WorldWideScience

Sample records for carbon fractions affected

  1. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  2. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.

    2004-01-01

    , resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a C-14-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during, the year and a drought period...... than or equal to 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the C-14 fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects......Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...

  3. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  4. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  5. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  6. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    Science.gov (United States)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  7. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  8. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  9. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  10. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  11. Fractionation of Uranium Forms as Affected by Spiked Soil Treatment and Soil Type

    International Nuclear Information System (INIS)

    Lotfy, S.M.; Mostafa, A.Z.; Abdel-Sabour, M.F.

    2012-01-01

    In a fractionation experiment Uranium forms were compared in two soil types (Mostorud and Elgabalelasfar soil). Also, the variation of U forms due to soil treatment (spiking) were studied. In case of Mostorud soil the initial U - fractions were 45.63 % as residual form, 20.69 % organically bound 16.36 % Mn and Fe oxides bound, 9.76% Carbonate form, 7.41 % exchangeable fractions and 0.15% water soluble fractions. These fractions varied significantly when the soil was spiked with 200 mg U/Kg soil to 46.88 %, 23.19 %, 9.97 %, 16.07 %, 3.79% and 0.10% for residual, organically, Mn- Fe oxide, carbonate, exchangeable and water soluble fractions respectively. These result showed significant reduction in U-ex fraction forms and Mn- Fe bound forms with significant increase in U- carbonate form due to U application. In case of Elgabalelasfar soil, the main U - fractions were 57.42% as residual form (relatively higher residual - U form in the clayey soil) 16.10 % organically bound, 13.78% Mn and Fe oxides bound, 7.22 % Carbonate form, 5.23 % exchangeable fractions and 0.25 % water soluble fractions The application of 200 mg U/Kg soil resulted in a significant changes in U - Fractions distribution as follows : 59.26 % , 11.27 % , 19.59 % , 6.84 % , 2.90 % and 0.14 % for residual , organic , Mn- Fe oxides , carbonate, exchangeable and water soluble fractions , respectively.

  12. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  13. Comparison and implications of PM2.5 carbon fractions in different environments

    International Nuclear Information System (INIS)

    Zhu, Chong-Shu; Cao, Jun-Ji; Tsai, Chuen-Jinn; Shen, Zhen-Xing; Han, Yong-Ming; Liu, Sui-Xin; Zhao, Zhu-Zi

    2014-01-01

    The concentrations of PM 2.5 carbon fractions in rural, urban, tunnel and remote environments were measured using the IMPROVE thermal optical reflectance (TOR) method. The highest OC1 and EC1 concentrations were found for tunnel samples, while the highest OC2, OC3, and OC4 concentrations were observed for urban winter samples, respectively. The lowest levels of most carbon fractions were found for remote samples. The percentage contributions of carbon fractions to total carbon (TC) were characterized by one peak (at rural and remote sites) and two peaks (at urban and tunnel sites) with different carbon fractions, respectively. The abundance of char in tunnel and urban environments was observed, which might partly be due to traffic-related tire-wear. Various percentages of optically scattering OC and absorbing EC fractions to TC were found in the four different environments. In addition, the contribution of heating carbon fractions (char and soot) indicated various warming effects per unit mass of TC. The ratios of OC/EC and char/soot at the sites were shown to be source indicators. The investigation of carbon fractions at different sites may provide some information for improving model parameters in estimating their radiative effects. - Highlights: •The eight carbon fractions, char and soot at rural, urban, tunnel and remote sites were compared. •OC/EC and char/soot among four sites were elucidated as effective source indicator. •The results might give implications for models in estimating their climate effects

  14. Short-term carbon isotopic fractionation in plants

    International Nuclear Information System (INIS)

    Rooney, M.A.

    1988-01-01

    A system was developed for measuring carbon isotopic fractionation in plants over a time interval of 1-3 hours, in contrast to leaf combustion studies which give long-term, integrated discrimination measurements. The system was used to study environmental effects on soybean (Glycine max) and corn (Zea mays) discrimination. Changes in leaf temperature, photon flux density (PFD), O 2 concentration, and CO 2 concentration produced little or no change in measured discrimination (Δ). For soybean, Δ increased with decreasing PFD. For corn, Δ decreased with decreasing O 2 concentration. For both soybean and corn, Δ increased with increasing CO 2 concentration. These changes in Δ were interpreted as environmental effects on stomatal conductance and photosynthetic capacity, which indirectly affect Δ by altering C i /C a . Respiratory discrimination in the dark and light was also investigated. Respired CO 2 was 5 per-thousand and 0-1 per-thousand more positive than leaf carbon for soybean and corn, respectively. Photorespiratory discrimination was 6-7 per-thousand for soybean, supporting the contention that glycine decarboxylase may be the source of discrimination in the photorespiratory pathway

  15. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  16. Short-term measurement of carbon isotope fractionation in plants

    International Nuclear Information System (INIS)

    O'Leary, M.H.; Treichel, I.; Rooney, M.

    1986-01-01

    Combustion-based studies of the carbon-13 content of plants give only an integrated, long-term value for the isotope fractionation associated with photosynthesis. A method is described here which permits determination of this isotope fractionation in 2 to 3 hours. To accomplish this, the plant is enclosed in a glass chamber, and the quantity and isotopic content of the CO 2 remaining in the atmosphere are monitored during photosynthesis. Isotope fractionation studies by this method give results consistent with what is expected from combustion studies of C 3 , C 4 , and Crassulacean acid metabolism plants. This method will make possible a variety of new studies of environmental and species effects in carbon isotope fractionation

  17. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Hui; Zhang, Yiran; Lal, Rattan; Wang, Renqing; Ge, Xiuli; Liu, Jian

    2017-07-14

    Wetlands are an important carbon reservoir pool in terrestrial ecosystems. Light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and dissolved organic carbon (DOC) were fractionated in sediment samples from the four wetlands (ZR: Zhaoniu River; ZRCW: Zhaoniu River Constructed Wetland; XR: Xinxue River; XRCW: Xinxue River Constructed Wetland). Organic carbon (OC) from rivers and coasts of China were retrieved and statistically analyzed. At regional scale, HFOC stably dominates the deposition of OC (95.4%), whereas DOC and LFOC in ZR is significantly higher than in ZRCW. Concentration of DOC is significantly higher in XRCW (30.37 mg/l) than that in XR (13.59 mg/l). DOC and HFOC notably distinguish between two sampling campaigns, and the deposition of carbon fractions are limited by low nitrogen input. At the national scale, OC attains the maximum of 2.29% at precipitation of 800 mm. OC has no significant difference among the three climate zones but significantly higher in river sediments than in coasts. Coastal OC increases from Bohai Sea (0.52%) to South Sea (0.70%) with a decrease in latitude. This study summarizes the factors affecting organic carbon storage in regional and national scale, and have constructive implications for carbon assessment, modelling, and management.

  18. Mouse skin damages caused by fractionated irradiation with carbon ions

    International Nuclear Information System (INIS)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W.; Koike, S.; Kanai, T.

    1997-01-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  19. Mouse skin damages caused by fractionated irradiation with carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K; Chen, Y J; Ohira, C; Nojima, K; Ando, S; Kobayashi, N; Ohbuchi, T; Shimizu, W [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S; Kanai, T [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics

    1997-09-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  20. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  1. Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes.

    Science.gov (United States)

    Liu, Na; Ding, Longzhen; Li, Haijun; Zhang, Pengpeng; Zheng, Jixing; Weng, Chih-Huang

    2018-08-01

    The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ- carbon ) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ- carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ- carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  3. [Carbon isotope fractionation in plants]: Annual technical progress report

    International Nuclear Information System (INIS)

    O'Leary, M.H.

    1988-01-01

    Plants fractionate carbon isotopes during photosynthesis in ways which reflect photosynthetic pathway and environment. The fractionation is product of contributions from diffusion, carboxylation and other factors which can be understood using models which have been developed in our work. The object of our work is to use this fractionation to learn about the factors which control the efficiency of photosynthesis. Unlike previous studies, we do not rely principally on combustion methods, but instead develop more specific methods with substantially higher resolving power. We have recently developed a new short-term method for studying carbon isotope fractionation which promises to provide a level of detail about temperature, species, and light intensity effects on photosynthesis which has not been available until now. We are studying the isotopic compositions of metabolites (particularly aspartic acid) in C 3 plants in order to determine the role of phosphoenolpyruvate carboxylase in C 3 photosynthesis. We are studying the relative roles of diffusion and carboxylation in nocturnal CO 2 fixation in CAM plants. We are studying the use of isotopic content as an index of water-use efficiency in C 3 plants. We are developing new methods for studying carbon metabolism in plants. 3 refs

  4. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Science.gov (United States)

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  5. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  6. Temperature dependence of carbon isotope fractionation in CAM plants

    International Nuclear Information System (INIS)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process

  7. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  8. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  9. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  10. CARBON ISOTOPE FRACTIONATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Woods, Paul M.; Willacy, Karen

    2009-01-01

    We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk (PPD) using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of PPDs. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12 C/ 13 C, of the system varies with radius and height in the disk. Different behavior is seen in the fractionation of different species. We compare our results with 12 C/ 13 C ratios in the solar system comets, and find a stark contrast, indicative of reprocessing.

  11. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  12. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  13. Carbon-13 isotopic composition of distillation fractions of some Egyptian crude oils

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Hamza, M.S.; Abd Elsamie, S.G.

    1991-01-01

    13 C/ 13 C ratios were determined for some crude oil fields in the Gulf of Suez and Western Desert provinces. The crude oil was subjected to distillation at atmospheric pressure and subsequently under vacuum. Distillation fractions were collected at 25 degree C intervals. Carbon-13 content of these distillation fractions showed some differences in the degree of isotopic fractionation. The results were interpreted in view of the age of the source rocks and the degree of maturation process. The carbon-13 content of distillation fractions may be helpful in revealing petroleum mechanisms which can be exploited in exploration.4 fig

  14. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    International Nuclear Information System (INIS)

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-01-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm"−"3 (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm"−"3; and LF2, 1.8–2.0 g cm"−"3) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C_H_W_E) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ"1"3C values. The hot water extraction and natural δ"1"3C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying soil depths in extensively

  15. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  16. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  17. The influence of fractionation on cell survival and premature differentiation after carbon ion irradiation

    International Nuclear Information System (INIS)

    Wang Jufang; Li Renming; Guo Chuanling; Fournier, C.; K-Weyrather, W.

    2008-01-01

    To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated with 250 kV X-rays, or 266 MeV/u, 195 MeV/u and 11 MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The relative biological effective (RBE) 10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is 1 for both single and two fractionated irradiation of NHDF cells. Using 11 MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE 10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region, RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions. (author)

  18. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    Science.gov (United States)

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. CO2-dependent carbon isotope fractionation in the dinoflagellate Alexandrium tamarense

    Science.gov (United States)

    Wilkes, Elise B.; Carter, Susan J.; Pearson, Ann

    2017-09-01

    The carbon isotopic composition of marine sedimentary organic matter is used to resolve long-term histories of pCO2 based on studies indicating a CO2-dependence of photosynthetic carbon isotope fractionation (εP). It recently was proposed that the δ13C values of dinoflagellates, as recorded in fossil dinocysts, might be used as a proxy for pCO2. However, significant questions remain regarding carbon isotope fractionation in dinoflagellates and how such fractionation may impact sedimentary records throughout the Phanerozoic. Here we investigate εP as a function of CO2 concentration and growth rate in the dinoflagellate Alexandrium tamarense. Experiments were conducted in nitrate-limited chemostat cultures. Values of εP were measured on cells having growth rates (μ) of 0.14-0.35 d-1 and aqueous carbon dioxide concentrations of 10.2-63 μmol kg-1 and were found to correlate linearly with μ/[CO2(aq)] (r2 = 0.94) in accord with prior, analogous chemostat investigations with eukaryotic phytoplankton. A maximum fractionation (εf) value of 27‰ was characterized from the intercept of the experiments, representing the first value of εf determined for an algal species employing Form II RubisCO-a structurally and catalytically distinct form of the carbon-fixing enzyme. This value is larger than theoretical predictions for Form II RubisCO and not significantly different from the ∼25‰ εf values observed for taxa employing Form ID RubisCO. We also measured the carbon isotope contents of dinosterol, hexadecanoic acid, and phytol from each experiment, finding that each class of biomarker exhibits different isotopic behavior. The apparent CO2-dependence of εP values in our experiments strengthens the proposal to use dinocyst δ13C values as a pCO2 proxy. Moreover, the similarity between the εf value for A. tamarense and the consensus value of ∼25‰ indicates that the CO2-sensitivity of carbon isotope fractionation saturates at similar CO2 levels across all three

  20. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    Science.gov (United States)

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  1. Determination of Hydrogen and Carbon contents in crude oil and Petroleum fractions by NMR Spectroscopy

    International Nuclear Information System (INIS)

    Khadim, Mohammad A.; Wolny, R.A.; Al-Dhuwaihi, Abdullah S.; Al-Hajri, E.A.; Al-Ghamdi, M.A.

    2003-01-01

    Proton and carbon-13 NMR spectroscopic methods were developed for determining hydrogen and carbon contents in petroleum products. These methods are applicable to a wide of petroleum streams. A new reference standard, bis (trimethylsilyl) methane, BTMSM, is introduced fro both proton and carbon-13 NMR for the first time, which offers several advantages over those customarily employed. These methods are important for the calculation of the mass balance and hydrogen consumption in pilot plant studies. Unlike the ASTM D-5291 combustion method, the NMR methods also allow for the measurement of hydrogen and carbon content in low boiling fractions and those containing hydrogen as low as 1%. The NMR methods can also determine aromatic and aliphatic hydrogens carbons in a given sample without additional experimentation. The precision and accuracy of the newly developed NMR methods are compared with those of currently employed ASTM D-5291 combustion method. Using the proton NMR method, hydrogen content was determined in fifteen model compounds and sixty-eight petroleum fractions. The NMR and ASTM methods show an agreement within +5%for 48 out of a total number of 68 oil fractions. Using carbon-13 NMR, the carbon content was determined for four representative compounds and three fractions of crude oil. Both carbon-13 NMR and ASTM methods give comparable carbon content in model compounds and crude oil fractions. (author)

  2. ORGANIC MATTER AND HUMIC FRACTIONS OF A HAPLIC ACRISOL AS AFFECTED BY COMPOSTED PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lüdtke

    2016-01-01

    Full Text Available The goal of this study was to investigate the effect of composted pig slurry (PS on the organic matter concentration and distribution of humic acid (HA, fulvic acid (FA and humin (HU fractions. The fractions were quantified following the addition of composted PS to the soil, which was produced with no acidification (T2 or with acidification with H3PO4 (T3; and in soil without compost addition (T1. The HA chemical composition was analyzed by FTIR spectroscopy. The addition of the two composts did not change the soil carbon concentration but affected the distribution of the humic fractions. For the three treatments, the carbon concentration of humic substances increased until 52 days following compost addition, with more pronounced increases with the addition of non-acidified PS compost (14.5 g kg-1 and acidified PS compost (15.1 g kg-1. This increase was reflected in both the FA and HA concentrations. The addition of compost with PS acidification resulted in the formation of larger humic micelles (HA with higher aromatic content and fewer functional groups than the non-acidified PS compost. These findings, together with a lower proportion of carbohydrate-type structures, indicated the presence of more stable humic micelles in the soil treated with acidified PS compost.

  3. Chemical Composition of the Graphitic Black Carbon Fraction in Riverine and Marine Sediments at Submicron Scales using Carbon X-ray Spectromicroscopy

    International Nuclear Information System (INIS)

    Haberstroh, P.; Brandes, J.; Gelinas, Y.; Dickens, A.; Wirick, S.; Cody, G.

    2006-01-01

    The chemical composition of the graphitic black carbon (GBC) fraction of marine organic matter was explored in several marine and freshwater sedimentary environments along the west coast of North America and the Pacific Ocean. Analysis by carbon x-ray absorption near edge structure (C-XANES) spectroscopy and scanning transmission x-ray microscopy (STXM) show the GBC-fraction of Stillaguamish River surface sediments to be dominated by more highly-ordered and impure forms of graphite, together forming about 80% of the GBC, with a smaller percent of an aliphatic carbon component. Eel River Margin surface sediments had very little highly-ordered graphite, and were instead dominated by amorphous carbon and to a lesser extent, impure graphite. However, the GBC of surface sediments from the Washington State Slope and the Mexico Margin were composed almost solely of amorphous carbon. Pre-anthropogenic, highly-oxidized deep-sea sediments from the open Equatorial Pacific Ocean contained over half their GBC in different forms of graphite as well as highly-aliphatic carbon, low aromatic/highly-acidic aliphatic carbon, low aromatic/highly aliphatic carbon, and amorphous forms of carbon. Our results clearly show the impact of graphite and amorphous C phases in the BC fraction in modern riverine sediments and nearby marine shelf deposits. The pre-anthropogenic Equatorial Pacific GBC fraction is remarkable in the existence of highly-ordered graphite

  4. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China.

    Science.gov (United States)

    Lu, Yan; Xu, Hongwen

    2014-01-01

    Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0-20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils.

  5. Impact of sole cropping and multiple cropping on soil humified carbon fractions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Lee, I.J.

    2014-01-01

    The present study was planned to improve our understanding how crop rotation can enhance humified C fractions. A long term experiment was conducted on Vanmeter farm of the Ohio State University South Centers at Piketon Ohio, USA from 2002 to 2007. Crop rotation treatments included were continuous corn (CC), corn-soybean (CS) and corn-soybean-wheat-cowpea (CSW) rotations. Randomized complete block design with 6 replications was used under natural field conditions. The findings of this long-term study revealed that multiple cropping had significantly improved humified carbon fractions compared to mono-cropping system. Although total humified carbon (THOC), sugar free humified carbon (HOC) concentration were non-significant however, humin (NH) contents, humic (HA), fulvic acids (FA), humic and fulvic acid associated glucose (HA-NH and FA-NH) were significantly affected by various crop rotations within five years. The soil under CC had 22-52% significantly greater NH concentration than CSW and CS rotations respectively. Similarly all crop rotations had shown 5-16 increase in HA and 5-17% decreased in FA over time. Likewise soil under CC had 16 and 54% greater HA-NH concentration as compared to CSW and CS rotations. The FA-NH concentration increased significantly by 27- 51% in soil under all treatments over time. The soil under CSW had greater HA/FA (1.6) fallowed by CC (1.4) and CS (1.1). Soils under CSW had significantly greater HA/HOC (12-18%) as compare to CC and CS respectively. Conversely, the value of FA/HOC decreased (1-23%) in soil under all crop rotation treatments within five years. Degree of humification (DH) had shown a significant increase (7-12%) in soil under all treatments as compared to 2002. Irrespective of crop rotation THOC, HOC, NH, humin, HA, HR and FA/HOC concentration decreased significantly with increase in soil depth. While fulvic acid concentration HA/HOC in all crop rotation increased with increase in soil depth. The effect of crop rotation

  6. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  7. Calculation of Site-specific Carbon-isotope Fractionation in Pedogenic Oxide Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, James R.; Zarzycki, Piotr

    2008-07-29

    Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.

  8. Biogenic Carbon Fraction of Biogas and Natural Gas Fuel Mixtures Determined with 14C

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Meijer, Harro A. J.

    2014-01-01

    This study investigates the accuracy of the radiocarbon-based calculation of the biogenic carbon fraction for different biogas and biofossil gas mixtures. The focus is on the uncertainty in the C-14 reference values for 100% biogenic carbon and on the C-13-based isotope fractionation correction of

  9. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Xichang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research — UFZ, Leipzig 04318 (Germany)

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰.

  10. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    International Nuclear Information System (INIS)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-01-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰

  11. Hydrogen/deuterium fractionation factors of the aqueous ligand of cobalt in Co(H2O)62+ and Co(II)-substituted carbonic anhydrase

    International Nuclear Information System (INIS)

    Kassebaum, J.W.

    1988-01-01

    The author has measured the hydrogen/deuterium fractionation factor for the rapidly exchanging aqueous ligands of cobalt in Co(H 2 O) 6 2+ and in three Co(II)-substituted isozymes of carbonic anhydrase. The fractionation factor was determined from NMR relaxation rates at 300 MHz of the protons of water in mixed solutions of H 2 O and D 2 O containing these complexes. In each case, the paramagnetic contribution to 1/T 2 was greater than to 1/T 1 , consistent with a chemical shift mechanism affecting 1/T 2 . The fractionation factors obtained from T 2 were 0.73 ± 0.02 for Co(H 2 O) 6 2+ , 0.72 ± 0.02 for Co(II)-substituted carbonic anhydrase I, 0.77 ± 0.01 for Co(II)-substituted carbonic anhydrase II, and 1.00 ± 0.07 for Co(Il)-substituted carbonic anhydrase III. He concluded that fractionation factors in these cases determined from T 1 and T 2 measured isotope preferences for different populations of ligand sites. Since T 2 has a large contribution from a chemical shift mechanism, the fractionation factor determined from T 2 has a large contribution of the fractionation of inner shell ligands. The fractionation factor of Co(H 2 O) 6 2+ was used to interpret the solvent hydrogen isotope effects on the formation of complexes of cobalt with the bidentate ligands glycine, N,N-dimethylglycine, and acetylacetone. The contribution of the fractionation factor of the inner water shell in Co(H 2 O) 6 2+ did not account completely for the measured isotope effect, and that the hydrogen/deuterium fractionation of outer shell water makes a large contribution to the isotope effect on the formation of these complexes

  12. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  13. Does the increased air humidity affect soil respiration and carbon stocks?

    Science.gov (United States)

    Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika

    2013-04-01

    Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the

  14. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments

    International Nuclear Information System (INIS)

    Oen, Amy M.P.; Cornelissen, Gerard; Breedveld, Gijs D.

    2006-01-01

    Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r 2 = 0.85) than versus OC (r 2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6 ± 3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone. - PAH contents correlated better with black carbon than organic carbon for four Norwegian harbor sediments

  15. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  16. Stable carbon isotope fractionation in the search for life on early Mars

    Science.gov (United States)

    Rothschild, L. J.; Desmarais, D.

    1989-01-01

    The utility of measurements of C-13/C-12 ratios in organic vs inorganic deposits for searching for signs of life on early Mars is considered. It is suggested that three assumptions are necessary. First, if there was life on Mars, it caused the fractionation of carbon isotopes in analogy with past biological activity on earth. Second, the fractionation would be detectable. Third, if a fractionation would be observed, there exist no abiotic explanations for the observed fractionation pattern.

  17. Separation of carbon nanotubes into chirally enriched fractions

    Science.gov (United States)

    Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  18. Nanoparticle fractionation using an aligned carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lim Xiaodai [NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), 05-01, 28 Medical Drive, 117456 (Singapore); Xu Hairuo; Chin, Wee Shong [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Nicole Chew, Yi Hui; Phua, Yi Hui [Dunman High School, 10 Tanjong Rhu Road, 436895 (Singapore); Sie, Edbert Jarvis; Sum, Tze Chien [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Chia, Guo Hao; Sow, Chorng-Haur, E-mail: chmcws@nus.edu.sg, E-mail: physowch@nus.edu.sg [Department of Physics, Blk S12, Faculty of Science, National University of Singapore, 2 Science Drive 3, 117542 (Singapore)

    2010-07-23

    A technique utilizing the capillary assisted sieving capability of carbon nanotubes (CNTs) to achieve fractionation of nanoparticles of small size distribution is presented. By dipping aligned CNT arrays into a solution comprising different sized quantum dots (QDs), size-selective gradient decoration of QDs onto CNTs is achieved. The fractionating capability of CNTs is also demonstrated for poly-dispersed manganese doped zinc sulfide nanoparticles and QDs of varying sizes and chemical compositions, which we attribute to the size-selective sieving effect of CNTs. By controlling the terminating point for the flow of QDs across the CNT array, a QD size specific CNT/QD hybrid structure is achieved.

  19. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management

    Science.gov (United States)

    Permanganate oxidizable C (POXC; i.e., active C) is a relatively new method that can quantify labile soil C rapidly and inexpensively. Despite limited reports of positive correlations with particulate organic carbon (POC), microbial biomass carbon (MBC) and other soil carbon (C) fractions, little i...

  20. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-01-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-linear energy transfer (LET) feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/μm carbon ions or γ rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using γ rays. For fractionated γ rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials. (author)

  1. Fractionated-combustion analysis of carbonate-containing phases in composite materials of the hydroxyapatite-calcium carbonate system

    Science.gov (United States)

    Goldberg, M. A.; Shibaeva, T. V.; Smirnov, V. V.; Kutsev, S. V.; Barinov, S. M.; Grigorovich, K. V.

    2012-12-01

    Materials in the hydroxyapatite (HA)-calcium carbonate (CC) system were synthesized by a precipitation method from aqueous solutions. According to the data of X-ray phase analysis and IR spectroscopy, the powders consisted of CC and AB-type carbonate-substituted HA (CHA). In order to determine the content of carbonate-containing phases in materials, the temperature-temporal mode of fractionated-combustion analysis of carbon was developed. The quantitative phase ratios and the degree of substitution of carbonate groups in CHA were determined. It was shown that the degree of substitution of carbonate groups in CHA increased from 2.47 to 5.31 wt % as the CC content increased from 13.50 to 88.33 wt %.

  2. Comparison of methods for the quantification of the different carbon fractions in atmospheric aerosol samples

    Science.gov (United States)

    Nunes, Teresa; Mirante, Fátima; Almeida, Elza; Pio, Casimiro

    2010-05-01

    to evaluate the possibility of continue using, for trend analysis, the historical data set, we performed an inter-comparison between our method and an adaptation of EUSAAR-2 protocol, taking into account that this last protocol will possibly be recommended for analysing carbonaceous aerosols at European sites. In this inter-comparison we tested different types of samples (PM2,5, PM2,5-10, PM10) with large spectra of carbon loadings, with and without pre-treatment acidification. For a reduced number of samples, five replicates of each one were analysed by each method for statistical purposes. The inter-comparison study revealed that when the sample analysis were performed in similar room conditions, the two thermo-optic methods give similar results for TC, OC and EC, without significant differences at a 95% confidence level. The correlation between the methods, DAO and EUSAAR-2 for EC is smaller than for TC and OC, although showing a coefficient correlation over 0,95, with a slope close to one. For samples performed in different periods, room temperatures seem to have a significant effect over OC quantification. The sample pre-treatment with HCl fumigation tends to decrease TC quantification, mainly due to the more volatile organic fraction release during the first heating step. For a set of 20 domestic biomass burning samples analyzed by the DAO method we observed an average decrease in TC quantification of 3,7 % in relation to non-acidified samples, even though this decrease is accompanied by an average increase in the less volatile organic fraction. The indirect measurement of carbon carbonate, usually a minor carbon component in the carbonaceous aerosol, based on the difference between TC measured by TOM of acidified and non-acidified samples is not a robust measurement, considering the biases affecting his quantification. The present study show that the two thermo-optic temperature program used for OC and EC quantification give similar results, and if in the

  3. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Abo, M.; Abe, Y.; Mariya, Y.; Ando, K.

    2000-01-01

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  4. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    Science.gov (United States)

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  5. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    International Nuclear Information System (INIS)

    Marchesi, Massimo; Thomson, Neil R.; Aravena, Ramon; Sra, Kanwartej S.; Otero, Neus; Soler, Albert

    2013-01-01

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S 2 O 8 2− was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH − :S 2 O 8 2− ratio. •Base-catalyzed S 2 O 8 2− can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH − :S 2 O 8 2− ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S 2 O 8 2− ) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S 2 O 8 2− molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S 2 O 8 2− molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S 2 O 8 2− molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system

  6. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin.

    Science.gov (United States)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from -29.0‰ to -26.5‰ in soil spiked with 2mg/kg lambda-cyhalothrin, and to -27.5‰ with 10mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as -2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Calcium Isotope Fractionation during Carbonate Weathering in the Northern Guangdong, South China

    Science.gov (United States)

    Liu, F.; Mao, G.; Wei, G.; Zhang, Z.

    2017-12-01

    CO2 is consumed during the weathering of carbonates, whereas carbonates are precipitated rapidly in the oceans, which are pivotal to modulate atmospheric CO2, oceanic pH and climate. Calcium carbonate in limestone is one of the largest reservoirs of carbon at the Earth's surface, so calcium is an important element that links the lithosphere, hydrosphere, biosphere, and the atmosphere. Compared with silicate rocks, carbonate rocks have more rapid rates of physical and chemical erosions, so the carbonate weathering will respond more quickly to the climatic changes. In the southeast of China, enormous of carbonate rocks are widely distributed. Due to the influence of the subtropical monsoon climate, the rocks experienced strong chemical weathering and pedogenic process, resulting in red weathering crust of carbonate rocks. This type of weathering crust is geochemistry-sensitive and ecology-vulnerable, which can provide important insights into the recycle of supergene geochemistry in the karst areas. In this study, we report calcium isotopic compositions of saprolites from a weathering profile developed on argillaceous carbonate rocks in northern Guangdong, South China. The acid-leachable fraction, which was extracted by 1N hydrochloride acid, showed limited variation of δ44/40Ca(NIST 915a) spanning from 0.55 ± 0.06‰ (2SD) to 0.72 ± 0.05‰ (2SD) despite CaO content ranging from 0.01 wt.% to 45.7 wt.%, implying that Ca isotope didn't fractionate much which may due to the congruent dissolution of limestone minerals. In contrast, radiogenic 87Sr/86Sr ratios of the whole rocks changed with depth from 0.710086 ± 6 (2SE) at the base rock to 0.722164± 8 (2SE) at the top-soil, which are possibly attributed to the mixing effect between carbonate and silicate fractions. Sr is an analogue for Ca due to its similar ionic size and charge; however, these two systems can differ in certain respects. The coupled study of Ca and Sr will be helpful to verify sources of Ca and the

  8. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  9. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  10. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  11. Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Otero, Neus; Soler, Albert [Departament de Cristal.lographia, Mineralogia i Diposits Minerals, Facultat de Geologia, Universitat de Barcelona, Barcelona, Spain 08028 (Spain)

    2013-09-15

    Highlights: • Treatability and C fractionation of 1,1,1-TCA by base-catalyzed S{sub 2}O{sub 8}{sup 2−} was studied. • The rate of degradation of 1,1,1-TCA increased with a higher OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio. •Base-catalyzed S{sub 2}O{sub 8}{sup 2−} can potentially treat recalcitrant compound like 1,1,1-TCA. • An enrichment factor of −7.0‰ independent of the OH{sup −}:S{sub 2}O{sub 8}{sup 2−} ratio was obtained. • Carbon isotope can potentially be used to estimate the ISCO treatment efficacy. -- Abstract: The extent of carbon isotope fractionation during degradation of 1,1,1-trichloroethane (1,1,1-TCA) by a base-catalyzed persulfate (S{sub 2}O{sub 8}{sup 2−}) treatment system was investigated. Significant destruction of 1,1,1-TCA was observed at a pH of ∼12. An increase in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio from 0.2:1 to 8:1 enhanced the reaction rate of 1,1,1-TCA by a factor of ∼5 to yield complete (>99.9%) destruction. An average carbon isotope enrichment fractionation factor which was independent of the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio of −7.0 ± 0.2‰ was obtained. This significant carbon isotope fractionation and the lack of dependence on changes in the NaOH:S{sub 2}O{sub 8}{sup 2−} molar ratio demonstrates that carbon isotope analysis can potentially be used in situ as a performance assessment tool to estimate the degradation effectiveness of 1,1,1-TCA by a base-catalyzed persulfate system.

  12. Response of the skin of hamsters to fractionated irradiation with X rays or accelerated carbon ions

    International Nuclear Information System (INIS)

    Leith, J.T.; Powers-Risius, P.; Woodruff, K.H.; McDonald, M.; Howard, J.

    1981-01-01

    The ventral thoracic skin of hamsters was irradiated with either single, split (two fractions given in 24 hr), or multiple (five fractions given daily) exposures of X rays or accelerated carbon ions using a 4-cm spread Bragg peak. Animals were positioned in the heavy-ion beam so that the ventral thoracic skin surface was 1 cm distal to the proximal peak of the modified beam. Early skin reactions from 6 to 30 days postirradiation were assessed. Using the average skin reactions produced in this period, it was found that the relative biological effect (RBE) for single doses of carbon ions was about 1.6 (5-17 Gy per fraction), for two fractions about 1.8 (5-17 Gy perfraction), and for five fractions about 1.9 (2.4-7.2 Gy per fraction). The fractional amount of sublethal damage repaired after carbon ion irradiation was about 0.3 (at dose levels of 2.4-8.0 Gy per fraction) compared to a value of about 0.45 (at dose levels of 60-13.0 Gy per fraction) found for the fractionated X irradiations, indicting about a 33% decrease in the relative amount of sublethal damage repaired after carbon ion irradiation in this position in the spread Bragg curve. Also, data were interpreted using plots of the reciprocal total dose needed to produce a given level of skin damage versus the dose per fraction used in the multifraction experiments, and of the RBE versus dose per fraction obtained from a nonparametric analysis of the responses. These approaches allow estimation of RBE at dose levels relevant to the clinical situation. Also, estimation may be made of the maximum permissible RBE by using the zero dose intercept value from the linear reciprocal dose plot. With this approach, the RBE at a dose level of 2 Gy is about 2.5 and the maximum RBE value is about 2.7

  13. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    Science.gov (United States)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance

  14. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing.

