WorldWideScience

Sample records for carbon full-scale results

  1. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  2. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  3. Full scale test results for ship ice impact forces and pressures

    International Nuclear Information System (INIS)

    Ghoneim, G.A.

    1993-01-01

    A set of full scale impact tests were carried out for the icebreakers Canmar Kigoriak and Robert LeMeur in first and multi-year ice conditions in the southern Beaufort Sea. Preliminary results of the testing program were published in Ghoneim et al. (1984). This paper presents some salient results of further analysis of the data. This includes a description of the different types of ice ramming mechanisms and the corresponding ice force time histories and ship response. A comparison between the bow force peak values for the kigoriak and the Robert LeMeur is made and the reasons for the difference are evaluated. The question of dynamic magnification of the response is investigated. The relationship between the peak impact force and the ramming velocity is evaluated for both ships and compared with theoretical and empirical formulations. Other parametric relationships are presented, including such parameters as force duration and relative magnitude of the impact and beaching bow forces. The added mass is evaluated from measured accelerations and calculated bow forces and are shown to be time dependent. The relationship between ice pressure and corresponding contact area is discussed. Finally, conclusions and recommendations are presented

  4. Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

    2000-04-01

    Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.

  5. Septic tank combined with anaerobic filter and conventional UASB: results from full scale plants

    Directory of Open Access Journals (Sweden)

    F. J. A. da Silva

    2013-03-01

    Full Text Available Anaerobic digestion is an important alternative for domestic wastewater treatment, especially in warm climate regions. Two full-scale anaerobic schemes were investigated: septic tank combined with anaerobic filter (S T A NF and conventional UASB reactors. Treated effluents from these systems were subjected to disinfection by chlorination. The operational performance of 56 full-scale plants (36 S T A NF and 20 UASB provided a realistic view. Findings showed that the plants operated with low OLR (< 2.0 kg COD/m³.day. Despite this, the removal of organic material was below values suggested by the literature (around 60% for COD. A removal of 4.0 Log10 units of total coliform and E. coli can be reached with residual chlorine (R CL of at least 2.0 Cl-Cl2/l. Although UASB plants have performed better, improvement of maintenance is needed in both treatment configurations.

  6. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  7. Investigation of Bearing Axial Cracking: Benchtop and Full-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gould, Benjamin [Argonne National Lab. (ANL), Argonne, IL (United States); Greco, Aaron [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-16

    The most common failure mode in wind turbine gearboxes is axial cracking in intermediate and high-speed-stage bearings, also commonly called white-etching cracks (WECs). Although these types of cracks have been reported for over a decade, the conditions leading to WECs, the process by which this failure culminates, and the reasons for their apparent prevalence in wind turbine gearboxes are all highly debated. This paper summarizes the state of a multipronged research effort to examine the causes of WECs in wind turbine gearbox bearings. Recent efforts have recreated WECs on a benchtop test rig in highly loaded sliding conditions, wherein it was found that the formation of a dark etching microstructure precedes the formation of a crack, and a crack precedes the formation of white-etching microstructure. A cumulative frictional sliding energy criterion has been postulated to predict the presence of WECs. Bearing loads have also been measured and predicted in steady state and transient drivetrain operations in dynamometer testing. In addition, both loads and sliding at full scale will be measured in planned uptower drivetrain testing. If the cumulative frictional sliding energy is the dominant mechanism that causes WECs, understanding the amount of frictional sliding energy that wind turbine bearings are subjected to in typical operations is the next step in the investigation. If highly loaded sliding conditions are found uptower, similar to the examined benchtop levels, appropriate mitigation solutions can be examined, ranging from new bearing coatings and improved lubricants to changes in gearbox designs and turbine operations.

  8. Controlling Urban Lighting by Human Motion Patterns results from a full Scale Experiment

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    totally four light scenarios were designed and tested. The result shows that in general people immersed in the street lighting did not notice that the light changed according to their presence or actions, but people watching from the edge of the square noticed the interaction between the illumination...

  9. Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Truelsen, R.

    2016-01-01

    Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void...... distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation...

  10. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe

    2007-05-01

    Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  11. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    Science.gov (United States)

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; MariJon Owens

    2007-12-01

    involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  13. Full-scale testing results of structural damage detection using long-gage fiber Bragg gratings and modal analysis

    Science.gov (United States)

    Calvert, Sean; Conte, Joel P.; Moaveni, Babak; Schulz, Whitten L.; de Callafon, Raymond

    2003-08-01

    Blue Road Research and the University of California have been collaborating over the past three years to develop a system employing fiber Bragg grating strain sensors and modal analysis to provide real-time, quantitative information on the structure's response to a dynamic input (such as a seismic event), and a fast prediction of the structure's integrity. This research, being funded by the National Science Foundation, has several publications showing its strong progress. This year marks a significant step forward in this effort, with the successful completion of a full-scale test performed on a longitudinal carbon shell girder being tested as part of the planned I-5/Gilman Advanced technology Bridge in California, USA.

  14. Results and analysis of high heat flux tests on a full-scale vertical target prototype of ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Bobin-Vastra, I.; Schlosser, J.; Durocher, A.

    2005-01-01

    After an extensive R and D development program, a full-scale divertor target prototype, manufactured with all the main features of the corresponding ITER divertor, was intensively tested in the high heat flux FE200 facility. The prototype consists of four units having a full monoblock geometry. The lower part (CFC armour) and the upper part (W armour) of each monoblock were joined to the solution annealed, quenched and cold worked CuCrZr tube by HIP technique. This paper summarises and analyses the main test results obtained on this prototype

  15. Dewatering optimization with in-line and real-time measurement of polymer: results from full-scale treatment plants.

    Science.gov (United States)

    Örmeci, Banu; DiMassimo, Richard

    2017-09-01

    Full-scale testing was carried out at two wastewater treatment plants to determine whether residual polymer concentration, measured by filtrate and centrate absorbance at 191 nm, can be used to identify the optimum polymer dose and achieve in-line and real-time dewatering optimization. The first plant uses high speed centrifuges and the second plant uses belt filter presses for dewatering. During the testing, the polymer dose incrementally increased to cover the under-dose, optimum dose and over-dose polymer ranges, and the centrate/filtrate absorbance at 191 nm, turbidity and cake solids were measured. The results showed that absorbance measurements at 191 nm exhibited a parabolic shaped curve with increasing polymer dose, where the minimum absorbance corresponded to the optimum polymer dose. The method can directly measure the residual polymer concentration and determine the optimum polymer dose accordingly, and is planned to be used in the development of a dewatering automation system in the future.

  16. Full-scale heater tests No. 1 and No. 2 at the Near-Surface Test Facility: preliminary results

    International Nuclear Information System (INIS)

    Case, J.B.; Krug, A.D.; Williams, J.

    1980-01-01

    The Basalt Waste Isolation Project, as part of the National Waste Terminal Storage Program, initiated two full-scale electrical heater tests in basalt at the Near-Surface Test Facility, near Richland, Washington. The electric heaters simulate heat generation from radioactive waste canisters emplaced in the floor of a basalt rock mass. Preliminary analysis of the temperature data accumulated over 70 days since the July 1, 1980 startup suggest that the principal mode of heat transfer within the near field for the tested conditions is by heat conduction and that temperatures are largely unaffected by surface convection from the tunnel floor. Laboratory measurements of thermal properties used in conjunction with transient heat conduction analysis can be used to predict temperatures within a basalt rock mass reasonably well

  17. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.

    Science.gov (United States)

    Yang, Jie; Meng, Liang; Guo, Lin

    2018-02-01

    Chlorinated solvents in groundwater pose threats to human health and the environment due to their carcinogenesis and bioaccumulation. These problems are often more severe in developing countries such as China. Thus, methods for chlorinated solvent-contaminated groundwater remediation are urgently needed. This study presents a technique of in situ remediation via the direct-push amendment injection that enhances the reductive dechlorination of chlorinated solvents in groundwater in the low-permeability aquifer. A field-based pilot test and a following real-world, full-scale application were conducted at an active manufacturing facility in Shanghai, China. The chlorinated solvents found at the clay till site included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), and chloroethane (CA). A commercially available amendment (EHC ® , Peroxychem, Philadelphia, PA) combining zero-valent iron and organic carbon was used to treat the above pollutants. Pilot test results showed that direct-push EHC injection efficiently facilitated the in situ reductive remediation of groundwater contaminated with chlorinated solvents. The mean removal rates of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE at 270 days post-injection were 99.6, 99.3, and 73.3%, respectively, which were obviously higher than those of VC and CA (42.3 and 37.1%, respectively). Clear decreases in oxidation-reduction potential and dissolved oxygen concentration, and increases in Fe 2+ and total organic carbon concentration, were also observed during the monitoring period. These indicate that EHC promotes the anaerobic degradation of chlorinated hydrocarbons primarily via long-term biological reductive dechlorination, with instant chemical reductive dechlorination acting as a secondary pathway. The optimal effective time of EHC injection was 0-90 days, and its radius of influence was 1.5 m. In full-scale application, the maximum concentrations of 1,1,1-TCA

  18. Porous reactive wall for prevention of acid mine drainage: Results of a full-scale field demonstration

    International Nuclear Information System (INIS)

    Benner, S.G.; Blowes, D.W.; Ptacek, C.J.

    1997-01-01

    A porous reactive wall was installed in August, 1995, to treat mine drainage flowing within an aquifer at the Nickel Rim mine site, near Sudbury, Ontario. The reactive mixture was designed to maximize removal of metals and acid generating capacity from the groundwater by enhancing sulfate reduction and metal sulfide precipitation. The installed structure, composed of a mixed organic substrate, is 15 meters long, 3.6 meters deep and the flow path length (wall width) is 4 meters. Results of sampling nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing the chemistry of water entering the wall to treated water exiting the wall nine months after installation: SO 4 concentrations decrease by >50% (from 2400-4800 mg/L to 60-3600 mg/L), Fe concentrations decrease by >95% (from 260-1300 mg/L to 1.0-40 mg/L), pH increased from 5.8 to 7.0 and alkalinity increased from 0-60 mg/L to 700-3200 mg/L as CaCO 3 . After passing through the reactive wall, the net acid generating potential of the aquifer water was converted from acid producing to acid consuming

  19. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  20. Transformation of molecular weight distributions of dissolved organic carbon and UV-absorbing compounds at full-scale wastewater-treatment plants.

    Science.gov (United States)

    Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

    2006-03-01

    The molecular-weight distribution (MWD) of wastewater dissolved-organic carbon (DOC) was determined in samples from seven full-scale wastewater-treatment plants (WWTPs) that use different biological treatments (air activated sludge [air-AS], pure-oxygen AS [O2-AS], and trickling filters). The research objective was to determine how different biological treatments influenced the MWD of wastewater DOC. Primary sedimentation effluent DOC from most of the WWTPs exhibited a skewed distribution toward the low-molecular-weight fraction (MWF) (40 to 50%, distribution, with the majority of DOC in the intermediate MWF (0.5 to 3 KDa). The O2-AS effluent DOC exhibited a skewed distribution toward the high MWF (> 3 KDa). The removal of DOC by air- and O2-AS bacteria followed trends predicted by a macromolecule degradation model. Trickling-filter effluent DOC exhibited a skewed distribution toward the high MWF (50% DOC, > 3 KDa).

  1. ISABELLE full scale dipoles

    International Nuclear Information System (INIS)

    McInturff, A.D.; Dahl, P.F.; Kassner, D.; Lasky, C.; Robins, K.; Sampson, W.B.

    1975-01-01

    Data are presented on the various cosine theta type magnet models constructed at BNL in the development of ring magnets for ISABELLE, a pair of intersecting 200 GeV proton accelerating storage rings. The rings are to be filled with 30 GeV protons from the AGS and then accelerated to 200 GeV. The acceleration period is a 120 sec ramp from approximately 0.5 T to 4 T. The effect of mechanical precompression on training was studied by varying the interference fit between the coil (ISA IV) and its iron shield. The results were used to optimize the mechanical design of the full-size magnet models

  2. Energy savings by reduced mixing in aeration tanks: Results from a full scale investigation and long term implementation at Avedoere wastewater treatment plant

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Guildal, T.; Thomsen, H.R.

    2011-01-01

    The aim of this project was to investigate the potential of reducing number of mixers in the biological treatment process and thereby achieve energy and economical savings and contribute to cleaner environment. The project was carried out at Avedoere wastewater treatment plant and a full scale in...... has been operating with 50% of its designed number of mixers since September 2007 and long term results also confirm that reduced mixing did not have any negative effect on treatment efficiency. The estimated yearly electricity saving is 0.75 GWh/year. © IWA Publishing 2011....

  3. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  4. Performance test results of helium gas circulator of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akira; Kato, Michio; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Hydrogen production system by steam reforming of methane will be connected to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) against development of nuclear heat utilization system. To obtain design and safety database of the HTTR hydrogen production system, mock-up test facility with full-scale reaction was constructed in FY 2001 and hydrogen of 120m{sup 3}N{sub /}h was successfully produced in overall performance test. This report describes performance test results of a helium gas circulator in this facility. The circulator performance curves regarding to pressure-rise, input power and adiabatic thermal efficiency at standard revolution number were made based on the measured flow-rate, temperature and pressure data in overall performance test. The circulator performance prediction code was made based on these performance curves. The code can calculate revolution number, electric power and temperature-rise of the circulator using flow-rate, inlet temperature, inlet pressure and pressure-rise data. The verification of the code was carried out with the test data in FY 2002. Total pressure loss of the helium gas circulation loop was also evaluated. The circulator should be operated in conditions such as pressure from 2.7MPa to 4.0MPa and flow-rate from 250g/s to 400g/s and at maximum pressure-rise of 250 kPa in test operation. It was confirmed in above verification and evaluations that the circulator had performance to satisfy above conditions within operation limitation of the circulator such as maximum input-power of 150 kW and maximum revolution number of 12,000 rpm. (author)

  5. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Kuhn, William L.; Rector, David R.; Heredia-Langner, Alejandro

    2015-01-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to ''address uncertainties and increase confidence in the projected, full-scale mixing performance and operations'' in the Waste Treatment and Immobilization Plant (WTP).

  6. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuhn, William L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rector, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heredia-Langner, Alejandro [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the projected, full-scale mixing performance and operations” in the Waste Treatment and Immobilization Plant (WTP).

  7. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  8. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    Science.gov (United States)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  9. Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites

    Science.gov (United States)

    Kvitsand, Hanne M. L.; Myrmel, Mette; Fiksdal, Liv; Østerhus, Stein W.

    2017-08-01

    Two case studies were carried out in central Norway in order to assess the performance of bank filtration systems in cold-climate fluvial aquifers relying on recharge from humic-rich surface waters with moderate microbial contamination. Three municipal wells and two surface-water sources at operative bank filtration systems were monitored for naturally occurring bacteriophages, fecal indicators, natural organic matter (NOM) and physico-chemical water quality parameters during a 4-month period. Aquifer passage effectively reduced the microorganism and NOM concentrations at both study sites. Bacteriophages were detected in 13 of 16 (81%) surface-water samples and in 4 of 24 (17%) well-water samples, and underwent 3 ± 0.3 log10 reduction after 50-80-m filtration and 20-30 days of subsurface passage. NOM reductions (color: 74-97%; dissolved organic carbon: 54-80%; very hydrophobic acids: 70%) were similar to those achieved by conventional water-treatment processes and no further treatment was needed. Both groundwater dilution and sediment filtration contributed to the hygienic water quality improvements, but sediment filtration appeared to be the most important process with regard to microbial and NOM reductions. A strengths-weaknesses-opportunities-threats analysis showed that bank filtration technology has a high potential as a pretreatment method for the provision of hygienically safe drinking water in Norway.

  10. Underwater floating robot-fish: a comparative analysis of the results of mathematical modelling and full-scale tests of the prototype

    Directory of Open Access Journals (Sweden)

    Jatsun Sergey

    2017-01-01

    Full Text Available The article presents a comparative analysis of the results of computer mathematical modelling of the motion of the underwater robot-fish implemented by using the MATLAB / Simulink package and fullscale tests of an experimental model developed in the laboratory of mechatronics and robotics of the SouthWest State University.

  11. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  12. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    Science.gov (United States)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  13. Why Online Education Will Attain Full Scale

    Science.gov (United States)

    Sener, John

    2010-01-01

    Online higher education has attained scale and is poised to take the next step in its growth. Although significant obstacles to a full scale adoption of online education remain, we will see full scale adoption of online higher education within the next five to ten years. Practically all higher education students will experience online education in…

  14. Aeration tank settling and real time control as a tool to improve the hydraulic capacity and treatment efficiency during wet weather: Results from 7 years' full-scale operational data

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Guildal, T.; Thomsen, H.A.R.

    2013-01-01

    This paper investigates the aeration tank settling (ATS) operation in combination with real time control (RTC) as a tool for increasing the hydraulic capacity and improving the treatment efficiency of a wastewater treatment plant (WWTP) during wet weather flows. Results from 7 years' full......-scale operational data at the Avedøre WWTP, Denmark, show that ATS operation in combination with RTC increases the hydraulic capacity of the treatment plant with up to 150 and 67% of the design capacity during winter and summer respectively. Compared to the conventional wet weather operation, the ATS in combination...... with RTC operation resulted in lower effluent concentrations for total phosphate (40-50%), suspended solids (30-60%) and chemical oxygen demand (30-50%), whereas no significant effect was observed on total nitrogen. Apart from the reduced effluent concentrations, the RTC resulted in economic savings...

  15. Aeration tank settling and real time control as a tool to improve the hydraulic capacity and treatment efficiency during wet weather: results from 7 years' full-scale operational data.

    Science.gov (United States)

    Sharma, A K; Guildal, T; Thomsen, H A R; Mikkelsen, P S; Jacobsen, B N

    2013-01-01

    This paper investigates the aeration tank settling (ATS) operation in combination with real time control (RTC) as a tool for increasing the hydraulic capacity and improving the treatment efficiency of a wastewater treatment plant (WWTP) during wet weather flows. Results from 7 years' full-scale operational data at the Avedøre WWTP, Denmark, show that ATS operation in combination with RTC increases the hydraulic capacity of the treatment plant with up to 150 and 67% of the design capacity during winter and summer respectively. Compared to the conventional wet weather operation, the ATS in combination with RTC operation resulted in lower effluent concentrations for total phosphate (40-50%), suspended solids (30-60%) and chemical oxygen demand (30-50%), whereas no significant effect was observed on total nitrogen. Apart from the reduced effluent concentrations, the RTC resulted in economic savings in the form of reduced costs for electricity and green taxes. However, in very few cases the ATS operation in combination with RTC was not able to handle design capacity, and some overflows occurred at flows below the design capacity. The frequency of these overflows may increase in the future due to increased rain intensity resulting in shorter prediction time available for ATS.

  16. Full scale torch tests on spent fuel cask shipping system

    International Nuclear Information System (INIS)

    Vigil, M.G.; Trujillo, A.A.; Yoshimura, H.R.; Joseph, B.J.; Eggers, P.E.; Crawford, H.L.

    1982-01-01

    Full scale experimental measurements, including the instrumentation designed to obtain the data, are presented on the thermal effects of torch fires on a large, spent nuclear fuel shipping cask. The measured temperature data in the various materials of the multilayered cask are unique, since no torch tests have been previously performed on a cask: These data were obtained during a series of four torch tests which simulate a situation in which the relief valve of a liquefied gas tank railcar has been opened and and the contents are vented and ignited so that the resultant torch impinges on the cask. The modified cask instrumentation geometry and materials are discussed. Temperature data throughout the cask are compared for two cask on the corrugated outer jacket surface, within the neutron shield, on the carbon steel shell, on the inner stainless steel shell and near the cask head closure seals are presented for the four torch tests

  17. Full scale prototype laboratory for architecture students

    NARCIS (Netherlands)

    Eekhout, A.C.J.M.; Van Swieten, P.M.J.

    2011-01-01

    Innovation in prefabrication with new technologies in product development of building components together with the important role materialization is playing in the education of architectural engineers and building technology designers are the main motifs for full scale material prototyping in the

  18. Strontium Removal: Full-Scale Ohio Demonstrations

    Science.gov (United States)

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  19. Full-scale ANANOX (R) system performance | Garuti | Water SA

    African Journals Online (AJOL)

    This paper reports the results of the first experimental investigations carried out on the only existing full-scale plant that makes use of the biological treatment system known as ANANOX(R). This system was first set up by the Italian research staff at ENEA (Agency for New Technologies, Energy and Environment) and consists ...

  20. Full Scale Experiment with Interactive Urban Lighting

    DEFF Research Database (Denmark)

    Poulsen, Esben Skouboe; Andersen, Hans Jørgen; Jensen, Ole B.

    2012-01-01

    and region of occupancy of persons in the town square were monitored in real time by computer vision analyses of thermal images from 3 cameras monitoring the twin square. The results of the computer vision analyses were used to control the illumination from 16 3.5 meter high RGB LED Lamps that were...

  1. Results from a full scale application of ashes and other residuals in the final cover construction of the Tveta landfill; Utvaerdering av fullskaleanvaendning av askor och andra restprodukter vid sluttaeckning av Tveta Aatervinningsanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Gustav (Telge AB, Soedertaelje (Sweden)); Andreas, Lale (Luleaa Univ. of Technology, Luleaa (Sweden))

    2008-06-15

    In 2000 Telge Aatervinning - a waste management and recycling company - started investigating ashes from incineration of industrial and biowaste waste. The company was given a permit from the Swedish Environmental Court to cover four hectares of the house hold waste landfill area. In 2006 the company received an unlimited permit to cover the remaining part of the landfill when the works end some thirty years later. Ashes were used the first time in 1966 for testing. Literature studies indicated the ashes can have a low hydraulic conductivity under certain conditions. In 1999 collaboration started with the Division of Waste Science and Technology at Luleaa University of Technology. Residuals from household and industrial waste were subject to investigation. Initially, biowaste incineration products were subject to testing and were later extended to other waste products, e.g. sludge, contaminated soils, foundry, and compost material. Several different sub-fractions of ashes were included in the investigation e.g. bottom and fly ash, various slag products after up-grading including dewatering, separation and sifting. Subsequently, a complete covering system of a landfill consists of residuals. Six test areas were outlined in order to give a good representation for cover construction in flat and steep areas with different compositions of liner material. The results show that in all areas the hydraulic conductivity construction yields less then 50 liters per square meters and years and can be less the than 5 liters in a repository for hazardous waste if required. In accordance with literature data the field observations show the liner material constructed only by ash material under certain conditions can form a monolithic structure due to very slow processes thus indicating small pore volumes that unable water air to interact with other media. The concept of using ash can be related to natural analogues of volcanic ashes and has been used in old defence walls and other

  2. The latest full-scale PWR simulator in Japan

    International Nuclear Information System (INIS)

    Nishimuru, Y.; Tagi, H.; Nakabayashi, T.

    2004-01-01

    The latest MHI Full-scale Simulator has an excellent system configuration, in both flexibility and extendability, and has highly sophisticated performance in PWR simulation by the adoption of CANAC-II and PRETTY codes. It also has an instructive character to display the plant's internal status, such as RCS condition, through animation. Further, the simulation has been verified to meet a functional examination at model plant, and with a scale model test result in a two-phase flow event, after evaluation for its accuracy. Thus, the Simulator can be devoted to a sophisticated and broad training course on PWR operation. (author)

  3. Flow Induced segregation in full scale castings with SCC

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    Though promising, pioneering work has been carried out with rheological characterization and numerical modelling of form filling with SCC, the approach is far from standard in the concrete industry and clearly the approach does not yet hold all the answers to relevant questions. In particular flow...... induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...

  4. Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik Ulfson

    2014-01-01

    rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles......The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM...

  5. Full Scale Test of a SSP 34m boxgirder 2

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk

    was part of a proof of concept investigation for a patent. The tests were performed at the Blaest test facility in August 2007. The tests are an important part of a research project established in cooperation between Risø National Laboratory for sustainable energy – Technical university of Denmark, SSP......This report presents the setup and result from three static full-scale tests of the reinforced glass fiber/epoxy box girder used in a 34m wind turbine blade. One test was without reinforcement one with cap reinforcement and the final test was with rib reinforcement. The cap reinforcement test......-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Mølholt Jensen’s PhD thesis. This report is the second data report containing the complete test data for the three full-scale tests. This report deals only with the test methods and the obtained results...

  6. Phase III (full scale) agitated mixing test plan

    International Nuclear Information System (INIS)

    Ruff, D.T.

    1994-01-01

    Waste Receiving and Processing Facility Module 2A (WRAP 2A) is the proposed second module of the WRAP facility. This facility will provide the required treatment for contact Handled (CH) Low Level (LL) Mixed Waste (MW) to allow its permanent disposal. Solidification of a portion of this waste using a cement based grout has been selected in order to reduce the toxicity and mobility of the waste in the disposal site. Mixing of the waste with the cement paste and material handling constraints/requirements associated with the mixed material is, therefore, a key process in the overall treatment strategy. This test plan addresses Phase 3, Full Scale Testing. The objectives of these tests are to determine if there are scale-up issues associated with the mixing results obtained in Phase 1 and 2 mixing tests, verify the workability of mixtures resulting from previous formulation development efforts (Waste Immobilization Development [WID]), and provide a baseline for WRAP 2A mixing equipment design. To this end, the following objectives are of particular interest: determine geometric influence of mixing blade at full scale (i.e., size, type, and location: height/offset); determine if similar results in terms of mixing effectiveness and product quality are achievable at this scale; determine if vibration is as effective at this larger scale in fluidizing the mixture and aiding in cleaning the vessel; determine if baffles or sweeping blades are needed to aid in mixing at the larger size and for cleaning the vessel; and determine quality of the poured monolithic product and investigate exotherm and filling influences at this larger size

  7. Defining Anaerobic Digestion Stability-Full Scale Study

    Science.gov (United States)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  8. Identification of aeroelastic forces on bridge cables from full-scale measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos

    2011-01-01

    and excitation from the deck and/or towers. Although some experiences have been done with full-scale measurements of inclined cables, many of the results available are based on wind tunnel tests and theoretical modelling. This paper presents results from full-scale measurements on the cables of the Øresund...

  9. Model and Full Scale Predictions of a Carrier Flow Field

    National Research Council Canada - National Science Library

    Gorski, Joseph

    2002-01-01

    .... These calculations are for a bare hull with skeg, bilge keels and outboard propeller shaft. The calculations indicate there are extensive differences between the model and full scale wakes entering the propeller disks...

  10. Full-scale leaching study of commercial reactor waste forms

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1984-01-01

    This paper describes a full-scale leaching experiment which has been conducted at Brookhaven National Laboratory (BNL) to study the release of radionuclides from actual commercial reactor waste forms. While many studies characterizing the leaching behavior of simulated laboratory-scale waste forms have been performed, this program represents one of the first attempts in the United States to quantify activity releases for real, full-scale waste forms. 5 references, 5 figures, 1 table

  11. Full-scale biodrying process of municipal solid waste

    Directory of Open Access Journals (Sweden)

    Dębicka Marlena

    2017-01-01

    Full Text Available The paper presents the results obtained in the full-scale waste biodrying reactor. The studied facility includes in the biological stage a rectangular-shaped, galvanized steel reactor equipped with a module for active aeration connected with a stove and a bio-filter for removing odours. The undersize fraction (Ø <80 mm of the municipal solid waste (MSW that undergoes mechanical pretreatment is treated by 14th days in the 150 m3 capasity reactor. Initial moisture content of the untreated waste was 54.65%. Moisture content was declined gradually during biodrying process. Temperature changes during 14th days of biodrying process were monitored with the maximum temperature 70°C. To assess the degree of stabilization of the biodried waste, the determination of the O2 uptake was measured. The oxygen demand of untreated waste was 53.16 mg O2/g d.m. and after 14th days for biodried waste oxygen consumption was 19.78 mg O2/g d.m. The results obtained in studies by respirometric dynamic method of oxygen uptake (expressed as O2/96h parameter had been compared to the results performed using the static method, where AT4 is the applied indicator.

  12. Full-Scale Crash Test of an MD-500 Helicopter

    Science.gov (United States)

    Littell, Justin

    2011-01-01

    A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.

  13. Characterization of AGIPD1.0: The full scale chip

    Energy Technology Data Exchange (ETDEWEB)

    Mezza, D., E-mail: davide.mezza@psi.ch [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Allahgholi, A.; Arino-Estrada, G.; Bianco, L.; Delfs, A. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Dinapoli, R. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Goettlicher, P. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Graafsma, H. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Mid Sweden University, Sundsvall (Sweden); Greiffenberg, D. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Hirsemann, H.; Jack, S. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Klanner, R. [University of Hamburg, Hamburg (Germany); Klyuev, A. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Krueger, H. [University of Bonn, Bonn (Germany); Marras, A. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Mozzanica, A. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Poehlsen, J. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Schmitt, B. [Paul-Scherrer-Institute (PSI), Villigen (Switzerland); Schwandt, J. [University of Hamburg, Hamburg (Germany); Sheviakov, I. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); and others

    2016-12-01

    The AGIPD (adaptive gain integrating pixel detector) detector is a high frame rate (4.5 MHz) and high dynamic range (up to 10{sup 4} ·12.4 keV photons) detector with single photon resolution (down to 4 keV taking 5σ as limit and lowest noise settings) developed for the European XFEL (XFEL.EU). This work is focused on the characterization of AGIPD1.0, which is the first full scale version of the chip. The chip is 64×64 pixels and each pixel has a size of 200×200 μm{sup 2}. Each pixel can store up to 352 images at a rate of 4.5 MHz (corresponding to 220 ns). A detailed characterization of the AGIPD1.0 chip has been performed in order to assess the main performance of the ASIC in terms of gain, noise, speed and dynamic range. From the measurements presented in this paper a good uniformity of the gain, a noise around 320 e{sup −} (rms) in standard mode and around 240 e{sup −} (rms) in high gain mode has been measured. Furthermore a detailed discussion about the non-linear behavior after the gain switching is presented with both experimental results and simulations.

  14. Pelamis WEC - full-scale joint system test

    Energy Technology Data Exchange (ETDEWEB)

    Yemm, R.

    2003-07-01

    This report describes the building and testing of a full-scale Pelamis Wave Energy Converter (WEC) two-axis joint system using a laboratory joint test rig. The main project objective to develop an intermediate demonstration model to confirm full scale control, hydraulic and data acquisition systems is discussed, and the key objectives of the programme are listed. Details are given of the semi-submerged articulated structure of cylindrical elements linked by hinged joints, and the integrated testing of all key components. A summary of the work programme and a description of the test rig are presented.

  15. Systems for animal exposure in full-scale fire tests

    Science.gov (United States)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  16. Bench-scale and full-scale studies of nitric oxides reduction by gaseous fuel reburning

    International Nuclear Information System (INIS)

    Su, S.; Xiang, J.; Sun, L.S.; Hu, S.; Zhu, J.M.

    2008-01-01

    Nitrogen oxides (NOx) emissions from coal-fired boilers are significant contributors to atmospheric pollution. China has specified more rigorous legal limits for NOx emissions from power plants. As a result of the need to reduce NOx emissions, cost-effective NOx reduction strategies must be explored. This paper presented detailed experimental studies on a gaseous fuel reburning process that was performed in a 36 kilowatt bench-scale down-fired furnace to define the optimal reburning operating conditions when different Chinese coals were fired in the furnace. In addition, the combustion system of a 350 megawatt full-scale boiler was retrofitted according to the experimental results. Finally, the gaseous fuel reburning was applied to the retrofitted full-scale boiler. The purpose of the study was to obtain a better understanding of the influence of the key parameters on nitric oxide (NO) reduction efficiency of the reburning process and demonstrate the gaseous fuel reburning on a 350 MWe coal-fired boiler in China. The paper described the experimental procedure with particular reference to the experimental facility and measurement; a schematic diagram of the experimental system; experimental fuels; and characteristics of coals for the reburning experiments. Results that were presented included influence of reburn zone residence time; influence of gaseous reburn fuel per cent; influence of excess air coefficient; and unburned carbon in fly ash. It was concluded that both an above 50 per cent NO reduction efficiency and low carbon loss can be obtained by the gaseous fuel reburning process under the optimal operating conditions. 20 refs., 5 tabs., 10 figs

  17. Full-scale application of the BABE technology.

    Science.gov (United States)

    Salem, S; Berends, D H J G; van der Roest, H F; van der Kuij, R J; van Loosdrecht, M C M

    2004-01-01

    Bio-augmentation can be used to obtain nitrification in activated sludge processes that operate at sub-optimal solid retention times. A side-stream process, the so-called BABE process that incorporates N-removal and augmentation of nitrifiers has been developed. The principle is to implement a nitrification reactor in the sludge return line, the so-called BABE reactor. This reactor can be fed with an internal N-rich flow (e.g. effluent from the sludge treatment). Hence the nitrification capacity of an activated sludge process can be augmented by the addition of nitrifiers cultivated in the BABE reactor. A full-scale test of the BABE technology has been at the treatment plant Garmerwolde in Groningen, the Netherlands. The set-up allowed comparing between three different lines: with the BABE reactor, without rejectwater and with untreated rejectwater. Based on this, the two important tasks (N-removal and inoculation) performed by the BABE reactor could be quantified. The results of the practical work in Garmerwolde showed a higher nitrification rate in the water line where the BABE reactor was implemented and also lower effluent ammonia. The experiments on a practical scale have demonstrated univocally the effective and stable operation of the BABE technology. In addition, sludge samples in different streams as well as from the BABE reactor were analysed with FISH technique. The FISH results illustrated the augmentation effect of the BABE reactor on the stream with the BABE reactor. A mathematical model, based on ASM1 model and implemented in AQUASIM was developed and used for simulating the treatment plant of Garmerwolde. The simulation results indicated that better effect of the BABE technology is expected at lower ambient temperatures and smaller volume of the BABE reactor. The BABE reactor could also allow for providing more space for de-nitrification in the main water line when nitrification is efficient enough.

  18. Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale ...

    African Journals Online (AJOL)

    2012-02-24

    Feb 24, 2012 ... applied to determine VFA in full-scale primary sludge hydrolysate and was shown to be equally efficient to the methods that are routinely-used for this ... fatty acids (VFAs), functioning as an alternative carbon and energy source, is of interest, and has been implemented at several WWTPs (Andreasen et al., ...

  19. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  20. Full-scale load tests of Pearl-Chain arches

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2017-01-01

    -Decks: First an investigation of the system’s elastic response (maximum load of 648kN), and second a demonstration of its collapse mechanism and ultimate capacity (maximum load of 970kN). The full-scale test showed formation of plastic hinges and clear warning signs are observed at 84% of the failure load...

  1. Full-scale monitoring of wind and suspension bridge response

    Science.gov (United States)

    Snæbjörnsson, J. T.; Jakobsen, J. B.; Cheynet, E.; Wang, J.

    2017-12-01

    Monitoring of real structures is important for many reasons. For structures susceptible to environmental actions, full-scale observations can provide valuable information about the environmental conditions at the site, as well as the characteristics of the excitation acting on the structure. The recorded data, if properly analyzed, can be used to validate and/or update experiments and models used in the design of new structures, such as the load description and modelling of the structural response. Various aspects of full-scale monitoring are discussed in the paper and the full-scale wind engineering laboratory at the Lysefjord suspension bridge introduced. The natural excitation of the bridge comes from wind and traffic. The surrounding terrain is complex and its effect on the wind flow can only be fully studied on site, in full-scale. The monitoring program and associated data analysis are described. These include various studies of the relevant turbulence characteristics, identification of dynamic properties and estimation of wind- and traffic-induced response parameters. The overall monitoring activity also included a novel application of the remote optical sensing in bridge engineering, which is found to have an important potential to complement traditional “single-point” wind observations by sonic anemometers.

  2. Passive Infrared Signature Augmentation of Full-Scale Plastic Targets

    National Research Council Canada - National Science Library

    Gebus, Lisa M; Sanders, Jeffrey S

    2002-01-01

    .... target systems for use in destructive and non-destructive testing by the U.S. Army T&E community. A need has been identified for low-cost, full-scale validated targets that can accurately simulate the visual, infrared...

  3. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used t...

  4. Full scale dynamic testing of Kozloduy NPP unit 5 structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1999-01-01

    As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the

  5. Identification and Analysis of Full Scale Ventilation Events

    Directory of Open Access Journals (Sweden)

    Luca Savio

    2012-01-01

    Full Text Available The present paper deals with propeller ventilation in full scale. The paper is based on full scale monitoring data from an offshore supply ship during normal operation. The data was collected by the on-line monitoring system HeMoS, developed by Rolls Royce Marine. The data covering one year and a half of ship operations were made available within the framework of the Era-Net Martec project PropSeas. The ventilation events are identified by means of an analysis procedure based on fuzzy logic. The paper contains both a basic introduction to fuzzy logic and a detailed description of the analysis procedure. The analysis procedure is then adopted to process the available data, find ventilation events, and form a set which is further analyzed including weather observations.

