at 90 degree is found to be $dN_{\\gamma}/(dN_C d\\Omega)=(2.92\\pm 0.19)\\times 10^{-2}$sr$^{-1}$.

  10. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  11. EUD-based biological optimization for carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brüningk, Sarah C., E-mail: sarah.brueningk@icr.ac.uk; Kamp, Florian; Wilkens, Jan J. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, München 81675, Germany and Physik-Department, Technische Universität München, James-Franck-Str. 1, Garching 85748 (Germany)

    2015-11-15

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  12. Carbon Ion Therapy for Early-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yusuke Demizu

    2014-01-01

    Full Text Available Carbon ion therapy is a type of radiotherapies that can deliver high-dose radiation to a tumor while minimizing the dose delivered to the organs at risk; this profile differs from that of photon radiotherapy. Moreover, carbon ions are classified as high-linear energy transfer radiation and are expected to be effective for even photon-resistant tumors. Recently, high-precision radiotherapy modalities such as stereotactic body radiotherapy (SBRT, proton therapy, and carbon ion therapy have been used for patients with early-stage non-small-cell lung cancer, and the results are promising, as, for carbon ion therapy, local control and overall survival rates at 5 years are 80–90% and 40–50%, respectively. Carbon ion therapy may be theoretically superior to SBRT and proton therapy, but the literature that is currently available does not show a statistically significant difference among these treatments. Carbon ion therapy demonstrates a better dose distribution than both SBRT and proton therapy in most cases of early-stage lung cancer. Therefore, carbon ion therapy may be safer for treating patients with adverse conditions such as large tumors, central tumors, and poor pulmonary function. Furthermore, carbon ion therapy may also be suitable for dose escalation and hypofractionation.

  13. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT

    International Nuclear Information System (INIS)

    To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF) and intensity-modulated radiotherapy (IMRT, 3 DOF) for two immobilization devices (Scotchcast masks vs thermoplastic head masks) currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost), immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2 - 1.4 mm and 1.0 - 1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast) and 2.9 mm (thermoplastic masks) in 6 DOF and 3.9 - 3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of > 3 mm for position correction in the pre-on-board imaging era. Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy

  14. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    Science.gov (United States)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  15. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    International Nuclear Information System (INIS)

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  16. Hypofractionated carbon ion therapy delivered with scanned ion beams for patients with hepatocellular carcinoma – feasibility and clinical response

    International Nuclear Information System (INIS)

    Photon-based radiation therapy does currently not play a major role as local ablative treatment for hepatocellular carcinoma (HCC). Carbon ions offer distinct physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak, precise dose application and sparing of normal tissue is possible. Furthermore, carbon ions have an increased relative biological effectiveness (RBE) compared to photons. A total of six patients with one or more HCC-lesions were treated with carbon ions delivered by the raster-scanning technique according to our clinical trial protocol. Diagnosis of HCC was confirmed by histology or two different imaging modalities (CT and MRI) according to the AASLD-guidelines. Applied fractionation scheme was 4 × 10 Gy(RBE). Correct dose application was controlled by in-vivo PET measurement of β + −activity in the irradiated tissue shortly after treatment. Patients were observed for a median time period of 11.0 months (range, 3.4 – 12.7 months). Imaging studies showed a partial response in 4/7 lesions and a stable disease in 3/7 lesions in follow-up CT- and MRI scans. Local control was 100%. One patient with multifocal intrahepatic disease underwent liver transplantation 3 months after carbon ion therapy. During radiotherapy and the follow-up period no severe adverse events have occurred. We report the first clinical results of patients with HCC undergoing carbon ion therapy using the rasterscanning technique at our institution. All patients are locally controlled and experienced no higher toxicities in a short follow-up period. Further patients will be included in our prospective Phase-I clinical trial PROMETHEUS-01 (NCT01167374)

  17. Beam test of compact ECR ion source for carbon therapy

    International Nuclear Information System (INIS)

    Ion source for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peaks of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests shows that a C4+ intensity of 530 μA was obtained under an extraction voltage of 45 kV. This paper describes the design detail and the experimental results for the new source. (author)

  18. Development of compact ECR ion source for carbon therapy facility

    International Nuclear Information System (INIS)

    A 10 GHz compact Electron Cyclotron Resonance (ECR) ion source with all permanent magnets has been developed. Peaks of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests shows that a C4+ intensity of 500 μA was obtained under an extraction voltage of 30 kV. This paper describes the design detail and the experimental results for the new source. (author)

  19. Compact ECR ion source with permanent magnets for carbon therapy

    International Nuclear Information System (INIS)

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article

  20. Quality of Life in Men Treated With Carbon Ion Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To prospectively assess patient quality of life (QOL) after carbon ion radiotherapy (C-ion RT) for prostate cancer, using established questionnaires. Methods and Material: The subjects were 150 patients who underwent C-ion RT. Of these, 25 patients with low-risk prostate cancer received C-ion RT alone, whereas the remaining 125 patients with a high-risk tumor also received androgen deprivation therapy. Quality of life was assessed using the self-administered Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire in all patients three times. In addition, University of California-Los Angeles Prostate Cancer Index (UCLA-PCI) was conducted in the low-risk patients. Results: The FACT-General (FACT-G) and FACT-P scores at 12 months after treatment averaged over all 150 patients showed no significant change compared with those before C-ion RT. In FACT-P subscales, emotional well-being increased significantly just after and 12 months after treatment. In contrast, physical well-being (PWB) and social/family well-being (S/FWB) decreased significantly at 12 months, whereas the prostate cancer subscale (PCS) decreased significantly just after treatment. Average scores for FACT-G, FACT-P, PWB, S/FWB, and PCS for the 125 patients receiving hormone therapy showed substantial detrimental changes at 12 months. In contrast, those of the 25 low-risk patients who had no hormone therapy showed no significant change. Similarly no significant change in the average of the UCLA-PCI scores in the low-risk patients was seen at 12 months. Conclusions: Average QOL parameters reported by patients with localized prostate cancer treated with C-ion RT, in the absence of hormone therapy, showed no significant decrease 12 months after C-ion RT

  1. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    Directory of Open Access Journals (Sweden)

    Ellerbrock Malte

    2011-04-01

    Full Text Available Abstract Purpose To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Methods Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Results Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc, mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR. Conclusion Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted.

  2. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    International Nuclear Information System (INIS)

    To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted

  3. Interaction vertex imaging (IVI) for carbon ion therapy monitoring: a feasibility study

    International Nuclear Information System (INIS)

    Proton imaging can be seen as a powerful technique for online monitoring of ion range during carbon ion therapy irradiations. Indeed, a large number of secondary protons are created during nuclear reactions, and many of these protons are likely to escape from the patient even for deep-seated tumors, carrying accurate information on the reaction vertex position. Two detection techniques have been considered: (i) double-proton detection by means of two forward-located trackers and (ii) single-proton detection in coincidence with the incoming carbon ion detected by means of a beam hodoscope. Geant4 simulations, validated by proton yield measurements performed at GANIL and GSI, show that ion-range monitoring is accessible on a pencil-beam basis with the single-proton imaging technique. Millimetric precision on the Bragg peak position is expected in the ideal case of homogeneous targets. The uncertainties in more realistic conditions should be investigated, in particular the influence of tissue heterogeneity in the very last part of the ion path (about 20 mm). (paper)

  4. Particles that fight cancer: the use of protons and carbon ions in cancer therapy

    CERN Document Server

    CERN. Geneva

    2014-01-01

    Particles that fight cancer: the use of protons and carbon ions in cancer therapy Cancer is a major societal issue. A key challenge for cancer therapy is the complex and multifaceted nature of the disease, which calls for personalised treatment. Radiotherapy has been used to treat tumours for more than a century, and is still a staple in oncology: today, 50 % of cancer patients receive radiotherapy, half of them with curative intent. Hadrontherapy is one of the most technologically advanced methods of delivering radiation dose to the tumour while protecting surrounding healthy tissues. In addition, hadrontherapy can reach otherwise difficult to access deep-seated tumours and can be used for radio resistant tumours as in hypoxia. This year marks 60 years since the first patient was treated with protons in the US and 20 years since the use of carbon ions in Japan. Join us in learning about the journey of particle therapy in Japan and Europe, its challenges, clinical results and future prospects. Thursday 2...

  5. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy

    International Nuclear Information System (INIS)

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  6. Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kuess, Peter, E-mail: peter.kuess@meduniwien.ac.at; Hopfgartner, Johannes; Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Comprehensive Cancer Center, Medical University Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna A-1090 (Austria); Helmbrecht, Stephan [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden D-01307 (Germany); Fiedler, Fine [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden D-01307 (Germany); Birkfellner, Wolfgang [Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna A-1090 (Austria); Enghardt, Wolfgang [OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden D-01307, Germany and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden D-01307 (Germany)

    2013-12-15

    Purpose: To investigate the possibility of detecting patient mispositioning in carbon-ion therapy with particle therapy positron emission tomography (PET) in an automated image registration based manner. Methods: Tumors in the head and neck (H and N), pelvic, lung, and brain region were investigated. Biologically optimized carbon ion treatment plans were created with TRiP98. From these treatment plans, the reference β{sup +}-activity distributions were calculated using a Monte Carlo simulation. Setup errors were simulated by shifting or rotating the computed tomography (CT). The expected β{sup +} activity was calculated for each plan with shifts. Finally, the reference particle therapy PET images were compared to the “shifted” β{sup +}-activity distribution simulations using the Pearson's correlation coefficient (PCC). To account for different PET monitoring options the inbeam PET was compared to three different inroom scenarios. Additionally, the dosimetric effects of the CT misalignments were investigated. Results: The automated PCC detection of patient mispositioning was possible in the investigated indications for cranio-caudal shifts of 4 mm and more, except for prostate tumors. In the rather homogeneous pelvic region, the generated β{sup +}-activity distribution of the reference and compared PET image were too much alike. Thus, setup errors in this region could not be detected. Regarding lung lesions the detection strongly depended on the exact tumor location: in the center of the lung tumor misalignments could be detected down to 2 mm shifts while resolving shifts of tumors close to the thoracic wall was more challenging. Rotational shifts in the H and N and lung region of +6° and more could be detected using inroom PET and partly using inbeam PET. Comparing inroom PET to inbeam PET no obvious trend was found. However, among the inroom scenarios a longer measurement time was found to be advantageous. Conclusions: This study scopes the use of

  7. Particle beam radiation therapy using carbon ions and protons for oligometastatic lung tumors

    International Nuclear Information System (INIS)

    A study was undertaken to analyze the efficacy and feasibility of particle beam radiation therapy (PBRT) using carbon ions and protons for the treatment of patients with oligometastatic lung tumors. A total of 47 patients with 59 lesions who underwent PBRT for oligometastatic lung tumors between 2003 and 2011 were included in this study. Patient median age was 66 (range, 39–84) years. The primary tumor site was the colorectum in 11 patients (23.4%), lung in 10 patients (21.3%) and a variety of other sites in 26 patients (55.3%). Thirty-one patients (66%) received chemotherapy prior to PBRT. Thirty-three lesions were treated with 320-MeV carbon ions and 26 were treated with 150- or 210-Mev protons in 1–4 portals. A median total dose of 60 (range, 52.8–70.2) GyE was delivered at the isocenter in 8 (range, 4–26) fractions. The median follow-up time was 17 months. The local control, overall survival and progression-free survival rates at 2 years were 79%, 54 and 27% respectively. PBRT-related toxicities were observed; six patients (13%) had grade 2 toxicity (including grade 2 radiation pneumonitis in 2) and six patients (13%) had grade 3 toxicity. Univariate analysis indicated that patients treated with a biologically equivalent dose of 10 (BED10) <110 GyE10, had a significantly higher local recurrence rate. Local control rates were relatively lower in the subsets of patients with the colorectum as the primary tumor site. No local progression was observed in metastases from colorectal cancer irradiated with a BED10 ≥ 110 GyE10. There was no difference in treatment results between proton and carbon ion therapy. PRBT is well tolerated and effective in the treatment of oligometastatic lung tumors. To further improve local control, high-dose PBRT with a BED10 ≥ 110 GyE10 may be promising. Further investigation of PBRT for lung oligometastases is warranted

  8. A simulation study of a dual-plate in-room PET system for dose verification in carbon ion therapy

    CERN Document Server

    Chen, Ze; Xiao, Guo-Qing; Chen, Jin-Da; Zhang, Xiu-Ling; Guo, Zhong-Yan; Sun, Zhi-Yu; Huang, Wen-Xue; Wang, Jian-Song

    2013-01-01

    Carbon ion therapy have the ability to overcome the limitation of convertional radiotherapy due to its most energy deposition in selective depth, usually called Bragg peak, which results in increased biological effectiness. During carbon ion therapy, lots positron emitters such as $^{11}$C, $^{15}$O, $^{10}$C are generated in irradiated tissues by nuclear reactions. Immediately after patient irradiation, PET scanners can be used to measure the spatial distribution of positron emitters, which can track the carbon beam to the tissue. In this study, we designed and evaluated an dual-plate in-room PET scanner to monitor patient dose in carbon ion therapy, which is based on GATE simulation platform. A dual-plate PET is designed to avoid interference with the carbon beam line and with patient positioning. Its performance was compared with that of four-head and full-ring PET scanners. The dual-plate, four-head and full-ring PET scanners consisted of 30, 60, 60 detector modules, respectively, with a 36 cm distance be...

  9. Combined treatment of malignant salivary gland tumours with intensity-modulated radiation therapy (IMRT) and carbon ions: COSMIC

    International Nuclear Information System (INIS)

    Local control in malignant salivary gland tumours is dose dependent. High local control rates in adenoid cystic carcinomas could be achieved by highly conformal radiotherapy techniques and particle (neutron/carbon ion) therapy. Considering high doses are needed to achieve local control, all malignant salivary gland tumours probably profit from the use of particle therapy, which in case of carbon ion treatment, has been shown to be accompanied by only mild side-effects. The COSMIC trial is a prospective, mono-centric, phase II trial evaluating toxicity (primary endpoint: mucositis ≥ CTCAE°3) and efficacy (secondary endpoint: local control, disease-free survival) in the combined treatment with IMRT and carbon ion boost in 54 patients with histologically proved (≥R1-resected, inoperable or Pn+) salivary gland malignancies. Patients receive 24 GyE carbon ions (8 fractions) and IMRT (50 Gy at 2.0 Gy/fraction). The primary objective of COSMIC is to evaluate toxicity and feasibility of the proposed treatment in all salivary gland malignancies. Clinical trial identifier NCT 01154270

  10. Production of secondary neutrons from patients during therapy with carbon ions, their dose contributions and potential risks

    International Nuclear Information System (INIS)

    By making use of the experimental neutron production data from different elements, under bombardment with carbon ions of 100 to 400 MeV/u energies, we have estimated the flux and energy distribution of secondary neutron produced in patients during therapy with C-ions. Our results indicate that at least 4 neutrons, with energies greater than 5 MeV, are produced for every C-ion of 400 MeV/u energy incident on tissue; which reduces to 3, 1.4 and 0.3 respectively at incident C-ion energies of 300, 200 and 100 MeV/u. For a typical therapy C-ion dose of 20 Gy (physical), the effective whole body dose due to the secondary neutrons is estimated to be about 1 Sv, that is about 5% of the incident C-ion dose for 400 MeV/u energy. The doses to 22 organs from these neutrons have also been estimated and ranges up to 230 mGy cm and 2 at an incident C-ion energy of 400 MeV/n. These figures could be higher if neutrons with energies less than 5 MeV, about which we do not have any experimental data, were also included. In our opinion these neutron doses are large enough to potentially cause secondary cancers and induce other harmful effects into patients. Therefore, this matter of secondary neutrinos from patients during therapy with C-ions must be even more thoroughly investigated before continuing therapy with C-ions. (author)

  11. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

    CERN Document Server

    Bohlen, TT; Quesada, J M; Bohlen, T T; Cerutti, F; Gudowska, I; Ferrari, A; Mairani, A

    2010-01-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction a...

  12. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  13. Operation of KeiGM for the carbon ion therapy facility at Gunma University

    International Nuclear Information System (INIS)

    Carbon-ion radiotherapy is being carried out at Gunma University Heavy Ion Medical Centre (GHMC) since March 2010. A compact electron cyclotron resonance ion source (ECRIS) for GHMC, so-called KeiGM, supplies carbon 4+ ions for treatment. The general structure of KeiGM was copied from a prototype compact source, so-called Kei2. Based on experimental studies for production of carbon 4+ ions with a 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba (HIMAC), so-called NIRS-ECR, the field distribution of the mirror magnet for Kei2 and KeiGM was designed. A microwave source with the traveling-wave-tube (TWT) was adopted for KeiGM, with a frequency range and maximum power of 9.75 - 10.25 GHz and 750 W, respectively. The KeiGM was installed in the GHMC facility in December 2008. The paper is followed by the associated poster. (authors)

  14. Raster-scanned carbon ion therapy for malignant salivary gland tumors: acute toxicity and initial treatment response

    International Nuclear Information System (INIS)

    To investigate toxicity and efficacy in high-risk malignant salivary gland tumors (MSGT) of the head and neck. Local control in R2-resected adenoid cystic carcinoma was already improved with a combination of IMRT and carbon ion boost at only mild side-effects, hence this treatment was also offered to patients with MSGT and microscopic residual disease (R1) or perineural spread (Pn+). From November 2009, all patients with MSGT treated with carbon ion therapy were evaluated. Acute side effects were scored according to CTCAE v.4.03. Tumor response was assessed according to RECIST where applicable. 103 patients were treated from 11/2009 to 03/2011, median follow-up is 6 months. 60 pts received treatment following R2 resections or as definitive radiation, 43 patients received adjuvant radiation for R1 and/or Pn+. 16 patients received carbon ion treatment for re-irradiation. Median total dose was 73.2 GyE (23.9 GyE carbon ions + 49,9 Gy IMRT) for primary treatment and 44.9 GyE carbon ions for re-irradiation. All treatments were completed as planned and generally well tolerated with no > CTC°III toxicity. Rates of CTC°III toxicity (mucositis and dysphagia) were 8.7% with side-effects almost completely resolved at first follow-up. 47 patients showed good treatment responses (CR/PR) according to RECIST. Acute toxicity remains low in IMRT with carbon ion boost also in R1-resected patients and patients undergoing re-irradiation. R2-resected patients showed high rates of treatment response, though follow-up is too short to assess long-term disease control

  15. A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: The physical and potential biological advantages of proton and carbon ions have not been fully exploited in radiation therapy for the treatment of cancer. In this work, an approach to predict proton and carbon ion relative biological effectiveness (RBE) in a representative spread-out Bragg peak (SOBP) is derived using the repair-misrepair-fixation (RMF) model. Methods and Materials: Formulas linking dose-averaged linear-quadratic parameters to DSB induction and processing are derived from the RMF model. The Monte Carlo Damage Simulation (MCDS) software is used to quantify the effects of radiation quality on the induction of DNA double-strand breaks (DSB). Trends in parameters α and β for clinically relevant proton and carbon ion kinetic energies are determined. Results: Proton and carbon ion RBE are shown to increase as particle energy, dose, and tissue α/β ratios decrease. Entrance RBE is ∼1.0 and ∼1.3 for protons and carbon ions, respectively. For doses in the range of 0.5 to 10 Gy, proton RBE ranges from 1.02 (proximal edge) to 1.4 (distal edge). Over the same dose range, the RBE for carbon ions ranges from 1.5 on the proximal edge to 6.7 on the distal edge. Conclusions: The proposed approach is advantageous because the RBE for clinically relevant particle distributions is guided by well-established physical and biological (track structure) considerations. The use of an independently tested Monte Carlo model to predict the effects of radiation quality on DSB induction also minimizes the number of ad hoc biological parameters that must be determined to predict RBE. Large variations in predicted RBE across an SOBP may produce undesirable biological hot and cold spots. These results highlight the potential for the optimization of physical dose for a uniform biological effect.

  16. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

    International Nuclear Information System (INIS)

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction and G4QMD are benchmarked together with some recently enhanced de-excitation models. For non-differential quantities, discrepancies of some tens of percent are found for both codes. For differential quantities, even larger deviations are found. Implications of these findings for the therapeutic use of carbon ions are discussed.

  17. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy.

    Science.gov (United States)

    Böhlen, T T; Cerutti, F; Dosanjh, M; Ferrari, A; Gudowska, I; Mairani, A; Quesada, J M

    2010-10-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction and G4QMD are benchmarked together with some recently enhanced de-excitation models. For non-differential quantities, discrepancies of some tens of percent are found for both codes. For differential quantities, even larger deviations are found. Implications of these findings for the therapeutic use of carbon ions are discussed. PMID:20844337

  18. Validation of recent Geant4 physics models for application in carbon ion therapy

    CERN Document Server

    Lechner, A; Ivanchenko, V N

    2010-01-01

    Cancer treatment with energetic carbon ions has distinct advantages over proton or photon irradiation. In this paper we present a simulation model integrated into the Geant4 Monte Carlo toolkit (version 9.3) which enables the use of ICRU 73 stopping powers for ion transport calculations. For a few materials, revised ICRU 73 stopping power tables recently published by ICRU (P. Sigmund, A. Schinner, H. Paul, Errata and Addenda: ICRU Report 73 (Stopping of Ions Heavier than Helium), International Commission on Radiation Units and Measurements, 2009) were incorporated into Geant4, also covering media like water which are of importance in radiotherapeutical applications. We examine, with particular attention paid to the recent developments, the accuracy of current Geant4 models for simulating Bragg peak profiles of C-12 ions incident on water and polyethylene targets. Simulated dose distributions are validated against experimental data available in the literature, where the focus is on beam energies relevant to io...

  19. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  20. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context

    International Nuclear Information System (INIS)

    Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia, demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy. However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location, in the future design and implementation of clinical trials. With the existing data available we believe that the expansion of carbon ion facilities into the United States is warranted

  1. Particle therapy for mucosal melanoma of the head and neck. A single-institution retrospective comparison of proton and carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Demizu, Y.; Fujii, O.; Terashima, K.; Mima, M.; Hashimoto, N.; Fuwa, N. [Hyogo Ion Beam Medical Center, Department of Radiology, Tatsuno, Hyogo (Japan); Niwa, Y. [Hyogo College of Medicine, Department of Radiology, Nishinomiya, Hyogo (Japan); Akagi, T. [Hyogo Ion Beam Medical Center, Department of Radiation Physics, Tatsuno, Hyogo (Japan); Daimon, T. [Hyogo College of Medicine, Department of Biostatistics, Nishinomiya, Hyogo (Japan); Murakami, M. [Dokkyo Medical University, Center for Radiation Oncology, Shimotsuga-gun, Tochigi (Japan)

    2014-02-15

    To retrospectively analyze treatment outcomes after particle therapy using protons or carbon ions for mucosal melanoma of the head and neck (HNMM) at the Hyogo Ion Beam Medical Center, as well as to compare proton therapy (PT) and carbon ion therapy (CIT). Data from 62 HNMM patients without metastasis, treated with PT or CIT between October 2003 and April 2011 were analyzed. Median patient age was 70.5 years (range 33-89 years). Of the total patients, 33 (53 %) had received PT and 29 (47 %) had undergone CIT. Protocols for 65 or 70.2 GyE in 26 fractions were used for both ion types. Median follow-up was 18.0 months (range 5.2-82.7 months). The 1-/2-year overall survival (OS) and local control (LC) rates were 93 %/61 % and 93 %/78 % for all patients, 91 %/44 % and 92 %/71 % for the PT patients and 96 %/62 % and 95 %/59 % for the CIT patients, respectively. No significant differences were observed between PT and CIT. Local recurrence was observed in 8 patients (PT: 5, CIT: 3) and 29 (PT: 18, CIT: 11) experienced distant metastases. Acute reactions were acceptable and all patients completed the planned radiotherapy. Regarding late toxicity, grade 3 or greater events were observed in 5 patients (PT: 3, CIT: 2), but no significant difference was observed between PT and CIT. Our single-institution retrospective analysis demonstrated that particle therapy for HNMM achieved good LC, but OS was unsatisfactory. There were no significant differences between PT and CIT in terms of either efficacy or toxicity. (orig.)

  2. Rationale for carbon ion therapy in high-grade glioma based on a review and a meta-analysis of neutron beam trials

    International Nuclear Information System (INIS)

    Purpose: The standard treatment of high-grade glioma is still unsatisfactory: the 2-year survival after radiotherapy being only 10-25%. A high linear energy transfer (Let) ionising radiotherapy has been used to overcome tumour radioresistance. An overview of the field is needed to justify future prospective controlled studies on carbon ion therapy. Materials and methods: A meta-analysis of clinical trials on neutron beam therapy and a literature review of clinical investigations on light ion use in high-grade glioma were carried out. Results: Four randomized controlled trials on neutron beam therapy were retained. The meta-analysis showed a non-significant 6% increase of two-year mortality (Relative risk [R.R.] 1.06 [0.97-1.15]) in comparison with photon therapy. Two phase I/II trials on carbon and neon ion therapy reported for glioblastoma 10% and 31% two-year overall survivals and 13.9 and 19.0 months median survivals, respectively. Conclusion: This meta-analysis suggests that neutron beam therapy does not improve the survival of high-grade glioma patients while there is no definitive conclusion yet regarding carbon therapy. The ballistic accuracy and the improved biological efficacy of carbon ions renew the interest in prospective clinical trials on particle beam radiotherapy of glioma and let us expect favourable effects of dose escalation on patients survival. (author)

  3. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    International Nuclear Information System (INIS)

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  4. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    CERN Document Server

    Mairani, A; Kraemer, M; Sommerer, F; Parodi, K; Scholz, M; Cerutti, F; Ferrari, A; Fasso, A

    2010-01-01

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fur Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed C-12 ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-d...

  5. Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts

    International Nuclear Information System (INIS)

    Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV) patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE) vs. a proton boost (10 GyE) in addition to photon radiotherapy (50 Gy), the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II), a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy. This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas. 33 patients with gliomas (n = 26) and meningiomas (n = 7) were treated with carbon ion (n = 26) and proton (n = 7) radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0. Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%), intermittent cranial nerve symptoms (6%) and single episodes of seizures (6%). At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient. Particle radiotherapy is safe and feasible in patients with primary brain tumors. It is associated with little toxicity. A positive

  6. Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT: early treatment results and study concepts

    Directory of Open Access Journals (Sweden)

    Rieken Stefan

    2012-03-01

    Full Text Available Abstract Background Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE vs. a proton boost (10 GyE in addition to photon radiotherapy (50 Gy, the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II, a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy. This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas. Methods 33 patients with gliomas (n = 26 and meningiomas (n = 7 were treated with carbon ion (n = 26 and proton (n = 7 radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0. Results Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%, intermittent cranial nerve symptoms (6% and single episodes of seizures (6%. At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient. Conclusions Particle radiotherapy is safe and feasible in patients with primary brain

  7. Randomised trial of proton vs. carbon ion radiation therapy in patients with chordoma of the skull base, clinical phase III study HIT-1-Study

    International Nuclear Information System (INIS)

    Chordomas of the skull base are relative rare lesions of the bones. Surgical resection is the primary treatment standard, though complete resection is nearly impossible due to close proximity to critical and hence also dose limiting organs for radiation therapy. Level of recurrence after surgery alone is comparatively high, so adjuvant radiation therapy is very important for the improvement of local control rates. Proton therapy is the gold standard in the treatment of skull base chordomas. However, high-LET beams such as carbon ions theoretically offer biologic advantages by enhanced biologic effectiveness in slow-growing tumors. This clinical study is a prospective randomised phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie centre (HIT) and is a monocentric study. Patients with skull base chordoma will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume delineation will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV in carbon ion treatment (accelerated dose) will be 63 Gy E ± 5% and 72 Gy E ± 5% (standard dose) in proton therapy respectively. Local-progression free survival (LPFS) will be analysed as primary end point. Toxicity and overall survival are the secondary end points. Additional examined parameters are patterns of recurrence, prognostic factors and plan quality analysis. Up until now it was impossible to compare two different particle therapies, i.e. protons and carbon ions directly at the same facility. The aim of this study is to find out, whether the biological advantages of carbon ion therapy can also be clinically confirmed and translated into the better local control rates in the treatment of skull base chordomas. ClinicalTrials.gov identifier: NCT01182779

  8. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  9. Carbon ion radiotherapy for pancreatic cancer

    International Nuclear Information System (INIS)

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Carbon ion therapy offers the potential advantages of improved dose localization and enhanced biological effects. It has been suggested that carbon ion therapy is effective against radioresistant pancreatic cancer. In April 2000, clinical studies examining the treatment of pancreatic cancer with carbon ions were begun at the HIMAC. As of February 2010, 48 patients treated with preoperative carbon ion radiotherapy and 89 patients treated for locally advanced pancreatic cancer were enrolled into the clinical trials. Both protocols are still ongoing. The interim results of these clinical trials suggest that carbon ion radiotherapy provides good local control and offers a survival advantage for patients with otherwise hard to cure pancreatic cancer, without unacceptable morbidity. (author)

  10. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    Directory of Open Access Journals (Sweden)

    Combs Stephanie E

    2010-11-01

    Full Text Available Background Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours. Methods/Design The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT centre as monocentric trial. Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose in proton therapy respectively. The 5 year local-progression free survival (LPFS rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points. Discussion Up

  11. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    International Nuclear Information System (INIS)

    Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours. The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial. Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points. Up to now it was impossible to compare two different

  12. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan)

    2013-03-15

    Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general

  13. Carbon ion radiotherapy for sarcomas

    International Nuclear Information System (INIS)

    Principles of heavy ion therapy, its application to bone and soft tissue sarcomas and outline of its general state are described. The heavy ion therapy has advantages of its high dose distribution to the target and strong biological effect due to the Bragg peak formation and high linear energy transfer, respectively. The authors use carbon ion generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) for the therapy of performance state 0-2 patients with the sarcomas unresectable, diagnosed pathologically, and of 60 y, 45% and teens, 8%) have been treated, whose tumor site has been the pelvis in 73%, volume >600 mL in 63%, tissue type of bone tumor in 70% (where cordoma has amounted to>200 cases). Five-year local control rate is found 71% and survival, 59%. In 175 therapeutically fresh cases with sacral cordoma of median age 67 y, with median clinical target volume 9 cm, treated with median dose 70.4 GyE/16 irradiations, the 8-y local control rate is found to be 69% and survival, 74%, within the median follow-up 54 months; with severe skin ulcer in 2 cases and deterioration of nervous dysfunction in 15 cases; suggesting the therapy is as effective and useful as surgical resection. At present, the therapy is not applicable to Japan health insurance. In the author's hospital, the heavy ion therapy has been conducted to total of >6,000 patients, which amounting to the largest number in the world. Now, 3 Japanese facilities can do the therapy as well and 3 countries in the world.(T.T.)

  14. Tests of New NIRS Compact ECR Ion Source for Carbon Therapy

    International Nuclear Information System (INIS)

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the performance of the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peak values of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests showed that a C4+ intensity of 530 μA was obtained under an extraction voltage of 40 kV. This paper describes the experimental results for the new source

  15. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    International Nuclear Information System (INIS)

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10 GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on the experience at the 10 GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 530 μA under an extraction voltage of 40 kV. The beam stability was better than 6% at C4+ of 280 μA during 90 h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper

  16. A robustness analysis method with fast estimation of dose uncertainty distributions for carbon-ion therapy treatment planning

    Science.gov (United States)

    Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-08-01

    A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the

  17. A robustness analysis method with fast estimation of dose uncertainty distributions for carbon-ion therapy treatment planning.

    Science.gov (United States)

    Sakama, Makoto; Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-08-01

    A simple and efficient approach is needed for robustness evaluation and optimization of treatment planning in routine clinical particle therapy. Here we propose a robustness analysis method using dose standard deviation (SD) in possible scenarios such as the robustness indicator and a fast dose warping method, i.e. deformation of dose distributions, taking into account the setup and range errors in carbon-ion therapy. The dose warping method is based on the nominal dose distribution and the water-equivalent path length obtained from planning computed tomography data with a clinically commissioned treatment planning system (TPS). We compared, in a limited number of scenarios at the extreme boundaries of the assumed error, the dose SD distributions obtained by the warping method with those obtained using the TPS dose recalculations. The accuracy of the warping method was examined by the standard-deviation-volume histograms (SDVHs) for varying degrees of setup and range errors for three different tumor sites. Furthermore, the influence of dose fractionation on the combined dose uncertainty, taking into consideration the correlation of setup and range errors between fractions, was evaluated with simple equations using the SDVHs and the mean value of SDs in the defined volume of interest. The results of the proposed method agreed well with those obtained with the dose recalculations in these comparisons, and the effectiveness of dose SD evaluations at the extreme boundaries of given errors was confirmed from the responsivity and DVH analysis of relative SD values for each error. The combined dose uncertainties depended heavily on the number of fractions, assumed errors and tumor sites. The typical computation time of the warping method is approximately 60 times less than that of the full dose calculation method using the TPS. The dose SD distributions and SDVHs with the fractionation effect will be useful indicators for robustness analysis in treatment planning, and the

  18. Development and Engineering Design of a Novel Exocentric Carbon-Ion Gantry for Cancer Therapy The "Riesenrad" Gantry

    CERN Document Server

    Reimoser, S

    2000-01-01

    Mechanical structures capable of delivering a therapy beam for cancer treatment from any direction to the patient are called medical gantries. Typically, a gantry rotates around the patient who is kept in the supine position (rotating gantries). In Europe several currently proposed clinic facilities for ion therapy want to install an ion gantry equipped with a pencil-beam scanning system. Such a treatment apparatus allows the optimisation of the dose-to-target conformity, but the active pencil-beam scanning increases the demands considerably on the beam transport accuracy. Usually, a sub-millimetre precision of the beam position at the patient (i.e. in the gantry isocentre) is required in order to treat tumours in the vicinity of critical organs, which is one of the main domains of ion therapy...

  19. Development of compact ECR ion source with permanent magnets for carbon therapy

    International Nuclear Information System (INIS)

    Ion sources for the medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without troubles (one year or longer). For this, a 10 GHz compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 eμA and better than 6% during 20 hours with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such facility we have designed a new all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 30 cm and a length of 29 cm. Details of the design of a new source and its background are described in this paper. (author)

  20. Randomized phase II trial of hypofractionated proton versus carbon ion radiation therapy in patients with sacrococcygeal chordoma-the ISAC trial protocol

    International Nuclear Information System (INIS)

    Chordomas are relatively rare lesions of the bones. About 30% occur in the sacrococcygeal region. Surgical resection is still the standard treatment. Due to the size, proximity to neurovascular structures and the complex anatomy of the pelvis, a complete resection with adequate safety margin is difficult to perform. A radical resection with safety margins often leads to the loss of bladder and rectal function as well as motoric/sensoric dysfunction. The recurrence rate after surgery alone is comparatively high, such that adjuvant radiation therapy is very important for improving local control rates. Proton therapy is still the international standard in the treatment of chordomas. High-LET beams such as carbon ions theoretically offer biologic advantages in slow-growing tumors. Data of a Japanese study of patients with unresectable sacral chordoma showed comparable high control rates after hypofractionated carbon ion therapy only. This clinical study is a prospective randomized, monocentric phase II trial. Patients with histologically confirmed sacrococcygeal chordoma will be randomized to either proton or carbon ion radiation therapy stratified regarding the clinical target volume. Target volume delineation will be carried out based on CT and MRI data. In each arm the PTV will receive 64 GyE in 16 fractions. The primary objective of this trial is safety and feasibility of hypofractionated irradiation in patients with sacrococygeal chordoma using protons or carbon ions in raster scan technique for primary or additive treatment after R2 resection. The evaluation is therefore based on the proportion of treatments without Grade 3–5 toxicity (CTCAE, version 4.0) up to 12 months after treatment and/or discontinuation of the treatment for any reason as primary endpoint. Local-progression free survival, overall survival and quality of life will be analyzed as secondary end points. The aim of this study is to confirm the toxicity results of the Japanese data in raster

  1. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    Science.gov (United States)

    Grevillot, L.; Stock, M.; Vatnitsky, S.

    2015-10-01

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  2. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    International Nuclear Information System (INIS)

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular.A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design.A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients. (paper)

  3. Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes

    International Nuclear Information System (INIS)

    Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of 16O and 12C. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons–carbon ion beam) to 57% (exiting neutrons–proton beam) have been identified in production yields as well as in the energy spectra for neutrons. (paper)

  4. Overview of light-ion beam therapy

    International Nuclear Information System (INIS)

    This overview of light-ion beam therapy covers the following topics: a history of hadron therapy, light-ion beam therapy, beam fragmentation, the biological rationale for the clinical use of light ions, the physical parameters of clinical beams, distributions of relative biological effectiveness (RBE) and linear energy transfer (LET), verification of treatment planning and delivery using charged particle beams, ion beam research in space biology, clinical trials using light ions, and the relationship between the present report and other IAEA and ICRU reports. There are plans for four national centres using light ions, in Germany, France, Austria, and Italy. There is an increasing interest in further initiatives and more countries are expressing interest in creating national projects, in particular Sweden, the Netherlands, Belgium, Spain and the UK. In Japan, another carbon-ion therapy facility project has started, and three additional facilities are planned. There are other initiatives for light-ion facilities in several locations in the USA, in China, and in Korea. (author)

  5. Neutron Dose measurement in the carbon ion therapy area at HIRFL (IMP) as 12C ions with energies from 165 to 350MeV/u

    CERN Document Server

    Xu, Jun-Kui; Yan, Wei-Wei; Su, You-Wu; Li, Zong-Qiang; Wang, Mao; Pang, Cheng-Guo; Xu, Chong

    2016-01-01

    The neutron dose distributions on observation distances and on observation angles were measured using a Wendi-II neutron dose-meter at the deep tumor therapy terminal at HIRFL (Heavy Ion Research Facility in Lanzhou) as 12C ions with energies from 165 to 350 MeV/u bombarding on thick solid water targets with different thickness according to the ion energies. The experimental results were compared with those calculated by FLUKA code. It is found that the experimental data was in good agreement with the calculated results. The neutron energy spectra were also studied by using the FLUKA code. The results are valuable for the shielding design of high energy heavy ion medical machines and for the individual dose assessment.