    Science.gov (United States)

    Petrov, Andrej

    2016-06-15

    The aim of the study was to confirm the efficiency and safety of the fractional CO2 laser in skin renewal and to check the possibility of having a synergistic effect in patients who besides carbon dioxide laser are treated with PRP (platelet-rich plasma) too. The first group (Examined Group 1 or EG1) included 107 patients treated with fractional CO2 laser (Lutronic eCO2) as mono-therapy. The second group (Control Group or CG) covered 100 patients treated with neither laser nor plasma in the same period but subjected to local therapy with drugs or other physio-procedures under the existing protocols for treatment of certain diseases. The third group (Examined Group 2 or EG2) treated 25 patients with combined therapy of CO2 laser and PRP in the treatment of facial rejuvenation or treatment of acne scars. Patient's satisfaction, in general, is significantly greater in both examined groups (EG1 and EG2) (p skin is significant (χ2 = 39.41; df = 4; p skin was significantly lower in examined group (treated with laser), p = 0.0002. Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients' satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  15. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  16. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  17. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    Directory of Open Access Journals (Sweden)

    Andrej Petrov

    2016-05-01

    CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist.

  18. The impact of carbon sp2 fraction of reduced graphene oxide on the performance of reduced graphene oxide contacted organic transistors

    International Nuclear Information System (INIS)

    Kang, Narae; Khondaker, Saiful I.

    2014-01-01

    One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon sp 2 fraction. However, whether the sp 2 fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp 2 fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% sp 2 fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance

  19. SOIL ORGANIC CARBON FRACTIONS AS INFLUENCED BY SOYBEAN CROPPING IN THE HUMID PAMPA OF ARGENTINA

    Directory of Open Access Journals (Sweden)

    Marta E. Conti

    2014-07-01

    Full Text Available The sustainability of continuous cropping systems depends heavily on the years of intensive agricultural production and the choice of crop sequence that alters the fractions of soil organic matter. The aim of this study was to evaluate the impact of continuous soybean cultivation on fractions of organic carbon in the vertic Argiudolls of the Argentinean Pampas. Total organic carbon (TOC, particulate organic carbon (POC , fulvic acids (FA, humic acids (HA, humin (H and carbon produced by microbial respiration (Cresp were assessed in plots with continuous production of soybean for over 15 years (SP and grassland plots that were considered the change control (GP. A significant reduction of TOC and POC variables in cultured soybean SP plots, relative to grassland GP, was observed. The POC / TOC and Cresp / TOC ratios were significantly lower in soybean plots than in grasslands used as controls. These ratios were interpreted as a preferential tendency to maintain high rates of mineralization of labile carbon forms and increased biological stability of humified forms in cultured soybean plots. The shapes of the humic fractions of less complexity, FA and HA, were significantly reduced in the latter plots compared with grasslands, while no significant changes occurred in the more stable and recalcitrant forms of carbon, such as humin, in either plot type.

  20. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  1. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    Science.gov (United States)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  2. factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    In this paper, we report a range of factors which affect the retention of colloidal particles in thermal field-flow fractionation (ThFFF). These results are observed among different sizes of polystyrene (PS) latex particles suspended in both aqueous and nonaqueous liquid carriers and very low density lipoproteins in a phosphate ...

  3. Fractionation for Biodiesel Purification Using Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Chao-Yi Wei

    2014-02-01

    Full Text Available In recent years, biodegradable and alternative biodiesel has attracted increased attention worldwide. Producing biodiesel from biomass involves critical separation and purification technology. Conventional technologies such as gravitational settling, decantation, filtration, water washing, acid washing, organic solvent washing and absorbent applications are inefficient, less cost effective and environmentally less friendly. In this study supercritical carbon dioxide (SC-CO2 with few steps and a low environmental impact, was used for biodiesel fractionation from impure fatty acid methyl ester (FAME solution mixes. The method is suitable for application in a variety of biodiesel production processes requiring subsequent stages of purification. The fractionation and purification was carried out using continuous SC-CO2 fractionation equipment, consisting of three columns filled with stainless steel fragments. A 41.85% FAME content solution mix was used as the raw material in this study. Variables were a temperature range of 40–70 °C, pressure range of 10–30 MPa, SC-CO2 flow rate range of 7–21 mL/min and a retention time range of 30–90 min. The Taguchi method was used to identify optimal operating conditions. The results show that a separated FAME content of 99.94% was verified by GC-FID under optimal fractionation conditions, which are a temperature of 40 °C of, a pressure level of 30MPa and a flow rate of 7 mL/min of SC-CO2 for a retention time of 90 min.

  4. The impact of carbon sp{sup 2} fraction of reduced graphene oxide on the performance of reduced graphene oxide contacted organic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Narae [Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); Department of Physics, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); Khondaker, Saiful I., E-mail: saiful@ucf.edu [Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); Department of Physics, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); School of Electrical Engineering and Computer Science, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States)

    2014-12-01

    One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon sp{sup 2} fraction. However, whether the sp{sup 2} fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp{sup 2} fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% sp{sup 2} fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance.

  5. Fractionation of whey protein isolate with supercritical carbon dioxide – process modeling and cost estimation

    Science.gov (United States)

    An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO2) as an acid to produce enriched fractions of alpha-lactalbumin (alpha-La) and beta-lactoglobulin (beta-Lg) from a commercial whey protein isolate (WPI) containing 55% ...

  6. LBA-ECO ND-08 Soil Respiration, Soil Fractions, Carbon and Nitrogen, Para, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides (1) carbon (C) and nitrogen (N) concentration measurements of two soil aggregate fractions (250-2000 micon, small macro-aggregates...

  7. Element fractionation by sequential extraction in a soil with high carbonate content

    International Nuclear Information System (INIS)

    Sulkowski, Margareta; Hirner, Alfred V.

    2006-01-01

    The influence of carbonate and other buffering substances in soils on the results of a 3-step sequential extraction procedure (BCR) used for metal fractionation was investigated. Deviating from the original extraction scheme, where the extracts are analysed only for a limited number of metals, almost all elements in the soils were quantified by X-ray fluorescence spectroscopy, in the initial samples as well as in the residues of all extraction steps. Additionally, the mineral contents were determined by X-ray diffractometry. Using this methodology, it was possible to correlate changes in soil composition caused by the extraction procedure with the release of elements. Furthermore, the pH values of all extracts were monitored, and certain extraction steps were repeated until no significant pH-rise occurred. A soil with high dolomite content (27%) and a carbonate free soil were extracted. Applying the original BCR-sequence to the calcareous soil, carbonate was found in the residues of the first two steps and extract pH-values rose by around two units in the first and second step, caused mainly by carbonate dissolution. This led to wrong assignment of the carbonate elements Ca, Mg, Sr, Ba, and also to decreased desorption and increased re-adsorption of ions in those steps. After repetition of the acetic acid step until extract pH remained low, the carbonate was completely destroyed and the distributions of the elements Ca, Mg, Sr, Ba as well as those of Co, Ni, Cu, Zn and Pb were found to be quite different to those determined in the original extraction. Furthermore, it could be shown that the effectiveness of the reduction process in step two was reduced by increasing pH: Fe oxides were not significantly attacked by the repeated acetic acid treatments, but a 10-fold amount of Fe was mobilized by hydroxylamine hydrochloride after complete carbonate destruction. On the other hand, only small amounts of Fe were released anyway. Even repeated reduction steps did not

  8. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    Science.gov (United States)

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  9. ORGANIC MATTER LABILE FRACTIONS AND CARBON STOCKS IN A TYPIC QUARTZIPSAMMENT CULTIVATED WITH SUGARCANE HARVESTED WITHOUT BURNING

    Directory of Open Access Journals (Sweden)

    JOSÉ DE SOUZA OLIVEIRA FILHO

    2017-01-01

    Full Text Available The permanence of sugarcane straw on the soil surface, in systems without the pre-harvest straw burning practice, directly affects the soil organic matter dynamics. The objective of this work was to evaluate the changes in total organic carbon (TOC, carbon in the light organic matter (CLOM and particulate organic carbon (POC, and their carbon stocks in a typic Quartzipsamment cultivated for nine years with sugarcane crops, which were conducted without the pre-harvest straw burning practice, in Paraipaba, State of Ceará, Brazil. Disturbed and undisturbed soil samples were collected at depths of 0.0-0.025, 0.025-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.30 m, in the sugarcane crop area and in an adjacent native forest area, in order to quantify the TOC, CLOM and POC, as well as the carbon stocks accumulated in the layer 0.0-0.30 m related to these fractions (TOCSt, CLOMSt and POCSt. TOC content changes after nine years of sugarcane crops, conducted without pre-harvest straw burning, were found only in the layers 0.10-0.20 and 0.20-0.30 m. The CLOM varied only in the layer 0.025-0.05 m. The POC content changes were more noticeable than the changes in TOC and CMOL. The CLOM of the sugarcane crop area presented high similarity with TOC, which may affect their quantification in studies related to the soil organic matter dynamics. The sugarcane crop increased the TOCSt, POCSt and CLOMSt in the layer 0.0-0.30 m, compared with the adjacent native forest area.

  10. The Fractionation of Some Heavy Metals in Calcareous Soils Affected by Land Uses of Central Area of Zanjan Provine (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Ali Afshari

    2017-01-01

    Full Text Available Introduction: Heavy metals are found to be one of the major environmental hazardous contaminants, for human health, animal life, air quality and other components of environment. They can affect geochemical cycles and accumulate in animal tissues since physical processes are not able to remove them, so they are consistent in long term. The analysis of the total concentration of heavy metals in soil may provide information about soils enrichment but in general, it is widely used to determine the potential mobility of heavy metals in environmental behavior under chemical forms of metals in soils. Heavy metals existat several phases including water-soluble, exchangeable, bounded to organic matter, bounded to carbonates, bounded to Fe-Mn oxides, secondary clay minerals and residual fraction within primary minerals network. There is a dynamic equilibrium between different fractions of elements in soil. The main objectives of the present study were a The analysis of the total concentration of heavy metals such as Fe, Mn, Ni, Cr, Co, Pb, Zn, Cd and Cu and b The fractionations of heavy metals and identification of controlling factors to distribution and behavior of heavy metals in soils at different land uses. Materials and Methods: The study was performed at central area of Zanjan province (Iran. The study area was over 2000 km2 in coordinates 20´ 36° to 41´ 36° E and 19´ 48° to 53´ 48° N. The average altitudes were over 1500 meters above sea level. The major land uses of the study area included agriculture (AG, rangeland (RA and urban (UR. Sample collection was done based on the random grid method in August 2011. Surface soil samples (0-10 cm depth were taken from grid centers included 137, 77 and 27 samples from AG, RA and UR land uses, respectively. The samples were digested in Nitric acid 5 normal (Sposito et al., 1982 and total concentration of Pb, Zn, Ni, Mn, Cu, Cr, Fe and Co were measured by Perkin-Elmer: AA 200 atomic absorption

  11. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Ar...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089.......The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...... the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...

  12. Human footprint affects US carbon balance more than climate change

    Science.gov (United States)

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  13. Factors affecting defective fraction of biso-coated HTGR fuel particles during in-block carbonization

    International Nuclear Information System (INIS)

    Caputo, A.J.; Johnson, D.R.; Bayne, C.K.

    1977-01-01

    The performance of Biso-coated thoria fuel particles during the in-block processing step of HTGR fuel element refabrication was evaluated. The effect of various process variables (heating rate, particle crushing strength, horizontal and/or vertical position in the fuel element blocks, and fuel hole permeability) on pitch coke yield, defective fraction of fuel particles, matrix structure, and matrix porosity was evaluated. Of the variables tested, only heating rate had a significant effect on pitch coke yield while both heating rate and particle crushing strength had a significant effect on defective fraction of fuel particles

  14. Biosorption of nonylphenol by pure algae, field-collected planktons and their fractions

    International Nuclear Information System (INIS)

    Zhang, Dainan; Ran, Yong; Cao, Xiaoyan; Mao, Jingdong; Cui, Jinfang; Schmidt-Rohr, Klaus

    2015-01-01

    Algal samples were fractionated into lipid (LP), lipid free (LF), alkaline nonhydrolyzable carbon (ANHC), and acid nonhydrolyzable carbon (NHC) fractions, and were characterized by the quantitative 13 C multiCP NMR technique. The biosorption isotherms for nonylphenol (NP) were established and compared with previously published data for phenanthrene (Phen). The log K OC values are significantly higher for the field-collected plankton samples than for the commercial algae and cultured algae samples, correlating with their lipid contents and aliphatic carbon structure. As the NHC fraction contains more poly(methylene) carbon, it exhibits a higher biosorption capacity. The sorption capacities are negatively related to the polarity index, COO/N–C=O, polar C and O-alkyl C concentrations, but are positively related to the H/O atomic ratios and poly(methylene) carbon. The higher sorption capacities observed for NP than for Phen on the investigated samples are explained by specific interactions such as hydrogen bonding and π–π interaction. - Highlights: • Quantitative 13 C NMR technique was applied to algae and their fraction samples. • The biosorption isotherms for the ANHC and NHC fractions are nonlinear. • Polarity and lipid affect the biosorption capacity of NP. • The sorption capacity is positively related to polymethylene carbon. • The hydrogen and π–π interactions between NP and algae could be important. - The NHC fractions are chemically and structurally different from other fractions, and their biosorption for NP is much higher than that of the bulk algae

  15. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe{sup 2+} activated persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, Massimo, E-mail: m2marche@uwaterloo.ca [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Aravena, Ramon [Earth and Environmental Department, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Sra, Kanwartej S. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada); Thomson, Neil R. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Otero, Neus; Soler, Albert [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, Barcelona, Catalunya 08028 (Spain); Mancini, Silvia [Golder Associates Inc, Toronto, Ontario, Canada L5N 5Z7 (Canada)

    2012-09-01

    The increased use of persulfate (S{sub 2}O{sub 8}{sup 2-}) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe{sup 2+}). An average carbon isotope enrichment factor {epsilon}{sub bulk} of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cis-DCE were obtained in batch experiments. Variations in the initial S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S{sub 2}O{sub 8}{sup 2-}/Fe{sup 2+}/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe{sup 2+} activated persulfate. Highlights: Black-Right-Pointing-Pointer The performance of in situ chemical oxidation (ISCO) is still difficult to assess. Black-Right-Pointing-Pointer We investigated the potential of carbon isotope analysis as a new assessing tool. Black-Right-Pointing-Pointer C isotope of PCE, TCE and DCE oxidized by persulfate activated by Fe{sup 2+} was measured. Black-Right-Pointing-Pointer Enrichment factors of - 4.9 Per-Mille-Sign for PCE, - 3.6 Per-Mille-Sign for TCE and - 7.6 Per-Mille-Sign for cisDCE were obtained. Black-Right-Pointing-Pointer Carbon isotope can potentially be used to estimate the ISCO treatment efficacy.

  16. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].

    Science.gov (United States)

    Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu

    2010-05-01

    The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.

  17. Carbon-13 fractionation observed in thermal decarboxylation of pure phenylpropiolic acid (PPA) dissolved in phenylacetylene

    International Nuclear Information System (INIS)

    Zielinska, A.; Zielinski, M.; Papiernik-Zielinska, H.

    2003-01-01

    The determinations of the 13 C fractionation in the decarboxylation of pure phenylpropiolic acid (PPA) above its melting point has been extended to higher degrees of decomposition of PPA by carrying out two-step decarboxylations to establish the maximum possible yield of carbon dioxide in the temperature interval of 423-475 K (58%). The result was compared with the yields of CO 2 for decarboxylation of PPA in phenylacetylene solvent (PA) (much smaller, temperature dependent, and equal to 11% at 406 K). The ratios of carbon isotope ratios, R so /R pf , all smaller than 1.009 in the temperature interval 405-475 K, have been analyzed formally within the branched decomposition scheme of PPA, providing carbon dioxide and a decarboxylation resistant solid chemical compound enriched in 13 C with respect to CO 2 . A general discussion of the 13 C fractionation in the decarboxylation of pure PPA and PPA dissolved in PA is supplemented by the model calculation of the maximized skeletal 13 C KIEs, in the linear chain propagation of the acetylene polymerization process. Further studies of the 13 C fractionation in condensed phases and in different hydrogen deficient and hydrogen rich media have been suggested. (author)

  18. Dynamics of soil organic carbon in density fractions during post-agricultural succession over two lithology types, southwest China.

    Science.gov (United States)

    Wen, Li; Li, Dejun; Chen, Hao; Wang, Kelin

    2017-10-01

    Agricultural abandonment has been proposed as an effective way to enhance soil organic carbon (SOC) sequestration. Nevertheless, SOC sequestration in the long term is largely determined by whether the stable SOC fractions will increase. Here the dynamics of SOC fractions during post-agricultural succession were investigated in a karst region, southwest China using a space-for-time substitution approach. Cropland, grassland, shrubland and secondary forest were selected from areas underlain by dolomite and limestone, respectively. Density fractionation was used to separate bulk SOC into free light fraction (FLFC) and heavy fraction (HFC). FLFC contents were similar over dolomite and limestone, but bulk SOC and HFC contents were greater over limestone than over dolomite. FLFC content in the forest was greater than in the other vegetation types, but bulk SOC and HFC contents increased from the cropland through to the forest for areas underlain by dolomite. The contents of bulk SOC and its fractions were similar among the four vegetation types over limestone. The proportion of FLFC in bulk SOC was higher over dolomite than over limestone, but the case was inverse for the proportion of HFC, indicating SOC over limestone was more stable. However, the proportions of both FLFC and HFC were similar among the four vegetation types, implying that SOC stability was not changed by cropland conversion. Exchangeable calcium explained most of the variance of HFC content. Our study suggests that lithology not only affects SOC content and its stability, but modulates the dynamics of SOC fractions during post-agricultural succession. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Science.gov (United States)

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  20. Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design.

    Science.gov (United States)

    Panić, Sanja; Rakić, Dušan; Guzsvány, Valéria; Kiss, Erne; Boskovic, Goran; Kónya, Zoltán; Kukovecz, Ákos

    2015-12-01

    The aim of this work was to evaluate significant factors affecting the thiamethoxam adsorption efficiency using oxidized multi-walled carbon nanotubes (MWCNTs) as adsorbents. Five factors (initial solution concentration of thiamethoxam in water, temperature, solution pH, MWCNTs weight and contact time) were investigated using 2V(5-1) fractional factorial design. The obtained linear model was statistically tested using analysis of variance (ANOVA) and the analysis of residuals was used to investigate the model validity. It was observed that the factors and their second-order interactions affecting the thiamethoxam removal can be divided into three groups: very important, moderately important and insignificant ones. The initial solution concentration was found to be the most influencing parameter on thiamethoxam adsorption from water. Optimization of the factors levels was carried out by minimizing those parameters which are usually critical in real life: the temperature (energy), contact time (money) and weight of MWCNTs (potential health hazard), in order to maximize the adsorbed amount of the pollutant. The results of maximal adsorbed thiamethoxam amount in both real and optimized experiments indicate that among minimized parameters the adsorption time is one that makes the largest difference. The results of this study indicate that fractional factorial design is very useful tool for screening the higher number of parameters and reducing the number of adsorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fossil and Contemporary Fine Carbon Fractions at 12 Rural and Urban Sites in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Schichtel, B; Malm, W; Bench, G; Fallon, S; McDade, C; Chow, J

    2007-03-01

    Fine particulate matter collected at two urban, four near-urban, and six remote sites throughout the United States were analyzed for total carbon (TC) and radiocarbon ({sup 14}C). Samples were collected at most sites for both a summer and winter season. The radiocarbon was used to partition the TC into fossil and contemporary fractions. On average, contemporary carbon composed about half of the carbon at the urban, {approx}70-97% at near-urban, and 82-100% at remote sites. At Phoenix, Arizona, and Seattle, Washington, one monitor was located within the urban center and one outside to assess the urban excess over background concentrations. During the summer the urban and rural sites had similar contemporary carbon concentrations. However, during the winter the urban sites had more than twice the contemporary carbon measured at the neighboring sites, indicating anthropogenic contributions to the contemporary carbon. The urban fossil carbon was 4-20 times larger than the neighboring rural sites for both seasons. Organic (OC) and elemental carbon (EC) from TOR analysis were available. These and the radiocarbon data were used to estimate characteristic fossil and contemporary EC/TC ratios for the winter and summer seasons. These ratios were applied to carbon data from the Interagency Monitoring of Protected Visual Environments network to estimate the fraction of contemporary carbon at mostly rural sites throughout the United States. In addition, the ratios were used to develop a semiquantitative, lower bound estimate of secondary organic carbon (SOC) contribution to fossil and contemporary carbon. SOC accounted for more than one-third of the fossil and contemporary carbon.

  2. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    Science.gov (United States)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  3. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2017-07-24

    The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.

  4. Bubble point pressures of some petroleum fractions in the presence of methane or carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.; Moshfeghian, M. [Delft Univ. of Technology (Netherlands); Peters, C.J. [Shiraz Univ. (Iran, Islamic Republic of)

    1998-09-01

    In this work, the bubble point pressures of a number of petroleum fractions were measured in the presence of carbon dioxide or methane. These petroleum fractions had a maximum boiling range of 40 K. The most volatile fraction has a boiling range of 353.15 K to 373.15 K, while the least volatile boils within the temperature range of 453.15 K to 493.15 K. The densities of these petroleum fractions varied from 690 kg/m{sup 3} to 790 kg/m{sup 3}. Measurements were carried out in the Cailletet apparatus within a temperature range of 312 K to 470 K.

  5. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China.

    Science.gov (United States)

    Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti

    2017-08-01

    Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.

  6. Carbon storage of different soil-size fractions in Florida silvopastoral systems.

    Science.gov (United States)

    Haile, Solomon G; Nair, P K Ramachandran; Nair, Vimala D

    2008-01-01

    Compared with open (treeless) pasture systems, silvopastoral agroforestry systems that integrate trees into pasture production systems are likely to enhance soil carbon (C) sequestration in deeper soil layers. To test this hypothesis, total soil C contents at six soil depths (0-5, 5-15, 15-30, 30-50, 50-75, and 75-125 cm) were determined in silvopastoral systems with slash pine (Pinus elliottii) + bahiagrass (Paspalum notatum) and an adjacent open pasture (OP) with bahiagrass at four sites, representing Spodosols and Ultisols, in Florida. Soil samples from each layer were fractionated into three classes (250-2000, 53-250, and <53 microm), and the C contents in each were determined. Averaged across four sites and all depths, the total soil organic carbon (SOC) content was higher by 33% in silvopastures near trees (SP-T) and by 28% in the alleys between tree rows (SP-A) than in adjacent open pastures. It was higher by 39% in SP-A and 20% in SP-T than in open pastures in the largest fraction size (250-2000 microm) and by 12.3 and 18.8%, respectively, in the intermediate size fraction (53-250 microm). The highest SOC increase (up to 45 kg m(-2)) in whole soil of silvopasture compared with OP was at the 75- to 125-cm depth at the Spodosol sites. The results support the hypothesis that, compared with open pastures, silvopastures contain more C in deeper soil layers under similar ecological settings, possibly as a consequence of a major input to soil organic matter from decomposition of dead tree-roots.

  7. Effects of headspace fraction and aqueous alkalinity on subcritical hydrothermal gasification of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Ryan; Yin, Sudong; Tan, Zhongchao [Department of Mechanical and Manufacturing Engineering, Centre for Environmental Engineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Dr. N.W. Calgary, AB (Canada)

    2010-07-15

    In order to better understand the pathways of hydrothermal gasification of cellulose, the effect of headspace fraction and alkalinity on the hydrothermal gasification of cellulose has been studied at 315 C in the presence of Pt/Al{sub 2}O{sub 3} as catalyst. It was found that regardless of alkalinity the headspace fraction had a large impact on gasification yield, with larger headspace fractions resulting in considerably more gas product. Without the addition of sodium carbonate, the effect of headspace fraction became more pronounced, with gas increasing by approximately a factor of forty from the lowest to highest headspace fraction. On the other hand, for the same residence time the addition of sodium carbonate co-catalyst dampened the magnitude of the effect, to a factor of 2.5 and 1.5, for 50 and 100 mM sodium carbonate solutions, respectively. These results indicated that the headspace fraction affected the phase behaviour, and that this altered the pathway of the cellulose decomposition. While furfural alcohol was the major product obtained with a 49% headspace fraction, it was effectively suppressed by using 78% or greater headspace fractions. Based on the effects of phase behaviour and previous literature, the reduced effect occurring upon the addition of sodium carbonate may relate to catalysis of the Lobry de-bruyn Van Eckenstein transform to produce lactic acid rather than intermediates proceeding through glycolaldehyde. (author)

  8. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients

    Science.gov (United States)

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  9. GRANULOMETRIC AND HUMIC FRACTIONS CARBON STOCKS OF SOIL ORGANIC MATTER UNDER NO-TILLAGE SYSTEM IN UBERABA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2011-12-01

    Full Text Available The cover plant use preceding grain crops in Cerrado soil can increase the carbon stocks of chemical and physical fractions of soil organic matter (SOM. The present study aimed to quantify the carbon stocks of SOM granulometric and humic fractions in a Cerrado area under no-tillage system with different cover plant, and compare the results with those from conventional tillage and fallow areas, in Uberaba, MG, Brazil. The implemented cover crops were: millet, tropical grass and sunn hemp. Furthermore, an area was used in fallow and another as a control area (conventional tillage. After cover crop removal, the areas were subdivided for the corn and soybean plantation. Soil samples were collected in the 0.0-0.025, 0.025-0.05, 0.05-0.10 and 0.10-0.20 m depths, with posterior quantification of total organic carbon (TOC levels and chemical and granulometric fractionation of SOM. Humic acid carbon (C-HAF, fulvic acids (C-FAF and humin (C-HUM were quantified through these fractionations. The granulometric fractions consisted in particulate organic matter (POM and mineral organic matter (MOM. Using the carbon levels for each fraction, the respective stocks for each depth were calculated, including the 0.0-0.20 m layer. In the 0.0-0.20 m layer, TOC had the highest stocks for the millet area. The highest POM stocks were found for the corn plantation over sunn hemp and the fallow and soybean area over millet and tropical grass (0.0-0.20 m. In relation to the MOM stocks, the highest values were observed in the areas with millet, sunn hemp and tropical (palisade grass, all superior to those found in the conventional tillage and fallow areas, independent of evaluated culture (0.10-0.20 m. The highest C-HUM stocks were observed in the area with tropical grass (0.025-0.05 m and areas with tropical grass and sunn hemp (0.10-0.20 m, when compared to conventional tillage, independent of evaluated culture (corn and soybean. The highest C-FAH stocks in the depth of 0

  10. Carbon sequestration in clay and silt fractions of Brazilian soils under conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    Cecília Estima Sacramento dos Reis

    2014-08-01

    Full Text Available The capacity of soils to sequestrate carbon (C is mainly related to the formation of organo-mineral complexes. In this study, we investigated the influence of soil management systems on the C retention capacity of soil with an emphasis on the silt and clay fractions of two subtropical soils with different mineralogy and climate. Samples from a Humic Hapludox and a Rhodic Hapludox, clayey soils cultivated for approximately 30 years under no-tillage (NT and conventional tillage (CT were collected from six layers distributed within 100-cm soil depth from each site and from an adjacent native forest. After the removal of particulate organic matter (POM, the suspension (<53 µm was sonicated, the silt and clay fractions were separated in accordance with Stokes' law and the carbon content of whole soil and physical fractions was determined. In the Humic Hapludox, the clay and silt fractions under NT showed a higher maximum C retention (72 and 52 g kg-1, respectively in comparison to those under CT (54 and 38 g kg-1, respectively. Moreover, the C concentration increase in both fractions under NT occurred mainly in the topsoil (up to 5 cm. The C retention in physical fractions of Rhodic Hapludox varied from 25 to 32 g kg-1, and no difference was observed whether under an NT or a CT management system. The predominance of goethite and gibbsite in the Humic Hapludox, as well as its exposure to a colder climate, may have contributed to its greater C retention capacity. In addition to the organo-mineral interaction, a mechanism of organic matter self-assemblage, enhanced by longer periods of soil non-disturbance, seems to have contributed to the carbon stabilization in both soils.

  11. Carbon dioxide inhalation induces dose-dependent and age-related negative affectivity.

    Directory of Open Access Journals (Sweden)

    Eric J Griez

    Full Text Available BACKGROUND: Carbon dioxide inhalation is known to induce an emotion similar to spontaneous panic in Panic Disorder patients. The affective response to carbon dioxide in healthy subjects was not clearly characterized yet. METHODOLOGY/PRINCIPAL FINDINGS: Sixty-four healthy subjects underwent a double inhalation of four mixtures containing respectively 0, 9, 17.5 and 35% CO(2 in compressed air, following a double blind, cross-over, randomized design. Affective responses were assessed according to DSM IV criteria for panic, using an Electronic Visual Analogue Scale and the Panic Symptom List. It was demonstrated that carbon dioxide challenges induced a dose dependent negative affect (p<0.0001. This affect was semantically identical to the DSM IV definition of panic. Older individuals were subjectively less sensitive to Carbon Dioxide (p<0.05. CONCLUSIONS/SIGNIFICANCE: CO(2 induced affectivity may lay on a continuum with pathological panic attacks. Consistent with earlier suggestions that panic is a false biological alarm, the affective response to CO(2 may be part of a protective system triggered by suffocation and acute metabolic distress.

  12. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  13. Correlation of sp{sup 3} and sp{sup 2} fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Neeraj [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Sushil, E-mail: skumar@nplindia.org [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Malik, H.K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Govind [Surface Physics and Nano Structures Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Rauthan, C.M.S.; Panwar, O.S. [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India)

    2011-05-15

    In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp{sup 3} and sp{sup 2} fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C{sub 2}H{sub 2} gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp{sup 3} and sp{sup 2} fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp{sup 3} and sp{sup 2} fractions of carbon and sp{sup 3}/sp{sup 2} ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.

  14. Soil carbon fractions and enzyme activities under different vegetation types on the Loess Plateau of China

    OpenAIRE

    Zhang, Haixin; Zeng, Quanchao; An, Shaoshan; Dong, Yanghong; Darboux, Frédéric

    2016-01-01

    Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily ox...

  15. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  16. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  17. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  18. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  19. Fractionation of carbon isotopes by thermophilic methanogenic bacteria

    International Nuclear Information System (INIS)

    Ivanov, M.V.; Belyaev, S.S.; Zyakun, A.M.; Bondar, V.A.; Shipin, O.P.; Laurinavichus, K.S.

    1985-01-01

    The authors investigated the pattern of fractionation of stable carbon isotopes by the thermophilic methane-forming bacteria under different growth conditions and at various rates of formation of methane. A pure culture of Methanobacterium thermoautotrophicum was used in the experiments under the following growth conditions: temperature 65-70 0 C; pH 7.2-7.6; NaCl content 0-0.9 g/liter. The methanogenic bacteria were cultivated in 0.15 liter flasks in mineral medium. A mixture of CO 2 and H 2 in a 1:4 ratio by volume served as the sole carbon and energy source. In all experiments, not more than 5% of the initial CO 2 level was utilized. The rate of methane generation was altered by adjusting the physicochemical growth parameters (temperature from 45-70 0 C, salinity from 0.9 to 40 g/liter NaCl, pH from 6.3 to 7.2). Methane in the samples was quantitatively determined in a chromatograph which had a flame-ionization detector and a column containing Porapak Q sorbent at T = 120 0 C. The carrier gas was CO 2 . The average specific rate of methane formation was calculated as ml CH 4 per mg dry biomass of bacteria per h. Soluble mineral carbon was isolated form the acidified culture liquid in the form of CO 2 and was quantitatively determined in a Chrom-4 chromatography provided with a katharometer and a column containing activated charcoal at T = 150 0 . The gas carrier was helium. The isotopic composition of carbon was determined in a CH-7 mass-spectrometer and was expressed in 13 C values (per thousand) with respect to the international PDB standard

  20. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    International Nuclear Information System (INIS)

    Meckenstock, Rainer U.; Morasch, Barbara; Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann

    2002-01-01

    13 C/ 12 C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent 13 C/ 12 C carbon isotope fractionation with fractionation factors between αC = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of αC = 1.0027 (Pseudomonasputida strain mt-2), αC = 1.0011 (Ralstonia picketii), andαC = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the 13 C/ 12 C isotope fractionation factors of the batch culture experiments together with the observed 13 C/ 12 C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main direction of the groundwater flow and revealed decreasing

  1. Partitioning of trace metals in the chemical fractions of bed-load sediments of Nahr-Ibrahim river, Lebanon

    International Nuclear Information System (INIS)

    Korfali, Samira I.; Davies, Brian E.