  6. The use of model-test data for predicting full-scale ACV resistance

    Science.gov (United States)

    Forstell, B. G.; Harry, C. W.

    The paper summarizes the analysis of test data obtained with a 1/12-scale model of the Amphibious Assault Landing Craft (AALC) JEFF(B). The analysis was conducted with the objective of improving the accuracy of drag predictions for a JEFF(B)-type air-cushion vehicle (ACV). Model test results, scaled to full-scale, are compared with full-scale drag obtained in various sea states during JEFF(B) trials. From the results of this comparison, it is found that the Froude-scale model rough-water drag data is consistently greater than full-scale derived drag, and is a function of both wave height and craft forward speed. Results are presented indicating that Froude scaling model data obtained in calm water also causes an over-prediction of calm-water drag at full-scale. An empirical correction that was developed for use on a JEFF(B)-type craft is discussed.

  7. Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization

    Science.gov (United States)

    Barton, Katherine; Abney, Morgan B.

    2011-01-01

    Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.

  8. Full scale leak test of the MEGAPIE containment hull

    International Nuclear Information System (INIS)

    Samec, K.

    2006-07-01

    The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is

  9. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods......Full scale fatigue test is an important part of the development and design of wind turbine blades. Testing is also needed for the approval of the blades in order for them to be used on large wind turbines. However, usually only one prototype blade is tested. Fatigue test of wind turbine blades...... will be presented in this report giving the blade test facility operator a guide to choose the method that best fit the needs and economic constraints. The state of the art method is currently dual axis mass resonance, where the purpose of the test is to emulate the loads the blades encounter in operation....

  10. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  11. Wind Farm Wake Models From Full Scale Data

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    on real full scale data. The modelling is based on so called effective wind speed. It is shown that there is a wake for a wind direction range of up to 20 degrees. Further, when accounting for the wind direction it is shown that the two model structures considered can both fit the experimental data......This investigation is part of the EU FP7 project “Distributed Control of Large-Scale Offshore Wind Farms”. The overall goal in this project is to develop wind farm controllers giving power set points to individual turbines in the farm in order to minimise mechanical loads and optimise power. One...... control configuration examined is distributed control where turbines only communicate with their nearest upwind neighbors. Design of such controllers needs wake models and these models should ideally be distributed. This paper compares two simple multiple wake models for this purpose. The study is based...

  12. Full scale tests of moisture buffer capacity of wall materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2005-01-01

    Moisture buffer capacity of hygroscopic materials can be used to moderate peaks in the relative humidity (RH) of indoor air as well as moisture content variations in building materials and furnishing. This can help to ensure healthier indoor environments by preventing many processes...... that are harmful such as growth of house dust mites, surface condensation and mould growth. Therefore a series of experiments has been carried out in a full scale test facility to determine the moisture buffer effect of interior walls of cellular concrete and plaster board constructions. For the cellular concrete...... of the changes of moisture content in specimens of the wall composites exposed to the same environment. It was found that the finishes had a big impact on the buffer performance of the underlying materials. Even though the untreated cellular concrete had a very high buffer capacity, the effect was strongly...

  13. Full scale subsonic wind tunnel requirements and design studies

    Science.gov (United States)

    Kelly, M. W.; Mort, K. W.; Hickey, D. H.

    1972-01-01

    The justification and requirements are summarized for a large subsonic wind tunnel capable of testing full-scale aircraft, rotor systems, and advanced V/STOL aircraft propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed. The design studies showed that the structural cost of this facility is the most important cost factor. For this reason (and other considerations such as requirements for engine exhaust gas purging) an open-return wind tunnel having two test sections was selected. The major technical problem in the design of an open-return wind tunnel is maintaining good test section flow quality in the presence of external winds. This problem has been studied extensively, and inlet and exhaust systems which provide satisfactory attenuation of the effects of external winds on test section flow quality were developed.

  14. Full scale experimental analysis of wind direction changes (EOD)

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    wind direction gust amplitudes associated with the investigated European sites are low compared to the recommended IEC- values. However, these values, as function of the mean wind speed, are difficult to validate thoroughly due to the limited number of fully correlated measurements....... the magnitudes of a joint gust event defined by a simultaneously wind speed- and direction change in order to obtain an indication of the validity of the magnitudes specified in the IEC code. The analysis relates to pre-specified recurrence periods and is based on full-scale wind field measurements. The wind......A coherent wind speed and wind direction change (ECD) load case is defined in the wind turbine standard. This load case is an essential extreme load case that e.g. may be design driving for flap defection of active stall controlled wind turbines. The present analysis identifies statistically...

  15. Design and Control of Full Scale Wave Energy Simulator System

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...

  16. Fire spread simulation of a full scale cable tunnel

    International Nuclear Information System (INIS)

    Huhtanen, R.

    1999-11-01

    A fire simulation of a full scale tunnel was performed by using the commercial code EFFLUENT as the simulation platform. Estimation was made for fire spread on the stacked cable trays, possibility of fire spread to the cable trays on the opposite wall of the tunnel, detection time of smoke detectors in the smouldering phase and response of sprinkler heads in the flaming phase. According to the simulation, the rise of temperature in the smouldering phase is minimal, only of the order 1 deg C. The estimates of optical density of smoke show that normal smoke detectors should give an alarm within 2-4 minutes from the beginning of the smouldering phase, depending on the distance to the detector (in this case it was assumed that the thermal source connected to the smoke source was 50 W). The flow conditions at smoke detectors may be challenging, because the velocity magnitude is rather low at this phase. At 4 minutes the maximum velocity at the detectors is 0.12 m/s. During the flaming phase (beginning from 11 minutes) fire spreads on the stacked cable trays in an expected way, although the ignition criterion seems to perform poorly when ignition of new objects is considered. The Upper cable trays are forced to ignite by boundary condition definitions according to the experience found from ti full scale experiment and an earlier simulation. After 30 minutes the hot layer in the room becomes so hot that it speeds up the fire spread and the rate of heat release of burning objects. Further, the hot layer ignites the cable trays on the opposite wall of the tunnel after 45 minutes. It is estimated that the sprinkler heads would be activated at 20-22 minutes near the fire source and at 24-28 minutes little further from the fire source when fast sprinkler heads are used. The slow heads are activated between 26-32 minutes. (orig.)

  17. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  18. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien

    2015-03-01

    The aim of this study was to assess the formation and the behavior of halogenated byproducts (regulated THMs and HAAs, as well as nitrogenous, brominated and iodinated DBPs including the emerging iodo-THMs) along the treatment train of full-scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF or RO). Desalination plants fed with good seawater quality and using intermittent chlorine injection did not show high DBP formation and discharge. One RO plant with a lower raw water quality and using continuous chlorination at the intake formed more DBPs. In this plant, some non-regulated DBPs (e.g., dibromoacetonitrile and iodo-THMs) reached the product water in low concentrations (< 1.5 μg/L). Regulated THMs and HAAs were far below their maximum contamination levels set by the US Environmental Protection Agency. Substantial amounts of DBPs are disposed to the sea; low concentrations of DBPs were indeed detected in the water on shore of the desalination plants.

  19. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  20. Full-scale fire experiments on vertical horizontal cable trays

    International Nuclear Information System (INIS)

    Mangs, J.; Keski-Rahkonen, O.

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO 2 , CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  1. Progress toward a full scale mobile satellite system for Canada

    Science.gov (United States)

    Roscoe, Orest S.

    The MSAT satellite, planned for launch in early 1994, will provide full scale, satellite based, mobile voice and data communication services to Canada. The MSAT system will provide mobile telephone, mobile radio and mobile data services to customers on the move in any part of North America. The Telesat Mobile Inc. (TMI) satellite will be backed up by a similar satellite to be operated by the American Mobile Satellite Corporation (AMSC) in the United States. An early entry mobile data service was inaugurated in the second quarter of 1990 using channels leased from INMARSAT on Marisat or Marecs-B. The baseline TMI system is described, beginning with the MSAT satellite under contract. The network architecture and the control system that are under development to support the mobile services are discussed. Since it is clearly desirable to have a North American system, such that customers may buy a mobile earth terminal (MET) from a number of qualified suppliers and be able to use it either in Canada or the U.S., TMI and AMSC are cooperating closely in the development of the space and ground segments of the system. The time scale for the procurement of all the elements of the systems is discussed.

  2. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  3. Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics

    Science.gov (United States)

    Miller, J. D.; Settles, G. S.

    1996-11-01

    The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)

  4. Numerical prediction analysis of propeller bearing force for full-scale hull–propeller–rudder system

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2016-11-01

    Full Text Available The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull–propeller–rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull–propeller–rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

  5. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Szyszka, Anna; Starnawski, Piotr Marian

    2016-01-01

    Denitrification is essential to the removal of nitrogen from wastewater during treatment, yet an understanding of the diversity of the active denitrifying bacteria responsible in full-scale wastewater treatment plants (WWTP) is lacking. In this study stable isotope probing (SIP) was applied...... in combination with microautoradiography (MAR)-fluorescence in situ hybridisation (FISH) to identify the active denitrifiers in a full-scale WWTP with biological N and P removal. Recognising that a range of carbon sources likely drive denitrification, a fully 13 C-labelled complex substrate was used for SIP...... for their in situ characterisation. FISH and MAR confirmed that they were core active denitrifiers in the community. The SIP clone library was additionally represented by a phylogenetically diverse group of organisms, with many previously not considered as important denitrifiers. The combined approach of SIP...

  6. Demonstration of a Full-Scale Fluidized Bed Bioreactor for the Treatment of Perchlorate at Low Concentrations in Groundwater

    Science.gov (United States)

    2009-01-01

    Fluidized Bed Reactor Iron Granulated Activated Carbon Gallons per minute Health & Safety Plan Hydraulic Residence Time Investigation-Derived Waste...FINAL REPORT Demonstration of a Full-Scale Fluidized Bed Bioreactor for the Treatment of Perchlorate at Low Concentrations in Groundwater...area code) 20-01-2009 Final Report March 2006-March 2008; January 2009 DEMONSTRATION OF A FULL-SCALE FLUIDIZED BED BIOREACTOR FOR THE TREATMENT OF

  7. Membrane Fouling and Chemical Cleaning in Three Full-Scale Reverse Osmosis Plants Producing Demineralized Water

    Directory of Open Access Journals (Sweden)

    Florian Beyer

    2017-01-01

    Full Text Available Membrane fouling and cleaning were studied in three reverse osmosis (RO plants. Feed water was secondary wastewater effluent, river water, and surface water. Membrane autopsies were used for fouling characterization. Fouling layer measurements included total organic carbon (TOC, adenosine triphosphate, polysaccharides, proteins, and heterotrophic plate counts. In all locations, membrane and spacer fouling was (bioorganic. Plant chemical cleaning efficiencies were evaluated from full-scale operational data and cleaning trials in a laboratory setup. Standard cleaning procedures were compared to two cleaning procedures specifically adapted to treat (bioorganic fouling using commercial blend cleaners (mixtures of active substances. The three RO plants were impacted by irreversible foulants causing permanently decreased performance in normalized pressure drop and water permeability even after thorough chemical cleaning. The standard plant and adapted cleaning procedures reduced the TOC by 45% on average, with a maximum of ~80%. In general, around 20% higher biomass removal could be achieved with adapted procedure I compared to adapted procedure II. TOC measurements and SEM showed that none of cleaning procedures applied could remove foulants completely from the membrane elements. This study underlines the need for novel cleaning approaches targeting resistant foulants, as none of the procedures applied resulted in highly effective membrane regeneration.

  8. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    International Nuclear Information System (INIS)

    Nelson, E; John Gladden, J

    2007-01-01

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments

  9. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E; John Gladden, J

    2007-03-22

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  10. Full Scale Experiences with Didactic Changes in Distance Education in Master of Industrial Information Technology (MII)

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten Haack; Borch, Ole M.

    2005-01-01

    This paper report the main results of didactic changes in the first year of an experiment in ICT-based distance learning. The results are based on a full scale experiment in the education, Master of Industrial Information Technology (MII). The experiment transforming the well functioning on...

  11. Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale ...

    African Journals Online (AJOL)

    An evaluation of 5 and 8 pH-point titrimetric methods for determining volatile fatty acids (VFAs) was conducted, and the results were compared for tap water and primary treated wastewater at the laboratory scale. These techniques were then applied to full-scale primary sludge hydrolysate, and the results were compared ...

  12. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    Science.gov (United States)

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  13. Safety Performance Evaluations for the Vehicle Based Movable Barriers Using Full Scale Crash Tests

    Directory of Open Access Journals (Sweden)

    Jin Minsoo

    2017-01-01

    Full Text Available The present study aims to develop a prototype of large-size movable barriers to protect roadside workers from incoming vehicles to the road work area with the following functions: maximization of work space in the right and left directions, convenient mobility, and minimization of impact without modification of the inside of movable barriers into traffic lanes and perform safety performance assessment on passengers through full scale crash tests. The large movable barrier was divided into folder type and telescope type and the development stage was now at the prototype phase. A full scale crash test was conducted prior to certification test at a level of 90%. The full scale crash test result showed that both types of folder type movable barrier and telescope type movable barrier satisfied the standard of the passenger safety performance evaluation at a level of 90%.

  14. Determination of textile dyeing wastewater COD components by comparison with respirometry and full-scale data.

    Science.gov (United States)

    Yu, Jing-Jie; Gu, Guo-Wei; Esposito, Giovanni; Fabbricino, Massimiliano; Wang, Shao-Po; Sun, Li-Ping

    2010-10-01

    A Modified Activated Sludge Model No. 1 (M-ASM1), including six COD components (S1, S(S), X1, X(S), X(H), and S(O)) and three biochemical processes (aerobic growth of heterotrophs, aerobic decay of heterotrophs and hydrolysis of entrapped organics) was used to simulate the anaerobic hydrolysis-aeration-sedimentation treatment series in a full-scale textile dyeing wastewater treatment plant (WWTP) with an influent flow rate of 200,000 m3/d. Using a respirometry method, the influent COD components of the WWTP activated sludge system were estimated. Then, calibration equations were set up depending on the full-scale treatment plant running data in order to calibrate the measurement results. This paper indicates that the influent COD components of a low biodegradability wastewater can be estimated using a respirometry method coupled with a calibration procedure based on full-scale plant running data.

  15. Hydraulic characterization and design of a full-scale biocurtain

    NARCIS (Netherlands)

    Hyndman, DW; Dybas, MJ; Forney, L; Heine, R; Mayotte, T; Phanikumar, MS; Tatara, G; Tiedje, J; Voice, T; Wallace, R; Wiggert, D; Zhao, [No Value; Criddle, CS

    2000-01-01

    This paper describes the design and hydraulic characterization of a cost-effective biocurtain that is currently being used to remove carbon tetrachloride from an aquifer in Schoolcraft, Michigan, Novel aspects of the design are the use of closely spaced wells to recirculate solutes through a

  16. Biological treatment of habitation waste streams using full scale MABRs

    Science.gov (United States)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  17. Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Aagaard Madsen, Helge

    2015-01-01

    A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R&D project following almost 10 years of innovative research in this field. The full scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the R...

  18. Dynamic Modelling and Identification of Precipitation Reactions in Full-Scale WWTP

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Tait, Stephan; Flores-Alsina, Xavier

    to a fast kinetic coefficient. Nonlinearity of the confidence regions also indicates that nonlinear and iterative techniques for parameter identification are required in estimating real parameter uncertainty. Additional experimental results and model analysis in full-scale WWTP will be presented in the full...

  19. The utilization of coal mining wastes as filling materials in reinforced earth structures. III. Construction of a full scale experimental structure; Utilizacion de los esteriles del carbon como material de relleno en estructuras de tierra reforzada. II. Construccion de una estructura experimental

    Energy Technology Data Exchange (ETDEWEB)

    CaNibano Gonzalez, J.; Martinez, C.; Gonzalez, M.R. [HUNOSA. Programa Desarrollo Esteriles. Oviedo (Spain); Pardo, F.; SopeNa, L. [CEDEX. Laboratorio Geotecnia, Madrid (Spain); Torres, M. [Escuela Tecnica Superior de Ingenieros de Minas, Oviedo (Spain); Perez, J.J. [MOPTMA. Demarcacion Carreteras del Estado, Oviedo (Spain)

    1997-06-01

    This article describes the construction of a full scale experimental structure in which coal mining wastes (mine stones) were utilized as a filling material. In such structure, which was 20 m long and 2 high coal mining wastes from two different tips were tested together with different types of reinforcing frames such as metal bands, geomeshes and Paraweb (Freyssisol) bands. Also, thermocouples were placed at different heights. On the other hand, the said structure was subjected to 3.085 passes of a truck having a ballast of 10.5 tons on its rear axle. The performance of the coal mining wastes was completely satisfactory. (Author) 3 refs.

  20. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  1. Regeneration of Full Scale Adsorptive Media Systems - Update

    Science.gov (United States)

    Presentation provides an update of the regeneration studies conducted at Twentynine Palms, CA. Following a short introduction, the presentation summarizes the results of the three regeneration tests conducted on the exhausted media of the arsenic removal system at Twentynine Pal...

  2. Full-scale implementation of external nitrification biological nutrient ...

    African Journals Online (AJOL)

    driniev

    In the external nitrification (EN) biological nutrient removal (BNR) activated sludge (AS) system, the nitrification process is removed from the main BNRAS system to a fixed media system external to the AS system (Hu et al., 2003). The ENBNRAS system ..... systematic evaluation of resultant effects difficult. Despite this.

  3. Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair

    Science.gov (United States)

    Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.

    1998-01-01

    This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.

  4. Full-scale assessment of the nutrient removal capabilities of membrane bioreactors.

    Science.gov (United States)

    Daigger, Glen T; Crawford, George V; Johnson, Bruce R

    2010-01-01

    Operating results from two full-scale membrane bioreactors (MBRs) practicing biological and chemical phosphorus and biological nitrogen removal to meet stringent effluent nutrient limits are analyzed. Full-scale results and special studies conducted at these facilities resulted in the development of guidelines for the design of MBRs to achieve stringent effluent nutrient concentrations--as low as 0.05 mg/L total phosphorus and 3 mg/L total nitrogen. These guidelines include the following: (1) direct the membrane recirculation flow to the aerobic zone, (2) provide intense mixing at the inlets of the anaerobic and anoxic zones, (3) maintain internal recirculation flowrates to maintain the desired mixed liquor suspended solids distribution, and (4) carefully control supplemental metal salt addition in proportion to the phosphorus remaining after biological removal is complete. Staging the various process zones and providing effective dissolved oxygen control also enhances nutrient removal performance. The results demonstrated that process performance can be characterized by the International Water Association (London, United Kingdom) (IWA) activated sludge model number 2d (ASM2d) and the Water Environment Federation (Alexandria, Virginia) chemical phosphorus removal model. These models subsequently were used to develop unique process configurations that are currently under design and/or construction for several full-scale nutrient removal MBRs.

  5. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    Science.gov (United States)

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the

  6. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  7. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  8. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    E I Prest

    Full Text Available Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP effluent and at one fixed location in the drinking water distribution network (NET. The samples were analysed for heterotrophic plate counts (HPC, Aeromonas plate counts, adenosine-tri-phosphate (ATP concentrations, and flow cytometric (FCM total and intact cell counts (TCC, ICC, water temperature, pH, conductivity, total organic carbon (TOC and assimilable organic carbon (AOC. Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time and in bacterial ATP concentrations (<1-3.6 ng L-1, which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35, and positively correlated with water temperature (r = 0.49. Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  9. Full-Scale Dynamic Testing of Dolosse to Destruction

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    1981-01-01

    . The set up and the procedure of the tests, which simulate the impact from rocking of the units and from concrete pieces that are thrown against the units, are designed to make a comparison between the behaviour of units of different sizes possible. The test method is described and proposed as a standard...... exists. Different ways of improving the strength of the units are discussed on the basis of the results from tests with different types of concrete. The tests included an investigation of the influence of reinforcement, and of different types of concrete and surface cracks on the strength of the units....

  10. Earthquake resistance test of full-scale glove box

    International Nuclear Information System (INIS)

    Fujita, T.; Ohtani, K.; Hayashi, M.; Kozeki, M.; Ide, T.; Sakuno, K.

    1989-01-01

    A glove box used at nuclear facilities must confine radioactive materials. High airtightness and negative internal pressure are used to prevent leaks. The allowable leakage rate of air is 0.1% vol/hr or less at the pre-service inspection. The negative pressure value is kept at - 30 mm H 2 O in normal operation. The glove box structural strength and its confinement reliability during an earthquake are major concerns. The verification of aseismic analysis methods and assumptions for a glove box are thus of great importance. Data on the dynamic behavior of giant glove boxes was recently obtained in large shaker experiments. This paper describes these experimental results and the appropriateness of aseismic analysis methods used in current design

  11. Full-scale tornado-missile impact tests. Interim report

    International Nuclear Information System (INIS)

    Stephenson, A.E.

    1976-04-01

    Seven completed initial tests are described with 4 types of hypothetical tornado-borne missiles (impacting reinforced concrete panels that are typical of walls in nuclear power facilities). The missiles were rocket propelled to velocities currently postulated as being attainable by debris in tornadoes. (1500-pound 35-foot long utility pole; 8-pound 1-inch Grade 60 reinforcing bar; 78-pound 3-inch Schedule 40 pipe; and 743-pound 12-inch Schedule 40 pipe;) The results show that a minimum thickness of 24 inches is sufficient to prevent backface scabbing from normal impacts of currently postulated tornado missiles and that existing power plant walls are adequate for the most severe conditions currently postulated by regulatory agencies. This report gives selected detailed data on the tests completed thus far, including strain, panel velocity, and reaction histories

  12. Full-scale retrieval of simulated buried transuranic waste

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd 3 volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed

  13. Case study of a full-scale evapotranspiration cover

    Science.gov (United States)

    McGuire, Patrick E.; Andraski, Brian J.; Archibald, Ryan E.

    2009-01-01

    The design, construction, and performance analyses of a 6.1ha evapotranspiration (ET) landfill cover at the semiarid U.S. Army Fort Carson site, near Colorado Springs, Colo. are presented. Initial water-balance model simulations, using literature reported soil hydraulic data, aided selection of borrow-source soil type(s) that resulted in predictions of negligible annual drainage (⩽1mm∕year). Final construction design was based on refined water-balance simulations using laboratory determined soil hydraulic values from borrow area natural soil horizons that were described with USDA soil classification methods. Cover design components included a 122cmthick clay loam (USDA), compaction ⩽80% of the standard Proctor maximum dry density (dry bulk density ∼1.3Mg∕m3), erosion control measures, top soil amended with biosolids, and seeding with native grasses. Favorable hydrologic performance for a 5year period was documented by lysimeter-measured and Richards’-based calculations of annual drainage that were all <0.4mm∕year. Water potential data suggest that ET removed water that infiltrated the cover and contributed to a persistent driving force for upward flow and removal of water from below the base of the cover.

  14. Monitoring of biogas plants - experiences in laboratory and full scale

    Directory of Open Access Journals (Sweden)

    B. Habermann

    2015-04-01

    Full Text Available To control and regulate the biogas process there are online process parameters and offline process parameters, which basically don’t differ between pilot biogas plants and industrial biogas plants. Generally, temperature, pH-value, volume flow rate and sometimes redox potential are measured online. An online-measurement of the dissolved volatile fatty acids and an online-detection of dissolved hydrogen both directly in the liquid phase as well as near-infrared spectroscopy are under development. FOS/TAC-analysis is the most common offline-analysis of the biogas process and normally it is carried out by the plant operator directly at the biogas plant. For example dry matter, organic dry matter, nitrogen and fatty acids are other analyses, which are carried out but by a laboratory. Microbiological analyses of biogas plants are very expensive and time-consuming and are therefore in Germany very rare. Microbiological analyses are mainly for research purposes. For example the Fluorescence in situ Hybridiation (FISH is used for characterization of the populations. Electric-optical measurement should be established as a new method to investigate the vitality of the methane producing microorganisms. In a cooperation project, which is promoted by the German ministry for technology, between IASP and Chair of Bioprocess Engineering at TU Berlin, this method is proper investigated using a device from the firm EloSystems. The microorganisms are brought in an electrical field of different frequencies. In this field the microorganisms direct themselves differently according to their physiological state. At the end of this project an early detection of process disturbance will be possible with the help of this method. In this presentation the result of the first tests are presented.

  15. Experimental study on the connection property of full-scale composite member

    Science.gov (United States)

    Panpan, Cao; Qing, Sun

    2018-01-01

    The excellent properties of composite result in its increasingly application in electric power construction, however there are less experimental studies on full-scale composite member connection property. Full-scale experiments of the connection property between E-glass fiber/epoxy reinforced polymer member and steel casing in practical engineering have been conducted. Based on the axial compression test of the designed specimens, the failure process and failure characteristics were observed, the load-displacement curves and strain distribution of the specimens were obtained. The finite element analysis was used to get the tensile connection strength of the component. The connection property of the components was analyzed to provide basis of the casing connection of GFRP application in practical engineering.

  16. Data on metagenomic profiles of activated sludge from a full-scale wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Jianhua Guo

    2017-12-01

    Full Text Available The data in this article mainly present the sequences of activated sludge from a full-scale municipal wastewater treatment plant (WWTP carrying out simultaneous nitrogen and phosphorous removal in Beijing, China. Data include the operational conditions and performance, dominant microbes and taxonomic analysis in this WWTP, and function annotation results based on SEED, Clusters of Orthologous Groups (COG, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Sequencing data were generated by using Illumina HiSeq. 2000 platform according to the recommendations of the manufacturer. The sequencing data have been deposited in MG-RAST server (project ID: mgm4735473.3. For more information, see “Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing” by Guo et al. (2017 [1].

  17. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed......This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....

  18. Drag coefficients of lattice masts from full-scale wind-tunnel tests

    DEFF Research Database (Denmark)

    Georgakis, Christos; Støttrup-Andersen, Ulrik; Johnsen, Marie

    2009-01-01

    In this paper, the drag coefficients obtained from a series of full-scale section model wind-tunnel tests of several lattice mast configurations are presented and compared to those provided in Eurocode 3 and ESDU. The drag coefficients provided in Eurocode are conservative interpretations of 1......:5 scale section model tests performed at the National Physics Laboratory and the National Maritime Institute in the UK in the 1970´s. ESDU provides velocity-dependent drag coefficients equivalent to those obtained from the same series of tests. In all cases, the mast legs and diagonals are comprised...... primarily of circular hollow sections, putting into question the validity of the scaled tests from the 70’s. The results of the full-scale tests show that the drag coefficients of the masts have lower values than those obtained from the scaled tests for turbulent wind and higher for winds with low...

  19. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    International Nuclear Information System (INIS)

    Visca, Eliseo; Roccella, S.; Candura, D.; Palermo, M.; Rossi, P.; Pizzuto, A.; Sanguinetti, G.P.; Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G.

    2015-01-01

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m 2 but the capability to remove up to 20 MW/m 2 during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  20. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  1. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  2. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    Science.gov (United States)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  4. Selection of the surface water treatment technology - a full-scale technological investigation.

    Science.gov (United States)

    Pruss, Alina

    2015-01-01

    A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1-1.5 m³/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m³/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.

  5. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  6. The NET articulated boom: Preliminary investigations and justification for a full scale prototype

    International Nuclear Information System (INIS)

    Suppan, A.

    1990-12-01

    The articulated boom system is the favourite in-vessel handling system for NET which will be used to maintain or replace in-vessel components during short term interventions. The testbed EDITH is the prototype of this system and is the logical step between the proof of principle of the system, which is already performed by the JET articulated boom, and the operational equipment for NET. EDITH is required to demonstrate that maintenance of plasma facing components can be carried out with the anticipated reliability and time. To achieve this aim EDITH is based on the experience of the JET boom and will be constructed in full scale, supplemented by a full scale mock-up. A further goal of EDITH is to allow the testing of boom components and subassemblies. The results of preliminary investigations for the boom are summarized, the need of the testbed EDITH and a full scale mock-up is discussed and both EDITH and the mock-up are described. (orig.) [de

  7. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    Science.gov (United States)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  8. Theory and comparison with tests of two full-scale proprotors

    Science.gov (United States)

    Johnson, W.

    1974-01-01

    A nine-degrees-of-freedom theoretical model has been developed for investigations of the dynamics of a prop rotor operating in high inflow axial flight on a cantilever wing. The theory is described, and the results of the analysis are presented for two prop rotor configurations: a gimbaled, stiff in-plane rotor, and a hingeless, soft in-plane rotor. The influence of various elements of the theory is discussed, including the modeling used for the blade and wing aerodynamics and the influence of the rotor lag degree of freedom. The results from full-scale tests of these two prop rotors are presented and compared with the theoretical results.

  9. Black carbon network in Mexico. First Results

    Science.gov (United States)

    Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma

    2017-04-01

    After the United Nations Framework Convention on Climate Change celebrated in Paris 2016, many countries should adopt some mechanisms in the next years to contribute to mitigate greenhouse gas emissions and support sustainable development. Mexico Government has adopted an unconditional international commitment to carry out mitigation actions that would result in the reduction of 51% in black carbon (BC) emissions by year 2030. However, many BC emissions have been calculated by factor emissions. Since optical measurements of environmental BC concentrations can vary according the different components and their subsequence wavelength measure, it's important to obtain more accurate values. BC is formally defined as an ideally light-absorbing substance composed by carbon (Bond et al., 2013), and is the second main contributor (behind Carbon Dioxide; CO2) to positive radiative forcing (Ramanathan and Carmichael, 2008). Recently, BC has been used as an additional indicator in air quality management in some cities because is emitted from the incomplete combustion of fossil fuels, biofuel and biomass burning in both anthropogenic and it is always emitted with other particles and gases, such as organic carbon (OC), nitrogen oxides (NOx), and sulfur dioxide (SO2). Black Carbon, PM2.5 and pollutant gases were measured from January 2015 to December 2015 at three main cities in Mexico, and two other places to evaluate the BC concentration levels in the country. The urban background sites (Mexico City, Monterrey, Guadalajara, MXC-UB, GDL-UB, MTY-UB), a sub-urban background site (Juriquilla, Queretaro, JUR-SUB) and a regional background site (Altzomoni, ALT-RB). Results showed the relationship between BC and PM2.5 in the 3 large cities, with BC/PM2.5 ratios near 0.14 to 0.09 and a high BC-CO relationship in all the year in Mexico City, who showed that mobile sources are a common, at least in cities with a non-significant biomass burning emission related to agriculture or coal

  10. Investigation of wake interaction using full-scale lidar measurements and large eddy simulation

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2016-01-01

    In this paper, wake interaction resulting from two stall regulated turbines aligned with the incoming wind is studied experimentally and numerically. The experimental work is based on a full-scale remote sensing campaign involving three nacelle mounted scanning lidars. A thorough analysis...... is based on a comparison between wake deficit, wake generated turbulence, turbine power production and thrust force. An excellent agreement between measurement and simulation is seen in both the fixed and the meandering frame of reference. Copyright © 2015 John Wiley & Sons, Ltd....

  11. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    Science.gov (United States)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  12. Evaluation of Response Prediction Procedures using Full Scale Measurements for a Container Ship

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher; Nielsen, Ulrik Dam

    2013-01-01

    in the operation of container carriers but are important in e.g. loading/unloading operations at sea or helicopter landings. Three different procedures are discussed: Conditional processes with analytical estimates of the mean values and standard deviations, the autoregressive predictor method and a method based......This paper deals with the analysis of recent full-scale strain measurements in the hull of a large container carrier covering several months of operation. The focus is on the real-time prediction accuracy of responses 5-15 seconds ahead of the measurements. Such results are less applicable...... Large Container Ships (TULCS) project no. 234146....

  13. Construction and test of a full-scale prototype of an ATLAS muon spectrometer tracking chamber

    International Nuclear Information System (INIS)

    Biscossa, A.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Fraternali, M.; Freddi, A.; Iuvino, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rimoldi, A.; Vercellati, F.; Vercesi, V.; Bagnaia, P.; Bini, C.; Capradossi, G.; Ciapetti, G.; Creti, P.; De Zorzi, G.; Iannone, M.; Lacava, F.; Mattei, A.; Nisati, L.; Oberson, P.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Zullo, A.; Daly, C.H.; Davisson, R.; Guldenmann, H.; Lubatti, H.J.; Zhao, T.

    1999-01-01

    We have built a full scale prototype of the precision tracking chambers (Monitored Drift Tubes, MDT) for the muon spectrometer of the Atlas Experiment at the LHC collider. This article describes in detail the procedures used in constructing the drift tubes and in assembling the chamber. It presents data showing that the required mechanical precision has been achieved as well as test beam results displaying the over all chamber performance. The article presents data demonstrating the derivation of the space-time relation of the drift tubes by the autocalibration procedure using real data from the tracks crossing the chamber. Autocalibration is the procedure which must be used during run time

  14. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (<15 h of MGT) among the four filter communities, consistent with the highest dissolved organic matter removal rate by GAC. Our findings provide new insights into the community phylogenetic structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  16. Optical Flow Visualization Using the Modular Background-Oriented Full-Scale Schlieren Technique

    Directory of Open Access Journals (Sweden)

    Chung-Hwei Su

    2014-07-01

    Full Text Available Background-oriented full-scale schlieren (BOFSS with large test sections is a famous technique, specially developed for optical flow visualization. This article presents the technique using a modular background-oriented light source instead of the retroreflective method. The modular background- oriented light source is convenient to enlarge the area of the light source and providing a larger testing section, thus the test sections become flexible. Moreover, the article also focuses on investigating the BOFSS sensitivity with different percentages of cutoff grid. The setting composed of fluorescent lamp Philips-865, atomizing films, and linear grating mask. The linear grating mask is alternated with black lines with width of 6 mm. The area of light source and test section are 2 × 2 and 1 × 1 m2, respectively. The present study applies different percentages of cutoff grid to block light source, and 50, 60, 70, 80, and 90% percentages of cutoff grid are been tested. The test subjects are heat flux from burning candles and Bunsen burner, acetone gas flow, LPG flow and compressed butane gas. The results show that a cutoff grid with 90% of light blockage presented the best result for conventional Z-arrangement schlieren technique. Whereas, cutoff 60 percent light shows the best results for full-scale schilieren technique.

  17. Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor

    Science.gov (United States)

    Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.

    2016-01-01

    Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.

  18. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.

    2017-01-01

    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  19. Full scale simulations of accidents on spent-nuclear-fuel shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.

    1978-01-01

    In 1977 and 1978, five first-of-a-kind full scale tests of spent-nuclear-fuel shipping systems were conducted at Sandia Laboratories. The objectives of this broad test program were (1) to assess and demonstrate the validity of current analytical and scale modeling techniques for predicting damage in accident conditions by comparing predicted results with actual test results, and (2) to gain quantitative knowledge of extreme accident environments by assessing the response of full scale hardware under actual test conditions. The tests were not intended to validate the present regulatory standards. The spent fuel cask tests fell into the following configurations: crashes of a truck-transport system into a massive concrete barrier (100 and 130 km/h); a grade crossing impact test (130 km/h) involving a locomotive and a stalled tractor-trailer; and a railcar shipping system impact into a massive concrete barrier (130 km/h) followed by fire. In addition to collecting much data on the response of cask transport systems, the program has demonstrated thus far that current analytical and scale modeling techniques are valid approaches for predicting vehicular and cask damage in accident environments. The tests have also shown that the spent casks tested are extremely rugged devices capable of retaining their radioactive contents in very severe accidents

  20. Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests

    Science.gov (United States)

    Littell, Justin D.

    2016-01-01

    Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.

  1. Seasonal Variation of Nutrient Removal in a Full-Scale Artificial Aerated Hybrid Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Jun Zhai

    2016-11-01

    Full Text Available To improve nutrient removal, a full-scale hybrid constructed wetland (CW consisting of pre-treatment units, vertical-baffled flow wetlands (VBFWs, and horizontal subsurface flow wetlands (HSFWs was installed in August 2014 to treat sewage wastewater. Artificial aeration (AA was applied continuously in the VBFW stage to improve the aerobic condition in the hybrid CW. Water samples were collected and analyzed twice a month between the period of August 2015 and July 2016. The results suggest that this new hybrid CW can achieve a satisfactory reduction of chemical oxygen demand (COD, ammonium nitrogen (NH4+-N, total nitrogen (TN, and total phosphorus (TP with average removal rates of 85% ± 10% (35% ± 19 g/m2 per day, 76% ± 18% (7% ± 2 g/m2 per day, 65% ± 13% (8% ± 2 g/m2 per day, and 65% ± 21% (1 g/m2 per day, respectively. AA significantly improved the aerobic condition throughout the experimental period, and the positive influence of AA on nitrogen removal was found to be higher during summer that during winter. A significant positive correlation between water temperature and nutrient removal (p < 0.01 was observed in the system. Overall, this study demonstrates the application of AA in a full-scale hybrid CW with satisfactory nutrient removal rates. The hybrid CW system with artificial aeration can serve as a reference for future applications areas where land availability is limited.