  6. Treatment outcomes of particle radiotherapy using protons or carbon ions as a single-modality therapy for adenoid cystic carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Background and purpose: The aim of this study was to retrospectively analyse the outcomes of cases of adenoid cystic carcinomas (ACCs) of the head and neck that were treated at a single institution with particle therapy consisting of either protons or carbon ions. Methods and materials: Between February 2002 and March 2012, 80 patients were treated with proton therapy (PT) or carbon ion therapy (CIT) alone. PT and CIT were employed in 40 (50%) patients each, and more than half of the patients received 65.0 GyE in 26 fractions (n = 47, 59%). Results: The median duration of follow-up was 38 months (range, 6–115 months). For all patients, the 5-year for overall survival (OS) rate, progression-free survival (PFS) rate, and local control (LC) rate were 63%, 39%, and 75%, respectively. No significant differences between PT and CIT were observed. The 5-year LC rates for T4 and inoperable cases were 66% and 68%, respectively. Twenty-one patients (26%) experienced grade 3 or greater late toxicities, including three patients who developed grade 5 bleeding from nasopharyngeal ulcers. Conclusions: Particle radiotherapy for ACC achieves favourable LC, and its efficacy in inoperable or T4 cases is promising. There were no significant differences between PT and CIT in terms of OS, PFS and LC

  7. Usefulness of J-CAPRA score for high-risk prostate cancer patients treated with carbon ion radiotherapy plus androgen deprivation therapy

    International Nuclear Information System (INIS)

    A novel risk assessment method, Japan Cancer of the Prostate Risk Assessment, has been developed based on database of patients receiving primary androgen deprivation therapy. To investigate the usefulness of Japan Cancer of the Prostate Risk Assessment for non-metastatic, high-risk prostate cancer patients treated with carbon ion radio-therapy plus androgen deprivation therapy. Patients with non-metastatic, high-risk prostate cancer (T3, initial prostate specific antigen level ≥20 ng/ml, and/or Gleason score ≥8) were included. The patients were treated with carbon ion radiotherapy (the total dose from 57.6 Gy (relative biological effectiveness)/16 fractions to 66.0 Gy (relative biological effectiveness)/20 fractions), and neoadjuvant as well as adjuvant androgen deprivation therapy for at least 24 months. Four hundred and twenty-six patients were included with the median follow-up of 68.1 months. Of 426, 210 (49.3%), 270 (63.4%) and 251 (58.9%) had Gleason 8-10, prostate specific antigen ≥20 ng/ml and T3, respectively. The 10-year progression-free and cause-specific survival rates in Japan Cancer of the Prostate Risk Assessment 1-2 group (76.5 and 98.9%) were significantly better than those in Japan Cancer of the Prostate Risk Assessment 3-6 group (52.6 and 93.1%), (P < 0.001 and P=0.044, respectively). The median progression-free survivals in the Japan Cancer of the Prostate Risk Assessment 1-2 and 3-6 groups were 158.9 months and 125.9 months (95% confidence interval: 108.6-143.2 months), respectively. For non-metastatic, high-risk prostate cancer patients treated with carbon ion radiotherapy plus androgen deprivation therapy, Japan Cancer of the Prostate Risk Assessment score was useful for predicting the progression-free and cause-specific survivals. (author)

  8. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Science.gov (United States)

    Rosso, V.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Ferretti, S.; Kraan, A. C.; Lucenò, S.; Molinelli, S.; Pullia, M.; Sportelli, G.; Zaccaro, E.; Del Guerra, A.

    2016-07-01

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly 15O and 11C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm2 and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  9. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy

    Science.gov (United States)

    Sánchez-Parcerisa, D.; Gemmel, A.; Jäkel, O.; Parodi, K.; Rietzel, E.

    2012-06-01

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (sw, air), with an uncertainty of 2%. The variation of (sw, air) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (sw, air) with penetration depth was observed. Since a consensus on Iw, air and Iair has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, sw,air(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of Iw and Iair values with Iair/Iw = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of sw,air = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in sw,air(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  10. Treatment planning system for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    This paper describes the treatment planning (TP) and its peripheral system for carbon ion therapy that has been developed and in clinical use in recent two years at our institution. A new treatment planning system which is FOCUS customized to our irradiation system will be launched in clinical use soon. A new DICOM based PACS has been developed and in use. Now MRI, PET images are ready to be utilized for patient definition with image fusion functionality of radiotherapy TP. We implemented the exchange functionality of TP data specified by RTOG 3D QA Center in FOCUS, Pinnacle3 and heavy ion TP. Target volume and normal structure contours and dose distributions are exchangeable. A database system of carbon ion therapy dedicated to analysis of therapy data has been designed and implemented. All accessible planning data and treatment records of more than 1000 patients treated for seven and half years have been archived. The system has a DICOM RT sever and a database for miscellaneous text data. Limited numbers of private attributes were introduced for ion therapy specific objects. On-line as well as manual registration along with edit functionalities is prepared. Standard web browser is used to search and retrieve information. A DICOM RT viewer has been developed to view and retrieve RT images, dose distributions and structure set. These system described above are all designed to conform to the up-to-date standards of radiation therapy so as to be bases of the future development of the therapy at our institution. (author)

  11. Heavy ion therapy: Bevalac epoch

    International Nuclear Information System (INIS)

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered

  12. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    International Nuclear Information System (INIS)

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD5) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a comparable

  13. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Mizoguchi, Nobutaka; Nomiya, Takuma; Kamada, Tadashi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Tokumaru, Sunao [Department of Heavy Particle Therapy and Radiation Oncology, Faculty of Medicine, Saga University, Saga (Japan); Mizota, Atsushi [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Ohnishi, Yoshitaka [Department of Ophthalmology, Wakayama Medical University, Wakayama (Japan); Tsujii, Hirohiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-06-01

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG.

  14. Long-term Results of Carbon Ion Radiation Therapy for Locally Advanced or Unfavorably Located Choroidal Melanoma: Usefulness of CT-based 2-Port Orthogonal Therapy for Reducing the Incidence of Neovascular Glaucoma

    International Nuclear Information System (INIS)

    Purpose: To determine the long-term results of carbon ion radiation therapy (C-ion RT) in patients with choroidal melanoma, and to assess the usefulness of CT-based 2-port irradiation in reducing the risk of neovascular glaucoma (NVG). Methods and Materials: Between January 2001 and February 2012, a total of 116 patients with locally advanced or unfavorably located choroidal melanoma received CT-based C-ion RT. Of these patients, 114 were followed up for more than 6 months and their data analyzed. The numbers of T3 and T2 patients (International Union Against Cancer [UICC], 5th edition) were 106 and 8, respectively. The total dose of C-ion RT varied from 60 to 85 GyE, with each dose given in 5 fractions. Since October 2005, 2-port therapy (51 patients) has been used in an attempt to reduce the risk of NVG. A dose-volume histogram analysis was also performed in 106 patients. Results: The median follow-up was 4.6 years (range, 0.5-10.6 years). The 5-year overall survival, cause-specific survival, local control, distant metastasis-free survival, and eye retention rates were 80.4% (95% confidence interval 89.0%-71.8%), 82.2% (90.6%-73.8%), 92.8% (98.5%-87.1%), 72.1% (81.9%-62.3%), and 92.8% (98.1%-87.5%), respectively. The overall 5-year NVG incidence rate was 35.9% (25.9%-45.9%) and that of 1-port group and 2-port group were 41.6% (29.3%-54.0%) and 13.9% (3.2%-24.6%) with statistically significant difference (P<.001). The dose-volume histogram analysis showed that the average irradiated volume of the iris-ciliary body was significantly lower in the non-NVG group than in the NVG group at all dose levels, and significantly lower in the 2-port group than in the 1-port group at high dose levels. Conclusions: The long-term results of C-ion RT for choroidal melanoma are satisfactory. CT-based 2-port C-ion RT can be used to reduce the high-dose irradiated volume of the iris-ciliary body and the resulting risk of NVG

  15. Heavy-ion tumor therapy: Physical and radiobiological benefits

    Science.gov (United States)

    Schardt, Dieter; Elsässer, Thilo; Schulz-Ertner, Daniela

    2010-01-01

    High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studies and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.

  16. Heavy-ion tumor therapy: Physical and radiobiological benefits

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, Dieter; Elsaesser, Thilo; Schulz-Ertner, Daniela [GSI Helmholtzzentrum fuer Schwerionenforschung mbH (GSI), D-64291 Darmstadt (Germany); Markus-Krankenhaus, MVZ Radiologisches Institut, D-60431 Frankfurt/M. (Germany)

    2010-01-15

    High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studies and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.

  17. Recent innovations in carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    In the last few years, hospital-based facilities for carbon-ion radiotherapy are being constructed and proposed in Europe and Asia. During the next few years, several new facilities will be opened for carbon-ion radiotherapy in the world. These facilities in operation or under construction are categorized in two types by the beam shaping method used. One is the passive beam shaping method that is mainly improved and systematized for routine clinical use at Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The other method is active beam shaping which is also known as beam scanning adopted at Gesellschaft fur Schwerionenforschung (GSI)/Heidelberg Ion Therapy Center (HIT), Germany. In this paper an overview of some technical aspects for beam shaping is reported. The technique of passive beam shaping is established for stable clinical application and has clinical result of over 4000 patients in HIMAC. In contrast, clinical experience of active beam shaping is about 400 patients, and there is no clinical experience to respiratory moving target. A great advantage of the active beam shaping method is patient-specific collimator-less and compensator-less treatment. This may be an interesting potential for adaptive radiotherapy. (author)

  18. Mobile ions on carbonate surfaces

    Science.gov (United States)

    Kendall, Treavor A.; Martin, Scot T.

    2005-07-01

    Surface ions move during the dissolution and growth of minerals. The present study investigates the density and the mobility of surface ions and the structure of the adsorbed water layer with changes in relative humidity (RH). The time evolution of the polarization force, which is induced by an electrically biased tip of an atomic force microscope, shows that the density and the mobility of surface ions increase with rising humidity, a finding which is consistent with increasing surface hydration. A marked change in the observations above 55% RH indicates a transition from a water layer formed by heteroepitaxial two-dimensional growth at low RH to one formed by multilayer three-dimensional growth at high RH. A comparison of the results of several rhombohedral carbonates ( viz. CaCO 3, FeCO 3, ZnCO 3, MgCO 3, and MnCO 3) shows that a long relaxation time of the polarization force at high RH is predictive of a rapid dissolution rate. This finding is rationalized by long lifetimes in terrace positions and hence greater opportunities for detachment of the ion to aqueous solution (i.e., dissolution). Our findings on the density and the mobility of surface ions therefore help to better constrain mechanistic models of hydration, ion exchange, and dissolution/growth.

  19. Carbon ion radiotherapy of skull base chondrosarcomas

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity

  20. "Riesenrad" Ion Gantry for Hadron Therapy, 3

    CERN Document Server

    Benedikt, Michael; Holy, P; Pullia, M

    1999-01-01

    When using accelerator beams for cancer therapy, the three-dimensional freedom afforded by a gantry helps the treatment planner to spread out surface doses, avoid directions that intercept vital organs and irradiate a volume that is conformal with the tumour. The general preference is for an iso-centric gantry turning 360° in the vertical plane around the patient bed with sufficient space to be able to orientate the patient through 360° in the horizontal plane. For hadrontherapy, gantries are impressive structures of the order of 10 m in diameter and 100 tons in weight and to date only proton gantries have been demonstrated to operate satisfactorily. The increased magnetic rigidity of say carbon ions will make ion gantries more difficult and costly to build. For this reason, exo-centric gantries and, in particular the so-called 'Riesenrad' gantry with a single 90° bending magnet, merit further attention. The power consumption is reduced and the heavy magnets with their counterbalance weight are reduced and...

  1. Physical basis of heavy ion radiation therapy

    International Nuclear Information System (INIS)

    Physical foundation of a heavy ion radio-therapy was discussed, especially on a designing a spread Bragg peak with a ridge filter. A large radiobiological effectiveness will be positively utilized in the heavy ion radio-therapy. The biological effectiveness will be different depending on the depth in human body. This fact gives us difficult problems when we aim to kill uniformly the target cells in human body. As a first step to solve these problems, biological effectiveness of a mixed beam using monoenergetic low and high LET beams was examined and try to understand the results by the amorphous image of the track structure of the heavy ions. A research on a microscopic pattern of energy deposition will be important to solve biophysical problem in heavy ion radio-therapy. (author)

  2. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Georg, Dietmar, E-mail: Dietmar.Georg@akhwien.at [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hopfgartner, Johannes [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Gòra, Joanna [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kuess, Peter [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Kragl, Gabriele [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Berger, Daniel [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Hegazy, Neamat [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Goldner, Gregor; Georg, Petra [Department of Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna/Allgemeines Krankenhaus der Stadt Wien, Vienna (Austria)

    2014-03-01

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT ({sup 192}Ir) and LDR-BT ({sup 125}I) were D{sub 90%} ≥34 Gy in 8.5 Gy per fraction and D{sub 90%} ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra D{sub mean} around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques

  3. Dosimetric Considerations to Determine the Optimal Technique for Localized Prostate Cancer Among External Photon, Proton, or Carbon-Ion Therapy and High-Dose-Rate or Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To assess the dosimetric differences among volumetric modulated arc therapy (VMAT), scanned proton therapy (intensity-modulated proton therapy, IMPT), scanned carbon-ion therapy (intensity-modulated carbon-ion therapy, IMIT), and low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy (BT) treatment of localized prostate cancer. Methods and Materials: Ten patients were considered for this planning study. For external beam radiation therapy (EBRT), planning target volume was created by adding a margin of 5 mm (lateral/anterior–posterior) and 8 mm (superior–inferior) to the clinical target volume. Bladder wall (BW), rectal wall (RW), femoral heads, urethra, and pelvic tissue were considered as organs at risk. For VMAT and IMPT, 78 Gy(relative biological effectiveness, RBE)/2 Gy were prescribed. The IMIT was based on 66 Gy(RBE)/20 fractions. The clinical target volume planning aims for HDR-BT (192Ir) and LDR-BT (125I) were D90% ≥34 Gy in 8.5 Gy per fraction and D90% ≥145 Gy. Both physical and RBE-weighted dose distributions for protons and carbon-ions were converted to dose distributions based on 2-Gy(IsoE) fractions. From these dose distributions various dose and dose–volume parameters were extracted. Results: Rectal wall exposure 30-70 Gy(IsoE) was reduced for IMIT, LDR-BT, and HDR-BT when compared with VMAT and IMPT. The high-dose region of the BW dose–volume histogram above 50 Gy(IsoE) of IMPT resembled the VMAT shape, whereas all other techniques showed a significantly lower high-dose region. For all 3 EBRT techniques similar urethra Dmean around 74 Gy(IsoE) were obtained. The LDR-BT results were approximately 30 Gy(IsoE) higher, HDR-BT 10 Gy(IsoE) lower. Normal tissue and femoral head sparing was best with BT. Conclusion: Despite the different EBRT prescription and fractionation schemes, the high-dose regions of BW and RW expressed in Gy(IsoE) were on the same order of magnitude. Brachytherapy techniques were clearly superior in terms of

  4. Radiation Physics and Chemistry in Heavy-ion Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Kimura, M.

    2007-12-01

    Full Text Available Heavy ions, such as carbon and oxygen ions, are classified as high-LET radiations, and produce a characteristic dose-depth distribution different from that of low-LET radiations such as γ-rays, xrays and electrons. Heavy ions lose less energy at the entrance to an irradiated biological system up to some depth than the low-LET radiations, while they deposit a large amount of dose within a very narrow range at a certain depth, producing the characteristic sharp peak called the Bragg peak. Therefore, by controlling the Bragg peak, it becomes possible to irradiate only the tumor region in a pin-point manner, while avoiding irradiation of the normal tissue, thus making heavyion therapy ideal for deep-seated tumor treatment. Clinical results on more than 2400 patients are very encouraging. However, very little is known about what is going on in terms of physics and chemistry inside the Bragg peak. In this paper the current status of our understanding of heavy-ion interactions and remaining problems of physics and chemistry for the heavy-ion treatment are explored, particularly in the Bragg peak region. Specially, the survey of the basic physical quantity, the mean energy required to form an ion pair (Wvalue for heavy ions of interest for radiotherapy is presented. Finally, the current clinical status of heavy-ion therapy is presented.

  5. Dose reporting in ion beam therapy. Proceedings of a meeting

    International Nuclear Information System (INIS)

    Following the pioneering work in Berkeley, USA, ion beam therapy for cancer treatment is at present offered in Chiba and Hyogo in Japan, and Darmstadt in Germany. Other facilities are coming close to completion or are at various stages of planning in Europe and Japan. In all these facilities, carbon ions have been selected as the ions of choice, at least in the first phase. Taking into account this fast development, the complicated technical and radiobiological research issues involved, and the hope it raises for some types of cancer patients, the IAEA and the International Commission on Radiation Units and measurements (ICRU) jointly sponsored a technical meeting held in Vienna, 23-24 June 2004. That first meeting was orientated mainly towards radiobiology: the relative biological effectiveness (RBE) of carbon ions versus photons, and related issues. One of the main differences between ion beam therapy and other modern radiotherapy techniques (such as proton beam therapy or intensity modulated radiation therapy) is related to radiobiology and in particular the increased RBE of carbon ions compared to both protons and photons (i.e., high linear energy transfer (LET) versus low LET radiation). Another important issue for international agencies and commissions, such as the IAEA and the ICRU, is a worldwide agreement and harmonisation for reporting the treatments. In order to evaluate the merits of ion beam therapy, it is essential that the treatments be reported in a similar/comparable way in all centres so that the clinical reports and protocols can be understood and interpreted without ambiguity by the radiation therapy community in general. For the last few decades, the ICRU has published several reports containing recommendations on how to report external photon beam or electron beam therapy, and brachytherapy. A report on proton beam therapy, jointly prepared by the ICRU and the IAEA, is now completed and is being published in the ICRU series. In line with this

  6. Carbon Ion Radiation Therapy Improves the Prognosis of Unresectable Adult Bone and Soft-Tissue Sarcoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Jingu, Keiichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba (Japan); Department of Radiation Oncology, Tohoku University School of Medicine, Sendai (Japan); Tsujii, Hirohiko, E-mail: tsujii@nirs.go.jp [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba (Japan); Mizoe, Jun-Etsu; Hasegawa, Azusa; Bessho, Hiroki; Takagi, Ryo; Morikawa, Takamichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba (Japan); Tonogi, Morio [Department of Oral Medicine, Tokyo Dental College, Ichihara (Japan); Tsuji, Hiroshi; Kamada, Tadashi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba (Japan); Yamada, Shogo [Department of Radiation Oncology, Tohoku University School of Medicine, Sendai (Japan)

    2012-04-01

    Purpose: To evaluate the safety and efficacy of carbon ion radiotherapy (C-ion RT) with 70.4 GyE for unresectable bone and soft-tissue sarcoma of the adult head and neck. Methods and Materials: Twenty-seven patients (mean age, 46.2 years) were enrolled in this prospective study on C-ion RT with 70.4 GyE/16 fractions (fr) between April 2001 and February 2008. The primary end points were acute and late reactions of normal tissues, local control rate, and overall survival rate. The secondary end point was efficacy of the treatment in comparison to historical results with 57.6 or 64.0 GyE/16 fr. Results: The 3-year local control rate and overall survival rate for all patients were 91.8% (95% confidence interval [CI] = 81.0-100%) and 74.1% (95% CI = 57.5-90.6%), respectively. Acute reaction of Grade 3 or more was observed in only 1 patient. With regard to late reactions, visual loss was observed in 1 patient and a Grade 3 reaction of the maxillary bone was observed in 4 patients. A comparison with historical results revealed that the local control rate with 70.4 GyE was significantly higher than that with 57.6 or 64.0 GyE (3-year, 91.8% vs. 23.6%, p < 0.0001). Furthermore, the overall survival with 70.4 GyE tended to be higher than that with 57.6 or 64.0 GyE (3-year, 74.1% vs. 42.9%, p = 0.09). Conclusion: C-ion RT with 70.4 GyE/16 fr for bone and soft-tissue sarcoma of the adult head and neck appears to be effective with acceptable toxicities in comparison to conventional RT and C-ion RT with lower doses.

  7. Physical basis of heavy-ion radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Tatsuaki [National Inst. of Radiological Sciences, Chiba (Japan). Research Center of Charged Particle Therapy

    2000-04-01

    We have treated over 700 patients at HIMAC (Heavy Ion Medical Accelerator in Chiba) using carbon beams since 1994. We have started this clinical trial of heavy-ion radiotherapy with various assumptions about radiosensitivity of tumor and normal tissues to the heavy-ion beams. Spread-out Bragg peaks are designed based on the responses of HSG (human salivary grand tumor cell) cells. RBE of the carbon beams is determined following neutron treatment. The neutron treatment schedule of 18 fractions and a fractional dose of 0.9 Gy and 3.0 of RBE was applied to the carbon radiotherapy. In these 5 years, clinical optimization of the irradiation dose and fractionations and total treatment time were studied under strict control of authorized clinical protocols of heavy-ion radiation therapy. The finding of the clinical research of the optimization tell us that it can be safely treated with short treatment time or large fractional dose which are considerably deviated from the assumed treatment schedule. Comparisons of the schedules of carbon treatments were discussed using LQ model. In the analysis, very simplified model of the carbon beam was used. From these discussions, it was shown that we could safely reduce a total treatment time increasing dose of one fraction. (author)

  8. Carbon nanostructures produced through ion irradiation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several nanostructures we produced by ion irradiation have been reviewed in this paper. By using ions to irradiate two ultrahigh molecular weight polyethylene targets respectively, it was found that small fullerenes C20 and C26 were grown, adding two members to the fullerene family. Meanwhile, crystalline diamonds also have been produced by Ar+ ions irradiation of graphite. In the experiment of double ions Ni+ and Ar+ irradiation, nanoscale argon bubbles formed. On the other side, when multi-wall carbon nanotubes were irradiated by C+, many MWCNTs evolved to amorphous carbon nanowires and amorphous carbon nanotubes. And there are possible welding in the crossed nanotubes.

  9. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    International Nuclear Information System (INIS)

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R and D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R and D's will be presented together with clinical results and basic research activities at HIMAC

  10. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China); Moyers, M [Shanghai Proton and Heavy Ion Center, Colton, CA (China); Zhao, J [Shanghai Proton and Heavy Ion Center, Shanghai, Shanghai (China); Hsi, W [Shanghai Proton and Heavy Ion Center, Shanghai (China)

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beam ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.

  11. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beam ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan

  12. Metal ions, Alzheimer's disease and chelation therapy.

    Science.gov (United States)

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases. PMID:21406339

  13. Carbon Ion Radiation Therapy Improves the Prognosis of Unresectable Adult Bone and Soft-Tissue Sarcoma of the Head and Neck

    International Nuclear Information System (INIS)

    Purpose: To evaluate the safety and efficacy of carbon ion radiotherapy (C-ion RT) with 70.4 GyE for unresectable bone and soft-tissue sarcoma of the adult head and neck. Methods and Materials: Twenty-seven patients (mean age, 46.2 years) were enrolled in this prospective study on C-ion RT with 70.4 GyE/16 fractions (fr) between April 2001 and February 2008. The primary end points were acute and late reactions of normal tissues, local control rate, and overall survival rate. The secondary end point was efficacy of the treatment in comparison to historical results with 57.6 or 64.0 GyE/16 fr. Results: The 3-year local control rate and overall survival rate for all patients were 91.8% (95% confidence interval [CI] = 81.0–100%) and 74.1% (95% CI = 57.5–90.6%), respectively. Acute reaction of Grade 3 or more was observed in only 1 patient. With regard to late reactions, visual loss was observed in 1 patient and a Grade 3 reaction of the maxillary bone was observed in 4 patients. A comparison with historical results revealed that the local control rate with 70.4 GyE was significantly higher than that with 57.6 or 64.0 GyE (3-year, 91.8% vs. 23.6%, p < 0.0001). Furthermore, the overall survival with 70.4 GyE tended to be higher than that with 57.6 or 64.0 GyE (3-year, 74.1% vs. 42.9%, p = 0.09). Conclusion: C-ion RT with 70.4 GyE/16 fr for bone and soft-tissue sarcoma of the adult head and neck appears to be effective with acceptable toxicities in comparison to conventional RT and C-ion RT with lower doses.

  14. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  15. Enhanced lithium ion storage in nanoimprinted carbon

    International Nuclear Information System (INIS)

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance

  16. Enhanced lithium ion storage in nanoimprinted carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195-2600 (United States); Xie, Shuhong [Faculty of Materials, Optoelectronics and Physics, and Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan (China); Liu, Xiaoyan [College of Metallurgy and Materials Engineering, and Advanced Materials for Energy Institute, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  17. MedAustron - Ion-Beam Therapy and Research Center

    International Nuclear Information System (INIS)

    MedAustron is a synchrotron-based light-ion beam therapy center for cancer treatment as well as for clinical and non-clinical research, currently in the commissioning phase in Wiener Neustadt, Austria. Recently, the first proton beam was transported successfully to one of the four irradiation rooms. Whilst the choice of basic machine parameters was driven by medical requirements, i.e. 60 MeV protons and 120 MeV/A to 400 MeV/A carbon ions, the accelerator complex design was also optimized to offer flexibility for research operation. The potential of the synchrotron is being exploited to increase the maximum proton energy far beyond the medical needs to up to 800 MeV, for experimental physics applications, mainly in the areas of proton scattering and detector research. The accelerator layout allows for the installation of up to four ion source-spectrometer units, to provide various ion types besides the clinical used protons and carbon ions. Besides experimental physics, the two main non-clinical research disciplines are medical radiation physics and radiation biology. To decouple research and medical operation, a dedicated irradiation room for non-clinical research was included providing the installation of different experiments. In addition, several labs have been equipped with appropriate devices for preparing and analyzing radio-biological samples. This presentation gives a status overview over the whole project and highlights the non-clinical research opportunities at MedAustron. (Author)

  18. Physical and cellular radiobiological properties of heavy ions in relation to cancer therapy applications

    International Nuclear Information System (INIS)

    A variety of experiments have been carried out in vitro on several mammalian cell lines with carbon, neon, silicon and argon beams at 14 and 24 cm depth penetration. The results of these experiments substantiate the conceptual basis for physical and radiobiological advantages of accelerated heavy-ion beams in cancer therapy. The best biologically effective depth dose ratio for situations corresponding to therapy needs can be obtained with accelerated carbon beams. The depression of the oxygen effect with silicon or argon ion beams is greater than that achievable with neutrons or pions, or with heavy ions of lower atomic number

  19. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  20. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: alexdjensen@gmx.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nikoghosyan, Anna V.; Lossner, Karen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Haberer, Thomas; Jäkel, Oliver [Heidelberg Ion Beam Therapy Centre, Heidelberg (Germany); Münter, Marc W.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  1. Mechanical Design of Carbon Ion Optics

    Science.gov (United States)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  2. Structural disorder in ion irradiated carbon materials

    International Nuclear Information System (INIS)

    The effects of ion irradiation on carbon based materials are reviewed laying emphasis on the well known ability of carbon to have different kinds of bonding configuration with the surrounding atoms. It was found that two kinds of bonding configuration of the carbon atoms are allowed in solid amorphous carbon phases. These rearrange the four valence electrons of carbon into sp2 (trigonal bond) and sp3 (tetrahedral bond) hybridizations. Driving the trigonal carbon fraction (x), the physical and chemical nature of solid carbon materials can change in a dramatic way ranging from metallic (x∼100%) to insulating (x∼0%) through semiconductor properties. The amount of the tetrahedral (or trigonal) carbon atoms can be controlled by ion beam irradiation, using suitable conditions and/or introducing foreign species such as hydrogen or silicon by the implantation technique. In hydrogenated amorphous carbon (a-C:H) and hydrogenated amorphous silicon-carbon alloys (a-Si1-xCx:H), the ion beam effects are able to produce stable and reproducible compounds, achieved by tuning the hydrogen (silicon) concentration with well defined equilibrium curves between the trigonal carbon fraction and hydrogen (silicon) content. Raman spectroscopy and temperature dependent conductivity experiments performed on these alloys suggest clustering effects in samples with high carbon content (x∼0.5) due to the strong binding energy of the C-C double bond with respect to C-Si and Si-Si. Several models and theoretical studies such as the 'random covalent network' (RCN) and molecular dynamics calculations have been used to fit the experimental results. It is shown that, while RCN models are highly inaccurate because of the clustering effects, molecular dynamics calculation data are very close to the experimental measured physical properties and confirm the ability of the trigonal carbon to cluster in graphite-like aggregate

  3. Biophysics and tumor-therapy with heavy ions at GSI

    International Nuclear Information System (INIS)

    Beams of heavy charged particles like carbon ions represent the ultimate tool of external radiotherapy of deep-seated tumors. Small range and lateral scattering and the increase of the energy deposition with penetration depth are the physical basis for a more efficient tumor targeting. High biological efficiency in the tumor is the prerequisite for a successful treatment of tumors radioresistant to sparsely ionizing radiation. The possibility to perform target-conform irradiation and to control the achieved actual distribution using PET techniques guarantees that biological highly efficient stopping particles can be restricted to the tumor volume only. Although the physical and radiobiological properties of ion beams are very favorable for therapy, the necessity to produce these particles in an accelerator has restricted the general application of heavy-ions up to now. In addition to therapy, the action of heavy charged particles has to be known for the application in radiation protection especially for space research. Finally heavy ions can be used as a tool for basic research of radiobiology. (author)

  4. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  5. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    Science.gov (United States)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  6. Carbon materials for drug delivery & cancer therapy

    Directory of Open Access Journals (Sweden)

    Zhuang Liu

    2011-07-01

    Full Text Available Carbon nanotubes and graphene are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, carbon nanotubes have been extensively explored as drug delivery carriers for the intracellular transport of chemotherapy drugs, proteins, and genes. In vivo cancer treatment with carbon nanotubes has been demonstrated in animal experiments by several different groups. Recently, graphene, another allotrope of carbon, has also shown promise in various biomedical applications. In this article, we will highlight recent research on these two categories of closely related carbon nanomaterials for applications in drug delivery and cancer therapy, and discuss the opportunities and challenges in this rapidly growing field.

  7. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus;

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation...... of about 3%. Conclusions Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be implemented as a credentialing procedure for clinical proton and carbon beam...

  8. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Science.gov (United States)

    Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.

    2013-03-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.

  9. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    International Nuclear Information System (INIS)

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) carbon target.

  10. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients

    International Nuclear Information System (INIS)

    The Heidelberg Ion Therapy Center (HIT) started clinical operation in November 2009. In this report we present the first 80 patients treated with proton and carbon ion radiotherapy and describe patient selection, treatment planning and daily treatment for different indications. Patients and methods. Between November 15, 2009 and April 15, 2010, 80 patients were treated at the Heidelberg Ion Therapy Center (HIT) with carbon ion and proton radiotherapy. Main treated indications consisted of skull base chordoma (n = 9) and chondrosarcoma (n = 18), malignant salivary gland tumors (n=29), chordomas of the sacrum (n = 5), low grade glioma (n=3), primary and recurrent malignant astrocytoma and glioblastoma (n=7) and well as osteosarcoma (n = 3). Of these patients, four pediatric patients aged under 18 years were treated. Results. All patients were treated using the intensity-modulated rasterscanning technique. Seventy-six patients were treated with carbon ions (95%), and four patients were treated with protons. In all patients x-ray imaging was performed prior to each fraction. Treatment concepts were based on the initial experiences with carbon ion therapy at the Gesellschaft fuer Schwerionenforschung (GSI) including carbon-only treatments and carbon-boost treatments with photon-IMRT. The average time per fraction in the treatment room per patient was 29 minutes; for irradiation only, the mean time including all patients was 16 minutes. Position verification was performed prior to every treatment fraction with orthogonal x-ray imaging. Conclusion. Particle therapy could be included successfully into the clinical routine at the Dept. of Radiation Oncology in Heidelberg. Numerous clinical trials will subsequently be initiated to precisely define the role of proton and carbon ion radiotherapy in radiation oncology.

  11. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E. (Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)), E-mail: Stephanie.Combs@med.uni-heidelberg.de; Ellerbrock, Malte; Haberer, Thomas (Heidelberger Ionenstrahl Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany)) (and others)

    2010-10-15

    The Heidelberg Ion Therapy Center (HIT) started clinical operation in November 2009. In this report we present the first 80 patients treated with proton and carbon ion radiotherapy and describe patient selection, treatment planning and daily treatment for different indications. Patients and methods. Between November 15, 2009 and April 15, 2010, 80 patients were treated at the Heidelberg Ion Therapy Center (HIT) with carbon ion and proton radiotherapy. Main treated indications consisted of skull base chordoma (n = 9) and chondrosarcoma (n = 18), malignant salivary gland tumors (n=29), chordomas of the sacrum (n = 5), low grade glioma (n=3), primary and recurrent malignant astrocytoma and glioblastoma (n=7) and well as osteosarcoma (n = 3). Of these patients, four pediatric patients aged under 18 years were treated. Results. All patients were treated using the intensity-modulated rasterscanning technique. Seventy-six patients were treated with carbon ions (95%), and four patients were treated with protons. In all patients x-ray imaging was performed prior to each fraction. Treatment concepts were based on the initial experiences with carbon ion therapy at the Gesellschaft fuer Schwerionenforschung (GSI) including carbon-only treatments and carbon-boost treatments with photon-IMRT. The average time per fraction in the treatment room per patient was 29 minutes; for irradiation only, the mean time including all patients was 16 minutes. Position verification was performed prior to every treatment fraction with orthogonal x-ray imaging. Conclusion. Particle therapy could be included successfully into the clinical routine at the Dept. of Radiation Oncology in Heidelberg. Numerous clinical trials will subsequently be initiated to precisely define the role of proton and carbon ion radiotherapy in radiation oncology.

  12. Carbon ion radiotherapy. Clinical study and future prospect

    International Nuclear Information System (INIS)

    At present, most of the patients receiving carbon ion radiotherapy at National Institute of Radiological Sciences (NIRS) visit the clinic seeking this specific modality, and it is difficult to obtain consent for a randomized controlled study from these patients and it may be unnecessary to conduct a phase III trial. However, in selected tumors where the high-linear energy transfer (LET) benefit could be appreciated, we can participate in randomized studies. Finally, studies aimed at clarifying the usefulness of carbon ion radiotherapy and elucidating any advantages from hypo-fractionation should be considered. A multi-institutional prospective non-randomized concurrent phase II clinical trial is one such new approach, and it will be proposed not only to the Japanese, but also to the international community of particle therapy and radiation oncology. (author)

  13. Examination of GyE system for HIMAC carbon therapy

    International Nuclear Information System (INIS)

    Purpose: A retrospective analysis was made to examine appropriateness in the estimation of the biologic effectiveness of carbon-ion radiotherapy using resultant data from clinical trials at the heavy-ion medical accelerator complex (HIMAC) at the National Institute of Radiological Sciences in Chiba, Japan. Methods and Materials: At HIMAC, relative biologic effectiveness (RBE) values of therapeutic carbon beams were determined based on experimental results of cell responses, on values expected with the linear-quadratic model, and based on experiences with neutron therapy. We use fixed RBE values independent of dose levels, although this apparently contradicts radiobiologic observations. Our RBE system depends only on LET of the heavy-ion radiation fields. With this RBE system, over 2,000 patients have been treated by carbon beams. With data from these patients, the local control rate of non-small-cell lung cancer was analyzed to verify the clinical RBE of the carbon beam. The local control rate was compared with rates published by groups from Gunma University and Massachusetts General Hospital. Using a simplified tumor control probability (TCP) model, clinical RBE values were obtained for different levels of TCP. Results: For the 50% level of the clinical TCP, the RBE values nearly coincide with those for in vitro human salivary gland cell survival at 10%. For the higher levels of clinical TCP, the RBE values approach closer to those adapted in clinical trials at HIMAC

  14. The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy

    CERN Document Server

    Parodi, K; Cerutti, F; Ferrari, A; Mairani, A; Paganetti, H; Sommerer, F

    2010-01-01

    Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect infor...

  15. Biological systems: from water radiolysis to carbon ion radiotherapy

    Science.gov (United States)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  16. Carbon Mineralization Using Phosphate and Silicate Ions

    Science.gov (United States)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  17. F values for isoelectronic ions of carbon

    Science.gov (United States)

    Ganas, P. S.

    1981-10-01

    An analytic atomic independent particle model is used to generate wave functions for the valence and excited states of isoelectronic ions of carbon up to Z = 20. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, f values are calculated for various transitions from the 2p2(3P0) ground state. The results are compared with those from other works.

  18. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  19. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-01

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a 12C beam with an energy of 290 MeV u‑1. Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  20. The first French randomized prospective study of the economic and medical benefit of carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Carbon ion therapy is an innovative radiotherapy modality for non-operable radio-resistant or resected cancers. Its efficiency is due to improved ballistic accuracy and biological efficiency. The authors present the first phase III study of carbon ion therapy in France. This technique concerns some sarcomas and adenoid cystic carcinomas of head and neck. The authors indicate the possible treatment procedures (doses, sessions) for the different types of cancers, and how the study is to be performed (number of patients, randomization, and multicentre approach). Short communication

  1. Radiation therapy using high-energy heavy-ion

    International Nuclear Information System (INIS)

    The clinical trial of the heavy-ion radiotherapy was started at June 1994 after pre-clinical experiments using 290 MeV/u carbon beam. In this paper, an irradiation system for the heavy-ion radiotherapy installed at HIMAC (Heavy Ion Medical Accelerator in Chiba) and the physical characteristics of the therapeutic beam were discussed. (author)

  2. Carbonate ions and arsenic dissolution by groundwater

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  3. Investigations on the quality of treatment plans for carbon ion radiotherapy. Beam delivery systems and radiobiological models

    Energy Technology Data Exchange (ETDEWEB)

    Gillmann, Clarissa

    2014-07-01

    In a worldwide effort in research and development, radiation therapy with carbon ions has evolved to a technologically challenging but clinically very promising treatment option for cancer patients. To further improve patient benefit, optimal use of the physical and biological characteristics of carbon ions as well as of the available technologies should be made. The present thesis investigates the impact of different beam delivery systems and radiobiological models on the quality of treatment plans in carbon ion radiotherapy. The results of the study may provide pointers as to the role and the possible future implementation of the different techniques and radiobiological models in existing and upcoming particle therapy centers.