    1999-01-01

    Full text.Sediments are the ultimate sink of trace elements. The total metal analysis may only give information concerning possible enrichment of metals. The analysis of metal partitioning in the different chemical components of sediments (exchangeable, carbonate, easily reducible, moderately reducible, organic and residual); give a detailed information on the way in which these metals are bound to sediments, their mobilization capacity and their ability to affect water quality under different environmental conditions. The studied river basin is dominated by limestone formation, the enrichment of metals in the carbonate sediment fraction is a high probability. The objective of the study was to determine the percentage of the total metal content (Fe, Mn, Zn, Cu and Pb) in the six chemical fractions of the bed load sediments of Nahr-Ibrahim river during the dry season and verify the role of carbonate for metal sediment deposition. Bed load sediments were sampled at five locations 13Km stretch, upstream from river mouth at two dates, August and October 1996. the dried samples were sieved into three mechanical fractions (1180-250 μm, 250-75 μm and <75 μm). A sequential chemical extraction was carried on each sized sample sediment, Fe, Mn, Zn, Cu and Pb were determined on the extracts by AAS. The reported data showed that Fe in mainly in the residual fraction, Mn in the residual and carbonate fraction, Zn in the residual, carbonate and Fe oxide fraction, Cu in the residual, carbonate and organic fraction, Pb in the carbonate fraction. The carbonate fraction in sediments played the major common role for metal sediment deposition

  2. Fractional laser skin resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  3. Diagenetic fractionation of carbon isotopes in particulate and dissolved organic matter in sediments from Skan Bay, Alaska

    International Nuclear Information System (INIS)

    Alperin, M.J.; Reeburgh, W.S.

    1991-01-01

    Isotope fractionation during organic matter diagenesis was investigated by measuring detailed depth distributions of stable carbon isotope ratios in sediment particulate organic carbon (POC) and dissolved organic carbon (DOC) reservoirs. The δ 13 C value of the POC shifted systematically from -19 per-thousand at the surface to -21 per-thousand at 10 cm. Significant trends were also apparent in the δ 13 C-DOC profile. Proceeding down-core, DOC became isotopically heavier between 0 and 5 cm and isotopically lighter at greater depths. Two mechanisms could account for the observed down-core shift in δ 13 C-POC: (a) temporal changes in the isotope ratios of deposited organic matter and (b) isotope fractionation associated with diagenesis. The δ 15 C-DOC depth distribution is sensitive to which mechanism controls the isotopic composition of the POC reservoir. A diagenetic model that couples POC and DOC reservoirs was used to discriminate between temporal changes and diagenetic alteration of the POC isotopic composition. The model indicated that observed trends in δ 13 C-POC and δ 13 C-DOC depth distributions are consistent with isotopic fractionation of POC during diagenesis

  4. Carbon and nitrogen molecular composition of soil organic matter fractions resistant to oxidation

    Science.gov (United States)

    Katherine Heckman; Dorisel Torres; Christopher Swanston; Johannes Lehmann

    2017-01-01

    The methods used to isolate and characterise pyrogenic organic carbon (PyC) from soils vary widely, and there is little agreement in the literature as to which method truly isolates the most chemically recalcitrant (inferred from oxidative resistance) and persistent (inferred from radiocarbon abundance) fraction of soil organic matter. In addition, the roles of fire,...

  5. Ablative Fractional 10 600 nm Carbon Dioxide Laser Versus Non-ablative Fractional 1540 nm Erbium-Glass Laser in Egyptian Post-acne Scar patients.

    Science.gov (United States)

    Elsaie, Mohamed L; Ibrahim, Shady M; Saudi, Wael

    2018-01-01

    Introduction: Non-ablative fractional erbium-doped glass 1540 nm and fractional ablative 10600 nm carbon dioxide lasers are regarded as effective modalities for treating acne atrophic scars. In this study, we aimed to compare the effectiveness of fractional CO 2 laser and fractional nonablative 1540 nm erbium doped glass laser in treating post acne atrophic scars in Egyptian patients. Methods: Fifty-eight patients complaining of moderate and severe acne atrophic scars were randomly divided into 2 groups of 29 patients each. Both groups were subjected to 4 treatment sessions with 3 weeks interval and were followed up for 3 months. In group A, enrolled patient sreceived C2 laser, while in group B, patients were treated with 1540 nm erbium glass fractional laser. Results: Clinical assessment revealed that the mean grades of progress and improvement were higher with fractional 10600 nm CO2 laser but with non-significant difference between both treatments ( P = 0.1). The overall patients' satisfaction with both lasers were not significantly different ( P = 0.44). Conclusion: Both fractional ablative CO2 and fractional non-ablative erbium glass lasers are good modalities for treating acne scars with a high efficacy and safety profile and good patient satisfaction. The fractional ablative laser showed higher efficacy while non-ablative laser offered less pain and shorter downtime.

  6. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    Science.gov (United States)

    Anand, Madhu

    nanoparticle populations. This study details the influence of various factors on the size separation process, such as the types of nanoparticles, ligand type and solvent type as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. This size selective precipitation technique was also applied to fractionate and separate polydisperse dispersions of CdSe/ZnS semiconductor nanocrystals into very distinct size and color fractions based solely on the pressure tunable solvent properties of CO2 expanded liquids. This size selective precipitation of nanoparticles is achieved by finely tuning the solvent strength of the CO2/organic solvent medium by simply adjusting the applied CO2 pressure. These subtle changes affect the balance between osmotic repulsive and van der Waals attractive forces thereby allowing fractionation of the nanocrystals into multiple narrow size populations. Thermodynamic analysis of nanoparticle size selective fractionation was performed to develop a theoretical model based on the thermodynamic properties of gas expanded liquids. We have used the general phenomenon of nanoparticle precipitation with CO2 expanded liquids to create dodecanethiol stabilized gold nanoparticle thin films. This method utilizes CO2 as an anti-solvent for low defect, wide area gold nanoparticle film formation employing monodisperse gold nanoparticles. Dodecanethiol stabilized gold particles are precipitated from hexane by controllably expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid then provides for removal of the organic solvent while avoiding the dewetting effects common to evaporating solvents. Unfortunately, the use of carbon dioxide as a neat solvent in nanoparticles synthesis and processing is limited by the very poor solvent strength of dense phase CO2. As a result, most current techniques employed to synthesize and disperse nanoparticles in neat carbon dioxide

  7. Vehicle type affects filling of fractional laser-ablated channels imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Mogensen, Mette; Haedersdal, Merete

    2017-01-01

    Ablative fractional laser (AFXL) is an emerging method that enhances topical drug delivery. Penetrating the skin in microscopic, vertical channels, termed microscopic treatment zones (MTZs), the fractional technique circumvents the skin barrier and allows increased uptake of topically applied dru...... was overall greater for more superficial MTZs. In conclusion, vehicle type affects filling of MTZs, which may be of importance for AFXL-assisted drug delivery....

  8. Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone.

    Science.gov (United States)

    Sonwai, Sopark; Rungprasertphol, Poonyawee; Nantipipat, Nantinee; Tungvongcharoan, Satinee; Laiyangkoon, Nantikan

    2017-09-01

    This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10°C for 0.5, 1 and 2 h and at 12°C for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12°C for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO. The crystallization duration exhibited strong influence on the solid fractions. There was no effect on the crystal polymorphic structure possibly because CNO has β'-2 as a stable polymorph. The enhanced SFC of the solid fractions would allow them to find use in food applications where a specific melting temperature is desired such as sophisticated confectionery fats, and the decreased SFC of the liquid fractions would provide them with a higher cold stability which would be useful during extended storage time.

  9. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Meckenstock, Rainer U. [Eberhard-Karls University of Tuebingen, Center for Applied Geoscience (Germany)], E-mail: rainer.meckenstock@uni-tuebingen.de; Morasch, Barbara [University of Konstanz, Faculty of Biology (Germany); Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann [Center for Environmental Research, Department of Remediation Research (Germany)

    2002-05-15

    {sup 13}C/{sup 12}C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent {sup 13}C/{sup 12}C carbon isotope fractionation with fractionation factors between {alpha}C = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of {alpha}C = 1.0027 (Pseudomonasputida strain mt-2), {alpha}C = 1.0011 (Ralstonia picketii), and{alpha}C = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the {sup 13}C/{sup 12}C isotope fractionation factors of the batch culture experiments together with the observed {sup 13}C/{sup 12}C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main

  10. Factors affecting the carbon allowance market in the US

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Seok; Koo, Won W. [Center for Agricultural Policy and Trade Studies, Department of Agribusiness and Applied Economics, North Dakota State University, Dept 7610, P.O. Box 6050, Fargo, ND 58103-6050 (United States)

    2010-04-15

    The US carbon allowance market has different characteristic and price determination process from the EU ETS market, since emitting installations voluntarily participate in emission trading scheme. This paper examines factors affecting the US carbon allowance market. An autoregressive distributed lag model is used to examine the short- and long-run relationships between the US carbon allowance market and its determinant factors. In the long-run, the price of coal is a main factor in the determination of carbon allowance trading. In the short-run, on the other hand, the changes in crude oil and natural gas prices as well as coal price have significant effects on carbon allowance market. (author)

  11. Factors affecting the carbon allowance market in the US

    International Nuclear Information System (INIS)

    Kim, Hyun Seok; Koo, Won W.

    2010-01-01

    The US carbon allowance market has different characteristic and price determination process from the EU ETS market, since emitting installations voluntarily participate in emission trading scheme. This paper examines factors affecting the US carbon allowance market. An autoregressive distributed lag model is used to examine the short- and long-run relationships between the US carbon allowance market and its determinant factors. In the long-run, the price of coal is a main factor in the determination of carbon allowance trading. In the short-run, on the other hand, the changes in crude oil and natural gas prices as well as coal price have significant effects on carbon allowance market.

  12. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    Science.gov (United States)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  13. Fractionation and characterization of soil organic carbon during transition to organic farming

    Science.gov (United States)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  14. Carbon-13 isotope fractionation in the decarboxylation of phenylpropiolic (PPA) below and above its melting point and in the decarboxylation of PPA in phenylacetylene medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.

    2000-01-01

    C-13 isotope fractionation in the decarboxylation of pure phenylpropiolic acid (PPA) below and above its melting point and the decarboxylation of PPA in phenylacetylene solutions has been investigated in sealed under vacuum reaction vessels. The reactive PPA undergoing decarboxylation polymerizes with the liquid product, phenylacetylene in reaction cage producing a condensation compound, which does not decarboxylate measurably in the 120-190 o C. Especially low final carbon dioxide yields (about 11%) have been obtained in the decarboxylation of PPA in phenylacetylene solution at 132 o C and below this temperature. The carbon dioxide is depleted in carbon-13. The ratio of the carbon isotope ratios of carboxylic carbon of PPA before decarboxylation, R( 13 C/ 12 C so ), and of the first portions of carbon dioxide obtained at partial decarboxylation R( 13 C/ 12 C) pf , located in the range 1.007-1.010, indicates that the pure kinetic fractionation of 13 C in the elementary decarboxylation step is negligible and the C-13 fractionation in the condensed phase dimer/monomer equilibria contributes mainly to the resultant experimental carbon isotope fractionation. A preliminary discussion of the experimental isotope findings is presented. (author)

  15. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  16. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno

    DEFF Research Database (Denmark)

    Posth, Nicole Rita Elisabeth; Bristow, L. A.; Cox, R. P.

    2017-01-01

    carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C......Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2. In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive...

  17. Drivers of carbon dynamics and diagnostic fractions in grassland soils in Bavaria in a changing climate

    Science.gov (United States)

    Garcia-Franco, Noelia; Kühnel, Anna; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Brandhuber, Robert; Treisch, Melanie; Kögel-Knabner, Ingrid

    2017-04-01

    The storage of carbon (C) in grassland soils is affected by two principal controlling factors: management practices and climate change. In particular, mountainous grassland soils may become a source of greenhouse gas emissions under global warming due to large amounts of labile C. In this regard, aggregate-occluded and mineral associated C may play a key role in the mitigation of climate change. Nevertheless, few studies have focused on different soil organic matter (SOM) pools and their main controlling factors in mountainous grassland soils. We analyzed the C development of long-term (1986-2012) monitoring grassland sites in Bavaria using Random Forest models. Sites with low initial C contents showed an increase of C, whereas the opposite trend was observed for sites with high initial C contents. Different controlling factors were related with the two main C trends. In addition, we determined the principal mechanisms involved in the build-up and stabilization of different C pools using a promising physical fractionation method. This method enables the separation of five different SOM fractions by density, ultrasonication and sieving separation: fine particulate organic matter (fPOM), occluded particulate organic matter (oPOM>20µm and oPOM 20 µm; medium + fine silt and clay, soils.

  18. DISTRIBUTION OF ORGANIC CARBON IN DIFFERENT SOIL FRACTIONS IN ECOSYSTEMS OF CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Jean Dalmo de Oliveira Marques

    2015-02-01

    Full Text Available Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM was fractionated and soil C stocks were estimated in primary forest (PF, pasture (P, secondary succession (SS and an agroforestry system (AFS. Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction, IALF (intra-aggregate light fraction, F-sand (sand fraction, F-clay (clay fraction and F-silt (silt fraction. The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS > (98.4 Mg ha-1 of C - FP > (92.9 Mg ha-1 of C - SS > (64.0 Mg ha-1 of C - P. The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.

  19. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    -labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed......In batch experiments, we studied the isotope fractionation in N and O of dissolved nitrate during dentrification. Denitrifying strains Thauera aromatica and “Aromatoleum aromaticum strain EbN1” were grown under strictly anaerobic conditions with acetate, benzoate, and toluene as carbon sources. 18O...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  20. Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO3](2) at ambient temperature.

    Science.gov (United States)

    Böttcher, Michael E; Geprägs, Patrizia; Neubert, Nadja; von Allmen, Katja; Pretet, Chloé; Samankassou, Elias; Nägler, Thomas F

    2012-09-01

    In this study, we present the first experimental results for stable barium (Ba) isotope ((137)Ba/(134)Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO(3)](2). This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of-0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO (3) (witherite) formation.

  1. Labile and Non-labile Soil Carbon Fractions Equally Contributed to Carbon Changes under Long-term Fertilization

    Science.gov (United States)

    Liang, F.; Li, J.; Xu, M.; Huang, S.

    2017-12-01

    Soil organic carbon (SOC) storages are altered under long-term fertilization in croplands, it however remains unclear how fast- to slow-cycling SOC fractions each respond to fertilization practices. Based on five two-decade Chinese long-term fertilization experiments (GZL: Gongzhuling; ZZ: Zhengzhou; CQ: Chongqing; JX: Jinxian; QY: Qiyang) under three fertilization treatments (CK: cropping with no fertilizer input; NPK: chemical nitrogen, phosphorus and potassium fertilizers; and NPKM: NPK with manure input), we quantified very labile, labile, non-labile and total SOC stocks at 0-20cm soil depth. Results showed that SOC stocks varied among sites (GZL, JX, CQ > ZZ, QY) and generally increased with fertilizations (CK-1 at ZZ, GZL, QY, CQ and JX, respectively. The corresponding changes of the sum of very labile and labile SOC fractions were 2.6, 2.0, 1.8, 0.8 and -0.5 Mg ha-1 at ZZ, QY, GZL, CQ and JX, respectively. Also, NPKM increased total SOC stock by 18.3, 16.2, 14.4, 10.5, and 6.5 Mg ha-1 at QY, GZL, ZZ, CQ and JX, respectively. The corresponding changes of the sum of very labile and labile SOC fractions were 8.6, 6.8, 6.6, 3.2 and -1.6 Mg ha-1 at QY, GZL, ZZ, CQ and JX, respectively. These results suggested that about half or more than half SOC stock accretions under fertilization were induced by increase in non-labile SOC fractions. It thus informs the importance of non-labile SOC fractions in contributing to soil C sequestration under long-term fertilizations in Chinese croplands. Future research should improve our mechanistic understanding of biogeochemical transformation of non-labile organic C in soils.

  2. Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing.

    Science.gov (United States)

    Orringer, Jeffrey S; Sachs, Dana L; Shao, Yuan; Hammerberg, Craig; Cui, Yilei; Voorhees, John J; Fisher, Gary J

    2012-10-01

    Fractionated ablative laser resurfacing has become a widely used treatment modality. Its clinical results are often found to approach those of traditional fully ablative laser resurfacing. To directly compare the molecular changes that result from fractionated and fully ablative carbon dioxide (CO(2)) laser resurfacing in photodamaged human skin. Photodamaged skin of 34 adult volunteers was focally treated at distinct sites with a fully ablative CO(2) laser and a fractionated CO(2) laser. Serial skin samples were obtained at baseline and several time points after treatment. Real-time reverse transcriptase polymerase chain reaction technology and immunohistochemistry were used to quantify molecular responses to each type of laser treatment. Fully ablative and fractionated CO(2) laser resurfacing induced significant dermal remodeling and collagen induction. After a single treatment, fractionated ablative laser resurfacing resulted in collagen induction that was approximately 40% to 50% as pronounced as that induced by fully ablative laser resurfacing. The fundamental cutaneous responses that result from fully ablative and fractionated carbon dioxide laser resurfacing are similar but differ in magnitude and duration, with the fully ablative procedure inducing relatively greater changes including more pronounced collagen induction. However, the molecular data reported here provide substantial support for fractionated ablative resurfacing as an effective treatment modality for improving skin texture. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  3. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China.

    Science.gov (United States)

    Zhang, Guangliang; Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2017-10-01

    Rapid urbanization and reclamation processes in coastal areas have resulted in serious pollution to the aquatic environment. Less is known on the geochemical fractions and ecological risks in river sediment under various human activities pressures, which is essential for addressing the connections between heavy metal pollution and anthropogenic influences. River sediments were collected from different landscapes (i.e., urban, rural and reclamation areas) to investigate the impacts of urbanization and reclamation on the metallic pollution levels and ecological risks in the Pear River Estuary of China. Results showed that Cd, Zn and Cu with high total contents and geoaccumulation index (I geo ) were the primary metals in the Peal River sediments. Generally, urban river sediments, especially the surface sediment layer (0-10 cm), exhibited higher metallic pollution levels. As for geochemical fractions, reducible and residual fractions were the dominant forms for six determined metals. And the percentage of heavy metals bound to Fe-Mn oxides decreased with increasing soil depth but the reverse tendency was observed for residual fractions. Compared with rural river sediments, heavy metals were highly associated with the exchangeable and carbonate fractions in both urban and reclamation-affected river sediments, suggesting that anthropogenic activities mainly increased the active forms of metals. Approximately 80% of Cd existed in the non-residual fraction and posed medium to high ecological risk according to the risk assessment code (RAC) values. The redundancy analysis (RDA) revealed that both urbanization and reclamation processes would cause similar metallic characteristics, and sediment organic matter (SOC) might be the prominent influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wu, Fengchang, E-mail: wufengchang@vip.skleg.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-10-01

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H{sub 2}O, 0.1 M NaOH and 1.0 M HCl, combined with {sup 13}C and {sup 31}P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H{sub 2}O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H{sub 2}O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H{sub 2}O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (P{sub i}) was the primary form of P in H{sub 2}O fractions, whereas organic P (P{sub o}) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H{sub 2}O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes. - Highlights: • Sequential fractionation combined with NMR analysis was applied on aquatic plants. • Labile and stable C and P forms in aquatic plants were characterized. • 54.7% of OM and 96.2% of P in aquatic plants are potentially available. • 45.3% of OM and 3.8% of P in aquatic

  5. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, 2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions

  6. Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research

    Science.gov (United States)

    Kelleway, Jeffrey J.; Mazumder, Debashish; Baldock, Jeffrey A.; Saintilan, Neil

    2018-05-01

    The ratio of stable isotopes of carbon (δ13C) is commonly used to track the flow of energy among individuals and ecosystems, including in mangrove forests. Effective use of this technique requires understanding of the spatial variability in δ13C among primary producer(s) as well as quantification of the isotopic fractionations that occur as C moves within and among ecosystem components. In this experiment, we assessed δ13C variation in the cosmopolitan mangrove Avicennia marina across four sites of varying physico-chemical conditions across two estuaries. We also compared the isotopic values of five distinct tissue types (leaves, woody stems, cable roots, pneumatophores and fine roots) in individual plants. We found a significant site effect (F3, 36 = 15.78; P 3.0‰) means that it may now be possible to partition the individual contributions of various mangrove tissues to estuarine food webs. Similarly, the contributions of mangrove leaves, woody debris and belowground sources to blue carbon stocks might also be quantified. Above all, however, our results emphasize the importance of considering appropriate mangrove tissue types when using δ13C to trace carbon cycling in estuarine systems.

  7. Pt.3. Carbon-13 fractionation in the decomposition of formic acid initiated by phosphoric anhydride. 13C fractionation in the decomposition of HCOOH initiated by P2O5

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.

    1998-01-01

    13 C isotope effects in the decarbonylation of formic acid of natural isotopic composition initiated by phosphorus pentoxide have been studied in a large temperature range (-5 o C) - (+90 o C). The 13 C fractionation in the carbon monooxide production at -5 o C increased from a low value of 1.2% characteristic of the first fractions of consecutively controlled portions of carbon monooxide to higher values of 13 C KIE observed in the decarbonylation of pure formic acid at corresponding temperatures. The temperature and time dependences of the measured 13 C fractionation are functions of the relative number of milimoles of formic acid and the dehydrating phosphoric anhydride, P 2 O 5 . The addition of metaphosphoric acid reagent to unreacted formic acid containing H 3 PO 4 significantly increased the 13 C fractionation in subsequent decarbonylations at 70.4 o C but to a slightly less degree than expected ( 13 C KIE = 1.0503 instead 1.0535). The addition of metaphosphoric acid reagent to formic acid saturated with NaCl results in the experimental 13 C fractionation of the value of 1.0534 very close to the theoretical one. An explanation of the low values of 13 C KIE in the initial stages of HCOOH/P 2 O 5 decarbonylations has been presented. (author)

  8. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    Directory of Open Access Journals (Sweden)

    S. L. Heck

    2012-02-01

    Full Text Available There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON, five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  9. Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. II - Physical Compartments and Carbon Management Index

    Directory of Open Access Journals (Sweden)

    Otávio dos Anjos Leal

    2015-06-01

    Full Text Available Soils constructed after mining often have low carbon (C stocks and low quality of organic matter (OM. Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC stocks, C distribution in physical fractions of OM and the C management index (CMI of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1, Paspalum notatum (T2, Cynodon dactylon (T3, Urochloa brizantha (T4, bare constructed soil (T5, and natural soil (T6. Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF of OM were determined. The CMI components: carbon pool index (CPI, lability (L and lability index (LI were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

  10. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, David [North Carolina State Univ., Raleigh, NC (United States); Osburn, Christopher [North Carolina State Univ., Raleigh, NC (United States); Oberbauer, Steven [Florida Intl Univ., Miami, FL (United States); Oviedo Vargas, Diana [North Carolina State Univ., Raleigh, NC (United States); Dierick, Diego [Florida Intl Univ., Miami, FL (United States)

    2017-03-27

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving discharge of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.

  11. The impact of a copper smelter on adjacent soil zinc and cadmium fractions and soil organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ling; Wu Longhua; Luo Yongming [Key Lab. of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, NJ (China); Zhang Changbo [Shanghai Academy of Environmental Sciences, SH (China); Jiang Yugen; Qiu Xiya [Soils and Fertilisers Div., Fuyang City Agricultural Bureau, Hangzhou, ZJ (China)

    2010-07-15

    Purpose: We investigated the chemical fractions of Zn, Cd and Cu in soils collected from positions at different distances from a copper smelter and studied the relationships between distribution patterns of Zn, Cd and Cu, fractions and soil organic carbon (SOC), especially ''black carbon'' (BC), in contaminated soils. The relationships between soil particle size and concentrations of Zn and Cd in contaminated soil were also examined. Materials and methods: Soil samples were collected from field sites at different distances from the copper smelter, air-dried and passed through 0.25-mm and 0.149-mm nylon mesh sieves. The SOC and BC were determined. Aqua regia and sequentially extracted Zn, Cd and Cu fractions in soil and the different sizes of soil particles, and metal concentrations (Zn, Cd and Cu) in BC were also determined. Results and discussion: The soils were heavily contaminated by fly ash from the copper smelter. Concentrations of Zn, Cd and Cu in soil and SOC decreased with increasing distance from the smelter. Concentrations of Zn and Cd in the surface soil (0-15 cm) decreased from 27,017 to 892 mg kg{sup -1} and from 18.7 to 1.04 mg kg{sup -1}, respectively. Soil BC and concentrations of Zn, Cd and Cu in the BC fraction showed significant and positive relationships with the corresponding aqua regia metal concentrations in soil. Soil Zn and Cd occurred predominantly in the exchangeable and reducible fractions, but residual and oxidisable fractions of Cu that were not considered mobile or bioavailable were predominant (>60%). Concentrations of Zn and Cd in the soil particle size fractions tended to increase with decreasing particle size. Conclusions: The Cd and Zn and BC were all derived from the fly ash of the smelter. Concentrations of Zn and Cd and BC in the soil decreased significantly with increasing distance from the smelter. Zinc and Cd in contaminated soils increased as particle size decreased, and were mainly in highly available

  12. Effect of lithium carbonate on leukocyte number after influence of ionizing radiation. 3. Influence of lithium carbonate on peripheral leukocytes after fractionated caudal half-body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.; Saul, G.; Kehrberg, G. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1985-01-01

    Fractionated half-body irradiation of rats resulted in leukopenia of the peripheral blood. The decrease of leukocytes was smaller in animals pretreated with an orally administered dose of lithium carbonate for 14 days.

  13. Distribution of lipid biomarkers and carbon isotope fractionation in contrasting trophic environments of the South East Pacific

    Directory of Open Access Journals (Sweden)

    I. Tolosa

    2008-06-01

    Full Text Available The distribution of lipid biomarkers and their stable carbon isotope composition was investigated on suspended particles from different contrasting trophic environments at six sites in the South East Pacific. High algal biomass with diatom-related lipids (24-methylcholesta-5,24(28-dien-3β-ol, C25 HBI alkenes, C16:4 FA, C20:5 FA was characteristic in the upwelling zone, whereas haptophyte lipids (long-chain (C37-C39 unsaturated ketones were proportionally most abundant in the nutrient-poor settings of the centre of the South Pacific Gyre and on its easter edge. The dinoflagellate–sterol, 4α-23,24-trimethylcholest-22(E-en-3β-ol, was a minor contributor in all of the studied area and the cyanobacteria-hydrocarbon, C17n-alkane, was at maximum in the high nutrient low chlorophyll regime of the subequatorial waters near the Marquesas archipelago.

    The taxonomic and spatial variability of the relationships between carbon photosynthetic fractionation and environmental conditions for four specific algal taxa (diatoms, haptophytes, dinoflagellates and cyanobacteria was also investigated. The carbon isotope fractionation factor (εp of the 24-methylcholesta-5,24(28-dien-3β-ol diatom marker, varied over a range of 16% along the different trophic systems. In contrast, εp of dinoflagellate, cyanobacteria and alkenone markers varied only by 7–10‰. The low fractionation factors and small variations between the different phytoplankton markers measured in the upwelling area likely reveals uniformly high specific growth rates within the four phytoplankton taxa, and/or that transport of inorganic carbon into phytoplankton cells may not only occur by diffusion but also by other carbon concentrating mechanisms (CCM. In contrast, in the oligotrophic zone, i.e. gyre and eastgyre, relatively high εp values, especially for the diatom marker

  14. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China.

    Science.gov (United States)

    Xu, Xiangru; Zhang, Wenju; Xu, Minggang; Li, Shuangyi; An, Tingting; Pei, Jiubo; Xiao, Jing; Xie, Hongtu; Wang, Jingkuan

    2016-12-01

    Long-term use of artificial fertiliser has a significant impact on soil organic carbon (SOC). We used physical-chemical fractionation methods to assess the impact of long-term (26years) fertilisation in a maize cropping system developed on Brown Earth in Northeast China. Plot treatments consisted of control (CK); nitrogen (N) fertiliser (N2); low-level organic manure combined with inorganic N and phosphorus (P) fertiliser (M1N1P1); medium-level organic manure combined with inorganic N fertiliser (M2N2); and high-level organic manure combined with inorganic N and P fertiliser (M4N2P1). Our objectives were to (1) determine the contents of and variations in the SOC fractions; (2) explore the relationship between total SOC and its fractions. In treatments involving organic manure (M1N1P1, M2N2, and M4N2P1), total SOC and physically protected microaggregate (μagg) and μagg occluded particulate organic carbon (iPOC) contents increased by 9.9-58.9%, 1.3-34.7%, 29.5-127.9% relative to control, respectively. But there no significant differences (P>0.05) were detected for the chemically, physically-chemically, and physically-biochemically protected fractions among the M1N1P1, M2N2, and M4N2P1 treatments. Regression analysis revealed that there was a linear positive correlation between SOC and the unprotected coarse particulate organic carbon (cPOC), physically protected μagg, and iPOC fractions (Pfractions responded negatively to SOC content. The highest rate of C accumulation among the SOC fractions occurred in the cPOC fraction, which accounted for as much as 32% of C accumulation as total SOC increased, suggesting that cPOC may be the most sensitive fraction to fertiliser application. We found that treatments had no effect on C levels in H-μsilt and NH-μsilt, indicating that the microaggregated silt C-fractions may have reached a steady state in terms of C saturation in the Brown Earth of Northeast China. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    Science.gov (United States)

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (Porganic carbon fraction in soil, straw soil-returning had the potential to accumulate stable organic carbon fraction. Considering organic carbon sequestration in cropland in the region of Guanzhong plain, maize straw mulching or soil-returning was better than wheat straw, and wheat straw and maize straw soil-returning (WR-MR) were better than wheat and maize straw mulching (WM-MM).

  16. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    Science.gov (United States)

    Chowdhury, Ashim

    2010-05-01

    STUDY ON THE DISTRIBUTION OF ORGANIC CARBON IN SOIL FRACTIONS AND ITS REACTION POTENTIAL OF BINDING THE PESTICIDES **SUMITRA ROY1, SANKHAJIT ROY1, *ASHIM CHOWDHURY2, SASWATI PRADHAN2 and PETER BURAUEL3 1Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalay, Mohanpur, West Bengal, India. 2Department of Agricultural Chemistry and Soil Science, University of Calcutta, West Bengal, India. 3Institute of Chemical Dynamics & Geosphere, FZ-Juelich, Germany. *Correspondence: ashimkly@hotmail.com **Research work carried out as DAAD Sandwich research fellow at FZ- Juelich, Germany Soil is the ultimate sink of all selectively applied pesticides. In addition to the basic physicochemical data of an active ingredient, the fate of the various compounds is largely determined by the type of application. Finally, pesticide and their metabolites, as well as structural elements, remain in the native carbon reserves of the soil or are sorbed & fixed to clay minerals and clay- humus complexes. Soil organic matter (SOM) and the soil microbial community are the crucial components which regulate soil processes and contribute towards the stability of the soil ecosystem. It is an energy source for biological mineralization processes, functions as a buffer and participates in chemical reaction. Knowledge is essential to understand the extent to which the SOM influences the mobilization and immobilization processes of foreign substance in soil and the substance transport and pollutant decomposition in soil. The freshly incorporated organic matter undergoes mineralization and the non mineralized carbon fraction is of special relevance with respect to soil stability in general and decisive for the fate and particular the persistence of xenobiotics in soil. The biological and physicochemical interactions establishing equilibrium between the organic matter bound, fixed or complexed to the soil matrix and that dissolve in the soil solution must be understood in detail to realize

  17. Promising Option for Treatment of Striae Alba: Fractionated Microneedle Radiofrequency in Combination with Fractional Carbon Dioxide Laser

    Directory of Open Access Journals (Sweden)

    Farahnaz Fatemi Naeini

    2016-01-01

    Full Text Available Background. A consistent treatment has not been proposed for treatment of Striae Alba (SA. The present study was designed to compare the fractionated microneedle radiofrequency (FMR alone and in combination with fractional carbon dioxide laser (FMR + CO2 in the treatment of SA. Methods. Forty-eight pairs of SA from six patients were selected. Right or left SAs were randomly assigned to one of the treatment groups. The surface area of the SA before and after treatment and clinical improvement using a four-point scale were measured at the baseline, after one and three months. Results. The mean age of the patients was 30.17±5.19 years. The mean difference of the surface area between pre- and posttreatment in the FMR + CO2 group was significantly higher than that in the FMR group (p=0.003. Clinical improvement scales showed significantly higher improvement in the FMR + CO2 group than in the FMR group in the first and second follow-up (p=0.002 and 0.004, resp.. There were no major persistence side-effects in both groups. Conclusions. The results showed that FMR + CO2 laser was more effective than FMR alone in the treatment of SA.

  18. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  19. Occurrence of pesticide non extractable residues in physical and chemical fractions from two natural soils.

    Science.gov (United States)

    Andreou, K.; Jones, K.; Semple, K.