  2. Full-scale impact test data for tornado-missile design of nuclear plants

    International Nuclear Information System (INIS)

    Stephenson, A.E.; Sliter, G.E.

    1977-01-01

    It is standard practice to consider the effects of low-probability impacts of tornado-borne debris (''tornado missiles'' such as utility poles and steel pipes) in the structural design of nuclear power plants in the United States. To provide data that can be used directly in the design procedure, a series of full-scale tornado-missile impact tests was performed. This paper is a brief summary of the results and conclusions from these tests. The tests consisted of reinforced concrete panels impacted by poles, pipes, and rods propelled by a rocket sled. The panels were constructed to current minimum standards and had thicknesses typical of auxiliary buildings of nuclear power plants. A specific objective was the determination of the impact velocities below which the panels do not experience backface scabbing. Another objective was to assess the adequacy of (1) conventional design formulae for penetration and scabbing and (2) conventional design methods for overall structural response. Test missiles and velocities represented those in current design standards. Missiles included utility poles, steel pipes, and steel bars. It is important to interpret the data in this paper in recognition that the test conditions represent conservative assumptions regarding maximum wind speeds, injection of the missile into the wind stream, aerodynamic trajectory, and orientation of missile at impact. Even with the severe assumptions made, the full-scale tests described demonstrate the ability of prototypical nuclear plant walls and roofs to provide adequate protection against postulated tornado-missile impact

  3. Modelling a full scale membrane bioreactor using Activated Sludge Model No.1: challenges and solutions.

    Science.gov (United States)

    Delrue, F; Choubert, J M; Stricker, A E; Spérandio, M; Mietton-Peuchot, M; Racault, Y

    2010-01-01

    A full-scale membrane bioreactor (1,600 m(3) d(-1)) was monitored for modelling purposes during the summer of 2006. A complete calibration of the ASM1 model is presented, in which the key points were the wastewater characterisation, the oxygen transfer and the biomass kinetics. Total BOD tests were not able to correctly estimate the biodegradable fraction of the wastewater. Therefore the wastewater fractionation was identified by adjusting the simulated sludge production rate to the measured value. MLVSS and MLSS were accurately predicted during both calibration and validation periods (20 and 30 days). Because the membranes were immerged in the aeration tank, the coarse bubble and fine bubble diffusion systems coexisted in the same tank. This allowed five different aeration combinations, depending whether the 2 systems were operating separately or simultaneously, and at low speed or high speed. The aeration control maintained low DO concentrations, allowing simultaneous nitrification and denitrification. This made it difficult to calibrate the oxygen transfer. The nitrogen removal kinetics were determined using maximum nitrification rate tests and an 8-hour intensive sampling campaign. Despite the challenges encountered, a calibrated set of parameters was identified for ASM1 that gave very satisfactory results for the calibration period. Matching simulated and measured data became more difficult during the validation period, mainly because the dominant aeration configuration had changed. However, the merit of this study is to be the first effort to simulate a full-scale MBR plant.

  4. Horizontal Axis Wind Turbine Experiments at Full-Scale Reynolds Numbers

    Science.gov (United States)

    Miller, Mark; Kiefer, Janik; Nealon, Tara; Westergaard, Carsten; Hultmark, Marcus

    2017-11-01

    Achieving high Reynolds numbers on a wind turbine model remains a major challenge for experimentalists. Since Reynolds number effects need to be captured accurately, matching this parameter is of great importance. The challenge stems from the large scale ratio between model and full-size, typically on the order of 1:100. Traditional wind tunnels are limited due to finite tunnel size, with velocity as the only free-parameter available for increasing the Reynolds number. Unfortunately, increasing the velocity 100 times is untenable because it violates Mach number matching with the full-scale and results in unfeasible rotation rates. Present work in Princeton University's high pressure wind tunnel makes it possible to evaluate the Reynolds number sensitivity with regard to wind turbine aerodynamics. This facility, which uses compressed air as the working fluid, allows for adjustment of the Reynolds number, via the fluid density, independent of the Tip Speed Ratio (TSR) and Mach number. Power and thrust coefficients will be shown as a function of Reynolds number and TSR for a model wind turbine. The Reynolds number range investigated exceeds 10 ×106 based on diameter and free-stream conditions or 3 ×106 based on the tip chord, matching those of the full-scale. National Science Foundation and Andlinger Center for Energy and the Environment.

  5. UPTF experiment: Effect of full-scale geometry on countercurrent flow behaviour in PWR downcomer

    International Nuclear Information System (INIS)

    Liebert, J.; Weiss, P.

    1989-01-01

    Four separate effects tests (13 runs) have been performed at UPTF - a 1:1 scale test facility - to investigate the thermal-hydraulic phenomena in the full-scale downcomer of a PWR during end-of-blowdown, refill and reflood phases. Special attention has been paid to the effects of geometry - cold leg arrangement - and ECC-water subcooling on downcomer countercurrent flow and ECC bypass behaviour. A synopsis of the most significant events and a comparison of countercurrent flow limitation (CCFL) data from UPTF and 1/5 scale test facility of Creare are given. The CCFL results of UPTF are compared to data predicted by an empirical correlation developed at Creare, based on the modified dimensionless Wallis parameter J * . A significant effect of cold leg arrangement on CCFL was observed leading to strongly heterogeneous flow condition in the downcomer. CCFL in front of cold leg 1 adjacent to the broken loop exists even for very low steam flow rates. Therefore the benefit of strong water subcooling is not as much as expected. The existing flooding correlation of Creare predicts the full-scale downcomer CCFL insufficiently. New flooding correlations are required to describe the CCFL process adequately. (orig.)

  6. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    Science.gov (United States)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  7. Linear and Non-linear Numerical Sea-keeping Evaluation of a Fast Monohull Ferry Compared to Full Scale Measurements

    DEFF Research Database (Denmark)

    Wang, Zhaohui; Folsø, Rasmus; Bondini, Francesca

    1999-01-01

    The past years have seen a growing interest in fast ships for both cargo and passenger transportation. Different designs have been considered, but recently attention has been focused on fast monohull displacement ships. To gain more knowledge and experience on the behaviour of this kind of ships......, full-scale measurements have been performed on board a 128 m monohull fast ferry. This paper deals with the results from these full-scale measurements. The primary results considered are pitch motion, midship vertical bending moment and vertical acceleration at the bow. Previous comparisons between...... model experiments and numerical sea-keeping calculations indicate that conventional low speed strip theories yield reasonable results even at very high Froude members. To confirm this, the present paper presents the results from the performed full scale members. To confirm this, the present paper...

  8. Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used

  9. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    Science.gov (United States)

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    Science.gov (United States)

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  11. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  12. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-01

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  13. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-21

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it - this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  14. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, M.; Lamoreaux, G.H.; Romesberg, L.E.; Yoshimura, H.R.; Joseph, B.J.; May, R.A.

    1983-01-01

    This report describes extensive full-scale and scale-model testing of 55-gallon drums used for shipping low-level radioactive waste materials. The tests conducted include static crush, single-can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full-, quarter-, and eighth-scale with different types of waste materials. The full-scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full-scale drums. Two computer techniques for calculating the response of drum stacks are presented. 83 figures, 9 tables.

  15. Analysis, scale modeling, and full-scale tests of low-level nuclear-waste-drum response to accident environments

    Science.gov (United States)

    Huerta, M.; Lamoreaux, G. H.; Romesberg, L. E.; Yoshimura, H. R.; Joseph, B. J.; May, R. A.

    1983-01-01

    Extensive full scale and scale model testing of 55 gallon drums used for shipping low level radioactive waste materials are described. The tests conducted include static crush, single can impact tests, and side impact tests of eight stacked drums. Static crush forces were measured and crush energies calculated. The tests were performed in full, quarter, and eight scale with different types of waste materials. The full scale drums were modeled with standard food product cans. The response of the containers is reported in terms of drum deformations and lid behavior. The results of the scale model tests are correlated to the results of the full scale drums. Two computer techniques for calculating the response of drum stacks are presented.

  16. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  17. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  18. Quantitative assessment of the removal of indicator bacteria in full-scale treatment plants

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Medema, Gerriet Jan; Kooij, D. van der

    2004-01-01

    The elimination of thermotolerant coliforms (Coli44) and spores of sulphite-reducing clostridia (SSRC) in full-scale water treatment was determined by large volume sampling. The objective was to determine the elimination capacity of full-scale treatment processes for micro-organisms, both

  19. Simulation in full-scale mock-ups: an ergonomics evaluation method?

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2014-01-01

    This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities.......This paper presents and exploratory study of four simulation sessions in full-scale mock-ups of future hospital facilities....

  20. Evaluation of the airway of the SimMan full-scale patient simulator

    DEFF Research Database (Denmark)

    Hesselfeldt, R; Kristensen, M S; Rasmussen, L S

    2005-01-01

    SimMan is a full-scale patient simulator, capable of simulating normal and pathological airways. The performance of SimMan has never been critically evaluated.......SimMan is a full-scale patient simulator, capable of simulating normal and pathological airways. The performance of SimMan has never been critically evaluated....

  1. An estimation method of full scale performance for pulling type podded propellers

    Directory of Open Access Journals (Sweden)

    Hyoung-Gil Park

    2014-12-01

    Full Text Available This paper presents a new estimation method of full scale propulsive performance for the pulling type podded propeller. In order to estimate the drag of pod housing, a drag velocity ratio, which includes the effects of podded propeller loading and Reynolds number, is presented and evaluated through the comparison of model test and numerical analysis. By separating the thrust of propeller blade and the drag of pod housing, extrapolation method of pod housing drag to full scale is deduced, and correction method of propeller blade thrust and torque to full scale is presented. This study utilized the drag coefficient ratio of the pod housing as a measure for expanding it to full scale, but in order to increase the accuracy of performance evaluation, additional study is necessary on the method for the full scale expansion via separating the drag of pod body, strut and fin which consist the pod housing.

  2. Theoretical Predictions of Springing and Their Comparison with Full Scale Measurements

    DEFF Research Database (Denmark)

    Gu, X.; Storhaug, G.; Vidic-Perunovic, Jelena

    2003-01-01

    The present paper considers a large ocean going ship with significant springing responses, which have made a large contribution to the fatigue cracking for certain structural details. Four different theories for predicting ship responses and associated computer programs for predictions of springing...... are described. These theories represent four different approaches with various characteristics, e.g. linear, scond-order, nonlinear, frequency-domain, time-domain, two-dimensional and three-dimensional, in calculating hydrodynamic loads and vibrations. The numerical programs, WASIM (DNV), SOST (DTU), SINO...... (CSSRC) and VERES (Marintek), have been well validated for ordinary ship responses. Assumptions regarding how the different programs are sued in the present calculations are provided. Sensitivity studies are carried out and the main results are presented. A selected number of full-scale measurements...

  3. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the

  4. Full scale validation of helminth ova (Ascaris suum) inactivation by different sludge treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulsrud, B.; Gjerde, B.; Lundar, A.

    2003-07-01

    The Norwegian sewage sludge regulation requires disinfection (hygienisation) of all sludges for land application, and one of the criteria is that disinfected sludge should not contain viable helminth ova. All disinfection processes have to be designed and operated in order to comply with this criteria, and four processes employed in Norway (thermophilic aerobic pre-treatment, pre-pasteurisation, thermal vacuum drying in membrane filter presses and lime treatment) have been tested in full scale by inserting semipermeable bags of Ascaris suum eggs into the processes for certain limes. For lime treatment supplementary laboratory tests have been conducted. The paper presents the results of the experiments, and it could be concluded that all processes, except lime treatment, could be operated at less stringent time-temperature regimes than commonly experienced at Norwegian plants today. (author)

  5. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

    Directory of Open Access Journals (Sweden)

    Keh-Sik Min

    2009-09-01

    Full Text Available A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors’ studies shall be presented and discussed.

  6. Simulation and calibration of a full-scale sequencing batch reactor for wastewater treatment

    Directory of Open Access Journals (Sweden)

    M. C. Oselame

    2014-09-01

    Full Text Available The aim of this study is to apply the main mathematical models used in activated sludge reactors, the Activated Sludge Model No. 1 (ASM1 and its variations (ASM2d and ASM3, to predict the behavior of a full-scale sequencing batch reactor (SBR used for the treatment of domestic wastewater employing the software ASIM®. Two cycles were studied, the step-feed cycle and conventional filling. Samples were taken from the raw influent, from the reactor and from the treated wastewater, and these data were used to calibrate the models. The ASM1 model was the best model to represent the cycle with only an input, while model ASM3 was the best for simulating the scaled filling cycle. This work presents calibrated parameters for the two kinds of filling. The results of these simulations indicate that the calibration process succeeded and can be used as a model for future studies.

  7. Anaerobic digestion foaming in full-scale biogas plants: A survey on causes and solutions

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; O-Thong, Sompong

    2014-01-01

    Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times...... of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case. © IWA Publishing 2014....... per year. Foaming incidents often lasted from one day to three weeks, causing 20-50% biogas production loss. One foaming case at Lemvig biogas plant has been investigated and the results indicated that the combination of feedstock composition and mixing pattern of the reactor was the main cause...

  8. Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management.

    Science.gov (United States)

    Williams, Julie; Williams, Haydn; Dinsdale, Richard; Guwy, Alan; Esteves, Sandra

    2013-07-01

    Microbial populations in a full-scale anaerobic digester fed on food waste were monitored over an 18-month period using qPCR. The digester exhibited a highly dynamic environment in which methanogenic populations changed constantly in response to availability of substrates and inhibitors. The methanogenic population in the digester was dominated by Methanosaetaceae, suggesting that aceticlastic methanogenesis was the main route for the production of methane. Sudden losses (69%) in Methanosaetaceae were followed by a build-up of VFAs which were subsequently consumed when populations recovered. A build up of ammonium inhibited Methanosaetaceae and resulted in shifts from acetate to hydrogen utilization. Addition of trace elements and alkalinity when propionate levels were high stimulated microbial growth. Routine monitoring of microbial populations and VFAs provided valuable insights into the complex processes occurring within the digester and could be used to predict digester stability and facilitate digester optimization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  10. A metagenome of a full-scale microbial community carrying out Enhanced Biological Phosphorus Removal

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc

    2012-01-01

    in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without...... the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes...... bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (495%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity...

  11. A novel full scale experimental characterization of wind turbine aero-acoustic noise sources - preliminary results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2016-01-01

    of the blade and the noise on the ground in a distance of about one rotor diameter. In total six surface microphones were used to measure the SP at the leading edge (LE) and trailing edge (TE) of the blade. In parallel noise was measured by eight microphones placed on plates on the ground around the turbine...... for the microphone on the pressure side close to the TE. For increasing wind speed the spectra show a very distinct increase in spectral energy up to about 300 Hz after which the spectra collapse. As the boundary layer is laminar it is thought that this spectral energy is due to sound waves from the TE noise...

  12. Resource recovery from source separated domestic waste(water) streams; Full scale results

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.

    2011-01-01

    A major fraction of nutrients emitted from households are originally present in only 1% of total wastewater volume. New sanitation concepts enable the recovery and reuse of these nutrients from feces and urine. Two possible sanitation concepts are presented, with varying degree of source separation

  13. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  14. CO2 Sparging Phase 3 Full Scale Implementation and Monitoring Report

    Science.gov (United States)

    In-situ carbon dioxide (CO2) sparging was designed and implemented to treat a subsurface causticbrine pool (CBP) formed as a result of releases from historical production of industrial chemicals at theLCP Chemicals Site, Brunswick, GA (Site).

  15. A multi-professional full-scale simulation course in the recognition and management of deteriorating hospital patients

    DEFF Research Database (Denmark)

    Fuhrmann, Lone; Østergaard, Doris; Lippert, Anne

    2009-01-01

    and evaluation of a multi-professional, full-scale simulation-based course for hospital professionals. METHODS: A systematic approach to course development was used and the programme was introduced on four general wards in a university hospital. Experts from the wards were trained as educators and participated......, mini-lectures, case discussions and practical training was planned. Course material, a manual for educators and questionnaires for evaluation of the course were developed. RESULTS: A 1-day full-scale simulation-based educational programme was developed and 50% of the medical staff and 70...

  16. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    Science.gov (United States)

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. N-nitrosamine rejection by reverse osmosis membranes: a full-scale study.

    Science.gov (United States)

    Fujioka, Takahiro; Khan, Stuart J; McDonald, James A; Roux, Annalie; Poussade, Yvan; Drewes, Jörg E; Nghiem, Long D

    2013-10-15

    This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines by reverse osmosis (RO) membranes during sampling campaigns at three full-scale water recycling plants. Samples were collected at all individual filtration stages as well as at a cool and a warm weather period to elucidate the impact of recovery and feed temperature on the rejection of N-nitrosamines. N-nitrosodimethylamine (NDMA) was detected in all RO feed samples varying between 7 and 32 ng/L. Concentrations of most other N-nitrosamines in the feed solutions were determined to be lower than their detection limits (3-5 ng/L) but higher concentrations were detected in the feed after each filtration stage. As a notable exception, in one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in RO feed (177-475 ng/L) and permeate (34-76 ng/L). Overall rejection of NDMA among the three RO systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature can influence rejection of NDMA. A considerable variation in NDMA rejection across the three RO stages (14-78%) was also observed. Overall NMOR rejections were consistently high ranging from 81 to 84%. On the other hand, overall rejection of N-nitrosodiethylamine (NDEA) varied from negligible to 53%, which was considerably lower than values reported in previous laboratory-scale studies. A comparison between results reported here and the literature indicates that there can be some discrepancy in N-nitrosamine rejection data between laboratory- and full-scale studies probably due to differences in water recoveries and operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions). Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt

    in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risø load, where 80% Risø load corresponds to 100...

  19. Full Scale Earth Fault Experiments on 10 kV laboratory network with comparative Measurements on Conventional CT's and VT's

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove; Bak-Jensen, Birgitte

    2002-01-01

    In this paper we present a result of a full scale earth fault carried out on the 10 kV research/laboratory distribution network at Kyndbyvaerket Denmark in May 2001. The network is compensated through a Petersen-Coil and current and voltage measurements were measured on conventional current...

  20. Effect of mixing on the rheological characteristics of conditioned sludge and liquid stream: laboratory and full-scale studies

    Energy Technology Data Exchange (ETDEWEB)

    Abu Orf, M.M. [Nablus, An-Najah National Univ., Palestina (Country unknown/Code not available). Dept. of Civil Engineering; Dentel, S.K. [Newark, Univ. of Delaware (United States). Dept. of Civil Environmental Engineering

    1998-12-31

    Conditioning of wastewater sludges with polyelectrolyte prior to dewatering is necessary to increase the sludge`s dewaterability. During this conditioning process adequate mixing of the conditioner and the sludge must be attained. The research reports on results from laboratory and full-scale experiments conducted to examine the effect of mixing parameters upon the conditioned sludge and liquid stream rheological characteristics.

  1. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    Science.gov (United States)

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  3. Radiation dose in hysterosalpingography: modern 100mm fluorography vs. full-scale radiography

    International Nuclear Information System (INIS)

    Seppaenen, S.; Lehtinen, E.; Holli, H.

    1978-01-01

    Radiation doses of modern 100 mm fluorography and full-scale radiography were compared experimentally and applied to hysterosalpingography. It was determined that 100 mm fluorography reduced the doses by 28 to 29 percent per exposure and 37 to 47 percent per examination compared with full-scale radiography performed with fast tungstate screens in identical conditions (70 to 80 kV, 400 mA). The dose during one minute of videofluoroscopy was equivalent to the doses produced by one exposure in full-scale filming and three to four exposures in 100 mm filming. Although electronic magnification in 100 mm fluorography increases the doses by two or threefold, these are still less than the doses in full-scale radiography

  4. Full-scale Applications of Membrane Filtration in Municipal Wastewater Treatment Plants

    Czech Academy of Sciences Publication Activity Database

    Holba, Marek; Plotěný, K.; Dvořák, L.; Gómez, M.; Růžičková, I.

    2012-01-01

    Roč. 40, č. 5 (2012), s. 479-486 ISSN 1863-0650 Institutional support: RVO:67985939 Keywords : membrane bioreactors * wastewater treatment * full-scale application Subject RIV: EF - Botanics Impact factor: 2.046, year: 2012

  5. Determination of global ice loads on the ship using the measured full-scale motion data

    Directory of Open Access Journals (Sweden)

    Jae-Man Lee

    2016-07-01

    Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7–15 MN when ship operated in heavy ice conditions.

  6. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  7. Full-scale demonstration of EBS construction technology II. Design, manufacturing and transportation of pre-fabricated EBS module (PEM)

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Toguri, Satohito; Iwata, Yumiko; Kawakami, Susumu; Nagasawa, Yuji; Yoshida, Takeshi

    2008-01-01

    PEM was investigated as a full-scale demonstration for the design, manufacturing and construction by using simulated buffer material and overpack in consideration of horizontal emplacement. Also near full-scale tests were conducted to examine the applicability of air-bearing system which can be used to transport a heavy load at the drift tunnel as for PEM. With regard to PEM casing, design requirements were selected from the viewpoints of EBS performance and operation safety issues. The construction procedure was examined in consideration of the shapes of buffer material, which are previously positioned inside the casing. And design procedure of the casing was also examined and presented. A full-scale PEM casing as a longitudinally two-part divided cylinder type with connection flanges was manufactured by using carbon steel plate. The wall thickness of this non-leak tight type PEM casing was evaluated its mechanical integrity by 2-dimensional stress analysis in consideration of the emplacement condition on the drift tunnel basement. Mechanical integrity of a percolated type casing was also examined its mechanical integrity. Air-bearing unit, which originally apply to a flat/smooth surface, was modified to fit a curved surface of the drift tunnel. Two units were aligned with two parallel lines, which estimate to be able to lift 12 tons, about two-fifth of the total weight of full scale PEM. On the conducted transportation tests of the air-bearing units, considering the surface roughness of the drift tunnel, especially for its unevenness, capability and availability of the run-over such gaps were investigated. And effect of covering sheets which can improve the gapped surface into relatively smooth was also examined by using several candidate materials. Through these tests, combination of the covering sheets and the maximum available height difference were evaluated and identified. Also the maximum traction force to toe the loading was measured to design the air

  8. Soil Carbon Sequestration Resulting from Biosolids Application

    Directory of Open Access Journals (Sweden)

    Silvana I. Torri

    2014-01-01

    Full Text Available Carbon (C sequestration in soils through the increase of the soil organic carbon (SOC pool has generated broad interest to mitigate the effects of climate change. Biosolids soil application may represent a persistent increase in the SOC pool. While a vast literature is available on the value of biosolids as a soil conditioner or nutrient source in agricultural systems, there is still limited knowledge on soil sequestration mechanisms of biosolids-borne C or the main factors influencing this capacity. The emerging challenges posed by global environmental changes and the stringent needs to enhance C storage call for more research on the potential of soil biosolids incorporation as a sustainable C storage practice. This review addresses the potential of C sequestration of agricultural soils and opencast mines amended with biosolids and its biological regulation.

  9. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  10. Full scale simulation of MWI and LRI based GRACE-FO gravity models

    Science.gov (United States)

    Flechtner, Frank; Raimondo, Jean-Claude; Dobslaw, Henryk; Fagiolini, Elisa

    2014-05-01

    During 12 years of very successful operation in orbit, the US-German GRACE mission has demonstrated its outstanding capability to monitor mass motions in the Earth system with unprecedented accuracy and temporal resolution. These results have stimulated many novel research activities in hydrology, oceanography, glaciology, geophysics, and geodesy which also indicate that long term monitoring of such mass variations, possibly with improved spatial and temporal resolution, is a must for further understanding of phenomena such as ice mass los in Polar Regions and large glacier systems or the continental hydrological cycle. Due to the onboard battery situation, GRACE can likely not be operated further than 2015. Fortunately, a GRACE follow-on mission is currently being implemented jointly by JPL/NASA and GFZ and due for launch in August 2017. GRACE-FO will be based on GRACE heritage and lessons learnt during operation. Therefore, the prime SST (satellite-to-satellite tracking) instrument will be again the Microwave Ranging Instrument (MWI). Additionally, GRACE-FO will carry a Laser Ranging Interferometer (LRI) demonstrator which will have a factor of 10-50 improved SST measurement accuracy. We will present a multi-years full scale simulation based on realistic error assumptions for instrument noise and background models such as tidal and non-tidal mass variations. The results shall indicate what the users can expect in terms of precision and spatial and temporal resolution when using future GRACE-FO MWI and LRI based gravity models.

  11. Full Scale Test of a SSP 34m box girder 1. Data report

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Branner, Kim; Nielsen, Per Hørlyk

    This report presents the setup and result of a full-scale test of a reinforced glass fibre/epoxy box girder used in 34m wind turbine blade. The tests were performed at the Blaest test facility in August 2006. The test is an important part of a research project established in cooperation between...... Risø DTU, the National Laboratory for Sustainable Energy at the Technical University of Denmark -, SSP-Technology A/S and Blaest (Blade test centre A/S) and it has been performed as a part of Find Mølholt Jensen‟s PhD study. This report contains the complete test data for the final test, in which...... the box girder was loaded until failure. A comprehensive description of the test setup is given. This report deals only with tests and results. There are no conclusions on the data in this report, but references are given to publications, where the data are used and compared with FEM etc. Various kinds...

  12. Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; McEntire, Joseph; Lewis, Alan

    2002-01-01

    A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.

  13. Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.

    2003-01-01

    A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.

  14. A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests

    Science.gov (United States)

    Littell, Justin D.

    2011-01-01

    Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.

  15. Advanced data management for optimising the operation of a full-scale WWTP.

    Science.gov (United States)

    Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo

    2012-01-01

    The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.

  16. Biofilms in Full-Scale Drinking Water Ozone Contactors Contribute Viable Bacteria to Ozonated Water.

    Science.gov (United States)

    Kotlarz, Nadine; Rockey, Nicole; Olson, Terese M; Haig, Sarah-Jane; Sanford, Larry; LiPuma, John J; Raskin, Lutgarde

    2018-03-06

    Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other ( p = 0.017). The biofilms downstream of the dead zone contained a significantly ( p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities.

  17. Flow test for the full scale core mock-up to the KUHFR, (2)

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Araki, Yasusuke; Ishikawa, Yoshiaki

    1981-01-01

    The Research Reactor Institute, Kyoto University, has carried out a variety of research and development in support of the high flux reactor (KUHFR) project. As for the thermal-hydraulic design of the reactor core, the flow test with a full scale mock-up of the core was performed in order to verify the design calculation. This report shows the result of measurement of the vibration of the core vessel and core itself obtained during the flow test. The flow rate through the core mock-up reached up to 1920 m 3 /h, which is approximately 1.3 times as much as the normal flow rate. Non-contact displacement sensors and piezoelectric accelerometers were used to measure the vibration of the core vessel, core components and outer fuel elements. The traces of the vibration were reproduced on charts to read the maximum amplitude. The data were analyzed by FFT method to find the characteristics of the vibration. The observations of the corrosion and deformation of the components were made. The results obtained are as follows. The vibration of the core vessel was excited by coolant flow. The predominant frequency was about 7 Hz, which is nearly equal to that of the free vibration of the core vessel. The maximum displacement was 300 mu m, and the maximum acceleration was 1.8 g. (Kako, I.)

  18. Performance Evaluations of Three Silt Fence Practices Using a Full-Scale Testing Apparatus

    Directory of Open Access Journals (Sweden)

    R. Alan Bugg

    2017-07-01

    Full Text Available Erosion and sediment controls on construction sites minimize environmental impacts from sediment-laden stormwater runoff. Silt fence, a widely specified perimeter control practice on construction projects used to retain sediment on-site, has limited performance-based testing data. Silt fence failures and resultant sediment losses are often the result of structural failure. To better understand silt fence performance, researchers at the Auburn University-Erosion and Sediment Control Testing Facility (AU-ESCTF have evaluated three silt fence options to determine possible shortcomings using standardized full-scale testing methods. These methods subject silt fence practices to simulated, in-field conditions typically experienced on-site without the variability of field testing or the limited application of small-scale testing. Three different silt fence practices were tested to evaluate performance, which included: (1 Alabama Department of Transportation (ALDOT Trenched Silt Fence, (2 ALDOT Sliced Silt Fence, and (3 Alabama Soil and Water Conservation Committee (AL-SWCC Trenched Silt Fence. This study indicates that the structural performance of a silt fence perimeter control is the most important performance factor in retaining sediment. The sediment retention performance of these silt fence practices was 82.7%, 66.9% and 90.5%, respectively. When exposed to large impoundment conditions, both ALDOT Trench and Sliced Silt Fence practices failed structurally, while the AL-SWCC Trenched Silt Fence did not experience structural failure.

  19. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome

    KAUST Repository

    Matar, Gerald Kamil

    2017-06-21

    Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early

  20. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems.

    Science.gov (United States)

    Marques, Ricardo; Rodriguez-Caballero, A; Oehmen, Adrian; Pijuan, Maite

    2016-08-01

    Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    Energy Technology Data Exchange (ETDEWEB)

    Halstead, R. J.; Dilger, F.

    2003-02-25

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million.

  2. Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) does not currently require full-scale physical testing of shipping casks as part of its certification process. Stakeholders have long urged NRC to require full-scale testing as part of certification. NRC is currently preparing a full-scale casktesting proposal as part of the Package Performance Study (PPS) that grew out of the NRC reexamination of the Modal Study. The State of Nevada and Clark County remain committed to the position that demonstration testing would not be an acceptable substitute for a combination of full-scale testing, scale-model tests, and computer simulation of each new cask design prior to certification. Based on previous analyses of cask testing issues, and on preliminary findings regarding the July 2001 Baltimore rail tunnel fire, the authors recommend that NRC prioritize extra-regulatory thermal testing of a large rail cask and the GA-4 truck cask under the PPS. The specific fire conditions and other aspects of the full-scale extra-regulatory tests recommended for the PPS are yet to be determined. NRC, in consultation with stakeholders, must consider past real-world accidents and computer simulations to establish temperature failure thresholds for cask containment and fuel cladding. The cost of extra-regulatory thermal testing is yet to be determined. The minimum cost for regulatory thermal testing of a legal-weight truck cask would likely be $3.3-3.8 million

  3. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    Science.gov (United States)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  4. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters

    Science.gov (United States)

    Jesussek, Mathias; Ellermann, Katrin

    2014-12-01

    Reliability and dependability in complex mechanical systems can be improved by fault detection and isolation (FDI) methods. These techniques are key elements for maintenance on demand, which could decrease service cost and time significantly. This paper addresses FDI for a railway vehicle: the mechanical model is described as a multibody system, which is excited randomly due to track irregularities. Various parameters, like masses, spring- and damper-characteristics, influence the dynamics of the vehicle. Often, the exact values of the parameters are unknown and might even change over time. Some of these changes are considered critical with respect to the operation of the system and they require immediate maintenance. The aim of this work is to detect faults in the suspension system of the vehicle. A Kalman filter is used in order to estimate the states. To detect and isolate faults the detection error is minimised with multiple Kalman filters. A full-scale train model with nonlinear wheel/rail contact serves as an example for the described techniques. Numerical results for different test cases are presented. The analysis shows that for the given system it is possible not only to detect a failure of the suspension system from the system's dynamic response, but also to distinguish clearly between different possible causes for the changes in the dynamical behaviour.

  5. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure

    Directory of Open Access Journals (Sweden)

    Linda Monfardini

    2016-08-01

    Full Text Available Alkali Activated Concrete (AAC is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam’s length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0–4 mm and coarse aggregate 6–10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  6. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure.

    Science.gov (United States)

    Monfardini, Linda; Minelli, Fausto

    2016-08-30

    Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam's length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0-4 mm and coarse aggregate 6-10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  7. Full-scale crash test of a CH-47C helicopter

    Science.gov (United States)

    Castle, C. B.

    1976-01-01

    A full-scale crash test of a large troop/cargo carrying CH-47C helicopter was conducted at the Langley impact dynamics research facility. The crash test of this large helicopter was performed as part of a joint U.S. Army-NASA helicopter test program to provide dynamic structural and seat response data. The test, the procedures employed, the instrumentation, a general assessment of the resulting damage, and typical levels of accelerations experienced during the crash are reported. Various energy-absorbing seating systems for crew and troops were installed and instrumented to provide data for use in the development of design criteria for future aircraft. The crash conditions were selected to simulate known crash conditions and are representative of the 95th percentile accident environment for an autorotating helicopter. Visual examination of the crashed test specimen indicated irreparable damage to many of the structural components. The highest accelerations were recorded by the accelerometers located on the cabin floor in the aft section of the helicopter, directly above the primary impact location and on the floor of the cockpit above the secondary impact location(s).

  8. Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test

    Science.gov (United States)

    Annett, Martin; Littell, Justin

    2015-01-01

    Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  9. An integrated approach to analyse biofilms of a full scale wastewater treatment plant.

    Science.gov (United States)

    Martín-Cereceda, M; Pérez-Uz, B; Serrano, S; Guinea, A

    2002-01-01

    A rotating biological contactor (RBC) system operating in a full-scale wastewater treatment plant has been described by several approaches accounting for performance, composition and structure of biofilms in three stages through biological wastewater treatment (RBC1, RBC 2, RBC 3). RBC biofilms were effective in removing the BOD loading from 13 g BOD5 d(-1) m(-2) in RBC 1 to 6 g BOD5 d(-1) m(-2) in RBC 3. Analysis of biofilm composition showed: i) the volatile solids were similar in the three RBCs (0.6 g m(-2) VS per g m(-2) of TS); ii) the protozoan and metazoan biocenosis was mainly made up of ciliated protozoa, which were most abundant in RBC 2 (1.84 x 10(6) ciliates g(-1) VS). Relationship between ciliate species and physical-chemical profile of the system by cluster analysis indicated that the species Acineria uncinata, Amphileptus punctatus, Cinetochilum margaritaceum and Holosticha mancoidea were associated with the best RBC performance; iii) the exopolymeric matrix of the three RBC biofilms was mainly constituted by proteins, although humic substances, polysaccharides, uronic acids and DNA were also found. Analysis of biofilm structure by confocal microscopy indicated changes in biofilm organisation with depth. Results have been brought together and a graphic representation of the composition and architecture of RBC biofilms is presented.

  10. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP.

    Science.gov (United States)

    Levén, Lotta; Wijnbladh, Erik; Tuvesson, Malin; Kragelund, Caroline; Hallin, Sara

    2016-01-01

    Bulking and rising sludge are common problems in wastewater treatment plants (WWTPs) and are primarily caused by increased growth of filamentous bacteria such as Microthrix parvicella. It has a negative impact on sludge settling properties in activated sludge (AS) process, in addition to being responsible for foam formation. Different methods can be used to control sludge bulking. The aim of this study was to evaluate the dosage of on-site generated ozone in the recycled AS flow in a full-scale WWTP having problems caused by M. parvicella. The evaluation of the experiment was assessed by process data, microscopic analysis and microbial screening on the experimental and control line before, during and after the period of ozone dosage. The ozone treatment resulted in decreased abundance of M. parvicella and improved the settling properties, without impairing the overall process performance. Both chemical oxygen demand (COD)- and N-removal were unaffected and the dominant populations involved in nitrification, as analysed by fluorescent in situ hybridization, remained during the experimental period. When the ozone treatment was terminated, the problems with sludge bulking reappeared, indicating the importance of continuous evaluation of the process.

  11. Full scale vibration test on nuclear power plant auxiliary building: Part I

    International Nuclear Information System (INIS)

    Langer, V.; Tinic, S.; Berger, E.; Zwicky, P.; Prater, E.G.

    1987-01-01

    In connection with the construction of the reinforced concrete auxiliary building housing the two boric water tanks (so-called BOTA building) of the Beznau Nuclear Power Plant in Switzerland the opportunity was given to carry out full scale vibration tests in November 1985. The overall aim of the tests was to validate computational models and parameters widely used in the seismic analysis of the structures and critical components of nuclear power plants. The scope of the experimental investigation was the determination of the eigenfrequencies and damping values for the fundamental soil-structure interaction (SSI) modes. The excitation level was aimed to be as high as feasibly possible. A working group was formed of representatives of the owner, NOK, the consulting firm Basler and Hofmann and the ETH to supervise the project. The project's main phases were the planning and execution of the tests, the evaluation of recorded data, numerical simulation of the tests using different computer models and finally the comparison and interpretation of measured and computed results

  12. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  13. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.