  4. Overview of Light-Ion Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William T.

    2006-03-16

    treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers

  5. Overview of Light-Ion Beam Therapy

    International Nuclear Information System (INIS)

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  6. Physical measurements for ion range verification in charged particle therapy

    International Nuclear Information System (INIS)

    This PhD thesis reports on the experimental investigation of the prompt photons created during the fragmentation of the carbon beam used in particle therapy. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the C-ion range and the prompt photon profile. A major issue of these measurements is the discrimination between the prompt photon signal (which is correlated with the ion path) and a vast neutron background uncorrelated with the Bragg-Peak position. Two techniques are employed to allow for this photon-neutron discrimination: the time-of-flight (TOF) and the pulse-shape-discrimination (PSD). The TOF technique allowed demonstrating the correlation of the prompt photon production and the primary ion path while the PSD technique brought great insights to better understand the photon and neutron contribution in TOF spectra. In this work we demonstrated that a collimated set-up detecting prompt photons by means of TOF measurements, could allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions. In the second part of the PhD thesis a simulation study was performed with Geant4 Monte Carlo code to assess the influence of the main design parameters on the efficiency and spatial resolution achievable with a multidetector and multi-collimated Prompt Gamma Camera. Several geometrical configurations for both collimators and stack of detectors have been systematically studied and the considerations on the main design constraints are reported. (author)

  7. Physical measurements for ion range verification in charged particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Testa, M.

    2010-10-15

    This PhD thesis reports on the experimental investigation of the prompt photons created during the fragmentation of the carbon beam used in particle therapy. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u {sup 12}C{sup 6+} ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the C-ion range and the prompt photon profile. A major issue of these measurements is the discrimination between the prompt photon signal (which is correlated with the ion path) and a vast neutron background uncorrelated with the Bragg-Peak position. Two techniques are employed to allow for this photon-neutron discrimination: the time-of-flight (TOF) and the pulse-shape-discrimination (PSD). The TOF technique allowed demonstrating the correlation of the prompt photon production and the primary ion path while the PSD technique brought great insights to better understand the photon and neutron contribution in TOF spectra. In this work we demonstrated that a collimated set-up detecting prompt photons by means of TOF measurements, could allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions. In the second part of the PhD thesis a simulation study was performed with Geant4 Monte Carlo code to assess the influence of the main design parameters on the efficiency and spatial resolution achievable with a multidetector and multi-collimated Prompt Gamma Camera. Several geometrical configurations for both collimators and stack of detectors have been systematically studied and the considerations on the main design constraints are reported. (author)

  8. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    Science.gov (United States)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    conclusively distinguished whether C is taken up only as CO2 by passive diffusion or also by active transport of CO2 or HCO^{3-} . In reality, the patterns of stable isotopic variations in coccoliths may provide more constraints for unraveling the cellular C transport and the calcification mechanisms. We will present latest findings on these issues, both from culture experiments and sediment traps located in the Bay of Bengal. Coccolith species separated from these sediment traps also show evidence of carbonate ion effects.

  9. Getting Ready for Ion-Beam Therapy Research in Austria - Building-up Research in Parallel with a Facility

    International Nuclear Information System (INIS)

    With participation in ion-beam projects funded nationally or by the European Commission (EC), ion-beam research activities were started at the Medical University of Vienna in parallel with the design and construction of the ion-beam center MedAustron in Wiener Neustadt, 50 km from the Austrian capital. The current medical radiation physics research activities that will be presented comprise: (1) Dose calculation and optimization: ion-beam centers focus mostly on proton and carbon-ion therapy. However, there are other ion species with great potential for clinical applications. Helium ions are currently under investigation from a theoretical physics and biology perspective. (2) Image guided and adaptive ion-beam therapy: organ motion and anatomic changes have a severe influence in ion-beam therapy since variations in heterogeneity along the beam path have a significant impact on the particle range. Ongoing research focuses on possibilities to account for temporal variations of the anatomy during radiotherapy. Both during and between fractions also considering temporal variations in tumor biology. Furthermore, research focuses on particle therapy positron emission tomography (PT-PET) verification and the detection of prompt gammas for on-line verification of ion-beam delivery. (3) Basic and applied dosimetry: an end-to-end procedure was designed and successfully tested in both scanned proton and carbon-ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. (Author)

  10. Carbon ion radiotherapy for uveal melanoma

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the applicability of carbon ion beams in the treatment of choroidal melanoma, with regard to normal tissue morbidity and local tumor control. Between January 2001 and August 2006, 67 patients with locally advanced or unfavorable-site choroidal melanoma were enrolled in a phase I/II clinical trial of carbon-ion radiotherapy (C-ion RT) at the National Institute of Radiological Sciences (NIRS). Primary endpoint of this study was normal tissue morbidity and secondary endpoints were local tumor control and patient survival. Fifty-nine of the patients were followed up for more than 6 months and analyzed. Twenty-three patients (39%) developed neovascular glaucoma (NVG) and 3 of them underwent enucleation because of the eye pain due to elevated intraocular pressure. The incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died by the date of analysis, 3 of distant metastasis and 2 of intercurrent diseases. All patients but one, who developed marginal recurrence, were controlled locally. Eight patients developed distant metastasis, 5 in the liver and 3 in the lung. Three-year overall survival, disease-free survival, and local control rates were 87.1%, 81.6%, and 98.0%, respectively. No apparent dose-response relationship was observed either in tumor control or in normal tissue morbidity with the dose range applied. C-ion RT can be applied to choroidal melanoma with an acceptable morbidity and sufficient anti-tumor effect, even in tumors of unfavorable size or site. (author)

  11. Carbon Ion Radiotherapy for Skull Base Chordoma

    OpenAIRE

    Mizoe, Jun–etsu; Hasegawa, Azusa; Takagi, Ryo; Bessho, Hiroki; Onda, Takeshi; Tsujii, Hirohiko

    2009-01-01

    Objective: To present the results of the clinical study of carbon ion radiotherapy (CIRT) for skull base and paracervical spine tumors at the National Institute of Radiological Sciences in Chiba, Japan. Methods: The study is comprised of three protocols: a pilot study, a phase I/II dose escalation study, and a phase II study. All the patients were treated by 16 fractions for 4 weeks with total doses of 48.0, 52.8, 57.6, and 60.8 Gy equivalents (GyE). Results: As a result of the dose escalatio...

  12. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  13. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  14. Intensive irradiation of carbon nanotubes by Si ion beam

    Institute of Scientific and Technical Information of China (English)

    NI Zhichun; LI Qintao; YAN Long; GONG Jinlong; ZHU Dezhang; ZHU Zhiyuan

    2007-01-01

    Multi-walled carbon nanotubes were irradiated with 40 keV Si ion beam to a dose of 1×1017 cm-2. The multiple-way carbon nanowire junctions and the Si doping in carbon nanowires were realized. Moreover, the formation processes of carbon nanowire junctions and the corresponding mechanism were studied.

  15. Shunting arc plasma source for pure carbon ion beama)

    Science.gov (United States)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  16. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  17. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  18. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    Directory of Open Access Journals (Sweden)

    Baoping Zhang

    Full Text Available The adverse effect induced by carbon ion radiation (CIR is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy or X-rays (2, 4, 6, and 12 Gy for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy. The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study

  19. Irradiation with carbon ions for locally recurrent rectal cancer

    International Nuclear Information System (INIS)

    A female patient in her 70s underwent an abdominoperineal resection and bilateral lymph node dissection for advanced lower rectal cancer. The patient did not receive neoadjuvant therapy. In the Japanese classification of colorectal carcinoma (8th Edition), the tumor was a moderately differentiated type 2 adenocarcinoma, and was 4.5 cm in size. Histologically, the tumor was considered to be Stage 3b (T3N0M0). She received no adjuvant chemotherapy. After 39 months, pelvic computed tomography (CT) revealed a 29 mm tumor in the right pelvic wall. The patient declined surgery for recurrence so radiotherapy was planned. First, chemotherapy with mFOLFOX6 was administered for 4 courses to reduce tumor size. Consequently, irradiation with carbon ions was given to the site of recurrence at a total dose of 74 GyE in 37 fractions. There were no severe complications. Carcinoembryonic antigen (CEA) level decreased to the lower limit of the normal range from a maximum of 4.9, and no progression of the recurrent tumor was detected on CT for approximately 4 years. Systemic chemotherapy followed by irradiation with carbon ions may be effective for recurrent rectal cancer. (author)

  20. The French project Etoile: review of clinical data for light ion hadron therapy

    International Nuclear Information System (INIS)

    The Lawrence Berkeley Laboratory was the pioneer in light ions hadron-therapy with almost 2500 patients treated between 1957 and 1993 with Helium and Neon. The NIRS (National Institute For Radiological Science Chiba, Japan) was the first dedicated medical centre for cancer with more than 1200 patients exclusively treated with carbon ion from 1994. A three-year 70 to 1200 patients exclusively treated with carbon ion from 1994. A three-year 70 to 100% local control was reported for radio-resistant cancers, supporting the use of high LET particles. Hypo-fractionation was particularly explored for lung cancers and hepato-carcinoma (4 sessions only). Dose escalation studies demonstrated a tumor dose-effect and permitted to precise dose constraints for healthy tissues especially for the rectum. More than 140 patients were treated with carbon ion exclusively or associated with photons since 1997 in the GSI laboratory Gesellschaft Fur Schwerionenforschung. Darmstadt, Germany). A very high local control was also obtained for radioresistant cancer of the base of the skull. Preliminary clinical data sem to confirm the expected therapeutic gain with light ions, due to their ballistic and radio-biological properties, and justify the European projects for the construction of dedicated medical facilities for cancers. The French 'Etoile' project will be integrated in the European hadron-therapy network 'English', with the objectives to coordinate technologic, medical and economic features. (authors)

  1. Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel

    International Nuclear Information System (INIS)

    Ion beam therapy represents a promising approach to treat prostate cancer, mainly due to its high conformity and radiobiological effectiveness. However, the presence of prostate motion, patient positioning and range uncertainties may deteriorate target dose and increase exposure of organs at risk. Spacer gel injected between prostate and rectum may increase the safety of prostate cancer (PC) radiation therapy by separating the rectum from the target dose field. The dosimetric impact of the application of spacer gel for scanned carbon ion therapy of PC has been analyzed at Heidelberg Ion-Beam Therapy Center (HIT). The robustness of ion therapy treatment plans was investigated by comparison of two data sets of patients treated with and without spacer gel. A research treatment planning system for ion therapy was used for treatment plan optimization and calculation of daily dose distributions on 2 to 9 Computed Tomography (CT) studies available for each of the 19 patients. Planning and daily dose distributions were analyzed with respect to target coverage, maximal dose to the rectum (excluding 1 ml of the greatest dose; Dmax-1 ml) and the rectal volume receiving dose greater than 90% of prescribed target dose (V90Rectum), respectively. The application of spacer gel did substantially diminish rectum dose. Dmax-1 ml on the treatment planning CT was on average reduced from 100.0 ± 1.0% to 90.2 ± 4.8%, when spacer gel was applied. The robustness analysis performed with daily CT studies demonstrated for all analyzed patient cases that application of spacer gel results in a decrease of the daily V90Rectum index, which calculated over all patient cases and CT studies was 10.2 ± 10.4 [ml] and 1.1 ± 2.1 [ml] for patients without and with spacer gel, respectively. The dosimetric benefit of increasing the distance between prostate and rectum using spacer gel for PC treatment with carbon ion beams has been quantified. Application of spacer gel substantially reduced rectal

  2. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    International Nuclear Information System (INIS)

    Background and purpose: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. Materials and methods: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm3. In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2.4 ± 0.9% (1σ) for protons and −2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of −1.7% for protons and −1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Conclusions: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is

  3. Monte Carlo simulation of carbon ion radiotherapy for Human Eye

    CERN Document Server

    Pang, Chengguo; Yao, Zeen; Xu, Junkui; Li, Wuyuan; Yuan, Jiao

    2014-01-01

    Carbon ion is the mostly common used particle in heavy ion radiotherapy. In this paper, carbon ion dose in tumor treatment for human eye was simulated with FLUKA code, 80 MeV/u carbon beam was irradiated into the human eye from two directions, The first is from the lateral-forward direction which was a typical therapeutic condition, maximum dose was deposited in the tumor volume. The second one was that beam irradiated into eyes from the forward direction which may cause certain medical accident. The calculated results are compared with other reports. The agreement indicates that this method can be used for treatment plan in heavy ion radiotherapy.

  4. Damage to plasmid DNA induced by low energy carbon ions

    International Nuclear Information System (INIS)

    The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 ± 0.5) x 10-14 cm2 for 2 keV C+ ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion

  5. What are carbon nanotubes’ roles in anti-tumor therapies?

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Since their discovery,carbon nanotubes(CNTs) have become one of the most promising nanomaterials in many industrial and biomedical applications.Due to their unique physicochemical properties,CNTs have been proposed and actively exploited as multipurpose innovative carriers for cancer therapy.The aim of this article is to provide an overview of the status of applications,advantages,and up-to-date research and development of carbon nanotubes in cancer therapy with an emphasis on drug delivery,photothermal therapy,gene therapy,RNAi,and immune therapy.In addition,the issues of risk and safety of CNTs in cancer nanotechnology are discussed briefly.

  6. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    Science.gov (United States)

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  7. Assessment of potential advantages of relevant ions for particle therapy: A model based study

    Energy Technology Data Exchange (ETDEWEB)

    Grün, Rebecca, E-mail: r.gruen@gsi.de [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)

    2015-02-15

    Purpose: Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ({sup 12}C), helium ({sup 4}He), and protons ({sup 1}H) for different treatment scenarios. Methods: A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PER{sub PHY} {sub S}), the RBE (PER{sub RBE}), and the RBE-weighted dose (PER{sub BIO}) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. Results: The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PER{sub RBE} for the analyzed configurations. Due to the fact that protons show a somewhat better PER{sub PHY} {sub S} compared to helium and carbon ions whereas helium shows a higher PER{sub RBE} compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PER{sub RBE} with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PER{sub BIO} is observed when using an orthogonal field configuration

  8. SAGA-HIMAT project for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Project of SAGA Heavy Ion Medical Accelerator in Tosu (SAGA HIMAT) is promoted by Saga prefecture with private financial supports, investments, and also personal donations. With this funding, facility construction is conducted by a collaboration of SAGA-HIMAT foundation and SAGA HIMAT company. The facility is constructing in Tosu-shi near Shinn-Tosu shinkansen station, which has easy access from Kyushu island area and also south west Japan. In the facility, there are three treatment rooms, where first one has been equipped with horizontal and 45 degree oblique beam lines, second one has horizontal and vertical beam lines, and third one is for future preparation of spot scanning irradiation system. Design of an accelerator itself is same as a therapy facility at Gunma University, i.e., acceleration ion is carbon, maximum beam energy is 400MeV/u, and maximum beam intensity is 1.3x109pps. An injection line to a synchrotron and transport lines to three treatment rooms had been rearranged. Designs of the accelerator and an irradiation system have started at beginning of 2010, and the construction of a facility building has started at beginning of this year (2011). Installations of accelerator devices are expected to start at beginning of 2012, and the facility is planned to complete in 2013. In this paper, we present our project and current status of the facility construction. (author)

  9. Modified carbon black materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  10. Ion implantation inhibits cell attachment to glassy polymeric carbon

    International Nuclear Information System (INIS)

    Implantation of MeV gold, oxygen, carbon ions into GPC alters the surface topography of GPC and enhances the already strong tendency for cells to attach to GPC. We have shown that implantation of silver ions near the surface strongly inhibits cell growth on GPC. Both enhanced adhesion of and inhibition of cell growth are desirable improvements on cardiac implants that have long been successfully fabricated from biocompatible glassy polymeric carbon (GPC). In vitro biocompatibility tests have been carried out with model cell lines to demonstrate that ion beam assisted deposition (IBAD) of silver, as well as silver ion bombardment, can favorably influence the surface of GPC for biomedical applications

  11. Radiation physics and chemistry in heavy-ion cancer therapy

    OpenAIRE

    Kimura, M; Krajcar Bronic, I.

    2007-01-01

    Heavy ions, such as carbon and oxygen ions, are classified as high-LET radiations, and produce a characteristic dose-depth distribution different from that of low-LET radiations such as γ-rays, xrays and electrons. Heavy ions lose less energy at the entrance to an irradiated biological system up to some depth than the low-LET radiations, while they deposit a large amount of dose within a very narrow range at a certain depth, producing the characteristic sharp peak called the Bragg peak. There...

  12. The Experimental Measurement of the Relative Biological Effectiveness of Carbon Ions with Different Qualities

    Institute of Scientific and Technical Information of China (English)

    WANG Jufang; LI Wenjian

    2008-01-01

    The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human fibroblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/μm, and 1.33 for LET 13.7 keV/μm carbon ions. RBE for a doubling of post-mitotic fibroblasts (PMF) in the population was 2.8 for LET 172 keV/μm, and 1 for LET 13.7 keV/μm carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.

  13. A physical palette for ion-beam cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Surdutovich, E.; Solov' yov, A.V. [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Surdutovich, E. [Oakland Univ., Rochester, MI (United States)

    2009-07-01

    Ion-beam cancer therapy and proton-beam therapy have been used successfully. Despite apparent experimental and clinical successes, a comprehensive theoretical description of a physical scenario is missing. One reason is that the phenomena initiated by an energetic ion incident on tissue happen on many scales in time, distance and energy. DNA is disrupted as a result of energy deposition by incident ions, mainly due to the ionization of the medium. The secondary electrons formed in this process are considered to be mostly responsible for DNA damage through either direct breaking of DNA strands, or reacting with water molecules producing more active secondaries, or through the heating of the medium. Our calculations show that the seemingly insurmountable complexity of the geometry of DNA in different states may be overcome, because the geometrical differences are found to be insignificant. (A.C.)

  14. The first French randomized prospective study of the economic and medical benefit of carbon ion radiotherapy; Premiere etude francaise prospective randomisee de l'interet medical et economique de la radiotherapie par ions carbone

    Energy Technology Data Exchange (ETDEWEB)

    Pommier, P. [Centre Leon-Berard, Lyon (France); Patin, S.; Vogin, G.; Hu, Y. [GCS-etoile, Lyon (France); Buron van de Voorde, C. [Hospices civils de Lyon (France); Baron, M.H. [CHUde Besancon (France); Lievre, M. [Universite Claude-Bernard, Lyon (France); Balosso, J. [Universite Joseph-Fourier, Grenoble (France)

    2011-10-15

    Carbon ion therapy is an innovative radiotherapy modality for non-operable radio-resistant or resected cancers. Its efficiency is due to improved ballistic accuracy and biological efficiency. The authors present the first phase III study of carbon ion therapy in France. This technique concerns some sarcomas and adenoid cystic carcinomas of head and neck. The authors indicate the possible treatment procedures (doses, sessions) for the different types of cancers, and how the study is to be performed (number of patients, randomization, and multicentre approach). Short communication

  15. WIMP detection and slow ion dynamics in carbon nanotube arrays

    OpenAIRE

    Cavoto, G.; Cirillo, E. N. M.; Cocina, F.; Ferretti, J.; Polosa, A.D.

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy lo...

  16. Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation

    International Nuclear Information System (INIS)

    Monte Carlo simulations based on the Geant4 tool-kit (version 9.1) were performed to study the emission of secondary prompt gamma-rays produced by nuclear reactions during carbon ion-beam therapy. These simulations were performed along with an experimental program and instrumentation developments which aim at designing a prompt gamma-ray device for real-time control of hadron therapy. The objective of the present study is twofold: first, to present the features of the prompt gamma radiation in the case of carbon ion irradiation; secondly, to simulate the experimental setup and to compare measured and simulated counting rates corresponding to various experiments. For each experiment, we found that simulations overestimate prompt gamma-ray detection yields by a factor of 12. Uncertainties in fragmentation cross sections and binary cascade model cannot explain such discrepancies. The so-called 'photon evaporation' model is therefore questionable and its modification is currently in progress. (authors)

  17. The fragment ion distribution of C60 in close collision with fast carbon ions

    International Nuclear Information System (INIS)

    We have measured the mass distribution of fragment ions of C60 produced by collisions with 15.6 MeV carbon ions in different charge states. Close collisions were selectively measured using the coincidence method with the change of the projectile charge state. For the electron capture and loss by C5+.6+ projectile ions, which are the K-electron processes, the multifragmentation was observed evidently. In L-electron loss channels of the C2+ projectile, the peaks of the multiply ionized C60 ions and the multiply ionized fullerene-like fragment ions are more intense or as intense as the small fragment ions. (author)

  18. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  19. A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement.

    Science.gov (United States)

    Roderique, Joseph D; Josef, Christopher S; Feldman, Michael J; Spiess, Bruce D

    2015-08-01

    The first descriptions of carbon monoxide (CO) and its toxic nature appeared in the literature over 100 years ago in separate publications by Drs. Douglas and Haldane. Both men ascribed the deleterious effects of this newly discovered gas to its strong interaction with hemoglobin. Since then the adverse sequelae of CO poisoning has been almost universally attributed to hypoxic injury secondary to CO occupation of oxygen binding sites on hemoglobin. Despite a mounting body of literature suggesting other mechanisms of injury, this pathophysiology and its associated oxygen centric therapies persists. This review attempts to elucidate the remarkably complex nature of CO as a gasotransmitter. While CO's affinity for hemoglobin remains undisputed, new research suggests that its role in nitric oxide release, reactive oxygen species formation, and its direct action on ion channels is much more significant. In the course of understanding the multifaceted character of this simple molecule it becomes apparent that current oxygen based therapies meant to displace CO from hemoglobin may be insufficient and possibly harmful. Approaching CO as a complex gasotransmitter will help guide understanding of the complex and poorly understood sequelae and illuminate potentials for new treatment modalities. PMID:25997893

  20. Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters

    CERN Document Server

    Boehlen, T T; Dosanjh, M; Ferrari, A; Fossati, P; Haberer, T; Mairani, A; Patera, V

    2012-01-01

    Uncertainties in determining clinically used relative biological effectiveness (RBE) values for ion beam therapy carry the risk of absolute and relative misestimations of RBE-weighted doses for clinical scenarios. This study assesses the consequences of hypothetical misestimations of input parameters to the RBE modelling for carbon ion treatment plans by a variational approach. The impact of the variations on resulting cell survival and RBE values is evaluated as a function of the remaining ion range. In addition, the sensitivity to misestimations in RBE modelling is compared for single fields and two opposed fields using differing optimization criteria. It is demonstrated for single treatment fields that moderate variations (up to +/-50\\%) of representative nominal input parameters for four tumours result mainly in a misestimation of the RBE-weighted dose in the planning target volume (PTV) by a constant factor and only smaller RBE-weighted dose gradients. Ensuring a more uniform radiation quality in the PTV...

  1. Study on organosilicon plasma polymers implanted by carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Radeva, E; Yourukova, L; Kolentsov, K; Balabanov, S; Zhechev, D; Steflekova, V [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Amov, B [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)], E-mail: eradeva@issp.bas.bg

    2008-05-01

    In the present work plasma polymer films obtained from hexamethyldisiloxane have been implanted by carbon ions at three different doses. The photoluminescent properties of the implanted polymers were investigated. The optical transmission of these polymer layers was investigated in the visible spectral region. Their electrical parameters were also measured. It was found that the resulting changes do not worsen the protective properties of the implanted polymer layer. The variations in the properties studied might be ascribed to the nanostructured carbon clusters formed on the polymer surface. The results obtained could form the basis for further optimization of the polymer structure by carbon ion implantation in view of applications in electroluminescent display structures.

  2. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  3. Ion-exchange behavior of alkali metals on treated carbons

    International Nuclear Information System (INIS)

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature

  4. Etoile: Rhone-Alpes project for carbon-ion treatment of radioresistant tumours

    International Nuclear Information System (INIS)

    Hadron-therapy using carbon ions appears to be very efficient for the treatment of tumours, due to its ballistic precision and to its biological effects that are much higher than in the case of conventional radiotherapy. The experience gained in experimental facilities in Japan (HIMAC) and Germany (GSI) shows that carbon beams provide both efficiency and tolerance and then are the most promising tool for a rapid increase of the recovery rate in the treatment of radioresistant tumours. Dedicated centres using carbon ions will start operation in 2002 in Hyogo (Japan) and in 2005 in Heidelberg (Germany), and each of them will treat about 1000 patients per year. We give here a short description of the project ETOILE to be built in Lyon. The technical proposal will be available beginning of 2002. (authors)

  5. Feasibility of using laser ion accelerators in proton therapy

    CERN Document Server

    Bulanov, S V

    2002-01-01

    The feasibility of using the laser plasma as a source of the high-energy ions for the proton radiation therapy is discussed. The proposal is based on the recent inventions of the effective ions acceleration in the experiments and through numerical modeling of the powerful laser radiation interaction with the gaseous and solid state targets. The principal peculiarity of the dependence of the protons energy losses in the tissues (the Bragg peak of losses) facilities the solution of one of the most important problems of the radiation therapy, which consists in realizing the tumor irradiation by sufficiently high and homogeneous dose with simultaneous minimization of the irradiation level, relative to the healthy and neighbouring tissues and organs

  6. Technical Note: Experimental carbon ion range verification in inhomogeneous phantoms using prompt gammas

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M.; Dauvergne, D.; Dedes, G.; Krimmer, J.; Ray, C.; Testa, E., E-mail: e.testa@ipnl.in2p3.fr; Testa, M. [IPNL, Université de Lyon, Lyon F-69003 |(France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); De Rydt, M. [IPNL, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, Leuven B-3001 (Belgium); Freud, N.; Létang, J. M. [CREATIS, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS UMR 5220, INSERM U1044, INSA-Lyon, Centre Léon Bérard, 69008 Lyon (France)

    2015-05-15

    Purpose: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations—due to tumor shift and/or elongation or shrinking—using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. Methods: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. Results: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1–2 mm. Quantitatively, for an ion range shift of −1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of −1.93 ± 0.58 mm and −1.84 ± 1.27 mm is obtained using a BaF{sub 2} and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. Conclusions: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1–2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of

  7. Technical Note: Experimental carbon ion range verification in inhomogeneous phantoms using prompt gammas

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations—due to tumor shift and/or elongation or shrinking—using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. Methods: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. Results: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1–2 mm. Quantitatively, for an ion range shift of −1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of −1.93 ± 0.58 mm and −1.84 ± 1.27 mm is obtained using a BaF2 and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. Conclusions: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1–2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of the

  8. Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC) with carbon ion radiotherapy: The PROMETHEUS-01 trial

    International Nuclear Information System (INIS)

    Treatment options for patients with advanced hepatocellular carcinoma (HCC) are often limited. In most cases, they are not amenable to local therapies including surgery or radiofrequency ablation. The multi-kinase inhibitor sorafenib has shown to increase overall survival in this patient group for about 3 months. Radiation therapy is a treatment alternative, however, high local doses are required for long-term local control. However, due to the relatively low radiation tolerance of liver normal tissue, even using stereotactic techniques, delivery of sufficient doses for successful local tumor control has not be achieved to date. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 3 depending on the HCC cell line as well as the endpoint analyzed. Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with HCC. In the current Phase I-PROMETHEUS-01-Study, carbon ion radiotherapy will be evaluated for patients with advanced HCC. The study will be performed as a dose-escalation study evaluating the optimal carbon ion dose with respect to toxicity and tumor control. Primary endpoint is toxicity, secondary endpoint is progression-free survival and response. The Prometheus-01 trial ist the first trial evaluating carbon ion radiotherapy delivered by intensity-modulated rasterscanning for the treatment of HCC. Within this Phase I dose escalation study, the optimal dose of carbon ion radiotherapy will be determined.

  9. Phase i study evaluating the treatment of patients with hepatocellular carcinoma (HCC with carbon ion radiotherapy: The PROMETHEUS-01 trial

    Directory of Open Access Journals (Sweden)

    Jäkel Oliver

    2011-02-01

    Full Text Available Abstract Background Treatment options for patients with advanced hepatocellular carcinoma (HCC are often limited. In most cases, they are not amenable to local therapies including surgery or radiofrequency ablation. The multi-kinase inhibitor sorafenib has shown to increase overall survival in this patient group for about 3 months. Radiation therapy is a treatment alternative, however, high local doses are required for long-term local control. However, due to the relatively low radiation tolerance of liver normal tissue, even using stereotactic techniques, delivery of sufficient doses for successful local tumor control has not be achieved to date. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE, which can be calculated between 2 and 3 depending on the HCC cell line as well as the endpoint analyzed. Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with HCC. Methods/Design In the current Phase I-PROMETHEUS-01-Study, carbon ion radiotherapy will be evaluated for patients with advanced HCC. The study will be performed as a dose-escalation study evaluating the optimal carbon ion dose with respect to toxicity and tumor control. Primary endpoint is toxicity, secondary endpoint is progression-free survival and response. Discussion The Prometheus-01 trial ist the first trial evaluating carbon ion radiotherapy delivered by intensity-modulated rasterscanning for the treatment of HCC. Within this Phase I dose escalation study, the optimal dose of carbon ion radiotherapy will be determined. Trial registration NCT 01167374

  10. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  11. Real time monitoring of the Bragg-peak position in ion therapy by means of single photon detection

    OpenAIRE

    Testa, M.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Le Foulher, F.; Ray, C.; Testa, E; Freud, N.; Létang, J.M.; Richard, M.-H.; Karkar, S.; Plescak, R.; Schardt, D.

    2010-01-01

    For real-time monitoring of the longitudinal position of the Bragg-peak during an ion therapy treatment, a novel non-invasive technique has been recently proposed that exploits the detection of prompt -rays issued from nuclear fragmentation. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the carbon ion range and the prompt...

  12. Impact of tissue specific parameters on the predition of the biological effectiveness for treatment planning in ion beam therapy

    International Nuclear Information System (INIS)

    Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fuer Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM). The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions. The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions. In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the

  13. Histological study of choroidal malignant melanoma treated by carbon ion radiotherapy

    International Nuclear Information System (INIS)

    The purpose of this study was to report, we believe for the first time, a histological study of choroidal malignant melanoma treated by carbon ion beam radiotherapy. A 75-year-old Japanese man was diagnosed as having a choroidal melanoma after undergoing magnetic resonance imaging (MRI). Positron emission tomography (PET) revealed a hot spot in the same location as the intraocular mass seen in MRI. Carbon ion radiotherapy was performed with a total dose of 77 Gy, and the hot spot seen by PET disappeared completely. At 15 months after carbon ion therapy, the eye had to be enucleated because of uncontrollable ocular hypertension. It was examined histologically in serial sections. A large tumor mass (15 x 12 mm) with high pigmentation was found in the vitreous space. Almost all tumor cells showed necrosis in every section. A small number of intact tumor cells were present at the periphery. The overlying retina did not show any necrosis, but showed mild to moderate gliosis. No intraretinal hemorrhage, lipid deposit, or protein exudate was apparent. Almost all tumor cells showed necrosis after radiotherapy with a carbon ion beam. However, the effect on the adjacent tissues was determined as minimal in histological analysis. (author)

  14. Summary of ongoing clinical protocols for proton and heavier-ion therapy

    International Nuclear Information System (INIS)

    Since 1954 when the very first patient was treated at LBNL with heavy-charged particles, some 84,000 patients in total have now been treated with protons, and another 13,000 patients have been treated with carbon and other heavier ions. During the first several decades of this endeavor, particle therapy was accessible only at a small number of programs. More recently, however, this therapy has become available at a rapidly increasing number of facilities worldwide. This expansion of the discipline has led to the development of many more clinical trials, designed to optimize particle-beam therapy and to compare the results achieved with those resulting from other treatment methods. Presently, more than 50 clinical protocols worldwide are actively involved in the effort to improve our understanding of these clinical guidelines. The purpose of this brief review is to offer a broad overview of these protocols, highlighting the specific disease categories that are now being studied using proton and/or heavier-ion therapy, and how the parameters of dose-escalation, beam conformity, and RBE modeling are being evaluated for various disease sites and stages.

  15. Response of SOI image sensor to therapeutic carbon ion beam

    CERN Document Server

    Matsumura, Akihiko

    2015-01-01

    Carbon ion radiotherapy is known as a less invasive cancer treatment. The radiation quality is an important parameter to evaluate the biological effect and the clinical dose from the measured physical dose. The performance of SOPHIAS detector, which is the SOI image sensor having a wide dynamic range and large active area, was tested by using therapeutic carbon ion beam at Gunma University Heavy Ion Medical Center (GHMC). It was shown that the primary carbon and secondary particles can be distinguishable by SOPHIAS detector. On the other hand, a LET dependence was observed especially at the high LET region. This phenomenon will be studied by using the device simulator together with Monte Carlo simulation.

  16. Fabrication of carbon nanostructures (nanodots, nanowires) by energetic ion irradiation

    International Nuclear Information System (INIS)

    Carbon nanostructures were synthesized by energetic ion irradiation of Si-based gel films. These polymer-like films with different side groups and C concentrations were prepared by sol-gel chemistry and irradiated with Si or Au ions of different energies in the range 3 MeV-2 GeV. The shape and size of the formed carbon nanostructures was studied by energy filtered transmission electron microscopy. They exhibited a visible photoluminescence emission, due to their semiconducting nature and the confinement of excitons. The changes in the optical properties were correlated with the structural transformation of films, investigated by means of Fourier transformed infrared (FTIR) and Raman spectroscopies. The role of carbon concentration, structure and energy transferred by ions on the luminescence properties are discussed

  17. Carbon stripper foils for high current heavy ion operation

    International Nuclear Information System (INIS)

    For the proposed new heavy ion linac'at'GSI the installation of a carbon foil stripper section is under discussion. High duty factor as well as high current (but low duty factor) heavy ion beams were used for machine experiments. Long term tests were performed to check the carbon foil durability. Relevant beam parameters have been measured in three measurement campaigns. After beam testing stripper foils were analyzed with different offline methods. Additionally promising results of high current beam irradiation of rotating target wheels will be presented. In the transfer line to the SIS 18 the heavy ion beam is stripped to higher charge states in a thick carbon foil. The stripper foil is loaded with 3 % of the beam power. To avoid evaporation in a single beam pulse, the beam is rapidly swept over its width. Experiences collected during the last decade of foil stripper operation at GSI will be presented. (author)

  18. Ion-irradiation-induced defects in bundles of carbon nanotubes

    CERN Document Server

    Salonen, E; Nordlund, K

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions.

  19. Novel perspectives in cancer therapy: Targeting ion channels.

    Science.gov (United States)

    Arcangeli, Annarosa; Becchetti, Andrea

    2015-01-01

    By controlling ion fluxes at multiple time scales, ion channels shape rapid cell signals, such as action potential and synaptic transmission, as well as much slower processes, such as mitosis and cell migration. As is currently increasingly recognized, a variety of channel types are involved in cancer hallmarks, and regulate specific stages of neoplastic progression. Long-term in vitro work has established that inhibition of these ion channels impairs the growth of cancer cells. Recently, these studies have been followed up in vivo, hence revealing that ion channels constitute promising pharmacological targets in oncology. The channel proteins can be often accessed from the extracellular milieu, which allows use of lower drug doses and decrease untoward toxicity. However, because of the central physiological roles exerted by ion channels in excitable cells, other types of side effects may arise, the gravest of which is cardiac arrhythmia. A paradigmatic case is offered by Kv11.1 (hERG1) channels. HERG1 blockers attenuate the progression of both hematologic malignancies and solid tumors, but may also lead to the lengthening of the electrocardiographic QT interval, thus predisposing the patient to ventricular arrhythmias. These side effects can be avoided by specifically inhibiting the channel isoforms which are highly expressed in certain tumors, such as Kv11.1B and the neonatal forms of voltage-gated Na(+) channels. Preclinical studies are also being explored in breast and prostate cancer (targeting voltage-gated Na(+) channels), and gliomas (targeting CLC-3). Overall, the possible approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) the development of specific inhibitors for the channel subtypes expressed in specific tumors; (2) drug delivery into the tumor by using antibodies or nanotechnology-based approaches; (3) combination regimen therapy and (4) blocking specific conformational states of the ion channel. We believe

  20. Activated carbon is an electron-conducting amphoteric ion adsorbent

    OpenAIRE

    Biesheuvel, P. M.

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, c...

  1. On influence of irradiation by carbon ions on tantalum structure

    International Nuclear Information System (INIS)

    Data of experimental studies on tantalum surface structure change and it microhardness in the result of carbon ion implantation are presented. The tantalum samples with purity 99.96 % having cylindrical shape (height 55 mm and diameter 4.5-5 mm) after polish were irradiated by carbon ions with energy 60 keV in the range 5·1016-5·1018 cm-2 at the DIANA facility. The microhardness measurement has been conducted on the PMT-3 device on the irradiated surface and along samples cross section. The microstructure has been examined on the NEOFOT-21 optical microscope, and phase-structural transformations were studied on the 3.0 DRON X-ray diffractometer with application of CuKα radiation. It is determined, that under carbon ion implantation into tantalum surface layers the texture tantalum carbide phases and tantalum monocarbide arise. Post-radiation thermal annealing leads to tantalum monocarbide decay and tantalum carbide particle sizes increase. It is determined, that phases got under C+ implantation have introduction phase structure with dense atom packing. Ion doping leads to tantalum surface hardening. Hardening rate depends on the irradiation fluence. Maximal hardening has been observed on the surface, the maximal microhardness increase extension along whole samples thickness. Due to carbon ions implantation the microhardness is increasing in 3 times near surface, and up to 1.5-3 times over samples thickness

  2. Conducting carbon nanopatterns (nanowire) by energetic ion irradiation

    International Nuclear Information System (INIS)

    This work reports the formation of conducting carbon nanopatterns (nano-wires) in a semi-inorganic polymer by irradiation with energetic ions. The conducting nano-patterns/wires are evidenced by conducting atomic force microscopy. The typical diameter of the conducting wires is observed to be about ∼50-200 nm. The density (spacing), growth direction and length of these carbon nanowires can be changed simply by ion fluence, angle of irradiation and the film thickness, respectively. The formation of conducting nanopatterns in an insulating matrix (polymers/gels) is correlated with the structural transformation of films, investigated by means of Raman spectroscopy

  3. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm-2 and 2 GeV xenon ion with a dose of 1E12 ions.cm-2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C3N4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C3N4 matrix was predominantly sp2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  4. Experimental investigations on carbon ion scanning radiography using a range telescope.