    2009-04-01

    Distribution of pesticide non extractable residues resulted from the incubation of two natural soils with each of the isoproturon, diazinon and cypermethrin pesticide was assessed in this study. Pesticide non extractable residues distribution in soil physical and chemical fractions is known to ultimately affect their fate. This study aimed to address the fate and behaviour of the non extractable residues in the context of their association with soil physical and chemical fractions with varying properties and characteristics. Non extractable residues were formed from incubation of each pesticide in the two natural soils over a period of 24 months. Soils containing the non extractable residues were fractionated into three solid phase fractions using a physical fractionation procedure as follows: Sediment (SED, >20 μm), (II) Microaggregate (MA, 20-2 μm) and (III) Colloid phase (COL, 2-0.05 μm). Each soil fraction was then fractionated into organic carbon chemical fractionations as follows: Fulvic acid (FA), Humic acid (HA) and Humin (HM). Significant amount of the pesticides was lost during the incubation period. Enrichment factors for the organic carbon and the 14C-pesticide residues were higher in the MA and COL fraction rather than the SED fraction. Greater association and enrichment of the fulvic acid fraction of the organic carbon in the soil was observed. Non extractable residues at the FA fraction showed to diminish while in the HA fraction were increased with decreasing the fraction size. An appreciable amount of non extractable residues were located in the HM fraction but this was less than the amount recovered in the humic substances. Long term fate of pesticide non extractable residues in the soil structural components is important in order to assess any risk associated with them.

  20. Concentration of carbonate admixture from opalized tuff into one separate fraction

    International Nuclear Information System (INIS)

    Bogoevski, Slobodan; Boshkovski, Boshko

    2016-01-01

    White opalized tuff (from the Strmosh locality, Probishtip), as a raw silicate amorphous material, contains some quantity of admixtures. The total quantity of admixtures amounts is about 8% mass. Mine powdery ingredients are homogeneously distributed into the basic silicate mass.Carbonate material is a significant part of present admixtures, and it is possible to be separated with controlled milling. Milling parameters (type and time of milling) enables to concentrate the present CaCO 3 in granulometric fraction<0.032 μm, after 30 min. milling. Reliable evidence about afore mentioned separation is shown with simultaneous view of the results of silicate chemical analysis, DT/TG analysis (750 - 850 °C), and sieve-analysis.From the X-ray analysis it is evident that the present carbonate material exists in crypto crystal to amorphous state. The space where CaCO 3 is hidden, presents the place between basic silicate particles inside the groups, generally with dimensions about 40 to 60 μm. The concentration of CaCO 3 appears when this particle group goes to the process of disintegration. (author)

  1. Efficacy and safety of 10,600-nm carbon dioxide fractional laser on facial skin with previous volume injections

    Directory of Open Access Journals (Sweden)

    Josiane Hélou

    2013-01-01

    Full Text Available Background: Fractionated carbon dioxide (CO 2 lasers are a new treatment modality for skin resurfacing. The cosmetic rejuvenation market abounds with various injectable devices (poly-L-lactic acid, polymethyl-methacrylate, collagens, hyaluronic acids, silicone. The objective of this study is to examine the efficacy and safety of 10,600-nm CO 2 fractional laser on facial skin with previous volume injections. Materials and Methods: This is a retrospective study including 14 patients treated with fractional CO 2 laser and who have had previous facial volume restoration. The indication for the laser therapy, the age of the patients, previous facial volume restoration, and side effects were all recorded from their medical files. Objective assessments were made through clinical physician global assessment records and improvement scores records. Patients′ satisfaction rates were also recorded. Results: Review of medical records of the 14 patients show that five patients had polylactic acid injection prior to the laser session. Eight patients had hyaluronic acid injection prior to the laser session. Two patients had fat injection, two had silicone injection and one patient had facial thread lift. Side effects included pain during the laser treatment, post-treatment scaling, post-treatment erythema, hyperpigmentation which spontaneously resolved within a month. Concerning the previous facial volume restoration, no granulomatous reactions were noted, no facial shape deformation and no asymmetry were encountered whatever the facial volume product was. Conclusion: CO 2 fractional laser treatments do not seem to affect facial skin which had previous facial volume restoration with polylactic acid for more than 6 years, hyaluronic acid for more than 0.5 year, silicone for more than 6 years, or fat for more than 1.4 year. Prospective larger studies focusing on many other variables (skin phototype, injected device type are required to achieve better

  2. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    Science.gov (United States)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil. Our findings provide

  3. Microbiological properties and oxidizable organic carbon fractions of an oxisol under coffee with split phosphorus applications and irrigation regimes

    Directory of Open Access Journals (Sweden)

    Adriana Rodolfo da Costa

    2013-02-01

    Full Text Available Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting, two irrigation regimes (rainfed and year-round irrigation, with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC, basal respiration (BR, enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4, and total organic carbon (TOC. The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

  4. Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status

    NARCIS (Netherlands)

    Penning, H.; Plugge, C.M.; Galand, P.E.; Conrad, R.

    2005-01-01

    Methane is a major product of anaerobic degradation of organic matter and an important greenhouse gas. Its stable carbon isotope composition can be used to reveal active methanogenic pathways, if associated isotope fractionation factors are known. To clarify the causes that lead to the wide

  5. Soil carbon fractions in response to long-term crop rotations in the Loess Plateau of China

    Science.gov (United States)

    Diversified crop rotations may enhance C fractions and soil quality by affecting the quality and quantity of crop residue returned to the soil compared with monocropping and fallow. We evaluated the effect of 30-yr-old diversified crop rotations on soil C fractions at 0- to 15- and 15- to 30-cm dept...

  6. Comparison of a fractional microplasma radio frequency technology and carbon dioxide fractional laser for the treatment of atrophic acne scars: a randomized split-face clinical study.

    Science.gov (United States)

    Zhang, Zhen; Fei, Ye; Chen, Xiangdong; Lu, Wenli; Chen, Jinan

    2013-04-01

    No studies have compared fractional microplasma radio frequency (RF) technology with the carbon dioxide fractional laser system (CO2 FS) in the treatment of atrophic acne scars in the same patient. To compare the efficacy and safety of fractional microplasma RF with CO2 FS in the treatment of atrophic acne scars. Thirty-three Asian patients received three sessions of a randomized split-face treatment of fractional microplasma RF or CO2 FS. Both modalities had a roughly equivalent effect. Échelle d'Évaluation Clinique Des Cicatrices d'Acné scores were significantly lower after fractional microplasma RF (from 51.1 ± 14.2 to 22.3 ± 8.6, 56.4% improvement) and CO2 FS (from 48.8 ± 15.1 to 19.9 ± 7.9, 59.2% improvement) treatments. There was no statistically significant difference between the two therapies. Twelve subjects (36.4%) experienced postinflammatory hyperpigmentation (PIH) after 30 of 99 treatment sessions (30.3%) on the CO2 FS side and no PIH was observed on the fractional microplasma RF sides. Both modalities have good effects on treating atrophic scars. PIH was not seen with the fractional microplasma RF, which might make it a better choice for patients with darker skin. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  7. Fractional ablative carbon dioxide laser resurfacing for skin rejuvenation and acne scars in Asians.

    Science.gov (United States)

    Chan, Nicola P Y; Ho, Stephanie G Y; Yeung, Chi K; Shek, Samantha Y N; Chan, Henry H

    2010-11-01

    Ablative fractional resurfacing (AFR) is a new modality for photorejuvenation and acne scars which combines carbon dioxide (CO₂) laser ablation with fractional photothermolysis. The objective is to evaluate the efficacy and side effects of a new fractional CO₂ ablative device (Fraxel Re:pair) for skin rejuvenation and acne scars in Asians. Nine patients underwent one full-face treatment. The energy levels ranged from 30-70 mJ with coverage between 30% and 45%. Improvement in skin texture, laxity, wrinkles, enlarged pores, overall pigmentation irregularity, and adverse effects were assessed up to 6 months post-treatment. Standardized photographs using the Canfield Visia CR system® were assessed by two independent observers. Subjective improvement was assessed by patient questionnaires. Nine Chinese patients (skin types III and IV, mean age 44.8) were included. Statistically significant improvements were seen for skin texture, skin laxity, wrinkles, enlarged pores, and acne scars. The post-inflammatory hyperpigmentation rate was 55.5% and 11.1% at 1 and 6 months post-treatment, respectively. Eighty-six percent of patients were overall satisfied to very satisfied with the treatment. Ablative fractional CO₂ laser resurfacing was overall safe and effective for skin rejuvenation and acne scars in Asians. However, in view of the high post-inflammatory rate and the statistically significant but only mild to moderate improvement after a single treatment as observed in this study, there is a need to review the current role of fractional ablative CO₂ laser treatment as compared to fractional non-ablative for skin rejuvenation and acne scar treatment in Asians. © 2010 Wiley-Liss, Inc.

  8. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil

    Science.gov (United States)

    Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  9. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    International Nuclear Information System (INIS)

    Grossmann, E.L.

    1984-01-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta 13 C of bicarbonate ion and thus aragonite-HCO 3 - and calcite-HCO 3 - isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in 18 O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar delta 13 C values and yield an average epsilonsub(cl-b) value of -0.2 +- 0.1 per mille between 8 deg and 10 deg C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B, argentea, Slope and Basin dwellers, are -0.7 +- 0.1 per mille enriched relative to ambient bicarbonate for 3 to 9 deg C. (author)

  10. Fractional Carbon Dioxide Laser for Keratosis Pilaris: A Single-Blind, Randomized, Comparative Study

    Directory of Open Access Journals (Sweden)

    Vasanop Vachiramon

    2016-01-01

    Full Text Available Objective. Keratosis pilaris (KP is a common condition which can frequently be cosmetically disturbing. Topical treatments can be used with limited efficacy. The objective of this study is to evaluate the effectiveness and safety of fractional carbon dioxide (CO2 laser for the treatment of KP. Patients and Methods. A prospective, randomized, single-blinded, intraindividual comparative study was conducted on adult patients with KP. A single session of fractional CO2 laser was performed to one side of arm whereas the contralateral side served as control. Patients were scheduled for follow-up at 4 and 12 weeks after treatment. Clinical improvement was graded subjectively by blinded dermatologists. Patients rated treatment satisfaction at the end of the study. Results. Twenty patients completed the study. All patients stated that the laser treatment improved KP lesions. At 12-week follow-up, 30% of lesions on the laser-treated side had moderate to good improvement according to physicians’ global assessment (p=0.02. Keratotic papules and hyperpigmentation appeared to respond better than the erythematous component. Four patients with Fitzpatrick skin type V developed transient pigmentary alteration. Conclusions. Fractional CO2 laser treatment may be offered to patients with KP. Dark-skinned patients should be treated with special caution.

  11. Do soil organic carbon levels affect potential yields and nitrogen use efficiency?

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields......, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of variables...

  12. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.

    Science.gov (United States)

    Palstra, S W L; Meijer, H A J

    2010-05-01

    The (14)C method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO(2) emissions. The applicability of the method is shown for flue gas CO(2) samples that have been sampled in 1-h intervals at a coal- and wood-fired power plant and a waste incineration plant. Biogenic flue gas CO(2) fractions of 5-10% and 48-50% have been measured at the power plant and the waste incineration plant, respectively. The reliability of the method has been proven by comparison of the power plant results with those based on carbon mass input and output data of the power plant. At industrial plants with relatively low biogenic CO(2) fraction (<10%) the results need to be corrected for sampled (14)CO(2) from atmospheric air. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Hypertrophic Scarring of the Neck Following Ablative Fractional Carbon Dioxide Laser Resurfacing

    Science.gov (United States)

    Avram, Mathew M.; Tope, Whitney D.; Yu, Thomas; Szachowicz, Edward; Nelson, J. Stuart

    2009-01-01

    Background Ablative fractional carbon dioxide (CO2) laser treatments have gained popularity due to their efficacy, shortened downtime, and decreased potential for scarring in comparison to traditional ablative CO2 resurfacing. To date, scarring with fractional CO2 lasers has not been reported. Objective Five patients treated with the same fractional CO2 laser technology for photodamage of the neck were referred to our practices 1–3 months after treatment. Each patient developed scarring. Of the five cases, two are discussed in detail. The first was treated under general anesthesia on the face and anterior neck at a pulse energy of 30 mJ (859 μm depth) with 25% coverage. Eleven days after treatment, three non-healing areas along the horizontal skin folds of the anterior neck were noted. At 2 weeks after CO2 ablative fractional resurfacing, these areas had become thickened. These raised areas were treated with a non-ablative fractionated 1,550 nm laser to modify the wound healing milieu. One week later, distinct firm pale papules in linear arrays with mild hypopigmentation had developed along involved neck skin folds. Skin biopsy was performed. For the second patient, the neck was treated at a pulse energy of 20 mJ (630 μm depth) with 30% coverage of the exposed skin, with a total treatment energy of 5.0 kJ. Minimal crusting was noted on the neck throughout the initial healing phase of 2 weeks. She then experienced tightness on her neck. Approximately 3 weeks after treatment, she developed multiple vertical and horizontal hypertrophic scars (HS). Results Histopathology for the first case confirmed the presence of a hypertrophic scar. The papules in this case completely resolved with mild residual hypopigmentation after treatment with topical corticosteroids. HS failed to resolve in the second case to date after 1 month. Conclusion As with traditional ablative CO2 laser resurfacing, HS is a potential complication of ablative fractional CO2 laser resurfacing

  14. Activated Fraction Of Black Carbon By Cloud Droplets And Ice Crystals At The High Alpine Site Jungfraujoch (3580 m asl)

    Energy Technology Data Exchange (ETDEWEB)

    Cozic, J.; Mertes, S. [IFT Leipzig (Georgia); Verheggen, B.; Petzold, A. [DLR, Oberpfaffenhofen (Georgia); Weingartner, E.; Baltensperger, U.

    2005-03-01

    Measurements of black carbon (BC) were made in winter and summer 2004 at the high Alpine site Jungfraujoch in order to study the activation of BC into cloud droplets and ice crystals. Main results showed that the activated fraction represents 61% in summer and that for a large temperature range between -25 C and 5 C, the activated BC fraction increases with increasing temperature and increasing liquid water content. (author)

  15. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Qiu, L.N. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Raabe, D. [Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 8, 40237 Düsseldorf (Germany)

    2015-06-11

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percent, wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  16. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland.

    Science.gov (United States)

    Poeplau, Christopher; Kätterer, Thomas; Leblans, Niki I W; Sigurdsson, Bjarni D

    2017-03-01

    Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in-depth understanding of changes in soil organic carbon (SOC) after soil warming, long-term responses of SOC stabilization mechanisms such as aggregation, organo-mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC-rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0-10 cm soil layer) and 27 ± 54% (20-30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0-10 cm) and 74 ± 8% (20-30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0-10 cm) and 86 ± 13% (20-30 cm) SOC losses and the highest relative enrichment in 13 C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0-10 cm and +1.3 ± 0.8‰ in 20-30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate-binding mechanisms. There was no difference between the responses of SC-rSOC (slow-cycling) and rSOC (passive) to warming, and 13 C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation. © 2016 John Wiley & Sons Ltd.

  17. Climate change affects carbon allocation to the soil in shrublands

    NARCIS (Netherlands)

    Gorissen, A.; Tietema, A.; Joosten, N.N.; Estiarte, M.; Peñuelas, J.; Sowerby, A.; Emmett, B.; Beier, J.C.

    2004-01-01

    Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes

  18. Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.

    Science.gov (United States)

    Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  19. Charge-based fractionation of oxyanion-forming metals and metalloids leached from recycled concrete aggregates of different degrees of carbonation: a comparison of laboratory and field leaching tests.

    Science.gov (United States)

    Mulugeta, Mesay; Engelsen, Christian J; Wibetoe, Grethe; Lund, Walter

    2011-02-01

    The release and charge-based fractionation of As, Cr, Mo, Sb, Se and V were evaluated in leachates generated from recycled concrete aggregates (RCA) in a laboratory and at a field site. The leachates, covering the pH range 8.4-12.6, were generated from non-carbonated, and artificially and naturally carbonated crushed concrete samples. Comparison between the release of the elements from the non-carbonated and carbonated samples indicated higher solubility of the elements from the latter. The laboratory leaching tests also revealed that the solubility of the elements is low at the "natural pH" of the non-carbonated materials and show enhancement when the pH is decreased. The charge-based fractionation of the elements was determined by ion-exchange solid phase extraction (SPE); it was found that all the target elements predominantly existed as anions in both the laboratory and field leachates. The high fraction of the anionic species of the elements in the leachates from the carbonated RCA materials verified the enhanced solubility of the oxyanionic species of the elements as a result of carbonation. The concentrations of the elements in the leachates and SPE effluents were determined by inductively coupled plasma mass spectrometry (ICP-MS). Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials.

    Science.gov (United States)

    Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E

    2017-08-01

    Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    Science.gov (United States)

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  2. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    Science.gov (United States)

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  3. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum

    International Nuclear Information System (INIS)

    Song, Kyungsun; Jang, Young-Nam; Kim, Wonbaek; Lee, Myung Gyu; Shin, Dongbok; Bang, Jun-Hwan; Jeon, Chi Wan; Chae, Soo Chun

    2014-01-01

    The mineral carbonation of FGD (flue gas desulfurization) gypsum was carried out through CO 2 sorption into ammonia solution containing FGD gypsum. High-purity calcium carbonate was precipitated from DCC (dissolved calcium carbonate) solution which was extracted during the induction period. The factors affecting the preparation of pure calcium carbonate were examined under the following conditions: CO 2 flow rate (1–3 L/min), ammonia content (4–12%), and S/L (solid-to-liquid) ratio (5–300 g/L). X-Ray diffraction study revealed that the PCC (precipitated calcium carbonate) was round-shaped vaterite. The induction time for PCC decreased as the CO 2 flow rate increased. The maximum formation efficiency for pure PCC was seen to increase linearly with the ammonia content. The formation efficiency for pure PCC was the highest (90%) for S/L ratio of 5 g/L but it decreased as S/L ratio increased. On the other hand, S/L ratio didn't affect the maximum solubility limit of DCC. It is believed that the pure PCC would add an economic value to the FGD gypsum carbonation for industrial CO 2 sequestration. - Highlights: • Pure and white CaCO 3 was synthesized using induction period during direct carbonation of FGD gypsum. • Its formation efficiency was increased with ammonia content but decreased with solid-to-liquid ratio. • This method is expected to extend to other industrial CO 2 sequestration for the enhanced economic value of precipitated CaCO 3

  4. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice

    Science.gov (United States)

    Tan, Zhengxi; Lal, R.; Owens, L.; Izaurralde, R. C.

    2007-01-01

    Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.

  5. Social Trust and Fractionalization:

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2008-01-01

    This paper takes a closer look at the importance of fractionalization for the creation of social trust. It first argues that the determinants of trust can be divided into two categories: those affecting individuals' trust radii and those affecting social polarization. A series of estimates using...... a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...... interpretations of the influence of fractionalization on trust....

  6. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  7. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin.

    Science.gov (United States)

    Reilly, Michael J; Cohen, Marc; Hokugo, Akishige; Keller, Gregory S

    2010-01-01

    Objective To elucidate the sequential changes in protein expression that play a role in the clinically beneficial results seen with fractional carbon dioxide (CO(2)) laser resurfacing of the face and neck. Methods Nine healthy volunteers were recruited for participation from the senior author's facial plastic surgery practice. After informed consent was obtained, each volunteer underwent a 2-mm punch biopsy from a discrete area of infra-auricular neck skin prior to laser treatment. Patients then immediately underwent laser resurfacing of photodamaged face and neck skin at a minimal dose (30 W for 0.1 second) with the Pixel Perfect fractional CO(2) laser. On completion of the treatment, another biopsy specimen was taken adjacent to the first site. Additional biopsy specimens were subsequently taken from adjacent skin at 2 of 3 time points (day 7, day 14, or day 21). RNA was extracted from the specimens, and reverse transcriptase-polymerase chain reaction and protein microarray analysis were performed. Comparisons were then made between time points using pairwise comparison testing. Results We found statistically significant changes in the gene expression of several matrix metalloproteinases (MMPs). The data demonstrate a consistent up-regulation of MMPs 1, 3, 9, and 13, all of which have been previously reported for fully ablative CO(2) laser resurfacing. There was also a statistically significant increase in MMP-10 and MMP-11 levels in this data set. Conclusion This study suggests that the molecular mechanisms of action are similar for both fractional and fully ablative CO(2) laser resurfacing.

  8. [Black carbon content and distribution in different particle size fractions of forest soils in the middle part of Great Xing'an Mountains, China.

    Science.gov (United States)

    Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang

    2017-10-01

    Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.

  9. Mass and energy balance of the carbonization of babassu nutshell as affected by temperature

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-03-01

    Full Text Available The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850ºC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450ºC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value and between 43 and 49% (based on lower heating value at temperatures ranging from 450 to 850ºC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.

  10. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  11. Development of irradiation techniques and assessment of tumor response carbon ion radiotherapy in ultra-short fraction and time for a small lung cancer

    International Nuclear Information System (INIS)

    Baba, Masayuki; Miyamoto, Tadaaki; Sugawara, Toshiyuki

    2005-01-01

    For planning safety carbon therapy for lung cancer, the minimum (threshold) dose to generate lung reaction on CT image was investigated at each fraction regimen. From 1995 January to 2003 December, 44 patients with stage I non-small cell lung cancer who were treated with carbon ion beams of various fractions (1-12 fractions a port) and total doses (28-90 GyE). The 78 irradiated fields for the early reaction (within 6 months) and 67 for the late (1 year after) were divided into the two groups: the positive (+) and the negative (-) after the reactions on CT image were graded according to Libshits's criteria. The α/βvalue of biological effective dose (BED) responsive curve was determined by assuming the biserial correlation coefficient between positive rate of lung reaction and BED dose. From the BED responsive curve, in turn, the dose responsive curve for lung reaction rate at each fraction regimen was obtained. Based on the curve, D10 (to generate the lung reaction at 10% of the patients) in single fraction regimen was determined to be 10.6 GyE for the late reaction and 9.96 GyE for the early reaction, respectively. These doses seem to be very useful to estimate lung injuries in singe-dose irradiation. (author)

  12. Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    P. Zacchi

    2006-03-01

    Full Text Available Wheat germ oil was obtained by mechanical pressing using a small-scale screw press and by supercritical extraction in a pilot plant. With this last method, different pressures and temperatures were tested and the tocopherol concentration in the extract was monitored during extraction. Then supercritical extracted oil as well as commercial pressed oil were deacidified in a countercurrent column using supercritical carbon dioxide as solvent under different operating conditions. Samples of extract, refined oil and feed oil were analyzed for free fatty acids (FFA and tocopherol contents. The results show that oil with a higher tocopherol content can be obtained by supercritical extraction-fractionation and that FFA can be effectively removed by countercurrent rectification while the tocopherol content is only slightly reduced.

  13. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  14. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2016-01-01

    Full Text Available Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Results: Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15 or 4 months after the second (P = 0.23. In addition, adverse effects (erythema and edema on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Limitations: Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. Conclusion: This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects

  15. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  16. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY

    Directory of Open Access Journals (Sweden)

    O. Schneising

    2011-03-01

    Full Text Available Carbon dioxide (CO2 and methane (CH4 are the two most important anthropogenic greenhouse gases contributing to global climate change. SCIAMACHY onboard ENVISAT (launch 2002 was the first and is now with TANSO onboard GOSAT (launch 2009 one of only two satellite instruments currently in space whose measurements are sensitive to CO2 and CH4 concentration changes in the lowest atmospheric layers where the variability due to sources and sinks is largest.

    We present long-term SCIAMACHY retrievals (2003–2009 of column-averaged dry air mole fractions of both gases (denoted XCO2 and XCH4 derived from absorption bands in the near-infrared/shortwave-infrared (NIR/SWIR spectral region focusing on large-scale features. The results are obtained using an upgraded version (v2 of the retrieval algorithm WFM-DOAS including several improvements, while simultaneously maintaining its high processing speed. The retrieved mole fractions are compared to global model simulations (CarbonTracker XCO2 and TM5 XCH4 being optimised by assimilating highly accurate surface measurements from the NOAA/ESRL network and taking the SCIAMACHY averaging kernels into account. The comparisons address seasonal variations and long-term characteristics.

    The steady increase of atmospheric carbon dioxide primarily caused by the burning of fossil fuels can be clearly observed with SCIAMACHY globally. The retrieved global annual mean XCO2 increase agrees with CarbonTracker within the error bars (1.80±0.13 ppm yr−1 compared to 1.81±0.09 ppm yr−1. The amplitude of the XCO2 seasonal cycle as retrieved by SCIAMACHY, which is 4.3±0.2 ppm for the Northern Hemisphere and 1.4±0.2 ppm for the Southern Hemisphere, is on average about 1 ppm larger than for CarbonTracker.

    An investigation of the boreal forest carbon uptake during the

  17. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions.

    Science.gov (United States)

    Egan, Gary; Crawley, Michael J; Fornara, Dario A

    2018-02-01

    Common grassland management practices include animal grazing and the repeated addition of lime and nutrient fertilizers to soils. These practices can greatly influence the size and distribution of different soil aggregate fractions, thus altering the cycling and storage of carbon (C) and nitrogen (N) in grassland soils. So far, very few studies have simultaneously addressed the potential long-term effect that multiple management practices might have on soil physical aggregation. Here we specifically ask whether and how grazing, liming and nutrient fertilization might influence C and N content (%) as well as C and N pools of different soil aggregate fractions in a long-term grassland experiment established in 1991 at Silwood Park, Berkshire, UK. We found that repeated liming applications over 23years significantly decreased the C pool (i.e. gCKg -1 soil) of Large Macro Aggregate (LMA>2mm) fractions and increased C pools within three smaller soil aggregate fractions: Small Macro Aggregate (SMA, 250μm-2mm), Micro Aggregate (MiA, 53-250μm), and Silt Clay Aggregate (SCAfractions was mainly caused by positive liming effects on aggregate fraction mass rather than on changes in soil C (and N) content (%). Liming effects could be explained by increases in soil pH, as this factor was significantly positively related to greater soil C and N pools of smaller aggregate fractions. Long-term grazing and inorganic nutrient fertilization had much weaker effects on both soil aggregate-fraction mass and on soil C and N concentrations, however, our evidence is that these practices could also contribute to greater C and N pools of smaller soil fractions. Overall our study demonstrates how agricultural liming can contribute to increase C pools of small (more stable) soil fractions with potential significant benefits for the long-term C balance of human-managed grassland soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Occurrence and fractionation of Cr along the Loushan River affected by a chromium slag heap in East China.

    Science.gov (United States)

    Chen, Youyuan; Dong, Bingbing; Xin, Jia

    2017-06-01

    This study investigated the chromium (Cr) occurrence and distribution along the Loushan River adjacent to a chromium slag heap. The speciation and chemical fractionation of Cr in different environmental media were determined. The potential ecological risks for the surrounding environment were assessed on the basis of both potential ecological risk index (RI) and risk assessment code (RAC). The results show that the surface soil experienced severe Cr contamination with Cr(T) and Cr(VI) values of 3220 ± 6266 and 64 ± 94 mg/kg, respectively, even though the chromium slag heap had already been removed. The chromium slag enhanced the Cr concentration level in the surface soil, water, and sediment samples more than the background level to different extents, which indicates that Cr released from the chromium slag actually affects the surrounding environment. The spatial distribution variety of Cr implies that their transport might have been affected by soil leaking, atmospheric transport, and fluvial hydraulics. The chemical fractionation results demonstrate that the residual fraction was the dominant form, accounting for 54.6 and 66.1% Cr(T) in surface soil and sediment samples, respectively. The content of bioavailable exchangeable Cr fraction correlated with the organic matter (OM), cation exchange capacity (CEC), and pH value. The ecological risk assessment suggests no considerable ecological risk toward the biota despite a relatively high Cr(T) level. Nevertheless, attention should be paid to the potential long-term risks owing to the slow release of oxidizable and residual fractions.

  19. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors

    International Nuclear Information System (INIS)

    Marek, Michal V.; Janous, Dalibor; Taufarova, Klara; Havrankova, Katerina; Pavelka, Marian; Kaplan, Veroslav; Markova, Irena

    2011-01-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. - Highlights: → Highest carbon sequestration potential in evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). → The final carbon gain of the grassland was negative (massive ecosystem respiration). → Climate is important factor of net primary productivity. → Carbon uptake is strongly affected by the ontogeny and a production strategy of ecosystem. - Identification of the apparent differences in the carbon storage by different ecosystem types.

  20. Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake

    International Nuclear Information System (INIS)

    Shirokova, L.S.; Pokrovsky, O.S.; Moreva, O.Yu.; Chupakov, A.V.; Zabelina, S.A.; Klimov, S.I.; Shorina, N.V.; Vorobieva, T.Ya.

    2013-01-01

    The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa–0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30 °C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70–80% to only 20–30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90–98% in most summers and winters to approximately 60–70% in August 2010. During this hot summer, measurable and significant (> 30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved ( 100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in

  1. Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan

    International Nuclear Information System (INIS)

    Hung, C.-C.; Gong, G.-C.; Chen, H.-Y.; Hsieh, H.-L.; Santschi, Peter H.; Wade, Terry L.; Sericano, Jose L.

    2007-01-01

    In order to understand the fate of pesticides in marine environments, concentrations of pesticides and different carbonaceous fractions were determined for surface sediments in the Danshui River and nearby coastal areas of Taiwan. The major compounds detected were tetrachlorobenzene, HCHs, chlordane, aldrin, DDDs, DDEs and DDTs. Total concentrations of pesticides in the sediments ranged from not detectable to 23 ng g -1 , with the maximum value detected near the discharge point of the marine outfall from the Pali sewage treatment plant. These results confirm that pesticides persist in estuarine and nearby coastal environments of the Danshui River well after their ban. Concentrations of total pesticides significantly correlate with concentrations of total organic carbon and black carbon in these sediments, suggesting that total organic carbon and black carbon regulate the distribution of trace organic pollutants in fluvial and coastal marine sediments. - Total organic carbon and black carbon regulate the distribution of trace organic pollutants in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan

  2. An automated HPLC method for the fractionation of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in fish tissue on a porous graphitic carbon column

    Science.gov (United States)

    Echols, Kathy R.; Gale, Robert W.; Tillitt, Donald E.; Schwartz, Ted R.; O'Laughlin, Jerome

    1997-01-01

    The Ah (aryl-hydrocarbon) hydroxylase-receptor active polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were fractionated by an automated high-performance liquid chromatography (HPLC) system using the Hypercarb™ porous graphitic carbon (PGC) column. This commercially available column was used to fractionate the di-, mono-, and non-ortho PCBs into three fractions for gas chromatography (GC)/electron capture detection analysis, and a fourth fraction containing the PCDDs/PCDFs for GC/mass spectrometry analysis. The recoveries of the PCBs ranged from 68 to 96%, and recoveries of the PCDDs/PCDFs ranged from 74 to 123%. The PGC column has the advantage of faster separations (110 min versus 446 min) and less solvent use (275 ml versus 1,100 ml) compared with automated fractionation of these compounds on activated carbon (PX-21), while still affording good separation of the classes. The PGC column may have an advantage over the pyrenyl-based HPLC method because it has a greater loading capacity (400 μg total PCBs versus 250 μg). Overall, the PGC is a standard column that provides reproducible fractionation of PCDD/PCDFs and PCBs for analytical measurement in environmental samples.

  3. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  4. Graft-copolymerization onto carbon black

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Nishii, Masanobu; Kijima, Toshiyuki; Kato, Hiroshi.

    1988-07-01

    Radiation-induced graft copolymerization of vinyl monomer onto carbon black was performed. During the γ-ray- and electron beam-induced polymerization (In-source), or the electron beam post-polymerization, the graft-copolymerization behavior was affected by the kinds of both carbon blacks and monomers, i.e. the smaller the size of carbon black particles, the higher the apparent grafted fraction. Homopolymer in the grafted carbon black samples was washed out by the solvent of the polymer, and the extracted polymer seemed to be dimer or trimer of the used monomer. In the case of the post-polymerization with the pre-irradiation doses of 50 Mrad, homopolymer was hardly observed. The polymer sheets of plastics or rubbers with grafted carbon black had an electrical conductivity unalterable considerably by the heating cycles. The particles of grafted carbon black in the sheet might be kept much more at the surface layer within 100 nm depth than at the inner layer. (author)

  5. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application: A treatment option for pediatric cutaneous leishmaniasis.