    Science.gov (United States)

    Powell, N; Shilton, A; Pratt, S; Chisti, Y

    2011-01-01

    Biological phosphorus removal was studied in two full-scale waste stabilisation ponds (WSP). Luxury uptake by microalgae was confirmed to occur and in one pond the biomass contained almost four times the phosphorus required by microalgae for normal metabolism. However, the phosphorus content within the biomass was variable. This finding means that assumptions made in prior publications on modelling of phosphorus removal in WSP are questionable. While fluctuations in microalgal growth causes variation in many water quality parameters, this further variation in luxury uptake explains the high degree of variability in phosphorus removal commonly reported in the literature. To achieve effective biological phosphorus removal high levels of both luxury uptake and microalgal concentration are needed. The findings of this work show that while high levels of these parameters did occur at times in the WSP monitored, they did not occur simultaneously. This is explained because accumulated phosphorus is subsequently consumed during rapid growth of biomass resulting in a high biomass concentration with a low phosphorus content. Previous laboratory research has allowed a number of key considerations to be proposed to optimise both luxury uptake and biomass concentration. Now that is has been shown that high levels of biomass concentration and luxury uptake can occur in the field it may be possible to redesign WSP to optimise these parameters.

  14. Full-scale laboratory drilling tests on sandstone and dolomite. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Black, A.D.; Green, S.J.; Rogers, L.A.

    1977-12-01

    Full-scale laboratory drilling experiments were performed under simulated downhole conditions to determine what effect changing various drilling parameters has on penetration rate. The two rock types, typical of deep oil and gas reservoirs, used for the tests were Colton Sandstone and Bonne Terre Dolomite. Drilling was performed with standard 7/sup 7///sub 8/ inch rotary insert bits and water base mud. The results showed the penetration rate to be strongly dependent on bit weight, rotary speed, and borehole mud pressure. There was only a small dependence on mud flow rate. The drilling rate decreased rapidly with increasing borehole mud pressure for borehole pressures up to about 2,000 psi. Above this pressure, the borehole pressure and rotary speeds had a smaller effect on penetration rate. The penetration rate was then dependent mostly on the bit weight. Penetration rate per horsepower input was also shown to decrease at higher mud pressures and bit weights. The ratio of horizontal confining stress to axial overburden stress was maintained at 0.7 for simulated overburden stresses between 0 and 12,800 psi. For this simulated downhole stress state, the undrilled rock sample was within the elastic response range and the confining pressures were found to have only a small or negligible effect on the penetration rate. Visual examination of the bottomhole pattern of the rocks after simulated downhole drilling, however, revealed ductile chipping of the Sandstone, but more brittle behavior in the Dolomite.

  15. Full-Scale Prestress Loss Monitoring of Damaged RC Structures Using Distributed Optical Fiber Sensing Technology

    Science.gov (United States)

    Lan, Chunguang; Zhou, Zhi; Ou, Jinping

    2012-01-01

    For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590

  16. Structural Characterization of an Historical Building by Means of Experimental Tests on Full-Scale Elements

    Directory of Open Access Journals (Sweden)

    Marco Bovo

    2017-01-01

    Full Text Available In order to properly design strengthening intervention of existing buildings, careful assessment of the structural behavior is certainly required. This is particularly important when dealing with historical constructions made of heterogeneous materials like masonry or stonework. In this context, this paper presents the results of knowledge process on a large monumental nineteenth century building located in Trieste. The traditional investigation approach considering a wide number of destructive tests for characterization of materials and evaluation of the structural details were not admissible due to the valuable cultural and historical importance of the building. Therefore, an alternative and not conventional investigation approach has been considered. After a wide historical research and a detailed structural survey, it has been possible to identify the main structural systems of the building. Then, to characterize the structural response, a limited number of nondestructive tests but on full-scale typological systems have been preferred to a larger number of destructive tests on specimens of the different materials. The selected experimental load tests have been conducted in order to assess the actual structural response of the main systems that constitute the building, thus allowing for a fine tuning of both the rehabilitation interventions and the numerical finite element models.

  17. Comparison of calculated and measured blade loads on a full-scale tilting proprotor in a wind tunnel

    Science.gov (United States)

    Johnson, W.

    1980-01-01

    The loads measured in a wind tunnel on a full-scale tilting proprotor are compared with calculated results. The data consists primarily of oscillatory beamwise bending moments at 35% radial station, oscillatory spindle chord bending moments, and oscillatory pitch link loads. The measured and calculated results as a function of thrust are compared over a range of nacelle angles from 0 to 75 deg, and a range of speeds from 80 to 185 knots.

  18. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    International Nuclear Information System (INIS)

    Andraka, Charles; Bohn, Mark S.; Corey, John; Mehos, Mark; Moreno, James; Rawlinson, Scott

    1999-01-01

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6 th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750 ampersand deg;C. The air/fuel mixture was electrically preheated to 640 ampersand deg;C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6 th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6 th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status

  19. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    International Nuclear Information System (INIS)

    Berger, E.; Tinic, S.

    1988-01-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system

  20. Organics Characteristics of Sludge from a Full-Scale Anaerobic Digester Treating Domestic Mixed Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Seswoya Roslinda

    2017-01-01

    Full Text Available Sewage sludge, normally in form of mixed sewage sludge is treated using anaerobic digester worldwide. In Malaysia, sewage sludge was categorized as domestic sewage sludge since sewage treatment plant treats only domestic sewage. The complex organic compounds in form of carbohydrates and proteins are transformed to methane during anaerobic digestion. The characteristics of complex organic compounds in domestic mixed sewage sludge are needed to assess the energy recovery form digesting domestic mixed sewage sludge. Besides that, it is common to use anaerobic biomass from existing anaerobic digester for the new setup of the anaerobic reactor. Therefore, this study was outlined to study the characteristics of domestic mixed sewage sludge and anaerobic biomass, particularly on the complex organic compounds. The complex organic compounds measured were carbohydrates and proteins. The higher complex organic solubilisation as a result of thermal pre-treatment was proven to improve the methane production. Therefore, in this study, the impact of low thermal pre-treatment in improving the organics solubilisation was assessed too. Low thermal pre-treatment at 70°C and 90°C at various treatment time were applied to the domestic mixed sewage sludge. The results indicated that the domestic sewage sludge and anaerobic biomass from a full-scale anaerobic digester contained complex organic compounds; existed mostly in form of particulate as shown by the low value of soluble to total ratio. Besides that, the low thermal treatment at 70°C and 90°C increased the organics solubilisation. Protein solubilisation was observed exceeded 8% after being treated for 20 min at both thermal treatments. However, the impact of low thermal treatment was better at 90°C, in which higher solubilisation was observed at longer treatment time.

  1. Microbial diversity in a full-scale anaerobic reactor treating high ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Microbial characteristics in the up-flow anaerobic sludge blanket reactor (UASB) of a full-scale high concentration cassava alcohol wastewater plant capable of anaerobic hydrocarbon removal were analyzed using cultivation-independent molecular methods. Forty-five bacterial operational taxonomic.

  2. Prediction of Full-Scale Propulsion Power using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction o...

  3. Testing of full scale composite journal bearings for offshore underwater applications

    NARCIS (Netherlands)

    Dragt, R.C.; Van Den Heuvel, W.; Gelinck, E.R.M.; Slot, H.M.

    2015-01-01

    In the offshore industry, fibre reinforced sliding journal bearings are increasingly used due to their low-maintenance and self-lubricating characteristics. To be able to use the bearings in the rough offshore environment, under heavy loading, full scale tests are essential to assess the friction

  4. P3 -- the full-scale prototype of the ME1/1 CSC

    International Nuclear Information System (INIS)

    Ershov, Yu.V.; Golutvin, I.A.; Karzhavin, V.Yu.

    1999-01-01

    P3, the 6-layer cathode strip chamber has been designed and produced. This chamber is a full-scale prototype of 10 deg sector of the ME1/1 Endcap muon station of CMS detector (CERN). Design, basic parameters and fabrication technology of P3 are described

  5. Full-Scale Continuous Mini-Reactor Setup for Heterogeneous Grignard Alkylation of a Pharmaceutical Intermediate

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Holm, Thomas; Rahbek, Jesper P.

    2013-01-01

    A reactor setup consisting of two reactors in series has been implemented for a full-scale, heterogeneous Grignard alkylation. Solutions pass from a small filter reactor into a static mixer reactor with multiple side entries, thus combining continuous stirred tank reactor (CSTR) and plug flow...

  6. Microbial diversity in a full-scale anaerobic reactor treating high ...

    African Journals Online (AJOL)

    Microbial characteristics in the up-flow anaerobic sludge blanket reactor (UASB) of a full-scale high concentration cassava alcohol wastewater plant capable of anaerobic hydrocarbon removal were analyzed using cultivation-independent molecular methods. Forty-five bacterial operational taxonomic units (OTUs) and 24 ...

  7. Investigation of the gypsum quality at three full-scale wet flue gas desulphurisation plants

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren; Johnsson, Jan Erik

    2011-01-01

    limestone and other impurities. The particle size distributions (PSD) in the holding tanks of the investigated plants were similar, apart from a slightly higher fraction of small particles in the full-scale plants. These high levels of small particles could originate from nucleation, attrition...

  8. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

    NARCIS (Netherlands)

    Regueiro, L.; Veiga, P.; Figueroa, M.; Alonso-Gutierrez, J.; Stams, A.J.M.; Lema, J.M.; Carballa, M.

    2012-01-01

    High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester.

  9. Design and construction of a full-scale lateral impact testing facility.

    Science.gov (United States)

    2015-05-01

    The goal of this work is to design and construct a full scale lateral impact testing facility that is capable of recreating the damage that would be created by an overheight vehicle collision. This was accomplished by impacting a test specimen with 8...

  10. Analysis of Unbound Aggregate Layer Deformation Behavior from Full Scale Aircraft Gear Loading with Wander

    Science.gov (United States)

    Donovan, Phillip Raymond

    2009-01-01

    This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…

  11. Engineering the bundled glass column: From the design concept to full-scale experimental testing

    NARCIS (Netherlands)

    Oikonomopoulou, F.; van den Broek, E.A.M.; Bristogianni, T.; Veer, F.A.; Nijsse, R.

    This article gives an overview of the research conducted by the authors from the design concept to the engineering and full-scale testing of the bundled glass column. Consisting of adhesively bonded solid glass rods, the bundled column is a promising solution for transparent compressive members. To

  12. Operational experience with a seasonally operated full-scale membrane bioreactor plant

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Holba, Marek; Wanner, J.

    2012-01-01

    Roč. 121, OCT 2012 (2012), s. 241-247 ISSN 0960-8524 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : full-scale membrane bioreactor * soluble microbibal product s * nutrient removal * fouling * microbiological effluent quality Subject RIV: EF - Botanics Impact factor: 4.750, year: 2012

  13. Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: a case study in Tabriz Petrochemical Complex

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2016-08-01

    Full Text Available Background: The measurement data regarding the influent and effluent of wastewater treatment plant (WWTP provides a general overview, demonstrating an overall performance of WWTP. Nevertheless, these data do not provide the suitable operational information for the optimization of individual units involved in a WWTP. A full-scale evolution of WWTP was carried out in this study via a reconciled data. Methods: A full-scale evolution of acrylonitrile, butadiene and styrene (ABS resin manufacturing WWTP was carried out. Data reconciliation technique was employed to fulfil the mass conservation law and also enhance the accuracy of the flow measurements. Daily average values from long-term measurements by the WWTP library along with the results of four sampling runs, were utilized for data reconciliation with further performance evaluation and characterization of WWTP. Results: The full-scale evaluation, based on balanced data showed that removal efficiency based on chemical oxygen demand (COD and biochemical oxygen demand (BOD5 through the WWTP were 80% and 90%, respectively, from which only 28% of COD and 20% of BOD5 removal had occurred in biological reactor. In addition, the removal efficiency of styrene and acrylonitrile, throughout the plant, was approximately 90%. Estimation results employing Toxchem model showed that 43% of acrylonitrile and 85% of styrene were emitted into the atmosphere above water surfaces. Conclusion: It can be concluded that the volatilization of styrene and acrylonitrile is the main mechanism for their removal along with corresponded COD elimination from the WWTP.

  14. Full scale demonstration of shotcrete sealing plug under realistic working conditions

    International Nuclear Information System (INIS)

    Barcena, Ignacio; Garcia-Sineriz, Jose-Luis

    2008-01-01

    shotcrete formulated to obtain a final low-pH prod uct and, therefore, testing of this specific material under realistic conditions is needed. The research activities carried out in this sense within the IP ESDRED have provided a low-pH concrete formulation suitable of being shotcreted. In a series of field tests, this concrete fulfilled the established functional requirements in terms of low pH, long distance pumpability and sprayability. Thereafter, a short low-pH shotcrete plug was successfully constructed and tested (load test to determine its bearing capacity) at the Aespoe URL. The feasibility of the construction in accordance to the established requirements was demonstrated, and the plug behaved as expected, showing a good enduring capacity under mechanical load. The results from the test provided valuable information on the mechanical behaviour of confined granite-shotcrete interfaces, which has been used for improving the plug design calculations. As a final step, a full-scale low-pH shotcrete plug has been constructed in the Grimsel URL to check the feasibility and performance of this type of plug construction under realistic conditions - swelling pressure exerted by the saturated bentonite and the local hydraulic gradient. The construction was successfully carried out in winter time, with no access by road to the Laboratory, and producing the concrete 'in situ', within a restricted space, what demonstrated its feasibility in the toughest conditions. The proposed paper is mainly focused on the construction of the full-scale tests and the results obtained. (author)

  15. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...... in a wind tunnel on a copy of the blade section of the full scale blade. Computational Fluid Dynamics calculations were conducted to investigate the influence of the inflow conditions on the airfoil and blade sections aerodynamics and aeroacoustics. Comparisons between measurement data and model results......The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...

  16. Patient Litter System Response in a Full-Scale CH-46 Crash Test.

    Science.gov (United States)

    Weisenbach, Charles A; Rooks, Tyler; Bowman, Troy; Fralish, Vince; McEntire, B Joseph

    2017-03-01

    U.S. Military aeromedical patient litter systems are currently required to meet minimal static strength performance requirements at the component level. Operationally, these components must function as a system and are subjected to the dynamics of turbulent flight and potentially crash events. The first of two full-scale CH-46 crash tests was conducted at NASA's Langley Research Center and included an experiment to assess patient and litter system response during a severe but survivable crash event. A three-tiered strap and pole litter system was mounted into the airframe and occupied by three anthropomorphic test devices (ATDs). During the crash event, the litter system failed to maintain structural integrity and collapsed. Component structural failures were recorded from the litter support system and the litters. The upper ATD was displaced laterally into the cabin, while the middle ATD was displaced longitudinally into the cabin. Acceleration, force, and bending moment data from the instrumented middle ATD were analyzed using available injury criteria. Results indicated that a patient might sustain a neck injury. The current test illustrates that a litter system, with components designed and tested to static requirements only, experiences multiple component structural failures during a dynamic crash event and does not maintain restraint control of its patients. It is unknown if a modern litter system, with components tested to the same static criteria, would perform differently. A systems level dynamic performance requirement needs to be developed so that patients can be provided with protection levels equivalent to that provided to seated aircraft occupants. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  17. Application of numerical modelling in the design of a full-scale heated Tunnel Sealing Experiment

    Science.gov (United States)

    Guo, R.; Chandler, N.; Martino, J.; Dixon, D.

    2005-10-01

    The Tunnel Sealing Experiment (TSX) was a full-scale in situ demonstration of technology for constructing nearly water tight-seals in excavations through crystalline rock deep below the surface of the earth. The experiment has been carried out at Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory near Lac du Bonnet, Canada, in support of international programs for geologic disposal of radioactive waste. The TSX, with partners from Canada, Japan, France and the United States, was carried under conditions of high pressure (up to 4 MPa) and elevated temperature (up to 85°C). Comparing numerical model predictions with eight years of data collected from approximately 900 sensors was an important component of this experiment. Model of Transport In Fractured/porous Media (MOTIF), a finite element computer program developed by AECL for simulating fully coupled or uncoupled fluid flow, solute transport and heat transport, was used to model both the ambient temperature and heated phases of the TSX. The plan to heat the water in the TSX to 85°C was developed using model predictions and a comparison of simulated results with measurements during heating of the water in the TSX to about 50°C. The three-dimensional MOTIF simulations were conducted in parallel with axisymmetric modelling using Fast Lagrangian Analysis of Continua (FLAC), which computed the heat loss from pipes that carried the heated water through the rock to and from the experiment. The numerical model was initially used to develop a plan for operation of the experiment heaters, and then subsequently used to predict temperatures and hydraulic heads in the TSX bulkhead seals and surrounding rock. Copyright

  18. Implementation of the full-scale emplacement (FE) experiment at the Mont Terri rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Müller, H.R.; Garitte, B.; Vogt, T.; and others

    2017-04-15

    Opalinus Clay is currently being assessed as the host rock for a deep geological repository for high-level and low- and intermediate-level radioactive wastes in Switzerland. Within this framework, the 'Full-Scale Emplacement' (FE) experiment was initiated at the Mont Terri rock laboratory close to the small town of St-Ursanne in Switzerland. The FE experiment simulates, as realistically as possible, the construction, waste emplacement, backfilling and early post-closure evolution of a spent fuel/vitrified high-level waste disposal tunnel according to the Swiss repository concept. The main aim of this multiple heater test is the investigation of repository-induced thermo-hydro-mechanical (THM) coupled effects on the host rock at this scale and the validation of existing coupled THM models. For this, several hundred sensors were installed in the rock, the tunnel lining, the bentonite buffer, the heaters and the plug. This paper is structured according to the implementation timeline of the FE experiment. It documents relevant details about the instrumentation, the tunnel construction, the production of the bentonite blocks and the highly compacted 'granulated bentonite mixture' (GBM), the development and construction of the prototype 'backfilling machine' (BFM) and its testing for horizontal GBM emplacement. Finally, the plug construction and the start of all 3 heaters (with a thermal output of 1350 Watt each) in February 2015 are briefly described. In this paper, measurement results representative of the different experimental steps are also presented. Tunnel construction aspects are discussed on the basis of tunnel wall displacements, permeability testing and relative humidity measurements around the tunnel. GBM densities achieved with the BFM in the different off-site mock-up tests and, finally, in the FE tunnel are presented. Finally, in situ thermal conductivity and temperature measurements recorded during the first heating months

  19. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained

  20. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, J.H. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Dwyer, B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.

  1. Assistance in MSD Research and Development: Part 2, Full scale field testing at mining operations: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Worsey, P.N.; Canon, C.

    1988-06-01

    Full scale and field testing of a simple mechanical stemming aid is described. The aid comprises a solid unit placed in the stemming above the explosive column and is designed to improve blasting efficiency and reduce drilling and blasting costs. It is designed to work with back filled drill cuttings or any other suitable stemming material. The results of Phase I testing were highly successful, indicating that the stemming aid has technically an extremely good chance of success at full scale when constructed of low cost materials. Phase II of the stemming aid research and development program comprised of the testing of various forms of the stemming is at full scale in non-research oriented i.e. field settings. The stemming aid was field tested at 4 different sites for a variety of mining application: First in underground workings at the UMR experimental mine in one and three quarter inch diameter horizontal blast holes incorporated into full blast patterns; three and three and a half inch blast holes at two crushed rock/limestone quarries in the Rolla area and at a surface coal mine operation run by Peabody Coal Company at Lynnville, Indiana in which nine and seven eighths, ten and five eighths and fifteen and a quarter inch diameter blast holes were used for parting and overburden removal. 2 refs., 37 figs., 11 tabs.

  2. Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates.

    Science.gov (United States)

    Zheng, M X; Wang, K J; Zuo, J E; Yan, Z; Fang, H; Yu, J W

    2012-03-01

    The hydraulic characteristics of a lab-scale and a full-scale (275 m(3)) expanded granular sludge bed (EGSB)-type reactor under different organic loading rates varying from 10 kg COD m(-3)d(-1) to 45 kg COD m(-3)d(-1) were investigated. A modified combined model composed of two completely mixing regions and a plug flow region was sufficient for simulating the flow pattern of a full-scale EGSB-type reactor. Moreover, the outputs fitted the measured tracer distribution results well. The simplified model structure was in very good agreement with the physical structure of a full-scale EGSB-type reactor. The upflow (liquid+gas) velocity, high concentration of granular sludge, and gas hold-up effect may contribute to the generation of dead spaces (maximum of 19.5%). The bed expansion characteristics indicated that the sludge bed of the EGSB-type reactor performed as a suspended bed, in which the bed expansion was controlled between 20% and 30%, rather than the usually considered expanded bed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Full-scale locomotive dynamic collision testing and correlations : offset collisions between a locomotive and a covered hopper car (test 4).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...

  4. Analysis, scale modeling, and full-scale test of a railcar and spent-nuclear-fuel shipping cask in a high-velocity impact against a rigid barrier

    International Nuclear Information System (INIS)

    Huerta, M.

    1981-06-01

    This report describes the mathematical analysis, the physical scale modeling, and a full-scale crash test of a railcar spent-nuclear-fuel shipping system. The mathematical analysis utilized a lumped-parameter model to predict the structural response of the railcar and the shipping cask. The physical scale modeling analysis consisted of two crash tests that used 1/8-scale models to assess railcar and shipping cask damage. The full-scale crash test, conducted with retired railcar equipment, was carefully monitored with onboard instrumentation and high-speed photography. Results of the mathematical and scale modeling analyses are compared with the full-scale test. 29 figures

  5. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  6. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    International Nuclear Information System (INIS)

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-01-01

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early

  7. Full-scale Mark II CRT program data report No. 6 (TEST 3101)

    International Nuclear Information System (INIS)

    Namatame, Ken; Kukita, Yutaka; Yamamoto, Nobuo; Shiba, Masayoshi

    1980-02-01

    The Full-Scale Mark II CRT (Containment Response Test) Program was initiated to provide a data base for the licensing evaluation of the pressure suppression pool hydrodynamic loads associated with a hypothetical LOCA in a BWR Mark II containment. The test facility, completed in March 1979, is 1/18 in volume with a wetwell which is a full-scale replica of one 20 0 -sector of a reference Mark II. This report documents experimental data from TEST 3101, which is a medium size (74 mm) water break test performed with partial prepurge of approximately 23%. The maximum steam mass flux in the vent was rated to be about 20 kg/m 2 -s. The test data is presented for the vessel depressurization and for the pressure, temperature as well as structural responses in the test containment. (author)

  8. Full-scale observation of the flow downstream of a suspension bridge deck

    DEFF Research Database (Denmark)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas

    2017-01-01

    The paper presents a full-scale observation of the flow conditions downstream of a suspension bridge by a system of synchronized short-range dual-Doppler wind lidars. The lidar units were deployed directly on the bridge walkway during a four-day pilot experiment. The wind velocity was monitored...... at every meter along a 111 m long vertical line segment 40 m downstream of the deck, with a sampling period of one second. The lidar wind data are studied in terms of the mean wind velocity deficit and turbulence intensity downstream of the bridge deck. They provided a full-scale characterization...... tests. Challenges in the estimation of the wind velocity data related to the variable measurement noise of the individual lidars, as a function of the wind direction, are highlighted. Suggestions for future applications of a similar measurement set-up, based on this unique study performed during...

  9. How well do 46 full-scale Danish anaerobic digesters at wastewater treatment plants perform?

    DEFF Research Database (Denmark)

    Andersen, Martin Hjorth; Kirkegaard, Rasmus Hansen; Nielsen, Per Halkjær

    2018-01-01

    (2016): Identifying the abundant and active microorganisms common to full-scale anaerobic digesters. bioRxiv.doi.org/10.1101/104620. 2. McIlroy, S.J., R.H. Kirkegaard, B. McIlroy, M. Nierychlo, J.M. Kristensen, S.M. Karst, M. Albertsen and P.H. Nielsen (2017): MiDAS 2.0: An ecosystem-specific taxonomy...

  10. Merits and limits of code assessment based on full scale plant data

    International Nuclear Information System (INIS)

    Stubbe, E.J.

    1988-01-01

    Among the questions that need be answered by the thermal hydraulic assessment program is the scalability of the physical models used in best estimate advanced computer codes. This problem needs special attention if the basis for plan licensing in the area of LOCA and ECCS shifts from evaluation models to best estimate models, as is the tendency today. The database for the physical models in the advanced thermal hydraulic codes is largely based on small scale separate effect tests and integral scaled down facilities. There is a growing interest in performing counterpart tests in order to verify the scalability of the constitutive equations in function of an accepted nodalization scheme and an applied numerical solution concept for different best estimate codes. The outcome of such counterpart tests can yield some evidence of the scalability over a range of scales varying between 1/1600 and 1/48, such that the extrapolation to full scale remains questionable. In an attempt to close this scaling gap for specific code models, full scale separate effect tests offer a good opportunity. However such facilities are very expensive and require artificial boundary conditions which may mask some dominating phenomena induced by loop components and their mode of operation. There remains then the question to what extent full scale plant data could be used to try to close the scaling gap of the experimental evidence? The proposed validation matrices contain indeed very few plant transients, and this for different reasons. This paper tries to compile the different advantages and disadvantages that full scale plants offer for code assessment, and presents a practical exercise on a DOEL-4 transient to highlight those points

  11. Performance evaluation of full scale UASB reactor in treating stillage wastewater

    OpenAIRE

    A.Mirsepasi , H. R. Honary , A. R. Mesdaghinia, A. H. Mahvi , H. Vahid , H. Karyab

    2006-01-01

    Upflow anaerobic sludge blanket (UASB) reactors have been widely used for treatment of industrial wastewater. In this study two full-scale UASB reactors were investigated. Volume of each reactor was 420 m3. Conventional parameters such as pH, temperature and efficiency of COD, BOD, TOC removal in each reactor were investigated. Also several initial parameters in designing and operating of UASB reactors, such as upflow velocity, organic loading rate (OLR) and hydraulic retention time were inve...

  12. Pseudodynamic tests on a full-scale 3-storey precast concrete building: Global response

    OpenAIRE

    Negro, Paolo; Bournas, Dionysios A.; Molina, Francisco J.

    2013-01-01

    In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA). The mock-up was constructed in such a way that four different structural configurations could be investigated experimentally. Therefore, the behaviour of various parameters like the types of mechanical connections (traditional as well as innovative) and the presence or absence of shear walls alo...

  13. The Experimental Study of Full-scale Biomass-fired Bubbling Fluidized Bed Boiler

    OpenAIRE

    Skvaril, Jan; Avelin, Anders; Sandberg, Jan; Dahlquist, Erik

    2014-01-01

    This paper presents experimental data concerning combustion characteristics of full-scale biomass-fired bubbling fluidized bed (BFB) steam boiler with a thermal output of 31 MW. The purpose of the experimental measurements is to show how the values of selected combustion parameters vary in reality depending on measurement position. Experimentation involves specifically a determination of combustion gas temperature and concentration of gas species i.e. O2, CO2, CO and NOX at different position...

  14. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  15. Full-Scale Mark II CRT program data report No. 11 (TEST 1204)

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Takeshita, Isao; Yamamoto, Nobuo; Namatame, Ken; Shiba, Masayoshi

    1981-03-01

    Recorded data for TEST 1204 conducted on the Full-Scale Mark II CRT (Containment Response Test) Facility are presented. The TEST 1204 is the fourth test run of a series of steam discharge pool swell tests. The test conditions are similar to those of the TEST 1203 except for lower initial pool temperature. The test was successful and the maximum level of pool surface was fairly lower than in the TEST 1203 due to the lower pool temperature. (author)

  16. Lessons learned after 2 full scale disaster exercises in a Swiss pediatric hospital

    OpenAIRE

    Lutz, N.; Yersin, C.; Hemme, D.; Duc, P.A.; Gehri, M.; Pediatric disaster plan team Hôpital de, l'Enfance

    2011-01-01

    Introduction: Following a disaster, up to 50% of mass casualties are children. The number of disaster increases worldwide, including in Switzerland. Following national order, the mapping of the various risks of disaster in Switzerland will be completed by the end of 2012. Pre-hospital disaster drills and plans are well established and regularly tested. In-hospital disaster plans are much less frequently tested, if only available. Pediatric in-hospital full scale disaster exe...

  17. Fan blade angle system for the National Full-scale Aerodynamic Complex

    Science.gov (United States)

    King, Reginald F.

    1987-01-01

    An adjustable, fan-blade-angle-positioning system for use in a wind tunnel was designed and fabricated to control the airflow from rotating fans in the National Full-scale Aerodynamic Complex (NFAC) at Ames Research Center. The NFAC consists of two test sections, a 40- by 80-ft test section with a top airspeed rating of 300 knots and an 80- by 120-ft test section with a top airspeed rating of 110 knots.

  18. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  19. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    Science.gov (United States)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  20. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Science.gov (United States)

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  1. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    Science.gov (United States)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  2. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  3. Aerobic sludge granulation in a full-scale sequencing batch reactor.

    Science.gov (United States)

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  4. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation

    Science.gov (United States)

    Elsaka, Basem; Raimondo, Jean-Claude; Brieden, Phillip; Reubelt, Tilo; Kusche, Jürgen; Flechtner, Frank; Iran Pour, Siavash; Sneeuw, Nico; Müller, Jürgen

    2014-01-01

    The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project "Concepts for future gravity field satellite missions" as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a "GRACE Follow-on" mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line "Bender" mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2-4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular

  5. Full scale BWR containment LOCA response test at the INKA test facility

    International Nuclear Information System (INIS)

    Wagner, Thomas; Leyer, Stephan

    2015-01-01

    KERENA is an innovative boiling water reactor concept with passive safety systems (Generation III+) of AREVA. The reactor is an evolutionary design of operating BWRs (Generation II). In order to verify the functionality and performance of the KERENA safety concept required for the transient and accident management, the test facility “Integral Teststand Karlstein” (INKA) was built at Karlstein (Germany). It is a mock-up of the KERENA boiling water reactor containment, with integrated pressure suppression system. The complete chain of passive safety components is available. The passive components and the levels are represented in full scale. The volume scaling of the containment compartments is approximately 1:24. The reactor pressure vessel (RPV) is simulated via the steam accumulator of the Karlstein Large Valve Test Facility. This vessel provides an energy storage capacity of approximately 1/6 of the KERENA RPV and is supplied by a Benson boiler with a thermal power of 22 MW. With respect to the available power supply, the containment- and system-sizing of the facility is by far the largest one of its kind worldwide. From 2009 to 2012, several single component tests were conducted (Emergency Condenser, Containment Cooling Condenser, Core Flooding System etc.). On March 21st, 2013, the worldwide first large-scale only passively managed integral accident test of a boiling water reactor was simulated at INKA. The integral test measured the combined response of the KERENA passive safety systems to the postulated initiating event was the “Main Steam Line Break” (MSLB) inside the Containment with decay heat simulation. The results of the performed integral test (MSLB) showed that the passive safety systems alone are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them as response to an anticipated accident scenario

  6. Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test

    Science.gov (United States)

    Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph

    2014-01-01

    In 2012, the NASA Rotary Wing Crashworthiness Program initiated the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program by obtaining two CH-46E helicopters from the Navy CH-46E Program Office (PMA-226) at the Navy Flight Readiness Center in Cherry Point, North Carolina. Full-scale crash tests were planned to assess dynamic responses of transport-category rotorcraft under combined horizontal and vertical impact loading. The first crash test (TRACT 1) was performed at NASA Langley Research Center's Landing and Impact Research Facility (LandIR), which enables the study of critical interactions between the airframe, seat, and occupant during a controlled crash environment. The CH-46E fuselage is categorized as a medium-lift rotorcraft with fuselage dimensions comparable to a regional jet or business jet. The first TRACT test (TRACT 1) was conducted in August 2013. The primary objectives for TRACT 1 were to: (1) assess improvements to occupant loads and displacement with the use of crashworthy features such as pre-tensioning active restraints and energy absorbing seats, (2) develop novel techniques for photogrammetric data acquisition to measure occupant and airframe kinematics, and (3) provide baseline data for future comparison with a retrofitted airframe configuration. Crash test conditions for TRACT 1 were 33-ft/s forward and 25-ft/s vertical combined velocity onto soft soil, which represent a severe, but potentially survivable impact scenario. The extraordinary value of the TRACT 1 test was reflected by the breadth of meaningful experiments. A total of 8 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and photogrammetric techniques. A combination of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. Loads from ATDs in energy

  7. Effects of full-scale beach renovation on fecal indicator levels in shoreline sand and water.

    Science.gov (United States)

    Hernandez, Rafael J; Hernandez, Yasiel; Jimenez, Nasly H; Piggot, Alan M; Klaus, James S; Feng, Zhixuan; Reniers, Ad; Solo-Gabriele, Helena M

    2014-01-01

    Recolonization of enterococci, at a non-point source beach known to contain high background levels of bacteria, was studied after a full-scale beach renovation project. The renovation involved importation of new exogenous sand, in addition to infrastructure improvements. The study's objectives were to document changes in sand and water quality and to evaluate the relative contribution of different renovation activities towards these changes. These objectives were addressed: by measuring enterococci levels in the sand and fecal indicator bacteria levels (enterococci and fecal coliform) in the water, by documenting sediment characteristics (mineralogy and biofilm levels), and by estimating changes in observable enterococci loads. Analysis of enterococci levels on surface sand and within sediment depth cores were significantly higher prior to beach renovation (6.3-72 CFU/g for each sampling day) when compared to levels during and after beach renovation (0.8-12 CFU/g) (P < 0.01). During the renovation process, sand enterococci levels were frequently below detection limits (<0.1 CFU/g). For water, exceedances in the regulatory thresholds that would trigger a beach advisory decreased by 40% for enterococci and by 90% for fecal coliform. Factors that did not change significantly between pre- and post- renovation included the enterococci loads from animals (approx. 3 × 10(11) CFU per month). Factors that were observed to change between pre- and post- renovation activities included: the composition of the beach sand (64% versus 98% quartz, and a significant decrease in biofilm levels) and loads from direct stormwater inputs (reduction of 3 × 10(11) CFU per month). Overall, this study supports that beach renovation activities contributed to improved sand and water quality resulting in a 50% decrease of observable enterococci loads due to upgrades to the stormwater infrastructure. Of interest was that the change in the sand mineralogy also coincided with changes in biofilm

  8. FULL SCALE REGENERABLE HEPA FILTER DESIGN USING SINTERED METAL FILTER ELEMENTS

    International Nuclear Information System (INIS)

    Gil Ramos; Kenneth Rubow; Ronald Sekellick

    2002-01-01

    A Department of Energy funded contract involved the development of porous metal as a HEPA filter, and the subsequent design of a full-scale regenerable HEPA filtration system (RHFS). This RHFS could replace the glass fiber HEPA filters currently being used on the high level waste (HLW) tank ventilation system with a system that would be moisture tolerant, durable, and cleanable in place. The origins of the contract are a 1996 investigation at the Savannah River Technology Center (SRTC) regarding the use of porous metal as a HEPA filter material. This contract was divided into Phases I, IIA and IIB. Phase I of the contract evaluated simple filter cylinders in a simulated High Level Waste (HLW) environment and the ability to clean and regenerate the filter media after fouling. Upon the successful completion of Phase I, Phase IIA was conducted, which included lab scale prototype testing and design of a full-scale system. The work completed under Phase IIA included development of a full-scale system design, development of a filter media meeting the HEPA filtration efficiency that would also be regenerable using prescribed cleaning procedures, and the testing of a single element system prototype at Savannah River. All contract objectives were met. The filter media selected was a nickel material already under development at Mott, which met the HEPA filtration efficiency standard. The Mott nickel media met and exceeded the HEPA requirement, providing 99.99% removal against a requirement of 99.97%. Double open-ended elements of this media were provided to the Savannah River Test Center for HLW simulation testing in the single element prototype filter. These elements performed well and further demonstrated the practicality of a metallic media regenerable HEPA filter system. An evaluation of the manufacturing method on many elements demonstrated the reproducibility to meet the HEPA filtration requirement. The full-scale design of the Mott RHFS incorporated several important

  9. Impact of a Regional Drought on Terrestrial Carbon Fluxes and Atmospheric Carbon: Results from a Coupled Carbon Cycle Model

    Science.gov (United States)

    Lee, Eunjee; Koster, Randal D.; Ott, Lesley E.; Weir, Brad; Mahanama, Sarith; Chang, Yehui; Zeng, Fan-Wei

    2017-01-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO2, induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  10. Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    Science.gov (United States)

    Hultgren, Lennart S.; Miles, Jeffrey H.