    Science.gov (United States)

    Rinaldi, I; Brons, S; Jäkel, O; Voss, B; Parodi, K

    2014-06-21

    Ion beams offer an excellent tumor-dose conformality due to their inverted depth-dose profile and finite range in tissue, the Bragg peak (BP). However, they introduce sensitivity to range uncertainties. Imaging techniques play an increasingly important role in ion beam therapy to support precise diagnosis and identification of the target volume at the planning stage as well as to ensure the correspondence between the planning and treatment situation at the actual irradiation. For the purpose of improved treatment quality, ion-based radiographic images could be acquired at the treatment site before or during treatment and be employed to monitor the patient positioning and to check the patient-specific ion range. This work presents the initial experimental investigations carried out to address the feasibility of carbon ion radiography at the Heidelberg ion therapy center using a prototype range telescope set-up and an active raster scanning ion beam delivery system. Bragg curves are measured with a stack of ionization chambers (IC) synchronously to the beam delivery. The position of the BP is extracted from the data by locating the channel of maximum current signal for each delivered beam. Each BP is associated to the lateral and vertical positions of the scanned raster point extrapolated from the beam monitor system to build up a radiography. The radiographic images are converted into water equivalent thickness (WET) based on two calibrations of the detector. Radiographies of two phantoms of different complexities are reconstructed and their image quality is analyzed. A novel method proposed to increase the nominal range resolution of the IC stack is applied to the carbon ion radiography of an Alderson head phantom. Moreover, an x-ray digitally reconstructed radiography of the same anthropomorphic head phantom is converted in WET through the clinically used ion range calibration curve and compared with the carbon ion radiography based on a γ-index approach

  5. Treatment of pediatric patients and young adults with particle therapy at the Heidelberg Ion Therapy Center (HIT): establishment of workflow and initial clinical data

    International Nuclear Information System (INIS)

    To report on establishment of workflow and clinical results of particle therapy at the Heidelberg Ion Therapy Center. We treated 36 pediatric patients (aged 21 or younger) with particle therapy at HIT. Median age was 12 years (range 2-21 years), five patients (14%) were younger than 5 years of age. Indications included pilocytic astrocytoma, parameningeal and orbital rhabdomyosarcoma, skull base and cervical chordoma, osteosarcoma and adenoid-cystic carcinoma (ACC), as well as one patient with an angiofibroma of the nasopharynx. For the treatment of small children, an anesthesia unit at HIT was established in cooperation with the Department of Anesthesiology. Treatment concepts depended on tumor type, staging, age of the patient, as well as availability of specific study protocols. In all patients, particle radiotherapy was well tolerated and no interruptions due to toxicity had to be undertaken. During follow-up, only mild toxicites were observed. Only one patient died of tumor progression: Carbon ion radiotherapy was performed as an individual treatment approach in a child with a skull base recurrence of the previously irradiated rhabdomyosarcoma. Besides this patient, tumor recurrence was observed in two additional patients. Clinical protocols have been generated to evaluate the real potential of particle therapy, also with respect to carbon ions in distinct pediatric patient populations. The strong cooperation between the pediatric department and the department of radiation oncology enable an interdisciplinary treatment and stream-lined workflow and acceptance of the treatment for the patients and their parents

  6. Measurement of the fragmentation of Carbon nuclei used in hadron-therapy

    International Nuclear Information System (INIS)

    The increasing use of Carbon nuclei in cancer therapy centres is motivated by their potential advantages as a very precise high LET radiation. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important to evaluate the spatial profile of their energy deposition in the tissues, hence the damage to the tissues neighbouring the tumour. We report here a study of the fragmentation with the nuclear emulsion experimental technique. We have designed, built and exposed to a Carbon nuclei beam a chamber made of Lexan plates alternated with nuclear emulsion films. Lexan plates acted as passive material simulating human body tissues while nuclear emulsion films were used as both tracking devices with micrometric accuracy and ionisation detectors. Such a detector allowed the detection of Carbon interactions produced along their path, the identification of the fragments produced and the measurement of their scattering angle. We have measured the Carbon ion survival probability and studied their interactions. We report on the secondary particle multiplicity and the electrical charge distribution. We give results of the scattering angle of final state fragments as well as the range for H and He. Finally we give the total and partial charge-changing cross-sections for Δz=1,2,3,4 which are compared with previous results when available. The present work aims at providing data required as input to Monte Carlo simulations of Carbon ion interactions in the human body and ultimately of their therapeutic effectiveness.

  7. Biological basis of heavy ion beams for cancer therapy

    International Nuclear Information System (INIS)

    Fast neutron therapy has started firstly and proton therapy has commenced secondly, fast neutron shows better biological effects compared to conventional radiations but its dose distribution is not good, and proton demonstrates excellent dose distribution but its biological effects are almost the same as that of conventional radiations. On the other hand, negative pi-mesons and heavy ions indicate high radiobiological effect and excellent dose distribution, therefore these particle radiations is considered to be more attractive for radiotherapeutic radiations to enhance cure rate of cancers. The biological strong points of these particles are as follows : 1) cells exposed to these particle radiations shows less recovery after irradiation compared to conventional radiations, 2) these radiations show high biological effects (high value of relative biological effectiveness = RBE) when the same dose is given, 3) big effects on hypoxic cells which exsist in tumor, i.e. the value of oxygen enhancement ratio (OER) is low, 4) the differences in radiosensitivity by stages of cell cycle are not so great (data was not shown in present paper), 5) biological effects at prepeak plateau region in depth dose curve formed by these particle radiations is less than that at peak region (therefore, if beam is modulated to cover tumor at spraed out broad peak, tumors is given more biological effect compared to normal tissues which is to be exposed to radiations at prepaeak region). Clinical trial using heavy ions are being performed at Lawrence Berkeley Laboratory which is only one facility to be able to try clinical trial. The results of clinical trials at Lawrence Berkeley Laboratory suggest to be very prospective to enhance tumor cure rate, however it is too early to estimate the effect of heavy ion therapy. (J.P.N.)

  8. Mutagenic effects of nitrogen and carbon ions on stevia

    International Nuclear Information System (INIS)

    Dry seeds of stevia were implanted by 60∼100 keV nitrogen ion and 75 keV carbon ion with various doses. The biological effects in M1 and mutation in M2 were studied. The results showed that ion beam was able to induce variation on chromosome structure and inhibited mitosis action in root tip cells. The rate of cells with chromosome aberration was increased with the increase of ion beam energy and dose. Energy effects of mitosis were presented between 75 keV and 60, 100 keV. As compared with γ-rays, the effects of ion beam were lower on chromosomal aberration but were higher on frequency of the mutation. The rate of cell with chromosome aberration and M2 useful mutation induced by implantation of carbon ion was higher than those induced by implantation of nitrogen ion. Mutagenic effects of Feng1 x Ri Yuan and of Ri Yuan x Feng2 are higher than that of Ji Ning and Feng2

  9. Design of a new tracking device for on-line dose monitor in ion therapy

    CERN Document Server

    Traini, Giacomo; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    Charged Particle Therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbons. A critical issue is the monitoring of the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a new tracking device for monitoring on-line the dose in ion therapy through the detection of secondary charged particles produced by the beam interactions in the patient tissues. In fact, the charged particle emission shape can be correlated with the spatial dose release and the Bragg peak position. The detector uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a small calorimeter made of a pixelated Lutetium Fine Silicate crystal. Simulations have been performed to evaluate the achievable spatial resolution and a possible application of the device for the monitoring of the dose pro?le in a real treatment is presented.

  10. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  11. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  12. Status of the Medaustron Ion Beam Therapy centre

    CERN Document Server

    Dorda, U; Osmic, F; Benedikt, M

    2012-01-01

    MedAustron is a synchrotron based light-ion beam therapy centre for cancer treatment as well as for clinical and non-clinical research currently in its construction phase. The accelerator design is based on the CERN-PIMMS study and its technical implementation by CNAO. This paper presents a status overview over the whole project detailing the achieved progress of the building construction & technical infrastructure installation in Wiener Neustadt, Austria, as well as of the accelerator development, performed at CERN and partially at PSI. The design and procurement status and future planning of the various accelerator components is elaborated.

  13. Biological intercomparison using gut crypt survivals for proton and carbon-ion beams

    International Nuclear Information System (INIS)

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or RBE for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, biological endpoint, dose and fractionation schedule, a single RBE value could not deal with all different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance<2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/ Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  14. Fluorescent Carbon Nanoparticles in Medicine for Cancer Therapy

    OpenAIRE

    Kumar, Vinit; Toffoli, Giuseppe; Rizzolio, Flavio

    2013-01-01

    Nanotechnology provides exciting opportunities for the development of novel, clinically relevant diagnostic and therapeutic multifunctional systems. Fluorescent carbon nanoparticles (CNPs) due to their intrinsic fluorescence and high biocompatibility are among the best candidates. As innovative nanomaterials, CNPs could be utilized both as nontoxic drug delivery system and bioimaging. We foresee a great future for CNPs in cancer diagnostic and therapy.

  15. Processing of diamondlike carbon using plasma immersion ion deposition

    International Nuclear Information System (INIS)

    Plasma immersion ion deposition (PIID) has been used to synthesize hard amorphous hydrogenated carbon or diamondlike carbon (DLC) thin films on Si substrates with rf inductive plasmas of various Ar and C2H2 gas mixtures. The surface hardness and stress of the films were highly dependent on the magnitude of the total rf power and the pulse-bias duty factor. The ratios of the ion flux and the film deposition flux, Ji/Jd, were estimated and correlated with DLC film stress, hardness, and the amount of argon and hydrogen content retained. The DLC properties (hardness and film stress) were maximal when the Ji/Jd value ranged between 0.6 and 0.8. The balance between ion-energy transfer and relaxation in the surface and subsurface carbon atoms may explain the DLC growth in this work. The role of ion-current flux in the PIID process was found to be as important as it is in conventional ion beam assisted deposition processing. copyright 1999 American Vacuum Society

  16. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  17. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine...... response model developed by J. Hansen and K. Olsen has been implemented in the Monte Carlo code FLUKA, and calculations were compared with experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for mono energetic beams. Measured depth...

  18. Improvement of the Oracle setup and database design at the Heidelberg ion therapy center

    International Nuclear Information System (INIS)

    The HIT (Heidelberg Ion Therapy) center is an accelerator facility for cancer therapy using both carbon ions and protons, located at the university hospital in Heidelberg. It provides three therapy treatment rooms: two with fixed beam exit (both in clinical use), and a unique gantry with a rotating beam head, currently under commissioning. The backbone of the proprietary accelerator control system consists of an Oracle database running on a Windows server, storing and delivering data of beam cycles, error logging, measured values, and the device parameters and beam settings for about 100,000 combinations of energy, beam size and particle rate used in treatment plans. Since going operational, we found some performance problems with the current database setup. Thus, we started an analysis that focused on the following topics: hardware resources of the database server, configuration of the Oracle instance, and a review of the database design that underwent several changes since its original design. The analysis revealed issues on all fields. The outdated server will be replaced by a state-of-the-art machine soon. We will present improvements of the Oracle configuration, the optimization of SQL statements, and the performance tuning of database design by adding new indexes which proved directly visible in accelerator operation, while data integrity was improved by additional foreign key constraints. (authors)

  19. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  20. MCHIT - Monte Carlo model for proton and heavy-ion therapy

    CERN Document Server

    Pshenichnov, Igor; Greiner, Walter

    2007-01-01

    We study the propagation of nucleons and nuclei in tissue-like media within a Monte Carlo Model for Heavy-ion Therapy (MCHIT) based on the GEANT4 toolkit (version 8.2). The model takes into account fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments. Model predictions are validated with available experimental data obtained for water and PMMA phantoms irradiated by monoenergetic carbon-ion beams. The MCHIT model describes well (1) the depth-dose distributions in water and PMMA, (2) the doses measured for fragments of certain charge, (3) the distributions of positron emitting nuclear fragments produced by carbon-ion beams, and (4) the energy spectra of secondary neutrons measured at different angles to the beam direction. Radial dose profiles for primary nuclei and for different projectile fragments are calculated and discussed as possible input for evaluation of biological dose distributions. It is shown that at the periphery of the transverse dose profile close to the B...

  1. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    International Nuclear Information System (INIS)

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Carbon-ion exposure reduced cell growth. Product(s) from carbon-ion irradiated microorganera suppressed growth of human leukemia cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for leukemia cells. (author)

  2. Modification of diamond-like carbon by ion irradiation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were irradiated with swift heavy ion beams of varying energy and angles of incidence. The irradiation created electrically conducting tracks in the DLC-films by transforming sp3 into sp2 bonds. The DLC-films were analyzed by conductive atomic force microscopy. The images were used to identify ion impact sites, and I-V-Spectroscopy was applied to determine the conductivity of the tracks. High energy ions (2.2 GeV, Au25+) created tracks with ohmic conductivity in the case of perpendicular bombardment, whereas grazing irradiation results in tracks that show mainly tunneling behavior. Low energy ions (100 MeV, Xe23+) created tracks which exhibit tunneling behaviour after perpendicular incidence irradiation, but irradiation under 1 did not result in conductive tracks.

  3. WIMP detection and slow ion dynamics in carbon nanotube arrays

    CERN Document Server

    Cavoto, G; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (~ 10 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with ...

  4. WIMP detection and slow ion dynamics in carbon nanotube arrays

    Science.gov (United States)

    Cavoto, G.; Cirillo, E. N. M.; Cocina, F.; Ferretti, J.; Polosa, A. D.

    2016-06-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (≈ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  5. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  6. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  7. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  8. Gated ion transport through dense carbon nanotube membranes.

    Science.gov (United States)

    Yu, Miao; Funke, Hans H; Falconer, John L; Noble, Richard D

    2010-06-23

    Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (approximately 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on and off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment. PMID:20504021

  9. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    The coprecipitation of alkali metal ions Li+, Na+, K+ and Rb+ with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+. (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite. (author)

  10. Pore-size ion-size correlations for carbon supercapacitors

    Science.gov (United States)

    Chmiola, John

    2009-08-01

    Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. This could lead to fleet-wide improvements in economy, performance, lifetime and environmental impact of Hybrid Electric Vehicles (HEVs), as well as enable or advance many other applications. To determine correlations between ion-size and pore-size in carbon supercapacitors, we generated a well-characterized set of porous carbide-derived carbons (CDC) with average pore sizes from 0.6 to 2.25 nm and used them to probe the limits of understanding. Performing the first systematic study of the effect of pore size on capacitance showed that, in general, decreasing the pore size below the size of the solvated ion, or to precisely the size of the ionic liquid ion, allowed higher accumulation of charge. Using CDC with properly tuned porosity showed excellent performance in H2SO 4, ˜200 F/g, and performance superior to all prior reported results in organic (CH3CH2)4NBF4 (TEABF 4) electrolytes as well as l-ethyl-3-methyl immidazolium bis-(trifluoromethanesulfonyl)imide (EMI-TFSI) ionic liquid, ˜150 F/g. This work conclusively showed that precisely matching the pore size with the ion size is the key factor for maximizing capacitance. Understanding that pores significantly larger than the effective ion size do not have large contributions to energy storage, work on dense porous CDC films on conductive substrates showed ˜100% larger volumetric capacitance than any previously reported. Depositing patterned films of carbide and electrical contacts could lead to microfabricated energy storage devices directly on a chip, or built up in layers for performances yet unrealized.

  11. Dual ion beam deposition of carbon films with diamondlike properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  12. Carbonate Ion-Enriched Hot Spring Water Promotes Skin Wound Healing in Nude Rats

    OpenAIRE

    Jingyan Liang; Dedong Kang; Yingge Wang; Ying Yu; Jianglin Fan; En Takashi

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing spee...

  13. Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions

    International Nuclear Information System (INIS)

    Background and purpose: To investigate the cytogenetic damage of the intrachange type in peripheral blood lymphocytes of patients treated for prostate cancer with different radiation qualities. Material and methods: Prostate cancer patients were enrolled in a clinical trial based at the Heidelberg University Hospital and at the GSI Helmholtz Centre for Heavy Ion Research in 2006. Patients were treated either with intensity-modulated radiation therapy (IMRT) alone or with a carbon-ion boost followed by IMRT. Blood samples were collected at the end of the therapy and the mBAND technique was used to investigate the cytogenetic damage of the inter and intrachange types. Moreover, the mBAND analysis was performed on healthy donor cells irradiated in vitro with X-rays or C-ions. Results: Our results show no statistically significant differences in the yield and the spectrum of chromosome aberrations among patients treated only with IMRT and patients receiving the combined treatment when similar target volumes and doses to the target are compared. Conclusion: The study suggests that the risks of normal tissue late effects and second malignancies in prostate cancer patients are comparable when heavy ions or IMRT radiotherapy are applied

  14. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    International Nuclear Information System (INIS)

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  15. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  16. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    International Nuclear Information System (INIS)

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET – 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ∼ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells

  17. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  18. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Science.gov (United States)

    Liang, Jingyan; Kang, Dedong; Wang, Yingge; Yu, Ying; Fan, Jianglin; Takashi, En

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C) control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds. PMID:25671581

  19. MedAustron: The Austrian ion therapy facility

    Science.gov (United States)

    Benedikt, Michael

    MedAustron is a synchrotron-based light-ion beam therapy center for cancer treatment as well as for clinical and non-clinical research in Wiener Neustadt, Austria. The center is designed for the treatment of up to 1200 patients per year and for non-clinical research in the areas of radiobiology and medical radiation physics, as well as in experimental physics. MedAustron is an interdisciplinary project, benefiting from close cooperation and knowledge transfer with medical, scientific and research institutes on the national and international level. Three medical irradiation rooms will allow quasi-permanent patient treatment during two shifts on working days. The remaining beam time will be used for non-clinical research applications in a dedicated fourth irradiation room. The expected start of operation of MedAustron is mid-2016...

  20. A Monte Carlo code for ion beam therapy

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe.   Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...

  1. Isotopic anomaly for carbon ions in an electron cyclotron resonance ion source.

    Science.gov (United States)

    Drentje, A G; Kitagawa, A; Muramatsu, M

    2010-02-01

    In many experiments methods were applied to increase the highly charged ion output from an electron cyclotron resonance ion source; the gas-mixing method is still generally being applied. The dominant role of the masses of the ions in the gas-mixture was apparent. Two basically differing mechanisms could to first order explain most of the observations. A significant mass effect showed up in a mixture of oxygen isotopes, the so-called oxygen anomaly; so far that effect could be explained in zeroth order only. The anomaly was observed later for nitrogen isotopes as well. In the present experiment it is shown that the anomaly also exists for carbon isotopes, where the necessity of feeding the source with carbon-hydrogen compounds brings about an essential different experimental fact. PMID:20192439

  2. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

        Radiotherapy with particles is getting more attention in Europe. New facilities for protons and heavier ions are finished, or near to the final status, some more are planed. Particle therapy with heavy ions is a challenge to dosimetry, since mixed particle fields occur in the peak region...... of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...

  3. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    Science.gov (United States)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  4. Acute carbon monoxide poisoning: Emergency management and hyperbaric oxygen therapy

    Energy Technology Data Exchange (ETDEWEB)

    Severance, H.W.; Kolb, J.C.; Carlton, F.B.; Jorden, R.C.

    1989-10-01

    An ice storm in February 1989 resulted in numerous incidences of carbon monoxide poisoning in central Mississippi secondary to exposure to open fires in unventilated living spaces. Sixteen cases were treated during this period at the University of Mississippi Medical Center and 6 received Hyperbaric Oxygen therapy. These 6 cases and the mechanisms of CO poisoning are discussed and recommendations for emergency management are reviewed.10 references.

  5. On-line monitoring of heavy-ion therapy using PET

    International Nuclear Information System (INIS)

    In this presentation authors present results of on-line monitoring of heavy-ion therapy using PET. It is concluded that in-beam positron emission tomography is a feasible and valuable method for in-situ and non-invasive monitoring of heavy-ion therapy

  6. Activated carbon is an electron-conducting amphoteric ion adsorbent

    CERN Document Server

    Biesheuvel, P M

    2015-01-01

    Electrodes composed of activated carbon (AC) particles can desalinate water by ion electrosorption. To describe ion electrosorption mathematically, accurate models are required for the structure of the electrical double layers (EDLs) that form within electrically charged AC micropores. To account for salt adsorption also in uncharged ACs, an "attraction term" was introduced in modified Donnan models for the EDL structure in ACs. Here it will be shown how instead of using an attraction term, chemical information of the surface structure of the carbon-water interface in ACs can be used to construct an alternative EDL model for ACs. This EDL model assumes that ACs contain both acidic groups, for instance due to carboxylic functionalities, and basic groups, due to the adsorption of protons to the carbon basal planes. As will be shown, this "amphoteric Donnan" model accurately describes various data sets for ion electrosorption in ACs, for solutions of NaCl, of CaCl2, and mixtures thereof, as function of the exter...

  7. Fast optimization and dose calculation in scanned ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hild, S. [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Department of Radiation Oncology, University Clinic Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen (Germany); Institute for Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen (Germany); Graeff, C.; Trautmann, J.; Kraemer, M. [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64289 Darmstadt (Germany); Zink, K. [Institute for Medical Physics and Radiation Protection, University of Applied Sciences, 35390 Giessen, Germany and Department of Radiotherapy and Radiooncology, University Hospital Giessen-Marburg, 35043 Marburg (Germany); Durante, M. [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64289 Darmstadt, Germany and Faculty of Physics, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Bert, C., E-mail: christoph.bert@uk-erlangen.de [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64289 Darmstadt, Germany and Department of Radiation Oncology, University Clinic Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen (Germany)

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  8. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  9. Kinetics of ion beam deposition of carbon at room temperature

    International Nuclear Information System (INIS)

    Growth rates of carbon films grown by ion beam deposition using methane gas were measured in situ as a function of deposition conditions. The methane pressure dependence of the growth rate was used to measure the cross-section for charge exchange. Variations in deposition rate per incident energetic particle found for each ion energy were related to ion current density. It was found that rates of growth per incident energetic specie were (i) largest for the smallest current densities, (ii) decreased monotonically with increasing current density, and (iii) were consistently larger than can be explained by deposition directly from the energetic flux alone. These observations were interpreted in terms of irradiation-induced surface interactions which promote chemisorption of methane physisorbed from the ambient atmosphere. (orig.)

  10. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts

    International Nuclear Information System (INIS)

    The production of reactive oxygen species (ROS), especially superoxide anions (O2·-), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3–5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure. (author)

  11. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation.

    Science.gov (United States)

    Bertrand, Gérald; Maalouf, Mira; Boivin, Antony; Battiston-Montagne, Priscillia; Beuve, Michael; Levy, Antonin; Jalade, Patrice; Fournier, Claudia; Ardail, Dominique; Magné, Nicolas; Alphonse, Gersende; Rodriguez-Lafrasse, Claire

    2014-02-01

    Although promising new radiation therapy techniques such as hadrontherapy are currently being evaluated in the treatment of head and neck malignancies, local control of head and neck squamous cell carcinoma (HNSCC) remains low. Here, we investigated the involvement of cancer stem-like cells (CSCs) in a radioresistant HNSCC cell line (SQ20B). Stem-like cells SQ20B/SidePopulation(SP)/CD44(+)/ALDH(high) were more resistant to both photon and carbon ion irradiation compared with non-CSCs. This was confirmed by a BrdU labeling experiment, which suggests that CSCs were able to proliferate and to induce tumorigenicity after irradiation. SQ20B/SP/CD44(+)/ALDH(high) were capable of an extended G2/M arrest phase in response to photon or carbon ion irradiation compared with non-CSCs. Moreover, our data strongly suggest that resistance of CSCs may result from an imbalance between exacerbated self-renewal and proliferative capacities and the decrease in apoptotic cell death triggering. In order to modulate these processes, two targeted pharmacological strategies were tested. Firstly, UCN-01, a checkpoint kinase (Chk1) inhibitor, induced the relapse of G2/M arrest and radiosensitization of SQ20B-CSCs. Secondly, all-trans retinoic acid (ATRA) resulted in an inhibition of ALDH activity, and induction of the differentiation and radiosensitization of SQ20B/SP/CD44(+)/ALDH(high) cells. The combination of ATRA and UCN-01 treatments with irradiation drastically decreased the surviving fraction at 2Gy of SQ20B-CSCs from 0.85 to 0.38 after photon irradiation, and from 0.45 to 0.21 in response to carbon ions. Taken together, our results suggest that the combination of UCN-01 and ATRA represent a promising pharmacological-targeted strategy that significantly sensitizes CSCs to photon or carbon ion radiation. PMID:23955575

  12. Neutron imaging of ion transport in mesoporous carbon materials.

    Science.gov (United States)

    Sharma, Ketki; Bilheux, Hassina Z; Walker, Lakeisha M H; Voisin, Sophie; Mayes, Richard T; Kiggans, Jim O; Yiacoumi, Sotira; DePaoli, David W; Dai, Sheng; Tsouris, Costas

    2013-07-28

    Neutron imaging is presented as a tool for quantifying the diffusion of ions inside porous materials, such as carbon electrodes used in the desalination process via capacitive deionization and in electrochemical energy-storage devices. Monolithic mesoporous carbon electrodes of ∼10 nm pore size were synthesized based on a soft-template method. The electrodes were used with an aqueous solution of gadolinium nitrate in an electrochemical flow-through cell designed for neutron imaging studies. Sequences of neutron images were obtained under various conditions of applied potential between the electrodes. The images revealed information on the direction and magnitude of ion transport within the electrodes. From the time-dependent concentration profiles inside the electrodes, the average value of the effective diffusion coefficient for gadolinium ions was estimated to be 2.09 ± 0.17 × 10(-11) m(2) s(-1) at 0 V and 1.42 ± 0.06 × 10(-10) m(2) s(-1) at 1.2 V. The values of the effective diffusion coefficient obtained from neutron imaging experiments can be used to evaluate model predictions of the ion transport rate in capacitive deionization and electrochemical energy-storage devices. PMID:23756558

  13. Active raster scanning with carbon ions. Reirradiation in patients with recurrent skull base chordomas and chondrosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Welzel, Thomas; Oelmann, Jan; Habl, Gregor; Hauswald, Henrik; Jensen, Alexandra; Debus, Juergen; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte [Heidelberg Ion Therapy Center (HIT), Heidelberg (Germany)

    2014-07-15

    To evaluate the safety and efficacy of reirradiation with carbon ions in patients with relapse of skull base chordoma and chondrosarcoma. Reirradiation with carbon ions was performed on 25 patients with locally recurrent skull base chordoma (n = 20) or chondrosarcoma (n = 5). The median time between the last radiation exposure and the reirradiation with carbon ions was 7 years. In the past, 23 patients had been irradiated once, two patients twice. Reirradiation was delivered using the active raster scanning method. The total median dose was 51.0 GyE carbon ions in a weekly regimen of five to six fractions of 3 GyE. Local progression-free survival (LPFS) was evaluated using the Kaplan-Meier method; toxicity was evaluated using the NCI Common Terminology Criteria for Adverse Events (CTCAE v.4.03). The treatment could be finished in all patients without interruption. In 80 % of patients, symptom control was achieved after therapy. The 2-year-LPFS probability was 79.3 %. A PTV volume of < 100 ml or a total dose of > 51 GyE was associated with a superior local control rate. The therapy was associated with low acute toxicity. One patient developed grade 2 mucositis during therapy. Furthermore, 12 % of patients had tympanic effusion with mild hypacusis (grade 2), while 20 % developed an asymptomatic temporal lobe reaction after treatment (grade 1). Only one patient showed a grade 3 osteoradionecrosis. Reirradiation with carbon ions is a safe and effective method in patients with relapsed chordoma and chondrosarcoma of the skull base. (orig.) [German] Evaluierung der Sicherheit und Wirksamkeit einer Re-Bestrahlung mittels Kohlenstoffionen bei Patienten mit Lokalrezidiv eines Chordoms und Chondrosarkoms der Schaedelbasis. Bei 25 Patienten mit einem Lokalrezidiv eines Chordoms (n = 20) oder Chondrosarkoms (n = 5) der Schaedelbasis erfolgte eine Re-Bestrahlung mittels Kohlenstoffionen. Die mediane Zeit zwischen letzter Bestrahlung und Re-Bestrahlung mit Kohlenstoffionen

  14. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    OpenAIRE

    Alexey Verkhovtsev; Eugene Surdutovich; Solov’yov, Andrey V.

    2016-01-01

    Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects rela...

  15. Two cases of intrapelvic recurrence after radical resection of rectal cancer, treated with carbon ion radiotherapy

    International Nuclear Information System (INIS)

    We report two cases of intrapelvic recurrence after radical resection of rectal cancer, which were successfully treated with Carbon Ion Radiotherapy (C-ion RT). The first case is of a 71-year-old man who underwent abdominoperineal resection (APR) with D2 lymphadenectomy for rectal cancer in December 2010, followed by adjuvant chemotherapy with S-1 plus oxaliplatin. The patient was diagnosed with a recurrence on the left pelvic wall in August 2012, and underwent C-ion RT (73.6 Gray equivalent) for this lesion in October 2012. Three months after this treatment, the lesion had regressed significantly, as ascertained by computed tomography (CT). He remains alive with no signs of recurrence. The second case is of a 63-year-old man who underwent APR with D3 lymphadenectomy for rectal cancer, followed by adjuvant chemotherapy with uracil-tegafur (UFT). The patient was diagnosed with a recurrence on the right pelvic wall in January 2013, and underwent C-ion RT(73.6 Gray equivalent) for this lesion in March 2013. Three months after this treatment, the lesion reduced significantly, and the patient is alive with no signs of recurrence. Although the long-term outcomes need to be assessed, C-ion RT could be a safe and effective therapy. (author)

  16. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

    2005-11-01

    Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The

  17. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  18. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  19. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  20. Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Le Foulher, F.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Ray, C.; Testa, E.; Testa, M. [Universite de Lyon 1, F-69003 Lyon (France); IN2P3/CNRS, UMR 5822, Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne (France); Freud, N.; Letang, J. M. [Laboratoire de Controles Non Destructifs Par Rayonnements Ionisants, INSA-Lyon, F-69621 Villeurbanne cedex (France); Karkar, S. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Plescak, R.; Schardt, D. [Gesellschaft fur Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2009-07-01

    Monte Carlo simulations based on the Geant4 tool-kit (version 9.1) were performed to study the emission of secondary prompt gamma-rays produced by nuclear reactions during carbon ion-beam therapy. These simulations were performed along with an experimental program and instrumentation developments which aim at designing a prompt gamma-ray device for real-time control of hadron therapy. The objective of the present study is twofold: first, to present the features of the prompt gamma radiation in the case of carbon ion irradiation; secondly, to simulate the experimental setup and to compare measured and simulated counting rates corresponding to various experiments. For each experiment, we found that simulations overestimate prompt gamma-ray detection yields by a factor of 12. Uncertainties in fragmentation cross sections and binary cascade model cannot explain such discrepancies. The so-called 'photon evaporation' model is therefore questionable and its modification is currently in progress. (authors)

  1. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth

    Science.gov (United States)

    Francis, Z.; Seif, E.; Incerti, S.; Champion, C.; Karamitros, M.; Bernal, M. A.; Ivanchenko, V. N.; Mantero, A.; Tran, H. N.; El Bitar, Z.

    2014-12-01

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu-1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam.

  2. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth

    International Nuclear Information System (INIS)

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu−1 as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam. (paper)

  3. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes

    Science.gov (United States)

    2016-01-01

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp3 content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g–1 (lithium) and 130 mAh g–1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation.

  4. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.

    Science.gov (United States)

    Licht, Stuart; Douglas, Anna; Ren, Jiawen; Carter, Rachel; Lefler, Matthew; Pint, Cary L

    2016-03-23

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp(3) content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g(-1) (lithium) and 130 mAh g(-1) (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  5. Current State Of Proton And Carbon-Ion Radiotherapy At The Hyogo Ion Beam Medical Center (HIBMC)

    Science.gov (United States)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Fujii, Osamu; Terashima, Kazuki; Mima, Masayuki; Miyawaki, Daisuke; Sasaki, Ryohei; Hishikawa, Yoshio; Abe, Mitsuyuki

    2011-06-01

    HIBMC is the world's first facility to be able to use both proton (PRT) and carbon-ion radiotherapy (CiRT). The medically dedicated synchrotron can accelerate protons up to 230 MeV and carbon ions up to 320 MeV. From April 2001 to March 2010, the facility treated 3275 patients, with 2487 patients treated using PRT and 788 using CiRT. Particle radiotherapy was delivered to patients suffering from malignant tumors originating in the head and neck (502 patients), lungs (330), liver (539), prostate (1283), and the bone & soft tissue (130). The clinical results are as follows: (1) H & N tumors: The 2-year overall survival (OS) rates of patients with olfactory neuroblastoma, mucoepidermoid cancer, adenoid cystic cancer, adenocarcinoma, squamous cell carcinoma, and malignant melanoma was 100%, 86%, 78%, 78%, 66%, and 62%, respectively. (2) Lung cancer: For all 80 patients, the 3-year OS rate was 75% (Stage IA: 74%; Stage IB: 76%) and local control (LC) rate was 82% (IA: 87%; IB: 77%). Grade 3 pulmonary toxicity was observed in only 1 patient. These results are comparable to those obtained by surgery, and indicate proton therapy and carbon-ion therapy are safe and effective for stage I lung cancer. (3) Liver cancer: The 5-year LC rate for 429 tumor patient was 90%, and the 5-year OS rate for 364 patients was 38%. These results seem equivalent to those obtained by surgery or radio-frequency ablation. (4) Prostate cancer: In 290 patients treated by proton radiotherapy, five patients died from other disease in the median follow-up period of 62 months. Biochemical disease-free survival and OS rate at 5 years was 88.2% and 96.5%, respectively. Our proton radiotherapy showed excellent OS and biochemical disease-free survival rates with minimum late morbidities. PRT VS CiRT: From our retrospective analysis, it seems that there is no significant difference in the LC and OS rate in H&N, lung and liver cancer between PRT and CiRT.

  6. Current State Of Proton And Carbon-Ion Radiotherapy At The Hyogo Ion Beam Medical Center (HIBMC)

    International Nuclear Information System (INIS)

    HIBMC is the world's first facility to be able to use both proton (PRT) and carbon-ion radiotherapy (CiRT). The medically dedicated synchrotron can accelerate protons up to 230 MeV and carbon ions up to 320 MeV. From April 2001 to March 2010, the facility treated 3275 patients, with 2487 patients treated using PRT and 788 using CiRT. Particle radiotherapy was delivered to patients suffering from malignant tumors originating in the head and neck (502 patients), lungs (330), liver (539), prostate (1283), and the bone and soft tissue (130). The clinical results are as follows: (1) H and N tumors: The 2-year overall survival (OS) rates of patients with olfactory neuroblastoma, mucoepidermoid cancer, adenoid cystic cancer, adenocarcinoma, squamous cell carcinoma, and malignant melanoma was 100%, 86%, 78%, 78%, 66%, and 62%, respectively. (2) Lung cancer: For all 80 patients, the 3-year OS rate was 75%(Stage IA: 74%; Stage IB: 76%) and local control (LC) rate was 82%(IA: 87%; IB: 77%). Grade 3 pulmonary toxicity was observed in only 1 patient. These results are comparable to those obtained by surgery, and indicate proton therapy and carbon-ion therapy are safe and effective for stage I lung cancer. (3) Liver cancer: The 5-year LC rate for 429 tumor patient was 90%, and the 5-year OS rate for 364 patients was 38%. These results seem equivalent to those obtained by surgery or radio-frequency ablation. (4) Prostate cancer: In 290 patients treated by proton radiotherapy, five patients died from other disease in the median follow-up period of 62 months. Biochemical disease-free survival and OS rate at 5 years was 88.2% and 96.5%, respectively. Our proton radiotherapy showed excellent OS and biochemical disease-free survival rates with minimum late morbidities. PRT VS CiRT: From our retrospective analysis, it seems that there is no significant difference in the LC and OS rate in H and N, lung and liver cancer between PRT and CiRT.

  7. Treatment of pediatric patients and young adults with particle therapy at the Heidelberg Ion Therapy Center (HIT: establishment of workflow and initial clinical data

    Directory of Open Access Journals (Sweden)

    Combs Stephanie E

    2012-10-01

    Full Text Available Abstract Background To report on establishment of workflow and clinical results of particle therapy at the Heidelberg Ion Therapy Center. Materials and methods We treated 36 pediatric patients (aged 21 or younger with particle therapy at HIT. Median age was 12 years (range 2-21 years, five patients (14% were younger than 5 years of age. Indications included pilocytic astrocytoma, parameningeal and orbital rhabdomyosarcoma, skull base and cervical chordoma, osteosarcoma and adenoid-cystic carcinoma (ACC, as well as one patient with an angiofibroma of the nasopharynx. For the treatment of small children, an anesthesia unit at HIT was established in cooperation with the Department of Anesthesiology. Results Treatment concepts depended on tumor type, staging, age of the patient, as well as availability of specific study protocols. In all patients, particle radiotherapy was well tolerated and no interruptions due to toxicity had to be undertaken. During follow-up, only mild toxicites were observed. Only one patient died of tumor progression: Carbon ion radiotherapy was performed as an individual treatment approach in a child with a skull base recurrence of the previously irradiated rhabdomyosarcoma. Besides this patient, tumor recurrence was observed in two additional patients. Conclusion Clinical protocols have been generated to evaluate the real potential of particle therapy, also with respect to carbon ions in distinct pediatric patient populations. The strong cooperation between the pediatric department and the department of radiation oncology enable an interdisciplinary treatment and stream-lined workflow and acceptance of the treatment for the patients and their parents.