    Science.gov (United States)

    Hilerowicz, Yuval; Koren, Amir; Mashiah, Jacob; Katz, Oren; Sprecher, Eli; Artzi, Ofir

    2018-05-01

    Leishmaniasis is a protozoan zoonotic parasitic infection with cutaneous, mucocutaneous, and visceral manifestations. Israel is endemic for cutaneous leishmaniasis, which is a self-limited disease but is associated with scarring, which is often a source of psychological and social burden for patients. Scars can be especially devastating for children and teenagers. A wide range of physical and medical approaches is used to treat cutaneous leishmaniasis, among which intralesional injections of sodium stibogluconate rank among the most frequently used. Unfortunately, despite being effective, this therapeutic modality can be very painful. Fractional ablative laser creates a controlled mesh-like pattern of tissue ablation in the skin that promotes dermal remodeling and collagen production while at the same time facilitating enhanced delivery of topically applied medications. Patients were treated with fractional ablative carbon dioxide laser followed by immediate topical application of sodium stibogluconate. All children were diagnosed with cutaneous leishmaniasis prior to treatment initiation.. Ten children were treated. One leishmania tropica-positive girl failed to respond. The other nine patients achieved clinical cure and demonstrated good to excellent final cosmesis. Self-rated patient satisfaction and tolerance were high No adverse effects were observed or reported during treatment. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application appears to be a safe and promising treatment for cutaneous leishmaniasis infection in children. Future controlled studies are required to validate these findings and compare this technique with traditional approaches. © 2018 Wiley Periodicals, Inc.

  6. Carbon and carbon-14 in lunar soil 14163

    International Nuclear Information System (INIS)

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000 0 C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small ( 53 μ) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14

  7. An approach for characterization and lumping of plus fractions of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, I.; Hamouda, A.A. [Stavanger Univ., Stavanger (Norway)

    2008-10-15

    The constituents of hydrocarbons can be classified as either well-defined components or undefined petroleum fractions. This paper presented a newly developed method for characterizing plus fractions of heavy oil, which is particularly important for fluids with high molecular weight and high density. Characterization of plus fractions typically consists of 3 parts, notably splitting the fraction into a certain number of components groups called single carbon number (SCN); estimating the physico-chemical properties of the SCN; and lumping the generated SCN. SCN groups contain hundreds of isomers/components with the same number of carbon atoms. A unique molecular weight cannot be assigned for each SCN group because of the uncertainty of the isomers/components present. Therefore, this work focused on finding a new approach to characterize the undetermined fraction by first splitting the carbon number fraction into a representative number of SCN and then calculating their mole fraction and molecular weight. The method was based on the relationships between three parameter gamma distribution (TPG), experimental mole fraction, molecular weight and SCN data obtained from literature and industry. The method was applied to 5 different heavy oil sample fluids which all showed a left skewed distribution of the mole fraction as a function of carbon number. The predicted molecular weight was found to be close to the generalized molecular weight associated with carbon number, but it differed from one sample to another. 19 refs., 11 tabs., 15 figs.

  8. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  9. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions

    DEFF Research Database (Denmark)

    Gomez Muñoz, Beatriz; Case, Sean; Jensen, Lars Stoumann

    2016-01-01

    the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified...... solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions....

  10. Decreased carbon limitation of litter respiration in a mortality-affected pinon-juniper woodland

    Science.gov (United States)

    Erin Berryman; John D. Marshall; Thom Rahn; Marcie Litvak; John Butnor

    2013-01-01

    Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting pinon-juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of...

  11. Fractional Carbon Dioxide Laser and its Combination with Subcision in Improving Atrophic Acne Scars.

    Science.gov (United States)

    Nilforoushzadeh, Mohammad Ali; Faghihi, Gita; Jaffary, Fariba; Haftbaradaran, Elaheh; Hoseini, Sayed Mohsen; Mazaheri, Nafiseh

    2017-01-01

    Acne is a very common skin disease in which scars are seen in 95% of the patients. Although numerous treatments have been recommended, researchers are still searching for a single modality to treat the complication due to its variety in shape and depth. We compared the effects of fractional carbon dioxide (CO 2 ) laser alone and in combination with subcision in the treatment of atrophic acne scars. This clinical trial study was performed in Skin Diseases and Leishmaniasis Research Center (Isfahan, Iran) during 2011-2012. Eligible patients with atrophic acne scars were treated with fractional CO 2 laser alone (five sessions with 3-week interval) on the right side of the face and fractional CO 2 laser plus subcision (one session using both with four sessions of fractional CO 2 laser, with 3-week interval) on the left side. The subjects were visited 1, 2, and 6 months after the treatment. Patient satisfaction rate was analyzed using SPSS 20 software. The average of recovery rate was 54.7% using the combination method and 43.0% using laser alone ( P < 0.001). The mean patient satisfaction was significantly higher with the combination method than laser alone (6.6 ± 1.2 vs. 5.2 ± 1.8; P < 0.001). Bruising was only seen with the combination method and lasted for 1 week in 57.0% and for 2 weeks in 43.0%. Erythema was seen in both methods. Postinflammatory pigmentation and hyperpigmentation were associated with combination method. No persistent side effects were seen after 6 months. Using a combination of subcision and laser had suitable results regarding scar recovery and satisfaction rate.

  12. Carbon and hydrogen isotope fractionation under continuous light: implications for paleoenvironmental interpretations of the High Arctic during Paleogene warming.

    Science.gov (United States)

    Yang, Hong; Pagani, Mark; Briggs, Derek E G; Equiza, M A; Jagels, Richard; Leng, Qin; Lepage, Ben A

    2009-06-01

    The effect of low intensity continuous light, e.g., in the High Arctic summer, on plant carbon and hydrogen isotope fractionations is unknown. We conducted greenhouse experiments to test the impact of light quantity and duration on both carbon and hydrogen isotope compositions of three deciduous conifers whose fossil counterparts were components of Paleogene Arctic floras: Metasequoia glyptostroboides, Taxodium distichum, and Larix laricina. We found that plant leaf bulk carbon isotopic values of the examined species were 1.75-4.63 per thousand more negative under continuous light (CL) than under diurnal light (DL). Hydrogen isotope values of leaf n-alkanes under continuous light conditions revealed a D-enriched hydrogen isotope composition of up to 40 per thousand higher than in diurnal light conditions. The isotope offsets between the two light regimes is explained by a higher ratio of intercellular to atmospheric CO(2) concentration (C (i)/C (a)) and more water loss for plants under continuous light conditions during a 24-h transpiration cycle. Apparent hydrogen isotope fractionations between source water and individual lipids (epsilon(lipid-water)) range from -62 per thousand (Metasequoia C(27) and C(29)) to -87 per thousand (Larix C(29)) in leaves under continuous light. We applied these hydrogen fractionation factors to hydrogen isotope compositions of in situ n-alkanes from well-preserved Paleogene deciduous conifer fossils from the Arctic region to estimate the deltaD value in ancient precipitation. Precipitation in the summer growing season yielded a deltaD of -186 per thousand for late Paleocene, -157 per thousand for early middle Eocene, and -182 per thousand for late middle Eocene. We propose that high-latitude summer precipitation in this region was supplemented by moisture derived from regionally recycled transpiration of the polar forests that grew during the Paleogene warming.

  13. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  14. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    Science.gov (United States)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  15. Carbon flow analysis and Carbon emission reduction of FCC in Chinese oil refineries

    Science.gov (United States)

    Jia, Fengrui; Wei, Na; Ma, Danzhu; Liu, Guangxin; Wu, Ming; Yue, Qiang

    2017-08-01

    The major problem of the energy production in oil refineries is the high emission of CO2 in China. The fluid catalytic cracking unit (FCC) is the key source of carbon emission in the oil refineries. According to the statistical data, the carbon emission of FCC unit accounts for more than 31% for the typical oil refineries. The carbon flow of FCC in the typical Chinese oil refineries were evaluated and analysed, which aimed at the solution of CO2 emission reduction. The method of substances flow analysis (SFA) and the mathematical programming were used to evaluate the carbon metabolism and optimize the carbon emission. The results indicated that the combustion emission of the reaction-regeneration subsystem (RRS) was the major source of FCC. The quantity of CO2 emission of RSS was more than 90%. The combustion efficiency and the amount of residual oil affected the carbon emission of RRS most according to the optimized analysis of carbon emission reduction. Moreover, the fractionation subsystem (TFS) had the highest environmental efficiency and the absorption-stabilization subsystem (ASS) had the highest resource efficiency (approximately to 1) of carbon.

  16. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere

    Science.gov (United States)

    Zhang, Yuzhong; Forrister, Haviland; Liu, Jiumeng; Dibb, Jack; Anderson, Bruce; Schwarz, Joshua P.; Perring, Anne E.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Wang, Yuhang; Nenes, Athanasios; Weber, Rodney J.

    2017-07-01

    Carbonaceous aerosols affect the global radiative balance by absorbing and scattering radiation, which leads to warming or cooling of the atmosphere, respectively. Black carbon is the main light-absorbing component. A portion of the organic aerosol known as brown carbon also absorbs light. The climate sensitivity to absorbing aerosols rapidly increases with altitude, but brown carbon measurements are limited in the upper troposphere. Here we present aircraft observations of vertical aerosol distributions over the continental United States in May and June 2012 to show that light-absorbing brown carbon is prevalent in the troposphere, and absorbs more short-wavelength radiation than black carbon at altitudes between 5 and 12 km. We find that brown carbon is transported to these altitudes by deep convection, and that in-cloud heterogeneous processing may produce brown carbon. Radiative transfer calculations suggest that brown carbon accounts for about 24% of combined black and brown carbon warming effect at the tropopause. Roughly two-thirds of the estimated brown carbon forcing occurs above 5 km, although most brown carbon is found below 5 km. The highest radiative absorption occurred during an event that ingested a wildfire plume. We conclude that high-altitude brown carbon from biomass burning is an unappreciated component of climate forcing.

  17. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China.

    Science.gov (United States)

    Yuan, Ye; Zhao, Zhongqiu; Li, Xuezhen; Wang, Yangyang; Bai, Zhongke

    2018-02-01

    The reclamation of discarded spoils has the potential to stimulate carbon (C) sequestration in reclaimed mine soils (RMSs). Nevertheless, to date the temporal dynamics of labile organic C fractions have not been sufficiently elucidated in RMSs. In this study, soil organic carbon (SOC) and labile organic C fractions, including microbial biomass organic C (MBC), easily oxidizable organic C (EOC) and dissolved organic C (DOC), were determined in Robinia pseudoacacia monoculture forests (reclamation periods of 0, 8, 10, 13, 15, 18 and 30years), Pinus tabuliformis forests (reclamation periods of 0, 10, 19, 23 and 25years) and Ulmus pumila forests (reclamation periods of 0, 18, 20 and 22years) situated on RMSs in the Pingshuo opencast coal mine, China. Changes in labile organic C fractions within the soil profiles (0-100cm) were also identified at the 18- or 19-year plots under the three monoculture forests. Our results showed that, SOC and labile organic C fractions, together with soil microbial quotient (SMQ) and C management index (CMI), increased with time since reclamation, indicating that the quality of RMSs improved over time after initial reclamation under the three forest types. R. pseudoacacia significantly increased the accretion of SOC and EOC in the early stage of reclamation while P. tabuliformis accelerated the accumulation of the MBC fraction. Results for U. pumila indicated that this species had a better ability to store C in RMSs 10years or more after reclamation. SOC and labile organic C fractions both had S-shaped distributions within the soil profiles (0-100cm), with the 0-20cm layer recording the highest values (Pfractions were closely associated and correlated with soil physicochemical properties; our results also showed that nitrogen played an important role in the development of labile organic C fractions. Overall, reclamation accelerated the accretion of both SOC and labile organic C fractions, results of which varied among the reclaimed forests

  18. Chromium Fractions Changes Compared With Total-Cr As Determined by Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Abdou, F.M.; Elwan, I.M.; Al-Salama, Y.J.

    2003-01-01

    Fifteen soil samples were chosen from different locations (five different locations at north greater Cairo, Egypt to represent different soils (alluvial and sandy) as well as different source of contaminated wastewater (sewage and industrial effluent). Using sequential extraction technique (extracting the soil with different solutions, which is designed to separate metal fractions), Cr was separated into six operationally defined fractions water soluble, exchangeable, carbonate bound, Fe-Mn oxides bound, organic bound and residual fractions. Result of soil total-Cr indicated the serious accumulation of Cr in soils subjected to prolonged irrigation with contaminated wastewater. As it could seen, total-Cr in the tested contaminated soils exceeds the permissible levels (75-100)ppm Cr by several order of magnitude particularly at the surface and subsurface layers. The highest accumulation of total Cr down to depth 60 cm was observed in case of soil E. Data showed that values of total Cr determined by NAA method were always higher than the relevant values determined either by AAS or those calculated after the sequential extraction method. T-test analysis showed the significant difference between NAA and either AAS or sequential extraction methods. Although T-test analysis showed that were significant differences between total content in soils as determined by destructive (AAS or SUM) and non-destructive (NAA) analytical techniques however, strong liner relation between NAA and other tested methods was obtained. Chromium distribution between different extractants shows that the greatest amounts are found in the residual and Occluded in Fe and Mn-Oxides fractions followed by carbonate or organic fractions. In most cases the proportion of all tested Cr-forms has increased in contaminated soil layers with higher enrichment in organically bound Cr, occluded in Fe and Mn oxides, carbonate exchangeable and soluble fractions. Results indicate that soil properties have a

  19. Application of molecular sieves in the fractionation of lemongrass oil from high-pressure carbon dioxide extraction

    Directory of Open Access Journals (Sweden)

    L. Paviani

    2006-06-01

    Full Text Available The aim of this work was to study the feasibility of simultaneous process of high-pressure extraction and fractionation of lemongrass essential oil using molecular sieves. For this purpose, a high-pressure laboratory-scale extraction unit coupled with a column with four different stationary phases for fractionation: ZSM5 zeolite, MCM-41 mesoporous material, alumina and silica was employed. Additionally, the effect of carbon dioxide extraction variables on the global yield and chemical composition of the essential oil was also studied in a temperature range of 293 to 313 K and a pressure range of 100 to 200 bar. The volatile organic compounds of the extracts were identified by a gas chromatograph coupled with a mass spectrometer detector (GC/MS. The results indicated that the extraction process variables and the stationary phase exerted an effect on both the extraction yield and the chemical composition of the extracts.

  20. Measurement and investigation of effects of coal tar pitch fractions in nuclear graphite properties

    International Nuclear Information System (INIS)

    Fatemi, K.; Fatoorehchian, S.; Ahari Hashemi, F.; Ahmadi, Sh.

    2003-01-01

    Coal tar pitch has a complex chemical structure. Determination of α, β, γ fractions, is one of the methods to get information about its properties. In graphite fabrication it plays a role as a binder for coke particles. During the thermal treatment it carbonizes and changes to a secondary coke. This has considerable affects on the graphite properties. In this paper, determination of α, β, γ-1 fraction in three different types of pitches have been carried out. Graphite specimens have been fabricated by using these pitches and anisotropy coke in laboratory scale. The graphite properties have been compared with the nuclear graphite prototype. The comparison of the results showed that the density and compression strength are appreciable while the anisotropy factor of properties is about one. The linear thermal expansion in graphite from Iranian pitch had a better, result, where it stands in the nuclear range of usage. As a result, our studies showed that the graphite properties are affected by properties of pitch fractions, where it can be used as a proper sample for the graphite fabrication

  1. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    Science.gov (United States)

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  2. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  3. Fractional carbon dioxide laser versus low-dose UVA-1 phototherapy for treatment of localized scleroderma: a clinical and immunohistochemical randomized controlled study.

    Science.gov (United States)

    Shalaby, S M; Bosseila, M; Fawzy, M M; Abdel Halim, D M; Sayed, S S; Allam, R S H M

    2016-11-01

    Morphea is a rare fibrosing skin disorder that occurs as a result of abnormal homogenized collagen synthesis. Fractional ablative laser resurfacing has been used effectively in scar treatment via abnormal collagen degradation and induction of healthy collagen synthesis. Therefore, fractional ablative laser can provide an effective modality in treatment of morphea. The study aimed at evaluating the efficacy of fractional carbon dioxide laser as a new modality for the treatment of localized scleroderma and to compare its results with the well-established method of UVA-1 phototherapy. Seventeen patients with plaque and linear morphea were included in this parallel intra-individual comparative randomized controlled clinical trial. Each with two comparable morphea lesions that were randomly assigned to either 30 sessions of low-dose (30 J/cm 2 ) UVA-1 phototherapy (340-400 nm) or 3 sessions of fractional CO 2 laser (10,600 nm-power 25 W). The response to therapy was then evaluated clinically and histopathologically via validated scoring systems. Immunohistochemical analysis of TGF-ß1 and MMP1 was done. Patient satisfaction was also assessed. Wilcoxon signed rank test for paired (matched) samples and Spearman rank correlation equation were used as indicated. Comparing the two groups, there was an obvious improvement with fractional CO 2 laser that was superior to that of low-dose UVA-1 phototherapy. Statistically, there was a significant difference in the clinical scores (p = 0.001), collagen homogenization scores (p = 0.012), and patient satisfaction scores (p = 0.001). In conclusion, fractional carbon dioxide laser is a promising treatment modality for cases of localized morphea, with proved efficacy of this treatment on clinical and histopathological levels.

  4. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.

    Science.gov (United States)

    Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E

    2017-10-01

    Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    International Nuclear Information System (INIS)

    Vetcher, Alexandre A; Srinivasan, Srimeenakshi; Vetcher, Ivan A; Abramov, Semen M; Kozlov, Mikhail; Baughman, Ray H; Levene, Stephen D

    2006-01-01

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique

  6. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Vetcher, Alexandre A [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Srinivasan, Srimeenakshi [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Vetcher, Ivan A [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States); Abramov, Semen M [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Kozlov, Mikhail [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Baughman, Ray H [NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083 (United States); Levene, Stephen D [Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 (United States)

    2006-08-28

    We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.

  7. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  9. The rates of carbon cycling in several soils from AMS14C measurements of fractionated soil organic matter

    International Nuclear Information System (INIS)

    Trumbore, S.E.; Bonani, G.; Wolfli, W.

    1990-01-01

    14 C mean residence times (MRT) of fractionated organic matter are reported for three pre-bomb soil profiles. Comparisons of organic matter extracted with acid and base showed that the longest MRTs were associated with the non-acid-hydrolysable fraction. The MRT of organic matter in a soil layer represents a combination of the rates of several processes, including decay to CO 2 and transport out of the layer. In some instances (notably in the A horizon of the Podzol soil studied in this paper), the MRT is dominated by the rate of transport, rather than the rate of decay. Thus it is important to use the distribution and balance of carbon in the soil profile to assess the meaning of the MRT with respect to influencing atmospheric CO 2

  10. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  11. The role of transforming growth factor β1 in fractional laser resurfacing with a carbon dioxide laser.

    Science.gov (United States)

    Jiang, Xia; Ge, Hongmei; Zhou, Chuanqing; Chai, Xinyu; Deng, Hui

    2014-03-01

    The aim of this study was to investigate the role of transforming growth factor β1 in mechanisms of cutaneous remodeling induced by fractional carbon dioxide laser treatment. The dorsal skin of Kunming mice was exposed to a single-pass fractional CO2 laser treatment. Biopsies were taken at 1 h and at 1, 3, 7, 14, 21, 28, and 56 days after treatment. Transforming growth factor (TGF) β1 expression in skin samples was evaluated by ELISA, dermal thickness by hematoxylin-eosin staining, collagen and elastic fibers by Ponceau S and Victoria blue double staining, and types I and III collagens by ELISA. The level of TGF β1 in the laser-treated areas of skin was significantly increased compared with that in the control areas on days 1 (p skin of the laser-treated areas had increased significantly (p resurfacing.

  12. Fractional carbon dioxide laser for the treatment of facial atrophic acne scars: prospective clinical trial with short and long-term evaluation.

    Science.gov (United States)

    Elcin, Gonca; Yalici-Armagan, Basak

    2017-12-01

    The aim of this study was to evaluate the efficacy and safety of fractional carbon dioxide laser for the treatment of acne scars. Thirty-one participants, 15 female and 16 male, whose mean age was 34.84 ± 10.94 years, were included in this prospective study. The study took place between 2012 and 2016. Participants were evaluated with the "ECCA Grading Scale" before the first session, 3 months (short-term evaluation) and 3 years after the last session (long-term evaluation). Participants received two or three treatment sessions at 4-week intervals, with a 10,600 nm fractional carbon dioxide laser with pulse energies ranging between 100 and 160 mJ, 120 spot type, 75-100 spot/cm 2 density, and 30 W power. Self-assessments by the participants were done 3 months and 3 years after the last session. The mean ECCA score was 107.90 ± 39.38 before the first session, and 82.17 ± 36.23 at the time of short-term evaluation (p = 0.000). The grade of improvement at the short-term evaluation was as follows: no improvement, mild, moderate, and significant improvement for 7 (22.6%), 11 (35.5%), 9 (29%), and 4 (12.9%) of the participants, respectively. Regarding self-assessments, 80.6 and 61.3% of the participants rated themselves as having at least mild improvement at the short-term and the long-term follow-up periods, respectively. The results of this study suggest that fractional carbon dioxide laser is an efficient treatment option for acne scars. Furthermore, self-assessment results show that more than half of the participants still experience at least mild improvement at the end of 3 years.

  13. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    Science.gov (United States)

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. An unaccounted fraction of marine biogenic CaCO3 particles.

    Directory of Open Access Journals (Sweden)

    Mikal Heldal

    Full Text Available Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from 100 µm, and in a typical concentration of 10(4-10(5 particles L(-1 (size range counted 1-100 µm. Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1-100 µm size range account for 2-4 times more CaCO(3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO(2 remains to be investigated.

  15. Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge.

    Science.gov (United States)

    De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F

    2018-06-01

    In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon.

    Science.gov (United States)

    Islam, Md Shahinoor; McPhedran, Kerry N; Messele, Selamawit A; Liu, Yang; Gamal El-Din, Mohamed

    2018-07-01

    The production of oil from oil sands in northern Alberta has led to the generation of large volumes of oil sands process-affected water (OSPW) that was reported to be toxic to aquatic and other living organisms. The toxicity of OSPW has been attributed to the complex nature of OSPW matrix including the inorganic and organic compounds primarily naphthenic acids (NAs: C n H 2n+Z O x ). In the present study, granular activated carbon (GAC) adsorption was investigated for its potential use to treat raw and ozonated OSPW. The results indicated that NA species removal increased with carbon number (n) for a fixed Z number; however, the NA species removal decreased with Z number for a fixed carbon number. The maximum adsorption capacities obtained from Langmuir adsorption isotherm based on acid-extractable fraction (AEF) and NAs were 98.5 mg and 60.9 mg AEF/g GAC and 60 mg and 37 mg NA/g GAC for raw and ozonated OSPW, respectively. It was found that the Freundlich isotherm model best fits the AEF and NA equilibrium data (r 2  ≥ 0.88). The adsorption kinetics showed that the pseudo-second order and intraparticle diffusion models were both appropriate in modeling the adsorption kinetics of AEF and NAs to GAC (r 2  ≥ 0.97). Although pore diffusion was the rate limiting step, film diffusion was still significant for assessing the rate of diffusion of NAs. This study could be helpful to model, design and optimize the adsorption treatment technologies of OSPW and to assess the performance of other adsorbents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    Science.gov (United States)

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs. © 2014 John Wiley & Sons Ltd.

  18. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Science.gov (United States)

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  19. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Science.gov (United States)

    Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.

    2013-03-01

    Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmosphere Watch programme of the World Meteorological Organisation (WMO/GAW) for carbon dioxide (±0.1 ppm in the Northern Hemisphere and ±0.05 ppm in the Southern Hemisphere) and methane (±2 ppb). Drying the sample gas to low levels of water vapour can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular cavity ring down spectroscopy, have led to the development of greenhouse gas analysers capable of simultaneous measurements of carbon dioxide, methane and water vapour. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapour, these instruments permit accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals (WMO, 2011a) without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  20. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models.

    Science.gov (United States)

    Verma, Neeraj; Singh, Anil P; Amresh, G; Sahu, P K; Rao, Ch V

    2011-05-01

    To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl(4))-induced liver damage in preventive and curative models. Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl(4)-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content. The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl(4) treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl(4)-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl(4)-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl(4)-induced hepatic damage in rats.

  1. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

    Science.gov (United States)

    Bai, Yuhong; Zhang, Yi; Zhang, Jingping; Mu, Qingxin; Zhang, Weidong; Butch, Elizabeth R.; Snyder, Scott E.; Yan, Bing

    2010-09-01

    Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

  2. The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic

    Science.gov (United States)

    Schouten, Stefan; Woltering, Martijn; Rijpstra, W. Irene C.; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-06-01

    A study of upper Paleocene-lower Eocene (P-E) sediments deposited on the Lomonosov Ridge in the central Arctic Ocean reveals relatively high abundances of terrestrial biomarkers. These include dehydroabietane and simonellite derived from conifers (gymnosperms) and a tetra-aromatic triterpenoid derived from angiosperms. The relative percentage of the angiosperm biomarker of the summed angiosperm + conifer biomarkers was increased at the end of the Paleocene-Eocene thermal maximum (PETM), different when observed with pollen counts which showed a relative decrease in angiosperm pollen. Stable carbon isotopic analysis of these biomarkers shows that the negative carbon isotope excursion (CIE) during the PETM amounts to 3‰ for both conifer biomarkers, dehydroabietane and simonellite, comparable to the magnitude of the CIE inferred from marine carbonates, but significantly lower than the 4.5‰ of the terrestrial C 29n-alkane [M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, and the IODP Expedition 302 Expedition Scientists (2006), Arctic's hydrology during global warming at the Paleocene-Eocene thermal maximum. Nature, 442, 671-675.], which is a compound sourced by both conifers and angiosperms. Conspicuously, the angiosperm-sourced aromatic triterpane shows a much larger CIE of 6‰ and suggests that angiosperms increased in their carbon isotopic fractionation during the PETM. Our results thus indicate that the 4.5‰ C 29n-alkane CIE reported previously represents the average CIE of conifers and angiosperms at this site and suggest that the large and variable CIE observed in terrestrial records may be partly explained by the variable contributions of conifers and angiosperms. The differential response in isotopic fractionation of angiosperms and conifers points to different physiological responses of these vegetation types to the rise in temperature, humidity, and greenhouse gases during the PETM.

  3. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    Science.gov (United States)

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Separation of copper flotation concentrates into density fractions by means of polytungstate aqueous solution

    Directory of Open Access Journals (Sweden)

    Luszczkiewicz Andrzej

    2016-01-01

    Full Text Available Industrial and laboratory flotation copper concentrates were subjected to separation into density fractions by means of heavy liquids in the form of sodium polytungstate aqueous solutions. For two samples, three densities factions were created, however in different density ranges. The density fractions were analyzed to establish the content of copper, lead, silver and organic carbon. The size of particles in both samples was similar (90-95% −0.071 mm. It was found that the lightest density fractions −2.45 and −2.0 g/cm3 still contained sulfide minerals scattered in the organic carbon bearing particles. Removal of the lightest density fraction (−2.0 g/cm3 from the industrial concentrate samples led to considerable reduction of organic carbon (92% and increasing its quality from 13 to 28% Cu. The mineralogical analysis of the heavy liquid separation products showed that most sulfide minerals were evenly dissemination in the heaviest density fractions with the recovery of 95-98%. The lightest density fraction of −2.0 g/cm3, being the richest in organic carbon, contained approximately 3% of unliberated sulfide minerals.

  5. Relative age and age sequence of fractions of soil organic matter

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.

    1975-01-01

    Natural radiocarbon measurements on soil fractions provide information regarding the chances of separating the ''old biologically inert carbon'' out of samples of recent soil material. Beyond this, the relative fraction ages are scrutinized for the sequential order of the origin of the fractions within the biosynthetic reaction chain of soil humic matter. Among all fractions compared (classic humic matter fractionation by alkali and acid treatment; successive extraction with organic solvents of increasing polarity; separation according to particle size by Sephadex gel filtration; hydrolysis residue) the 6 n HCl hydrolysis residue shows the most consistent significant age increment. Repeated exhaustive hydrolysis treatment of the same sample material is still pending. All other fraction types indicate an age pattern under strong predetermination by method of origin, e.g., existence or lack of hydromorphy, without an evident enrichment of the ''old biologically inert carbon''. Among the organic extracts, no persistent age hierarchy is noticeable, whereas the classical fractions follow an age sequence mainly parallel to an increase of the molecular weight. Hymatomelanic acids appear rejuvenated by relics of recent carbon derived from the extractant ethanol. Grey humic acids are older than the brown humic acids, humines from fully terrestrial soil environment are older than humic acids, while in hydromorphic soils, cold alkali insoluble young C-compounds seem to be conserved which are liable to falsify rejuvenation of the humines

  6. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  7. A high throughput mass spectrometry screening analysis based on two-dimensional carbon microfiber fractionation system.

    Science.gov (United States)

    Ma, Biao; Zou, Yilin; Xie, Xuan; Zhao, Jinhua; Piao, Xiangfan; Piao, Jingyi; Yao, Zhongping; Quinto, Maurizio; Wang, Gang; Li, Donghao

    2017-06-09

    A novel high-throughput, solvent saving and versatile integrated two-dimensional microscale carbon fiber/active carbon fiber system (2DμCFs) that allows a simply and rapid separation of compounds in low-polar, medium-polar and high-polar fractions, has been coupled with ambient ionization-mass spectrometry (ESI-Q-TOF-MS and ESI-QqQ-MS) for screening and quantitative analyses of real samples. 2DμCFs led to a substantial interference reduction and minimization of ionization suppression effects, thus increasing the sensitivity and the screening capabilities of the subsequent MS analysis. The method has been applied to the analysis of Schisandra Chinensis extracts, obtaining with a single injection a simultaneous determination of 33 compounds presenting different polarities, such as organic acids, lignans, and flavonoids in less than 7min, at low pressures and using small solvent amounts. The method was also validated using 10 model compounds, giving limit of detections (LODs) ranging from 0.3 to 30ngmL -1 , satisfactory recoveries (from 75.8 to 93.2%) and reproducibilities (relative standard deviations, RSDs, from 1.40 to 8.06%). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  9. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  11. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    Science.gov (United States)

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  12. The Effect of Neodymium: Yttrium Aluminum Garnet and Fractional Carbon Dioxide Lasers on Alopecia Areata: A Prospective Controlled Clinical Trial.

    Science.gov (United States)

    Yalici-Armagan, Basak; Elcin, Gonca

    2016-04-01

    Effective treatment options for alopecia areata (AA) are missing. Whether lasers might be effective is a topic of debate. We aimed to evaluate whether neodymium: yttrium aluminum garnet (Nd:YAG) or fractional carbon dioxide lasers might stimulate the development of new hair. Thirty-two patients who had long-standing and treatment refractory diseases were recruited for the study. Three different patches on the scalp were selected, 1 of which served as control. The mean outcome measure was the hair count, which was calculated with the digital phototrichogram. Response was defined as at least 25% increase in the mean hair count at the treated patch compared with the control patch. At the end of the study, there was no statistically significant difference in the mean hair count for the 3 patches. In 7 of 32 patients (22%), an increase in the mean hair count was observed on the whole scalp including the control patch, which resulted in an improved Severity of Alopecia Tool (SALT) score. We have observed that Nd:YAG or fractional carbon dioxide lasers did not increase the mean hair count on the treated AA patches when compared with the control patch. However, an SALT score improvement in 22% of the patients suggested spontaneous remission.

  13. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  14. Characterization of federated oil fractions used for the PTAC project to study the petroleum fraction-specific toxicity to soils

    International Nuclear Information System (INIS)

    Wang, Z.; Jokuty, P.; Fingas, M.; Sigouin, L.

    2001-01-01

    In 1998, the Petroleum Technology Alliance of Canada (PTAC) and the Canadian Association of Petroleum Producers (CAPP) launched an important research project for the oil and gas industry entitled A Fraction-Specific Toxicity and Derivation of Recommended Soil Quality Guidelines for Crude Oil in Agricultural Soils. The objective was to generate useful and relevant data that could be used to develop soil quality guidelines for petroleum hydrocarbon residuals in agricultural soils. The oil used in the study was Federated crude oil which was fractionated into four fractions using a distillation method. The fraction-based approach was used to support ecologically-relevant, risk-based, soil quality criteria for the protection of environmental health. This paper presented the nominal carbon number and boiling point ranges of these fractions and described the distillation procedures for producing the fractions from the Federated crude oil. The paper also presented the detailed chemical characterization results of each distillation fraction. The toxicity of the crude oil mixture to plants and soil invertebrates was also assessed using standardized toxicity tests. Tests were also conducted to assess the toxicity of fractions of the crude oil and the toxic interactions of the fractions responsible for a significant proportion of the toxicity. Phase 2 of the project was designed to determine if hydrocarbon residuals exceeding 1000 μg/g and weathered for short or long periods of time, posed an ecotoxicological risk or impaired soil physical, chemical and biological properties such that productivity of the agricultural soils was compromised. The objectives of phase 2 were to amend differently textured soils in field plots at sites with fresh crude oil and to monitor their toxicity to terrestrial organisms using laboratory-based ecotoxicity tests. The study showed that because of the nature of the chemical composition of hydrocarbons (such as boiling points, nominal carbon range

  15. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    OpenAIRE

    Gita Faghihi; Shima Keyvan; Ali Asilian; Saeid Nouraei; Shadi Behfar; Mohamad Ali Nilforoushzadeh

    2016-01-01

    Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal ...

  16. Carbonate Mineral Formation on Mars: Clues from Stable Isotope Variation Seen in Cryogenic Laboratory Studies of Carbonate Salts

    Science.gov (United States)

    Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.