    2009-01-01

    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced.

  11. Full-scale vibration tests of Atucha II N.P.P. Part I: objectives, instrumentation and test description

    International Nuclear Information System (INIS)

    Konno, T.; Tsugawa, T.; Sala, G.; Friebe, T.M.; Prato, C.A.; Godoy, A.R.

    1995-01-01

    The main purpose of the tests was to provide experimental data on the dynamic characteristics of the main reactor building and adjacent structures of a full-scale nuclear power plant built on deep Quaternary soil deposits. Test results were intended to provide a benchmark case for control and calibration of state-of-the-art numerical techniques used for engineering design of new plants and assessment of existing facilities. Interpretation of test results and calibration of numerical analyses are described in other associated papers. (author). 5 figs

  12. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    Science.gov (United States)

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Full-scale measurements of aerodynamic induction in a rotor plane

    International Nuclear Information System (INIS)

    Larsen, Gunner Chr; Hansen, Kurt S

    2014-01-01

    Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented

  14. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  15. The harp: a vehicle crash test apparatus for full-scale crash test experiments

    OpenAIRE

    Johnsen, J. S.; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2012-01-01

    Published version of an article in the journal: The International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-012-3960-3 The current paper describes an apparatus for full-scale vehicle crash test experimentation. This apparatus is referred to as the harp. In brief, the harp may either accelerate a trolley which is impacted into a test vehicle or the test vehicle itself may be accelerated and impacted into an object su...

  16. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  17. Characterisation and full-scale production testing of multifunctional surfaces for deep drawing applications

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; De Chiffre, Leonardo

    2017-01-01

    Full-scale deep drawing tests using tools featuring multifunctional surfaces are carried out in a production environment. Multifunctional tools display regularly spaced, transversal grooves for lubricant retention obtained by hard-turning, separated by smooth bearing plateaus realized by robot...... assisted polishing. Advanced methods are employed to characterise the tools' surface topographies, detecting the surface features and analysing them separately according to their specific function. Four different multifunctional dies as well as two un-textured references are selected for testing. The tests...

  18. Structural response of full-scale concrete bridges subjected to high load magnitudes

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Schmidt, Jacob Wittrup; Jensen, Thomas Westergaard

    A project concerning full-scale testing of concrete bridges was initiated in September 2016 in Denmark. Four bridges were tested, and the structural response of the bridges evaluated. Two bridges consisted of overturned concrete T-beams (OT-beams), and two bridges were constructed by joining L...... disturbance) often is an issue when testing on site. Also, different types of measuring equipment such as lasers, LVDT’s and DIC-cameras was investigated, in order to evaluate the deformations during loading of one of the OT-beam bridges. The monitoring equipment was studied to verify if such equipment...

  19. Development and Full-Scale Evaluation of a New Marine Propeller Type

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, J.; Kappel, J.

    2004-01-01

    The KAPPEL propeller has blades curved towards the suction side at the tips. A similar application of non-planar lifting surfaces is known from modern aircraft wings having pronounced fins or winglets at the wing tips to obtain better lift-to-drag ratios. For the propeller the task is to optimise...... designed and models of all propellers examined with respect to efficiency in open-water and behind conditions. Cavitation tests were carried out for all propellers in the HYKAT cavitation tunnel at HSVA. In full scale, for the product carrier comparative sea trials were made with the conventional...

  20. Complex microscopic express-analysis for biomedical full-scale investigation

    Directory of Open Access Journals (Sweden)

    Datsenko A.M.

    2013-12-01

    Full Text Available To perform biomedical full-scale investigation there had been developed a set of microscopic analysis of histologi-cal preparations. This complex includes cryotome for histological sections, a set of chemical reagents and laboratory glassware for staining, binocular loupes for registration microstructural changes, a microscope with a camera and lighting system on swivel stand, modernized otoscope, a laptop with graphics programs. The complex provides quantitative indicators needed to diagnose the severity and probability estimates of the effect estimation of impacts of extreme factors of different nature.

  1. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Boe, Kanokwan; Ellegaard, L.

    2005-01-01

    A study on 18 full-scale centralized biogas plants was carried out in order to find significant operational factors influencing productivity and stability of the plants. It was found that the most plants were operating relatively stable with volatile fatty acids (VFA) concentration below 1.5 g....../l. VFA concentration increase was observed in occasions with dramatic overloading or other disturbances such as operational temperature changes. Ammonia was found to be a significant factor for stability. A correlation between increased residual biogas production and high ammonia was found. When ammonia...

  2. Full-scale measurements of aerodynamic induction in a rotor plane

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2014-01-01

    Reliable modelling of aerodynamic induction is imperative for successful prediction of wind turbine loads and wind turbine dynamics when based on state-of- the-art aeroelastic tools. Full-scale LiDAR based wind speed measurements, with high temporal and spatial resolution, have been conducted...... in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented....

  3. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  4. Phasor model of full scale converter wind turbine for small-signal stability analysis

    OpenAIRE

    Gihga, Radu; Wu, Qiuwei; Nielsen, Arne Hejde

    2017-01-01

    The small-signal stability analysis of power system electromechanical oscillations is a well-established field in control and stability assessment of power systems. The impact of large wind farms on small-signal stability of power systems has been a topic of high interest in recent years. This study presents a phasor model of full scale converter wind turbines (WTs) implemented in MATLAB/SIMULINK for small-signal stability studies. The phasor method is typically used for dynamic studies of po...

  5. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    Science.gov (United States)

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  6. Comparative Flight and Full-Scale Wind-Tunnel Measurements of the Maximum Lift of an Airplane

    Science.gov (United States)

    Silverstein, Abe; Katzoff, S; Hootman, James A

    1938-01-01

    Determinations of the power-off maximum lift of a Fairchild 22 airplane were made in the NACA full-scale wind tunnel and in flight. The results from the two types of test were in satisfactory agreement. It was found that, when the airplane was rotated positively in pitch through the angle of stall at rates of the order of 0.1 degree per second, the maximum lift coefficient was considerably higher than that obtained in the standard tests, in which the forces are measured with the angles of attack fixed. Scale effect on the maximum lift coefficient was also investigated.

  7. RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions

    Science.gov (United States)

    Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin

    2018-01-01

    In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.

  8. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    Science.gov (United States)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  9. A case-study on the accuracy of mass balances for xenobiotics in full-scale wastewater treatment plants.

    Science.gov (United States)

    Majewsky, Marius; Farlin, Julien; Bayerle, Michael; Gallé, Tom

    2013-04-01

    Removal efficiencies of micropollutants in wastewater treatment plants (WWTPs) are usually evaluated from mass balance calculations using a small number of observations drawn from short sampling campaigns. Since micropollutant loads can vary greatly in both influent and effluent and reactor tanks exhibit specific hydraulic residence times, these short-term approaches are particularly prone to yield erroneous removal values. A detailed investigation of micropollutant transit times at full-scale and on how this affects mass balancing results was still lacking. The present study used hydraulic residence time distributions to scrutinize the match of influent loads to effluent loads of 10 polar micropollutants with different influent dynamics in a full-scale WWTP. Prior hydraulic modeling indicated that a load sampled over one day in the effluent is composed of influent load fractions of five preceding days. Results showed that the error of the mass balance can be reduced with increasing influent sampling duration. The approach presented leads to a more reliable estimation of the removal efficiencies of those micropollutants which can be constantly detected in influents, such as pharmaceuticals, but provides no advantage for pesticides due to their sporadic occurrence. The mismatch between sampled influent and effluent loads was identified as a major error source and an explanation was provided for the occurrence of negative mass balances regularly reported. This study indicates that the accurate determination of global removal values is only feasible in full-scale investigations with sampling durations much longer than 1 day. In any case, the uncertainty of these values needs to be reported when used in removal assessment, model selection or validation.

  10. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    Science.gov (United States)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  11. Non-machinery dialysis that achieves blood purification therapy without using full-scale dialysis machines.

    Science.gov (United States)

    Abe, Takaya; Onoda, Mistutaka; Matsuura, Tomohiko; Sugimura, Jun; Obara, Wataru; Sato, Toshiya; Takahashi, Mihoko; Chiba, Kenta; Abe, Tomiya

    2017-09-01

    An electrical or water supply and a blood purification machine are required for renal replacement therapy. There is a possibility that acute kidney injury can occur in large numbers and on a wide scale in the case of a massive earthquake, and there is the potential risk that the current supply will be unable to cope with acute kidney injury cases. However, non-machinery dialysis requires exclusive circuits and has the characteristic of not requiring the full-scale dialysis machines. We performed perfusion experiments that used non-machinery dialysis and recent blood purification machines in 30-min intervals, and the effectiveness of non-machinery dialysis was evaluated by the assessing the removal efficiency of potassium, which causes lethal arrhythmia during acute kidney injury. The non-machinery dialysis potassium removal rate was at the same level as continuous blood purification machines with a dialysate flow rate of 5 L/h after 15 min and continuous blood purification machines with a dialysate flow rate of 3 L/h after 30 min. Non-machinery dialysis required an exclusive dialysate circuit, the frequent need to replace bags, and new dialysate exchanged once every 30 min. However, it can be seen as an effective renal replacement therapy for crush-related acute kidney injury patients, even in locations or facilities not having the full-scale dialysis machines.

  12. Optimization of membrane unit location in a full-scale membrane bioreactor using computational fluid dynamics.

    Science.gov (United States)

    Wu, Qing; Yan, Xiaoxu; Xiao, Kang; Guan, Jing; Li, Tianyu; Liang, Peng; Huang, Xia

    2018-02-01

    The location of membrane units in the membrane tank is a key factor in the construction of a full-scale membrane bioreactor (MBR), as it would greatly affect the hydrodynamics in the tank, which could in turn affect the membrane fouling rate while running. Yet, in most cases, these units were empirically installed in tanks, no theory guides were currently available for the design of a proper location. In this study, the hydrodynamics in the membrane tank of a full-scale MBR was simulated using computational fluid dynamics (CFD). Five indexes (i Lu , i La , i Lb , i Lint , i Lw ) were used to indicate the unit location, and each of them was discussed for their individual impact on the risk water velocity (v 0.05 ) in the membrane unit region. An optimal design with all the indexes equaling 0.6 was proposed, and was found to have a promotion of 146.9% for v 0.05 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On the dominant noise components of tactical aircraft: Laboratory to full scale

    Science.gov (United States)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  14. Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant.

    Science.gov (United States)

    Papageorgiou, A; Voutsa, D; Papadakis, N

    2014-05-15

    The occurrence and fate of carbonyl compounds as ozonation by-products at a full scale drinking water treatment plant (DWTP) were studied for one year. Raw water and samples after the main treatment processes (pre-ozonation, coagulation/flocculation, sand filtration, main ozonation, filtration through granular activated carbon and chlorination) were collected on a monthly basis. Pre-ozonation led to the formation of carbonyl compounds at concentrations of 67.3 ± 43.3 μg/l as sum of 14 carbonyl compounds whereas lower concentrations were determined after the main ozonation process, 32.8 ± 22.3 μg/l. The dominant compounds were formaldehyde, acetaldehyde, glyoxal and methyl glyoxal contributing to 65% of total carbonyl content. The DOC reactivity in formation of carbonyl compounds varied through the year exhibiting the higher values in spring. Coagulation/flocculation and sand filtration significantly removed (64-80%) the carbonyl compounds formed at the pre-ozonation step. The removal efficiency of filtration through granular activated carbon showed great variation ranging from 15 to 62%. Finally, the concentrations of carbonyl compounds in finished water were low, close to detection limits, revealing the efficiency of DWTP in the removal of this class of ozonation by-products. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  16. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald

    2015-12-01

    Membrane bioreactors (MBRs) offer promising solution for wastewater treatment and reuse to address the problem of water scarcity. Nevertheless, this technology is still facing challenges associated with membrane biofouling. This phenomenon has been mainly investigated in lab-scale MBRs with little or no insight on biofouling in full-scale MBR plants. Furthermore, the temporal dynamics of biofouling microbial communities and their extracellular polymeric substances (EPS) are less studied. Herein, a multidisciplinary approach was adopted to address the above knowledge gaps in lab- and full-scale MBRs. In the full-scale MBR study, 16S rRNA gene pyrosequencing with multivariate statistical analysis revealed that the early and mature biofilm communities from five full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared between the five MBR plants sampled despite differences in their operating conditions. In the lab-scale MBR studies, temporal dynamics of microbial communities and their EPS products were monitored on different hydrophobic and hydrophilic membranes during 30 days. At the early stages of filtration (1 d), the same early colonizers belonging to the class Betaproteobacteria were identified on all the membranes. However, their relative abundance decreased on day 20 and 30, and sequence reads belonging to the phylum Firmicutes and Chlorobi became dominant on all the membranes on day 20 and 30. In addition, the intrinsic membrane characteristic did not select any specific EPS fractions at the initial stages of filtration and the same EPS foulants developed with time on the hydrophobic and hydrophilic membranes. Our results indicated that the membrane surface characteristics did not select for specific biofouling communities or EPS foulants, and the same early

  17. Full-scale operating experience of deep bed denitrification filter achieving phosphorus.

    Science.gov (United States)

    Husband, Joseph A; Slattery, Larry; Garrett, John; Corsoro, Frank; Smithers, Carol; Phipps, Scott

    2012-01-01

    The Arlington County Wastewater Pollution Control Plant (ACWPCP) is located in the southern part of Arlington County, Virginia, USA and discharges to the Potomac River via the Four Mile Run. The ACWPCP was originally constructed in 1937. In 2001, Arlington County, Virginia (USA) committed to expanding their 113,500 m³/d, (300,000 pe) secondary treatment plant to a 151,400 m³/d (400,000 pe) to achieve effluent total nitrogen (TN) to phosphorus (TP) phosphorus, to very low concentrations. This paper will review the steps from concept to the first year of operation, including pilot and full-scale operating data and the capital cost for the denitrification filters.

  18. Full-Scale Crash Tests and Analyses of Three High-Wing Single

    Science.gov (United States)

    Annett, Martin S.; Littell, Justin D.; Stimson, Chad M.; Jackson, Karen E.; Mason, Brian H.

    2015-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project was initiated in 2014 to assess the crash performance standards for the next generation of ELT systems. Three Cessna 172 aircraft have been acquired to conduct crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Testing is scheduled for the summer of 2015 and will simulate three crash conditions; a flare to stall while emergency landing, and two controlled flight into terrain scenarios. Instrumentation and video coverage, both onboard and external, will also provide valuable data of airframe response. Full-scale finite element analyses will be performed using two separate commercial explicit solvers. Calibration and validation of the models will be based on the airframe response under these varying crash conditions.

  19. Instrumentation and data acquisition for full-scale aircraft crash testing

    Science.gov (United States)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  20. Full-Scale Physical Modeling Of The System "Granular Media—Steel Sheet Piling"

    Science.gov (United States)

    Dubrovskyy, M. P.; Meshcheryakov, G. N.; Petrosyan, V. N.; Dubrovska, O. M.

    2011-12-01

    This paper considers the problem of determination of real parameters of the cross-sectional values of sheet piling walls made of U-profile piles (moment of inertia and section modulus) and their drivability regarding piles interaction with granular media (for example, sandy soil). Among main factors which influence on this one can mention soil friction in the interlocks and the transmission of longitudinal shear forces in the interlocks of the sheet piles. In reality granular media-interlock interaction depends mainly on installation method and properties of the granular media. Study of dependencies between applied forces and friction in the interlocks by full-scale physical modeling during press-in regarding pile-pile interaction and granular media properties was aiming to refine calculation model as well as to provide reliable numerical modeling and design of the considered system.

  1. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  2. Full scale investigation on aerogel windows exposed to real climatic conditions

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Nielsen, Lars Thomsen

    The aim of the project “Full scale experiments with aerogel windows exposed to natural conditions” is to test the durability of aerogel windows exposed to real climatic conditions and to investigate the influence of aerogel windows compared to common low-energy windows with respect to heat balance...... and indoor thermal comfort.The influence of temperature and wind load on the durability of sealed glazing units including aerogel windows has been investigated theoretically. The analyses show that evacuated aerogel glazings are significantly more robust to temperature changes and wind load than common...... sealed glazing units, due to the rough vacuum. A non-evacuated aerogel glazing has been mounted in a experimental house for 3 years without any sign of degeneration of the aerogel material.An energy saving of 30% has been found if aerogel windows are used instead of low-energy windows with argon...

  3. Phasor model of full scale converter wind turbine for small-signal stability analysis

    DEFF Research Database (Denmark)

    Ghiga, Radu; Wu, Qiuwei; Nielsen, Arne Hejde

    2017-01-01

    The small-signal stability analysis of power system electromechanical oscillations is a well-established field in control and stability assessment of power systems. The impact of large wind farms on small-signal stability of power systems has been a topic of high interest in recent years....... This study presents a phasor model of full scale converter wind turbines (WTs) implemented in MATLAB/SIMULINK for small-signal stability studies. The phasor method is typically used for dynamic studies of power systems consisting of large electric machines. It can also be applied to any linear system....... This represents an advantage in small-signal stability studies, which are based on modal analysis of the linearised model and are usually complemented with dynamic simulations. The proposed model can represent a single WT or an aggregated wind power plant. The implemented model for small-signal stability analysis...

  4. Structural degradation of a large composite wind turbine blade in a full-scale fatigue test

    DEFF Research Database (Denmark)

    Chen, Xiao

    -23 (ed. 2014). A conventional single-axis mass resonance excitation (rotating mass) method is used as it is now still widely used for blade certification. The blade is tested in a flap-wise bending direction with the suction side primarily under compressive stress and pressure side under tensile stress...... tests at a coupon level? What might be the concerns one should take into account when predicting residual structural properties of rotor blades? To answer, at least to a partial extent, these questions, this study conducts a full-scale fatigue test on a 47m composite rotor blade according to IEC 61400......, see Fig. 1. The applied loads are increased to reduce the number of cycles to 2.0 million cycles. Bending stiffness of the blade is measured at different span-wise sections during the fatigue test in order to measure its possible degradation. Natural frequencies and damping ratios are measured both...

  5. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    Science.gov (United States)

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  6. Full-Scale Approximations of Spatio-Temporal Covariance Models for Large Datasets

    KAUST Repository

    Zhang, Bohai

    2014-01-01

    Various continuously-indexed spatio-temporal process models have been constructed to characterize spatio-temporal dependence structures, but the computational complexity for model fitting and predictions grows in a cubic order with the size of dataset and application of such models is not feasible for large datasets. This article extends the full-scale approximation (FSA) approach by Sang and Huang (2012) to the spatio-temporal context to reduce computational complexity. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed to select knots automatically from a discrete set of spatio-temporal points. Our approach is applicable to nonseparable and nonstationary spatio-temporal covariance models. We illustrate the effectiveness of our method through simulation experiments and application to an ozone measurement dataset.

  7. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    Existing wastewater treatment plants (WWTP) need retrofitting in order to better handle changes in the wastewater flow and composition, reduce operational costs as well as meet newer and stricter regulatory standards on the effluent discharge limits. In this study, we use an optimization based...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...... technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...

  8. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...... biogas reactor was possible with biomass share of 10%, leading to energy production of 280 GJ/day. The digestion of pretreated meadow grass as alternative co-substrate had clearly positive impact in all the examined scenarios, leading to increased biogas production in the range of 10%-20%.......This study investigated the efficiency of commercially available harvesting machines for mechanical pretreatment of meadow grass, in order to enhance the energy yield per hectare. Excoriator was shown to be the most efficient mechanical pretreatment increasing the biogas yield of grass by 16...

  9. Identifying the abundant and active microorganisms common to full scale anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Kristensen, Jannie Munk

    2017-01-01

    two full scale digesters over a six year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider...... in anaerobic digestion, this study paves the way for targeted characterisation of the process important organisms towards an in depth understanding of the microbial ecology of these biotechnologically important systems.......Anaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty...

  10. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  11. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    Introduction In recent years the use of wind lidars mounted directly on wind turbines has received increasing attention, and such systems are becoming commercially available. One aim of turbine-mounted wind lidars is to use them for prevision in connection with advanced feed-forward control systems...... for load reduction and power optimization. To date, main attention has been on control schemes where measurements of wind speeds and direction upwind are used for yaw and speed corrections. In this study we investigate experimentally the feasibility of using lidars integrated in the turbine blades...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...

  12. TESTING OF A FULL-SCALE ROTARY MICROFILTER FOR THE ENHANCED PROCESS FOR RADIONUCLIDES REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D; David Stefanko, D; Michael Poirier, M; Samuel Fink, S

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications in the Department of Energy (DOE) complex. One application involves use in the Enhanced Processes for Radionuclide Removal (EPRR) at the Savannah River Site (SRS). To assess this application, the authors performed rotary filter testing with a full-scale, 25-disk unit manufactured by SpinTek Filtration with 0.5 micron filter media manufactured by Pall Corporation. The filter includes proprietary enhancements by SRNL. The most recent enhancement is replacement of the filter's main shaft seal with a John Crane Type 28LD gas-cooled seal. The feed material was SRS Tank 8F simulated sludge blended with monosodium titanate (MST). Testing examined total insoluble solids concentrations of 0.06 wt % (126 hours of testing) and 5 wt % (82 hours of testing). The following are conclusions from this testing.

  13. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-01

    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  14. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Arvin, Erik; Corfitzen, Charlotte B.

    2014-01-01

    and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters — removal was the greatest in the sand filters in the filter line with the highest contact time (63min). In these secondary sand...... in the full-scale system. Therefore, microcosms were set up with filter sand, water and 14C-labelled MCPP at an initial concentration of 0.2μg/L. After 24h, 79–86% of the initial concentration of MCPP was removed. Sorption removed 11–15%, while the remaining part was removed by microbial processes, leading......Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08μg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary...

  15. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  16. Full Scale Measurements of the Hydro-Elastic Response of Large Container Ships for Decision Support

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent

    The overall topic of this thesis is decision support for operation of ships and several aspects are covered herein. However, the main focus is on the wave-induced hydro-elastic response of large container ships and its implications on the structural response. The analyses are based mainly on full...... scale measurements from four container ships of 4,400 TEU, 8,600 TEU, 9,400 TEU and 14,000 TEU Primarily, strains measured near the deck amidships are used. Furthermore, measurements of motions and the encountered sea state are available for one of the ships. The smallest ship is in operation...... on the North Atlantic, while the three largest ships are operated on the Europe - Asia route. In the design rules of the classification societies for container ships the minimum design sagging bending moment amidships is larger than the hogging bending moment. Due to their design (full midship section...

  17. A full-scale plug-flow reactor for biological sludge ozonation.

    Science.gov (United States)

    Gardoni, Davide; Ficara, Elena; Vergine, Pompilio; Canziani, Roberto

    2015-01-01

    The reduction of biological excess sludge production using ozone is a well-known technology and is applied in several full-scale plants around the world. Nevertheless, optimisation of the process is not yet adequately documented in the literature. Operational parameters are usually chosen by assuming a direct proportionality between ozone dose and excess sludge reduction. This paper investigates the role of ozone concentration on process efficiency and demonstrates the (non-linear) inverse relationship between ozone dose and specific particulate chemical oxygen demand solubilisation in plug-flow contact reactors. The influence of total suspended solids concentration is also studied and described. No short-term lethal effects on heterotrophic biomass have been observed.

  18. Lysimeter study of commercial reactor waste forms: waste form acquisition characterization and full-scale leaching

    International Nuclear Information System (INIS)

    1983-02-01

    This report describes work conducted at Brookhaven National Laboratory (BNL) as part of a joint program with Savannah River Laboratory. Typical full-scale (55-gallon drum size) waste forms were acquired by BNL from a boiling water reactor (BWR) and a pressurized water reactor (PWR). Liquid waste stream activity concentrations were analyzed by gamma spectroscopy. This information was used to determine the waste from activity inventory, providing the necessary source term for lysimeter and leaching experiments. Predominant radionuclides of interest include 60 Co, 137 Cs, 134 Cs, and 54 Mn. A full-scale leaching experiment was initiated by BNL encompassing four representative waste stream-solidification agent combinations. Waste streams tested include PWR evaporator concentrate (boric acid waste), BWR evaporator concentrate (sodium sulfate waste) and BWR evaporator concentrate plus ion exchange resins. Solidification agents include masonry cement, portland type III cement, and vinyl ester-styrene (Dow polymer). Analyses of leachates indicate measurable leach rates of 137 Cs, 134 Cs, and 60 Co from both BWR and PWR cement waste forms. The leach rates for both cesium isotopes in cement are at least two orders of magnitude greater than those for cobalt. Leachates from the BWR Dow polymer waste form include the same isotopes present in cement leachates, with the addition of 54 Mn. Cesium leach rates from the Dow polymer waste form are approximately one order of magnitude lower than from an equivalent cement waste form. The 60 Co cumulative fraction release, however, is approximately three times greater for the Dow polymer waste form

  19. Bacteriophage removal in a full-scale membrane bioreactor (MBR) - Implications for wastewater reuse.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2015-04-15

    The aim of this study was to assess the potential removal efficacy of viruses in a full-scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 'spiked' bacteriophages (phages) of known size and morphology. Samples were taken each week for three months from nine locations at each treatment stage of the water recycling plant (WRP) and tested for a range of microbiological parameters (n = 135). Mean levels of faecal coliforms were reduced to 0.3 CFU/100 ml in the MBR product and were undetected in samples taken after the chlorination stage. A relatively large reduction (5.3 log) in somatic coliphages was also observed following MBR treatment. However, F-specific and human-specific (GB124) phages were less abundant at all stages, and demonstrated log reductions post-MBR of 3.5 and 3.8, respectively. In 'spiking' experiments, suspended 'spiked' phages (MS2 and B-14) displayed post-MBR log reductions of 2.25 and 2.30, respectively. The removal of these suspended phages, which are smaller than the membrane pore size (0.04 μm), also highlights the possible role of the membrane biofilm as an effective additional barrier to virus transmission. The findings from this study of a full-scale MBR system demonstrate that the enumeration of several phage groups may offer a practical and conservative way of assessing the ability of MBR to remove enteric viruses of human health significance. They also suggest that phage removal in MBR systems may be highly variable and may be closely related on the one hand to both the size and morphology of the viruses and, on the other, to whether or not they are attached to solids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Tracking the behavior of different size fractions of dissolved organic matter in a full-scale advanced drinking water treatment plant.

    Science.gov (United States)

    Quang, Viet Ly; Choi, Ilhwan; Hur, Jin

    2015-11-01

    In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.

  1. Validation of a new model for the sizing of denitrification reactors, by testing full-scale plants.

    Science.gov (United States)

    Raboni, M; Torretta, V

    2017-06-01

    A new deterministic model for the calculation of the specific denitrification rate (SDNR), useful for the design of pre-denitrification reactors, was tested on eight full-scale activated sludge plants. The model represents the SDNR at 20°C (SDNR 20°C ) as a function of the sludge loading in the denitrification reactor (F:M DEN ) and the residual dissolved oxygen in the denitrification reactor (DO DEN ). The results proved the ability of the model in calculating the SDNR 20°C . The model shows a lower degree of adaptability for small-sized plants. SDNR 20°C proved to have a strong sensitivity to DO DEN , mainly in correspondence with low DO concentrations (less than 2 mg L -1 ). The sensitivity decreases at greater DO values, but with a progressively less marked gradient, up to becoming weak only at DO concentrations greater than 0.4-0.5 mg L -1 , which are rarely found in full-scale plants. DO concentrations measured in real-scale facilities are mostly in the range 0.2-0.4 mg L -1 . These concentrations cause adverse effects on the kinetics of nitrogen removal, and consequently on the denitrification performance. Thus, minimizing DO in the pre-denitrification reactor is relevant. The sensitivity of SDNR 20°C to F:M DEN was less important, as it is characterized by a growing linear behaviour with a low slope.

  2. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  3. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    Science.gov (United States)

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Full-Scale Implementation of a Vertical Membrane Bioreactor for Simultaneous Removal of Organic Matter and Nutrients from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    So-Ryong Chae

    2015-03-01

    Full Text Available In nutrient-sensitive estuaries, wastewater treatment plants (WWTPs are required to implement more advanced treatment methods in order to meet increasingly stringent effluent guidelines for organic matter and nutrients. To comply with current and anticipated water quality regulations and to reduce the volume of produced sludge, we have successfully developed a vertical membrane bioreactor (VMBR that is composed of anoxic (lower layer and oxic (upper layer zones in one reactor. Since 2009, the VMBR has been commercialized (Q = 1100–16,000 m3/d under the trade-name of DMBRTM for recycling of municipal wastewater in South Korea. In this study, we explore the performance and stability of the full-scale systems. As a result, it was found that the DMBRTM systems showed excellent removal efficiencies of organic substances, suspended solids (SS and Escherichia coli (E. coli. Moreover, average removal efficiencies of total nitrogen (TN and total phosphorus (TP by the DMBRTM systems were found to be 79% and 90% at 18 °C, 8.3 h HRT and 41 d SRT. Moreover, transmembrane pressure (TMP was maintained below 40 kPa at a flux of 18 L/m2/h (LMH more than 300 days. Average specific energy consumption of the full-scale DMBRTM systems was found to be 0.94 kWh/m3.

  5. Hydraulic and biochemical analyses on full-scale sludge consolidation reed beds in Tuscany (Italy).

    Science.gov (United States)

    Giraldi, D; Masciandaro, G; Peruzzi, E; Bianchi, V; Peruzzi, P; Ceccanti, B; Iannelli, R

    2009-01-01

    The management of sewage sludge has recently become one of the most significant challenges in wastewater management. Reed bed systems appear to be an efficient and economical solution for sludge management in small wastewater treatment plants. Four years ago, one of the holding companies for water and wastewater in central Italy adopted this technology in 6 wastewater treatment plants. Hydraulic and biochemical analyses were performed on the most representative site to asses the behaviour of reed beds with regard to dewatering, mineralization and humification of disposed sludge. Moreover, daily water content analysis were performed in the interval between subsequent sludge loadings. Results indicated a decrease of sludge volume by about 93% on a yearly basis. Biochemical analysis highlighted that mineralization processes decrease over time due to a rapid decrease of microbial activity and labile substrates, such as DHase enzyme and water-soluble carbon and ammonium, respectively. Moreover, a significant interrelationship between the parameters linked with mineralization was found: after two years of operation, the process of mineralization of organic matter is still predominant in the humification of organic matter. Daily water content data were used to define a semi empirical equation describing the dynamics of the dewatering process. Overall, the use of sludge reed beds resulted feasible, ecologically sustainable and cost-effective.

  6. Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Science.gov (United States)

    De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto

    2017-07-01

    This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.

  7. Evaluation of the Strength Variation of Normal and Lightweight Self-Compacting Concrete in Full Scale Walls

    DEFF Research Database (Denmark)

    Hosseinali, M.; Ranjbar, M. M.; Rezvani, S. M.

    2011-01-01

    The strength of cast concrete along the height and length of large structural members might vary due to inadequate compaction, segregation, bleeding, head pressure, and material type. The distribution of strength within a series of full scale reinforced concrete walls was examined using non......-destructive testing. Self-compacting concrete (SCC) and lightweight self-compacting concrete (LWSCC) with different admixtures were tested and compared with normal concrete (NC). The results were also compared with results for standard cubic samples. The results demonstrate the effect of concrete type on the in situ...... between mixtures along the length of the walls. Furthermore, different admixture replacements did not have a meaningful effect on the strength distribution....

  8. Evaluation of Thermal and Thermo-mechanical Behavior of Full-scale Energy Foundations

    Science.gov (United States)

    Murphy, Kyle D.

    This study focuses on the thermo-mechanical and thermal behavior of full-scale energy foundations installed as part of two buildings recently constructed in Colorado. The soil stratigraphy at each of the sites differed, but both foundations were expected to function as primarily end-bearing elements with a tip socketed into rock. The heat exchanger configurations were also different amongst the foundations at both sites, permitting evaluation of the role of heat exchange. A common thread for both energy foundation case histories was the monitoring of the temperature and axial strain within the foundations during heat exchange operations. The first case study involves an evaluation of the long-term thermo-mechanical response of two full-scale energy foundations installed at the new Denver Housing Authority (DHA) Senior Living Facility at 1099 Osage St. in Denver, Colorado. Due to the construction schedule for this project, the thermal properties of the foundations and surrounding subsurface could not be assessed using thermal response tests. However, instrumentation was incorporated into the foundations to assess their long-term heat exchange response as well as the thermo-mechanical strains, stresses, and displacements that occurred during construction and operation of the ground-source heat pump system. The temperature changes within the foundations during heating and cooling operations over a period of approximately 600 days ranged from 9 to 32 °C, respectively. The thermal axial stresses in the foundations were calculated from the measured strains, and ranged from 3.1 MPa during heating to --1.0 MPa during cooling. These values are within reasonable limits for reinforced concrete structures. The maximum thermal axial stress was observed near the toe of both foundations, which is consistent with trends expected for end-bearing toe boundary conditions. The greatest thermal axial strains were observed near the top of the foundations (upward expansion during

  9. Fabrication of the full scale separable first wall of ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Kosaku, Yasuo; Kuroda, Toshimasa; Hatano, Toshihisa; Enoeda, Mikio; Miki, Nobuharu; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-10-01

    for SS block, water jet method was demonstrated to be applicable to the complicated slit structure required in the shield block fabrication. Also, the fabrication of full scale FW panel was performed. By the destructive observation of the test pieces of HIP joints, the soundness of the fabrication was clarified. In conclusion, essential fabrication technology for the full scale separable first wall panel has been established by this work. (author)

  10. Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants.

    Science.gov (United States)

    Robinson, K G; Dionisi, H M; Harms, G; Layton, A C; Gregory, I R; Sayler, G S

    2003-01-01

    Nitrification was assessed in two full-scale wastewater treatment plants (WWTPs) over time using molecular methods. Both WWTPs employed a complete-mix suspended growth, aerobic activated sludge process (with biomass recycle) for combined carbon and nitrogen treatment. However, one facility treated primarily municipal wastewater while the other only industrial wastewater. Real time PCR assays were developed to determine copy numbers for total 16S rDNA (a measure of biomass content), the amoA gene (a measure of ammonia-oxidizers), and the Nitrospira 16S rDNA gene (a measure of nitrite-oxidizers) in mixed liquor samples. In both the municipal and industrial WWTP samples, total 16S rDNA values were approximately 2-9 x 10(13) copies/L and Nitrospira 16S rDNA values were 2-4 x 10(10) copies/L. amoA gene concentrations averaged 1.73 x 10(9) copies/L (municipal) and 1.06 x 10(10) copies/L (industrial), however, assays for two distinct ammonia oxidizing bacteria were required.

  11. Full-scale photobioreactor for biotreatment of olive washing water: Structure and diversity of the microalgae-bacteria consortium.

    Science.gov (United States)

    Maza-Márquez, P; González-Martínez, A; Rodelas, B; González-López, J

    2017-08-01

    The performance of a full-scale photobioreactor (PBR) for the treatment of olive washing water (OWW) was evaluated under different HRTs (5-2days). The system was able to treat up to 3926L OWWday -1 , and consisted of an activated-carbon pretreatment column and a tubular PBR unit (80 tubes, 98.17L volume, 2-m height, 0.25m diameter). PBR was an effective and environmentally friendly method for the removal of phenols, COD, BOD 5 , turbidity and color from OWW (average efficiencies 94.84±0.55%, 85.86±1.24%, 99.12±0.17%, 95.86±0.98% and 87.24±0.91%, respectively). The diversity of total bacteria and microalgae in the PBR was analyzed using Illumina-sequencing, evaluating the efficiency of two DNA extraction methods. A stable microalgae-bacteria consortium was developed throughout the whole experimentation period, regardless of changes in HRT, temperature or solar radiation. MDS analyses revealed that the interplay between green algae (Sphaeropleales), cyanobacteria (Hapalosiphon) and Proteobacteria (Rhodopseudomonas, Azotobacter) played important roles in OWW bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Report on the design and operation of a full-scale anaerobic dairy manure digester. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coppinger, E.; Brautigam, J.; Lenart, J.; Baylon, D.