  8. Production of defects in supported carbon nanotubes under ion irradiation

    International Nuclear Information System (INIS)

    Ion irradiation of individual carbon nanotubes deposited on substrates may be used for making metallic nanowires and studying effects of disorder on the electronic transport in low-dimensional systems. In order to understand the basic physical mechanisms of radiation damage production in supported nanotubes, we employ molecular dynamics and simulate ion impacts on nanotubes lying on different substrates, such as platinum and graphite. We show that defect production depends on the type of the substrate and that the damage is higher for metallic heavy-atom substrates than for light-atom substrates, since in the former case sputtered metal atoms and backscattered recoils produce extra damage in the nanotube. We further study the behavior of defects upon high-temperature annealing and demonstrate that although ions may severely damage nanotubes in a local region, the nanotube carbon network can heal such a strong localized damage due to defect migration and dangling-bond saturation. We also show that after annealing the residual damage in nanotubes is independent of the substrate type. We predict the pinning of nanotubes to substrates through nanotube-substrate bonds that appear near irradiation-induced defects

  9. Ion solvation in propylene carbonate and its mixtures with water and methanol

    International Nuclear Information System (INIS)

    Solvodynamic radii and solvation numbers of some ions (including I-) in propylene carbonate as well as their solvodynamic radii in mixtures of propylene carbonate-water and propylene carbonate-methanol were determined. Effect of medium components and solvated ion characteristics on the process of ion solvation was considered. It is shown that small size anions in propylene carbonate are weakly solvated, whereas bulky lightly polarized anions interact strongly with the solvent. Addition of water or methanol to propylene carbonate leads to intensification of ion solvation

  10. Carbon ion beam treatment in patients with primary and recurrent sacrococcygeal chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, Matthias; Jensen, Alexandra; Herfarth, Klaus [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Welzel, Thomas [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte; Haberer, Thomas [Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); Jaekel, Oliver [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Debus, Juergen [University of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Heidelberg Ion Beam Therapy Center (HIT), Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Deutsches Konsortium fuer Translationale Krebsforschung (DKTK), Heidelberg (Germany)

    2015-07-15

    The purpose of this work was to evaluate the results of high-dose radiation treatment using carbon ion therapy, alone or combined with intensity-modulated radiation treatment (IMRT), in patients with sacral chordoma. Between 2009 and 2012, 56 patients with sacral chordoma were treated in our center. The tumor was located above S3 in 33 patients and in S3 or below in 23 patients. In all, 41 patients received radiation therapy for the primary tumor, while 15 patients were treated for the recurrent tumor. Toxicity was measured using NCI CTCAE v.4.03. Local control (LC) and overall survival (OS) were evaluated with the Kaplan-Meier method. A total of 23 patients were irradiated with carbon ions in combination with photon IMRT, while 33 received carbon ion therapy only. Forty-three patients had a macroscopic tumor at treatment start with a median tumor size (GTV) of 244 ml (range 5-1188 ml). The median total dose was 66 Gy (range 60-74 Gy; RBE). After a median follow-up time of 25 months, the 2- and 3-year local control probability was 76 % and 53 %, respectively. The overall survival rate was 100 %. Treatment for primary tumor and male patients resulted in significant better local control. No higher toxicity occurred within the follow-up time. High-dose photon/carbon ion beam radiation therapy is safe and, especially for primary sacral chordomas, highly effective. A randomized trial is required to evaluate the role of primary definitive hypofractionated particle therapy compared with surgery with or without adjuvant radiotherapy. (orig.) [German] Evaluierung der Ergebnisse nach hochdosierter Kohlenstoffionentherapie, allein oder in Kombination mit einer intensitaetsmodulierten Photonenbestrahlung (IMRT), bei Patienten mit einem sakralen Chordom. Zwischen 2009 und 2012 wurden 56 Patienten mit sakralen Chordomen in unserem Zentrum behandelt. Der Tumor war bei 33 Patienten oberhalb von S3 und bei 23 Patienten auf Hoehe von S3 oder unterhalb davon lokalisiert. Insgesamt

  11. The impact of modeling nuclear fragmentation on delivered dose and radiobiology in ion therapy

    International Nuclear Information System (INIS)

    The importance of nuclear interactions for ion therapy arises from the influence of the particle spectrum on, first, radiobiology and therefore also on treatment planning, second, the accuracy of measuring dose and, third, the delivered dose distribution. This study tries to determine the qualitative as well as the quantitative influence of the modeling of inelastic nuclear interactions on ion therapy. Thereby, three key disciplines are investigated, namely dose delivery, dose assessment and radiobiology. In order to perform a quantitative analysis, a relative comparison between six different descriptions of nuclear interactions is carried out for carbon ions. The particle transport is simulated with the Monte Carlo code SHIELD-HIT10A while dose planning and radiobiology are covered by the analytic treatment planning program for particles TRiP, which determines the relative biological effectiveness (RBE) with the local effect model. The obtained results show that the physical dose distribution can in principle be significantly influenced by the modeling of fragmentation (about 10% for a 20% change in all inelastic nuclear cross sections for a target volume ranging from 15 to 25 cm). While the impact of nuclear fragmentation on stopping power ratios can be neglected, the fluence correction factor may be influenced by the applied nuclear models. In contrast to the results for the physical dose, the variation of the RBE is only small (about 1% for a 20% change in all inelastic nuclear cross sections) suggesting a relatively weak dependence of radiobiology on the detailed composition of the particle energy spectrum of the mixed radiation field. Also, no significant change (about 0.2 mm) of the lateral penumbra of the RBE-weighted dose is observed. (paper)

  12. Carbon-cluster formation from polymers caused by MeV-ion impacts and keV-cluster-ion impacts

    Science.gov (United States)

    Diehnelt, C. W.; van Stipdonk, M. J.; Schweikert, E. A.

    1999-06-01

    It has been observed that under MeV-ion bombardment of a polymer, such as polycarbonate (PC) or polyvinylidene fluoride (PVDF), large quantities of carbon clusters (C-n and CnH-) are generated. However, when PC or PVDF is bombarded with keV atomic ions, very few carbon-cluster ions are produced. This different behavior was attributed to the different sputtering/desorption mechanisms for keV- and MeV-ion impacts. Low-energy keV ions deposit their energy into a solid through nuclear stopping, while MeV ions deposit their energy mainly through electronic stopping. The formation of carbon clusters is thought to be facilitated by the high-temperatures and high-energy densities produced in the region nearest the point of MeV-ion impact, the infratrack region. We have observed extensive carbon-cluster formation from PC and PVDF under keV-cluster-ion bombardment. Despite the vastly different velocities of the high- and low-energy projectiles, identical carbon-cluster trends are produced from MeV 252Cf fission fragments and 20-keV C+60 projectile impacts on the same target. This leads us to the conclusion that a polyatomic ion impact, which deposits its kinetic energy near the surface, may create a region of high-temperature and high-energy density that is similar to the infratrack of a MeV-ion impact.

  13. Radiative transitions in highly-stripped carbon-like ions

    International Nuclear Information System (INIS)

    Transition energies and weighted absorption oscillator strength (gf) values are evaluated for a number of dipole-allowed transitions in highly-charged ions Ne4+, Si8+, Ar12+ and Ti16+ belong to the astrophysically important carbon series employing the time-dependent coupled Hartree-Fock (TDCHF) theory. Estimated values compare favourably with other existing results and the new ones repoted here may constitute a useful set for reference. The large-Z behaviour of the gf values is also examined. (orig.)

  14. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    Science.gov (United States)

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  15. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    International Nuclear Information System (INIS)

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 1017 ions-cm− 2, 2.4 × 1017 ions-cm− 2, and 4.8 × 1017 ions-cm− 2. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation

  16. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  17. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    OpenAIRE

    Somnhot, Parina

    2012-01-01

    Lithium-ion batteries possess high energy and power densities, making them ideal candidates for energy storage requirements in various military applications. Commercially produced lithium-ion battery anodes are commonly graphitic carbon-based. However, graphitic carbons are limited in surface area and possess slow intercalation kinetics. The energy and power density demands of future technologies require improved lithium-ion battery performance. Carbon nanomaterials, such as carbide-derived c...

  18. Metal carbonates as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lianyi; Ma, Rui; Wu, Kaiqiang; Shui, Miao; Lao, Mengmeng; Wang, Dongjie; Long, Nengbing; Ren, Yuanlong; Shu, Jie, E-mail: sergio_shu@hotmail.com

    2013-12-25

    Highlights: •Metal carbonates are probable anode materials for lithium ion batteries. •CoCO{sub 3}/C composite can deliver an initial discharge capacity of 2096.6 mAh g{sup −1} . •Co, Li{sub 2}CO{sub 3}, Li{sub 2}O, and low-valence carbon are final lithiated products for CoCO{sub 3}. -- Abstract: Six metal carbonates (Li{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, SrCO{sub 3}, BaCO{sub 3}, K{sub 2}CO{sub 3}, CoCO{sub 3}) are tested and compared as anode materials for lithium ion batteries. The electrochemical results show that only CoCO{sub 3} is electrochemically active material and can deliver a high initial capacity of 1425.9 mAh g{sup −1}. The lithium storage mechanism in CoCO{sub 3} is studied by ex situ X-ray diffraction technique, ex situ infrared method, ex situ X-ray photoelectron spectroscopy and in situ X-ray diffraction technique. It is found that the electrochemical reactions between CoCO{sub 3} and Li firstly result in the formation of metal Co and Li{sub 2}CO{sub 3}, and then partial Li{sub 2}CO{sub 3} is further reduced into carbon (C{sup 0}), low-valence carbon (C{sup 2+}), and Li{sub 2}O. It also demonstrates that the electrochemical reaction between CoCO{sub 3} and Li is a partially reversible process. Based on these electrochemical results, it is obvious that narrow potential range can acquire a better reversibility for CoCO{sub 3}/Li batteries by suppressing particle pulverization. Besides, the comparison of CoCO{sub 3}, ball-milled CoCO{sub 3} and ball-milled CoCO{sub 3}/C composite also indicates that smaller active particle and carbon buffer are beneficial to obtain better cycling performance and higher reversible capacity.

  19. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy

    International Nuclear Information System (INIS)

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H+, H2+, H3+, C4+, and C6+ are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  20. Complexation of europium(III) with carbonate ions in groundwater

    International Nuclear Information System (INIS)

    The equilibrium extraction behavior of Eu(III) studied in chloroform solutions containing 1-nitroso-2-naphthol (HA), either alone or combined with 2,2'-dipyridyl, 1,10-phenanthroline (phen), or trioctylphosphine oxide (TOPO) shows that the metal ion is extracted as either EuA3, EuA3.2,2'-dipyridyl, EuA3.phen, or EuA32TOPO, respectively. The synergic effect of phen or TOPO on the extraction of EU(III) with 1-nitrose-2-naphthol is more pronounced over that of 2,2'-dipyridyl. The carbonate complexation of EU(III) has been studied in 1.0 M ionic strength solutions at pH 8.0-9.0 and 250C using the synergic extraction system of 1-nitroso-2-naphthol and phen. The following complexes have been identified: EuCo+3, Eu(CO3)-2, Eu(CO3)3-3, and Eu(CO3)5-4; the results suggest that the first two species predominate at carbonate concentrations and pH similar to those found in most groundwaters. The formation constants of these species have been calculated at zero ionic strength using both SIT and ion pairing models

  1. Design study of a Compton camera for prompts-gamma imaging during ion beam therapy

    International Nuclear Information System (INIS)

    Ion beam therapy is an innovative radiotherapy technique using mainly carbon ion and proton irradiations. Its aim is to improve the current treatment modalities. Because of the sharpness of the dose distributions, a control of the dose if possible in real time is highly desirable. A possibility is to detect the prompt gamma rays emitted subsequently to the nuclear fragmentations occurring during the treatment of the patient. In a first time two different Compton cameras (double and single scattering) have been optimised by means of Monte Carlo simulations. The response of the camera to a photon point source with a realistic energy spectrum was studied. Then, the response of the camera to the irradiation of a water phantom by a proton beam was simulated. It was first compared with measurement performed with small-size detectors. Then, using the previous measurements, we evaluated the counting rates expected in clinical conditions. In the current set-up of the camera, these counting rates are pretty high. Pile up and random coincidences will be problematic. Finally we demonstrate that the detection system is capable to detect a longitudinal shift in the Bragg peak of ± 5 mm, even with the current reconstruction algorithm. (author)

  2. The Role of Oxygen Therapies in Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Suleyman Metin

    2011-08-01

    Full Text Available Due to climate and socio-economic issues in Turkey, the incidence of carbon monoxide (CO poisoning is high, especially in winter. Clinical manifestations may vary depending on the type of CO source, concentration and duration of exposure. The symptoms of CO poisoning predominantly manifest in lots of organs and systems with high oxygen utilization, especially the brain and the heart. The primary aim in oxygen therapy is to eliminate CO and to reduce its toxic effects. In this context, normobaric and hyperbaric oxygen therapy are used to achieve these goals. Normobaric oxygen (NBO treatment is an easily accessible and relatively not expensive modality, where hyperbaric oxygen (HBO therapy requires specific equipment, certified staff and is available only in some centers. Additionally, HBO treatment has several additional advantages over NBO treatment. Despite its benefits, it is compulsory to search for some criteria in selecting patients to be treated because of the limited availability and access of hyperbaric facilities. For an effective evaluation and an optimal treatment, advanced education of the healthcare professionals on the use of oxygen delivery modalities in the management of CO poisoning is imperative. In this review, it has been aimed to outline the significance of oxygen treatment modalities and to determine patient selection criteria for HBO treatment in the management of CO poisoning which continues to be an important threat to community health care. [TAF Prev Med Bull 2011; 10(4.000: 487-494

  3. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2013-10-01

    Full Text Available We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS. The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (xxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1. In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1x+ intensity. Furthermore, the ratio of these major ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  4. Nanodosimetric descriptors of the radiation quality of carbon ions

    International Nuclear Information System (INIS)

    In view of the emerging interest of carbon ions in radiotherapy and of the strong correlation between the track structure and the radiobiological effectiveness of ionising radiations, the track-structure properties of 12C-ions were studied at particle energies close to the Bragg peak. To perform the investigations, ionisation-cluster-size distributions for nanometre-sized target volumes were measured with the track-nano-dosimeter installed at the TANDEM-ALPI accelerator complex at LNL, and calculated using a dedicated Monte Carlo simulation code. The resulting cluster-size distributions are used to derive particular descriptors of particle track structure. Here, the main emphasis is laid on the mean ionisation-cluster size M1 and the cumulative probability Fk of measuring cluster sizes ν≥k. From the radiobiological point of view, Fk is of particular interest because an increasing k corresponds to an increase of damages of higher complexity. In addition, Fk saturates with increasing radiation quality like radiobiological cross sections as a function of linear energy transfer. Results will be presented and discussed for 12C-ions at 96 and 240 MeV. (authors)

  5. Exploration of using CT values for treatment planning system to calculate the carbon ion incident energy

    International Nuclear Information System (INIS)

    Objective: To explore the methods of using CT value for Carbon ion treatment planning system to calculate the Carbon ion incident energy. Methods: Bethe-Block formula and the formula for calculating the Car- bon ion range were analyzed to study the relationship of the range of Carbon ion beam (Single nuclear energy 80 MeV -50 MeV) in a variety of radiation equivalent material and the range of this energy Carbon ion beam in water. Procedure of Monte Carlo SRIM 2008 was used to verify the possibility of a constant range of proportional coefficient (Ci). The range of proportional coefficient (Ci) of radiation equivalent material and the CT value were fitted through Origin 8.0 software to study the of CT value and the range of proportional coefficient (Ci). The actual range of Carbon ion is equivalent to a range of water to incident Carbon ion energy. Results: There is a constant range of proportional coefficient (Ci) of the range of Carbon ion beam (Single nuclear energy 80 MeV ∼50 MeV) in a variety of radiation equivalent material and the range of this energy Carbon ion beam in water. There is a of CT value and the range of proportional coefficient (Ci) (r=0.999). The actual range of Carbon ion in radiation equivalent material can be equivalent to a range of the water. Conclusion: In this study, using CT values and a range of proportional coefficient (Ci), the actual required range of the tumor can accurately calculate the water equivalent range, and incident Carbon ion energy to the of Bragg peak. By the study, a new exploration for using CT technology, for Carbon ion treatment planning system was obtained. (authors)

  6. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  7. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.;

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...... separately using Monte Carlo techniques. We have used circular aperture field of 6 cm in diameter as a representative field. The tumor was assumed to be in the cranium. The range and modulation width for both carbon and proton beams were set to 15 cm and 10 cm, respectively. Results: In carbon therapy......, absorbed neutron doses to tonsils and pharynx close to the field-edge were found to be 5x10-4 mSv/GyE and 4x10-4 mSv/GyE, respectively. Whereas, neutron equivalent doses to tonsils and pharynx were estimated to be 0.57mSv/GyE and 0.55 mSv/GyE in scanned proton therapy, respectively. In heavy ion carbon...

  8. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    International Nuclear Information System (INIS)

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporal correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V95) and 107% (V107) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V95 and V107 values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V95 > 87%, SD < 3%) and overdose (mean V107 < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment

  9. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    Science.gov (United States)

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy. PMID:27455642

  10. Clinical trial of carbon ion radiotherapy for gynecological melanoma

    International Nuclear Information System (INIS)

    Carbon ion radiotherapy (C-ion RT) is an advanced modality for treating malignant melanoma. After we treated our first case of gynecological melanoma using C-ion RT in November 2004, we decided to conduct a clinical trial to evaluate its usefulness for the treatment of gynecological melanoma. The eligibility criteria for enrollment in this study were histologically proven malignant melanoma of the gynecological regions with lymph node metastasis remaining in the inguinal and pelvic regions. The small pelvic space, including the GTV and the metastatic lymph node, was irradiated with up to a total dose of 36 GyE followed by a GTV boost of up to a total dose of 57.6 GyE or 64 GyE in 16 fractions. A series of 23 patients were treated between November 2004 and October 2012. Patient age ranged from 51-80 with a median of 71. Of the tumor sites, 14 were located in the vagina, 6 in the vulva, and 3 in the cervix uteri. Of the 23 patients, 22 were irradiated with up to a total dose of 57.6 GyE, and 1 patient was irradiated with up to a total dose of 64 GyE. Chemotherapy and interferon-β were also used to treat 11 of the patients. Acute and late toxicities of Grade 3 or higher were observed in 1 patient treated with concurrent interferon-β. The median follow-up time was 17 months (range, 6-53 months). There was recurrence in 14 patients, and the 3-year local control and overall survival rates were 49.9% and 53.0%, respectively. C-ion RT may become a non-invasive treatment option for gynecological melanoma. (author)

  11. Ion Transport Characteristics of Individual Single-walled Carbon Nanotubes Mimic Those of Biological Ion Channels

    Science.gov (United States)

    Amiri, Hasti; Shepard, Kenneth; Nuckolls, Colin

    2014-03-01

    Transmembrane ionic channels play a crucial role in vital cellular activities by regulating the transport of ions and fluid across the cell membrane. Their structural complexity and flexibility as well as their many unique operational features, however, make their investigation extremely difficult. The simple, atomically smooth and well-defined structure of carbon nanotubes (CNTs) provides an excellent template for studying molecular transport at nanoscale. Additionally, CNTs have been suggested as analogues to biological pores since they share several common features such as nanometer size diameter, hydrophobic core and ultrafast water flow. Functionalizing the nanotube entrance can also mimic the selectivity filter of ion channels. In this work, we experimentally study ionic transport through individual single-walled CNTs connecting two fluid reservoirs as a function of pore properties and electrolyte type and concentration. We provide strong evidence that the electrostatic potentials arising from the ionized carboxyl groups at the pore entrance significantly influence the ion permeation in a manner consistent with a simple electrostatic mechanism. Lastly, the similarities of ionic transport mechanisms between individual single-walled CNTs and protein ion channels are discussed.

  12. Optical properties of ion-beam-deposited ion-modified diamondlike (a-C:H) carbon

    International Nuclear Information System (INIS)

    Diamondlike carbon (DLC) is a hard, semitransparent material usually containing varying amounts of hydrogen. These materials have numerous potential applications, including use as coatings for infrared optics, and as such, the effects of damaging irradiation is of practical interest. In this paper we present results of variable angle spectroscopic ellipsometric (VASE) studies of ion-beam-deposited DLC films. These films have been further modified by directing 1-MeV gold ions, as well as 6.4-MeV fluorine ions, through the DLC and into the underlying silicon substrates, and the percentage of hydrogen in the film was measured versus fluence using proton recoil analysis. Optical analysis was performed assuming the Lorentz oscillator model. Three versions were used: one oscillator, two oscillator (with one fixed in energy), and two oscillator with all parameter variable. The latter model fits the VASE data extremely well, and the two oscillators can be interpreted as involving π to π* and σ to σ* band transitions. With ion modification the oscillators shift to lower photon energy, consistent with reduction in hydrogen concentration and possible increased graphitization

  13. Clinical Outcome of Sacral Chordoma With Carbon Ion Radiotherapy Compared With Surgery

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy, post-treatment function, toxicity, and complications of carbon ion radiotherapy (RT) for sacral chordoma compared with surgery. Methods and Materials: The records of 17 primary sacral chordoma patients treated since 1990 with surgery (n = 10) or carbon ion RT (n = 7) were retrospectively analyzed for disease-specific survival, local recurrence-free survival, complications, and functional outcome. The applied carbon ion dose ranged from 54.0 Gray equivalent (GyE) to 73.6 GyE (median 70.4). Results: The mean age at treatment was 55 years for the surgery group and 65 years for the carbon ion RT group. The median duration of follow-up was 76 months for the surgery group and 49 months for the carbon ion RT group. The local recurrence-free survival rate at 5 years was 62.5% for the surgery and 100% for the carbon ion RT group, and the disease-specific survival rate at 5 years was 85.7% and 53.3%, respectively. Urinary-anorectal function worsened in 6 patients (60%) in the surgery group, but it was unchanged in all the patients who had undergone carbon ion RT. Postoperative wound complications requiring reoperation occurred in 3 patients (30%) after surgery and in 1 patient (14%) after carbon ion RT. The functional outcome evaluated using the Musculoskeletal Tumor Society scoring system revealed 55% in the surgery group and 75% in the carbon ion RT group. Of the six factors in this scoring system, the carbon ion RT group had significantly greater scores in emotional acceptance than did the surgery group. Conclusion: Carbon ion RT results in a high local control rate and preservation of urinary-anorectal function compared with surgery.

  14. 4D optimization of scanned ion beam tracking therapy for moving tumors

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-07-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.

  15. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  16. Combining Carbon Ion Radiotherapy and Local Injection of α-Galactosylceramide-Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model

    International Nuclear Information System (INIS)

    Purpose: Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. Methods and Materials: Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, α-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. Results: The mice with no treatment (control) presented with 168 ± 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 ± 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. Conclusions: The combination of carbon ion radiotherapy with the injection of α-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.

  17. Electron impact excitation of carbon and oxygen ions

    International Nuclear Information System (INIS)

    This report is an attempt at a comprehensive compilation of currently available theoretical data on electron impact excitation of carbon and oxygen ions. It is designed to be of use primarily to theoretical atomic physicists, allowing them a broader than usual view of how various approximations compare. We do not attempt to place an estimate on the accuracy to which any of the collision strengths are known. The reader may obtain some idea of the accuracy from the spread in the calculations. Further, we do not evaluate rate coefficients or make any comparison with observed results. We do provide simple analytic fits to the data, where possible, thus allowing the reader to make comparison with observation or evaluate rate coefficients if he desires. The present data contains little about resonance effects, due to the difficulty of their presentation. It is possible that resonances could make a considerable change in the average collision strength near threshold, and this topic requires further study

  18. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  19. Relative biological effectiveness of carbon ions for causing fatal liver failure after partial hepatectomy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomizawa, Minoru; Miyamoto, Tadaaki; Kato, Hirotoshi; Otsu, Hiroshi [National Inst. of Radiological Sciences, Chiba (Japan)

    2000-06-01

    To evaluate the acute phase damage to liver by carbon ions, BALB/c mice were irradiated with carbon ions or X-rays after two-thirds partial hepatectomy, and their survival was followed. The 50% lethal dose within 60 days (LD{sub 50/60}) was 42.2{+-}0.25 Gy (standard error) for X-rays, and 22.7{+-}0.25 Gy for carbon ions. The relative biological effectiveness (RBE) of carbon ions was 1.86 (95% confident limits: 1.69-2.04) as calculated from the LD{sub 50/60}. Mice irradiated at much higher doses, 60 Gy of X-rays or 24 Gy of carbon ions, showed significantly higher serum ammonia levels and lower serum albumin levels than normal, suggesting hepatic failure as a cause of death. Hepatocytes showed karyorrhexis and karyolysis in carbon ion irradiated and spotty necrosis in X-ray irradiated mice, suggesting nuclear damage. Mice irradiated with LD{sub 50} of X-rays or carbon ions had a remarkably lower bromodeoxyuridine (BrdU) labeling index and mitotic index than control. Treatments with both BrdU and vincristine showed that none of the hepatocytes that synthesized DNA after irradiation completed mitosis, indicating G2 arrest. The liver weight of irradiated mice significantly decreased depending on the dose. Carbon ions as well as X-rays damaged hepatocytes directly and suppressed liver regeneration leading to fatal liver failure. (author)

  20. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru;

    2014-01-01

    The effect of carbon ion radiotherapy on hypoxic tumors has recently been questioned because of low linear energy transfer (LET) values in the spread-out Bragg peak (SOBP). The aim of this study was to investigate the role of hypoxia and local oxygenation changes (LOCs) in fractionated carbon ion...

  1. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  2. Relative biological effectiveness of carbon ions for causing fatal liver failure after partial hepatectomy in mice

    International Nuclear Information System (INIS)

    To evaluate the acute phase damage to liver by carbon ions, BALB/c mice were irradiated with carbon ions or X-rays after two-thirds partial hepatectomy, and their survival was followed. The 50% lethal dose within 60 days (LD50/60) was 42.2±0.25 Gy (standard error) for X-rays, and 22.7±0.25 Gy for carbon ions. The relative biological effectiveness (RBE) of carbon ions was 1.86 (95% confident limits: 1.69-2.04) as calculated from the LD50/60. Mice irradiated at much higher doses, 60 Gy of X-rays or 24 Gy of carbon ions, showed significantly higher serum ammonia levels and lower serum albumin levels than normal, suggesting hepatic failure as a cause of death. Hepatocytes showed karyorrhexis and karyolysis in carbon ion irradiated and spotty necrosis in X-ray irradiated mice, suggesting nuclear damage. Mice irradiated with LD50 of X-rays or carbon ions had a remarkably lower bromodeoxyuridine (BrdU) labeling index and mitotic index than control. Treatments with both BrdU and vincristine showed that none of the hepatocytes that synthesized DNA after irradiation completed mitosis, indicating G2 arrest. The liver weight of irradiated mice significantly decreased depending on the dose. Carbon ions as well as X-rays damaged hepatocytes directly and suppressed liver regeneration leading to fatal liver failure. (author)

  3. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    Science.gov (United States)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  4. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    International Nuclear Information System (INIS)

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image

  5. A Monte Carlo-based treatment-planning tool for ion beam therapy

    CERN Document Server

    Böhlen, T T; Dosanjh, M; Ferrari, A; Haberer, T; Parodi, K; Patera, V; Mairan, A

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), theMCTP tool is able to perform TP studies u...

  6. Novel imaging and quality assurance techniques for ion beam therapy a Monte Carlo study

    CERN Document Server

    Rinaldi, I; Jäkel, O; Mairani, A; Parodi, K

    2010-01-01

    Ion beams exhibit a finite and well defined range in matter together with an “inverted” depth-dose profile, the so-called Bragg peak. These favourable physical properties may enable superior tumour-dose conformality for high precision radiation therapy. On the other hand, they introduce the issue of sensitivity to range uncertainties in ion beam therapy. Although these uncertainties are typically taken into account when planning the treatment, correct delivery of the intended ion beam range has to be assured to prevent undesired underdosage of the tumour or overdosage of critical structures outside the target volume. Therefore, it is necessary to define dedicated Quality Assurance procedures to enable in-vivo range verification before or during therapeutic irradiation. For these purposes, Monte Carlo transport codes are very useful tools to support the development of novel imaging modalities for ion beam therapy. In the present work, we present calculations performed with the FLUKA Monte Carlo code and pr...

  7. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    International Nuclear Information System (INIS)

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Mutants were prepared by heavy ion irradiation, examined the effect of physiologically active substances produced. Product(s) from carbon-ion irradiated microorganera suppressed growth of human cololectal cancer cells and breast cancer cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for cololectal and breast cancer cells. (author)

  8. Glass carbon surface modified by the fluorine ion irradiation

    Science.gov (United States)

    Teranishi, Yoshikazu; Ishizuka, Masanori; Kobayashi, Tomohiro; Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo

    2012-02-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word "TIRI". The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ˜ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  9. Glass carbon surface modified by the fluorine ion irradiation

    International Nuclear Information System (INIS)

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word “TIRI”. The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ∼ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  10. Imaging of carbon nanomembranes with helium ion microscopy

    Directory of Open Access Journals (Sweden)

    André Beyer

    2015-08-01

    Full Text Available Carbon nanomembranes (CNMs prepared from aromatic self-assembled monolayers constitute a recently developed class of 2D materials. They are made by a combination of self-assembly, radiation-induced cross-linking and the detachment of the cross-linked SAM from its substrate. CNMs can be deposited on arbitrary substrates, including holey and perforated ones, as well as on metallic (transmission electron microscopy grids. Therewith, freestanding membranes with a thickness of 1 nm and macroscopic lateral dimensions can be prepared. Although free-standing CNMs cannot be imaged by light microscopy, charged particle techniques can visualize them. However, CNMs are electrically insulating, which makes them sensitive to charging. We demonstrate that the helium ion microscope (HIM is a good candidate for imaging freestanding CNMs due to its efficient charge compensation tool. Scanning with a beam of helium ions while recording the emitted secondary electrons generates the HIM images. The advantages of HIM are high resolution, high surface sensitivity and large depth of field. The effects of sample charging, imaging of multilayer CNMs as well as imaging artefacts are discussed.

  11. Glass carbon surface modified by the fluorine ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Teranishi, Yoshikazu, E-mail: teranishi.yoshikazu@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute (TIRI), Nishigaoka 3-13-10, Kitaku, Tokyo 115-8586 (Japan); Ishizuka, Masanori [Tokyo University, Inst. of Phys. and Chem. Res., RIKEN (Japan); Kobayashi, Tomohiro [Chuo University, Inst. of Phys. and Chem. Res., RIKEN (Japan); Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo [Tokyo Metropolitan Industrial Technology Research Institute (TIRI), Nishigaoka 3-13-10, Kitaku, Tokyo 115-8586 (Japan)

    2012-02-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word 'TIRI'. The line width was varied with 300 nm, 500 nm, and 1 {mu}m. The line depth was about 200 {approx} 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  12. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    International Nuclear Information System (INIS)

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks (γH2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, β1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the β1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  13. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Faethe, Christina; Mueller-Klieser, Wolfgang [Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz (Germany); Taucher-Scholz, Gisela [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt (Germany); Temme, Achim; Schackert, Gabriele [Section of Experimental Neurosurgery/Tumor Immunology, Department of Neurosurgery, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@Oncoray.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  14. Effects of Carbon Ions on Primary Cultures of Mouse Brain Cells

    Science.gov (United States)

    Nojima, K.; Ando, K.; Fujiwara, H.; Ando, S.

    Primary mixed cultures of astrocytes and microglia were obtained from neonatal mice, and were irradiated with high-LET carbon ions. Immunohistochemical staining showed astrocytes survived more prominently than microglia. Tagged with specific antibodies, astrocytes and microglia surviving after irradiation were counted by flow cytometry. Decreases in the number of microglia and astrocytes were detected at a dose as small as 2 Gy when Day 5 cultures were irradiated with 13 keV/μm carbon ions. When the cultures were irradiated on Day 10, the dose-dependent decrease of microglia was more prominent for 13 keV/μun carbon ions than 70 keV/μm carbon ions. Astrocytes showed a marginal decrease at Day 10 and Day 14. We concluded that microglia are more sensitive than astrocytes to carbon ions and X-rays, and that the radiosensitivity of microglia depends on both differentiation/proliferation status and radiation quality

  15. Carbon nanotube film anodes for flexible lithium ion batteries

    Science.gov (United States)

    Yoon, Sora; Lee, Sehyun; Kim, Soyoung; Park, Kyung-Won; Cho, Daehwan; Jeong, Youngjin

    2015-04-01

    In this study, carbon nanotube (CNT) film anodes are prepared for use in flexible lithium ion batteries, and the electrochemical performance of the CNT film anodes is evaluated. The CNT films are synthesized via chemical vapor deposition and direct spinning. The films are heat-treated under a nitrogen atmosphere at a high temperature to study the effects of heat treatment on the battery performance. The electrodes made with the CNT films are characterized via charge-discharge test, cyclic voltammetry, and impedance measurement. The results indicate that batteries with films heat-treated under a nitrogen atmosphere show a higher capacity, which can be a result of their high crystalline perfection. The impedance analysis shows that a lower resistance at the interface can be obtained by using heat-treated films. The charge-discharge tests are carried out by adjusting the rate from C/2 to 10C, and when the rate slows from 10C to 1C, the capacity of the samples largely recovers. The nitrogen/heat-treated CNT film electrodes present a capacity that is twice as high, such as 2C, 5C, and 10C, than untreated CNT film electrodes. These results indicate that the carbon nanotube film anodes have high potential for use in portable and wearable computers due to their flexibility.

  16. Laser Ion Acceleration Toward Future Ion Beam Cancer Therapy - Numerical Simulation Sudy-

    CERN Document Server

    Kawata, Shigeo; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Ming

    2013-01-01

    Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions ...

  17. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning

    International Nuclear Information System (INIS)

    In treatment planning of charged-particle therapy, tissue heterogeneity is conventionally modeled as water with various densities, i.e. stopping effective densities ρS, and the integrated depth dose measured in water (IDD) is applied accordingly for the patient dose calculation. Since the chemical composition of body tissues is different from that of water, this approximation causes dose calculation errors, especially due to difference in nuclear interactions. Here, we propose and validate an IDD correction method for these errors in patient dose calculations. For accurate handling of nuclear interactions, ρS of the patient is converted to nuclear effective density ρN, defined as the ratio of the probability of nuclear interactions in the tissue to that in water using a recently formulated semi-empirical relationship between the two. The attenuation correction factor ϕwp, defined as the ratio of the attenuation of primary carbon ions in a patient to that in water, is calculated from a linear integration of ρN along the beam path. In our treatment planning system, a carbon-ion beam is modeled to be composed of three components according to their transverse beam sizes: primary carbon ions, heavier fragments, and lighter fragments. We corrected the dose contribution from primary carbon ions to IDD as proportional to ϕwp, and corrected that from lighter fragments as inversely proportional to ϕwp. We tested the correction method for some non-water materials, e.g. milk, lard, ethanol and water solution of potassium phosphate (K2HPO4), with un-scanned and scanned carbon-ion beams. In un-scanned beams, the difference in IDD between a beam penetrating a 150 mm-thick layer of lard and a beam penetrating water of the corresponding thickness amounted to −4%, while it was +6% for a 150 mm-thick layer of 40% K2HPO4. The observed differences were accurately predicted by the correction method. The corrected IDDs agreed with the measurements within ±1% for all

  18. SU-E-J-138: On the Ion Beam Range and Dose Verification in Hadron Therapy Using Sound Waves

    International Nuclear Information System (INIS)

    Purpose: Accurate range verification is of great importance to fully exploit the potential benefits of ion beam therapies. Current research efforts on this topic include the use of PET imaging of induced activity, detection of emerging prompt gamma rays or secondary particles. It has also been suggested recently to detect the ultrasound waves emitted through the ion energy absorption process. The energy absorbed in a medium is dissipated as heat, followed by thermal expansion that leads to generation of acoustic waves. By using an array of ultrasound transducers the precise spatial location of the Bragg peak can be obtained. The shape and intensity of the emitted ultrasound pulse depend on several variables including the absorbed energy and the pulse length. The main objective of this work is to understand how the ultrasound wave amplitude and shape depend on the initial ion energy and intensity. This would help guide future experiments in ionoacoustic imaging. Methods: The absorbed energy density for protons and carbon ions of different energy and field sizes were obtained using Fluka Monte Carlo code. Subsequently, the system of coupled equations for temperature and pressure is solved for different ion pulse intensities and lengths to obtain the pressure wave shape, amplitude and spectral distribution. Results: The proposed calculations show that the excited pressure wave amplitude is proportional to the absorbed energy density and for longer ion pulses inversely proportional to the ion pulse duration. It is also shown that the resulting ionoacoustic pressure distribution depends on both ion pulse duration and time between the pulses. Conclusion: The Bragg peak localization using ionoacoustic signal may eventually lead to the development of an alternative imaging method with sub-millimeter resolution. It may also open a way for in-vivo dose verification from the measured acoustic signal

  19. Mouse skin damages caused by fractionated irradiation with carbon ions

    International Nuclear Information System (INIS)

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  20. Mouse skin damages caused by fractionated irradiation with carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W. [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S.; Kanai, T. [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics

    1997-09-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  1. Phase I/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial

    Directory of Open Access Journals (Sweden)

    Combs Stephanie E

    2012-04-01

    Full Text Available Abstract Background Treatment standard for patients with rectal cancer depends on the initial staging and includes surgical resection, radiotherapy as well as chemotherapy. For stage II and III tumors, radiochemotherapy should be performed in addition to surgery, preferentially as preoperative radiochemotherapy or as short-course hypofractionated radiation. Advances in surgical approaches, especially the establishment of the total mesorectal excision (TME in combination with sophisticated radiation and chemotherapy have reduced local recurrence rates to only few percent. However, due to the high incidence of rectal cancer, still a high absolute number of patients present with recurrent rectal carcinomas, and effective treatment is therefore needed. Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE, which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed. Japanese data on the treatment of patients with recurrent rectal cancer previously not treated with radiation therapy have shown local control rates of carbon ion treatment superior to those of surgery. Therefore, this treatment concept should also be evaluated for recurrences after radiotherapy, when dose application using conventional photons is limited. Moreover, these patients are likely to benefit from the enhanced biological efficacy of carbon ions. Methods and design In the current Phase I/II-PANDORA-01-Study the recommended dose of carbon ion radiotherapy for recurrent rectal cancer will be determined in the Phase I part, and feasibilty and progression-free survival will be assessed in the Phase II part of the study. Within the Phase I part, increasing doses from 12 × 3 Gy E to 18

  2. Effect of intense laser and energetic ion irradiation on Raman modes of Multiwalled Carbon Nanotubes

    International Nuclear Information System (INIS)

    The effects of intense laser and energetic ion irradiation on Raman vibrational modes of Multiwalled Carbon Nanotubes have been investigated. The intensity ratio of D and G modes decreases with increase in laser power density and remains almost constant with decrease of laser power density. The intensity ratio of D mode to G mode for ion irradiated Multiwalled Carbon Nanotubes decreases at low fluence (4 x 1011 ions/cm2) and increases further with increase in ion fluence. The results show that ion irradiation at low fluence and laser irradiation lead to purification/ordering of the nanotubes.