    2013-01-01

    The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the

  17. Carbon storage as affected by different site preparation techniques two years after mixed forest stand installation

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, F.; Figueiredo, T. de; Martins, A.

    2014-06-01

    Aim of study: This study aims at evaluating the impact of site preparation techniques prior to plantation on carbon storage and distribution in a young mixed stand of Pseudotsuga menziesii (PM) and Castanea sativa (CS). Area of study: The experimental field was established near Macedo de Cavaleiros, Northern Portugal, at 700 m elevation, mean annual temperature 12 degree centigrade and mean annual rainfall 678 mm. Material and methods: The experimental layout includes three replicates, where the different treatments corresponding to different tillage intensities were randomly distributed (high, moderate and slight intensity), in plots with an area of 375 m{sup 2} each. Twenty six months after forest stand installation, samples of herbaceous vegetation (0.49 m{sup 2} quadrat), forest species (8 PM and 8 CS) and mineral soil (at 0-5, 5-15, 15-30 and 30-60 cm depth) were collected in 15 randomly selected points in each treatment, processed in laboratory and analyzed for carbon by elemental carbon analyzer. Main results: The results obtained showed that: (i) more than 90% of the total carbon stored in the system is located in the soil, increasing in depth with tillage intensity; (ii) the contribution of herbaceous vegetation and related roots to the carbon storage is very low; (iii) the amount of carbon per tree is higher in CS than in PM; (iv) the global carbon storage was affected by soil tillage generally decreasing with the increase of tillage intensity. Accordingly, carbon storage capacity as affected by the application of different site preparation techniques should be a decision support tool in afforestation schemes. (Author)

  18. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  19. Assessing the stability of soil organic matter by fractionation and 13C isotope techniques

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.

    2015-02-01

    Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

  20. Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    Directory of Open Access Journals (Sweden)

    C. Moni

    2012-12-01

    Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of 15N labelled litter.

    Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.

    Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

  1. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    Science.gov (United States)

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.

  2. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    Science.gov (United States)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  3. Fractional Absorption of Active Absorbable Algal Calcium (AAACa and Calcium Carbonate Measured by a Dual Stable-Isotope Method

    Directory of Open Access Journals (Sweden)

    Steven A. Abrams

    2010-07-01

    Full Text Available With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa, obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI, with that of calcium carbonate. In 10 postmenopausal women volunteers aged 59 to 77 years (mean ± S.D., 67 ± 5.3, the fractional calcium absorption of AAACa and CaCO3 was measured by a dual stable isotope method. 44Ca-enriched CaCO3 and AAACa were administered in all subjects one month apart. After a fixed-menu breakfast and pre-test urine collection (Urine 0, 42Ca-enriched CaCl2 was intravenously injected, followed by oral administration of 44Ca-enriched CaCO3 without carrier 15 minutes later, and complete urine collection for the next 24 hours (Urine 24. The fractional calcium absorption was calculated as the ratio of Augmentation of 44Ca from Urine 0 to Urine 24/ augmentation of 42Ca from Urine 0 to Urine 24. Differences and changes of 44Ca and 42Ca were corrected by comparing each with 43Ca. Fractional absorption of AAACa (mean ± S.D., 23.1 ± 6.4, was distinctly and significantly higher than that of CaCO3 (14.7 ± 6.4; p = 0.0060 by paired t-test. The mean fractional absorption was approximately 1.57-times higher for AAACa than for CaCO3. The serum 25(OH vitamin D level was low (mean ± S.D., 14.2 ± 4.95 ng/ml, as is common in this age group in Japan. Among the parameters of the bone and mineral metabolism measured, none displayed a significant correlation with the fractional absorption of CaCO3 and AAACa. Higher fractional absorption of AAACa compared with CaCO3 supports previous reports on the more beneficial effect of AAACa than CaCO3 for osteoporosis.

  4. Adsorption of carbamazepine by carbon nanotubes: Effects of DOM introduction and competition with phenanthrene and bisphenol A

    International Nuclear Information System (INIS)

    Lerman, Ilya; Chen, Yona; Xing, Baoshan; Chefetz, Benny

    2013-01-01

    Carbon nanotubes, organic contaminants and dissolved organic matter (DOM) are co-introduced into the environment. Thus, the interactions between these components have to be evaluated to better understand their environmental behavior. In this study, single-walled carbon nanotubes (SWCNTs) were used as sorbent, carbamazepine was the primary adsorbate, and bisphenol A and phenanthrene were used as competitors. Strong competition with bisphenol A and no effect of phenanthrene on adsorption of carbamazepine was obtained. The hydrophobic neutral fraction of the DOM exhibited the strongest reductive effect on carbamazepine adsorption, most probably due to interactions in solution. In contrast, the hydrophobic acid fraction decreased carbamazepine adsorption mainly via direct competition. When DOM and bisphenol A were co-introduced, the adsorption of carbamazepine was significantly reduced. This study suggests that the chemical nature of DOM can significantly affect the sorptive behavior of polar organic pollutants with carbon nanotubes when all are introduced to the aquatic system. Highlights: •Bisphenol A is an efficient competitor for carbamazepine. •Phenanthrene does not compete with carbamazepine. •DOM exhibited strong reductive effect on carbamazepine adsorption by SWCNTs. •HoN fraction decreased carbamazepine adsorption due to interactions in solution. •HoA fraction decreased carbamazepine adsorption via direct competition. -- In multi-component system including the main adsorbate and competitor, DOM exhibited significant effect on adsorption of contaminants by carbon nanotubes

  5. Uranium Isotopes in Calcium Carbonate: A Possible Proxy for Paleo-pH and Carbonate Ion Concentration?

    Science.gov (United States)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.

    2015-12-01

    Natural variations of 238U/235U in marine carbonates are being explored as a paleoredox proxy. However, in order for this proxy to be robust, it is important to understand how pH and alkalinity affect the fractionation of 238U/235U during coprecipitation with calcite and aragonite. Recent work suggests that the U/Ca ratio of foraminiferal calcite may vary with seawater [CO32-] concentration due to changes in U speciation[1]. Here we explore analogous isotopic consequences in inorganic laboratory co-precipitation experiments. Uranium coprecipitation experiments with calcite and aragonite were performed at pH 8.5 ± 0.1 and 7.5 ± 0.1 using a constant addition method [2]. Dissolved U in the remaining solution was periodically collected throughout the experiments. Samples were purified with UTEVA resin and 238U/235U was determined using a 233U-236U double-spike and MC-ICP-MS, attaining a precision of ± 0.10 ‰ [3]. Small but resolvable U isotope fractionation was observed in aragonite experiments at pH ~8.5, preferentially enriching heavier U isotopes in the solid phase. 238U/235U of the dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00002 - 1.00009. In contrast, no resolvable U isotope fractionation was detected in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among dissolved U species is the most likely mechanism driving these isotope effects. Our quantitative model of this process assumes that charged U species are preferentially incorporated into CaCO3 relative to the neutral U species Ca2UO2(CO3)3(aq), which we hypothesize to have a lighter equilibrium U isotope composition than the charged U species. According to this model, the magnitude of U isotope fractionation should scale with the fraction of the neutral U species in the solution, in agreement with our experimental results. These findings suggest that U isotope variations in

  6. Carbon dynamics with prolonged arable cropping soils in the Dano district (Southwest Burkina-Faso)

    Science.gov (United States)

    Hounkpatin, Ozias; Welp, Gerhard; Amelung, Wulf

    2016-04-01

    The conversion of natural ecosystems into agricultural land affects the atmospheric CO2 concentration whose increase contributes to global warming. In the low activity clay soils (LAC) of the tropics, farming is largely dependent on the level of soil organic carbon (SOC) for sustainable crop production. In this study, we investigated the changes in SOC in Plinthosols along a cultivation chronosequence in the Dano district (Southwest Burkina-Faso). The chronosequence consisted of undisturbed savannah (Y0) and 11 agricultural fields with short and long histories of cultivation ranging from 1-year-old cropland to 29-year-old cropland (Y29). About 14 soil profiles were described and soil composite samples were taken per horizon. Particulate organic matter (POM) was fractionated according to particle size: fraction 2000 - 250 μm (POM1), 250 μm - 53 μm (POM2), 53 μm - 20 μm (POM3), and POM1 > POM3 > POM2 carbon no matter the duration of land use. However, SOC losses occurred not only in the labile C pools but also in the stabile nonPOM fraction with increasing duration of agricultural land use. Compared to the initial carbon content in the Y0 field, about 59% of carbon content loss occurred in the POM1 (> 250 μm), 53% in the POM2 (250 - 53 μm), 52 % in the POM3 (53 - 20 μm) and 47% in the nonPOM fraction (stabilization, its depletion with increasing cultivation intensity suggests that the destruction of aggregates in these fields increased the vulnerability of this pool to microbial degradation. Keywords: Soil organic carbon, Plinthosols, low activity clay soil, POM

  7. Concentrations of tocols and γ-oryzanol compounds in rice bran oil obtained by fractional extraction with supercritical carbon dioxide.

    Science.gov (United States)

    Yoon, Sung Won; Pyo, Young-Gil; Lee, Junsoo; Lee, Jeom-Sig; Kim, Byung Hee; Kim, In-Hwan

    2014-01-01

    Rice bran oil (RBO) is a good source of several commercially important bioactive phytochemicals, such as tocols (i.e. tocopherols and tocotrienols) and ferulic esters of sterols (i.e. γ-oryzanol). The aims of the present study were to examine the effects of different pressure and temperature combinations on the fractional extraction of RBO using supercritical carbon dioxide (SC-CO2) and to assess the levels of tocols homologues and γ-oryzanol components in the resulting oil fractions. Fractional extraction of rice bran oil was performed using SC-CO2 at either 27.6 or 41.4 MPa and either 40 or 60°C. The effects of the four different pressure and temperature combinations on the levels of seven tocols homologues (α-, β-, γ- and δ-tocopherol and α-, γ- and δ-tocotrienol) and the four major components of γ-oryzanol in the resulting oil fractions were investigated. Superior extraction efficiency was obtained using the higher pressure of 41.4 MPa. The tocols (particularly α-tocopherol and α-tocotrienol) were recovered early in the extraction process, while the γ-oryzanol compounds were obtained in the later stages. With regard to SC-CO2 extraction, tocols are more soluble than γ-oryzanol components, α-tocopherol is the most soluble of the tocols and the four γ-oryzanol components all have similar solubilities. Valuable data on solubilities of tocols homologues in SC-CO2 were provided from present study.

  8. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  9. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  10. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L

    International Nuclear Information System (INIS)

    Yakir, D.; DeNiro, M.J.

    1990-01-01

    Lemna gibba L. B3 was grown under heterotrophic, photoheterotrophic, and autotrophic conditions in water having a variety of hydrogen and oxygen isotopic compositions. The slopes of the linear regression lines between the isotopic composition of water and leaf cellulose indicated that under the three growth conditions about 40, 70, and 100% of oxygens and carbon-bound hydrogens of cellulose exchanged with those of water prior to cellulose formation. Using the equations of the linear relationships, we estimated the overall fractionation factors between water and the exchanged oxygen and carbon bound-hydrogen of cellulose. At least two very different isotope effects must determine the hydrogen isotopic composition of Lemna cellulose. One reflects the photosynthetic reduction of NADP, while the second reflects exchange reactions that occur subsequent to NADP reduction. Oxygen isotopic composition of cellulose apparently is determined by a single type of exchange reaction with water. Under different growth conditions, variations in metabolic fluxes affect the hydrogen isotopic composition of cellulose by influencing the extent to which the two isotope effects mentioned above are recorded. The oxygen isotopic composition of cellulose is not affected by such changes in growth conditions

  11. Palm-based diacylglycerol fat dry fractionation: effect of crystallisation temperature, cooling rate and agitation speed on physical and chemical properties of fractions

    Directory of Open Access Journals (Sweden)

    Razam Ab Latip

    2013-05-01

    Full Text Available Fractionation which separates the olein (liquid and stearin (solid fractions of oil is used to modify the physicochemical properties of fats in order to extend its applications. Studies showed that the properties of fractionated end products can be affected by fractionation processing conditions. In the present study, dry fractionation of palm-based diacylglycerol (PDAG was performed at different: cooling rates (0.05, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0°C/min, end-crystallisation temperatures (30, 35, 40, 45 and 50°C and agitation speeds (30, 50, 70, 90 and 110 rpm to determine the effect of these parameters on the properties and yield of the solid and liquid portions. To determine the physicochemical properties of olein and stearin fraction: Iodine value (IV, fatty acid composition (FAC, acylglycerol composition, slip melting point (SMP, solid fat content (SFC, thermal behaviour tests were carried out. Fractionation of PDAG fat changes the chemical composition of liquid and solid fractions. In terms of FAC, the major fatty acid in olein and stearin fractions were oleic (C18:1 and palmitic (C16:0 respectively. Acylglycerol composition showed that olein and stearin fractions is concentrated with TAG and DAG respectively. Crystallization temperature, cooling rate and agitation speed does not affect the IV, SFC, melting and cooling properties of the stearin fraction. The stearin fraction was only affected by cooling rate which changes its SMP. On the other hand, olein fraction was affected by crystallization temperature and cooling rate but not agitation speed which caused changes in IV, SMP, SFC, melting and crystallization behavior. Increase in both the crystallization temperature and cooling rate caused a reduction of IV, increment of the SFC, SMP, melting and crystallization behaviour of olein fraction and vice versa. The fractionated stearin part melted above 65°C while the olein melted at 40°C. SMP in olein fraction also reduced to a range of

  12. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  13. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  14. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  15. Contribution of forest floor fractions to carbon storage and ...

    African Journals Online (AJOL)

    Forest floor carbon stocks, which include different components of litter, hemic and sapric materials, have not been empirically quantified in tropical montane forest, although they influence soil carbon (C) pools. To date, the contribution of arbuscular mycorrhizae in C sequestration potentials in tropical montane forests have ...

  16. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  17. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?

    Science.gov (United States)

    Xia, Longlong; Lam, Shu Kee; Yan, Xiaoyuan; Chen, Deli

    2017-07-05

    Recycling of livestock manure in agroecosystems to partially substitute synthetic fertilizer nitrogen (N) input is recommended to alleviate the environmental degradation associated with synthetic N fertilization, which may also affect food security and soil greenhouse gas (GHG) emissions. However, how substituting livestock manure for synthetic N fertilizer affects crop productivity (crop yield; crop N uptake; N use efficiency), reactive N (Nr) losses (ammonia (NH 3 ) emission, N leaching and runoff), GHG (methane, CH 4 ; and nitrous oxide, N 2 O; carbon dioxide) emissions and soil organic carbon (SOC) sequestration in agroecosystems is not well understood. We conducted a global meta-analysis of 141 studies and found that substituting livestock manure for synthetic N fertilizer (with equivalent N rate) significantly increased crop yield by 4.4% and significantly decreased Nr losses via NH 3 emission by 26.8%, N leaching by 28.9% and N runoff by 26.2%. Moreover, annual SOC sequestration was significantly increased by 699.6 and 401.4 kg C ha -1 yr -1 in upland and paddy fields, respectively; CH 4 emission from paddy field was significantly increased by 41.2%, but no significant change of that was observed from upland field; N 2 O emission was not significantly affected by manure substitution in upland or paddy fields. In terms of net soil carbon balance, substituting manure for fertilizer increased carbon sink in upland field, but increased carbon source in paddy field. These results suggest that recycling of livestock manure in agroecosystems improves crop productivity, reduces Nr pollution and increases SOC storage. To attenuate the enhanced carbon source in paddy field, appropriate livestock manure management practices should be adopted.

  18. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  19. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  20. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Directory of Open Access Journals (Sweden)

    Yann Salmon

    Full Text Available Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence. Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  1. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Science.gov (United States)

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  2. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Estimation of sesqui-carbide fraction for MARK-I fuel

    International Nuclear Information System (INIS)

    Vana Varamban, S.; Ananthasivan, K.

    2016-01-01

    Sesqui-carbide content of FBTR bi-phasic mixed carbide is specified as 5-20 wt.%. For each batch of fuel production, the sesqui-carbide (M2C3) content is being determined by a K-ratio method using XRD information. There is a need to evolve an alternate method for qualitative determination of M2C3 content for a fabricated FBTR fuel pellet. Two independent approaches resulted in a correlation between overall carbon content and the M2C3 phase fraction. The thermodynamic calculations agree well with the stoichiometric correlation between the overall carbon content and the M2C3 phase fraction in FBTR MARK I fuel

  4. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  5. Factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    colloidal material is illustrated through the evaluation of thermal diffusion coefficient of PS ... Field-flow fractionation (FFF) is a separation method introduced by Giddings in 1966 [1]. It is a ... no stationary phase is used in FFF. .... that the inversion diameter (diameter at which order of retention changes) can be shifted up or.

  6. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    Science.gov (United States)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  7. Efficacy of Punch Elevation Combined with Fractional Carbon Dioxide Laser Resurfacing in Facial Atrophic Acne Scarring: A Randomized Split-face Clinical Study

    Science.gov (United States)

    Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen

    2015-01-01

    Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695

  8. Efficacy of punch elevation combined with fractional carbon dioxide laser resurfacing in facial atrophic acne scarring: A randomized split-face clinical study

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2015-01-01

    Full Text Available Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO 2 laser resurfacing combined with punch elevation with fractional CO 2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18-55 with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO 2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO 2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56. Their evaluation found that fractional CO 2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO 2 laser treatment alone, assessed 4 months after treatment (P = 0.02. Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO 2 laser treatment was significant on both treatment sides (P < 0.05. Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring.

  9. Stable carbon isotope response to oceanic anoxic events

    International Nuclear Information System (INIS)

    Hu Xiumian; Wang Chengshan; Li Xianghui

    2001-01-01

    Based on discussion of isotope compositions and fractionation of marine carbonate and organic carbon, the author studies the relationship between oceanic anoxic events and changes in the carbon isotope fractionation of both carbonate and organic matter. During the oceanic anoxic events, a great number of organisms were rapidly buried, which caused a kind of anoxic conditions by their decomposition consuming dissolved oxygen. Since 12 C-rich organism preserved, atmosphere-ocean system will enrich relatively of 13 C. As a result, simultaneous marine carbonate will record the positive excursion of carbon isotope. There is a distinctive δ 13 C excursion during oceanic anoxic events in the world throughout the geological time. In the Cenomanian-Turonian anoxic event. this positive excursion arrived at ∼0.2% of marine carbonate and at ∼0.4% of organic matter, respectively. Variations in the carbon isotopic compositions of marine carbonate and organic carbon record the changes in the fraction of organic carbon buried throughout the geological time and may provide clues to the changes in rates of weathering and burial of organic carbon. This will provide a possibility of interpreting not only the changes in the global carbon cycle throughout the geological time, but also that in atmospheric p CO 2

  10. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Energy Technology Data Exchange (ETDEWEB)

    Rout, Sabyasachi, E-mail: srout.barc@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)

    2016-11-05

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  11. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    International Nuclear Information System (INIS)

    Rout, Sabyasachi; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  12. Stable carbon isotope fractionation in pollen of Atlas cedar: first steps towards a new palaeoecological proxy for Northwest Africa

    Science.gov (United States)

    Bell, Benjamin; Fletcher, William; Ryan, Peter; Grant, Helen; Ilmen, Rachid

    2016-04-01

    Analysis of stable carbon isotopes can provide information on climate and the environmental conditions at different growth stages of the plant, both past and present. Carbon isotope discrimination in plant tissue is already well understood, and can be used as a drought stress indicator for semi-arid regions. Stable carbon isotope ratios measured directly on pollen provides the potential for the development of long-term environmental proxies (spanning thousands of years), as pollen is well preserved in the environment. Atlas Cedar (Cedrus atlantica Endl. Manetti ex Carrière), is an ideal test case to develop a pollen stable carbon isotope proxy. The tree grows across a wide altitudinal and climatic range and is extremely sensitive to moisture availability. The pollen is abundant, and easily identifiable to the species level in pollen analysis because different cedar species are geographically confined to different regions of the world. In 2015 we sampled 76 individual cedar trees across latitudinal, altitudinal and environmental gradients, highly focused on the Middle Atlas region of Morocco, with 25 additional samples from botanical gardens across Europe and the US to extend these gradients. Here, we report new stable carbon isotope data from pollen, leaf and stem wood from these samples with a view to assessing and quantifying species-specific fractionation effects associated with pollen production. The isotopic response of individual trees at local and wider geographical scales to altitude and climatic conditions is presented. This research forms part of an ongoing PhD project working to develop and calibrate a modern carbon isotope proxy in Atlas cedar pollen, which can ultimately be applied to fossil sequences and complement existing multi-proxy records (e.g. pollen analysis in lake sediments, tree-rings).

  13. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Science.gov (United States)

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Production and fractionation of 14CO2 labeled smooth cordgrass, Spartina alterniflora

    International Nuclear Information System (INIS)

    Fallon, R.D.; Pfaender, F.K.

    1976-01-01

    A simple chamber for use in radioactive carbon labeling of plants is described and used to successfully label Spartina Alterniflora. The plant material contained 5.5 +- 1.3 μCi/g (dry) mean activity after a 1-week pulse. The plant was chemically fractionated and the mean activity (+- standard error) was determined in four biochemical fractions: fiber = 2.6 +- 0.7 μCi/g (dry), organic acid 2.6 +- 0.1 μCi/g (dry), protein/nucleic acid = 2.4 +- 0.5 μCi/g (dry), and lipid = 27.3 +- 6.2 μCi/g (dry). The high activity of the lipid fraction indicates that it may serve as a carbon storage pool in the plant under the described growing conditions. The simple, low cost chamber can be used for plant biochemistry experiments, and for the production of labeled detritus and plant fractions

  15. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    Science.gov (United States)

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  16. Background of SAM atom-fraction profiles

    International Nuclear Information System (INIS)

    Ernst, Frank

    2017-01-01

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition

  17. Background of SAM atom-fraction profiles

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank

    2017-03-15

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.

  18. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate

    International Nuclear Information System (INIS)

    Vasconcelos, Mari Estela de

    2006-01-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  19. The distribution of organic carbon fractions in a typical loess-paleosol profile and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Qingqing Zhang

    2018-04-01

    Full Text Available Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1 the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2 soil clay content and median grain size (Md (ϕ were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3 in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ, while negatively correlated with CaCO3 content, and the correlations were more significant

  20. The distribution of organic carbon fractions in a typical loess-paleosol profile and its paleoenvironmental significance

    Science.gov (United States)

    Hu, Feinan; Huo, Na; Shang, Yingni; Chang, Wenqian

    2018-01-01

    Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC) ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC) and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1) the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2) soil clay content and median grain size (Md (ϕ)) were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3) in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ), while negatively correlated with CaCO3 content, and the correlations were more significant in soil

  1. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  2. Accounting for black carbon lowers estimates of blue carbon storage services.

    Science.gov (United States)

    Chew, Swee Theng; Gallagher, John B

    2018-02-07

    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.

  3. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  4. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas; Lemmon, Teresa; Swita, Marie; Albrecht, Karl; Howe, Daniel

    2016-10-01

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions. Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.

  5. Quantitative measurement of carbon nanotubes released from their composites using thermal carbon analysis

    International Nuclear Information System (INIS)

    Ogura, I; Honda, K; Shigeta, M; Kotake, M; Uejima, M

    2015-01-01

    The ability of thermal carbon analysis to determine CNTs was evaluated in the presence of a polymer (Polystyrene, PS). Samples placed in an Au (Pt) foil boat were measured using a thermal-carbon analyzer, and the results were compared with gravimetric measurements of sample masses obtained using an ultra-microbalance. First, debris from the polymer without CNTs (i.e., PS debris) was analyzed. The amount of PS debris detected in the organic carbon (OC) fraction was found to be in good agreement with the gravimetrically measured mass of the PS debris, while the amount of pyrolyticallygenerated carbon soot detected in the elemental carbon (EC) fraction was negligible. Next, single-wall CNT (AIST/TASC Super-Growth) powder was analyzed, and the amount of the CNT powder detected in the EC fraction was found to be 95-96% of the gravimetrically measured mass of the CNT powder. Subsequently, a mixture of the PS debris and the CNT powder was analyzed, and the amounts of detected OC and EC were found to be comparable to the gravimetrically measured masses of the PS debris and the CNT powder, respectively. Finally, debris from 5 wt% CNT-PS composites was analyzed, and amounts of OC and EC detected were found to be approximately comparable to the estimated masses of the PS and the CNTs in the debris of CNT-PS composite, respectively. The results therefore indicate thermal carbon analysis is capable of determining CNTs in the presence of PS. (paper)

  6. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini; Seuntjens, Piet; Van Roy, Sandra; Joris, Ingeborg; Vangeel, Silvia; Dejonghe, Winnie; Vanbroekhoven, Karolien

    2011-01-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy

  7. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  8. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  9. Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto Carbon storage in labile fractions of soil organic matter in a tropical no-tillage Oxisol

    Directory of Open Access Journals (Sweden)

    Cimélio Bayer

    2004-07-01

    Full Text Available A reserva de carbono na matéria orgânica (MO do solo é uma importante estratégia para atenuar a concentração de dióxido de carbono na atmosfera. O objetivo deste trabalho foi avaliar o efeito do plantio direto (PD, durante seis anos, sob quatro sistemas de cultura de outono na sucessão comercial soja-milho (guandu- anão-milheto, crotalária-sorgo, girassol-aveia-preta e nabo forrageiro-milho, no armazenamento de carbono nas frações particulada (>53 µm e associada aos minerais (Carbon storage in the soil organic matter (SOM is an important strategy to mitigate carbon dioxide concentration in the atmosphere. The objective of this study was to evaluate the effect of the no-tillage (NT use for six years, under four autumn (dry-season cover crops based maize and soybean crop rotations (pigeon pea-pearl millet, bengan hemp-sorghum, sunflower-black oat, and wild radish-maize, on C storage in the particulate (>53 µm and mineral-associated (<53 µm SOM fractions of a clayey Oxisol from Brazilian Cerrado region. In comparison to conventional tillage (CT under summer cash-crops, NT increased the total organic carbon (TOC stocks in the surface soil layer (0-5 cm. In the top 20 cm layer, NT soil under wild radish-maize had 9% (4.66 Mg ha-1 more TOC than the conventionally tilled soil. On the other hand, C storage in NT soil under other cropping systems was statiscally similar to the CT soil. The C stocks in the particulate SOM fraction increased by 37 to 52% in NT soil (0-20 cm in comparison to CT. The higher sensitivity to soil management changes made the particulate organic matter a more adequate soil quality index compared to the TOC stocks. The C stock in the mineral-associated SOM fraction was not affected by soil management systems, which can be related to the short-term under NT and or to the highly stable soil microaggregates in this clayey Oxisol. The preferential C storage in the labile SOM fraction is an environmental benefit, which

  10. High Volume Fraction Carbon Nanotube Composites for Aerospace Applications

    Science.gov (United States)

    Siochi, E. J.; Kim, J.-W.; Sauti, G.; Cano, R. J.; Wincheski, R. A.; Ratcliffe, J. G.; Czabaj, M.

    2016-01-01

    Reported mechanical properties of carbon nanotubes (CNTs) at the nanoscale suggest their potential to enable significantly lighter structures of interest for space applications. However, their utility depends on the retention of these properties in bulk material formats that permit practical fabrication of large structures. This presentation summarizes recent progress made to produce carbon nanotube composites with specific tensile properties that begin to rival those of carbon fiber reinforced polymer composites. CNT content in these nanocomposites was greater than 70% by weight. Tested nanocomposite specimens were fabricated from kilometers or tens of square meters of CNT, depending on the starting material format. Processing methods to yield these results, and characterization and testing to evaluate the performance of these composites will be discussed. The final objective is the demonstration of a CNT composite overwrapped pressure vessel to be flight tested in the Fall of 2016.

  11. Decreased carbon limitation of litter respiration in a mortality-affected piñon–juniper woodland

    Directory of Open Access Journals (Sweden)

    E. Berryman

    2013-03-01

    Full Text Available Microbial respiration depends on microclimatic variables and carbon (C substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting piñon–juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of root exudation. To determine piñon mortality effects on C and water limitation of microbial respiration, we applied field amendments (sucrose and water to two piñon–juniper sites in central New Mexico, USA: one with a recent (2 flux on the girdled site and a non-significant increase on the control. We speculate that the reduction may have been driven by water-induced carbonate dissolution, which serves as a sink for CO2 and would reduce the net flux. Widespread piñon mortality may decrease labile C limitation of litter respiration, at least during the first growing season following mortality.

  12. Nonlinear binding of phenanthrene to the extracted fulvic acid fraction in soil in comparison with other organic matter fractions and to the whole soil sample

    International Nuclear Information System (INIS)

    Liu Wenxin; Xu, Shanshan; Xing, Baoshan; Pan, Bo; Tao, Shu

    2010-01-01

    Fractions of soil organic matter in a natural soil were extracted and sorption (or binding) characteristics of phenanthrene on each fraction and to the whole sample were investigated. The organic carbon normalized single point sorption (or binding) coefficient followed lipid > humin (HM) > humic acid (HA) > fulvic acid (FA) > whole soil sample, while the nonlinear exponent exhibited lipid > FA > HA > whole soil sample > HM. FA showed nonlinear binding of phenanthrene as it often does with other fractions. HM and HA contributed the majority of organic carbon in the soil. The calculated sorption coefficients of the whole soil were about two times greater than the measured values at different equilibrium phenanthrene concentrations. As for phenanthrene, the sorption capacity and nonlinearity of the physically mixed HA-HM mixtures were stronger as compared to the chemically reconstituted HA-HM composite. This was attributed to (besides the conditioning effect of the organic solvents) interactions between HA and HM and acid-base additions during fractionation. - Nonlinear binding of phenanthrene to fulvic acid extracted from soil organic matter was found.

  13. Response of soil carbon fractions and dryland maize yield to mulching

    Science.gov (United States)

    Stimulation of root growth from mulching may enhance soil C fractions under maize (Zea mays L.). We studied the 5-yr straw (SM) and plastic film (PM) mulching effect on soil C fractions and maize yield compared with no mulching (CK) in the Loess Plateau of China. Soil samples collected from 0- to 10...

  14. Hepatoprotective Effect Of Sephadex G50 Red Fraction Of H ...

    African Journals Online (AJOL)

    The hepatoprotective effects of the two sephadex G50 fractions of the anthocyanin obtained from the petals of H. rosainensis were studied. Treatment of rats with 8.40 g of the red fraction (G50 RF) in 5% aqueous ethanol/kg body weight 5 days/week for 4 weeks before carbon tetrachloride resulted in significantly (P<0.05) ...

  15. Carnivore specific bone bioapatite and collagen carbon isotope fractionations: Case studies of modern and fossil grey wolf populations

    Science.gov (United States)

    Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.

    2006-12-01

    Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter

  16. Total organic carbon and humus fractions in restored soils from limestone quarries in semiarid climate, SE Spain

    Science.gov (United States)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Ángel Domene Ruiz, Miguel; Solé Benet, Albert

    2016-04-01

    Mining activities generate erosion and loss of plant cover and soil organic matter (SOM), especially in arid and semiarid Mediterranean regions. A precondition for ecosystem restoration in such highly disturbed areas is the development of functional soils with sufficient organic matter. But the SOM quality is also important to long-term C stabilization. The resistance to biodegradation of recalcitrant organic matter fractions has been reported to depend on some intrinsic structural factors of humic acid substances and formation of amorphous organo-mineral recalcitrant complexes. In an experimental soil restoration in limestone quarries in the Sierra de Gádor (Almería), SE Spain, several combinations of organic amendments (sewage sludge and compost from domestic organic waste) and mulches (gravel and woodchip) were added in experimental plots using a factorial design. In each plot, 75 native plants (Anthyllis cytisoides, A. terniflora and Macrochloa tenacissima) were planted and five years after the start of the experiment total organic carbon (TOC), physico-chemical soil properties and organic C fractions (particulate organic matter, H3PO4-fulvic fraction, fulvic acids (FA), humic acids (HA) and humin) were analyzed. We observed significant differences between treatments related to the TOC content and the HA/FA ratio. Compost amendments increased the TOC, HA content and HA/FA ratio, even higher than in natural undisturbed soils, indicating an effective clay humus-complex pointing to progressively increasing organic matter quality. Soils with sewage sludge showed the lowest TOC and HA/FA ratio and accumulated a lower HA proportion indicating poorer organic matter quality and comparatively lower resilience than in natural soils and soils amended with compost.

  17. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  18. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Goh, K.M.; Stout, J.D.; Rafter, T.A.