    1979-12-01

    A full-scale anaerobic digester on the Monroe State Dairy Farm was operated and monitored for 24 months with funding provided by the United States Department of Energy, Fuels from Biomass Systems Branch. During the period of operation, operating parameters were varied and the impact of those changes is described. Operational experiences and system component performance are discussed. Internal digester mixing equipment was found to be unnecessary, and data supporting this conclusion are given. An influent/effluent heat exchanger was installed and tested, and results of the tests are included. Recommendations for digester design and operation are presented. Biological stability was monitored, and test results are given. Gas production rates and system net energy are analyzed. The economics of anaerobic digestion are evaluated based on various financing options, design scales, and expected benefits. Under many circumstances digesters are feasible today, and a means of analysis is given.

  13. Performance evaluation of full scale UASB reactor in treating stillage wastewater

    Directory of Open Access Journals (Sweden)

    A.Mirsepasi , H. R. Honary , A. R. Mesdaghinia, A. H. Mahvi , H. Vahid , H. Karyab

    2006-04-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactors have been widely used for treatment of industrial wastewater. In this study two full-scale UASB reactors were investigated. Volume of each reactor was 420 m3. Conventional parameters such as pH, temperature and efficiency of COD, BOD, TOC removal in each reactor were investigated. Also several initial parameters in designing and operating of UASB reactors, such as upflow velocity, organic loading rate (OLR and hydraulic retention time were investigated. After modifying in operation conditions in UASB-2 reactor, average COD removal efficiency at OLR of 10–11 kg COD / m3 day was 55 percent. In order to prevent solids from settling, upflow velocity was increased to 0.35 m/h. Also to prevent solids from settling, the hydraulic retention time of wastewater in UASB-2 reactor was increased from 200 to 20 hours. This was expected that with good operation of UASB-2 reactor and with expanding of granules in the bed of the reactor, COD removal efficiency will be increased to more than 80 percent. But, because of deficiency on granulation and operation in UASB-2 reactor, this was not achieved. COD removal efficiency in the UASB-1 reactor was little. To enhance COD efficiency of UASB-1 reactor, several parameters were needed to be changed. These changes included enhancing of OLRs and upflow velocity, decreasing hydraulic retention time and operating with new sludge.

  14. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.

    Science.gov (United States)

    Sundberg, Carina; Al-Soud, Waleed A; Larsson, Madeleine; Alm, Erik; Yekta, Sepehr S; Svensson, Bo H; Sørensen, Søren J; Karlsson, Anna

    2013-09-01

    The microbial community of 21 full-scale biogas reactors was examined using 454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (six mesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilic and four thermophilic) codigesting (CD) various combinations of wastes from slaughterhouses, restaurants, households, etc. The pyrosequencing generated more than 160,000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria and Archaea. The bacterial community was always both more abundant and more diverse than the archaeal community. At the phylum level, the foremost populations in the SS reactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, and Euryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The main bacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected in the SS, but not in the CD reactors. Their absence suggests that methane formation from acetate takes place mainly via syntrophic acetate oxidation in the CD reactors. A principal component analysis of the communities at genus level revealed three clusters: SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), and thermophilic CD reactors. Thus, the microbial composition was mainly governed by the substrate differences and the process temperature. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Impact dynamics research facility for full-scale aircraft crash testing

    Science.gov (United States)

    Vaughan, V. L. J.; Alfaro-Bou, E.

    1976-01-01

    An impact dynamics research facility (IDRF) was developed to crash test full-scale general aviation aircraft under free-flight test conditions. The aircraft are crashed into the impact surface as free bodies; a pendulum swing method is used to obtain desired flight paths and velocities. Flight paths up to -60 deg and aircraft velocities along the flight paths up to about 27.0 m/s can be obtained with a combination of swing-cable lengths and release heights made available by a large gantry. Seven twin engine, 2721-kg aircraft were successfully crash tested at the facility, and all systems functioned properly. Acquisition of data from signals generated by accelerometers on board the aircraft and from external and onboard camera coverage was successful in spite of the amount of damage which occurred during each crash. Test parameters at the IDRF are controllable with flight path angles accurate within 8 percent, aircraft velocity accurate within 6 percent, pitch angles accurate to 4.25 deg, and roll and yaw angles acceptable under wind velocities up to 4.5 m/s.

  16. Full-scale technology demonstration of a polyethylene encapsulation process for radioactive, hazardous, and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.; Wright, S.

    1996-01-01

    A full-scale technology demonstration of a polyethylene encapsulation process, sponsored by the U.S. Department of Energy (DOE) Office of Technology Development, was held at the Environmental and Waste Technology Center at Brookhaven National Laboratory (BNL) in September 1994. Polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved treatment of low-level radioactive (LLW), hazardous, and mixed wastes. Although originally developed for treatment of DOE-generated wastes through waste management and environmental restoration activities, polyethylene encapsulation has application within the commercial sector. A fully equipped, production-scale system, capable of processing over 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control. Following the demonstration, waste-form testing was conducted to confirm performance of the final waste form. 10 refs., 5 figs., 1 tab

  17. Assembly of a Full-Scale External Tank Barrel Section Using Friction Stir Welding

    Science.gov (United States)

    Jones, Chip; Adams, Glynn

    1999-01-01

    A full-scale pathfinder barrel section of the External Tank for the National Aeronautics and Space Administration (NASA) Space Transport System (Space Shuttle) has been assembled at Marshall Space Flight Center (MSFC) via a collaborative effort between NASA/MSFC and Lockheed Martin Michoud Space Systems. The barrel section is 27.5 feet in diameter and 15 feet in height. The barrel was assembled using Super-Light-Weight (SLWT), orthogrid, Al-Li 2195 panel sections and a single longeron panel. A vertical weld tool at MSFC was modified to accommodate FSW and used to assemble the barrel. These modifications included the addition of a FSW weld head and new controller hardware and software, the addition of a backing anvil and the replacement of the clamping system with individually actuated clamps. Weld process 4evelopment was initially conducted to optimize the process for the welds required for completing the assembly. The variable thickness welds in the longeron section were conducted via both two-sided welds and with the use of a retractable pin tool. The barrel assembly was completed in October 1998. Details of the vertical weld tool modifications and the assembly process are presented.

  18. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  19. Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors.

    Science.gov (United States)

    Iglesias, Raquel; Simón, Pedro; Moragas, Lucas; Arce, Augusto; Rodriguez-Roda, Ignasi

    2017-06-01

    The paper assesses the costs of full-scale membrane bioreactors (MBRs). Capital expenditures (CAPEX) and operating expenses (OPEX) of Spanish MBR facilities have been verified and compared to activated sludge plants (CAS) using water reclamation treatment (both conventional and advanced). Spanish MBR facilities require a production of 0.6 to 1.2 kWh per m 3 , while extended aeration (EA) and advanced reclamation treatment require 1.2 kWh per m 3 . The energy represents around 40% of the OPEX in MBRs. In terms of CAPEX, the implementation costs of a CAS facility followed by conventional water reclamation treatment (physical-chemical + sand filtration + disinfection) ranged from 730 to 850 €.m -3 d, and from 1,050 to 1,250 €.m -3 d in the case of advanced reclamation treatment facilities (membrane filtration) with a capacity of 8,000 to 15,000 m 3 d -1 . The MBR cost for similar capacities ranges between 700 and 960 €.m -3 d. This study shows that MBRs that have been recently installed represent a cost competitive option for water reuse applications for medium and large capacities (over 10,000 m 3 d -1 ), with similar OPEX to EA and conventional water reclamation treatment. In terms of CAPEX, MBRs are cheaper than EA, followed by advanced water reclamation treatment.

  20. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment.

    Science.gov (United States)

    Wang, Qilin; Zhou, Xu; Peng, Lai; Wang, Dongbo; Xie, Guo-Jun; Yuan, Zhiguo

    2016-05-01

    Post aerobic digestion of anaerobically digested sludge (ADS) has been extensively applied to the wastewater treatment plants to enhance sludge reduction. However, the degradation of ADS in the post aerobic digester itself is still limited. In this work, an innovative free nitrous acid (HNO2 or FNA)-based pretreatment approach is proposed to improve full-scale ADS degradation in post aerobic digester. The post aerobic digestion was conducted by using an activated sludge to aerobically digest ADS for 4 days. Degradations of the FNA-treated (treated at 1.0 and 2.0 mg N/L for 24 h) and untreated ADSs were then determined and compared. The ADS was degraded by 26% and 32%, respectively, in the 4-day post aerobic digestion period while being pretreated at 1.0 and 2.0 mg HNO2-N/L. In comparison, only 20% of the untreated ADS was degraded. Economic analysis demonstrated that the implementation of FNA pretreatment can be economically favourable or not depending on the sludge transport and disposal cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Performance evaluation of a full-scale innovative swine waste-to-energy system.

    Science.gov (United States)

    Xu, Jiele; Adair, Charles W; Deshusses, Marc A

    2016-09-01

    Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Loads Correlation of a Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Yeo, Hyeonsoo; Romander, Ethan A.

    2012-01-01

    Wind tunnel measurements of the rotor trim, blade airloads, and structural loads of a full-scale UH-60A Black Hawk main rotor are compared with calculations obtained using the comprehensive rotorcraft analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. A speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall are investigated. The coupled analysis shows significant improvement over comprehensive analysis. Normal force phase is better captured and pitching moment magnitudes are better predicted including the magnitude and phase of the two stall events in the fourth quadrant at the deeply stalled condition. Structural loads are, in general, improved with the coupled analysis, but the magnitude of chord bending moment is still significantly underpredicted. As there are three modes around 4 and 5/rev frequencies, the structural responses to the 5/rev airloads due to dynamic stall are magnified and thus care must be taken in the analysis of the deeply stalled condition.

  3. Full scale monitoring of the twin chimneys of the rovinari power plant

    Directory of Open Access Journals (Sweden)

    Bayati I.

    2015-01-01

    Full Text Available The presented paper deals with the structural identification and monitoring of two twin chimneys in very close arrangement. Due to twin arrangement, important interference effects are expected to modify the chimney response to wind action, causing vortex shedding and state-dependent excitation associated to the oscillatory motion of the leeward chimney, in and out of the windward chimney wake. The complexity of the physics of this problem is increased by the dependency of the aerodynamics of circular cylinders on Reynolds number; however, there is a weakness of literature about cylinders behaviour at critical and super-critical range of Reynolds number, due to experimental limitations. Also the International Committee on Industrial Chimneys (CICIND does not provide, at present, any specific technical guideline about twin chimneys whose interaxis distance is less or equal two times the diameter, as in this case. For this reason a Tuned Mass Damper (TMD has been installed in order to increase the damping of the chimney, as merely suggested. This work aims at assessing the effectiveness of the installed TMD and characterizing the tower dynamic behaviour itself due to the wind excitation, as well as providing full scale measurements for twin cylinders configuration at high Reynolds numbers.

  4. Full Scale 3D Preoperative Planning System of the Ankle Joint Replacement Surgery with Multimedia System

    Directory of Open Access Journals (Sweden)

    Shuh-Ping Sun

    2014-05-01

    Full Text Available This study is intended to develop a computer-aided pre-surgical planning and simulating system in a multimedia environment for ankle joint replacement surgery. This system uses full-scale 3D reverse engineering techniques in design and development of the pre-surgical planning modules for ankle joint replacement surgery. This planning system not only develops the real-scale 3D image of the artificial ankle joint but also provides a detailed interior measurement of the ankle joint from various cutting planes. In this study, we apply the multimedia user interface to integrate different software functions into a surgical planning system with integrated functions. The functions include 3D model image acquisition, cutting, horizontal shifting and rotation of related bones (tibia and talus of the ankle joint in the predetermined time. For related bones of the ankle joint, it can also be used to design artificial ankle joints for adults in Taiwan. Those planning procedures can be recorded in this system for further research and investigation. Furthermore, since this system is a multimedia user interface, surgeons can use this system to plan and find a better and more efficient surgical approach before surgery. A database is available for this system to update and expand, which can provide different users with clinical cases as per their experience and learning.

  5. Full-scale experimentations on alternative materials in roads: analysis of study practices.

    Science.gov (United States)

    François, D; Jullien, A; Kerzreho, J P; Chateau, L

    2009-03-01

    In France beginning in the 1990s, the topic of road construction using various alternative materials has given rise to several studies aimed at clarifying the technical and environmental feasibility of such an option. Although crucial to understanding and forecasting their behaviour in the field, an analysis of feedback from onsite experiences (back analysis) of roads built with alternative materials has not yet been carried out. The aim of the CAREX project (2003-2005) has been to fill this gap at the national scale. Based on a stress-response approach applied to both the alternative material and the road structure and including the description of external factors, a dedicated standardised framework for field data classification and analysis was adopted. To carry out this analysis, a set of 17 documented field experiments was identified through a specific national survey. It appears that a great heterogeneity exists in data processing procedures among studies. The description of material is acceptable while it is generally poor regarding external factors and structure responses. Structure monitoring is usually brief and mechanical loads too weak, which limits the significance of field testing. For future full-scale experiments, strengthening the realism within the testing conditions would be appropriate.

  6. Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Eleanor Butterworth

    2016-08-01

    Full Text Available A comparison of the performance of four full-scale aerated horizontal flow constructed wetlands was conducted to determine the efficacy of the technology on sites receiving high and variable ammonia loading rates not yet reported in the literature. Performance was assessed in terms of ammonia and solids removal, hydraulic conductivity and mixing patterns. The capability of systems to produce ammonium effluent concentrations <3 mgNH4+-N/L was observed across all sites in systems receiving variable loadings between 0.1 and 13.0 gNH4+-N/m2/d. Potential resilience issues were observed in relation to response to spike loadings posited to be due to an insufficient nitrifying population within the beds. Hydraulic conductivity and flow mixing patterns observed suggested deterioration of the reactor effective volume over time. Overall, the study demonstrates the efficacy of the technology where ammonium removal is required on small sites receiving high and variable flow rates, with adequate removal of organics and solids, but no significant benefit to the long term hydraulics of the system.

  7. Monitoring accumulation sediment characteristics in full scale sewer physical model with urban wastewater.

    Science.gov (United States)

    Regueiro-Picallo, Manuel; Naves, Juan; Anta, Jose; Suárez, Joaquín; Puertas, Jerónimo

    2017-07-01

    A series of experiments were carried out with real wastewater in a pilot flume located at A Coruña wastewater treatment plant (WWTP) (Spain). A full scale model was developed to test a circular (300 mm inner diameter) and an equivalent area egg-shaped plastic pipe under controlled experimental conditions (pipe slope 2-5‰, averaged discharge Q = 4 L/s). Velocity profiles and sediment accumulation in the pipe invert was daily measured. Within the 7-11 days, the average sediment accumulation rate found in the circular pipe was between 1.4 and 3.8 mm/d. The sediment height depended on the input wastewater sediment distribution and organic content. The egg-shaped pipe presented no sediment deposit for the same downstream boundary conditions, although biofilms were attached to the walls of both pipes. Besides, wastewater quality was monitored continuously and sediment composition was studied at the end of experiments. Two types of sediment were recorded: a granular bed deposit (ρ = 1,460 kg/m 3 , d 50 = 202 μm) and wall biofilms (ρ = 1,190 kg/m 3 , d 50 = 76 μm).

  8. Coliforms removal in full-scale activated sludge plants in India.

    Science.gov (United States)

    Kazmi, A A; Tyagi, V K; Trivedi, R C; Kumar, Arvind

    2008-05-01

    This paper investigates the removal of coliforms in full-scale activated sludge plants (ASP) operating in northern regions of India. Log2.2 and log2.4 removal were observed for total coliforms (TC) and fecal coliforms (FC), respectively. However, the effluent still contained a significant number of TC and FC which was greater than the permissible limit for unrestricted irrigation as prescribed by WHO. The observations also suggest that extended aeration (EA) process operating under high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) is more efficient in the removal of coliforms. Further attempts have been made to establish the relationship between two key wastewater parameters, i.e. biochemical oxygen demand (BOD) and suspended solids (SS) with respect to fecal and TC. The relationships were observed to be linear with a good coefficient of correlation. The interrelationship of BOD and SS with coliforms manifest that improvement of the microbiological quality of wastewater could be linked with the removal of SS. Therefore, SS can serve as a regulatory tool in lieu of an explicit coliforms standard.

  9. Wake losses from averaged and time-resolved power measurements at full scale wind turbines

    Science.gov (United States)

    Castellani, Francesco; Astolfi, Davide; Mana, Matteo; Becchetti, Matteo; Segalini, Antonio

    2017-05-01

    This work deals with the experimental analysis of wake losses fluctuations at full-scale wind turbines. The test case is a wind farm sited on a moderately complex terrain: 4 turbines are installed, having 2 MW of rated power each. The sources of information are the time-resolved data, as collected from the OPC server, and the 10-minutes averaged SCADA data. The objective is to compare the statistical distributions of wake losses for far and middle wakes, as can be observed through the “fast” lens of time-resolved data, for certain selected test-case time series, and through the “slow” lens of SCADA data, on a much longer time basis that allow to set the standards of the mean wake losses along the wind farm. Further, time-resolved data are used for an insight into the spectral properties of wake fluctuations, highlighting the role of the wind turbine as low-pass filter. Summarizing, the wind rose, the layout of the site and the structure of the data sets at disposal allow to study middle and far wake behavior, with a “slow” and “fast” perspective.

  10. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  11. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building.

    Science.gov (United States)

    Wang, Xiang; Hutchinson, Tara C; Astroza, Rodrigo; Conte, Joel P; Restrepo, José I; Hoehler, Matthew S; Ribeiro, Waldir

    2017-03-01

    This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design.

  12. Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    Science.gov (United States)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.; Wasowski, Janice L.; Robbie, Malcolm G.; Erker, Arthur H.; Drlik, Gary J.; Mayer, John J.

    2010-01-01

    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges.

  13. SCR in biofuel combustion - stage 3. Regeneration at full-scale; SCR vid biobraensleeldning - etapp 3. Regenerering i full skala

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Kling, Aasa; Odenbrand, Ingemar; Khodayari, Raziyeh

    2002-04-01

    gas temperature between 360-390 deg C, lost its activity relatively fast. After 2000 hours of exposure the NO{sub x}, reduction was in the same level as before the sulphation. This result agrees with results from test bench tests at the same temperature. Four full-scale regenerations by washing with water and sulphuric acid have been performed in the ldbaecken plant on the plate catalyst that was installed in 1994. These washings have shown that it is possible, on repeated occasions, to regenerate the catalyst to a relative activity of 70-80%.

  14. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    Science.gov (United States)

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  15. Unravelling the spatial variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment plant.

    Science.gov (United States)

    Pan, Yuting; van den Akker, Ben; Ye, Liu; Ni, Bing-Jie; Watts, Shane; Reid, Katherine; Yuan, Zhiguo

    2016-02-08

    Plug-flow activated sludge reactors (ASR) that are step-feed with wastewater are widely adopted in wastewater treatment plants (WWTPs) due to their ability to maximise the use of the organic carbon in wastewater for denitrification. Nitrous oxide (N2O) emissions are expected to vary along these reactors due to pronounced spatial variations in both biomass and substrate concentrations. However, to date, no detailed studies have characterised the impact of the step-feed configuration on emission variability. Here we report on the results from a comprehensive online N2O monitoring campaign, which used multiple gas collection hoods to simultaneously measure emission along the length of a full-scale, step-fed, plug-flow ASR in Australia. The measured N2O fluxes exhibited strong spatial-temporal variation along the reactor path. The step-feed configuration had a substantial influence on the N2O emissions, where the N2O emission factors in sections following the first and second step feed were 0.68% ± 0.09% and 3.5% ± 0.49% of the nitrogen load applied to each section. The relatively high biomass-specific nitrogen loading rate in the second section of the reactor was most likely cause of the high emissions from this section.

  16. Feasibility and Performance of Full-Scale In-Situ Remediation of TCE by ERD in Clay Tills

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    mass removal was associated with degradation being restricted to narrow bioactive zones. Bioactive zones may expand and in some cores TCE was depleted in zones up to 1.8 m thick – an extent which could not be explained by diffusive loss to narrow bioactive zones. Hence, biomass migration in the clay......The feasibility and performance of full-scale applications of ERD in clay tills were investigated in a research project including 2 sites in Denmark, which have been undergoing remediation since 2006. At both sites organic substrates and bioaugmentation cultures have been injected in TCE......-contaminated clay till. An integrated investigative approach consisting of water and clay core sample analysis, including stable isotopes and specific degraders, combined with modeling has been applied. The results showed that the chlorinated solvent TCE was converted into its daughter products but complete...

  17. Full-scale crash-test evaluation of two load-limiting subfloors for general aviation airframes

    Science.gov (United States)

    Carden, H. D.

    1984-01-01

    Three six place, low wing, twin engine general aviation airplane test specimens were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. One structurally unmodified airplane was the base line specimen for the test series. The other two airplanes were structurally modified to incorporate load limiting (energy absorbing) subfloor concepts into the structure for full scale crash test evaluation and for comparison with the unmodified airplane test results. Typically, the lowest floor accelerations, the lowest anthropomorphic dummy responses, and the least seat crushing of standard and load limiting seats occurred in the airplanes modified with load limiting subfloors, wherein the greatest structural crushing of the subfloor took place. The better performing of the two load limiting subfloor concepts reduced the peak airplane floor accelerations to -25g to -30g as compared with approximately -40g to -55g for the unmodified airplane structure.

  18. Performance of two load-limiting subfloor concepts in full-scale general aviation airplane crash tests

    Science.gov (United States)

    Carden, H. D.

    1984-01-01

    Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.

  19. Multiphysics Based Numerical Study of Atmospheric Ice Accretion on a Full Scale Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    M Virk

    2016-08-01

    Full Text Available Atmospheric icing on wind turbines have been recognized as a hindrance to the development of the wind power in cold regions, where uncertainty surrounding the effects of icing on energy production may prevent otherwise good wind resources from being utilized. This research paper is focused on to numerically simulate the rate and shape of atmospheric ice accretion on a full-scale horizontal axis wind turbine blade.  Computational fluid dynamics based multiphase numerical analyses have been carried out where results showed a decrease in atmospheric ice growth rate along leading edge with the increase of blade profile size, both in terms of local ice mass and thickness. Streamlined ice shapes were observed near the blade root section, as compared to the blade tip section.

  20. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...... (ERA), the damping and stiffness matrices are identified for different vibration modes of the cables, with sufficient accuracy to identify changes in the total effective damping and stiffness matrices due to the aeroelastic forces acting on the cables. The damping matrices identified from the full-scale...

  1. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  2. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP.

    Science.gov (United States)

    Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan

    2016-09-01

    The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for

  3. Emissions of methane and nitrous oxide from full-scale municipal wastewater treatment plants

    NARCIS (Netherlands)

    Daelman, M.R.J.

    2014-01-01

    Since 1750, the year that commonly marks the start of the Industrial Revolution, the atmospheric concentrations of carbon dioxide, methane and nitrous oxide have risen about 40 %, 150 % and 20 %, respectively, above the pre-industrial levels due to human activity (IPCC (2013) Climate Change 2013:

  4. Membrane Fouling and Chemical Cleaning in Three Full-Scale Reverse Osmosis Plants Producing Demineralized Water

    NARCIS (Netherlands)

    Beyer, Florian; Laurinonyte, Judita; Zwijnenburg, Arie; Stams, Alfons J.M.; Plugge, Caroline M.

    2017-01-01

    Membrane fouling and cleaning were studied in three reverse osmosis (RO) plants. Feed water was secondary wastewater effluent, river water, and surface water. Membrane autopsies were used for fouling characterization. Fouling layer measurements included total organic carbon (TOC), adenosine

  5. Emergency Locator Transmitter System Performance During Three Full-Scale General Aviation Crash Tests

    Science.gov (United States)

    Littell, Justin D.; Stimson, Chad M.

    2016-01-01

    Full-scale crash tests were conducted on three Cessna 172 aircraft at NASA Langley Research Center's Landing and Impact Research facility during the summer of 2015. The purpose of the three tests was to evaluate the performance of commercially available Emergency Locator Transmitter (ELT) systems and support development of enhanced installation guidance. ELTs are used to provide location information to Search and Rescue (SAR) organizations in the event of an aviation distress situation, such as a crash. The crash tests simulated three differing severe but survivable crash conditions, in which it is expected that the onboard occupants have a reasonable chance of surviving the accident and would require assistance from SAR personnel. The first simulated an emergency landing onto a rigid surface, while the second and third simulated controlled flight into terrain. Multiple ELT systems were installed on each airplane according to federal regulations. The majority of the ELT systems performed nominally. In the systems which did not activate, post-test disassembly and inspection offered guidance for non-activation cause in some cases, while in others, no specific cause could be found. In a subset of installations purposely disregarding best practice guidelines, failure of the ELT-to-antenna cabling connections were found. Recommendations for enhanced installation guidance of ELT systems will be made to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 229 for consideration for adoption in a future release of ELT minimum operational performance specifications. These recommendations will be based on the data gathered during this test series as well as a larger series of crash simulations using computer models that will be calibrated based on these data

  6. Full-scale regional exercises: closing the gaps in disaster preparedness.

    Science.gov (United States)

    Klima, David A; Seiler, Sarah H; Peterson, Jeff B; Christmas, A Britton; Green, John M; Fleming, Greg; Thomason, Michael H; Sing, Ronald F

    2012-09-01

    Man-made (9/11) and natural (Hurricane Katrina) disasters have enlightened the medical community regarding the importance of disaster preparedness. In response to Joint Commission requirements, medical centers should have established protocols in place to respond to such events. We examined a full-scale regional exercise (FSRE) to identify gaps in logistics and operations during a simulated mass casualty incident. A multiagency, multijurisdictional, multidisciplinary exercise (FSRE) included 16 area hospitals and one American College of Surgeons-verified Level I trauma center (TC). The scenario simulated a train derailment and chemical spill 20 miles from the TC using 281 moulaged volunteers. Third-party contracted evaluators assessed each hospital in five areas: communications, command structure, decontamination, staffing, and patient tracking. Further analysis examined logistic and operational deficiencies. None of the 16 hospitals were compliant in all five areas. Mean hospital compliance was 1.9 (± 0.9 SD) areas. One hospital, unable to participate because of an air conditioner outage, was deemed 0% compliant. The most common deficiency was communications (15 of 16 hospitals [94%]; State Medical Asset Resource Tracking Tool system deficiencies, lack of working knowledge of Voice Interoperability Plan for Emergency Responders radio system) followed by deficient decontamination in 12 (75%). Other deficiencies included inadequate staffing based on predetermined protocols in 10 hospitals (63%), suboptimal command structure in 9 (56%), and patient tracking deficiencies in 5 (31%). An additional 11 operational and 5 logistic failures were identified. The TC showed an appropriate command structure but was deficient in four of five categories, with understaffing and a decontamination leak into the emergency department, which required diversion of 70 patients. Communication remains a significant gap in the mass casualty scenario 10 years after 9/11. Our findings

  7. Full-scale horizontal cable-tray tests: Fire-propagation characteristics

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    At the Fermi National Accelerator Center (Fermilab), as at any high-energy physics laboratory, the experimental program depends on complex arrays of equipment that require years to assemble and place in service. These equipment arrays are typically located in enclosed tunnels or experimental halls and could be destroyed by rapidly propagating, uncontrolled fire. Cable trays, both vertical and horizontal, are an integral and ubiquitous component of these installations. Concurrently, throughout industry and within the professional fire-fighting community, there has been concern over the flammability and fire propagation characteristics of electrical cables in open cable trays. While some information was available concerning fire propagation in vertical cable trays, little was known about fires in horizontal cable trays. In view of the potential for loss of equipment and facilities, not to mention the programmatic impact of a fire, Fermilab initiated a program of full-scale, horizontal cable-tray fire tests to determine the flammability and rate of horizontal fire propagation in cable-tray configurations and cable mixed typical of those existing in underground tunnel enclosures and support buildings as Fermilab. This series of tests addressed the effects of ventilation rates and cable-tray fill, fire-fighting techniques, and the effectiveness and value of automatic sprinklers, smoke detection, and cable-coating fire barriers in detecting, controlling, or extinguishing a cable-tray fire. Detailed descriptions of each fire test, including sketches of cable-tray configuration and contents, instrumentation, ventilation rates, Fermilab Fire Department personnel observations, photographs, and graphs of thermocouple readings are available in a report of these tests prepared by the Fermilab Safety Section

  8. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  9. Optimization of Preprocessing and Densification of Sorghum Stover at Full-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Neal A. Yancey; Jaya Shankar Tumuluru; Craig C. Conner; Christopher T. Wright

    2011-08-01

    Transportation costs can be a prohibitive step in bringing biomass to a preprocessing location or biofuel refinery. One alternative to transporting biomass in baled or loose format to a preprocessing location, is to utilize a mobile preprocessing system that can be relocated to various locations where biomass is stored, preprocess and densify the biomass, then ship it to the refinery as needed. The Idaho National Laboratory has a full scale 'Process Demonstration Unit' PDU which includes a stage 1 grinder, hammer mill, drier, pellet mill, and cooler with the associated conveyance system components. Testing at bench and pilot scale has been conducted to determine effects of moisture on preprocessing, crop varieties on preprocessing efficiency and product quality. The INLs PDU provides an opportunity to test the conclusions made at the bench and pilot scale on full industrial scale systems. Each component of the PDU is operated from a central operating station where data is collected to determine power consumption rates for each step in the process. The power for each electrical motor in the system is monitored from the control station to monitor for problems and determine optimal conditions for the system performance. The data can then be viewed to observe how changes in biomass input parameters (moisture and crop type for example), mechanical changes (screen size, biomass drying, pellet size, grinding speed, etc.,), or other variations effect the power consumption of the system. Sorgum in four foot round bales was tested in the system using a series of 6 different screen sizes including: 3/16 in., 1 in., 2 in., 3 in., 4 in., and 6 in. The effect on power consumption, product quality, and production rate were measured to determine optimal conditions.

  10. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  11. Application of the Hybrid Simulation Method for the Full-Scale Precast Reinforced Concrete Shear Wall Structure

    Directory of Open Access Journals (Sweden)

    Zaixian Chen

    2018-02-01

    Full Text Available The hybrid simulation (HS testing method combines physical test and numerical simulation, and provides a viable alternative to evaluate the structural seismic performance. Most studies focused on the accuracy, stability and reliability of the HS method in the small-scale tests. It is a challenge to evaluate the seismic performance of a twelve-story pre-cast reinforced concrete shear-wall structure using this HS method which takes the full-scale bottom three-story structural model as the physical substructure and the elastic non-linear model as the numerical substructure. This paper employs an equivalent force control (EFC method with implicit integration algorithm to deal with the numerical integration of the equation of motion (EOM and the control of the loading device. Because of the arrangement of the test model, an elastic non-linear numerical model is used to simulate the numerical substructure. And non-subdivision strategy for the displacement inflection point of numerical substructure is used to easily realize the simulation of the numerical substructure and thus reduce the measured error. The parameters of the EFC method are calculated basing on analytical and numerical studies and used to the actual full-scale HS test. Finally, the accuracy and feasibility of the EFC-based HS method is verified experimentally through the substructure HS tests of the pre-cast reinforced concrete shear-wall structure model. And the testing results of the descending stage can be conveniently obtained from the EFC-based HS method.

  12. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Ezato, Koichiro, E-mail: ezato.koichiro@jaea.go.jp [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Escourbiac, Frederic; Hirai, Takeshi [ITER Organization, route de vinon sur Verdon, 13067 St Paul lez Durance (France)

    2016-11-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2} for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  13. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji; Escourbiac, Frederic; Hirai, Takeshi

    2016-01-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m 2 for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  14. The DOPAS full scale seal experiment (FSS): An industrial prototype for Cigeo

    International Nuclear Information System (INIS)

    Bosgiraud, J.M.; Bourbon, X.; Pineau, F.; Foin, R.

    2015-01-01

    The Full Scale Seal (FSS) Experiment is one of different experiments implemented by ANDRA to demonstrate the technical construction feasibility and assess the performance of the horizontal seals to be built underground, at time of the progressive closure of the French Deep Geological Repository (Cigeo). FSS is built inside a reinforced concrete drift model (at scale 1:1 of a Cigeo drift) constructed for the purpose. The test site location is a warehouse in Saint-Dizier, France. The drift model has a 7.60 m long internal diameter and is 36 m long. Representative underground ambient conditions (temperature and hygrometry) are maintained within the drift during the seal construction operations. The seal per se is made of 3 components: a 14 m long bentonitic swelling core between 2 low pH self-compacting concrete/shotcrete 5 m long containment walls. The low pH self-compacting concrete (SCC) containment wall (some 240 m 3 ) is cast in one continuous pass (to avoid discontinuities), while the low pH shotcrete containment wall (some 240 m 3 ) is applied in multiple layers, with minimum curing time between two layers. The swelling clay core (some 750 m 3 ) is made of a bentonite pulverulent admixture, emplaced by using 2 augers working at a time in a continuous mode (the objective is to obtain a bentonite core as compact and homogeneous as possible before the re-saturation process start-up). On the drift model periphery, polycarbonate windows are provided for observation needs and reservations are integrated to the model structure for monitoring and coring needs. All the work sequences are video-taken and a timetable of operations is established to assess the overall time needed for building a complete seal at Cigeo. The present paper focuses on the construction story of the first low pH SCC containment wall as developed for FSS, the first technical outcomes and on the planned investigations to assess its construction compliance (via monitoring, coring and dismantling

  15. Full-scale testing of pipework systems and flexible risers subject to noise and vibration

    Energy Technology Data Exchange (ETDEWEB)

    Every, M.J.; Goyder, G.D.; Jee, T.; Swindell, R.

    2005-07-01

    The occurrence of potentially damaging noise and vibration levels in pipework has required the development of a full-scale testing facility. This facility can expose pipework to high static pressures and flow and can generate the large dynamic pressures that constitute noise. A consortium was formed that assembled the various specialist knowledge needed for the test facility. The outcome of the test work enables production flow through a flexible riser system throughout a range of flow rates and most significantly to be substantially increased. The benefits are an increased profitability of the asset, greater confidence in fatigue life prediction and an improved understanding for use in design. Flexible risers are increasingly being used offshore and most recently for the export of dry gas. This has given rise to the phenomenon of the 'singing riser', which generates sufficiently large noise levels to cause fatigue damage to the riser system. This phenomenon is currently limiting production rates offshore. As gas flows within the riser it passes over internal corrugation, which gives rise to vortex shedding from corrugated edges. The frequency of the vortex shedding is described by the Strouhal relationship so that it depends upon the flow velocity and the riser geometry. It appears from measurements on several offshore risers that this is fairly constant for a range of export pressures and flow rates. The shedding of the vortices is not necessarily correlated along the length of the riser. However, if there is small-bore pipework attached to the riser system which has a similar acoustic frequency to the Strouhal frequency then 'lock-on' can occur which may cause full correlation of vortex shedding. The lock-on mechanism is not totally understood but when the small-bore pipework's acoustic frequency is excited it provides a positive feed back to enhance the vortex shedding within the riser. The consequence is that the shedding within the

  16. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.

    Science.gov (United States)

    Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J

    2018-03-02

    The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Full-scale flight tests of aircraft morphing structures using SMA actuators

    Science.gov (United States)

    Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.

    2007-04-01

    In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration

  18. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Fotidis, Ioannis; Angelidaki, Irini

    2016-01-01

    , and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. Results...

  19. Full-scale locomotive dynamic crash testing and correlations : locomotive consist colliding with steel coil truck at grade crossing (test 3).

    Science.gov (United States)

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision between a locomotive and a highway truck loaded with two heavy steel coils. The locomotive consist was moving at 58 miles per hour before it struc...

  20. Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater

    KAUST Repository

    Beyer, Florian

    2014-10-01

    Long-term performance and fouling behavior of four full-scale nanofiltration (NF) plants, treating anoxic groundwater at 80% recovery for drinking water production, were characterized and compared with oxic NF and reverse osmosis systems. Plant operating times varied between 6 and 10 years and pretreatment was limited to 10μm pore size cartridge filtration and antiscalant dosage (2-2.5mgL-1) only. Membrane performance parameters normalized pressure drop (NPD), normalized specific water permeability (Kw) and salt retention generally were found stable over extended periods of operation (>6 months). Standard acid-base cleanings (once per year or less) were found to be sufficient to maintain satisfying operation during direct NF of the described iron rich (≤8.4mgL-1) anoxic groundwaters. Extensive autopsies of eight NF membrane elements, which had been in service since the plant startup (6-10 years), were performed to characterize and quantify the material accumulated in the membrane elements. Investigations using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), total organic carbon (TOC) and adenosine triphosphate (ATP) measurements revealed a complex mixture of organic, biological and inorganic materials. The fouling layers that developed during half to one year of operation without chemical cleaning were very thin (<2. μm). Most bio(organic) accumulates were found in the lead elements of the installations while inorganic precipitates/deposits (aluminosilicates and iron(II)sulfides) were found in all autopsied membrane elements. The high solubility of reduced metal ions and the very slow biofilm development under anoxic conditions prevented rapid fouling during direct NF of the studied groundwaters. When compared to oxic NF and RO systems in general (e.g. aerated ground waters or surface waters), the operation and performance of the described anoxic installations (with minimal pretreatment) can be described as very stable. © 2014

  1. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    KAUST Repository

    Belila, Abdelaziz

    2016-02-18

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  2. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    Science.gov (United States)

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  3. Occupant Protection Experiments in Support of a Full-scale Train-to-Train Crash Energy Management Equipment Collision Test

    Science.gov (United States)

    2009-07-31

    The Federal Railroad Administration sponsored a full-scale train-to-train crash energy management (CEM) technology test that was conducted on March 23, 2006, at the Transportation Technology Center in Pueblo, Colorado. The Volpe National Transportati...