  3. Generation of intense pulsed ion beam by a Br type magnetically insulated ion diode with carbon plasma gun

    International Nuclear Information System (INIS)

    To apply the pulsed heavy ion beam (PHIB) to an implantation process of semiconductor, purity of the ion beam is very important. To obtain a pure PHIB we have proposed a new type of accelerator using bipolar pulse. To develop the accelerator we are developing a new type of Br ion diode using a carbon plasma gun. By using the plasma gun, ion source plasma of ion current density approx. = 30 A/cm2 was obtained. The Br ion diode was successfully operated with plasma gun at diode voltage approx. = 100 kV, diode current approx. = 1 kA, pulse duration approx. = 200 ns and 3 A/cm2 of ion current density was obtained. (author)

  4. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    OpenAIRE

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C. Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low wo...

  5. Late quaternary fluctuations in carbonate and carbonate ion content in the northern Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.

    =] of the water bathing the core tops, were computed from different GEOSECS staions for the Westrn and Eastern Indian Ocean separately (Table 2,3 & 4, Fig. 9 &14). GEOSECS taion Nos. 417,420 and 425 whic lie along a transect in the westrn Indian Ocean...-normalized carbonate ion (CO3=*) range from 90 to 125µmol kg-1 in the tropical region of the world oceans with a weight los of 0.3 ± 0.05µg mol -1kg-1 (Broecker and Clark, 201d). Botm water CO3=* concentration bathing the core tops are in the range of 88 to 13 μmolkg-1...

  6. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  7. Secondary radiation measurements for particle therapy applications: prompt photons produced by $^{4}$He, $^{12}$C and $^{16}$O ion beams in a PMMA target

    OpenAIRE

    Mattei, Ilaria; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Muraro, Silvia; Paramatti, Riccardo; Patera, Vincenzo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio

    2016-01-01

    Charged particle beams are used in Particle Therapy (PT) to treat oncological patients due to their selective dose deposition in tissues and to their high biological effect in killing cancer cells with respect to photons and electrons used in conventional radiotherapy. Nowadays, protons and carbon ions are used in PT clinical routine but, recently, the interest on the potential application of helium and oxygen beams is growing due to their reduced multiple scattering inside the body and incre...

  8. Non scaling fixed field gradient accelerator design for proton and carbon therapy

    International Nuclear Information System (INIS)

    exists today in many medical facilities and more are being built. These centers treat mostly prostate or eye cancers like in: Loma Linda University Hospital in California, Therapy Center at Massachusetts General Hospital in Boston in U.S.A., Paul Scherrer Institute in Villigen - Switzerland, the Heavy-Ion Research at GSI in Germany, the Shizouka , Kashiwa, Wakaza Wan, the KEK in Tsukub and other medical centers in Japan, the Faure hospital in South Africa, Uppsala in Sweden and many other facilities are either being built or have very strong support and proposals. Advantages of the non-scaling FFAG with respect to the synchrotrons are the fixed magnetic field and possibilities of higher repetition rates for spot scanning. The cyclotrons are made of very large magnets (weight is more than a ton) and could not easily change the final energy. The exact energy sweep is necessary due to the ion energy deposition inside of the patient's body precisely localized by the 'Bragg peak' at the tumor location. The non-scaling FFAG adjusts the final energy by adjusting the number of turns during acceleration. The very strong focusing provides not only the smaller aperture but also a better orbit control than in cyclotrons, thus leading to very low losses. Many existing proton cancer therapy facilities accelerate ions either using the cyclotrons or synchrotrons, but there are in Japan approved scaling FFAG facilities. We present here a non-scaling FFAG accelerator for the proton and carbon cancer therapy. A historical perspective, starting with the first edge effect focusing example is described, followed by our progress during the non-scaling FFAG approach. We describe a design principle with properties of the basic cell. This includes: the Courant-Snyder functions within the cells, the magnetic fields, gradients and magnet dimensions. Next, we describe the orbit and lattice functions variations during acceleration. Other possibilities in improving the design follow while the summary

  9. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  10. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    Science.gov (United States)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  11. Comparison of intensity modulated radiotherapy (IMRT) with intensity modulated particle therapy (IMPT) using fixed beams or an ion gantry for the treatment of patients with skull base meningiomas

    International Nuclear Information System (INIS)

    To examine the potential improvement in treatment planning for patients with skull base meningioma using IMRT compared to carbon ion or proton beams with and without a gantry. Five patients originally treated with photon IMRT were selected for the study. Ion beams were chosen using a horizontal beam or an ion gantry. Intensity controlled raster scanning and the intensity modulated particle therapy mode were used for plan optimization. The evaluation included analysis of dose-volume histograms of the target volumes and organs at risk. In comparison with carbon and proton beams only with horizontal beams, carbon ion treatment plans could spare the OARs more and concentrated on the target volumes more than proton and photon IMRT treatment plans. Using only a horizontal fixed beam, satisfactory plans could be achieved for skull base tumors. The results of the case studies showed that using IMPT has the potential to overcome the lack of a gantry for skull base tumors. Carbon ion plans offered slightly better dose distributions than proton plans, but the differences were not clinically significant with established dose prescription concepts

  12. Microarray Analysis of Human Liver Cells irradiated by 80MeV/u Carbon Ions

    Science.gov (United States)

    Wang, Xiao; Tian, Xiaoling; Kong, Fuquan; Li, Qiang; Jin, Xiaodong; Dai, Zhongying; Zhang, Hong; Yang, Mingjian; Zhao, Kui

    Objective Biological effect of heavy ion beam has the important significance for cancer therapy and space exploring owing its high LET and RBE, low OER, especially forming Bragg spike at the end of the tracks of charged particles. More serious damage for cells are induced by heavy ions and difficult repair than other irradiation such as X-ray and ν-ray . To explore the molecular mechanism of biological effect caused by heavy ionizing radiation (HIR) and to construct the gene expression profile database of HIR-induced human liver cells L02 by microarray analysis. Methods In this study, L02 cells were irradiated by 80MeV/u carbon ions at 5 Gy delivered by HIRFL (Heavy Ion Research Facility in Lanzhou) at room temperature. Total RNAs of cells incubated 6 hours and 24hours after irradiation were extracted with Trizol. Unirradiated cells were used as a control. RNAs were transcripted into cDNA by reverse transcription and labelled with cy5-dCTP and cy3-dCTP respectively. A human genome oligonucleotide set consisting of 5 amino acid-modified 70-mer probes and representing 21,329 well-characterized Homo sapiens genes was selected for microarray analysis and printed on amino-silaned glass slides. Arrays were fabricated using an OmniGrid microarrayer. Only genes whose alteration tendency was consistent in both microarrays were selected as differentially expressed genes. The Affymetrix's short oligonucleotide (25-mer) HG U133A 2.0 array analyses were performed per the manufacturer's instructions. Results Of the 21,329 genes tested, 37 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5 at 6hrs after irradiation. There were 19 genes showing up-regulation in radiated L02 cells, whereas 18 genes showing down-regulation; At 24hrs after irradiation, 269 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5. There were 67 genes showing up-regulation in radiated L02 cells, whereas 202 genes showing down

  13. Calculation of stopping power ratios for carbon ion dosimetry

    Science.gov (United States)

    Geithner, Oksana; Andreo, P.; Sobolevsky, N.; Hartmann, G.; Jäkel, O.

    2006-05-01

    Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, swater,air, of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u.

  14. Development of the laser-plasma ion source for cancer therapy

    International Nuclear Information System (INIS)

    The hadronic cancer therapy is more attractive than the surgery for localized tumor. However, the hadronic radiotherapy seems not to be easily spread out, because it needs huge capital investments as well as running cost, including an accelerator, gantries and a building for such a radiotherapy system. On the other hand, a laser-plasma ion source will potentially bring us much smaller accelerator system for the hadronic radio-therapy. The laser-plasma ion source is currently developed as an injector for a conventional accelerator or as an advanced accelerator for direct cancer therapy. In this report, we describe present status of radiotherapy system and researches on laser plasma ion sources for radiotherapy. (author)

  15. Accounting for radiation quality in heavy ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kellerer, A.M. [LMU, Muenchen (Germany). Radiobiological Inst.]|[Gesellschaft fuer Strahlen- und Umweltforschung, Muenchen (Germany). Inst. fuer Nuklearbiologie

    1997-09-01

    This introductory contribution outlines the need for models and their use in radiotherapy dose planning. The linear-quadratic dose relation is now predominantly used in therapy dose planning. In Section I it is linked to the earlier quantitative scheme for conventional radiotherapy. In Section II two major approaches are presented in a form that makes them comparable; the section can be read by itself, if this comparison alone is of interest. Models for therapy planning are tools, largely of empirical character; they do not need to elucidate unknown mechanisms of radiation action. The emphasis is, therefore, on the computational scheme, not on its interpretation. (orig.)

  16. Primary result of application of carbon ion beam and gamma ray for rice breeding improvement

    International Nuclear Information System (INIS)

    Recently, Carbon ion beam have been recently attracted as mutagens. A characteristic feature of ion beams is their ability to deposit high energy on a target, densely and locally, as opposed to low linear energy transfer radiation such as gamma rays and X rays. In Vietnam, application of carbon ion beam just starting through cooperation FNCA between Japan and ASEAN countries from 2009. In this report, we want to report primary result of application carbon ion beam and gamma ray for rice breeding improvement of Khang dan 18. Through primary experimental for optimum dose for carbon ion beam we found that the dose of 40 and 60 Gy was suitable for Khang dan variety treatment. Based on optimum dose 40 and 60 Gy of carbon ion beam and 150 and 200 Gy of gamma ray we irradiated for Khang dan variety. The higher dose, the lower seed set ratio were determined both ion beam and gamma ray. Especial in carbon ion beam experiment at the dose of 60 Gy was 39.18% in small experiment and more than 20% seed set ratio at the real experiment. At M4 generation, in the experiment with carbon ion beam at the dose of 60 Gy we received mutant which increase the weight of 1000 seeds (23.0 g) compare to the control 19.7 g meanwhile experiment with gamma ray at the dose of 200 Gy we received some mutant not much change in the seed weight. This may show that carbon ion beam more effective than gamma ray in term of change some characteristics of rice. (author)

  17. Carbon ion radiotherapy with epidermal growth factor receptor (EGFR) inhibitor for refractory gastrointestinal carcinomas in mice

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the combined effect of carbon ion radiotherapy with epidermal growth factor receptor (EGFR) inhibitor on refractory gastrointestinal carcinomas in mice. As a preliminary experiment, we assessed the sensitization effect of gemcitabine (GEM) on carbon ion radiotherapy for tumor cells and the normal tissues by using SCCVII of C3H mice. Tumor cells treated with low linear energy transfer (LET) carbon ion irradiation showed the sensitizing effect of GEM. However, no sensitizating effect was shown for the normal tissue irradiated with either low LET or with high LET. (author)

  18. Investigation of physiologically active products obtained from carbon-ion irradiated actinomycetes

    International Nuclear Information System (INIS)

    Charged particles such as carbon-ions are superior to X-rays or gamma-rays in the physical and biological characteristics. The propose research project is aimed to provide new insights on antibiotic development. Product(s) from carbon-ion irradiated microorganera suppressed growth of human leukemia cells and mammary tumor cells. This product(s) induced apoptosis in human leukemia cells. We suggested that carbon-ion irradiated actinomycetes produce antitumor active product(s) for leukemia cells and mammary tumor cells. (author)

  19. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Science.gov (United States)

    Granja, Carlos; Martisikova, Maria; Jakubek, Jan; Opalka, Lukas; Gwosch, Klaus

    2016-07-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  20. Theory of heavy ion collision physics in hadron therapy

    CERN Document Server

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

  1. Ion beam deposition of amorphous carbon films with diamond like properties

    Science.gov (United States)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  2. Benchmarking GEANT4 nuclear models for carbon-therapy at 95 MeV/A

    CERN Document Server

    Dudouet, J; Durand, D; Labalme, M

    2013-01-01

    In carbon-therapy, the interaction of the incoming beam with human tissues may lead to the production of a large amount of nuclear fragments and secondary light particles. An accurate estimation of the biological dose deposited into the tumor and the surrounding healthy tissues thus requires sophisticated simulation tools based on nuclear reaction models. The validity of such models requires intensive comparisons with as many sets of experimental data as possible. Up to now, a rather limited set of double di erential carbon fragmentation cross sections have been measured in the energy range used in hadrontherapy (up to 400 MeV/A). However, new data have been recently obtained at intermediate energy (95 MeV/A). The aim of this work is to compare the reaction models embedded in the GEANT4 Monte Carlo toolkit with these new data. The strengths and weaknesses of each tested model, i.e. G4BinaryLightIonReaction, G4QMDReaction and INCL++, coupled to two di fferent de-excitation models, i.e. the generalized evaporat...

  3. Behavior of the extraction of metallic ions in carbonate medium, using N-benzoylphenylhydroxylamine (BPHA) - benzene

    International Nuclear Information System (INIS)

    The possibility of separating quantitatively trace impurities like Cu, Fe, In and Pb, present in uranium base materials of nuclear grade, is demonstrated. A solvent extraction is employed which makes use of -benzoylphenylhydroxylamine(BPHA)-benzene solution and separation is effected in a medium containing 252 moles per liter of sodium-uranyl tricarbonate at pH of 9,0. Carbonate ions under such conditions inhibit uranium extraction by masking uranyl ion-BPHA reaction. The uranyl ions show a demasking action, releasing, thereby, Pb(II) ions which are being extracted from carbonate medium. The Atomic Absorption Spectrophometry technique is used to obtain the experimental data

  4. Phase I study evaluating the treatment of patients with locally advanced pancreatic cancer with carbon ion radiotherapy: the PHOENIX-01 trial

    International Nuclear Information System (INIS)

    Treatment options for patients with locally advanced pancreatic cancer include surgery, chemotherapy as well as radiotherapy. In many cases, surgical resection is not possible, and therefore treatment alternatives have to be performed. Chemoradiation has been established as a convincing treatment alternative for locally advanced pancreatic cancer. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 1.16 and 2.46 depending on the pancreatic cancer cell line as well as the endpoint analyzed. Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with pancreatic cancer. The present PHOENIX-01 trial evaluates carbon ion radiotherapy using the active rasterscanning technique in patients with advanced pancreatic cancer in combination with weekly gemcitabine and adjuvant gemcitabine. Primary endpoint is toxicity, secondary endpoints are overall survival, progression-free survival and response. The physical and biological properties of the carbon ion beam promise to improve the therapeutic ratio in patients with pancreatic cancer: Due to the inverted dose profile dose deposition in the entry channel of the beam leads to sparing of normal tissue; the Bragg peak can be directed into the defined target volume, and the sharp dose fall-off thereafter again spares normal tissue behind the target volume. The higher RBE of carbon ions, which has been shown also for pancreatic cancer cell lines in the preclinical setting, is likely to contribute to an increase in local control, and perhaps in OS. Early data from Japanese centers have shown promising results. In conclusion, this is the first trial to evaluate actively delivered carbon

  5. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    Science.gov (United States)

    Verkhovtsev, Alexey; Surdutovich, Eugene; Solov’Yov, Andrey V.

    2016-06-01

    Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.

  6. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    Science.gov (United States)

    Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-01

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C5+ ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C5+ ion beam was got when work gas was CH4 while about 262 eμA of C5+ ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  7. A Binary Cyclic Carbonates-Based Electrolyte Containing Propylene Carbonate and Trifluoropropylene Carbonate for 5 V Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Graphical abstract: A binary cyclic carbonates-based electrolyte containing propylene carbonate and trifluoropropylene carbonate with an optimized volume ratio is successfully applied for 5 V lithium-ion batteries. Display Omitted -- Highlights: •A binary solvent electrolyte containing TFPC and PC is used for high-voltage LIBs. •Volume ratio of TFPC/PC is a crucial factor affecting the physical and electrochemical properties. •The binary solvent can maintain a stable liquid phase in a broad temperature range. •Graphite anode works well in the electrolyte of 1 mol dm−3 LiPF6-TFPC/PC (1:2). •The optimized electrolyte has good compatibility with 5 V LiNi0.5Mn1.5O4 cathode. -- Abstract: To widen the operating potential window of electrolyte used for lithium-ion batteries, a binary cyclic carbonates-based electrolyte containing propylene carbonate (PC) and trifluoropropylene carbonate (TFPC) with an optimized volume ratio has been successfully proposed. The main function of additive TFPC is to establish a stable SEI layer on graphite electrode and suppress the intercalation reaction of PC molecules. Unlike the previous works, where the TFPC/PC involved electrolyte was simply estimated at a certain volume ration and recognized as an unfavorable system, in this work, the physical properties of the electrolyte solutions with a series of volume ratios of TFPC/PC and their electrochemical performances in a graphite/Li cell and 5 V LiNi0.5Mn1.5O4/Li cell have been systematically studied. The electrolyte of 1 mol dm−3 LiPF6-TFPC/PC (1:2) is adopted as the optimized system due to its high ionic conductivity, low viscosity, broad operating potential window, wide liquid temperature range (−50 ∼ 240 °C) and suitable film-forming property. Both the graphite and LiNi0.5Mn1.5O4 electrodes were found to exhibit high reversible capacity and superb rate performance in the optimized electrolyte, making us have a new recognition of this important binary solvent

  8. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  9. Cellular and molecular analyses of hprt mutation in human hepatocyte L02 cells after exposure to carbon ions

    Science.gov (United States)

    Li, Qiang; He, Jing; Jin, Xiao-Dong; Gong, Li; Li, Sha

    Mutations play an important role in carcinogenesis. The quantitative evaluation of mutation induction by heavy charged particles helps us to delineate the risks of space radiation on astronauts, as well as the risks of heavy ions on patients during tumor therapy. Hprt mutation assay, which has been used as a biological dosimeter, is an ideal gene mutation test in mammalian cells in vitro. In order to provide basic data and evidence for the risk assessment of heavy ions, the relationships between hprt mutation induction and radiation dose in human hepatocyte L02 cells were investigated for highand low-LET carbon ions and X-rays. Moreover, the carbon ion induced hprt mutation spectrum was analyzed. In our study, human hepatocyte L02 cells were irradiated with carbon ions with LET of 30keV/µm and X-rays (0.2keV/µm), respectively. The survival fraction of L02 cells was measured by means of colony-forming assay. The mutation frequency was detected by measuring 6-thioguanine-resistant clones after 10 days of incubation at the presence of 15mg/L 6-TG. To obtain the mutation spectrum, 9 10 mutant cell clones at each dose were randomly selected from the 6-TG containing medium, and were further cultured and analyzed. The deletion patterns of the 9 exons of hprt gene were analyzed with multiplex polymerase chain reactions (multiplex PCR). Our results show that the number of mutants per 106 surviving cells increased with increasing the radiation dose for both the irradiations, and the mutation frequency increased up to 1Gy while reduced with increasing dose further. Partial deletion was the most dominant deletion pattern in the hprt mutant cells, and with the increase of dose, hprt genes tended to have more total deletions and less point deletions. It can be inferred that human hepatocyte L02 cells are more radiosensitive to high-LET carbon ions than to low-LET X-rays, and carbon ions are more effective in inducing hprt mutation in L02 cells. It has been also found that the

  10. Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.

    Science.gov (United States)

    Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing

    2016-01-27

    A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments. PMID:26727650

  11. Carbon ion radiotherapy for oligo-recurrent lung metastases from colorectal cancer: a feasibility study

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the efficacy and feasibility of carbon ion radiotherapy (CIRT) for oligo-recurrent lung tumors from colorectal cancer (CRC). From May 1997 to October 2012, 34 consecutive patients with oligo-recurrent pulmonary metastases from CRC were treated with CIRT. The patients were not surgical candidates for medical reasons or patient refusal. Using a respiratory-gated technique, carbon ion therapy was delivered with curative intent using 4 coplanar beam angles. A median dose of 60 GyE (range, 44–64.8 GyE) was delivered to the planning target volume (PTV), with a median daily dose of 15 GyE (range, 3.6–44 GyE). Treatment outcome was analyzed in terms of local control rate (LCR), survival rate, and treatment-related complications. In total, 34 patients with 44 oligo-recurrent pulmonary lesions were treated with CIRT. Median follow-up period was 23.7 months. The 2- and 3-year actuarial LCRs of the treated patients were 85.4% ± 6.2% and 85.4% ± 6.2%, respectively. Overall survival was 65.1% ± 9.5% at 2 years, and 50.1% ± 10.5% at 3 years. Although survival rates were relatively worse in the subsets of patients aged < 63 years or with early metastasis (< 36 months after resection of primary site), these factors were not significantly correlated with overall survival (P = 0.13 and 0.19, respectively). All treatment-related complications were self-limited, without any grade 3–5 toxicity. CIRT is one of the most effective nonsurgical treatments for colorectal lung metastases, which are relatively resistant to stereotactic body radiotherapy. CIRT is considered to be the least invasive approach even in patients who have undergone repeated prior thoracic metastasectomies

  12. Protons from carbon ion fragmentation at 0.3–2.0 GeV/nucleon: Comparison with models of ion-ion interactions

    International Nuclear Information System (INIS)

    Yields of protons at 3.5° from carbon ion fragmentation at energies of T0 = 0.3, 0.6, 0.95, and 2.0 GeV/nucleon on a Be target were measured in the FRAGM experiment at TWA-ITEP heavy-ion facility. Proton momentum spectra cover both the region of the fragmentation maximum and the cumulative region. The differential cross sections span six orders of its magnitude. The spectra are compared with the predictions of four models of ion-ion interactions: LAQGSM03.03, SHIELD-HIT, QMD, and BC

  13. Secondary neutron production from patients during therapy with Bremsstrahlung and hadrons: are there potential risks with hadrons; especially C-ions?

    International Nuclear Information System (INIS)

    Full text: We were the first group in the world who accurately and unambiguously calculated and measured the secondary neutron produced from patients undergoing therapy with Bremsstrahlung from 2-28 MeV end-point energies, and also estimated the corresponding radiation doses. Keeping in mind that the cross sections of neutron production from tissue are much higher under irradiation with heavier particles, such as protons, alpha particles, carbon and neon ions, etc. than photon bombardment, it would be expected that a lot more neutrons would be produced from tissue during radiotherapy with hadrons (protons, alphas, carbon ions, Ne-ions, etc.).There is no reliable and useful data available on this subject in the literature. By making use of the experimental neutron out put studies from different elements, we have been able to estimate the fluence and energy distribution of these secondary neutrons from tissue under irradiation with different hadrons. Our results indicate that at least 4.2 neutrons , with energies greater than 5 MeV, are produced for every carbon ion of 400 MeV / u energy incident on tissue. This number reduces to 3, 1.4 and 0.3 respectively at carbon energies of 300, 200 and 100 MeV /u. The energy range of carbon ions considered here, 100 MeV/u to 400 MeV/u, corresponds to that being actually used in therapy. In the case of neon ions these figures (number of secondary neutrons / incident neon ion) are slightly higher. For irradiation with alpha particles the number of these secondary neutrons reduces to about 1 per alpha particle with incident energy of 200 MeV / nucleon. There would no doubt be even more neutrons with energies lesser than 5 MeV which so far could not be estimated due to the lack of experimental data. In the case of proton therapy the numbers of secondary neutrons of all energies (including those with energies of lesser than 5 MeV) from tissue are estimated to be 0.05, 0.2 and 0.4 per proton of energies 100, 200 and 300 Me

  14. A multi-scale approach to the physics of ion beam cancer therapy

    CERN Document Server

    Solov'yov, A V; Scifoni, E; Mishustin, I; Greiner, W

    2008-01-01

    We propose a multi-scale approach to understanding physics related to the ion/proton-beam cancer therapy and calculation of the probability of the DNA damage as a result of irradiation of patients with energetic (up to 430 MeV/u) ions. This approach is inclusive with respect to different scales starting from the long scale defined by the ion stopping followed by a smaller scale defined by secondary electrons and radicals ending with the shortest scale defined by interactions of secondaries with the DNA. We present calculations of the probabilities of single and double strand breaks of the DNA and suggest a way of further elaboration of such calculations.

  15. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  16. Clinical results of carbon ion radiotherapy for bone and soft tissue tumors

    International Nuclear Information System (INIS)

    First choice of treatment for bone and soft tissue tumors is surgical tumor resection, but some cases have difficulties to resect radically because of tumor size, location, or their reduction in QOL after surgery. Carbon ion radiotherapy has been reported that have both good local tumor control and high QOL for patients with bone and soft tissue tumors, especially sacral chordoma and unresectable osteosarcoma of the tract. Some articles of the results with carbon ion radiotherapy for sacral chordoma show better local control and QOL than that of surgery. Moreover, several reports show good local control and preservation of QOL for patients with unresectable osteosarcoma of the tract, retroperitoneal sarcoma, and other situations of sarcomas. Now carbon ion radiotherapy can offer a promising alternative to surgery for patients with unresectable sarcomas. We will discuss about the results of carbon ion radiotherapy for bone and soft tissue tumors in this issue. (author)

  17. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Chen, Di; Wang, Xuemei [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States); Bykova, Julia S.; Zakhidov, Anvar A. [The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.

  18. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    International Nuclear Information System (INIS)

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current

  19. The morphology and structure of one-dimensional carbon-carbon composite under high-fluence ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Andrianova, N.N.; Borisov, A.M. [Institute of Nuclear Physics, Moscow State University, Leninsky Gori, 119991 Moscow (Russian Federation); Mashkova, E.S. [Institute of Nuclear Physics, Moscow State University, Leninsky Gori, 119991 Moscow (Russian Federation)], E-mail: es_mashkova@mail.ru; Virgiliev, Yu.S. [NIIgraphite, Electrodnaya 2, 111141 Moscow (Russian Federation)

    2009-08-15

    The temperature dependences of the ion-induced electron emission yield {gamma}(T), the crystal structure, and the morphology of a surface layer of the one-dimensional carbon fiber composite KUP-VM (1D) under high-fluence (10{sup 18}-10{sup 19} ion/cm{sup 2}) irradiation with 30 keV N{sub 2}{sup +} ions at normal incidence both perpendicular and parallel to the fiber directions have been studied. The target temperature has been varied during continuous irradiation from T = -180 to 400 deg. C. The surface analysis has been performed by the RHEED, SEM and RBS techniques. The surface microgeometry was studied using laser goniophotometry (LGP). It has been found that ion irradiation results in a loss of anisotropy of the surface layer structure because of amorphization at room temperature or recrystallization at a temperature higher than the ion-induced annealing temperature. The fiber morphology anisotropy remains under ion irradiation.

  20. The morphology and structure of one-dimensional carbon-carbon composite under high-fluence ion irradiation

    International Nuclear Information System (INIS)

    The temperature dependences of the ion-induced electron emission yield γ(T), the crystal structure, and the morphology of a surface layer of the one-dimensional carbon fiber composite KUP-VM (1D) under high-fluence (1018-1019 ion/cm2) irradiation with 30 keV N2+ ions at normal incidence both perpendicular and parallel to the fiber directions have been studied. The target temperature has been varied during continuous irradiation from T = -180 to 400 deg. C. The surface analysis has been performed by the RHEED, SEM and RBS techniques. The surface microgeometry was studied using laser goniophotometry (LGP). It has been found that ion irradiation results in a loss of anisotropy of the surface layer structure because of amorphization at room temperature or recrystallization at a temperature higher than the ion-induced annealing temperature. The fiber morphology anisotropy remains under ion irradiation.

  1. Electrical resistance of diamond implanted at liquid nitrogen temperature with carbon ions

    International Nuclear Information System (INIS)

    Carbon ion implantation of diamond to high fluence, below the temperature at which diamond growth can occur, usually leads to black layers of high conductivity. This study shows that for a low enough temperature of the diamond during implantation, a black layer with high electrical resistance can develop. In particular, carbon ion implantation at liquid nitrogen temperature, leads to an implanted layer with electrical resistance about one million times higher than the resistance obtained for implantation at temperatures above room temperature. (author)

  2. Performance of MACACO Compton telescope for ion-beam therapy monitoring : first test with proton beams

    NARCIS (Netherlands)

    Solevi, Paola; Munoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosa, Gabriela

    2016-01-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector

  3. Electron spin resonance investigations on ion beam irradiated single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    ESR investigations on single-wall carbon nanotubes irradiated with accelerated protons, helium ions, and neon ions are reported. All spectra were accurately simulated assuming that the resonance line is a convolution of up to 4 lines originating from catalyst residues, amorphous carbon, and electrons delocalized over the conducting domains of nanotubes. The faint line observed in irradiated nanotubes at g > 2.25 was assigned to magnetic impurities. However, there are no sufficient data to confirm that this line is connected to radiation-induced magnetism in carbon nanotubes. The generation of paramagnetic defects due to the bombardment of single-wall carbon nanotubes by accelerated ions is reported. These data correlate with previous Raman and thermal investigations on the same single-wall carbon nanotubes and reveals their sensitivity to ionizing radiation. The temperature dependence of ESR spectra in the range 25-250 K was used to identify the components of the ESR spectra

  4. Feasibility of carbon ion radiotherapy for locally advanced sinonasal adenocarcinoma

    International Nuclear Information System (INIS)

    Background and purpose: To evaluate the safety and efficacy of carbon ion radiotherapy (CIRT) for locally advanced sinonasal adenocarcinoma. Material and methods: Twenty-two patients with sinonasal adenocarcinoma were treated with CIRT. CIRT was the primary treatment for 16 patients. Four patients received CIRT for local recurrence after surgery and two for residual tumour after surgery or chemotherapy. At the start of CIRT, 1 patient had T-classification (T) 2 disease, 2 had T3 disease, 5 had T4a disease, and 14 had T4b disease. Fourteen patients were treated with 57.6 Gy equivalent (GyE)/16 fractions, and 8, with 64.0 GyE/16 fractions. Results: The median follow-up period was 43 months for all patients. The 3-year local control and loco-regional control rates for all patients were 76.9% (95% confidence interval [CI] = 56.7–97.1%) and 61.3% (95% CI = 38.5–84.1%), respectively. The 3-year overall survival and disease-specific survival rates were 59.1% (95% CI = 38.6–79.6%) and 65.6% (95% CI = 44.9–86.3%), respectively. Acute reactions of grade 3 of the skin and mucosa were observed in 2 and 4 patients, respectively. Late reactions included lateral visual loss (5 patients), mucosal ulceration (1 patient), and brain necrosis with clinical symptoms (1 patient). In the 5 patients who developed visual loss, the optic nerve was close to the tumour. Conclusions: CIRT was effective and generally safe for locally advanced sinonasal adenocarcinoma

  5. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    Science.gov (United States)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  6. Clinical output factors for carbon-ion beams passing through polyethylene

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa; Himukai, Takeshi

    2013-01-01

    Purpose: A recent study suggested that polyethylene (PE) range compensators would cause extra carbon-ion attenuation by 0.45%/cm due to limitations in water equivalence. The present study aims to assess its influence on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles. For these components, tumor dose fraction and relative biological effectiveness (RBE) were estimated at a reference depth in the middle of spread-out Bragg peak. The PE effect was estimated for clinical carbon-ion beams and was partially tested by experiment. The two-component model was integrated into a treatment-planning system, with which the PE effect on tumor dose was investigated in two clinical cases. Results: The fluence and clinical attenuation coefficients for dose decrease per polyethylene thickness were estimated to be 0.1%-0.3%/cm and 0.2%-0.4%/cm, depending on energy and modulation of clinical carbon-ion beams. In the treatment-planning s...

  7. Electrochemical properties of carbon materials implanted with high energy heavy ions

    International Nuclear Information System (INIS)

    Carbon materials have some allotropes such as diamond, graphite and amorphous carbon. These allotropes show significantly different natures depending on their structures. Ion implantation has two different effects on the modification of material surface layers, that is, the structural modification induced by the energy radiation accompanying ion beam bombardment, and the composition change introduced by doping surface layers with different elements. Carbon materials have been used as fuel, tools, electrical conductors, chemical instruments, electrochemical electrodes and composite materials because of their natures, such as the brightness and hardness of diamond and the chemical stability and electro-conductivity of black carbon. For all these uses, the surface properties are important, accordingly, ion implantation is an important technique for modifying the surface layers. In this paper, the main features of the ion implantation on the surface modification of diamond and glassy carbon substrates, and the chemical and electrochemical properties of glassy carbon implanted with various elements are reported. The electrode characteristics of ion-implanted glassy carbon are affected by the composition change and the change to amorphous form. (K.I.)

  8. High power test of an injector linac for heavy ion cancer therapy facilities

    Science.gov (United States)

    Lu, Liang; Hattori, Toshiyuki; Zhao, Huanyu; Kawasaki, Katsunori; Sun, Liangting; He, Yuan; Zhao, Hongwei

    2015-11-01

    A hybrid single cavity (HSC) linac, combined with radio frequency quadrupole and drift tube structure in a single interdigital-H cavity, operates with high rf power as a prototype injector for cancer therapy synchrotron. The HSC adopts a direct plasma injection scheme (DPIS) with a laser ion source. The input beam current of the HSC is designed to be 20 mA C6 + ions. According to simulations, the HSC can accelerate a 6-mA C6 + beam which meets the requirement of the particle number for cancer therapy (1 08 ˜9 ions/pulse ). The HSC injector with DPIS makes the existing multiturn injection system and stripping system unnecessary; what is more, it can also bring down the size of the beam pipe in existing synchrotron magnets, which can reduce the whole cost of the synchrotron. Details of the field measurements of the HSC linac and results of the high power test are reported in this paper.

  9. Fluorescent nuclear track detectors as a tool for ion-beam therapy research

    International Nuclear Information System (INIS)

    Fluorescent nuclear track detectors based on Al2O3:C,Mg with their excellent efficiency for detection of heavy charged particles and full 3D information from laser scanning microscopy allow a multitude of issues related to ion-beam cancer therapy to be tackled. A recently established read out protocol enables the utilization of a commercial microscope similar to those available in many life-science environments. This contribution illustrates the approach, its potential and limitations, as well as applications in clinical ion beams. -- Highlights: ► Fluorescent nuclear track detectors (FNTDs) are based on alumina. ► They represent a unique research tool for ion beam cancer therapy. ► We present a protocol for FNTD read out using a commercial laser scanning microscope

  10. Interaction of small hydrocarbon ions and Ar(+) with carbon-fibre-composite surfaces at room temperature

    Czech Academy of Sciences Publication Activity Database

    Keim, A.; Rasul, B.; Endstrasser, N.; Scheier, P.; Märk, T. D.; Herman, Zdeněk

    2011-01-01

    Roč. 306, 2-3 (2011), s. 204-209. ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ion-surface collisions * Ar+ and hydrocarbon ions * carbon-fibre-composite surface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.549, year: 2011

  11. Collisions of fast, highly stripped carbon, niobium, and lead ions with molecular hydrogen

    International Nuclear Information System (INIS)

    The range of experimental confirmation of our scaling rule for electron loss from a hydrogen atom in collision with a heavy, highly stripped ion has been considerably broadened by new measurements on carbon-, niobium-, and lead-ion projectiles in molecular hydrogen

  12. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  13. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  14. Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation

    NARCIS (Netherlands)

    Tolvanen, A.; Buchs, G.; Ruffieux, P.; Gröning, P.; Gröning, O.; Krasheninnikov, A.V.

    2009-01-01

    Local controllable modification of the electronic structure of carbon nanomaterials is important for the development of carbon-based nanoelectronics. By combining density-functional theory simulations with Ar-ion-irradiation experiments and low-temperature scanning tunneling microscopy and spectrosc

  15. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC

  16. PET imaging for treatment verification of ion therapy: Implementation and experience at GSI Darmstadt and MGH Boston

    Science.gov (United States)

    Parodi, Katia; Bortfeld, Thomas; Enghardt, Wolfgang; Fiedler, Fine; Knopf, Antje; Paganetti, Harald; Pawelke, Jörg; Shakirin, Georgy; Shih, Helen

    2008-06-01

    Ion beams offer the possibility of improved conformation of the dose delivered to the tumor with better sparing of surrounding tissue and critical structures in comparison to conventional photon and electron external radiation treatment modalities. Full clinical exploitation of this advantage can benefit from in vivo confirmation of the actual beam delivery and, in particular, of the ion range in the patient. During irradiation, positron emitters like 15O (half-life T1/2≈2 min) and 11C ( T1/2≈20 min) are formed in nuclear interactions between the ions and the tissue. Detection of this transient radioactivity via positron emission tomography (PET) and comparison with the expectation based on the prescribed beam application may serve as an in vivo, non-invasive range validation method of the whole treatment planning and delivery chain. For technical implementation, PET imaging during irradiation (in-beam) requires the development of customized, limited angle detectors with data acquisition synchronized with the beam delivery. Alternatively, commercial PET or PET/CT scanners in close proximity to the treatment site enable detection of the residual activation from long-lived emitters shortly after treatment (offline). This paper reviews two clinical examples using a dedicated in-beam PET scanner for verification of carbon ion therapy at GSI Darmstadt, Germany, as well as a commercial offline PET/CT tomograph for post-radiation imaging of proton treatments at Massachusetts General Hospital, Boston, USA. Challenges as well as pros and cons of the two imaging approaches in dependence of the different ion type and beam delivery system are discussed.

  17. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation.

    Science.gov (United States)

    Averbeck, Nicole B; Topsch, Jana; Scholz, Michael; Kraft-Weyrather, Wilma; Durante, Marco; Taucher-Scholz, Gisela

    2016-01-01

    Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed. PMID:26904506

  18. Efficient rejoining of DNA double-strand breaks despite increased cell-killing effectiveness following spread-out Bragg peak carbon-ion irradiation

    Directory of Open Access Journals (Sweden)

    Nicole Bernadette Averbeck

    2016-02-01

    Full Text Available Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE in the tumor target-volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double strand breaks (DSBs are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg Peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed.

  19. A moderator ion exchange model to predict carbon-14 behaviour during operations

    International Nuclear Information System (INIS)

    Carbon-14 emissions from CANDU 6 stations are reduced through the removal of inorganic carbon ions by the ion exchange (IX) columns in the moderator purification system. A model has been developed to simulate the ion exchange behaviour of anions and cations present in the moderator. The model can be used to generate breakthrough curves for IX columns. Results from the program were compared to breakthrough curves generated by a small-scale experimental facility as well as data collected from Wolsong-3 where the IX column remained in service well past the recommended time. In both cases, the breakthrough curves were similar to the collected data. (author)

  20. Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter

    International Nuclear Information System (INIS)

    Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter. (authors)

  1. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    OpenAIRE

    Jeongwoon Hwang; Jisoon Ihm; Kwang-Ryeol Lee; Seungchul Kim

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decrease...