    1977-01-01

    Soil organic matter was extracted using the classical procedure and fractionated into humin (nonextractable), humic acid, and fulvic acid. The masses of total organic carbon in the whole soil samples and in the fractions, together with their 14 C content and 13 C/ 12 C ratios, were also determined. The following New Zealand soils were studied: a Fluvaquent, with experimental pasture plots, formed from deeply mixing subsoils of low organic carbon content; a Typic Fragiaqualf and a Typic Dystrochrept with moderately productive pastures; and an Umbric Vitrandept at two sites under native tussock and under introduced grasses of low productivity. The degree of radiocarbon enrichment of the different fractions in both topsoil and subsoil samples was examined in relation to differences in soil type, soil biological activity, and vegetation history. There was variation in the distribution and enrichment of the organic matter fractions both within the same soil type and between soil types, as well as between the topsoil and subsoil of the same soil. Differences appeared to be primarily a function of the stage of decomposition and translocation of the fractions through the soil rather than due to vegetation differences

  19. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    Science.gov (United States)

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  1. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    International Nuclear Information System (INIS)

    Bruun, Esben W.; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana; Egsgaard, Helge; Ambus, Per; Jensen, Peter A.; Dam-Johansen, Kim

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3-12% of the added biochar-C had been emitted as CO 2 . On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO 2 neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.

  2. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  3. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of gas residence time of CH4/H2 on sp2 fraction of amorphous carbon films and dissociated methyl density during radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Sugiura, Hirotsugu; Jia, Lingyun; Kondo, Hiroki; Ishikawa, Kenji; Tsutsumi, Takayoshi; Hayashi, Toshio; Takeda, Keigo; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Quadruple mass spectrometric measurements of CH3 density during radical-injection plasma-enhanced chemical vapor deposition to consider the sp2 fraction of amorphous carbon (a-C) films were performed. The sp2 fraction of the a-C films reached a minimum of 46%, where the CH3 density was maximum for a residence time of 6 ms. The sp2 fraction of the a-C films was tailored with the gaseous phase CH3 density during the deposition. This knowledge is useful for understanding the formation mechanism of bonding structures in the a-C films, which enables the precise control of their electronic properties.

  5. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    Science.gov (United States)

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than

  6. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    International Nuclear Information System (INIS)

    Baldock, J.A.; Oades, J.M.

    1990-01-01

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13 C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m -3 . Solid state CP/MAS 13 C n.m.r. (cross polarization/magic angle spinning 13 C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13 C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  7. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  8. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  9. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection

    International Nuclear Information System (INIS)

    Claveranne-Lamolere, C.; Lespes, G.; Dubascoux, St.; Potin-Gautier, M.; Claveranne-Lamolere, C.; Aupiais, J.; Pointurier, F.

    2009-01-01

    The aim of this study was to characterize colloids associated with uranium by using an on-line fractionation/multi-detection technique based on asymmetrical flow field-flow fractionation (As-Fl-FFF) hyphenated with UV detector, multi angle laser light scattering (MALLS) and inductively coupling plasma-mass spectrometry (ICP-MS). Moreover, thanks to the As-Fl-FFF, the different colloidal fractions were collected and characterized by a total organic carbon analyzer (TOC). Thus it is possible to determine the nature (organic or inorganic colloids), molar mass, size (gyration and hydrodynamic radii) and quantitative uranium distribution over the whole colloidal phase. In the case of the site studied, two populations are highlighted. The first population corresponds to humic-like substances with a molar mass of (1500 ± 300) g mol -1 and a hydrodynamic diameter of (2. 0 ± 0. 2) nm. The second one has been identified as a mix of carbonated nano-particles or clays with organic particles (aggregates and/or coating of the inorganic particles) with a size range hydrodynamic diameter between 30 and 450 nm. Each population is implied in the colloidal transport of uranium: maximum 1% of the uranium content in soil leachate is transported by the colloids in the site studied, according to the depth in the soil. Indeed, humic substances are the main responsible of this transport in sub-surface conditions whereas nano-particles drive the phenomenon in depth conditions. (authors)

  10. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s.

    Science.gov (United States)

    Miller, Laurence G; Baesman, Shaun M; Oremland, Ronald S

    2015-11-01

    We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.

  11. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    Science.gov (United States)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  12. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Science.gov (United States)

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of

  13. Impact Toughness of Subzones in the Intercritical Heat-Affected Zone of Low-Carbon Bainitic Steel.

    Science.gov (United States)

    Li, Zhenshun; Zhao, Xuemin; Shan, Dongri

    2018-06-06

    The subzones of the intercritical heat-affected zone (IC HAZ) of low-carbon bainitic steel were simulated by using a Gleeble-3500 simulator to study the impact toughness. The results showed that the IC HAZ is not entirely brittle and can be further divided into three subzones according to the impact toughness or peak welding temperature; the invariant subzone heated between the critical transformation start temperature ( A c1 ) and 770 °C exhibited unchanged high impact toughness. Furthermore, an extremely low impact toughness was found in the embrittlement subzone, heated between 770 and 830 °C, and the reduction subzone heated between 830 °C and the critical transformation finish temperature ( A c3 ) exhibited toughness below that of the original metal. The size of the blocky martensite-austenite (M-A) constituents was found to have a remarkable level of influence on the impact toughness when heated below 830 °C. Additionally, it was found that, once the constituent size exceeds a critical value of 3.0 µm at a peak temperature of 770 °C, the IC HAZ becomes brittle regardless of lath or twinned martensite constitution in the M-A constituent. Essentially, embrittlement was observed to occur when the resolved length of initial cracks (in the direction of the overall fracture) formed as a result of the debonding of M-A constituents exceeding the critical Griffith size. Furthermore, when the heating temperature exceeded 830 °C, the M-A constituents formed a slender shape, and the impact toughness increased as the area fraction of the slender M-A constituents decreased.

  14. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  15. Resolution V fractional factorial Design for Screening of factors affecting weakly basic drugs liposomal systems.

    Science.gov (United States)

    El-Helaly, Sara Nageeb; Habib, Basant A; Abd El-Rahman, Mohamed K

    2018-04-21

    This study aims to investigate factors affecting weakly basic drugs liposomal systems. Resolution V fractional factorial design (2 V 5-1 ) is used as an example of screening designs that would better be used as a wise step before proceeding with detailed factors effects or optimization studies. Five factors probable to affect liposomal systems of weakly basic drugs were investigated using Amisulpride as a model drug. Factors studied were; A: Preparation technique B: Phosphatidyl choline (PhC) amount (mg) C: Cholesterol: PhC molar ratio, D: Hydration volume (ml) and E: Sonication type. Levels investigated were; Ammonium sulphate-pH gradient technique or Transmembrane zinc chelation-pH gradient technique, 200 or 400 mg, 0 or 0.5, 10 or 20 ml and bath or probe sonication for A, B, C, D and E respectively. Responses measured were Particle size (PS) (nm), Zeta potential (ZP) (mV) and Entrapment efficiency percent (EE%). Ion selective electrode was used as a novel method for measuring unentrapped drug concentration and calculating entrapment efficiency without the need for liposomal separation. Factors mainly affecting the studied responses were Cholesterol: PhC ratio and hydration volume for PS, preparation technique for ZP and preparation technique and hydration volume for EE%. The applied 2 V 5-1 design enabled the use of only 16 trial combinations for screening the influence of five factors on weakly basic drugs liposomal systems. This clarifies the value of the use of screening experiments before extensive investigation of certain factors in detailed optimization studies. Copyright © 2017. Published by Elsevier B.V.

  16. Generalized eczematous reaction after fractional carbon dioxide laser therapy for tattoo allergy.

    Science.gov (United States)

    Meesters, Arne A; De Rie, Menno A; Wolkerstorfer, Albert

    2016-12-01

    Allergic tattoo reactions form a therapeutically difficult entity. Treatment with conventional quality-switched lasers does not completely remove the allergenic particles and may lead to generalized hypersensitivity reactions. Recently, ablative fractional laser therapy was introduced as a treatment for allergic tattoo removal. We present two cases of allergic reactions to red tattoo ink treated with 10,600-nm fractional CO 2 laser. At the end of treatment, almost complete removal of red ink accompanied by a significant reduction of symptoms was observed in the first patient, whereas the second patient developed an acute generalized eczematous reaction after five treatments. These findings confirm that ablative fractional laser therapy is capable of significant removal of tattoo ink in an allergic tattoo reaction. However, it implies a risk of generalized hypersensitivity reactions. To our knowledge, this is the first case of a generalized hypersensitivity reaction following treatment of tattoo allergy with the fractional CO 2 laser.

  17. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog, Quebec

    International Nuclear Information System (INIS)

    LaZerte, B.D.

    1983-01-01

    The stable carbon isotope (SCI) ratio of the sediment of Lake Memphremagog, Quebec is compared with that ot terrestrial sources and the phytoplankton to determine the relative proportion of allochthonous carbon incorporated into the sediments. Approximately 40-50% of the organic carbon in the main basins' pelagic sediment was terrestrial in origin, whereas up to 100% was terrestrial in littoral areas. The SCI method of determining the organic carbon source of sediments appears more reliable than the C/N method. A comparison of the SCI fractionation of the phytoplankton with laboratory cultures under different degrees of carbon limitation indicates that the phytoplankton of Lake Memphremagog are not carbon limited and fix carbon primarily by the C 3 pathway

  18. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  19. The efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: a simultaneous split-face trial.

    Science.gov (United States)

    Lee, Jin Woong; Kim, Beom Joon; Kim, Myeung Nam; Mun, Seog Kyun

    2011-07-01

    Ablative carbon dioxide (CO(2) ) fractional resurfacing is a promising therapeutic intervention for the treatment of acne scars, although this technique is associated with prolonged surgical site erythema and edema, which may affect the daily lives of patients. Autologous platelet-rich plasma (PRP) is known to enhance wound healing and has applications in many areas of medicine. To evaluate the synergistic effects of autologous PRP with CO(2) fractional resurfacing for acne scars. A split-face trial was conducted in 14 Korean participants with acne scars. All participants received one session of ablative CO(2) fractional resurfacing. Immediately after resurfacing, facial halves were randomly assigned to receive treatment with autologous PRP injections on one side (experimental side) and normal saline injections on the other side (control side). The participants were monitored for degree of recovery and resurfacing-associated adverse events, including prolonged erythema, edema, and other effects on days 0, 2, 4, 6, 8, 15, and 30. The intensity of erythema was objectively measured using a chromometer at the same time intervals. After one additional treatment session using the same protocol, two independent dermatologists evaluated clinical improvement using a quartile grading scale. All participants completed the study. Erythema on the experimental side improved faster than on the control side and was significantly less at day 4 (p=.01). This difference was confirmed using a chromometer (p=.049). Total duration of erythema was an average of 10.4±2.7 days on the control side and 8.6±2.0 days on the experimental side (p=.047). Edema also improved faster on the experimental side than on the control side. The total duration of edema was an average of 7.1±1.5 days on the control side and 6.1±1.1 days on the experimental side (p=.04). Participants were also assessed for duration of post-treatment crusting, with a mean of 6.8±1.0 days on the control side and 5.9±1

  20. Relative clinical effectiveness of carbon ion radiotherapy. Theoretical modelling for H and N tumours

    International Nuclear Information System (INIS)

    Antonovic, Laura; Toma-Dasu, Iuliana; Dasu, Alexandru; Furusawa, Yoshiya

    2015-01-01

    Comparison of the efficiency of photon and carbon ion radiotherapy (RT) administered with the same number of fractions might be of limited clinical interest, since a wide range of fractionation patterns are used clinically today. Due to advanced photon treatment techniques, hypofractionation is becoming increasingly accepted for prostate and lung tumours, whereas patients with head and neck tumours still benefit from hyperfractionated treatments. In general, the number of fractions is considerably lower in carbon ion RT. A clinically relevant comparison would be between fractionation schedules that are optimal within each treatment modality category. In this in silico study, the relative clinical effectiveness (RCE) of carbon ions was investigated for human salivary gland tumours, assuming various radiation sensitivities related to their oxygenation. The results indicate that, for hypoxic tumours in the absence of reoxygenation, the RCE (defined as the ratio of D 50 for photons to carbon ions) ranges from 3.5 to 5.7, corresponding to carbon ion treatments given in 36 and 3 fractions, respectively, and 30 fractions for photons. Assuming that interfraction local oxygenation changes take place, results for RCE are lower than that for an oxic tumour if only a few fractions of carbon ions are used. If the carbon ion treatment is given in more than 12 fractions, the RCE is larger for the hypoxic than for the well-oxygenated tumour. In conclusion, this study showed that in silico modelling enables the study of a wide range of factors in the clinical considerations and could be an important step towards individualisation of RT treatments. (author)

  1. Effect of forest structural change on carbon storage in a coastal Metasequoia glyptostroboides stand.

    Science.gov (United States)

    Cheng, Xiangrong; Yu, Mukui; Wu, Tonggui

    2013-01-01

    Forest structural change affects the forest's growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P 0.05). The soil light fraction organic carbon (LFOC) was significantly higher at the 0-15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P < 0.05). The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (P < 0.05). This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China.

  2. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Karube, Masataka, E-mail: mstk117@gmail.com [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Yamamoto, Naoyoshi; Nakajima, Mio [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yamashita, Hideomi; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Miyamoto, Tadaaki; Tsuji, Hiroshi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Fujisawa, Takehiko [Chiba Foundation for Health Promotion and Disease Prevention, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2016-05-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  3. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Karube, Masataka; Yamamoto, Naoyoshi; Nakajima, Mio; Yamashita, Hideomi; Nakagawa, Keiichi; Miyamoto, Tadaaki; Tsuji, Hiroshi; Fujisawa, Takehiko; Kamada, Tadashi

    2016-01-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  4. Diamond-like carbon coated ultracold neutron guides

    International Nuclear Information System (INIS)

    Heule, S.; Atchison, F.; Daum, M.; Foelske, A.; Henneck, R.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuzniak, M.; Lippert, T.; Meier, M.; Pichlmaier, A.; Straumann, U.

    2007-01-01

    It has been shown recently that diamond-like carbon (DLC) with a sp 3 fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp 3 fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate

  5. Radiocarbon (14C) Constraints On The Fraction Of Refractory Dissolved Organic Carbon In Primary Marine Aerosol From The Northwest Atlantic

    Science.gov (United States)

    Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Long, M. S.; Frossard, A. A.; Kinsey, J. D.; Duplessis, P.; Chang, R.; Maben, J. R.; Lu, X.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Nearly all organic carbon in seawater is dissolved (DOC), with more than 95% considered refractory based on modeled average lifetimes ( 16,000 years) and characteristically old bulk radiocarbon (14C) ages (4000 - 6000 years) that exceed the timescales of overturning circulation. Although this refractory dissolved organic carbon (RDOC) is present throughout the oceans as a major reservoir of the global carbon cycle, its sources and sinks are poorly constrained. Recently, RDOC was proposed to be removed from the oceans through adsorption onto the surfaces of rising bubble plumes produced by breaking waves, ejection into the atmosphere via bubble bursting as a component of primary marine aerosol (PMA), and subsequent oxidation in the atmosphere. To test this mechanism, we used natural abundance 14C (5730 ± 40 yr half-life) to trace the fraction of RDOC in PMA produced in a high capacity generator at two biologically-productive and two oligotrophic hydrographic stations in the Northwest Atlantic Ocean during a research cruise aboard the R/V Endeavor (Sep - Oct 2016). The 14C signatures of PMA separately generated day and night from near-surface (5 m) and deep (2500 m) seawater were compared with corresponding 14C signatures in seawater of near-surface dissolved inorganic carbon (DIC, a proxy for recently produced organic matter), bulk deep DOC (a proxy for RDOC), and near-surface bulk DOC. Results constrain the selectivity of PMA formation from RDOC in natural mixtures of recently produced and refractory DOC. The implications of these results for PMA formation and RDOC biogeochemistry will be discussed.

  6. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    Science.gov (United States)

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  7. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production.

    Science.gov (United States)

    Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E

    2017-06-01

    The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a  × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2015-06-01

    Full Text Available Soil aggregation and the distribution of total organic carbon (TOC may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS and conventional tillage system (CTS, one plowing and two disking. This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum. An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 % than fallow plus CTS (ranging from 74.62 to 85.94 %. Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

  9. Dynamic changes of carbon isotope apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V

    2017-05-01

    To identify predominant metabolic pathway for cellulose methanization new equations that take into account dynamics of 13C are added to the basic model of cellulose methanization. The correct stoichiometry of hydrolysis, acidogenesis, acetogenesis and methanogenesis steps including biomass is considered. Using experimental data by Laukenmann et al. [Identification of methanogenic pathway in anaerobic digesters using stable carbon isotopes. Eng. Life Sci. 2010;10:1-6], who reported about the importance of ace`tate oxidation during mesophilic cellulose methanization, the model confirmed that, at high biomass concentration of acetate oxidizers, the carbon isotope fractionation factor amounts to about 1.085. The same model, suggested firstly for cellulose degradation, was used to describe, secondly, changes in, and in methane and carbon dioxide during mesophylic acetate methanization measured by Grossin-Debattista [Fractionnements isotopiques (13C/12C) engendres par la methanogenese: apports pour la comprehension des processus de biodegradation lors de la digestion anaerobie [doctoral thesis]. 2011. Bordeaux: Universite Bordeaux-1;2011. Available from: http://ori-oai.u-bordeaux1.fr/pdf/2011/GROSSIN-DEBATTISTA_JULIEN_2011.pdf . French].The model showed that under various ammonium concentrations, at dominating acetoclastic methanogenesis, the value decreases over time to a low level (1.016), while at dominating syntrophic acetate oxidation, coupled with hydrogenotrophic methanogenesis, slightly increases, reaching 1.060 at the end of incubation.

  10. Response of rat spinal cord to single and fractionated doses of accelerated heavy ions

    International Nuclear Information System (INIS)

    Leith, J.T.; McDonald, M.; Powers-Risius, P.; Bliven, S.F.; Howard, J.

    1982-01-01

    The thoraco-lumbar (T12-L1) region of the spinal cord of rats was exposed to either single or fractionated (four daily exposures) doses of X rays (230 kVp) or heavy ions. The heavy ions used were carbon and neon, and the relative biological effectiveness (RBE) of both the plateau ionization region and the midpeak region of 4-cm spread-out Bragg peaks of each heavy ion were investigated. For single doses of carbon and neon ions in the plateau ionization region, RBE values of 1.45 +/- 0.25 (propagated 95% confidence limits) and 1.46 +/- 0.33, respectively, were obtained. In the spread peak regions for carbon and neon ions, the RBE values were 1.48 +/- 0.18 and 1.86 +/- 0.42, respectively. These values were obtained using the dose needed to produce 50% paralysis in a group of irradiated rats as the isoeffect comparison dose (ED 50 dose). Similarly, in groups of rats receiving four daily exposures, the RBE values for carbon and neon ions in the plateau ionization region were 1.31 +/- 0.27 and 1.80 +/- 0.24, respectively. In the spread peak regions of ionization for carbon and neon ions, the RBE values were 1.95 +/- 0.19 and 2.18 +/- 0.23, respectively. Similar values for RBE were obtained using changes in the activity of enzymes in spinal cord tissue (cyclic nucleotide phosphohydrolase and γ-glutamyl transpeptidase). Also, it was estimated that, for X irradiation, the fractional amount of dose repaired (at the ED 50 dose) was 0.64 +/- 0.10 (95% confidence limits). For carbon and neon ions in the plateau ionization region, the values for the fractional amount of dose repaired were 0.70 +/- 0.27 and 0.48 +/- 0.20, and for carbon and neon ions in the spread peak region of ionization, the fractional repair values were 0.40 +/- 0.10 and 0.52 +/- 0.17. Spinal cord tissue therefore shows a high capacity for subeffective damage repair

  11. Muon radiolysis affected by density inhomogeneity in near-critical fluids.

    Science.gov (United States)

    Cormier, P J; Alcorn, C; Legate, G; Ghandi, K

    2014-04-01

    In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.

  12. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  13. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  14. Emission factors for CH{sub 4}, NO{sub x}, particulates and black carbon for domestic shipping in Norway, revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joergen Bremnes; Stenersen, Dag

    2010-11-15

    In this report new and updated emission factors for diesel, HFO and gas fuelled ships are presented and discussed as follows; NO{sub x} reduction factors from ships with NO{sub x} reduction measures; NO{sub x} emission factor from gas operated vessels; Methane emission factors for gas operated vessels; Updated emission factors for particulate emissions (PM) with a specific factor for the black carbon (BC) fraction of particulate emissions; A discussion on how low sulfur fuel will affect emissions of PM emissions and the BC fraction of PM is also included. (Author)

  15. Nitrogen-15 recovery fraction in flooded tropical rice as affected by Added Nitrogen Interaction

    International Nuclear Information System (INIS)

    Schnier, H.F.

    1994-01-01

    The application of N fertilizer has been shown to cause an apparent increase in the uptake of native soil N via an effect termed ‘Added nitrogen interaction’ (ANI). This ANI caused by pool-substitution, can affect the 'IN-recovery fraction (NRF) by plants as calculated by the isotope-dilution method. The ANI effect was studied in a field experiment with transplanted and direct seeded flooded rice, comparing three methods of N-application (broadcast and incorporation of prilled urea ; band placement of urea solution ; and point placement of urea supergranules). ANI's for broadcast and incorporation treatments were generally greater than those for band and point placement treatments. The values for NRF calculated by the isotope-dilution method were lower than those of the apparent N-recovery fracton (ARF) as calculated by the difference method. Most of the discrepancy between plant nitrogen recoveries estimated by the isotope-dilution and the difference method could be explained by fertilizer losses and by pool-substitution, which means that fertilizer N stands proxy for soil N. (author)

  16. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials

    Science.gov (United States)

    Andruschkewitsch, R.; Geisseler, D.; Koch, H.-J.; Ludwig, B.

    2012-04-01

    Despite increasing interest in tillage techniques as a factor affecting organic carbon (Corg) dynamics and stabilization mechanisms little is known about the underlying processes. Our objectives were (i) to quantify the impact of different tillage treatments on the amount and distribution of of labile Corg pools, on the water-stable macro-aggregate (>250 µm) contents and on organic carbon (Corg) storage and (ii) to quantify the ability of soils under different tillage treatments, light fraction (LF) inputs and clay contents in macro-aggregate formation. Therefore four long-term tillage trials on loess soil in Germany with regular conventional tillage (CT, to 30 cm), mulch tillage (MT, to 10 cm), and no-tillage (NT) treatments. Samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth after 18-25 years of different tillage treatments and investigated on free and occluded LF (fLF and oLF, respectively) and on macro-aggregate contents. Furthermore an incubation experiment for the quantifcation of macro-aggregate formation was conducted. Macro-aggregates in soils from CT and NT treatments (0-5 and 5-25 cm soil depth) were destroyed and different amounts of light fraction (LF) and clay were applied. The four long-term tillage trials, differing in texture and climatic conditions, revealed consistent results in Corg storage among each other. Based on the equivalent soil mass approach (CT: 0-40, MT: 0-38, NT: 0-36 cm) the Corg stocks in the sampled profile were significantly higher for the MT treatment than for the CT and NT treatments. Significantly lower Corg, fLF, oLF, and macro-aggregate contents for the soils under CT treatment in comparison with the soils under NT and MT treatments were restricted on the top 5 cm. The correlation of the macro-aggregate content against the fLF and oLF contents suggested that the macro-aggregate content is influenced to a lesser extent directly by the physical impact of the different tillage treatments but by the contents of available

  17. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  18. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland

    Science.gov (United States)

    Polishchuk, Y. M.; Bogdanov, A. N.; Muratov, I. N.; Polishchuk, V. Y.; Lim, A.; Manasypov, R. M.; Shirokova, L. S.; Pokrovsky, O. S.

    2018-04-01

    Despite the potential importance of small (permafrost-affected WSL territory based on a combination of medium-resolution Landsat-8 images and high-resolution Kanopus-V scenes on 78 test sites across the WSL in a wide range of lake sizes (from 20 to 2 × 108 m2). The results were in fair agreement with other published data for world lakes including those in circum-polar regions. Based on available measurements of CH4, CO2, and dissolved organic carbon (DOC) in thermokarst lakes and thaw ponds of the permafrost-affected part of the WSL, we found an inverse relationship between lake size and concentration, with concentrations of GHGs and DOC being highest in small thaw ponds. However, since these small ponds represent only a tiny fraction of the landscape (i.e. ~1.5% of the total lake area), their contribution to the total pool of GHG and DOC in inland lentic water of the permafrost-affected part of the WSL is less than 2%. As such, despite high concentrations of DOC and GHG in small ponds, their role in overall C storage can be negated. Ongoing lake drainage due to climate warming and permafrost thaw in the WSL may lead to a decrease in GHG emission potential from inland waters and DOC release from lakes to rivers.

  19. Assessing SOC labile fractions through respiration test, density-size fractionation and thermal analysis - A comparison of methods

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Chenu, Claire; Baudin, François; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the biggest terrestrial carbon reservoir, storing 3 to 4 times more carbon than the atmosphere. However, despite its major importance for climate regulation SOM dynamics remains insufficiently understood. For instance, there is still no widely accepted method to assess SOM lability. Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes have been used for decades and are now considered as classical estimates of very labile and labile soil organic carbon (SOC), respectively. But the pertinence of these methods to characterize SOM turnover can be questioned. Moreover, they are very time-consuming and their reproducibility might be an issue. Alternate ways of determining the labile SOC component are thus well-needed. Thermal analyses have been used to characterize SOM among which Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of SOM biogeochemical stability (Gregorich et al., 2015; Barré et al., 2016). Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions, including deep samples (up to 1 m depth), we compared different techniques used for SOM lability assessment. We explored whether results from soil respiration test (10-week laboratory incubations), SOM size-density fractionation and RE6 thermal analysis were comparable and how they were correlated. A set of 222 (respiration test and RE6), 103 (SOM fractionation and RE6) and 93 (respiration test, SOM fractionation and RE6) forest soils samples were respectively analyzed and compared. The comparison of the three methods (n = 93) using a principal component analysis separated samples from the surface (0-10 cm) and deep (40-80 cm) layers, highlighting a clear effect of depth on the short-term persistence of SOC. A correlation analysis demonstrated that, for these samples, the two classical methods of labile SOC determination (respiration and SOM fractionation

  20. Impact Toughness of Subzones in the Intercritical Heat-Affected Zone of Low-Carbon Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Zhenshun Li

    2018-06-01

    Full Text Available The subzones of the intercritical heat-affected zone (IC HAZ of low-carbon bainitic steel were simulated by using a Gleeble-3500 simulator to study the impact toughness. The results showed that the IC HAZ is not entirely brittle and can be further divided into three subzones according to the impact toughness or peak welding temperature; the invariant subzone heated between the critical transformation start temperature (Ac1 and 770 °C exhibited unchanged high impact toughness. Furthermore, an extremely low impact toughness was found in the embrittlement subzone, heated between 770 and 830 °C, and the reduction subzone heated between 830 °C and the critical transformation finish temperature (Ac3 exhibited toughness below that of the original metal. The size of the blocky martensite-austenite (M-A constituents was found to have a remarkable level of influence on the impact toughness when heated below 830 °C. Additionally, it was found that, once the constituent size exceeds a critical value of 3.0 µm at a peak temperature of 770 °C, the IC HAZ becomes brittle regardless of lath or twinned martensite constitution in the M-A constituent. Essentially, embrittlement was observed to occur when the resolved length of initial cracks (in the direction of the overall fracture formed as a result of the debonding of M-A constituents exceeding the critical Griffith size. Furthermore, when the heating temperature exceeded 830 °C, the M-A constituents formed a slender shape, and the impact toughness increased as the area fraction of the slender M-A constituents decreased.

  1. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  2. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  3. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the

  4. Effects of exotic plantation forests on soil edaphon and organic matter fractions.

    Science.gov (United States)

    Xu, Gang; Liu, Yao; Long, Zhijian; Hu, Shanglian; Zhang, Yuanbin; Jiang, Hao

    2018-06-01

    There is uncertainty and limited knowledge regarding soil microbial properties and organic matter fractions of natural secondary forest accompanying chemical environmental changes of replacement by pure alien plantation forests in a hilly area of southwest of Sichuan province China. The aim of this study was to evaluate the impact of natural secondary forest (NSF) to pure Cryptomeria fortunei forest (CFF) and Cunninghamia lanceolata forest (CLF) on soil organic fractions and microbial communities. The results showed that the soil total phospholipid fatty acids (PLFAs), total bacteria and fungi, microbial carbon pool, organic recalcitrant carbon (C) and (N) fractions, soil microbial quotient and labile and recalcitrant C use efficiencies in each pure plantation were significantly decreased, but their microbial N pool, labile C and N pools, soil carbon dioxide efflux, soil respiratory quotient and recalcitrant N use efficiency were increased. An RDA analysis revealed that soil total PLFAs, total bacteria and fungi and total Gram-positive and Gram-negative bacteria were significantly associated with exchangeable Al 3+ , exchangeable acid, Al 3+ , available P and Mg 2+ and pH, which resulted into microbial functional changes of soil labile and recalcitrant substrate use efficiencies. Modified microbial C- and N-use efficiency due to forest conversion ultimately meets those of rapidly growing trees in plantation forests. Enlarged soil labile fractions and soil respiratory quotients in plantation forests would be a potential positive effect for C source in the future forest management. Altogether, pure plantation practices could provoke regulatory networks and functions of soil microbes and enzyme activities, consequently leading to differentiated utilization of soil organic matter fractions accompanying the change in environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia glyptostroboides Stand

    Directory of Open Access Journals (Sweden)

    Xiangrong Cheng

    2013-01-01

    Full Text Available Forest structural change affects the forest’s growth and the carbon storage. Two treatments, thinning (30% thinning intensity and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P0.05. The soil light fraction organic carbon (LFOC was significantly higher at the 0–15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P<0.05. The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (P<0.05. This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China.

  6. Structural characterization of alkyl-benzene fractions by carbon-13, hydrogen-1, NMR; Caracterizacao estrutural de fracoes de alquilbenzenos por RMN de {sup 13} C e de {sup 1} H

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Jorge F. de; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Marques, Rosana G.G. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-12-31

    This work presents studies concerning the utilization of carbon-13, hydrogen-1, NMR as chemical analytical technique to evaluate molecular characteristics of alkyl-benzene fractions. The methodology is described, including standards solutions and their preparations, as well as the experimental techniques used. The results are presented and discussed 2 refs., 4 tabs.

  7. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  8. Wet scavenging of organic and elemental carbon during summer monsoon and winter monsoon seasons

    Science.gov (United States)

    Sonwani, S.; Kulshrestha, U. C.

    2017-12-01

    In the era of rapid industrialization and urbanization, atmospheric abundance of carbonaceous aerosols is increasing due to more and more fossil fuel consumption. Increasing levels of carbonaceous content have significant adverse effects on air quality, human health and climate. The present study was carried out at Delhi covering summer monsoon (July -Sept) and winter monsoon (Dec-Jan) seasons as wind and other meteorological factors affect chemical composition of precipitation in different manner. During the study, the rainwater and PM10 aerosols were collected in order to understand the scavenging process of elemental and organic carbon. The Rain water samples were collected on event basis. PM10 samples were collected before rain (PR), during rain (DR) and after rain (AR) during 2016-2017. The collected samples were analysed by the thermal-optical reflectance method using IMPROVE-A protocol. In PM10, the levels of organic carbon (OC) and its fractions (OC1, OC2, OC3 and OC4) were found significantly lower in the AR samples as compared to PR and DR samples. A significant positive correlation was noticed between scavenging ratios of organic carbon and rain intensity indicating an efficient wet removal of OC. In contrast to OCs, the levels of elemental carbon and its fractions (EC1, EC2, and EC3) in AR were not distinct during PR and DR. The elemental carbon showed very week correlation with rain intensity in Delhi region which could be explained on the basis of hydrophobic nature of freshly emitted carbon soot. The detailed results will be discussed during the conference.

  9. Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-05-01

    Full Text Available Black carbon (BC is a short term climate forcer that directly warms the atmosphere, slows convection, and hinders quantification of the effect of greenhouse gases on climate change. The atmospheric lifetime of BC particles with respect to nucleation scavenging in clouds is controlled by their ability to serve as cloud condensation nuclei (CCN. To serve as CCN under typical conditions, hydrophobic BC particles must acquire hygroscopic coatings. However, the quantitative relationship between coatings and hygroscopic properties for ambient BC particles is not known nor is the time scale for hydrophobic-to-hydrophilic conversion. Here we introduce a method for measuring the hygroscopicity of externally and internally mixed BC particles by coupling a single particle soot photometer with a humidified tandem differential mobility analyzer. We test this technique using uncoated and coated laboratory generated model BC compounds and apply it to characterize the hygroscopicity distribution of ambient BC particles. From these data we derive that the observed number fraction of BC that is CCN active at 0.2 % supersaturation is generally low in an urban area near sources and that it varies with the trajectory of the airmass. We anticipate that our method can be combined with measures of air parcel physical and photochemical age to provide the first quantitative estimates for characterizing hydrophobic-to-hydrophilic conversion rates in the atmosphere.

  10. An analysis of carbon and radiocarbon profiles across a range ecosystems types

    Science.gov (United States)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; Strahm, B. D.; Sanclements, M.