  4. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    González Sánchez, Armando; Flores Márquez, Trinidad Eliseo; Revah, Sergio; Morgan Sagastume, Juan Manuel

    2014-01-01

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H 2 S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  5. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    Science.gov (United States)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  6. Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: a case study in Tabriz Petrochemical Complex

    OpenAIRE

    Mohammad Shakerkhatibi; Mohammad Mosaferi; Khaled Zorufchi Benis; Zahra Akbari

    2016-01-01

    Background: The measurement data regarding the influent and effluent of wastewater treatment plant (WWTP) provides a general overview, demonstrating an overall performance of WWTP. Nevertheless, these data do not provide the suitable operational information for the optimization of individual units involved in a WWTP. A full-scale evolution of WWTP was carried out in this study via a reconciled data. Methods: A full-scale evolution of acrylonitrile, butadiene and styrene (ABS) r...

  7. First results of an aging test of a full scale MWPC prototype for the LHCb muon system

    CERN Document Server

    Souvorov, V; Schmidt, B; Riegler, Werner; Kashchuk, A; Hutchcroft, D E

    2003-01-01

    Aging studies for a multi-wire proportional chamber of the LHCb muon system have been performed using the CERN Gamma Irradiation Facility. The irradiated four-gap chamber corresponds to a full-size prototype with 1500 cm**2 sensitive area and has been operated with an Ar/CO //2/CF//4 (40:50:10) gas mixture. A linear charge of 0.25 C/cm for 100 m anode wire length has been accumulated over a period of 6 months, which corresponds to the charge collected in 5 LHCb years. The observed aging effects do not prohibit the use of these chambers in the LHCb experiment.

  8. Full Scale Deposition Trials at 150 MWe PF-boiler Co-firing COal and Straw: Summary of Results

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, Peter Farkas Binderup

    1999-01-01

    A conventional PF-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion and a two-year demonstration programme was initiated in January 1996 addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part...... during co-combustion with straw. In addition, where Fe dominated upstream deposits are found in the hottest positions during pure coal combustion, Ca, and to some degree Si, are playing the major role during co-combustion. The addition of straw to the fuel is also seen to lead to a change in the texture...... of the upstream deposits, from an ordered dendritic structure of the larger particles with small particles in between during pure coal combustion, to a more random deposition of the larger particles among the small during co-combustion. No deposition of chlorine species was observed in the SEM-EDX analysis...

  9. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  10. mcrA Gene abundance correlates with hydrogenotrophic methane production rates in full-scale anaerobic waste treatment systems.

    Science.gov (United States)

    Morris, R L; Tale, V P; Mathai, P P; Zitomer, D H; Maki, J S

    2016-02-01

    Anaerobic treatment is a sustainable and economical technology for waste stabilization and production of methane as a renewable energy. However, the process is under-utilized due to operational challenges. Organic overload or toxicants can stress the microbial community that performs waste degradation, resulting in system failure. In addition, not all methanogenic microbial communities are equally capable of consistent, maximum biogas production. Opinion varies as to which parameters should be used to monitor the fitness of digester biomass. No standard molecular tools are currently in use to monitor and compare full-scale operations. It was hypothesized that determining the number of gene copies of mcrA, a methanogen-specific gene, would positively correlate with specific methanogenic activity (SMA) rates from biomass samples from six full-scale anaerobic digester systems. Positive correlations were observed between mcrA gene copy numbers and methane production rates against H2  : CO2 and propionate (R(2)  = 0·67-0·70, P  0·05). Results from this study indicate that mcrA gene targeted qPCR can be used as an alternate tool to monitor and compare certain methanogen communities in anaerobic digesters. Using quantitative PCR (qPCR), we demonstrate that the abundance of mcrA, a gene specific to methane producing archaea, correlated with specific methanogenic activity (SMA) measurements when H2 and CO2 , or propionate were provided as substrates. However, mcrA abundance did not correlate with SMA with acetate. SMA values are often used as a fitness indicator of anaerobic biomass. Results from qPCR can be obtained within a day while SMA analysis requires days to weeks to complete. Therefore, qPCR for mcrA abundance is a sensitive and fast method to compare and monitor the fitness of certain anaerobic biomass. As a monitoring tool, qPCR of mcrA will help anaerobic digester operators optimize treatment and encourage more widespread use of this valuable technology

  11. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    Science.gov (United States)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  12. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  13. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable

    International Nuclear Information System (INIS)

    Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi

    2010-01-01

    This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system

  14. Full scale IQ (FSIQ) changes in children treated with whole brain and partial brain irradiation. A review and analysis

    International Nuclear Information System (INIS)

    Fuss, M.; Poljanc, K.; Hug, E.B.; Loma Linda Univ. Medical Center, Loma Linda, CA

    2000-01-01

    The purpose of this analysis was to assess current knowledge, with focus on correlation with radiation dose, irradiated volume and age. Method: Full Scale IQ (FSIQ) data, representing 1,938 children, were derived from 36 publications and analyzed as to radiation dose, irradiated volume, and age. Results: FSIQ after whole brain irradiation showed a non-linear decline as dosage increased. The dose-effect relationship was age-related, with more pronounced FSIQ decline at younger age. FSIQ test results below the normal level ( 50 Gy. Conclusion: The collected data suggest that whole brain irradiation doses of 18 and 24 Gy have no major impact on intellectual outcome in children older than age 6, but may cause impairment in younger children. Doses >24 Gy comprise a substantial risk for FSIQ decline, even in older children. At equal dose levels, partial brain irradiation is less damaging than whole brain irradiation. The authors are well aware of limitations in the interpretation of data collected for the current review. (orig.) [de

  15. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors

    KAUST Repository

    Gonzalez-Gil, Graciela

    2015-09-22

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the 1H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates.

  16. Development of friction and wear full-scale testing for TKR prostheses with reliable low cost apparatus

    Science.gov (United States)

    Suwandi, Agri; Soemardi, Tresna P.; Kiswanto, Gandjar; Kusumaningsih, Widjajalaksmi; I. Gusti Agung I. G., W.

    2018-02-01

    Prostheses products must undergo simulation and physical testing, before clinical testing. Finite element method is a preliminary simulation for in vivo test. The method visualizes the magnitude of the compressive force and the critical location of the Total Knee Replacement (TKR) prostheses design. In vitro testing is classified as physical testing for prostheses product. The test is conducted to evaluate the potential failure of the product and the characteristics of the prostheses TKR material. Friction and wear testing are part of the in vivo test. Motion of knee joints, which results in the phenomena of extension and deflection in the femoral and tibia insert, is represented by friction and wear testing. Friction and wear tests aim to obtain an approximate lifetime in normal and extreme load patterns as characterized by the shape of the friction surface area. The lifetime estimation requires friction and wear full-scale testing equipments for TKR prostheses products. These are necessary in obtaining initial data on potential product failures and characterizing of the material based on the ASTM F2724-08 standards. Based on the testing result and statistical analysis data, the average wear rate value per year is 2.19 × 10-3 mg/MC, with a 10 % safety limit of volume and 14,400 cycles times, for 15 hours moving nonstop then the prediction of wear life of the component tibia insert is ± 10 years.

  17. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  18. Characteristics of the Operational Noise from Full Scale Wave Energy Converters in the Lysekil Project: Estimation of Potential Environmental Impacts

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-05-01

    Full Text Available Wave energy conversion is a clean electric power production technology. During operation there are no emissions in the form of harmful gases. However there are unsolved issues considering environmental impacts such as: electromagnetism; the artificial reef effect and underwater noise. Anthropogenic noise is increasing in the oceans worldwide and wave power will contribute to this sound pollution in the oceans; but to what extent? The main purpose of this study was to examine the noise emitted by a full scale operating Wave Energy Converter (WEC in the Lysekil project at Uppsala University in Sweden. A minor review of the hearing capabilities of fish and marine mammals is presented to aid in the conclusions of impact from anthropogenic sound. A hydrophone was deployed to the seabed in the Lysekil research site park at distance of 20 and 40 m away from two operational WECs. The measurements were performed in the spring of 2011. The results showed that the main noise was a transient noise with most of its energy in frequencies below 1 kHz. These results indicate that several marine organisms (fish and mammals will be able to hear the operating WECs of a distance of at least 20 m.

  19. Fluctuation of microbial activities after influent load variations in a full-scale SBR. Recovery of the biomass after starvation

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Angela; Draper, Patricia; Etchebehere, Claudia [Universidad de la Republica, Montevideo (Uruguay). Catedra de Microbiologia, Facultad de Quimica y Facultad de Ciencias

    2009-10-15

    Due to variations in the production levels, a full-scale sequencing batch reactor (SBR) for post-treatment of tannery wastewater was exposed to low and high ammonia load periods. In order to study how these changes affected the N-removal capacity, the microbiology of the reactor was studied by a diverse set of techniques including molecular tools, activity tests, and microbial counts in samples taken along 3 years. The recover capacity of the biomass was also studied in a lab-scale reactor operated with intermittent aeration without feeding for 36 days. The results showed that changes in the feeding negatively affected the nitrifying community, but the nitrogen removal efficiencies could be restored after the concentration stress. Species substitution was observed within the nitrifying bacteria, Nitrosomonas europaea and Nitrobacter predominated initially, and after an ammonia overload period, Nitrosomonas nitrosa and Nitrospira became dominant. Some denitrifiers, with nirS related to Alicycliphilus, Azospirillum, and Marinobacter nirS, persisted during long-term reactor operation, but the community fluctuated both in composition and in abundance. This fluctuating community may better resist the continuous changes in the feeding regime. Our results showed that a nitrifying-denitrifying SBR could be operated with low loads or even without feeding during production shut down periods. (orig.)

  20. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    Science.gov (United States)

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  1. Basic concepts for designing renewable electricity support aiming at a full-scale transition by 2050

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2009-01-01

    Renewable electricity supply is a crucial factor in the realization of a low-carbon energy economy. The understanding is growing that a full turn-over of the electricity sectors by 2050 is an elementary condition for avoiding global average temperature increase beyond 2 deg. C. This article adopts such full transition as Europe's target when designing renewable energy policy. An immediate corollary is that phasing-in unprecedented energy efficiency and renewable generation must be paralleled by phasing-out non-sustainable fossil fuel and nuclear power technologies. The double phasing programme assigns novel meaning to nearby target settings for renewable power as share of total power consumption. It requires organizing in the medium term EU-wide markets for green power, a highly demanding task in the present context of poorly functional markets in brown power. The EU Commission's 2007/2008 proposals of expanding tradable certificates markets were not based on solid analysis of past experiences and future necessities. The keystone of sound policies on renewable electricity development is a detailed scientific differentiation and qualification of renewable electricity sources and technologies, for measuring the huge diversity in the field. We provide but structuring concepts about such qualification, because implementation requires extensive research resources. Support for renewable electricity development is organized via feed-in prices or premiums, and via quota obligations connected to tradable green certificates. Green certificates are dependent on physical generated renewable power, but separable and no joint products. Contrary to conventional wisdom we argue their separation in cost analysis but firm linking during trade. A few graphs illustrate the importance of assigning qualities to different renewable power sources/technologies. Feed-in systems based on an acceptable qualification perform generally better than certificate markets imposing uniform approaches

  2. Inactivation of Escherichia coli by ozone under bench-scale plug flow and full-scale hydraulic conditions.

    Science.gov (United States)

    Smeets, P W M H; van der Helm, A W C; Dullemont, Y J; Rietveld, L C; van Dijk, J C; Medema, G J

    2006-10-01

    To determine the disinfection efficacy of ozonation, water companies can apply several disinfection calculation methods. The goal of this study was to evaluate the use of the T10 and continuous stirred tank reactor (CSTR) method to extrapolate inactivation rates of ozone sensitive microorganisms observed in laboratory tests to full-scale ozonation in drinking water treatment. The inactivation efficacy of the ozonation at the Amsterdam water treatment works was assessed by determining Escherichia coli concentrations in large volume samples before and after ozonation over a period of 1 year. The inactivation of dosed E. coli WR1 was tested in a bench-scale dissolved ozone plug flow reactor (DOPFR) on the same feed water as the full-scale ozonation in which a concentrated ozone solution in Milli-Q water was dosed. Applying the T10 method on the inactivation rates observed in the DOPFR strongly overestimated the inactivation capacity of the full-scale ozonation. The expected inactivation based on the CSTR method (LT2ESWTR) approached the observed inactivation at full-scale. Therefore, the CSTR method should be preferred to calculate inactivation of ozone sensitive organisms such as E. coli, viruses, Giardia and Campylobacter by full-scale ozonation.

  3. Full Scale Test of SSP 34m blade, edgewise loading LTT

    DEFF Research Database (Denmark)

    Nielsen, Magda; Jensen, Find Mølholt; Nielsen, Per Hørlyk

    load areas. The global deflection is compared with results from a previous test and results from FEM analyses in order to validate the solution as to how the gravity load on the blade was handled. Furthermore, the DIC measurement and the displacement sensors measurements are compared in order...... to validate the results from the DIC measurements. The report includes the results from the test and a description of the measurement equipment and the data acquisition....

  4. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    Science.gov (United States)

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    Science.gov (United States)

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Development and Full-Scale Experimental Validation of an Optimal Water Treatment Solution in Improving Chiller Performances

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chiang

    2016-06-01

    Full Text Available An optimal solution, in combining physical and chemical water treatment methods, has been developed. This method uses a high voltage capacitance based (HVCB electrodes, coupled with biocides to form a sustainable solution in improving chiller plant performances. In this study, the industrial full-scale tests, instead of laboratory tests, have been conducted on chiller plants at the size of 5000 RT to 10,000 RT cooling capacities under commercial operation for more than two years. The experimental results indicated that the condenser approach temperatures can be maintained at below 1 °C for over two years. It has been validated that the coefficient of performance (COP of a chiller can be improved by over 5% by implementing this solution. Every 1 °C reduction in condenser approach temperature can yield approximately 3% increase on chiller COP, which warrants its future application potential in the HVAC industry, where Ta can degrade by 1 °C every three to six months. The solution developed in this study could also reduce chemical dosages and conserve makeup water substantially and is more environment friendly.

  7. Performance of a Modified Shear Box Apparatus for Full Scale Laboratory Study of Segmental Retaining Wall Units

    Directory of Open Access Journals (Sweden)

    Md Zahidul Islam Bhuiyan

    2015-05-01

    Full Text Available The paper outlines the performance of a modified large scale shear box apparatus, which is mainly used to execute full scale laboratory study of segmental retaining walls. A typical apparatus has already been adopted by the current ASTM and NCMA test protocols and by literature studying of those test protocols, it is found that protocols recommend a fixed vertical actuator with roller or airbag configuration as a proposed vertical loading assembly. Previous research study demonstrated that vertical loading arrangement greatly influences the interface shear capacity of block systems and fixed vertical actuator with flexible airbag shows better loading arrangement for the blocks which have dilatant behavior. However, airbag arrangement is strenuous and time-consuming loading assembly compared to fixed vertical actuator which increases normal load with shear displacement due to bending of vertical actuator locked with the top block during shear loading. For the drawbacks of fixed vertical loading arrangement, the apparatus used in this study was fully redesigned and modified in terms of normal loading arrangement specially. A moveable vertical loading assembly is used in the modified apparatus which allows the piston movement with the top blocks during shear testing. The results outlined in this paper report that normal load remains constant over the period of shear testing for a wide range of surcharge loading. It could easily be concluded that the modified apparatus might be a better alternative to the existing apparatus used in the test protocols.

  8. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  9. A Study on the Propulsion Performance in the Actual Sea by means of Full-scale Experiments

    Directory of Open Access Journals (Sweden)

    Jun Kayano

    2013-12-01

    Full Text Available The IMO has adopted Energy Efficiency Design Index (EEDI, Ship Energy Efficiency Management Plan (SEEMP and Energy Efficiency Operational Indicator (EEOI in order to reduce GHG emissions from international shipping. And, the shipping industry is required to develop and improve the energy saving ship operation technologies to meet the above IMO guideline. The weather routing is one of the energy saving navigation technologies and widely adopted by oceangoing merchant ships. The effectiveness of the weather routing mainly depends on the accuracy of weather forecast data and the ship’s propulsion performance prediction. The propulsion performance in the actual sea is usually predicted using the Self Propulsion Factors obtained by model tests. It is necessary to understand the propulsion performance characteristics in the actual sea conditions for the improvement of propulsion performance prediction. From the above points of view, the authors performed full-scale experiments using a training ship in order to investigate the propulsion performance characteristics in the actual sea. This paper describes the analysis results on the characteristics of Power Curves and Self Propulsion Factors under various weather and sea conditions.

  10. Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack

    Energy Technology Data Exchange (ETDEWEB)

    Delliou, P. le [Electricite de France, EDF, 77 - Moret-sur-Loing (France). Dept. MTC; Julisch, P.; Hippelein, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Bezdikian, G. [Electricite de France, EDF, 92 - Paris la Defense (France). Direction Production Transport

    1998-11-01

    EDF, in co-operation with Framatome, has conducted a large research programme on the mechanical behaviour of thermally aged cast duplex stainless steel elbows, which are part of the main primary circuit of French PWR. One important task of this programme consisted of testing a full-scale PWR hot leg elbow. The elbow contained a semi-elliptical circumferential notch machined on the outer surface of the intrados as well as casting defects located on the flanks. To simulate the end-of-life condition of the component regarding material toughness, it had undergone a 2400 hours ageing heat treatment at 400 C. The test preparation and execution, as well as the material characterization programme, were committed to MPA. The test was conducted under constant internal pressure and in-plane bending (opening mode) at 200 C. For safety reasons, it took place on an open air-site: the Meppen military test ground. At the maximum applied moment (6000 kN.m), the notch did not initiate. This paper presents the experimental results and the fracture mechanics analysis of the test, based on finite element calculations. (orig.)

  11. A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment.

    Science.gov (United States)

    Bertanza, Giorgio; Canato, Matteo; Laera, Giuseppe; Vaccari, Mentore; Svanström, Magdalena; Heimersson, Sara

    2017-07-01

    A holistic assessment procedure has been used in this study for comparing conventional activated sludge (CAS) and membrane bioreactor (MBR) processes for the treatment of municipal wastewater. Technical, social, administrative, economic and environmental impacts have been evaluated based on 1 year of operational data from three full-scale lines (one MBR and two CAS) working in parallel in a large municipal treatment plant. The comparative assessment evidences a slight advantage of the conventional process in the studied case, essentially due to lower costs, complexity and energy consumption. On the other hand, the MBR technology has a better social acceptance and similar overall environmental footprint. Although these results are influenced by site-specific parameters and cannot be generalized, the assessment procedure allowed identifying the most important factors affecting the final scores for each technology and the main differences between the compared technologies. Local conditions can affect the relative importance of the assessed impacts, and the use of weighting factors is proposed for better tailoring the comparative assessment to the local needs and circumstances. A sensitivity analysis on the weighted final scores demonstrated how local factors are very important and must be carefully evaluated in the decision making process.

  12. Full-Scale Wind-Tunnel Investigation of the Drag Characteristics of an HU2K Helicopter Fuselage

    Science.gov (United States)

    Scallion, William I.

    1963-01-01

    An investigation was conducted in the Langley full-scale tunnel to determine the drag characteristics of the HU2K helicopter fuselage. The effects of body shape, engine operation, appendages, and leakage on the model drag were determined. The results of the tests showed that the largest single contribution to the parasite drag was that of the rotor hub installation which produced about 80 percent of the drag of the sealed and faired production body. Fairings on the rotor hub and blade retentions, or a cleaned-up hub and retentions, appeared to be the most effective single modifications tested. The total drag of all protuberances and air leakage also contributed a major part of the drag - an 83-percent increase over the drag of the sealed and faired production body. An additional increment of drag was caused by the basic shape of the fuselage - 19 percent more than the drag obtained when the fuselage shape was extensively refaired. Another sizable increment of drag was caused by the engine oil-cooler exit which gave a drag of 8 percent of that of the sealed and faired production body.

  13. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test

    Science.gov (United States)

    Ping, Ping; Wang, QingSong; Huang, PeiFeng; Li, Ke; Sun, JinHua; Kong, DePeng; Chen, ChunHua

    2015-07-01

    A full-scale burning test is conducted to evaluate the safety of large-size and high-energy 50 Ah lithium-iron phosphate/graphite battery pack, which is composed of five 10 Ah single cells. The complex fire hazards associated with the combustion process of the battery are presented. The battery combustion behavior can be summarized into the following stages: battery expansion, jet flame, stable combustion, a second cycle of a jet flame followed by stable combustion, a third cycle of a jet flame followed by stable combustion, abatement and extinguishment. The multiple jets of flame indicate serious consequences for the battery and pose a challenge for battery safety. The battery ignites when the battery temperature reaches approximately 175-180 °C. This critical temperature is related to an internal short circuit of the battery, which results from the melting of the separator. The maximum temperature of the flame can reach 1500 °C. The heat release rate (HRR) varies based on the oxygen generated by the battery and the Joule effect of the internal short circuit. The HRR and heat of combustion can reach 49.4 kW and 18,195.1 kJ, respectively. The state of charge of the battery has a significant effect on the maximum HRR, the overall heat generation and the mass loss of the battery.

  14. Demand-driven biogas production by flexible feeding in full-scale - Process stability and flexibility potentials.

    Science.gov (United States)

    Mauky, Eric; Weinrich, Sören; Jacobi, Hans-Fabian; Nägele, Hans-Joachim; Liebetrau, Jan; Nelles, Michael

    2017-08-01

    For future energy supply systems with high proportions from renewable energy sources, biogas plants are a promising option to supply demand-driven electricity to compensate the divergence between energy demand and energy supply by uncontrolled sources like wind and solar. Apart expanding gas storage capacity a demand-oriented feeding with the aim of flexible gas production can be an effective alternative. The presented study demonstrated a high degree of intraday flexibility (up to 50% compared to the average) and a potential for an electricity shutdown of up to 3 days (decreasing gas production by more than 60%) by flexible feeding in full-scale. Furthermore, the long-term process stability was not affected negatively due to the flexible feeding. The flexible feeding resulted in a variable rate of gas production and a dynamic progression of individual acids and the respective pH-value. In consequence, a demand-driven biogas production may enable significant savings in terms of the required gas storage volume (up to 65%) and permit far greater plant flexibility compared to constant gas production. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Detecting delaminations and disbondings on full-scale wing composite panel by guided waves based SHM system

    Science.gov (United States)

    Monaco, E.; Boffa, N. D.; Memmolo, V.; Ricci, F.; Maio, L.

    2016-04-01

    A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by "classic" C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.

  16. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  17. Simulation of municipal-industrial full scale WWTP in an arid climate by application of ASM3

    Directory of Open Access Journals (Sweden)

    Abdelsalam Elawwad

    2017-03-01

    Full Text Available In developing countries, and due to the high cost of treatment of industrial wastewater, municipal wastewater treatment facilities usually receive a mixture of municipal wastewater and partially treated industrial wastewater. As a result, an increased potential for shock loads with high pollutant concentrations is expected. The use of mathematical modelling of wastewater treatment is highly efficient in such cases. A dynamic model based on activated sludge model no. 3 (ASM3 describing the performance of the activated sludge process at a full scale wastewater treatment plant (WWTP receiving mixed domestic–industrial wastewater located in an arid area is presented. ASM3 was extended by adding the Arrhenius equation to respond to changes in temperature. BioWin software V.4 was used as the model platform. The model was calibrated under steady-state conditions, adjusting only three kinetic and stoichiometric parameters: maximum heterotrophic growth rate (μH = 8 d−1, heterotrophic aerobic decay rate (bH, O2 = 0.18 d−1, and aerobic heterotrophic yield (YH,O2 = 0.4 (gCOD/gCOD. ASM3 was successful in predicting the WWTP performance, as the model was validated with 10 months of routine daily measurements. ASM3 extended with the Arrhenius equation could be helpful in the design and operation of WWTPs with mixed municipal–industrial influent in arid areas.

  18. Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption.

    Science.gov (United States)

    Rodríguez, Eva; Encinas, Angel; Masa, Francisco J; Beltrán, Fernando J

    2008-02-01

    Activated carbon adsorption and chemical oxidation followed by activated carbon adsorption of resorcinol in water has been studied. Three chemical oxidants have been used: hypochlorite, permanganate and Fenton's reagent. The influence of concentrations of resorcinol and activated carbon on adsorption removal rates has been investigated. Both isotherm and adsorption kinetics have been studied. Results are fit well by Freundlich isotherms and adsorption rates of resorcinol were found to follow a pseudo-second-order kinetic model. However, pyrogallol, an intermediate of resorcinol oxidation with permanganate and Fenton's reagent, showed an unfavourable isotherm type. At the conditions investigated, chemical oxidation allows slight reductions of TOC and intermediates formed were found to inhibit the adsorption rate of TOC in the case of permanganate and Fenton's reagent oxidation, likely due to formation of some polymer pyrogallol product. The adsorption process was found to be controlled by pore internal diffusion, which justifies the poor affinity of oxidation intermediates toward activated carbon since molecules of larger size should diffuse rapidly for the adsorption to be effective.

  19. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing.

    Science.gov (United States)

    Delforno, Tiago Palladino; Lacerda Júnior, Gileno Vieira; Noronha, Melline F; Sakamoto, Isabel K; Varesche, Maria Bernadete A; Oliveira, Valéria M

    2017-06-01

    The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin). © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. New results for single stage low energy carbon AMS

    International Nuclear Information System (INIS)

    Klody, G.M.; Schroeder, J.B.; Norton, G.A.; Loger, R.L.; Kitchen, R.L.; Sundquist, M.L.

    2005-01-01

    A new configuration of the NEC single stage, low energy carbon AMS system (U.S. Patent 6,815,666 B2) has been built and tested. The injector includes two 40-sample ion sources, electrostatic and magnetic analysis, and fast sequential injection. The gas stripper, analyzing magnet, electrostatic analyzer, and detector are on an open air 250 kV deck. Both 12 C and 13 C currents are measured on the deck after the stripper, and an SSB detector is used for 14 C counting. Injected 12 C and mass 13 ( 13 C and 12 CH) currents are also measured. Automated controls follow a user-specified run list for unattended operation. Initial test results show precision for 14 C/ 12 C ratios of better than 5 per mil, and backgrounds for unprocessed graphite of less than 0.005 x modern. We will report final results for precision, background, and throughput and discuss related design features

  1. Atmospheric corrosion of carbon steel resulting from short term exposures

    International Nuclear Information System (INIS)

    Balasubramanian, R.; Cook, D.C.; Perez, T.; Reyes, J.

    1998-01-01

    The study of corrosion products from short term atmospheric exposures of carbon steel, is very important to understand the processes that lead to corrosion of steels, and ultimately improve the performance of such steel in highly corrosive environments. Many regions along the Gulf of Mexico have extremely corrosive environments due to high mean annual temperature, humidity, time-of-wetness and every high atmospheric pollutants. The process the formation of corrosion products resulting from short term exposure of carbon steel, both as a function of environmental conditions and exposure time, has been investigated. Two sets of coupons were exposed at marine and marine locations, in Campeche, Mexico. Each set was exposed between 1 and 12 months to study the corrosion as a function of time. During the exposure periods, the relative humidity, rainfall, mean temperature, wind speed and wind direction were monitored along with the chloride and sulfur dioxide concentrations in the air. The corroded coupons were analyzed by Moessbauer, Raman, Infrared spectroscopies and X-ray diffraction in order to completely identify the oxides and map their location in the corrosion coating. Scattering and transmission Moessbauer analysis showed some layering of the oxides with lepidocrocite and akaganeite closer to the surface. The fraction of akaganeite phase increased at sites with higher chloride concentrations. A detailed analysis on the development of the oxide phases as a function of exposure time and environmental conditions will be presented. (Author)

  2. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  3. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    Science.gov (United States)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  4. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  5. Detailing the start-up and microalgal growth performance of a full-scale photobioreactor operated with bioindustrial wastewater

    DEFF Research Database (Denmark)

    Podevin, Michael Paul Ambrose; Fotidis, Ioannis; De Francisci, Davide

    2017-01-01

    In this study, a full-scale enclosed microalgal air-lift photobioreactor (PBR) module was operated using both defined and industrial wastewater (WW) media. In the effort to establish full-scale operation: a WW ultrafiltration system, two algal productions, and a harvesting microfiltration system...... proxies for cell number of C. sorokiniana grown outdoors with daily fluctuations, despite inherent differences in chlorophyll sensitivity at each absorbance wavelength. However, OD measurements at different reactor locations shown to diverge at the onset of growth. Greenhouse temperature and solar...

  6. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  7. Low-Speed Wind Tunnel Investigation of a Full-Scale UH-60 Rotor System

    National Research Council Canada - National Science Library

    Norman, Thomas R; Shinoda, Patrick M; Kitaplioglu, Cahit; Jacklin, Stephen A; Sheikman, Alex

    2002-01-01

    .... evaluation of an Individual Blade Control system to reduce vibration and noise, 3. acquisition of low-speed performance and load data for comparison with flight test results and analyses, and 4...

  8. Experimental damping assessment of a full scale offshore mono bucket foundation

    DEFF Research Database (Denmark)

    Gres, Szymon; Fejerskov, Morten; Ibsen, Lars Bo

    2016-01-01

    and sea surface elevation. Natural frequencies and corresponding damping ratios are assessed using different operational modal analysis techniques, enhanced frequency domain decomposition and stochastic subspace identification. Application and results from both methods are compared and discussed. Research...

  9. Full-scale aircraft impact test for evaluation of impact force-Part 2

    International Nuclear Information System (INIS)

    Muto, K.; Sugano, T.; Tsubata, H.; Kasai, Y.; Koshika, N.; Suzuki, M.; Ohrui, S.; Von Riesemann, W.A.; Bickel, D.C.; Parrish, R.L.

    1989-01-01

    This paper analyzes measurements used to evaluate the impact force of a rigid barrier against head on impacting aircraft. The authors uses the results to evaluate existing analytical methods for prediction of the impact force

  10. Full Scale Test of SSP 34m blade, edgewise loading LTT. Data Report 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Jensen, Find M.; Nielsen, Per H. (and others)

    2010-01-15

    This report is a part of a research project where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new load areas. The global deflection is compared with results from a previous test and results from FEM analyses in order to validate the solution as to how the gravity load on the blade was handled. Furthermore, the DIC measurement and the displacement sensors measurements are compared in order to validate the results from the DIC measurements. The report includes the results from the test and a description of the measurement equipment and the data acquisition. (author)

  11. FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel

    Science.gov (United States)

    Lee-Rausch, Elizabeth M.; Biedron, Robert T.

    2013-01-01

    An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.

  12. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    Science.gov (United States)

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  13. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    Science.gov (United States)

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  14. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Weissbrodt, D.G.; Hammes, F; van Loosdrecht, Mark C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year

  15. Impact of suspended solids concentration on sludge filterability in Full-scale membrane bioreactors

    NARCIS (Netherlands)

    Lousada Ferreira, M.D.C.; Van Lier, J.B.; Van der Graaf, J.H.J.M.

    2015-01-01

    The relation between activated sludge filterability and mixed liquor suspended solids (MLSS) concentration in membrane bioreactors (MBRs) is framed in a single hypothesis, explaining results seemingly contradictory. A total of 44 activated sludge samples were collected and analyzed on a variety of

  16. PIV Measurements of Full-Scale UH-60A Tip Vortices

    Science.gov (United States)

    Yamauchi, Gloria K.

    2012-01-01

    The following presentation will give a description on experiments like installation, PIV measurements, and test conditions. It will also be giving the status of data processing, as well as, preliminary results. In addition, plans and present papers will also be discussed.

  17. A full-scale biological aerated filtration system application in the ...

    African Journals Online (AJOL)

    The treated wastewater characteristics are in compliance with the Egyptian law which regulates the discharge of industrial wastewater to the sewerage system. The results from each treatment process proved to be efficient for the treatment of such wastewater. Keywords: Paints wastewater treatment, Biological aerated filter ...

  18. Full-scale Simulation of a Dry Storage Cask by Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Yoo, Seung Hun; Kim, Hyeun Min; No, Hee Cheon

    2010-01-01

    The prediction of flow and heat transfer in the dry storage system has been carried out to meet the need for thermal-hydraulic analysis for cask designs or to investigate local and global phenomena which could not be measured by the experiments. Computational fluid dynamics (CFD) codes have been used for solving heat transfer inside the complex geometries such as spent fuel assemblies. And more accurate calculations were performed by them compared with those of one dimensional system codes. In order to provide for the reliability and the guidance of the use of CFD codes, diverse researches were performed with different dry systems and codes. In the present study, TN24P cask was selected for the reference experiment. FLUENT code with a set of CFD models was used for the fullscale simulation of TN24P cask and its results were compared with the experimental data and COBRA-SFS results

  19. Full scale impact testing for environmental and safety control of energy material shipping container systems

    International Nuclear Information System (INIS)

    Seagren, R.D.

    1978-01-01

    Heavily-shielded energy material shipping systems, similar in size and weight to those presently employed to transport irradiated reactor fuel elements, are being destructively tested under dynamic conditions. In these tests, the outer and inner steel shells interact in a complex manner with the massive biological shielding in the system. Results obtained from these tests provide needed information for new design concepts. Containment failure (and the resulting release of radioactive material to the environment which might occur in an extremely severe accident) is most likely through the seals and other ancillary features of the shipping systems. Analyses and experiments provide engineering data on the behavior of these shipping systems under severe accident conditions and information for predicting potential survivability and environmental control with a rational margin of safety

  20. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    carried out aimed at quantifying design loads in the mooring system of the WD-DanWEC unit, as well as identifying viable force-reduction strategies which would allow significant savings in design cost (estimated up to 65%). According to these results, the most cost-effective real mooring solutions....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance...... will need to be identified by means of time-domain analyses. To do so, a numerical model has been calibrated for the application with the results from the complete hydrodynamic characterization of Wave Dragon, which has been carried out based on experimental data and numerical analysis. Overall...

  1. Full-scale trials of external nitrification on plastic media nitrifying ...

    African Journals Online (AJOL)

    ... poor media wetting at low HLR resulting in low ApANR (<0.5 gN/m2·d). Also during the cold and rainy winter period, poor biofilm activity and prevalence of motile algae were observed, and under low hydraulic loading rates and warmer temperatures, a dominance of filter flies and fly larvae were observed. In contrast, in ...

  2. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System

    OpenAIRE

    Ginige, Maneesha P.; Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. Th...

  3. Investigation of the chain of 5T full-scale superconducting magnets

    International Nuclear Information System (INIS)

    Ageev, A.I.; Aleksandrov, G.M.; Aleksandrov, A.G.

    1987-01-01

    Bench investigations of the chain of dipoles with warm magnetic screen, connected in series, are being conducted in the framework of the IHEP program of the UNK superconducting magnet simulation. At the given stage conditions of accidental magnet transition to the normal state are being investigated. The study of processes of propagation of the normal phase, temperature fields and pressure growth dynamics, processes of energy and helium evacuation from magnet chain is given. Results of measuring electric and nonstationary processes in the chain during transition of one of superconducting magnets to the normal state are presented

  4. Wind-induced response of CN-Tower: comparison of model and full scale

    International Nuclear Information System (INIS)

    Monbaliu, J.; Ruigrok, C.; Isyumov, N.