  2. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany); Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Oates, Thomas W. H. [Leibniz-Institut fuer Analytische Wissenschaft, ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Luis Endrino, Jose [Surfaces and Coatings Department, Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Baehtz, Carsten; Shalimov, Artem [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  3. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed. PMID:24593482

  4. In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells

    International Nuclear Information System (INIS)

    To evaluate the cytotoxic effect of carbon ion radiotherapy and chemotherapy in glioblastoma cells in vitro. The human glioblastoma (GBM) cell line U87 was irradiated with photon radiotherapy (RT) doses of 2 Gy, 4 Gy and 6 Gy. Likewise, irradiation with carbon ions was performed with single carbon doses of 0.125, 0.5, 2 and 3 Gy. Four chemotherapeutic substances, camptothecin, gemcitabine, paclitaxel and cisplatinum, were used for single and combination experiments. The assessment of the effect of single and double treatment on cell viability was performed using the clonogenic growth assay representing the radiobiological gold standard. The RBE of carbon ions ranges between 3.3 and 3.9 depending on survival level and dose. All chemotherapeutic substances showed a clear does-response relationhips. in their characteristic concentrations. For subsequent combination experiments, two dose levels leading to low and medium reduction of cell survival were chosen. Combination experiments showed additive effects independently of the drugs' mechanisms of action. Paclitaxel and campthothecin demonstrated the most prominent cytotoxic effect in combination with carbon ion radiotherapy. In conclusion, combination of carbon ion radiotherapy with chemotherapies of different mechanisms of action demonstrates additive effects. The most dominant effect was produced by paclitaxel, followed by camptothecin, as espected from previously published work. The present data serve as an important radiobiological basis for further combination experiments, as well as clinical studies on combination treatments

  5. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb2+ and Cd2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  6. Radiation quality and ion-beam therapy: understanding the users' needs

    International Nuclear Information System (INIS)

    Ion-beam therapy faces a growing demand of tools able to map radiation quality within the irradiated volume. Although analytical computations and simulations provide useful estimations of dose and radiation quality, the direct measure of those parameters would improve ion-beam therapy in particular when deep-seated tumours are irradiated, tissue composition and density are variable or organs at risk are near the tumour. Several ion-beam therapy facilities are studying detectors and procedures for measuring the radiation quality on a microdosimetric as well as a nanodosimetric scale. Simplicity and miniaturisation of the devices are essential for measurements first in phantoms and thereafter during therapy, particularly for intra-cavity detectors. MedAustron is studying solid-state detectors based on a single crystal chemical vapour deposition diamond. In collaboration with Italian National Institute for Nuclear Physics (INFN), Tor Vergata and Legnaro; INFN-microdosimetry and track structure project; Austrian Institute of Technology, Vienna; and Italian National agency for new technologies, energy and sustainable economic development, Rome, prototypes have been developed to characterise radiation quality in sizes equivalent to one micrometre of biological tissue. (authors)

  7. The Anion Effect on Li+ Ion Coordination Structure in Ethylene Carbonate Solutions

    CERN Document Server

    Jiang, Bo; Shen, Yuneng; Yang, Xueming; Yuan, Kaijun; Vetere, Valentina; Mossa, Stefano; Skarmoutsos, Ioannis; Zhang, Yufan; Zheng, Junrong

    2016-01-01

    Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li+-bound and Li+-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li+ is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, all...

  8. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro

    International Nuclear Information System (INIS)

    While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of this malignancy remains hampered by its characteristic slow cell growth, particularly in vitro. Cellular lethality of U-CH1-N cells in response to different qualities of radiation was compared with immediate plating after radiation or as previously reported using the multilayered OptiCell™ system. The OptiCell™ system was used to evaluate cellular lethality over a broad dose-depth deposition range of particle radiation to anatomically mimic the clinical setting. Cells were irradiated with either 290 MeV/n accelerated carbon ions or 70 MeV accelerated protons and photons and evaluated through colony formation assays at a single position or at each depth, depending on the system. There was a cell killing of approximately 20–40% for all radiation qualities in the OptiCell™ system in which chordoma cells are herein described as more radiation sensitive than regular colony formation assay. The relative biological effectiveness values were, however, similar in both in vitro systems for any given radiation quality. Relative biological effectiveness values of proton was 0.89, of 13–20 keV/μm carbon ions was 0.85, of 20–30 keV/μm carbon ions was 1.27, and >30 keV/μm carbon ions was 1.69. Carbon-ions killed cells depending on both the dose and the LET, while protons depended on the dose alone in the condition of our study. This is the first report and characterization of a direct comparison between the effects of charged particle carbon ions versus protons for a chordoma cell line in vitro. Our results support a potentially superior therapeutic value of carbon particle irradiation

  9. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    International Nuclear Information System (INIS)

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water

  10. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  11. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    Science.gov (United States)

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  12. Successive ionization of positive ions of carbon and nitrogen by electron bombardment

    International Nuclear Information System (INIS)

    Experimental studies of deep ionization of heavy ions are described. The applications of such studies in atomic physics, plasma physics and space physics are discussed. Investigations using intersecting ion-electron beams, shifted beams and ion trap sources are described, and data are presented for multi-charged ions of carbon, oxygen and nitrogen. A detailed description of the development of the IEL (electron beam ionizer) source, and the KRION (cryogenic version) source is given, and further data for the multiple ionization of carbon and nitrogen are given for charge states up to C6+ and N7+. The advantages and disadvantages of the KRION source are discussed, and preliminary studies of a new torroidal ion trap source (HIRAC) are presented. (11 figs, 57 refs) (U.S.)

  13. Improvement of polydimethylsiloxane guide tube for nerve regeneration treatment by carbon negative-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, H. E-mail: tsuji@kuee.kyoto-u.ac.jp; Izukawa, M.; Ikeguchi, R.; Kakinoki, R.; Sato, H.; Gotoh, Y.; Ishikawa, J

    2003-05-01

    Modification of polydimethylsiloxane (PDMS) rubber by negative ion-implantation was investigated for improvement of nerve regeneration property. The PDMS rubber surface was found to have more hydrophilic property after carbon negative-ion implantation than before. At the conditions of 10 keV and 3.0 x 10{sup 15} ions/cm{sup 2}, the contact angle decreased to 83 deg. from 100 deg. . The reason of the hydrophilic modification is due to hydrophilic functional groups such as hydroxyl formed at the surface by radiation effect of ion implantation. The in vivo regeneration test of rat sciatic nerve was performed by using 18-mm-long PDMS rubber tubes with inner diameter of 2 mm, the inner surface of which was implanted with carbon negative ions at the above conditions. At 24 weeks after the clinical surgery, the sciatic nerve was regenerated through the tube between the proximal and distal nerve stumps.

  14. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    International Nuclear Information System (INIS)

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  15. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yul; Kang, Jeong Won; Byun, Ki Ryang; Kang, Eu Seok; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Kim, Young Min [Chung-Cheong University, Cheongwon (Korea, Republic of)

    2004-08-15

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  16. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Pancreatic cancer is the fourth leading cause of cancer deaths, being responsible for 6% of all cancer-related deaths. Conventional radiotherapy with or without additional chemotherapy has been applied in the past in the context of neoadjuvant or adjuvant therapy concepts with only modest results, however new radiation modalities, such as particle therapy with promising physical and biological characteristics, present an alternative treatment option for patients with pancreatic cancer. Up until now the raster scanning technique employed at our institution for the application of carbon ions has been unique, and no radiobiological data using pancreatic cancer cells has been available yet. The aim of this study was to evaluate cytotoxic effects that can be achieved by treating pancreatic cancer cell lines with combinations of X-rays and gemcitabine, or alternatively with carbon ion irradiation and gemcitabine, respectively. Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and carbon ions at various doses and treated with gemcitabine. Photon irradiation was applied with a biological cabin X-ray irradiator, and carbon ion irradiation was applied with an extended Bragg peak (linear energy transfer (LET) 103 keV/μm) using the raster scanning technique at the Heidelberg Ion Therapy Center (HIT). Responsiveness of pancreatic cancer cells to the treatment was measured by clonogenic survival. Clonogenic survival curves were then compared to predicted curves that were calculated employing the local effect model (LEM). Cell survival curves were calculated from the surviving fractions of each combination experiment and compared to a drug control that was only irradiated with X-rays or carbon ions, without application of gemcitabine. In terms of cytotoxicity, additive effects were achieved for the cell lines Panc-1 and BxPC-3, and a slight radiosensitizing effect was observed for AsPC-1. Relative biological effectiveness (RBE) of carbon

  17. A design of a rotating gantry for non-symmetric ion-therapy beams

    CERN Document Server

    Pavlovic, M

    1999-01-01

    An ion-optical design of a gantry for transport of ion beams having different emittances in the horizontal and vertical plane is presented. The ion-optical constraints making the beam spot at the gantry exit independent from the angle of gantry rotation are derived analytically. The generally formulated constraints are applied to an isocentric normal-conducting gantry transporting the beams with maximum beam rigidity of 6.6 Tm (e.g. 430 MeV/u carbon beam with a penetration range of 30 cm in water). The gantry is equipped with a two-direction magnetic raster scanning system. The ion-optical properties of the gantry are illustrated by computer simulations performed by the TRANSPORT code.

  18. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  19. Risk factors for brain injury after carbon ion radiotherapy for skull base tumors

    International Nuclear Information System (INIS)

    Background and purpose: This study aimed to determine the risk factors for radiation-induced brain injury (RIBI) after carbon ion radiotherapy (CIRT) for treating skull base tumors. Materials and methods: Between April 1997 and January 2009, CIRT at a total dose of 48.0–60.8 Gy equivalent (GyE) was administered in 16 fractions to 47 patients with skull base tumors. Of these patients, 39 who were followed up with magnetic resonance imaging (MRI) for more than 24 months were analyzed. RIBI was assessed according to the MRI findings based on the Late Effects of Normal Tissue-Subjective, Objective, Management, Analytic criteria; clinical symptoms were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer tables. The correlations of clinical and dosimetric parameters with incidence of ⩾grade 2 RIBI were retrospectively analyzed. Results: The median follow-up period was 67 months. The 5-year actuarial likelihoods of ⩾grade 2 RIBI and ⩾grade 2 clinical symptoms were 24.5% and 7.0%, respectively. Multivariate analysis demonstrated that the brain volume receiving more than 50 GyE (V50) was a significant risk factor for the development of ⩾grade 2 RIBI (p = 0.004). Conclusion: V50 was a significant risk factor for ⩾grade 2 RIBI after CIRT using a 16-fraction regimen

  20. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    Science.gov (United States)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  1. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine;

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....

  2. Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes

    Science.gov (United States)

    Cao, W. J.; Zheng, J. P.

    2012-09-01

    A lithium-ion capacitor was developed using a mixture of stabilized lithium metal powder and hard carbon as the anode electrode, while activated carbon was used as the cathode. A specific energy of approximately 82 Wh kg-1 was obtained based on the weight of electrode materials; however, when the electrolyte, separator, and current collectors were included, the specific energy of an assembled Li-ion capacitor was about 25 Wh kg-1. The capacitor was able to deliver over 60% of the maximum energy at a discharge C-rate of 44C. Through continuous galvanostatic charge/discharge cycling, the capacitance of the Li-ion capacitor degraded less than 3% over 600 cycles.

  3. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    Science.gov (United States)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  4. Nucleation and growth of carbon onions by means of simultaneous electron microscopic observation under ion implantation

    International Nuclear Information System (INIS)

    In-situ and ex-situ TEM observation was performed in copper implanted with carbon ions at temperature from 570 K to 973 K. Carbon clusters, such as carbon onions (concentric graphic spheres) and nanocapsules (concentric graphitic spheres with cavities), were observed with amorphous carbon layers. Statistics of cluster size as a function of implantation temperature, ion fluence and substrate crystallinity revealed the nucleation processes of the clusters. One is the formation of graphitic layers on grain boundaries. The other is the nucleation of graphitic cages, probably fullerenes, due to both high concentration of carbon atoms and high amount of radiation damage. Simultaneous observation of microstructural evolution under implantation revealed that onions were formed inside the substrate not surface and that they segregate at surface due to radiation-enhanced evaporation. (author)

  5. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi; Pétrier, Christian

    2010-03-15

    The influence of bicarbonate and carbonate ions on sonolytic degradation of cationic dye, Rhodamine B (RhB), in water was investigated. As a consequence of ultrasonic cavitation that generates .OH radicals, carbonate radicals were secondary products of water sonochemistry when it contains dissolved bicarbonate or carbonate ions. The results clearly demonstrated the significant intensification of sonolytic destruction of RhB in the presence of bicarbonate and carbonate, especially at lower dye concentrations. Degradation intensification occurs because carbonate radicals sonochemically formed undergo radical-radical recombination at a lesser extent than hydroxyl radicals. The generated carbonate radicals are likely able to migrate far from the cavitation bubbles towards the solution bulk and are suitable for degradation of an organic dye such as RhB. Therefore, at low dye concentrations, carbonate radical presents a more selective reactivity towards RhB molecules than hydroxyl radical. In the presence of bicarbonate, degradation rate reached a maximum at 3 g L(-1) bicarbonate, but subsequent addition retards the destruction process. In RhB solutions containing carbonate, the oxidation rate gradually increased with increasing carbonate concentration up to 10 g L(-1) and slightly decreased afterward. Carbonate radicals sonochemically generated are suitable for total removal of COD of sonicated RhB solutions. PMID:19910116

  6. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    Science.gov (United States)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  7. Secondary Ion Mass Spectrometry of Small-Molecule Solids at Cryogenic Temperatures. 1. Nitrogen and Carbon Monoxide

    OpenAIRE

    Jonkman, Harry T.; Michl, Josef

    1981-01-01

    Secondary ion mass spectra of solid nitrogen and carbon monoxide were observed at 15 K. The effects of the nature and energy of the primary probe ion were investigated. Direct charge transfer, inelastic momentum transfer, association reactions, and ion-molecule reactions all seem to contribute to the formation of the secondary charged particles. With the heavier probe ions extensive cluster formation was observed.

  8. Calculation of Lifetime of Charge-Exchanging Carbon Targets in Intense Heavy Ion Beams

    CERN Document Server

    Gikal, B N; Kazacha, V I; Kamanin, D V

    2005-01-01

    Influence of the radiation damage and sublimation effects on the lifetime of carbon targets used for the accelerated ion beam extraction from cyclotrons by the charge-exchanging method is considered. The theoretical models permitting evaluation of the carbon target lifetime depending on their and ion beam parameters are presented both for the radiation damage and sublimation effects. It is shown that for the U-400 cyclotron carbon targets 50 $\\mu$g/cm$^{2}$ thick and for the ion beam flux density up to 100 p$\\mu$A/cm$^{2}$ the main effect defining the carbon target lifetime is the radiation damage. If the carbon target thickness and the ion beam flux density are greater, the target lifetime is defined already by the sublimation effect. In this connection "casting pipes" can be formed in the target, affecting on the mean energy and the energy distribution dispersion of the ion beam flied through the target. Comparison of measured and calculated target lifetimes is carried out

  9. Experience With Carbon Ion Radiotherapy for WHO Grade 2 Diffuse Astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Azusa [Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba (Japan); Mizoe, Jun-Etsu, E-mail: junetsumizoe@gmail.com [Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba (Japan); Tsujii, Hirohiko; Kamada, Tadashi; Jingu, Keiichi [Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba (Japan); Iwadate, Yasuo [Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba (Japan); Nakazato, Youichi [Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma (Japan); Matsutani, Masao [Department of Neurological Surgery, Saitama Medical University, Saitama (Japan); Takakura, Kintomo [Department of Neurological Surgery, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-05-01

    Purpose: To assess outcomes of carbon ion radiotherapy for diffuse astrocytomas in adults. Methods and Materials: Between October 1994 and February 2002, 14 patients with diffuse astrocytoma, identified as eligible for carbon ion radiotherapy, were enrolled in a phase I/II clinical trial. Carbon ion radiotherapy was administered in 24 fractions over 6 weeks. The normal tissue morbidity was monitored carefully, and the carbon ion dose was escalated from 50.4 Gy equivalent (GyE) to 55.2 GyE. Patients were divided into two groups according to their carbon ion doses: a low-dose group in which 2 patients were irradiated with 46.2 GyE and 7 patients were irradiated with 50.4 GyE, and a high-dose group in which 5 patients were irradiated with 55.2 GyE. Results: Toxicities were within acceptable limits, and none of the patients developed Grade 3 or higher acute or late reactions. The median progression-free survival (PFS) time was 18 months for the low-dose group and 91 months for the high-dose group (p = 0.0030). The median overall survival (OS) time was 28 months for the low-dose group and not reached for the high-dose group (p = 0.0208). Conclusion: High-dose group patients showed significant improvement in PFS and OS rates compared to those in the low-dose group, and both dose groups showed acceptable toxicity.

  10. Effects of beer administration in mice on acute toxicities induced by X rays and carbon ions

    International Nuclear Information System (INIS)

    We have investigated the tissue specificity of radioprotection by beer, which was previously found for human lymphocytes. C3H/He female mice, aged 14 weeks, received an oral administration of beer, ethanol or saline at a dose of 1 ml/mouse 30 min before whole-body irradiation with 137Cs γ rays or 50 keV/μm carbon ions. The dicentrics of chromosome aberrations in spleen cells were significantly (p0 (slope of a dose-survival curve) for γ rays and carbon ions as well. Beer administration significantly (p50/30 (radiation dose required to kill 50% of mice within 30 days) for γ rays and carbon ions. Ethanol-administration also significantly (p50/30 value for γ rays, but not for carbon ions. It is concluded that beer administration reduces the radiation injury caused by photons and carbon ions, depending on the tissue type. Radioprotection by beer administration is not solely due to OH radical-scavenging action by the ethanol contained in beer. (author)

  11. Killing effect of Chinese hamster V79 cells exposed to accelerated carbon ions and RBE determination

    Institute of Scientific and Technical Information of China (English)

    LIQiang; ZHOUGuang-Ming; 等

    2002-01-01

    Survival curves of Chinese hamster V79 cells exposed to accelerated carbon ions with linear energy transfers of 125.5,200 and 700keV/um were measured,respectively,Inactivation cross sections corresponding to the irradiation above were deduced from the V79 cell survival curves.They are 7.86±0.17,10.44±1.11 and 32.32±3.59um2 in turn.With the surviving response of V79 cells to 60Co γ-rays as a reference value,relative biological effectiveness at 10%,20%,50%and 80% survival levels were given for the accelerated carbon ions,The results showed that carbon ions with LET of 125.5keV/um had a higher value of RBE at all the four survival levels than the carbon ions with other LETs.It was prompted that the maximum value of RBE for the V79 cell surviving as the biological endpoint emerged at the LET below 200keV/um for carbon ions.

  12. Killing effect of Chinese hamster V79 cells exposed to accelerated carbon ions and RBE determination

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Survival curves of Chinese hamster V79 cells exposed to accclerated carbon ions with linear energy transfers of 125.5, 200 and 700 keV/μm were measured, respectively. Inactivation cross sections corresponding to the irradiation above were deduced from the V79 cell survival curves. They are 7.86±0.17, 10.44±1.11 and 32.32±3.58 μm2 in turn. With the surviving response of V79 cells to 60Co γ-rays as a reference value, relative biological effectiveness at 10%, 20%, 50% and 80% survival levels were given for the accelerated carbon ions. The results showed that carbon ions with LET of 125.5 keV/μm had a higher value of RBE at all the four survival levels than the carbon ions with other LETs. It was prompted that the maximum value of RBE for the V79 cell surviving as the biological endpoint emerged at the LET below 200 keV/μm for carbon ions.

  13. Experience With Carbon Ion Radiotherapy for WHO Grade 2 Diffuse Astrocytomas

    International Nuclear Information System (INIS)

    Purpose: To assess outcomes of carbon ion radiotherapy for diffuse astrocytomas in adults. Methods and Materials: Between October 1994 and February 2002, 14 patients with diffuse astrocytoma, identified as eligible for carbon ion radiotherapy, were enrolled in a phase I/II clinical trial. Carbon ion radiotherapy was administered in 24 fractions over 6 weeks. The normal tissue morbidity was monitored carefully, and the carbon ion dose was escalated from 50.4 Gy equivalent (GyE) to 55.2 GyE. Patients were divided into two groups according to their carbon ion doses: a low-dose group in which 2 patients were irradiated with 46.2 GyE and 7 patients were irradiated with 50.4 GyE, and a high-dose group in which 5 patients were irradiated with 55.2 GyE. Results: Toxicities were within acceptable limits, and none of the patients developed Grade 3 or higher acute or late reactions. The median progression-free survival (PFS) time was 18 months for the low-dose group and 91 months for the high-dose group (p = 0.0030). The median overall survival (OS) time was 28 months for the low-dose group and not reached for the high-dose group (p = 0.0208). Conclusion: High-dose group patients showed significant improvement in PFS and OS rates compared to those in the low-dose group, and both dose groups showed acceptable toxicity.

  14. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics

    KAUST Repository

    Hola, Katerina

    2014-10-01

    © 2014 Elsevier Ltd. All rights reserved. Carbon dots represent an emerging class of fluorescent materials and provide a broad application potential in various fields of biomedicine and optoelectronics. In this review, we introduce various synthetic strategies and basic photoluminescence properties of carbon dots, and then address their advanced in vitro and in vivo bioapplications including cell imaging, photoacoustic imaging, photodynamic therapy and targeted drug delivery. We further consider the applicability of carbon dots as components of light emitting diodes, which include carbon dot based electroluminescence, optical down-conversion, and hybrid plasmonic devices. The review concludes with an outlook towards future developments of these emerging light-emitting materials.

  15. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    A multi-modal characterization technique, which combines nanoscale secondary ion mass spectroscopy (Nano-SIMS) with a spatial resolution of ∼100 nm and electron back scatter diffraction (EBSD) to determine carbon distributions in austenite and martensite in a quenched and partitioned (Q&P) Fe–0.29C–2.95Mn–1.59Si steel is presented. Significant carbon enrichment of austenite was measured with decreased levels of carbon in martensite, supporting the carbon partitioning mechanism. Fresh untempered martensite could be identified, and different degrees of enrichment were observed for blocky and lath austenite

  16. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    In recent years development of active materials for negative electrodes has been of great interest. Special attention has been focused on the active materials possessing higher reversible capacity than that of conventional graphite. In the present work the electrochemical performance of some carbon/silicon-based materials has been analyzed. For this purpose various silicon-based composites were prepared using such carbon materials as graphite, hard carbon and graphitized carbon black. An analysis of charging-discharging processes at electrodes based on different carbon materials has shown that graphite modified with silicon is the most promising anode material. It has also been revealed that the irreversible capacity mainly depends on the content of Si. An optimum content of Si has been determined with taking into account that high irreversible capacity is not suitable for practical application in lithium-ion batteries. This content falls within the range of 8-10 wt%. The reversible capacity of graphite modified with 8 wt% carbon-coated Si was as high as 604 mAh g-1. The irreversible capacity loss with this material was as low as 8.1%. The small irreversible capacity of the material allowed developing full lithium-ion rechargeable cells in the 2016 coin cell configuration. Lithium-ion batteries based on graphite modified with silicon show gravimetric and volumetric specific energy densities which are higher by approximately 20% than those for a lithium-ion battery based on natural graphite

  17. Development of a DPET System Using in Tumor Therapy with Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    QiHuirong; XiaoGuoqing; WangJinchuan; ZhanWenlong; GuoZhongyan; XuHushan; SunZhiyu; LiJiaxing; WangMeng; MaoRuishi; LiChen; ChenZhiqiang; ChenLixin; LiWenfei; ZhaoTiecheng; WuLijie; XuZhiguo

    2003-01-01

    Positron Emission Tomography (PET) is a functional imaging modality used in brain research to map in lively neurotransmitter and receptor activity and to investigate glucose utilization or blood flow patterns both in healthy and disease states. We are developing a Double-sector PET (DPET) system, which is employed as a tumor imaging detector for the heavy-ion therapy at Institute of Modern Physics (IMP).

  18. Characterization of silicon and carbon dual ion-implanted metals with a nano-indentation

    International Nuclear Information System (INIS)

    The dual ion implantation of silicon and carbon into copper (99.9%), iron (99.9%), SKD11 steel and SUS304 austenitic stainless steels was carried out with a MeV energy ion accelerator. The cross-section of the implanted layer were observed with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The surface layers of the implanted substrates were investigated with X-ray photoelectron spectroscopy (XPS) and a transmission electron microscope (TEM). The hardness of the samples was tested with a nano-indentation. It was found with XPS Si (2p) spectra and TEM that a part of the Si ions and C ions formed an amorphous layer of SiC, carbide and metals by dual ion-implantation. The hardness of the dual ion-implanted steels were improved. The mechanism of hardness was suggested by cross-sectional TEM images. (author)

  19. Ion-implanted Mechanism of the Deposition Process for Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-Min; WU Wei-Dong; WANG Yu-Ying; WANG Hai-Ping; GE Fang-Fang; TANG Yong-Jian; JU Xin

    2011-01-01

    Due to the local densification, high-energy C and doped ions can greatly affect the bonding configurations of diamond-like carbon films. We investigate the corresponding affection of different incident ions with energy from WeV to 600eV by Monte Carlo methods. The ion-implanted mechanism called the subplantation (for C, N, O, W, Y, etc.) is confirmed. Obvious thermal effect could be induced by the subplantation of the incident ions. Further, the subplantation of C ions is proved by in situ reflection high energy electron diffraction (RHEED). The observation from an atomic force microscope (AFM) indicates that the initial implantation of C ions might result in the final primitive-cell-like morphology of the smooth film (in an area of 1.2 mm × 0.9 mm, rms roughness smaller than 20 nm by Wyko).

  20. Light-ion therapy in the U.S.: From the Bevalac to ??

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.; Castro, Joseph R.

    2002-09-24

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.

  1. Light-ion therapy in the US: From the Bevalac to ??

    International Nuclear Information System (INIS)

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joined by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room

  2. The Role of Hypofractionated Radiation Therapy with Photons, Protons and Heavy Ions for Treating Extracranial Lesions

    Directory of Open Access Journals (Sweden)

    Aaron Michael Laine

    2016-01-01

    Full Text Available Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and in addition there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward.

  3. The Role of Hypofractionated Radiation Therapy with Photons, Protons, and Heavy Ions for Treating Extracranial Lesions

    Science.gov (United States)

    Laine, Aaron Michael; Pompos, Arnold; Timmerman, Robert; Jiang, Steve; Story, Michael D.; Pistenmaa, David; Choy, Hak

    2016-01-01

    Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation-induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal, and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently, there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and, in addition, there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward. PMID:26793619

  4. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions. Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion. Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data. (paper)

  5. Effects of Carbon Structure and Surface Oxygen on the Carbon's Performance as the Anode in Lithium-Ion Battery Determined

    Science.gov (United States)

    Hung, Ching-Cheh

    2000-01-01

    Four carbon materials (C1, C2, C3, and C4) were tested electrochemically at the NASA Glenn Research Center at Lewis Field to determine their performance in lithium-ion batteries. They were formed as shown in the figure. This process caused very little carbon loss. Products C1 and C3 contained very little oxygen because of the final overnight heating at 540 C. Products C2 and C4, on the other hand, contained small amounts of basic oxide. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) ethylene carbonate (EC) and dimethyl carbonate (DMC)/Li half cell. The cycling test, which is summarized in the table, resulted in three major conclusions. The capacity of the carbon with a basic oxide surface converges to a constant 1. value quickly (within 4 cycles), possibly because the oxide prevents solvent from entering the carbon structure and, therefore, prolongs the carbon s cycle life. Under certain conditions, the disordered carbon can store more lithium than its 2. precursor. These samples and their precursor can intercalate at 200 mA/g and deintercalate at 3. a rate of 2000 mA/g without significant capacity loss.

  6. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    Science.gov (United States)

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts. PMID:15585228

  7. Swift heavy ion irradiation of metal containing tetrahedral amorphous carbon films

    Science.gov (United States)

    Karaseov, P. A.; Protopopova, V. S.; Karabeshkin, K. V.; Shubina, E. N.; Mishin, M. V.; Koskinen, J.; Mohapatra, S.; Tripathi, A.; Avasthi, D. K.; Titov, A. I.

    2016-07-01

    Thin carbon films were grown at room temperature on (0 0 1) n-Si substrate using dual cathode filtered vacuum arc deposition system. Graphite was used as a source of carbon atoms and separate metallic electrode was simultaneously utilized to introduce Ni or Cu atoms. Films were irradiated by 100 MeV Ag7+ ions to fluences in the range 1 × 1010-3 × 1011 cm-2. Rutherford backscattering spectroscopy, Raman scattering, scanning electron microscopy and atomic force microscopy in conductive mode were used to investigate film properties and structure change under irradiation. Some conductive channels having metallic conductivity type were found in the films. Number of such channels is less than number of impinged ions. Presence of Ni and Cu atoms increases conductivity of those conductive channels. Fluence dependence of all properties studied suggests different mechanisms of swift heavy ion irradiation-induced transformation of carbon matrix due to different chemical effect of nickel and copper atoms.

  8. Removal of Lead (II Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-01-01

    Full Text Available The removal of lead (II ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS analysis after adsorption reveals the accumulation of lead (II ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  9. Formation of carbon nanostructures containing single-crystalline cobalt carbides by ion irradiation method

    Science.gov (United States)

    Wang, Zhipeng; Yusop, Zamri; Ghosh, Pradip; Hayashi, Yasuhiko; Tanemura, Masaki

    2011-02-01

    Carbon nanofibers (CNFs) with a diameter of 17 nm, and carbon nanoneedles (CNNs) with sharp tips have been synthesized on graphite substrates by ion irradiation of argon ions with the Co supplies rate of 1 and 3.4 nm/min, respectively. Energy dispersive X-ray spectrometry, combined with selected area electron diffraction patterns has been used to identify the chemical composition and crystallinity of these carbon nanostructures. The CNFs were found to be amorphous in nature, while the structures of the CNNs consisted of cubic CoCx, orthorhombic Co2C and Co3C depending on the cobalt content in the CNNs. The diameter of the carbide crystals was almost as large as the diameter of the CNN. Compared to the ion-induced nickel carbides and iron carbides, the formation of single-crystalline cobalt carbides might be due to the high temperature produced by the irradiation.

  10. Formation of carbon nanostructures containing single-crystalline cobalt carbides by ion irradiation method

    International Nuclear Information System (INIS)

    Carbon nanofibers (CNFs) with a diameter of 17 nm, and carbon nanoneedles (CNNs) with sharp tips have been synthesized on graphite substrates by ion irradiation of argon ions with the Co supplies rate of 1 and 3.4 nm/min, respectively. Energy dispersive X-ray spectrometry, combined with selected area electron diffraction patterns has been used to identify the chemical composition and crystallinity of these carbon nanostructures. The CNFs were found to be amorphous in nature, while the structures of the CNNs consisted of cubic CoCx, orthorhombic Co2C and Co3C depending on the cobalt content in the CNNs. The diameter of the carbide crystals was almost as large as the diameter of the CNN. Compared to the ion-induced nickel carbides and iron carbides, the formation of single-crystalline cobalt carbides might be due to the high temperature produced by the irradiation.

  11. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Imaoka, Tatsuhiko, E-mail: t_imaoka@nirs.go.jp [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Nishimura, Mayumi; Daino, Kazuhiro [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Kokubo, Toshiaki [Department of Technical Support and Development, Research Development and Support Center, National Institute of Radiological Sciences, Chiba (Japan); Doi, Kazutaka [Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Iizuka, Daisuke [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Nishimura, Yukiko [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Okutani, Tomomi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Biology, Graduate School of Science, Chiba University, Chiba (Japan); Takabatake, Masaru [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo (Japan); Kakinuma, Shizuko; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  12. Investigation of the dosimetric impact of a Ni-Ti fiducial marker in carbon ion and proton beams

    International Nuclear Information System (INIS)

    Introduction. Fiducial markers based on a removable stent are currently used in image guided radiotherapy. Here it is investigated what the possible dosimetric impact of such a marker could be, if used in proton or carbon ion treatment. Material and methods. The simulations have been done using the Monte Carlo particle transport code FLUKA with its default hadron therapy settings. A 3 cm long stent is approximated in FLUKA by stacking hollow tori. To simulate realistic clinical conditions a field 5 x 5 cm has been used, delivering a 5 cm wide spread out Bragg peak located 5 cm deep for protons and carbon ions. For protons fields mimicking active and passive beam delivery have been investigated. The stent has been arranged perpendicular, turned 45 degrees, and parallel to the beam axis. Results. The position of the 95% dose level shifts for carbon ions 7 mm in proximal direction for the marker perpendicular to the beam and 8 mm if the stent is turned 45 degree for a 1 x 1 cm dose binning on the centre beam axis. For the case where the stent was parallel to beam direction the 95% dose level shifts 26 mm. For active delivered protons, the shift of the 95% dose level is less. The shift for a perpendicular arranged marker is 6 mm, for 45 degrees turned it is 7 mm. For the case where the stent was oriented parallel to the beam, the observed shift is 21 mm. Dose inhomogeneities caused by straggling effects occur only near the distal edge of the field. Conclusions. The results of our investigations show that the Ni-Ti marker has a non negligible impact on the dose distributions for the used radiation types. However if the treatment plan rules out narrow angles between symmetry axis of the stent and the beam direction, this may be compensated.

  13. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    International Nuclear Information System (INIS)

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with 137Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation

  14. Physics of ion beam cancer therapy: a multi-scale approach

    CERN Document Server

    Solov'yov, Andrey V; Scifoni, Emanuele; Mishustin, Igor; Grainer, Walter

    2008-01-01

    We propose a multi-scale approach to understand the physics related to ion-beam cancer therapy. It allows the calculation of the probability of DNA damage as a result of irradiation of tissues with energetic ions, up to 430 MeV/u. This approach covers different scales, starting from the large scale, defined by the ion stopping, followed by a smaller scale, defined by secondary electrons and radicals, and ending with the shortest scale, defined by interactions of secondaries with the DNA. We present calculations of the probabilities of single and double strand breaks of DNA, suggest a way to further expand such calculations, and also make some estimates for glial cells exposed to radiation.

  15. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  16. Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

    International Nuclear Information System (INIS)

    We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 °C in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis. (paper)

  17. Investigation of different-ligand complexes of holmium and erbium with NTA and carbonate ion

    International Nuclear Information System (INIS)

    Found out have been the optimum conditions for the formation of the lantanides (Ln) multiligand complexes with the nitriletriacetic acid (NTA) and the carbonate-ion. It has been established that the components correlation in complex compounds is equal to 1:1:1. Computed have been the values of the oscillator forces of the absorption bands, that conform to the ''supersensitive'' migration of the multiligand complexes, It is shown that the increment in the oscillator forces, the induced entering of one carbonate-ion into the Ln-NTA complex molecule conforms to about 1/4 of the oscillator forces increment during the migration from the aquo ion to the [Ln(CO3)4]5- complex carbonaceous ion

  18. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki, E-mail: nkanemat@nirs.go.jp; Koba, Yusuke; Ogata, Risa [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Himukai, Takeshi [Ion Beam Therapy Center, SAGA HIMAT Foundation, 415 Harakoga-machi, Tosu, Saga 841-0071 (Japan)

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  19. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    International Nuclear Information System (INIS)

    Highlights: ► Photoluminescence was studied in carbon implanted polymethylmethacrylate (PMMA). ► A significant photoluminescence enhancement occurred at ion fluence of 5 × 1016 cm−2. ► Photoluminescence and Raman responses revealed carbon nanoclustered structures. ► Reflectivity of carbon implanted PMMA depended on both ion fluence and wavelength. ► A noticeable reflectivity modification appeared at ion fluence of 1 × 1016 cm−2. - Abstract: Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 × 1016 to 2 × 1017 cm−2, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 × 1016 cm−2. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet–visible (UV–vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 × 1016 cm−2.

  20. Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun; Zhu Fei; Zhang Bei; Liu Huixian; Jia Guangyi [School of Science, Tianjin University, Tianjin 300072 (China); Liu Changlong, E-mail: liuchanglong@tju.edu.cn [School of Science, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics Faculty of Science, Tianjin 300072 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Photoluminescence was studied in carbon implanted polymethylmethacrylate (PMMA). Black-Right-Pointing-Pointer A significant photoluminescence enhancement occurred at ion fluence of 5 Multiplication-Sign 10{sup 16} cm{sup -2}. Black-Right-Pointing-Pointer Photoluminescence and Raman responses revealed carbon nanoclustered structures. Black-Right-Pointing-Pointer Reflectivity of carbon implanted PMMA depended on both ion fluence and wavelength. Black-Right-Pointing-Pointer A noticeable reflectivity modification appeared at ion fluence of 1 Multiplication-Sign 10{sup 16} cm{sup -2}. - Abstract: Polymethylmethacrylate (PMMA) specimens were implanted with 30 keV carbon ions in a fluence range of 1 Multiplication-Sign 10{sup 16} to 2 Multiplication-Sign 10{sup 17} cm{sup -2}, and photoluminescence (PL) and reflectivity of the implanted samples were examined. A luminescent band with one peak was found in PL spectra excited by 480 nm line, but its intensity did not vary in parallel with ion fluence. The strongest PL occurred at the fluence of 5 Multiplication-Sign 10{sup 16} cm{sup -2}. Results from visible-light-excited micro-Raman spectra indicated that the formation of hydrogenated amorphous carbon structures in subsurface layer and their evolutions with ion fluence could be responsible for the observed PL responses. Measurements of the small-angle reflectance spectra from both the implanted and rear surfaces of samples in the ultraviolet-visible (UV-vis) range demonstrated a kind of both fluence-dependent and wavelength-related reflectivity variations, which were attributed to the structural changes induced by ion implantation. A noticeable reflectivity modification, which may be practically used, could be found at the fluence of 1 Multiplication-Sign 10{sup 16} cm{sup -2}.

  1. Unity yield conditions for sputtering of graphite by carbon ions

    International Nuclear Information System (INIS)

    Selfsputtering yields for graphite have been investigated as function of ion energy, target temperature and angle of incidence. While the yield for normal incidence at room temperature never exceeds unity, both enhanced temperature and grazing angle of incidence can lead to a selfsputtering larger than one. Theoretical predictions of 100% ion reflection at angles of incidence above 850 could not be observed for energies smaller than 300 eV. The data are interpolated to construct regions of selfsputtering larger than unity in the energy versus angle-of-incidence space for temperatures up to 1900 K. (orig.)

  2. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review

    OpenAIRE

    Swatantra Kumar Singh Kushwaha; Saurav Ghoshal; Awani Kumar Rai; Satyawan Singh

    2013-01-01

    Carbon nanotubes (CNTs) were discovered in 1991 and shown to have certain unique physicochemical properties, attracting considerable interest in their application in various fields including drug delivery. The unique properties of CNTs such as ease of cellular uptake, high drug loading, thermal ablation, among others, render them useful for cancer therapy. Cancer is one of the most challenging diseases of modern times because its therapy involves distinguishing normal healthy cells from affec...

  3. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries

    Science.gov (United States)

    Lee, Yongwon; Lee, Jaegi; Kim, Hyungsub; Kang, Kisuk; Choi, Nam-Soon

    2016-07-01

    Employing linear carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) as electrolyte solvents provides an opportunity to design appropriate electrolyte systems for high-performance sodium-ion batteries (SIBs). However, in practice, the use of linear carbonate-containing electrolytes is quite challenging because linear carbonates readily decompose at Na metal electrodes or sodiated anodes. One of the promising approaches is using an electrolyte additive to resolve the critical problems related to linear carbonates. Our investigation reveals that remarkable enhancement in electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes with linear carbonate-containing electrolytes is achieved by using a fluoroethylene carbonate (FEC) additive. Importantly, the initial Coulombic efficiency of the Na deposition/stripping on a stainless steel (SS) electrode is drastically improved from 16% to 90% by introducing the FEC additive into ethylene carbonate (EC)/propylene carbonate (PC)/DEC (5/3/2, v/v/v)/0.5 M NaClO4. The underlying mechanism of FEC at the electrode-electrolyte interface is clearly demonstrated by 13C nuclear magnetic resonance (NMR). In addition, the Na4Fe3(PO4)2(P2O7) cathode in EC/PC/DEC (5/3/2, v/v/v)/0.5 M sodium perchlorate (NaClO4) with FEC delivers a discharge capacity of 90.5 mAh g-1 at a current rate of C/2 and exhibits excellent capacity retention of 97.5% with high Coulombic efficiency of 99.6% after 300 cycles at 30 °C.

  4. Carbon nanotubes as masks against ion irradiation: An insight from atomistic simulations

    International Nuclear Information System (INIS)

    Recent experiments show that carbon nanotubes can be used as masks against ion irradiation to make metallic nanowires of a few nanometers in width. In order to ascertain the limitations of this technique, we use molecular dynamics and simulate ion irradiation of multiwalled nanotubes. We derive an equation which for a given nanowire material allows one to estimate the theoretical limit on the minimum width of the wire which can be made using this technique

  5. Regularities of ion-electron emission of one-dimensional carbon-based composite materials

    International Nuclear Information System (INIS)

    The temperature dependence of ion-electron emission yield, γ(T), developed topography and surface crystalline structure of carbon-based composite material KUP- VM under high-fluence 30 keV N2+ ion irradiation has been studied. Complex two-stage nature of γ(T) dependence is formed due to the process of dynamic annealing of the radiation damage in structural components of composite material

  6. Electron impact excitation of carbon-like ions: An assessment of the available theoretical data

    International Nuclear Information System (INIS)

    Electron impact excitation of ions of the carbon-like isoelectronic sequence from O III to Fe XXI is reviewed starting from previous critical compilations. Comparisons between results obtained from the distorted-wave and the R-matrix methods have been made. The effective collision strengths have been compared along the sequence. The isoelectronic trends should be useful in interpolating data for ions where no specific calculations are available. 24 refs., 23 figs., 6 tabs

  7. Plans for ion radiation therapy at Karolinska Institute and University Hospital

    International Nuclear Information System (INIS)

    Recent developments in radiation therapy have made it possible to optimize the high dose region to cover almost any target volume and shape at the same time as the dose level to adjacent organs at risk is acceptable. Further implementations of IMRT (Intensity Modulated Radiation Therapy), and inverse treatment planning using already available technologies but also foreseeable improved design of therapy accelerators delivering electron and photon beams, will bring these advances to the benefit of a broad population of cancer patients. Protons will therefore generally not be needed, except possibly with microscopically invasive tumors, since in most situations the improvement will be insignificant or moderate, partly due to the large lateral penumbra with deep proton therapy and the low biological efficacy. A further step would be to use He-ions, which have only half the penumbra width of protons and still a fairly low-linear energy transfer (LET) in the spread-out Bragg peak. There is however still a group of patients that cannot be helped by these advances as the tumor might be radioresistant for the presently utilized low ionization density beam qualities. The ultimate step in the therapy development process should therefore be to optimize the beam quality for each tumor-normal tissue situation. To facilitate beam quality modulated radiation therapy (QMRT) optimization light ions are needed. It is argued that in many radioresistant tumors a mean LET of 25-40 eV/nm in the target would be optimum as then tumor cells will be lost in the highest proportion through senescent or apoptotic cell inactivation and the superficial tissues will still be irradiated with a fairly low LET. Combination of Light ion beams such as He, Li, Be, B, and C would then be the ideal choice. In this paper a light ion facility is outlined for the Karolinska University Hospital facilitating both dose distribution and beam quality optimization using the cost efficient excentric gantry design

  8. Encapsulation of α-Particle–Emitting 225Ac3+ Ions Within Carbon Nanotubes

    Science.gov (United States)

    Matson, Michael L.; Villa, Carlos H.; Ananta, Jeyarama S.; Law, Justin J.; Scheinberg, David A.; Wilson, Lon J.

    2016-01-01

    225Ac3+ is a generator of α-particle–emitting radionuclides with 4 net α-particle decays that can be used therapeutically. Targeting 225Ac3+ by use of ligands conjugated to traditional bifunctional chelates limits the amount of 225Ac3+ that can be delivered. Ultrashort, single-walled carbon nanotubes (US-tubes), previously demonstrated as sequestering agents of trivalent lanthanide ions and small molecules, also successfully incorporate 225Ac3+. Methods Aqueous loading of both 225Ac3+ ions and Gd3+ ions via bath sonication was used to construct 225Ac@gadonanotubes (225Ac@GNTs). The 225Ac@GNTs were subsequently challenged with heat, time, and human serum. Results US-tubes internally loaded with both 225Ac3+ ions and Gd3+ ions show 2 distinct populations of 225Ac3+ ions: one rapidly lost in human serum and one that remains bound to the US-tubes despite additional challenge with heat, time, and serum. The presence of the latter population depended on cosequestration of Gd3+ and 225Ac3+ ions. Conclusion US-tubes successfully sequester 225Ac3+ ions in the presence of Gd3+ ions and retain them after a human serum challenge, rendering 225Ac@GNTs candidates for radioimmunotherapy for delivery of 225Ac3+ ions at higher concentrations than is currently possible for traditional ligand carriers. PMID:25931476

  9. Comparison of the effects of photon versus carbon ion irradiation when combined with chemotherapy in vitro

    International Nuclear Information System (INIS)

    Characterization of combination effects of chemotherapy drugs with carbon ions in comparison to photons in vitro. The human colon adenocarcinoma cell line WiDr was tested for combinations with camptothecin, cisplatin, gemcitabine and paclitaxel. In addition three other human tumour cell lines (A549: lung, LN-229: glioblastoma, PANC-1: pancreas) were tested for the combination with camptothecin. Cells were irradiated with photon doses of 2, 4, 6 and 8 Gy or carbon ion doses of 0.5, 1, 2 and 3 Gy. Cell survival was assessed using the clonogenic growth assay. Treatment dependent changes in cell cycle distribution (up to 12 hours post-treatment) were measured by FACS analysis after propidium-iodide staining. Apoptosis was monitored for up to 36 hours post-treatment by Nicoletti-assay (with qualitative verification using DAPI staining). All cell lines exhibited the well-known increase of killing efficacy per unit dose of carbon ion exposure, with relative biological efficiencies at 10% survival (RBE10) ranging from 2.3 to 3.7 for the different cell lines. In combination with chemotherapy additive toxicity was the prevailing effect. Only in combination with gemcitabine or cisplatin (WiDr) or camptothecin (all cell lines) the photon sensitivity was slightly enhanced, whereas purely independent toxicities were found with the carbon ion irradiation, in all cases. Radiation-induced cell cycle changes displayed the generally observed dose-dependent G2-arrest with little effect on S-phase fraction for all cell lines for photons and for carbon ions. Only paclitaxel showed a significant induction of apoptosis in WiDr cell line but independent of the used radiation quality. Combined effects of different chemotherapeutics with photons or with carbon ions do neither display qualitative nor substantial quantitative differences. Small radiosensitizing effects, when observed with photons are decreased with carbon ions. The data support the idea that a radiochemotherapy with common

  10. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  11. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g−1, along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  12. Measurement of large angle fragments induced by 400 MeV n-1 carbon ion beams

    Science.gov (United States)

    Aleksandrov, Andrey; Consiglio, Lucia; De Lellis, Giovanni; Di Crescenzo, Antonia; Lauria, Adele; Montesi, Maria Cristina; Patera, Vincenzo; Sirignano, Chiara; Tioukov, Valeri

    2015-09-01

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy. We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material. Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n-1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°-81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here.

  13. Measurement of large angle fragments induced by 400 MeV n−1 carbon ion beams

    International Nuclear Information System (INIS)

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy.We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material.Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n−1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°–81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here. (paper)

  14. Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.

    Science.gov (United States)

    Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong

    2015-09-23

    Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms. PMID:26207982

  15. Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    Directory of Open Access Journals (Sweden)

    Haselmann Renate

    2010-10-01

    Full Text Available Abstract Background Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT, a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE, which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons. First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective. Methods Design In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy. Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival. Discussion The

  16. Characterization of the interaction between therapeutical carbon ions and bone-like materials and related impact on treatment planning

    International Nuclear Information System (INIS)

    Radiotherapy is one of the most common and effective therapies for cancer. The treatment planning system for ions TRiP98 was developed at GSI, Darmstadt. In TRiP98, the interaction between primary radiation and tissue is modeled from experimental data measured in water and rescaled to other tissue. This approximation is not accurate enough for biological materials whose elemental composition besides density deviates significantly from water. The nuclear attenuation of carbon beams in bone-like materials was measured and an estimation of the fragmentation cross section was done. In parallel, the dose profile inhomogeneity predicted by TRiP98 at the interface between water and bones was investigated and measured at HIT (Heidelberg). A 3D treatment plan was delivered in a water phantom equipped with bone targets. Pin-point ionization chambers and X-ray dosimetric films were used for measuring the dose at different positions. As a further step, the measured cross sections of carbon ions in bone have been implemented in TRiP98. The comparison of the dose profiles calculated with the standard and benchmarked versions of the treatment planning will give an estimate of the improvement.

  17. Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property

    Science.gov (United States)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kojima, Hiroyuki; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo; Takaoka, Gikan H.

    2010-10-01

    We have investigated the irradiation effect of negative-ion implantation on the changes of physical surface property of polytetrafluoroethylene (PTFE) for controlling the adhesion property of stem cells. Carbon negative ions were implanted into PTFE sheets at fluences of 1 × 10 14-1 × 10 16 ions/cm 2 and energies of 5-20 keV. Wettability and atomic bonding state including the ion-induced functional groups on the modified surfaces were investigated by water contact angle measurement and XPS analysis, respectively. An initial value of water contact angles on PTFE decreased from 104° to 88° with an increase in ion influence to 1 × 10 16 ions/cm 2, corresponding to the peak shifting of XPS C1s spectra from 292.5 eV to 285 eV with long tail on the left peak-side. The change of peak position was due to decrease of C-F 2 bonds and increase of C-C bonds with the formation of hydrophilic oxygen functional groups of OH and C dbnd O bonds after the ion implantation. After culturing rat mesenchymal stem cells (MSC) for 4 days, the cell-adhesion properties on the C --patterned PTFE were observed by fluorescent microscopy with staining the cell nuclei and their actin filament (F-actin). The clear adhesion patterning of MSCs on the PTFE was obtained at energies of 5-10 keV and a fluence of 1 × 10 15 ions/cm 2. While the sparse patterns and the uncontrollable patterns were found at a low fluence of 3 × 10 14 ions/cm 2 and a high fluence of 3 × 10 15 ions/cm 2, respectively. As a result, we could improve the surface wettability of PTFE to control the cell-adhesion property by carbon negative-ion implantation.

  18. Determination of total dissolved inorganic carbon in freshwaters by reagent-free ion chromatography.

    Science.gov (United States)

    Polesello, Stefano; Tartari, Gabriele; Giacomotti, Paola; Mosello, Rosario; Cavalli, Silvano

    2006-06-16

    Studies of inorganic carbon cycle in natural waters provide important information on the biological productivity and buffer capacity. Determination of total inorganic carbon, alkalinity and dissolved carbon dioxide gives an indication of the balance between photosynthesis and respiration by biota, both within the water column and sediments, and carbon dioxide transfers from the water column to the atmosphere. There are few methods to measure and distinguish the different forms of inorganic carbon, but all require a measure or an indirect quantification of total inorganic carbon. A direct measurement of TIC in water is made possible by the introduction of electrolytic generated hydroxide eluent in ion chromatography which allows to detect a chromatographic peak for carbonate. The advantage of this method is that all the inorganic forms of carbon are converted in carbonate at eluent pH and can be detected as a single peak by conductivity detection. Repeatability of carbonate peak was evaluated at different levels from 0.02 to 6 mequiv.l(-1) both in high purity water and in real samples and ranged from 1 to 9%. The calibration curve was not linear and has to be fitted by a quadratic curve. Limit of detection was estimated to be 0.02 mequiv.l(-1). Accuracy has been estimated by comparing ion chromatography method with total inorganic carbon calculated from alkalinity and pH. The correlation between the two methods was good (R(2)=0.978, n=141). The IC method has been applied to different typologies of surface waters (alpine and subalpine lakes and rivers) characterised by different chemical characteristics (alkalinity from 0.05 to 2 mequiv.l(-1) and pH from 6.7 to 8.5) and low total organic carbon concentrations. This analytical method allowed to describe the distribution of TIC along the water column of two Italian deep lakes. PMID:16620857

  19. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries.

    Science.gov (United States)

    Lou, Fengliu; Zhou, Haitao; Tran, Trung Dung; Melandsø Buan, Marthe Emelie; Vullum-Bruer, Fride; Rønning, Magnus; Walmsley, John Charles; Chen, De

    2014-05-01

    Coaxial carbon/metal oxide/aligned carbon nanotube (ACNT) arrays over stainless-steel foil are reported as high-performance binder-free anodes for lithium ion batteries. The coaxial arrays were prepared by growth of ACNTs over stainless-steel foil followed by coating with metal oxide and carbon. The carbon/manganese oxide/ACNT arrays can deliver an initial capacity of 738 mAh g(-1) with 99.9 % capacity retention up to 100 cycles and a capacity of 374 mAh g(-1) at a high current density of 6000 mA g(-1). The external carbon layer was recognized as a key component for high performance, and the mechanism of performance enhancement was investigated by electrochemical impedance spectroscopy, electron microscopy, and X-ray diffraction analysis. The layer increases rate capability by enhancing electrical conductivity and maintaining a low mass-transfer resistance and also improves cyclic stability by avoiding aggregation of metal-oxide particles and stabilizing the solid electrolyte interface. The resultant principle of rational electrode design was applied to an iron oxide-based system, and similar improvements were found. These coaxial nanotube arrays present a promising strategy for the rational design of high-performance binder-free anodes for lithium ion batteries. PMID:24578068

  20. Stability and kinetics of uranyl ion complexation by macrocycles in propylene carbonate

    International Nuclear Information System (INIS)

    A thermodynamic study of uranyl ion complexes formation with different macrocyclic ligands was realized in propylene carbonate as solvent using spectrophotometric and potentiometric techniques. Formation kinetics of two UO2 complexes: a crown ether (18C6) and a coronand (22) was studied by spectrophotometry in propylene carbonate with addition of tetraethylammonium chlorate 0.1M at 250C. Possible structures of complexes in solution are discussed

  1. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells

    Institute of Scientific and Technical Information of China (English)

    孙晓琦; LUO Huimin; Shannon M. Mahurin; LIU Rui; HOU Xisen; DAI Sheng

    2016-01-01

    Herein we reported the structure effects of carbon nano-shells prepared by the carbonization of polydopamine for the ad-sorption of rare earth elements (REEs) for the first time. Solid carbon spheres, 60 nm carbon shells and 500 nm carbon shells were prepared and evaluated for adsorption and desorption of REEs. The adsorption performance of carbon nano-shells for REEs was far superior to the solid carbon spheres. In addition, the effect of acidity on the adsorption and desorption properties was discussed. The good adsorption performance of the carbon nano-shells could be attributed to their pore structure, specific surface area, and the pres-ence of both amine and carbonyl groups from the grafted dopamine.

  2. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    Science.gov (United States)

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  3. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit.

    Science.gov (United States)

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar

    2016-01-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth-dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8MeV proton, 190.1MeV alpha, and 1060MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam׳s Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors. PMID:26831752

  4. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  5. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C. Robles; Okonkwo, Anderson O.; Hobosyan, Mkhitar; Martirosyan, Karen S.

    2014-07-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  6. Thermal management of a Li-ion battery using carbon fiber-PCM composites

    International Nuclear Information System (INIS)

    A combination of latent and sensible heat capabilities has made phase change materials (PCMs) very useful in a variety of heat transfer applications. The main purpose of using the phase change material in lithium-ion (Li-ion) battery thermal management systems (BTMs) is to mitigate the excessive temperature rise in the cells and to create uniform temperature distribution within the battery pack. In this work, carbon fibers were added to a PCM to enhance its heat transfer potentials. Various strategies were adopted to manage temperature distribution around a single AA-battery-like simulator. The effects of carbon fiber size and weight percent within the PCM on thermal performance were studied. Experimental results have indicated that a mixture of PCM with 2-mm-long carbon fibers and mass percentage of 0.46% showed the best thermal performance for which the maximum temperature rise in the battery simulator can be reduced by up to 45%. - Graphical abstract: The schematic of the experimental setup and data acquisition system (1-power source 2-container 3-battery module 4-thermocouples 5-temperature indicator 6-data acquisition system). - Highlights: • Thermal performance of a Li-ion battery simulator is studied in the presence of PCM. • The effect of carbon fiber on heat transfer enhancement is examined. • Better thermal management can be achieved by the presence of carbon fiber in PCM. • Both carbon fiber mass fraction and length play crucial role in thermal management

  7. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation

    International Nuclear Information System (INIS)

    Blister formation in tungsten has been studied by mixed carbon and hydrogen ion beam irradiation. The beam ion energies were 1.0 keV and 300 eV, and the fluence was in the range of 1024-1025 ions m-2. It was found that a little amount of carbon impurity in the beam affected blister formation. A large number of blisters with various sizes were observed on the surface of tungsten at 653 K when the carbon concentration was more than 0.35%. When the carbon concentration was 0.11%, no blisters larger than 1.0 μm were observed. When the carbon concentration was 2.35%, a carbon layer developed on the tungsten surface, and again, no blisters were observed. The effect of target temperature on blister formation was also investigated: the sizes and numbers of the blisters were the largest when the tungsten was irradiated at 653 K; when the sample was irradiated at 388 or 873 K, no blisters larger than 1.0 μm were observed

  8. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jeongwoon Hwang

    2015-10-01

    Full Text Available We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV. As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  9. Thin film Li-Ion batteries with carbon anode

    Czech Academy of Sciences Publication Activity Database

    Merta, J.; Bludská, Jana; Jakubec, Ivo

    Brno: University of Technology Brno, 2003, s. 37-40. ISBN 80-214-2298-X. [Advanced Batteries and Accumulators /4./. Brno (CZ), 15.06.2003-19.06.2003] Institutional research plan: CEZ:AV0Z4032918 Keywords : carbon anode Subject RIV: CA - Inorganic Chemistry

  10. Generation of MeV carbon and fluorine ions by subnanosecond laser pulses

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Jungwirth, Karel; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Pfeifer, Miroslav; Ullschmied, Jiří

    Paris : European Physical Society, 2008 - (Lalousis, P.; Moustaizis, S.), P4.133/1-P4.133/4 ISBN 2-914771-52-5. - (ECA. 32D). [EPS Plasma Physics Conference /35./. Hersonissos (GR), 09.06.2008-13.06.2008] R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * carbon ions * fluorine ions * effective accelerating voltage Subject RIV: BH - Optics, Masers, Lasers

  11. Optical and Scratch Resistant Properties of Diamondlike Carbon Films Deposited with Single and Dual Ion Beams

    Science.gov (United States)

    Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.

    1993-01-01

    Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.

  12. Multiscale Approach to the Physics of Ion-Beam Therapy:. Thermo-Mechanical Damage

    Science.gov (United States)

    Solov'yov, A. V.; Yakubovich, A. V.; Surdutovich, E.

    2012-01-01

    We present a brief overview of the multiscale approach towards the understanding of processes responsible for the radiation damage caused by energetic ions. This knowledge is important because it can be utilized in the ion-beam cancer therapy, which is one of the most advanced modern techniques to cure certain types of cancer. The central element of the multiscale approach is the theoretical evaluation and quantification of DNA damage within cell environment. We consider different pathways of DNA damage and focus on the the illustration of the thermo-mechanical effects caused by the propagation of ions through the biological environment and in particular on the possibility of the creation of the shock waves in the vicinity of the ion tracks. We demonstrate that at the initial stages after ion's passage the shock wave is so strong that it can contribute to the DNA damage due to large pressure gradients developed at the distances of a few nanometers from the ionic tracks. This novel mechanism of the DNA damage provides an important contribution to the cumulative bio-damage caused by low-energy secondary electrons, holes and free radicals.

  13. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma

    Science.gov (United States)

    Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J.

    2016-01-01

    Background: Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC

  14. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Verona, C.; Verona-Rinati, G. [INFN—Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy); Ciocca, M.; Mirandola, A.; Mairani, A. [Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Raffaele, L. [INFN—Laboratori Nazionali del Sud, Via S. Sofia 62, Catania 95123, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN—Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, Strada Campeggi 53, Pavia 27100 (Italy)

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  15. Biological Effectiveness and Application of Heavy Ions in Radiation Therapy Described by a Physical and Biological Model

    DEFF Research Database (Denmark)

    Olsen, Kjeld J.; Hansen, Johnny W.

    A description is given of the physical basis for applying track structure theory in the determination of the effectiveness of heavy-ion irradiation of single- and multi-hit target systems. It will be shown that for applying the theory to biological systems the effectiveness of heavy-ion irradiation......-LET radiation applied simultaneously in therapy....

  16. B and N ion implantation into carbon nanotubes: Insight from atomistic simulations

    International Nuclear Information System (INIS)

    By employing atomistic computer simulations with empirical potential and density functional force models, we study B/N ion implantation onto carbon nanotubes. We simulate irradiation of single-walled nanotubes with B and N ions and show that up to 40% of the impinging ions can occupy directly the sp2 positions in the nanotube atomic network. We further estimate the optimum ion energies for direct substitution. Ab initio simulations are used to get more insight into the structure of the typical atomic configurations which appear under the impacts of the ions. As annealing should further increase the number of sp2 impurities due to dopant atom migration and annihilation with vacancies, we also study migration of impurity atoms over the tube surface. Our results indicate that irradiation-mediated doping of nanotubes is a promising way to control the nanotube electronic and even mechanical properties due to impurity-stimulated crosslinking of nanotubes

  17. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  18. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  19. Field—ion microscopy observation of single—walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    张兆祥; 顾镇南; 等

    2002-01-01

    Field-ion microscopy(FIM),a tool for surface analysis with atomic resolution,has been employed to observe the end structure of single-walled carbon nanotubes(SWCNTs).FIM images revealed the existence of open SWCNT ends,Amorphous carbon atoms were also observed to occur around SWCNTs and traditional field evaporation failed to remove them.Heat treatment was found to be efficacious in altering the end structures of SWCNT bundles.Carbon and oxygen atoms released from heated tungsten filament are believed to be responsible for the decoration imposed on the SWCNT ends.

  20. V2O5/Mesoporous Carbon Composite as a Cathode Material for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    ABSTRACT: V2O5/mesoporous carbon composite has been prepared by an ultrasonically assisted method followed by a sintering process. The as-prepared V2O5/mesoporous carbon material containing 90 wt% V2O5 shows better electrochemical performance, with capacity of 163 mA h g−1 after 100 cycles at the current density of 500 mA g−1, as well as better charge/discharge rate capability for lithium storage than V2O5 nanoparticles. The improved electrochemical performance indicates that the V2O5/mesoporous carbon composite could be used as a promising cathode material for lithium ion batteries

  1. Development of an electrohydrodynamic ion-drag micropump using three-dimensional carbon micromesh electrodes

    International Nuclear Information System (INIS)

    An electrohydrodynamic (EHD) ion-drag micropump using three-dimensional carbon micromesh electrodes was developed. The carbon micromesh electrodes were created by the pyrolysis of SU-8 structures. The carbon electrodes and microchannel were formed on a quartz substrate, and the microchannel was sealed by an SU-8 slab structure. The pumping behaviors were evaluated using Fluorinert as a non-conductive sample solution. The maximum pressure and volume flow rate were approximately 23 Pa and 400 nL/min, respectively, under an applied voltage of 500 V. (paper)

  2. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  3. Ion implanted pyrolitic carbon for the hip prosthesis

    International Nuclear Information System (INIS)

    Full text: Hip joint arthroplasty is a successful surgical procedure, but loosening induced by polyethylene wear debris continues to be a problem. Fine grained isotropic graphite (POCO ZXF-5Q) coated with Pyrolite (trademark of Carbomedics Inc.) combines biocompatibility, strength and tribological properties which could be utilised in a hip prosthesis. Some preliminary work has been conducted on this material, and the effect nitrogen ion implantation has on its wear resistance. Finite element analysis was conducted on a femoral head of a canine hip prosthesis with diameter 19mm made from POCO ZXF-5Q . An optimum design was obtained after design variables such as taper angle and width, internal recess radius, crown thickness were varied so that internal stresses were minimised. This was then translated into an human sized femoral head with diameter 28mm, which was subjected to mechanical testing. Loading was at 20 deg C to the taper, with loading rate 10kN/s used in static loading, whilst fatigue testing was carried out between 300 - 3000N at 30Hz for 107 cycles. Pin-on-disc wear testing was carried out using a CSEM Tribometer. A 1N load was applied to 6mm diameter pins. Wear track radii were 11 and 13mm, with linear velocity 5cm/s and sliding distance 2.5km. Test temperature was 37±1degC with Ringer solution and bovine serum being used as lubricant. Nitrogen implanted samples were irradiated to a dose of 5x1016 ions.cm-2 at 50keV. Static testing was carried out to loads of 8000N and all five POCO ZXF-5Q femoral heads tested survived. Then three of these pre-tested femoral heads were subjected to fatigue testing and no failures occured before 107 cycles. Wear was reduced by nitrogen ion implantation only when an irradiated pin was tested against as polished Pyrolite. Nitrogen ion implanted Pyrolite on a POCO ZXF-5Q substrate may have clinical potential. The substrate has appropriate mechanical properties, and nitrogen ion implantation can improve the already

  4. Pulse Radiolysis Using Very-high-energy Ions for Optimizing Cancer Therapy.

    Science.gov (United States)

    Getoff, Nikola

    2016-01-01

    Cancer therapy by means of high-energy ions is very efficient. As a consequence of the linear-energy-transfer effect only a negligible part of the produced free radicals can escape combination processes to form molecular products and to cause undesired side processes. Positrons (e⁺) and γ-rays, generated by the nuclear interaction of high-energy ions in the medium, serve in monitoring the radiation dose absorbed by the tumor. However, due to the dipole nature of water molecules a small proportion of thermalized positrons (e⁺th) can become solvated (e⁺aq). Hence, they are stabilized, live longer and can initiate side reactions. In addition, positronium (Ps), besides solvated electrons (e⁺aq), can be generated and involved in the reaction mechanisms. For a better understanding of the reaction mechanisms involved and to improve cancer therapy, a time-resolved pulse radiolysis instrument using high-energy particles is discussed here. The proposed method is examined and recommended by CERN experts. It is planned to be realized at the MedAustron Radiation Therapy and Research Centre in Wiener Neustadt, Austria. PMID:26912822

  5. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-01

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration. PMID:25648453

  6. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization.

    Science.gov (United States)

    Kim, Yu-Jin; Choi, Jae-Hwan

    2012-11-15

    We fabricated nitrate-selective composite carbon electrodes (NSCCEs) for use in capacitive deionization to remove nitrate ions selectively from a solution containing a mixture of anions. The NSCCE was fabricated by coating the surface of a carbon electrode with the anion exchange resin, BHP55, after grinding the resin into fine powder. BHP55 is known to be selective for nitrate ions. We performed desalination experiments on a solution containing 5.0 mM NaCl and 2.0 mM NaNO(3) using the NSCCE system constructed with the fabricated electrode. The selective removal of nitrate in the NSCCE system was compared to a membrane capacitive deionization (MCDI) system constructed with ion exchange membranes and carbon electrodes. The total quantity of chloride and nitrate ions adsorbed onto the unit area of the electrode in the MCDI system was 25 mmol/m(2) at a cell potential of 1.0 V. The adsorption of nitrate ions was 8.3 mmol/m(2), accounting for 33% of the total. In contrast, the total anion adsorption in the NSCCE system was 34 mmol/m(2), 36% greater than the total anion adsorption of the MCDI system. The adsorption of nitrate ions was 19 mmol/m(2), 2.3-times greater than the adsorption in the MCDI system. These results showed that the ions were initially adsorbed by an electrostatic force, and the ion exchange reactions then occurred between the resin powder in the coated layer and the solution containing mixed anions. PMID:22980574

  7. Ion exclusion by sub-2-nm carbon nanotube pores

    OpenAIRE

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robu...

  8. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    CoSn/carbon composite nanofibers were prepared by electrospinning followed by heat treatment. Uniform morphologies and microstructures were observed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The results demonstrated that well-dispersed nanoparticles of CoSn intermetallic compound and Sn with diameter of about 30–50 nm embedded in carbon nanofibers were prepared after carbonization at 850 °C. Compared with pure carbon nanofibers without the nanoparticles, CoSn/carbon composite nanofibers showed a high reversible capacity and excellent cycling performance, resulting from the formation of CoSn intermetallic nanoparticles and buffering by the carbon nanofiber matrix. The nanofiber mats with good flexibility were utilized as anodes in lithium-ion batteries, and the CoSn/carbon composite nanofibers exhibited a good fibrous morphology after the discharge/charge processes. Results indicated that electrospinning could be a feasible method to prepare Co–Sn–C composite nanofibers as anodes in lithium-ion batteries

  9. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Weili; Luo, Chenghao; Li, Yu; Feng, Yiyu; Feng, Wei, E-mail: weifeng@tju.edu.cn; Zhao, Yunhui; Yuan, Xiaoyan, E-mail: yuanxy@tju.edu.cn [Tianjin University, School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials (China)

    2013-09-15

    CoSn/carbon composite nanofibers were prepared by electrospinning followed by heat treatment. Uniform morphologies and microstructures were observed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The results demonstrated that well-dispersed nanoparticles of CoSn intermetallic compound and Sn with diameter of about 30-50 nm embedded in carbon nanofibers were prepared after carbonization at 850 Degree-Sign C. Compared with pure carbon nanofibers without the nanoparticles, CoSn/carbon composite nanofibers showed a high reversible capacity and excellent cycling performance, resulting from the formation of CoSn intermetallic nanoparticles and buffering by the carbon nanofiber matrix. The nanofiber mats with good flexibility were utilized as anodes in lithium-ion batteries, and the CoSn/carbon composite nanofibers exhibited a good fibrous morphology after the discharge/charge processes. Results indicated that electrospinning could be a feasible method to prepare Co-Sn-C composite nanofibers as anodes in lithium-ion batteries.

  10. Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions.

    Science.gov (United States)

    Prasad, Bhim Bali; Jauhari, Darshika

    2015-05-22

    A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the "surface grafting from" approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL(-1) for Ce(IV) and 0.19 ng mL(-1) for Gd(III) (S/N=3) that could eventually be helpful for lanthanide estimation at stringent levels. PMID:25937109

  11. Development of a facility for high-precision irradiation of cells with carbon ions

    NARCIS (Netherlands)

    van Goethem, Marc-Jan; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; van Luijk, Peter

    2011-01-01

    Purpose: Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The i

  12. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    Science.gov (United States)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  13. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin T [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  14. Reduction of friction and wear by ion-implanted carbonized photoresist

    International Nuclear Information System (INIS)

    The influence of ion-implanted carbonized photoresist layers (AZ 5210) on wear and friction is discussed in this paper. Photoresist, an organic resin, was used because of the simplicity of coating the sample, accurate control of the layer thickness, and high amount of carbon. The samples investigated were coated by conventional spin-on techniques with layer thicknesses varying from 0.2 μm to 2.2μm. Subsequent ion bombardment at energies of 200 keV and 1.4 MeV with doses ranging from 1x1016 cm-2 to 1x1017 cm-2 caused carburization, densification, and a mixing of the layer with the steel substrate. Transmission electron microscopy investigations, Raman spectroscopy, elastic recoil detection analysis, and microhardness measurements confirmed the production of a hard, amorphous, hydrogen-containing (about 17%) carbon layer after implantation. The layers were deposited onto different steels (AISI 52100, AISI 440 B unhardened, and AISI M2) and after implantation of boron, aluminium, phosphorus, arsenic and titanium, showed a strongly reduced friction coefficient (lower than 0.2) and drastically reduced wear behaviour. The duration of the wear reduction depended on both the thickness of the carbonized photoresist layer and on the implanted ion dose. Doses of 5x1016 cm-2 for hard steels and doses of 1x1017 cm-2 for soft steels are necessary to produce a sufficient layer adhesion by ion beam mixing. (orig.)

  15. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x1018 ions cm-2). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  16. Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation

    International Nuclear Information System (INIS)

    We report on the synthesis of wafer-scale (4 in. in diameter) high-quality multi-layer graphene using high-temperature carbon ion implantation on thin Ni films on a substrate of SiO2/Si. Carbon ions were bombarded at 20 keV and a dose of 1 × 1015 cm−2 onto the surface of the Ni/SiO2/Si substrate at a temperature of 500 °C. This was followed by high-temperature activation annealing (600–900 °C) to form a sp2-bonded honeycomb structure. The effects of post-implantation activation annealing conditions were systematically investigated by micro-Raman spectroscopy and transmission electron microscopy. Carbon ion implantation at elevated temperatures allowed a lower activation annealing temperature for fabricating large-area graphene. Our results indicate that carbon-ion implantation provides a facile and direct route for integrating graphene with Si microelectronics

  17. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2016-01-01

    Full Text Available Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position of Bragg peaks. Carbon ion has a higher local ionization density and produces more secondary electrons than proton, so carbon ion beams can achieve a higher value of relative biological effectiveness.

  18. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    International Nuclear Information System (INIS)

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. (author)

  19. Rigid versus Flexible Ligands on Carbon Nanotubes for the Enhanced Sensitivity of Cobalt Ions

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Pingping; Kraut, Nadine D; Feigel, Ian Matthew; Star, Alexander

    2013-02-26

    Carbon nanotubes have shown great promise in the fabrication of ultra-compact and highly sensitive chemical and biological sensors. Additional chemical functionalization schemes can controllably improve selectivity of the carbon nanotube-based sensors; however the exact transduction mechanism is still under debate. In this article we detail the synthesis and selective response of single-walled carbon nanotubes (SWNTs) functionalized with polyazomethine (PAM) polymer towards the application of a specific trace metal ion detector. The response of the polymer system was compared to shape persistent macrocycle (MAC) comprised of identical ion coordination ligands. While ion detection with rigid MAC/SWNT chemiresistor was comparable to bare SWNT, flexible PAM offers significant SWNT signal amplification, allowing for picomolar detection of Co{sup 2+} ions with both selectivity and a fast response. We hypothesized that rearrangement of the flexible PAM on the SWNT network is a sensing mechanism which allows for ultrasensitive detection of metal ions. The electron transfer and polymer rearrangement on the SWNT was studied by a combination of optical spectroscopy and electrical measurements − ultimately allowing for a better understanding of fundamental mechanisms that prompt device response.

  20. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions

    International Nuclear Information System (INIS)

    The classical simulated body fluids method cannot be employed to prepare biomimetic apatites encompassing metallic ions that lead to very stable phosphates. This is the case for heavy metals such as uranium, whose presence in bone mineral after contamination deserves toxicological study. We have demonstrated that existing methods, based on alternate dipping into calcium and phosphate ions solutions, can be adapted to achieve this aim. We have also especially studied the impact of the presence of carbonate ions in the medium as these are necessary to avoid hydrolysis of the contaminating metallic cations. Both the apatite–collagen complex method and a standard chemical (STD) method employing only mineral solutions lead to biomimetic apatites when calcium and carbonate ions are introduced simultaneously. The obtained materials were fully characterized and we established that the STD method tolerates the presence of carbonate ions much better, and this leads to homogeneous samples. Emphasis was set on the repeatability of the method to ensure the relevancy of further work performed on series of samples. Finally, osteoblasts cultured on these samples also proved a similar yield and standard-deviation in their adenosine triphosphate content when compared to commercially available substrates designed to study of such cell cultures. (paper)

  1. A carbon cluster ion source for mass calibration at TRIGA-TRAP

    International Nuclear Information System (INIS)

    TRIGA-TRAP is a high-precision penning trap mass spectrometer installed at the research reactor TRIGA Mainz in order to determine the masses of short-lived fission products and - in addition to that - also the masses of actinide elements ranging from uranium up to californium. In order to determine precisely the masses of the nuclides of interest, the superconducting magnet providing the strong magnetic field for the Penning trap has to be calibrated by measuring the cyclotron frequency of an ion with well-known mass, which is, if possible, an isobaric nuclide of the ion of interest. Therefore, the best possible choice for mass calibration is to use carbon clusters as mass references, as demonstrated at the ISOLTRAP facility at ISOLDE/CERN. A laser ablation ion source for the production of carbon clusters has been developed using a frequency-doubled Nd:YAG laser. The design, current status, and results of the production of carbon cluster ions, using C60 and Sigradure registered samples, as well as other ions are presented

  2. Effects of Mo ion implantation on rolling contact fatigue behavior of carbon steel

    International Nuclear Information System (INIS)

    Rolling Contact Fatigue (RCF) is one of the most serious material surface damage problems encountered by many critical components, especially in ball-bearing applications. RCF is sensitive to the material strength, hardness, surface morphology, microstructure and stress status, which may be dramatically changed by surface modifications. In present work, the surface modification of molybdenum ion implantation into quenched carbon steel was employed, and RCF tests on the implanted specimens, as