    1985-01-01

    The approximately 555-m high CN Communications Tower in Toronto has now been operational for nearly a decade. The action of wind on this tower was extensively tested at the Boundary Layer Wind Tunnel Laboratory during the design of the tower. This study provided information on the overall wind loads and responses of the structure, the action of wind on various components, and its effects on the tower performance including transmission quality. A program of monitoring and recording the wind induced response and various meteorological data was started in 1977. This paper presents some results of that program and makes comparisons with wind tunnel model data. (author)

  5. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)

    1993-12-31

    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  6. Magnetic field measurements of Fermilab/General Dynamics built full scale SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Delchamps, S.; Bleadon, M.; Bossert, R.; Carson, J.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Strait, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    This paper presents preliminary results of magnetic field measurements made on a series of 50 mm aperture 15 m long SSC collider dipole magnets designed and manufactured at Fermi National Accelerator Laboratory (Fermilab) for use in the Superconducting Super Collider Laboratory (SSCL) Accelerator System String Test. The magnets were assembled by Fermilab and General Dynamics personnel, and were tested at the Magnet Test Facility (MTF) at Fermilab. Measurements of the dipole field angle, dipole field strength, and field shape parameters at various stages in magnet construction and testing are described

  7. Interpretation of full-scale monitoring data from a jack-up rig

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document summarises a study undertaken by MSL Engineering Ltd for the Health and Safety Executive to determine the 'foundation fixity of the Maersk Endurer Jack-Up rig from measured data. This particular Jack-Up does not have spudean skirts, and therefore the results complement earlier studies on Jack-Ups having skirts. Several sea states from two storms were examined so that conclusions could be drawn on the possibility of foundation softening occurring during a storm. Foundation fixity was inferred from the observed natural period of the structure. Comparisons of measured maximum displacement with predicted values using the inferred fixity levels have also been made. (author)

  8. Full scale steady state component tests of the SWR 1000 Fuel Pool Cooler at the INKA test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maisberger, Fabian; Leyer, Stephan; Schaub, Bernd; Brettschuh, Werner; Wagner, Thomas; Doll, Mathias; Wich, Michael; Schaefer, Heinrich [AREVA NP, Offenbach (Germany); Unger, Jochem [TU Darmstadt (Germany)

    2009-07-01

    The SWR 1000 is a medium-capacity boiling water reactor. It combines proven design active safety systems with innovative passive safety systems. The passive systems utilizes basic physical laws, such as gravity or natural convection, enabling them to function without electrical power supply or actuation by powered instrumentation and control (I and C) systems. They are designed to bring the plant in a secure and stable state without the help of any active system. Furthermore the passive safety features partially replace the active systems leading to a significant cost reduction and provide a reliable, safe and economically competitive alternative to standard plant design /1/. For further simplification of the plant design and additional cost reduction, the fuel pool cooling system has been modified in comparison to the currently running German BWR plants. This new system was tested in the Pressure Suppression Pool Vessel (PSPV) of the INKA test facility (Integral Teststand Karlstein) in Germany, which was originally build for the full scale testing of the key elements of the SWR 1000 passive safety concept /2/. The PSPV of INKA was chosen because it provides enough space for the cooler and its attached chimney (total height 11.5m). In this work the setup and the execution of the tests will be described. A characteristic diagram of the heat transfer capacity of the component as a function of cooling water temperature and fuel pool water temperature obtained form these experiments will be presented. In parallel CFD calculations, simulating the tests will be made. The results of these calculations and the comparison between the experimental and calculated results will be presented elsewhere and will serve furthermore to validate the CFD-code. (orig.)

  9. Wall interaction effects for a full-scale helicopter rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.

    1994-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. This wind tunnel test generated a unique and extensive data base covering a wide range of rotor shaft angles-of-attack and rotor thrust conditions from 0 to 100 knots. Three configurations were tested: (1) empty tunnel; (2) test stand body (fuselage) and support system; and (3) fuselage and support system with rotor installed. Empty tunnel wall pressure data are evaluated as a function of tunnel speed to understand the baseline characteristics. Aerodynamic interaction effects between the fuselage and the walls of the tunnel are investigated by comparing wall, ceiling, and floor pressures for various tunnel velocities and fuselage angles-of-attack. Aerodynamic interaction effects between the rotor and the walls of the tunnel are also investigated by comparing wall, ceiling, and floor pressures for various rotor shaft angles, rotor thrust conditions, and tunnel velocities. Empty tunnel wall pressure data show good repeatability and are not affected by tunnel speed. In addition, the tunnel wall pressure profiles are not affected by the presence of the fuselage apart from a pressure shift. Results do not indicate that the tunnel wall pressure profiles are affected by the presence of the rotor. Significant changes in the wall, ceiling, and floor pressure profiles occur with changing tunnel speeds for constant rotor thrust and shaft angle conditions. Significant changes were also observed when varying rotor thrust or rotor shaft angle-of-attack. Other results indicate that dynamic rotor loads and blade motion are influenced by the presence of the tunnel walls at very low tunnel velocity and, together with the wall pressure data, provide a good indication of flow breakdown.

  10. Analysis of a full-scale integral test in PERSEO facility by using TRACE code

    Science.gov (United States)

    D’Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.

    2017-11-01

    Over the last decades a lot of experimental researches have been done to increase the reliability of passive decay heat removal systems implementing in-pool immersed heat exchanger. In this framework, a domestic research program on innovative safety systems was carried out leading the design and the development of the PERSEO facility at the SIET laboratories. The configuration of the system consists of an heat exchanger contained in a small pool which is connected both at the bottom and at the top to a large water reservoir pool. Within the frame of a national research program funded by the Italian minister of economic development, the DEIM department of the University of Palermo in cooperation with ENEA has developed a computational model of the PERSEO facility in order to simulate its behaviour during an integrated test. The analysis here presented has been performed by using the best-estimate TRACE code and - in order to highlight the capabilities and limits of the TRACE model in reproducing qualitatively and quantitatively the experimental trends - the main results have been compared with the experimental data. The comparison shows that the model is able to predict the overall behaviour of the plant during the meaningful phases of the transient analysed. Nevertheless, some improvements in the modelling of certain components in which take place complex three-dimensional phenomena are suggested in order to reduce some discrepancies observed between code results and test measurements.

  11. ATD Occupant Responses from Three Full-Scale General Aviation Crash Tests

    Science.gov (United States)

    Littell, Justin D.; Annett, Martin S.

    2016-01-01

    During the summer of 2015, three Cessna 172 General Aviation (GA) aircraft were crash tested at the Landing and Impact Research (LandIR) Facility at NASA Langley Research Center (LaRC). Three different crash scenarios were represented. The first test simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway. The second test simulated a controlled flight into terrain with a nose down pitch of the aircraft, and the third test simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system (DAS) captured 64 channels of airframe acceleration, along with accelerations and loads in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices (ATDs) representing the pilot and copilot. Each of the three tests contained different airframe loading conditions and different types of restraints for both the pilot and co-pilot ATDs. The results show large differences in occupant response and restraint performance with varying likelihoods of occupant injury.

  12. Full Scale Sludge Treatment in Reed Beds in Moderate Climate—A Case Study

    Directory of Open Access Journals (Sweden)

    Artur Mennerich

    2017-09-01

    Full Text Available The wastewater treatment plant of Wathlingen, Germany, has a design capacity of 20,500 p.e. Since 2000, the sewage sludge has been treated in four reed beds with an area of 3000 m2 each. During this time, three of the four polders were emptied once and put into operation again, which has allowed for an evaluation of complete operation cycles from startup to sludge removal. This paper comprises data on polder construction and operating results as well as an economic evaluation of construction, operation, and sludge disposal costs. Results show that sludge DS mass may be reduced by at least 23% and at most 52%. Water content was reduced, but the DS concentration of the product excavated was not higher than around 20% DS. Operation experiences proved that the system is very user-friendly and requiring limited maintenance and control work. To make the best use of this technique, it is recommended a separate area for additional storage and dewatering is provided after the sludge from the polders is removed. This allows for the possibility for the operators to determine the appropriate time and conditions for final disposal.

  13. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  14. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    NARCIS (Netherlands)

    Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking

  15. Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater

    NARCIS (Netherlands)

    Beyer, F.; Rietman, B.M.; Zwijnenburg, A.; Brink, van den P.; Vrouwenvelder, J.S.; Jarzembowska, M.; Laurinonyte, J.; Stams, A.J.M.; Plugge, C.M.

    2014-01-01

    Long-term performance and fouling behavior of four full-scale nanofiltration (NF) plants, treating anoxic groundwater at 80% recovery for drinking water production, were characterized and compared with oxic NF and reverse osmosis systems. Plant operating times varied between 6 and 10 years and

  16. Genome based analysis of a novel Chloroflexi in full-scale anaerobic digesters treating waste activated sludge

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; Albertsen, Mads

    Key to optimised design and operation of full-scale anaerobic digesters is an understanding of the organisms responsible. As one of the most abundant phyla in these systems, the Chloroflexi likely make a substantial contribute to system function. Here we apply state-of-the-art molecular methods t...

  17. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    Science.gov (United States)

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber under dynamic conditions using ASTM D 6670-01 (2007). Four brands of the same type furniture product were tested. The data we...

  18. First-In-Flight Full-Scale Application of Active Flow Control: The XV-15 Tiltrotor Download Reduction

    National Research Council Canada - National Science Library

    Nagib, Hassan M; Kiedaisch, John W; Wygnanski, Israel J; Stalker, Aaron D; Wood, Tom; McVeigh, Michael A

    2004-01-01

    ... Helicopter and Boeing under the sponsorship of the Micro-Adaptive Flow control (MAFC) program of DARPA. The over six hours of flight tests successfully achieved the two goals and documented reduction in the download forces by 9 to 14%, thereby demonstrating for the first time the aerodynamic principals of AFC extend to full-scale flight.

  19. Damage Assessment of a Full-Scale Six-Story wood-frame Building Following Triaxial shake Table Tests

    Science.gov (United States)

    John W. van de Lindt; Rakesh Gupta; Shiling Pei; Kazuki Tachibana; Yasuhiro Araki; Douglas Rammer; Hiroshi Isoda

    2012-01-01

    In the summer of 2009, a full-scale midrise wood-frame building was tested under a series of simulated earthquakes on the world's largest shake table in Miki City, Japan. The objective of this series of tests was to validate a performance-based seismic design approach by qualitatively and quantitatively examining the building's seismic performance in terms of...

  20. Reliability and Energy Loss in Full-scale Wind Power Converter Considering Grid Codes and Wind Classes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    With the increasing penetration of the wind power, reliable operation and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the cost on reliability and production losses of permanent-magnet synchronous generator based full-scale wind po...

  1. Full scale demonstration of thermoactive constructions; Fuldskala demonstration af termoaktive konstruktioner. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    The project idea is to use prefabricated thermo-active building structures (TABS) as concrete slabs with embedded plastic pipes (PEX). The active concrete slabs are used both as cooling and heating system, peak load limiting (levelling out the peak load) and as energy storage. Based on results from a DTU pilot project, the building owner, Middelfart Sparekasse (a Danish bank), decided to use thermo-active structures for a new 5380 m{sup 2} large headquarter. The objective was to reduce electricity consumption for cooling and ventilation by 75-80 %, thereby making it easier to comply with the more stringent energy requirements. Significant energy savings using this technology have been documented. Electricity consumption for cooling and ventilation was reduced by about 12-13 kWh/m{sup 2}/year, corresponding to about 60%. The electricity savings have a potential to become even higher. The actual consumption is due to a number of factors. 1) The building has not only natural ventilation, but also mechanical ventilation, which has been in operation more than expected. 2) The building architecture contains a significant proportion of glass, causing increased cooling demand. 3) Commissioning of cooling and ventilation systems has been ongoing during the measurement period and is still ongoing. So in that light, 60% electricity saving is a good result. It is documented that TABS can yield a constant cooling performance of at least 30 W/m{sup 2} even with false ceiling covering 70-80% of the area under the thermo-active slabs. TABS are in many ways an optimal and indispensable solution, which not only minimizes electricity consumption for cooling and ventilation, but also has significant benefits in terms of improved indoor climate and in longer term large total economic gains. With the use of TABS in office buildings, the typical indoor climate discomfort associated with air cooling and ventilation (drag, noise, dust) are avoided, and in buildings with natural ventilation

  2. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  3. Identification of support structure damping of a full scale offshore wind turbine in normal operation

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Vesth, Allan

    2015-01-01

    maxima of an impulse response caused by a boat impact. The result is used in the verification of the non aerodynamic damping in normal operation for low wind speeds. The auto-correlation function technique for damping estimation of a structure under ambient excitation was validated against the identified...... damping from the decaying time series. The Enhanced Frequency Domain Decomposition (EFDD) method was applied to the wind turbine response under ambient excitation, for estimation of the damping in normal operation. The aero-servo-hydro-elastic tool HAWC2 is validated with offshore foundation load...... measurements. The model was tuned to the damping values obtained from the boat impact to match the measured loads. Wind turbulence intensity and wave characteristics used in the simulations are based on site measurements. A flexible soil model is included in the analysis. The importance of the correctly...

  4. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Licastro, P.H.; Roy, D.M.

    1986-05-01

    Large-scale testing of the permeability by brine of a salt/grout sample designed to simulate a borehole plug was conducted. The results of these tests showed that a quantity of fluid equivalent to a permeability of 3 microdarcys was collected during the course of the test. This flow rate was used to estimate the smooth bore aperture. Details of this test ware presented in Volume 1 of this report. This report, Volume 2, covers post-test characterization including a detailed study of the salt/grout interface, as well as determination of the physical/mechanical properties of grout samples molded at Terra Tek, Inc. at the time of the large-scale test. Additional studies include heat of hydration, radial stress, and longitudinal volume changes for an equivalent grout mixture

  5. Studienlandschaft Schwingbachtal: an out-door full-scale learning tool newly equipped with augmented reality

    Science.gov (United States)

    Aubert, A. H.; Schnepel, O.; Kraft, P.; Houska, T.; Plesca, I.; Orlowski, N.; Breuer, L.

    2015-11-01

    This paper addresses education and communication in hydrology and geosciences. Many approaches can be used, such as the well-known seminars, modelling exercises and practical field work but out-door learning in our discipline is a must, and this paper focuses on the recent development of a new out-door learning tool at the landscape scale. To facilitate improved teaching and hands-on experience, we designed the Studienlandschaft Schwingbachtal. Equipped with field instrumentation, education trails, and geocache, we now implemented an augmented reality App, adding virtual teaching objects on the real landscape. The App development is detailed, to serve as methodology for people wishing to implement such a tool. The resulting application, namely the Schwingbachtal App, is described as an example. We conclude that such an App is useful for communication and education purposes, making learning pleasant, and offering personalized options.

  6. Novel shear capacity testing of ASR damaged full scale concrete bridge

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Søren Gustenhoff; Barbosa, Ricardo Antonio

    2014-01-01

    A large number of concrete bridges in Denmark have to undergo wide-ranging maintenance work to prevent deterioration due to aggressive Alkali Silica Reaction (ASR). This destructive mechanism results in extensive cracking which is believed to affect the load carrying capacity of the structure...... concrete bridges with considerable economical expenses as a consequence. A novel ASR test and measurement method, which can be used to perform shear testing locally on concrete bridges, is presented in this paper. Shear capacity testing is performed on a three span concrete bridge and several material test...... samples were taken from the test areas on the bridge deck. In addition, the test method is used to directly predict the shear capacity without disturbing the traffic significantly. Verification of the load carrying capacity of the bridge was the ultimate goal of the tests. A test rig, which could easily...

  7. Power generation and blade flow measurements of a full scale wind turbine

    Science.gov (United States)

    Gaunt, Brian

    Experimental research has been completed using a custom designed and built 4m wind turbine in a university operated wind facility. The primary goals of turbine testing were to determine the power production of the turbine and to apply the particle image velocimetry (PIV) technique to produce flow visualization images and velocity vector maps near the tip of a blade. These tests were completed over a wide range of wind speeds and turbine blade rotational speeds. This testing was also designed to be a preliminary study of the potential for future research using the turbine apparatus and to outline it's limitations. The goals and results of other large scale turbine tests are briefly discussed with a comparison outlining the unique aspects of the experiment outlined in this thesis. Power production tests were completed covering a range of mean wind speeds, 6.4 m/s to 11.1 m/s nominal, and rotational rates, 40 rpm to 220 rpm. This testing allowed the total power produced by the blades to be determined as a function of input wind speed, as traditionally found in power curves for commercial turbines. The coefficient of power, Cp, was determined as a function of the tip speed ratio which gave insight into the peak power production of the experimental turbine. It was found, as expected, that the largest power production occurred at the highest input wind speed, 11.1 m/s, and reached a mean value of 3080 W at a rotational rate of 220 rpm. Peak Cp was also found, as a function of the tip speed ratio, to approach 0.4 at the maximum measurable tip speed ratio of 8. Blade element momentum (BEM) theory was also implemented as an aerodynamic power and force prediction tool for the given turbine apparatus. Comparisons between the predictions and experimental results were made with a focus on the Cp power curve to verify the accuracy of the initial model. Although the initial predictions, based on lift and drag curves found in Abbot and Von Deonhoff 1, were similar to experimental

  8. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  9. Dynamic characteristics of the national full-scale aerodynamic complex drive fan blades

    Science.gov (United States)

    Peterson, Randall L.; Graham, Todd; Lau, Benton

    1987-01-01

    An extensive experimental test program was conducted to define the dynamic characteristics of the newly installed fan blades of the NASA Ames 40- by 80-/80- by 120-Foot Wind Tunnel. The tests were intended to substantiate the blade design and manufacturing process, verify installation integrity, and guarantee safe fan-drive operation. The program included a shake test of each fan blade after installation and before operation as well as the monitoring of blade strain levels during initial operation. Structural characteristics, as determined by the shake test, include the modal frequency and damping values for elastic bending and torsion modes between 5 and 130 Hz. Operational testing defined the maximum and oscillatory blade-bending strains throughout the drive-system operational envelope. Results are presented for the shake test and initial operation of the 40- by 80-Foot Wind Tunnel circuit.

  10. Full scale aircraft impact test for evaluation of impact forces-Part 1

    International Nuclear Information System (INIS)

    Von Riesemann, W.A.; Parrish, R.L.; Bickel, D.C.; Heffelfinger, S.R.; Muto, K.; Sugano, T.; Tsubota, H.; Koshika, N.; Suzuki, M.; Ohrui, S.

    1989-01-01

    This paper describes a test conducted at an existing rocket sled facility in which an actual F-4 Phantom aircraft was impacted at a nominal velocity of 215 m/s into an essentially rigid block of concrete. This was accomplished by supporting the F-4 on four struts that were attached to the sled track by carriage shoes to direct the path of the aircraft. Propulsion was accomplished by two stages of rockets. The concrete target was floated on a set of air bearings. Data acquisition consisted of measurements of the acceleration of the fuselage and engines of the F-4, and measurements of the displacement, velocity and acceleration of the concrete target. High-speed photograph recorded the impact process and also permitted the determination of the impact velocity. This paper describes the test plan, method and results

  11. Harmonic Generation and Mitigation by Full-Scale Converter Wind Turbines:

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2011-01-01

    This paper shows that wind turbine harmonic generation and mitigation assessment are complex tasks, and many aspects, such as measurements, data processing, modelling and validation, must be taken into consideration. The paper describes the measurement process and shows sophisticated analyses...... on representative harmonic measurements of the wind turbine generators at Avedøre Holme. The nature of generation and mitigation of harmonic components in the wind turbine generators are clearly presented and explained. The mechanism of harmonic generation, some dynamic behaviour aspects and interaction...... with the external network are considered. Measurement, data processing and simulation results are presented and compared. Different analysis methods, such as statistical analysis, harmonic calculation, and mathematical description are applied and described in detail. Some issues regarding commonly applied standards...

  12. Full-Scale Testing of Pipeline Unplugging Technologies - NuVision's Fluidic Wave-Action Technology

    International Nuclear Information System (INIS)

    Gokaltun, S.; McDaniel, D.; Varona, J.; Patel, R.; Awwad, A.; Roelant, D.; Keszler, E.

    2009-01-01

    In this paper, we present a technical evaluation of a pipeline unplugging method that can be used as a feasible tool to clean fouled pipes at Department of Energy (DOE) sites. The unplugging method depends on running water against the plugged section in the pipeline for multiple times and breaking the mechanical bonds of the material that hold the plug together. The working principles of the method are similar to beach erosion since a water wave is generated using the suction and drive mechanisms caused by the system in the pipeline that erodes the plug from one end. The technology tested also is capable of creating an external force on the plug that helps the unplugging process however this characteristic of the technology was not tested during the testing reported in this work. More focus was given to the erosion capability of the technology and how wave characteristics affected that. Results obtained demonstrated that there is a correlation between the suction and drive characteristics of the wave generated in the pipeline with the maximum pressures attained in the plug region, the velocity of the wave prior to colliding with the plug and the erosion. It was found that the technology was most effective in unplugging Phosphate based chemical plugs and Kaolin clay based plugs while it took more time to erode Aluminum based plugs for the same pipeline test layouts. (authors)

  13. Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements

    Science.gov (United States)

    Littell, Justin D.; Kellas, Sotiris

    2018-01-01

    During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.

  14. Local strategies for efficient management of solid household waste--the full-scale Augustenborg experiment.

    Science.gov (United States)

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2012-02-01

    A system with property-close source-separation of thirteen different solid household waste fractions in a residential area in southern Sweden, including the implementation of new systems for source-separation of food waste, waste electric and electronic equipment, hazardous waste and fat, oils and grease was monitored over a 2-year period. Continuous weighing of disposed waste and repeated waste composting analyses were used to investigate recycling behaviour of households in the area and to monitor the composition of disposed waste. Results show that 34% of the total amount of generated waste was currently diverted to material recycling. The removal of recyclables from residual waste could be significantly increased, as more than 80% of all waste in the area (bulky waste excluded) was either covered by the Producer Responsibility Ordinances on packaging and newspaper or constitutes food waste suitable for biogas production. Food waste still represented almost 30% of all residual waste in the study area and was thus the fraction with the greatest potential (on weight basis) for increased source-separation.

  15. Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia.

    Science.gov (United States)

    Sim, Cheng Hua; Yusoff, Mohd Kamil; Shutes, Brian; Ho, Sinn Chye; Mansor, Mashhor

    2008-07-01

    Putrajaya Wetlands in Malaysia, a 200ha constructed wetland system consisting of 24 cells, was created in 1997-1998 to treat surface runoff caused by development and agricultural activities from an upstream catchment before entering Putrajaya Lake (400ha). It was designed for stormwater treatment, flood control and amenity use. The water quality improvement performance of a section of the wetland cells is described. The nutrient removal performance was 82.11% for total nitrogen, 70.73% for nitrate-nitrogen and 84.32% for phosphate, respectively, along six wetland cells from Upper North UN6 to UN1 from April to December 2004. Nutrient removal in pilot scale tank systems, simulating a constructed wetland and planted with examples of common species at Putrajaya, the Common Reed Phragmites karka and Tube Sedge Lepironia articulata, and the capacity of these species to retain nutrients in above and below-ground plant biomass and substrate is reported. The uptake of nutrients by the Common Reed and Tube Sedge from the pilot tank system was 42.1% TKN; 28.9% P and 17.4% TKN; 26.1% P, respectively. The nutrient uptake efficiency of the Common Reed was higher in above-ground than in below-ground tissue. The results have implications for plant species selection in the design of constructed wetlands in Malaysia and for optimizing the performance of these systems.

  16. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller......Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation.This paper presents a simulation model of a megawatt-level variablespeed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of PSCAD...

  17. Updated activated sludge model number 1 parameter values for improved prediction of nitrogen removal in activated sludge processes: validation at 13 full-scale plants.

    Science.gov (United States)

    Choubert, Jean-Marc; Stricker, Anne-Emmanuelle; Marquot, Aurélien; Racault, Yvan; Gillot, Sylvie; Héduit, Alain

    2009-01-01

    The Activated Sludge Model number 1 (ASM1) is the main model used in simulation projects focusing on nitrogen removal. Recent laboratory-scale studies have found that the default values given 20 years ago for the decay rate of nitrifiers and for the heterotrophic biomass yield in anoxic conditions were inadequate. To verify the relevance of the revised parameter values at full scale, a series of simulations were carried out with ASM1 using the original and updated set of parameters at 20 degrees C and 10 degrees C. The simulation results were compared with data collected at 13 full-scale nitrifying-denitrifying municipal treatment plants. This work shows that simulations using the original ASM1 default parameters tend to overpredict the nitrification rate and underpredict the denitrification rate. The updated set of parameters allows more realistic predictions over a wide range of operating conditions.

  18. Kinetic modelling and characterization of microbial community present in a full-scale UASB reactor treating brewery effluent.

    Science.gov (United States)

    Enitan, Abimbola M; Kumari, Sheena; Swalaha, Feroz M; Adeyemo, J; Ramdhani, Nishani; Bux, Faizal

    2014-02-01

    The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60-69% of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K(B)) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R(2) = 0.957) which could be used for optimizing the reactor performance.

  19. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  20. Control and data acquisition of the ITER full-scale ion source for the neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, Adriano, E-mail: adriano.luchetta@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Manduchi, Gabriele; Taliercio, Cesare [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Paolucci, Francesco; Sartori, Filippo [Fusion for Energy, Barcelona (Spain); Svensson, Lennart [ITER Organization, Route de Vinon-sur-Verdon, CS 90046 St. Paul Lez Durance (France); Labate, Carmelo Vincenzo [Association ENEA-CREATE, Department of Engineering, University of Naples “Parthenope” (Italy); Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Simionato, Paola; Zampiva, Enrico; Barbato, Paolo; Polato, Sandro [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy)

    2015-10-15

    Highlights: • This paper describes the requirements and architecture of the control and data acquisition system of the ITER full-ion source experiment in the neutral beam test facility. • The system architecture integrates various popular software frameworks. • Slow control is based on the EPICS (Experimental Physics and Industrial Control System) framework. • Fast control is based on the MARTe (Multi-threaded Application Real-Time executor) framework. • Data acquisition is based on the MDSplus framework. - Abstract: The neutral beam test facility, which is under construction in Padova, Italy, is developing the ITER full-scale ion source for the ITER heating neutral beam injectors, referred to as the SPIDER experiment, and the full-size prototype injector, referred to as MITICA. The SPIDER control and data acquisition system (CODAS) has been developed and its construction will start in 2014. Slow control and data acquisition will be based on the ITER CODAC core system software suite that has been designed to facilitate the integration of ITER plant systems with CODAC. Fast control and data acquisition will use solutions specific to the test facility, as the corresponding concepts are not ready-to-use in the ITER design. The ITER hardware catalog for fast control has been taken into consideration. The software development will be based on the integration of MDSplus and MARTe, two framework software packages that are well known in the fusion community, targeting data organization and fast real-time control, respectively. The paper revises the system requirements and the system design and shows the results already achieved in terms of system integration. In addition, the paper will report the experience in the usage of different cooperating software frameworks and in the integration of industrial procured plant systems.

  1. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    Science.gov (United States)

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.

    Science.gov (United States)

    Straub, Anthony P; Lin, Shihong; Elimelech, Menachem

    2014-10-21

    We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings.

  3. Bioaugmentation for treatment of full-scale diethylene glycol monobutyl ether (DGBE) wastewater by Serratia sp. BDG-2

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Maoxia; Fan, Rong; Zou, Wenhui; Zhou, Houzhen [Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Tan, Zhouliang, E-mail: tanzhl@cib.ac.cn [Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xudong [Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2016-05-15

    Highlights: • BDG-2 grew well at 30 °C, pH 9 and 2000 mg L{sup −1} of initial DGBE concentration. • It could obtain 96.92% of COD (generated by DGBE) removal efficiency in 39.9 h. • The technological matching was made based on the characteristics of DGBE wastewater and BDG-2. • Stable operation of bio-augmentation treatment facilities was finally accomplished. - Abstract: A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L{sup −1}, the bioaugmented system achieved 96.92% COD removal after 39.9 h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L{sup −1} ammonia and 5 mg L{sup −1} total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m{sup −3} d{sup −1}. The effluent COD of the facilities was stable and always below 100 mg L{sup −1}.

  4. Evaluation of FRP Confinement Models for Substandard Rectangular RC Columns Based on Full-Scale Reversed Cyclic Lateral Loading Tests in Strong and Weak Directions

    Directory of Open Access Journals (Sweden)

    Hamid Farrokh Ghatte

    2016-09-01

    Full Text Available Although many theoretical and experimental studies are available on external confinement of columns using fiber-reinforced polymer (FRP jackets, as well as numerous models proposed for the axial stress-axial strain relation of concrete confined with FRP jackets, they have not been validated with a sufficient amount and variety of experimental data obtained through full-scale tests of reinforced concrete (RC columns with different geometrical and mechanical characteristics. Particularly, no systematical experimental data have been presented on full-scale rectangular substandard RC columns subjected to reversed cyclic lateral loads along either their strong or weak axes. In this study, firstly, test results of five full-scale rectangular substandard RC columns with a cross-sectional aspect ratio of two (300 mm × 600 mm are briefly summarized. The columns were tested under constant axial load and reversed cyclic lateral loads along their strong or weak axes before and after retrofitting with external FRP jackets. In the second stage, inelastic lateral force-displacement relationships of the columns are obtained analytically, making use of the plastic hinge assumption and different FRP confinement models available in the literature. Finally, the analytical findings are compared with the test results for both strong and weak directions of the columns. Comparisons showed that use of different models for the stress-strain relationship of FRP-confined concrete can yield significantly non-conservative or too conservative retrofit designs, particularly in terms of deformation capacity.

  5. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  6. A life cycle approach to the management of household food waste - A Swedish full-scale case study

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2011-01-01

    Research highlights: → The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. → The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. → Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the

  7. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    Science.gov (United States)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  8. Numerical investigation of Marine Hydrokinetic Turbines: methodology development for single turbine and small array simulation, and application to flume and full-scale reference models

    Science.gov (United States)

    Javaherchi Mozafari, Amir Teymour

    A hierarchy of numerical models, Single Rotating Reference Frame (SRF) and Blade Element Model (BEM), were used for numerical investigation of horizontal axis Marine Hydrokinetic (MHK) Turbines. In the initial stage the SRF and BEM were used to simulate the performance and turbulent wake of a flume- and a full-scale MHK turbine reference model. A significant level of understanding and confidence was developed in the implementation of numerical models for simulation of a MHK turbine. This was achieved by simulation of the flume-scale turbine experiments and comparison between numerical and experimental results. Then the developed numerical methodology was applied to simulate the performance and wake of the full-scale MHK reference model (DOE Reference Model 1). In the second stage the BEM was used to simulate the experimental study of two different MHK turbine array configurations (i.e. two and three coaxial turbines). After developing a numerical methodology using the experimental comparison to simulate the flow field of a turbine array, this methodology was applied toward array optimization study of a full-scale model with the goal of proposing an optimized MHK turbine configuration with minimal computational cost and time. In the last stage the BEM was used to investigate one of the potential environmental effects of MHK turbine. A general methodological approach was developed and experimentally validated to investigate the effect of MHK turbine wake on the sedimentation process of suspended particles in a tidal channel.

  9. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions. The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  10. Use of laboratory anaerobic digesters to simulate the increase of treatment rate in full-scale high nitrogen content sewage sludge and co-digestion biogas plants.

    Science.gov (United States)

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka

    2016-11-01

    The aim of this study was to assess the effect of increasing feedstock treatment rate on the performance of full-scale anaerobic digestion using laboratory-scale reactors with digestate and feedstock from full-scale digesters. The studied nitrogen-containing feedstocks were i) a mixture of industrial by-products and pig slurry, and ii) municipal sewage sludge, which digestion was studied at 41 and 52°C, respectively. This study showed the successful reduction of hydraulic retention times from 25 and 20days to around 15days, which increased organic loading rates from 2 to 3.5kg volatile solids (VS)/m(3)d and 4 to 6kgVS/m(3)d. As a result, the optimum retention time in terms of methane production and VS removal was 10-15% lower than the initial in the full-scale digesters. Accumulation of acids during start-up of the co-digestion reactor was suggested to be connected to the high ammonium nitrogen concentration and intermediate temperature of 41°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Wind Loads on Ships and Offshore Structures Determined by Model Tests, CFD and Full-Scale Measurements

    DEFF Research Database (Denmark)

    Aage, Christian

    1998-01-01

    Wind loads on ships and offshore structures have until recently been determined only by model tests, or by statistical methods based on model tests. By the development of Computational Fluid Dynamics or CFD there is now a realistic computational alternative. In principle, both methods should...... be validated systematically against full-scale measurements, but due to the great practical difficulties involved, this is almost never done. In this investigation, wind loads on a seagoing ferry and on a semisubmersible platform have been determined by model tests and by CFD. On the ferry, full......-scale measurements have been carried out as well. The CFD method also offers the possibility of a computational estimate of scale effects related to wind tunnel model testing. An example of such an estimate on the ferry is discussed. This work has been published in more details in Proceedings of BOSS'97, Aage et al...

  12. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Science.gov (United States)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  13. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.

    2017-08-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  14. Experimental assessment of a three storey full-scale precast structure. SAFECAST Project: Work Package 4, Technical Report

    OpenAIRE

    NEGRO Paolo; BOURNAS DIONYSIOS; MOLINA RUIZ Francisco Javier; VIACCOZ Bernard; MAGONETTE Georges; CAPERAN Philippe

    2012-01-01

    In the framework of the SAFECAST Project, a full-scale three-storey precast building was subjected to a series of pseudodynamic (PsD) tests in the European Laboratory for Structural Assessment (ELSA) at the Joint Research Centre of the European Commission. The mock-up was constructed in such a way that four different structural configurations could be investigated experimentally. Therefore, the behaviour of various parameters like the types of mechanical connections (traditional as well as in...

  15. Full-scale demonstration of EBS construction technology I. Block, pellet and in-situ compaction method

    International Nuclear Information System (INIS)

    Toguri, Satohito; Asano, Hidekazu; Takao, Hajime; Matsuda, Takeshi; Amemiya, Kiyoshi

    2008-01-01

    (i) Bentonite Block: Applicability of manufacturing technology of buffer material was verified by manufacturing of full scale bentonite ring which consists of one-eight (1/8) dividing block (Outside Diameter (OD): 2.220 mm H: 300 mm). Density characteristic, dimension and scale effect, which were considered the tunnel environment under transportation, were evaluated. Vacuum suction technology was selected as handling technology for the ring. Hoisting characteristic of vacuum suction technology was presented through evaluation of the mechanical property of buffer material, the friction between blocks, etc. by using a full-scale bentonite ring (OD 2.200 mm, H 300 mm). And design of bentonite block and emplacement equipment were presented in consideration of manufacturability of the block, stability of handling and improvement of emplacement efficiency. (ii) Bentonite Pellet Filling: Basic characteristics such as water penetration, swelling and thermal conductivity of various kinds of bentonite pellet were collected by laboratory scale tests. Applicability of pellet filling technology was evaluated by horizontal filling test using a simulated full-scale drift tunnel (OD 2.200 mm, L 6 m) . Filling density, grain size distribution, etc. were also measured. (iii) In-Situ Compaction of Bentonite: Dynamic compaction method (heavy weight fall method) was selected as in-situ compaction technology. Compacting examination which used a full scale disposal pit (OD 2.360 mm) was carried out. Basic specification of compacting equipment and applicability of in-situ compaction technology were presented. Density, density distribution of buffer material and energy acted on the wall of the pit, were also measured. (author)

  16. Full scale evaluation of combined sewer overflows disinfection using performic acid in a sea-outfall pipe

    OpenAIRE

    Chhetri, Ravi Kumar; Flagstad, Rasmus; Sonne Munch, Ebbe; Hørning, Claus; Berner, Jesper; Kolte-Olsen, Annette; Thornberg, Dines; Andersen, Henrik Rasmus

    2015-01-01

    Pollution of surface waters with pathogens from combined sewer overflows limits recreational use of surface waters. Large retention basins are a satisfactory solution but they are rarely sufficient for economic or space reasons. Fast disinfection during the overflow is an alternative, but few methods are known and each has problems. This work evaluated for the first time the full-scale disinfection using performic acid by the removal of the two currently regulated indicator bacteria for bathi...

  17. The improvement of the hot-wire anemometer measurement procedure in the LP stage of a full scale steam turbine

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Pavel; Mazur, Oton; Řehák, Vratislav; Uruba, Václav

    2003-01-01

    Roč. 43, č. 113 (2003), s. 191-200 ISSN 0079-3205. [International conference on Turbines of Large Output. Gdańsk, 22.09.2003-24.09.2003] R&D Projects: GA AV ČR IBS2076010; GA ČR GA101/01/0449 Institutional research plan: CEZ:AV0Z2076919 Keywords : CTA anemometry * wet-steam flow structure * LP-stage of full scale turbine Subject RIV: BK - Fluid Dynamics

  18. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  19. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    Science.gov (United States)

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  20. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    Energy Technology Data Exchange (ETDEWEB)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the