    2016-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of mineralogical parameters on soil C stocks and turnover and their relative importance in comparison to climatic variables. Results are presented for a total of 11 NEON sites, spanning Alfisols, Entisols, Mollisols and Spodosols. Soils were sampled by genetic horizon, density separated according to density fractionation: light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon concentrations of the heavy fraction (mineral adsorbed) were significantly, though weakly, correlated with pH (r

  11. The Value Proposition for Fractionated Space Architectures

    Science.gov (United States)

    2006-09-01

    fractionation “mass penalty” assumptions , the expected launch costs are nearly a factor of two lower for the fractionated system than for the monolith...humidity variations which may affect fire propagation speed. 23 The Capital Asset Pricing Model ( CAPM ...spacecraft, can be very significant. In any event, however, the assumption that spacecraft cost scales roughly linearly with its mass is an artifact of

  12. Factor Affecting Textile Dye Removal Using Adsorbent From Activated Carbon: A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Razi Mohd Adib

    2017-01-01

    Full Text Available Industrial company such as textile, leather, cosmetics, paper and plastic generated wastewater containing large amount of dye colour. The removal of dye materials are importance as the presence of this kind of pollutant influence the quality of water and makes it aesthetically unpleasant. As their chemical structures are complicated, it is difficult to treat dyes with municipal waste treatment operations. Even a small quantity of dye does cause high visibility and undesirability. There have been various treatment technique reviewed for the removal of dye in wastewater. However, these treatment process has made it to another expensive treatment method. This review focus on the application of adsorbent in dye removal from textile wastewater as the most economical and effective method, adsorption has become the most preferred method to remove dye. The review provides literature information about different basis materials used to produce activated carbon like agricultural waste and industrial waste as well as the operational parameters factors in term of contact time, adsorbent dosage, pH solution and initial dye concentration that will affect the process in removing textile dye. This review approach the low cost and environmental friendly adsorbent for replacing conventional activated carbon.

  13. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    Sloot, H.A. van der; Hoede, D.; Zonderhuis, J.; Meijer, C.

    1980-02-01

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO 2 at 950 0 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  14. Observations of Isotope Fractionation in Prestellar Cores: Interstellar Origin of Meteoritic Hot Spot?

    Science.gov (United States)

    Milam, S. N.; Charnley, S. B.

    2011-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing. Here, we show the results of models and observations of the nitrogen and carbon fractionation in proto-stellar cores.

  15. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    DEFF Research Database (Denmark)

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation...... between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment......, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast...

  16. Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake.

    Science.gov (United States)

    Shirokova, L S; Pokrovsky, O S; Moreva, O Yu; Chupakov, A V; Zabelina, S A; Klimov, S I; Shorina, N V; Vorobieva, T Ya

    2013-10-01

    The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 μm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 μm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought

  17. Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete

    International Nuclear Information System (INIS)

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-01-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe–Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe–Mn oxides were important in controlling the sediment metal bioavailability to polychaetes. - Highlights: • Metals in contaminated sediments gradually partitioned into the more stable phase over time. • Metal accumulation in polychaetes was more significantly influenced by Fe/Mn content than by organic matter. • Prediction of metal bioaccumulation greatly improved by normalizing metals to Mn content in sediment. • Metals in exchangeable, organic matter and Fe–Mn oxides were important in controlling their bioavailability. - Prediction of metal bioaccumulation in polychaetes was significantly improved by normalizing metal concentrations to Mn content in sediment

  18. Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications

    International Nuclear Information System (INIS)

    Sun, Xihe; Souier, Tewfik; Chiesa, Matteo; Vassallo, Anthony

    2014-01-01

    Due to their high electrical conductivity and corrosion resistance, carbon nanotube (MWNT)-high density polyethylene (HDPE) composites are potential candidates to replace traditional activated carbon electrodes for the next generation of fuel-cells, super capacitors and flow batteries. Electrochemical impedance spectroscopy (EIS) is employed to separate the surface conduction from bulk conduction in 15% HDPE-MWNT and 19% carbon black (CB)-HDPE composites for zinc-bromine flow battery electrodes. While exhibiting superior bulk conductivity, the interfacial conductivity of MWNT-filled composites is lower than that of CB-filled composites. High resolution conductive atomic force microscopy (C-AFM) imaging and current-voltage (I-V) spectroscopy were employed to investigate the sub-surface electronic transport of the composite. Unlike the CB-composite, the fraction of conducting MWNTs near the surface is very low compared to their volume fraction. In addition, the non-linear I-V curves reveal the presence of a tunneling junction between the tip and the polymer-coated MWNTs. The tunneling resistance is as high as 1 GΩ, which strongly affects the electronic/electrochemical transfer at the interface of the electrolyte and the surface of the composite, which is evident in the voltammetric and EIS observations

  19. Forecasting how residential urban form affects the regional carbon savings and costs of retrofitting and decentralized energy supply

    International Nuclear Information System (INIS)

    Hargreaves, Anthony; Cheng, Vicky; Deshmukh, Sandip; Leach, Matthew; Steemers, Koen

    2017-01-01

    Highlights: • An innovative model for testing combinations of spatial planning and decentralised energy supply. • An improved method of modelling the spatial variability of energy consumption per dwelling type. • Shows how spatial planning would affect the future carbon reduction of decentralised supply. • Forecasts the future carbon reduction and costs of retrofitting and decentralised supply. • A method of forecasting how residential space would affect the suitability of decentralised supply. - Abstract: Low carbon energy supply technologies are increasingly used at the building and community scale and are an important part of the government decarbonisation strategy. However, with their present state of development and costs, many of these decentralised technologies rely on public subsidies to be financially viable. It is questionable whether they are cost effective compared to other ways of reducing carbon emissions, such as decarbonisation of conventional supply and improving the energy efficiency of dwellings. Previous studies have found it difficult to reliably estimate the future potential of decentralised supply because this depends on the available residential space which varies greatly within a city region. To address this problem, we used an integrated modelling framework that converted the residential density forecasts of a regional model into a representation of the building dimensions and land of the future housing stock. This included a method of estimating the variability of the dwellings and residential land. We present the findings of a case study of the wider south east regions of England that forecasted the impacts of energy efficiency and decentralised supply scenarios to year 2031. Our novel and innovative method substantially improves the spatial estimates of energy consumption compared to building energy models that only use standard dwelling typologies. We tested the impact of an alternative spatial planning policy on the future

  20. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  1. Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil

    Directory of Open Access Journals (Sweden)

    Tanise Luisa Sausen

    2014-06-01

    Full Text Available Soil carbon accumulation is largely dependent on net primary productivity. To our knowledge, there have been no studies investigating the dynamics of carbon accumulation in weathered subtropical soils, especially in managed eucalyptus plantations. We quantified the seasonal input of leaf litter, the leaf decomposition rate and soil carbon stocks in an commercial plantation of Eucalyptus saligna Labill. in southern Brazil. Our goal was to evaluate, through multiple linear regression, the influence that certain chemical characteristics of litter, as well as chemical and physical characteristics of soil, have on carbon accumulation in soil organic matter fractions. Variables related to the chemical composition of litter were not associated with the soil carbon stock in the particulate and mineral fractions. However, certain soil characteristics were significantly associated with the carbon stock in both fractions. The concentrations of nutrients associated with plant growth and productivity, such as phosphorus, sulfur, copper and zinc, were associated with variations in the labile carbon pool (particulate fraction. Clay content was strongly associated with the carbon stock in the mineral fraction. The carbon accumulation and stabilization in weathered subtropical Ultisol seems to be mainly associated with the intrinsic characteristics of the soil, particularly clay content, rather than with the quantity, chemical composition or decomposition rate of the litter.

  2. Preservation of collagen and bioapatite fractions extracted from bison teeth in permafrost conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cherkinsky, Alexander [Center for Applied Isotope Studies, University of Georgia, GA (United States); Glassburn, Crystal L. [Anthropology Department, University of Alaska, Fairbanks, AK (United States); Reuther, Joshua [Anthropology Department, University of Alaska, Fairbanks, AK (United States); University of Alaska, Museum of the North, Fairbanks, AK (United States)

    2015-10-15

    This research addresses the stability of bioapatite and collagen fractions of AMS dated steppe bison (Bison priscus) teeth. Through the course of other research, 8 prehistoric bison molars were submitted for AMS dating of fractions of collagen extracted from the dentine of each tooth. Because the teeth were well preserved and collagen yields were relatively high during the initial analysis, it provided an opportunity to further research differences between AMS dates produced on collagen from dentine and bioapatite fractions from enamel. The specimens were recovered from late Quaternary sediments of the Lost Chicken Creek drainage in east-central Alaska. All of the samples were very well preserved and gave high enough yield of carbon from both fractions. The {sup 14}C/{sup 13}C ratio was measured using 0.5 MV tandem AMS system. The {sup 14}C age of the samples varied across age ranges between 17,360 ± 50 and 43,370 ± 300 non-calibrated years BP. Such a wide range of ages allows us estimate the stability of each fraction in subarctic permafrost conditions. The results of analyses have shown that {sup 14}C ages of bioapatite fraction are rejuvenated as a result of isotopic exchange with the younger carbon from the soil solutions. The dating of bioapatite from the samples collected in the boreal climate of Alaska is possible only with a certain correction for the isotope fractionation.

  3. Changes in different organic matter fractions during conventional treatment and advanced treatment

    Institute of Scientific and Technical Information of China (English)

    Chao Chen; Xiaojian Zhang; Lingxia Zhu; Wenjie He; Hongda Han

    2011-01-01

    XAD-8 resin isolation of organic matter in water was used to divide organic matter into the hydrophobic and hydrophilic fractions.A pilot plant was used to investigate the change in both fractions during conventional and advanced treatment processes.The treatment of hydrophobic organics (HPO), rather than hydrophilic organicas (HPI), should carry greater emphasis due to HPO's higher trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP).The removal of hydrophobic matter and its transmission into hydrophilic matter reduced ultimate DBP yield during the disinfection process.The results showed that sand filtration, ozonation, and biological activated carbon (BAC) filtration had distinct influences on the removal of both organic fractions.Additionally, the combination of processes changed the organic fraction proportions present during treatment.The use of ozonation and BAC maximized organic matter removal efficiency, especially for the hydrophobic fraction.In sum, the combination of pre-ozonation,conventional treatment, and O3-BAC removed 48% of dissolved organic carbon (DOC), 60% of HPO, 30% of HPI, 63% of THMFP,and 85% of HAAFP.The use of conventional treatment and O3-BAC without pre-ozonation had a comparable performance, removing 51% of DOC, 56% of HPO, 45% of HPI, 61% of THMFP, and 72% of HAAFP.The effectiveness of this analysis method indicated that resin isolation and fractionation should be standardized as an applicable test to help assess water treatment process efficiency.

  4. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    Science.gov (United States)

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  5. C and N content in density fractions of whole soil and soil size fraction under cacao agroforestry systems and natural forest in Bahia, Brazil.

    Science.gov (United States)

    Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and 2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby

  6. C and N Content in Density Fractions of Whole Soil and Soil Size Fraction Under Cacao Agroforestry Systems and Natural Forest in Bahia, Brazil

    Science.gov (United States)

    Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical

  7. Release fraction of PWR after severe accidents. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, M; El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Fission fragments and gases are emitted after accidents as a result of core meltdown and core concrete interactions. These aerosols are transported and fill the reactor containment. With increasing the pressure above pressure design bases, a failure of containment may occur and subsequently these aerosols will release into the external environment leading to a source term of radioactivity that affects the safety of workers and public. The amount of aerosol which escapes to the environment can be described by the release fraction which is defined as the total accumulated aerosol which initially enters the containment. The factors that affect the release fraction is studied, and the aerosol dynamics equation is used to model the release of aerosol to the outside atmosphere. These factors are containment pressure, failure time,break area, the size of aerosol particle. It found that early failure time and higher pressure increase the release fraction, also the release faction is affected by the area and the aerosol particle size. 7 figs., 2 tabs.

  8. Release fraction of PWR after severe accidents. Vol. 4

    International Nuclear Information System (INIS)

    Aziz, M.; El-Messeiry, A.M.

    1996-01-01

    Fission fragments and gases are emitted after accidents as a result of core meltdown and core concrete interactions. These aerosols are transported and fill the reactor containment. With increasing the pressure above pressure design bases, a failure of containment may occur and subsequently these aerosols will release into the external environment leading to a source term of radioactivity that affects the safety of workers and public. The amount of aerosol which escapes to the environment can be described by the release fraction which is defined as the total accumulated aerosol which initially enters the containment. The factors that affect the release fraction is studied, and the aerosol dynamics equation is used to model the release of aerosol to the outside atmosphere. These factors are containment pressure, failure time,break area, the size of aerosol particle. It found that early failure time and higher pressure increase the release fraction, also the release faction is affected by the area and the aerosol particle size. 7 figs., 2 tabs

  9. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

    Science.gov (United States)

    Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2017-04-01

    A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.

  10. Sweet Work with Fractions

    Science.gov (United States)

    Vinogradova, Natalya; Blaine, Larry

    2013-01-01

    Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…

  11. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions.

    Science.gov (United States)

    Gentile, Roberta; Vanlauwe, Bernard; Six, Johan

    2011-04-01

    Complex molecules are presumed to be preferentially stabilized as soil organic carbon (SOC) based on the generally accepted concept that the chemical composition of litter is a major factor in its rate of decomposition. Hence, a direct link between litter quality and SOC quantity has been assumed, accepted, and ultimately incorporated in SOC models. Here, however, we present data from an incubation and field experiment that refutes the influence of litter quality on the quantity of stabilized SOC. Three different qualities of litter (Tithonia diversifolia, Calliandra calothyrsus, and Zea mays stover; 4 Mg C x ha(-1) yr(-1)) with and without the addition of mineral N fertilizer (0 or 120 kg N x ha(-1)season(-1) were added to a red clay Humic Nitisol in a 3-yr field trial and a 1.5-yr incubation experiment. The litters differed in their concentrations of N, lignin, and polyphenols with the ratio of (lignin + polyphenols): N ranging from 3.5 to 9.8 for the field trial and from 2.3 to 4.0 for the incubation experiment in the order of T. diversifolia stabilized after three annual additions in the field trial. Even within the most sensitive soil aggregate fractions, SOC contents and C:N ratios did not differ with litter quality, indicating that litter quality did not influence the mechanisms by which SOC was stabilized. While increasing litter quality displayed faster decomposition and incorporation of C into soil aggregates after 0.25 yr in the incubation study, all litters resulted in equivalent amounts of C stabilized in the soil after 1.5 yr, further corroborating the results of the field trial. The addition of N fertilizer did not affect SOC stabilization in either the field or the incubation trial. Thus, we conclude that, while litter quality controls shorter-term dynamics of C decomposition and accumulation in the soil, longer-term SOC patterns cannot be predicted based on initial litter quality effects. Hence, the formation and stabilization of SOC is more

  12. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  13. An In Silico Approach for Evaluating a Fraction-Based, Risk Assessment Method for Total Petroleum Hydrocarbon Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Ching Y. Wang

    2012-01-01

    Full Text Available Both the Massachusetts Department of Environmental Protection (MADEP and the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG developed fraction-based approaches for assessing human health risks posed by total petroleum hydrocarbon (TPH mixtures in the environment. Both organizations defined TPH fractions based on their expected environmental fate and by analytical chemical methods. They derived toxicity values for selected compounds within each fraction and used these as surrogates to assess hazard or risk of exposure to the whole fractions. Membership in a TPH fraction is generally defined by the number of carbon atoms in a compound and by a compound's equivalent carbon (EC number index, which can predict its environmental fate. Here, we systematically and objectively re-evaluate the assignment of TPH to specific fractions using comparative molecular field analysis and hierarchical clustering. The approach is transparent and reproducible, reducing inherent reliance on judgment when toxicity information is limited. Our evaluation of membership in these fractions is highly consistent (̃80% on average across various fractions with the empirical approach of MADEP and TPHCWG. Furthermore, the results support the general methodology of mixture risk assessment to assess both cancer and noncancer risk values after the application of fractionation.

  14. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative study of the efficacy of Platelet-rich plasma combined with carboxytherapy vs its use with fractional carbon dioxide laser in atrophic acne scars.

    Science.gov (United States)

    Al Taweel, Abdul-Aziz Ibrahim; Al Refae, Abdul-Aziz Abdul-Salam; Hamed, Ahmed Mohamed; Kamal, Asmaa Mostafa

    2018-04-22

    Acne scars are a major concerning problem to all acne patients affecting their quality of life. Platelet-rich plasma (PRP) and fractional CO 2 laser are innovative treatment modalities for acne scars. Carboxytherapy can also be used to improve scar tissue through the increase in collagen deposition and reorganization, and the improvement in skin texture and tone. The aim of this work was to compare the efficacy, safety, and complications of the intradermal injection of PRP combined with carboxytherapy and PRP combined with fractional CO 2 laser, in the treatment of atrophic acne scars. Forty patients with atrophic acne scars were divided into 2 groups. Group A included 20 patients and was subjected to three fractional CO 2 laser sessions combined with PRP injection. Group B included 20 patients and was subjected to three sessions of carboxytherapy combined with PRP injection. Both fractional CO 2 laser and carboxytherapy combined with PRP showed improvement in acne scars and patients' satisfaction but the improvement with fractional CO 2 laser was significantly better than carboxytherapy but with more side effects. Improvement of acne scars was noted in both treatment modalities with obvious higher and statistically significant results in favor of fractional CO 2 laser but with more side effects. Carboxytherapy is a promising tool in treatment of acne scars with less complication. © 2018 Wiley Periodicals, Inc.

  16. A Comparison between the Effects of Glucantime, Topical Trichloroacetic Acid 50% plus Glucantime, and Fractional Carbon Dioxide Laser plus Glucantime on Cutaneous Leishmaniasis Lesions

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background. Cutaneous leishmaniasis is an endemic disease in Iran. Pentavalent antimonial drugs have been the first line of therapy in cutaneous leishmaniasis for many years. However, the cure rate of these agents is still not favorable. This study was carried out to compare the efficacies of intralesional glucantime with topical trichloroacetic acid 50% (TCA 50% + glucantime and fractional carbon dioxide laser + glucantime in the treatment of cutaneous leishmaniasis. Methods. A total of 90 patients were randomly divided into three groups of 30 to be treated with intralesional injection of glucantime, a combination of topical TCA 50% and glucantime, or a combination of fractional laser and glucantime. The overall clinical improvement and changes in sizes of lesions and scars were assessed and compared among three groups. Results. The mean duration of treatment was 6.1±2.1 weeks in all patients (range: 2–12 weeks and 6.8±1.7, 5.2±1.0, and 6.3±3.0 weeks in glucantime, topical TCA plus glucantime, and fractional laser plus glucantime groups, respectively (P=0.011. Complete improvement was observed in 10 (38.5%, 27 (90%, and 20 (87% patients of glucantime, glucantime + TCA, and glucantime + laser groups, respectively (P<0.001. Conclusion. Compared to glucantime alone, the combination of intralesional glucantime and TCA 50% or fractional CO2 laser had significantly higher and faster cure rate in patients with cutaneous leishmaniasis.

  17. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1980-01-01

    Recent deep-sea benthic foraminifera from five East Pacific Rise box core tops have been analyzed for oxygen and carbon isotopic composition. The five equatorial stations, with water depths of between 3200 and 4600 m, yielded fourteen specific and generic taxonomic groups. Of the taxa analyzed, Uvigerina spp. most closely approaches oxygen isotopic equilibrium with ambient sea water. Pyrgo spp. was next closest to isotopic equilibrium, being on the average 0.59 per thousand depleted in 18 O relative to Uvigerina spp. Oridorsalis umbonatus also has relatively high delta 18 O values. Most other taxa were depleted in 18 O by large amounts. In no taxa was the carbon in the CaCO 3 secreted in carbon isotopic equilibrium with the dissolved HCO 3 - of ambient sea water. (Auth.)

  18. Managing for soil carbon sequestration: a modeling framework for decision-making

    Science.gov (United States)

    Abramoff, Rose; Harden, Jennifer; Georgiou, Katerina; Tang, Jinyun; Torn, Margaret; Riley, William

    2017-04-01

    In order to plan for responsible soil carbon (C) management, it is important to know how site factors will affect C stabilization. For example, is mineral-associated C vulnerable to climate change, and how do management practices that modify plant inputs affect mineral-associated C? We applied a soil organic carbon (SOC) decomposition model that represents microbial physiology and mineral sorption. The model was able to reproduce large spatial gradients in SOC stocks; model predictions of SOC were highly correlated with SOC observations across an 4000 km transect (R2 > 0.9). We also used a Random Forest algorithm to compare our model predictions with transect data. We applied this model to explore expected changes to SOC across a range of mineral surface properties, mean annual temperature (MAT), and plant input rates. We found that SOC generally increased after plant amendments. Furthermore, the type of amendment (i.e., high vs. low lignin content), soil mineralogy, and climate all affected the sign and magnitude of SOC change over time. In particular, cold sites with low mineral surface availability were most vulnerable to SOC loss, and may benefit most from plant amendments. At all sites, mineral surface saturation reduced the SOC pool's sensitivity to changes in plant inputs. Saturated soils lost a smaller fraction of initial mineral-associated C following warming. We encourage the use of soil carbon models as frameworks to evaluate how particular sites may respond to changes in management and/or climate.

  19. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    International Nuclear Information System (INIS)

    Hyder, M.L.; Malstrom, R.A.

    1991-01-01

    This paper comprises two sets of studies of methyl iodide retention by iodide-impregnated carbon. In the first of these, the retention of the methyl iodide on the carbon surface and its subsequent evolution were observed directly by a technique of combustion and phosphorescence. In the second, the methyl iodide retention in a standard test was compared with surface area measurements and the concentration of unreacted iodine. A correlation among these parameters was identified and characterized. Carbon quality was varied through the selection of used material with differing service histories. Air from the Savannah River Site reactor buildings is vented through carbon beds for control of radioiodine before release to the atmosphere. The carbon used is North American Carbon Co. type GX-176 coconut shell carbon impregnated with 1% triethylenedimaine (TEDA) and 2% potassium iodide by weight. Replacement intervals for the carbon have been as long as thirty months. Analysis of samples withdrawn at much shorter times has shown that the TEDA is lost after a few months, and the performance of the carbon for methyl iodide retention is dependent on the iodide impregnant. Efficient methyl iodide retention is not a requirement for carbon in this service; however, methyl iodide retention as measured by the ASTM Test D3803 (method B) has been found to correlate well with other desirable properties of the carbon such as radiation stability. The studies undertaken here were intended to shed light on the changes taking place in this carbon during long-term service and to provide a basis for simpler measurements of carbon quality

  20. Fractional surface termination of diamond by electrochemical oxidation.

    Science.gov (United States)

    Hoffmann, René; Obloh, Harald; Tokuda, Norio; Yang, Nianjun; Nebel, Christoph E

    2012-01-10

    The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces.

  1. Observation of WC grain shapes determined by carbon content during liquid phase sintering of WC-Co alloys

    International Nuclear Information System (INIS)

    Sona Kim; Hyoun-Ee Kim; Seok-Hee Han; Jong-Ku Park

    2001-01-01

    In the composite materials of WC-Co alloys, the faceted WC grains as a hard phase are dispersed in the ductile matrix of cobalt. Properties of WC-Co alloys are affected by microstructural factors such as volume fraction of WC phase, size of WC grains, and carbon content (kinds of constituent phases). Although the properties of WC-Co alloys are inevitably affected by the shape of WC grains, the shape of WC grains has not been thrown light on the properties of WC-Co alloys yet, because it has been regarded to have a uniform shape regardless of alloy compositions. It is proved that the WC grains have various shapes varying reversibly with carbon content in the sintered WC-Co compacts. This dependency of grain shape on the carbon content is attributed to asymmetric atomic structure of WC crystal. The {10 1 - 0} prismatic planes are distinguished into two groups with different surface energy according to their atomic structures. The prismatic planes of high surface energy tend to disappear in the compacts with high carbon content. In addition, these high energy prismatic planes tend to split into low energy surfaces in the large WC grains. (author)

  2. The vacuum pyrolysis of used tires. End-uses for oil and carbon black products

    Energy Technology Data Exchange (ETDEWEB)

    Roy, C.; Chaala, A.; Darmstadt, H. [Institut Pyrovac Inc., Parc Technologique du Quebec Metropolitain, rue Franquet, Sainte-Foy (Canada)

    1999-07-01

    By vacuum pyrolysis, the rubber portion of used tires is transformed into oil and gas and the carbon black filler is recovered as pyrolytic carbon black (CB{sub P}). Several commercial applications for the different products have been investigated and are reported in this article. CB{sub P} surface chemistry and activity are similar to those of commercial carbon blacks. Therefore, CB{sub P} has the potential to replace commercial carbon black grades in certain rubber applications. CB{sub P} was successfully tested as a filler in road pavement. The total pyrolytic oil can be used as a liquid fuel. The oil can also be distilled into different fractions: a light, a middle distillate and a heavy fraction. The light fraction was positively tested as a gasoline additive. Furthermore, this fraction contains valuable chemicals such as d,l-limonene. The middle fraction was successfully tested as a plasticizer in rubbers. The heavy fraction represents a good-quality feedstock for the production of coke and can also be used in road pavements. The pyrolytic gas can be used as a make-up heat source for the pyrolysis process

  3. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  4. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M.; Szakova, J.; Tlustos, P.

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  5. Bringing AMS radiocarbon into the Anthropocene: Potential and drawbacks in the determination of the bio-fraction in industrial emissions and in carbon-based products

    Energy Technology Data Exchange (ETDEWEB)

    Quarta, Gianluca, E-mail: gianluca.quarta@unisalento.it [CEDAD (Centre for Dating and Diagnostics), Department of Engineering for Innovation, University of Salento (Italy); Ciceri, Giovanni; Martinotti, Valter [Ricerca sul Sistema Energetico SpA, Milan (Italy); D’Elia, Marisa; Calcagnile, Lucio [CEDAD (Centre for Dating and Diagnostics), Department of Engineering for Innovation, University of Salento (Italy)

    2015-10-15

    In the frame of the general efforts to reduce atmospheric CO{sub 2} emissions different efforts are being carried out to stimulate the use of non-fossil energy sources and raw materials. Among these a significant role is played by the use of waste in Waste to Energy (WTE) plants. In this case a relevant problem is related to the determination of the proportion between the bio and the fossil derived fraction in CO{sub 2} atmospheric emissions since only the share of energy derived from the bio-fraction combustion can be labelled as “renewable”. We discuss the potential of radiocarbon in this field by presenting the results of different campaigns carried out by analysing CO{sub 2} sampled at the stack of different power plants in Italy with different expected bio-content of the released carbon dioxide. The still open issues related to the calculation procedures and the achievable precision and accuracy levels are discussed.

  6. Carbon storage in soil: how different land uses affect particulate organic matter composition. A molecular approach using nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Panettieri, Marco; Courtier-Murias, Denis; Rumpel, Cornelia; Dignac, Marie-France; Doumert, Bertrand; Chabbi, Abad

    2017-04-01

    The future soil carbon stocks in a climate change scenario is being closely monitored. However, the huge edaphoclimatic variability impedes to disclose the mechanisms which underlie the cycle of accumulation/mineralization of soil organic matter (SOM). Soil environment could be described as a complex three phases matrix in which gases, liquids, and solids are not uniformly mixed, and in which microbes, fungi, vegetal residues, and roots are continuously interacting with the soil matrix and with each other. Molecular analyses on soil samples are crucial to estimate how stable those pools are and to predict which practices may accumulate larger C stocks. However, the study of land use impact through molecular characterization of a complex mixture like SOM is a challenge that requires a multidisciplinary approach. The present study applied a combination of soil physical fractionation (separation by density of the particulate organic matter (POM) within water stable aggregate fractions) followed by nuclear magnetic resonance (NMR) spectroscopy as a way to overcome spatial variability and to quantify the changes in the composition of SOM induced by land-use changes. The objective of the study was to assess, at a molecular level, the impact of different land managements, i.e. the introduction of temporary (ley) grassland into cropping cycles, on the chemical composition of SOM. Soil samples were collected at the long-term experimental observatory in Lusignan (http://www.soere-acbb.com/), in which control plots under permanent grassland, permanent cropland, and bare fallow are part of the experiment. To improve the signal-to-noise ratio (especially in the aromatic-C region), samples were analyzed using a ramped cross polarization-single pulse/magic angle spinning (CPSP/MAS) experiment. Peak integrals of different spectral regions (indicating different compound classes) were compared between treatments and two different molecular mixing models, calibrated against standard

  7. Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Steven J. Deverel

    2007-05-01

    Full Text Available From 2000 to 2003 we quantified drain flow, drain-and ground-water chemistry and hydrogeologic conditions on Twitchell Island in the Sacramento-San Joaquin Delta. The primary objective was to quantify processes affecting organic carbon concentrations and loads in agricultural drainage water. We collected physical and chemical data in southern and northern areas: TN and TS, respectively. Corn grew in both areas during the spring and summer. The peat soils in the TN area are more decomposed than those in the TS area. Results elucidate processes affecting drain flow and concentrations under varying hydrologic conditions. During May through November, groundwater flows from the permanently saturated zone to drainage ditches, and the resulting average drainage-water quality and dissolved organic carbon (DOC concentration was similar to the groundwater; the median DOC loads in the TN and TS study areas ranged from 9 to 27 g C/ha-day. The major ion chemistry and stable isotope data confirmed that groundwater was the primary source of drainflow. In contrast, during December through April the drainwater is supplied from the shallow, variably saturated soil-zone. The DOC concentrations, major-ion chemistry, and stable isotope data indicate that the shallow-zone water is partially evaporated and oxidized. Higher flows and DOC concentrations during these months result in higher median DOC loads, which ranged from 84 to 280 g C/ha-day. During December through April, increasing groundwater levels in the shallow peat layers and mobilization of organic carbon result in high drain flow and increased trihalomethane precursor concentrations and loads. On a per mass DOC basis, drain water collected during high flow periods is less likely to form THMs than during low flow periods. However, the high flows and subsequent high concentrations contribute to substantially higher trihalomethane precursor and DOC loads.

  8. Chemical structure investigation on SFEF fractions of Dagang vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Yan, G.; Zhao, S.; Guo, S. [China Univ. of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing; Zhang, Z. [Beijing Aeronautical Technology Research Center, Beijing (China)

    2006-07-01

    One of the most important problems in petroleum chemistry is the molecular structure and composition of heavy oil fractions and its importance in applications pertaining to the recovery, refining, and upgrading of petroleum. This paper presented an investigation into the chemical structure on supercritical fluid extraction and fraction (SFEF) factions of Dagang vacuum residue. Dagang vacuum residue was cut into sixteen fractions and a tailing with SFEF instrument. Then, using a chromatography, all SFEF fractions were further separated into four group compositions, notably saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltenes (SARA). Last, the chemical structure was explored through a thorough analysis of the products from the ruthenium ions-catalyzed oxidation (RICO) reaction of those aromatics, resins and asphaltenes. The paper discussed the experiment in terms of samples and chemicals; supercritical fluid extraction and fraction; SARA separation; and RICO. The results and discussions focused on alkyl side chains attached to aromatic carbon; polymethylene bridges connecting two aromatic units; benzenecarboxylic acids an aromatic units; and others. The study has brought to light useful characterization on covalent molecular structure of two typical SFEF fractions, notably the tenth and fifteen fraction. 17 refs., 6 tabs., 16 figs., 1 appendix.

  9. Fractionation schedule affects transforming growth factor β expression in chronic radiation enteropathy

    International Nuclear Information System (INIS)

    Hauer-Jensen, Martin; Richter, Konrad K.; Sung, C.-C.; Langberg, Carl W.

    1995-01-01

    Purpose/Objective: The risk of intestinal obstruction from fibrotic strictures is a major dose limiting factor in abdominal radiation therapy. We have shown that chronic intestinal radiation injury (radiation enteropathy) is associated with sustained over-expression of the fibrogenic cytokine, transforming growth factor beta (TGF-β). This study used quantitative computerized image analysis to examine the relationship between TGF-β expression and specific histopathologic alterations as a function of fractionation schedule. Materials and Methods: Localized fractionated small bowel irradiation was performed in a rat model developed in our laboratory: 49 male rats were orchiectomized and a loop of small bowel was sutured to the inside of the scrotum. After 3 weeks recovery, the intestine within the artificial 'scrotal hernia' was sham-irradiated (Controls) or exposed to a total dose of 50.4 Gy orthovoltage radiation, given either as 18 daily fractions of 2.8 Gy (Group I) or as 9 daily fractions of 5.6 Gy (Group II). Groups of animals were euthanized at 2 weeks (early injury) and 26 weeks (chronic injury). Specimens were prepared for immunohistochemistry and histopathology. Extracellular TGF-β was detected with a polyclonal antibody, and protein expression was quantified by computerized image analysis. Twenty separate 40X fields per specimen were digitized, and the average number of stained pixels relative to total pixels was determined. Histopathologic injury was assessed in H+E sections with a previously validated Radiation Injury Score (RIS). Results: Irradiated animals had significantly higher levels of extracellular TGF-β immunoreactivity at both 2 weeks and 26 weeks (p<0.01). TGF-β expression correlated with RIS at both time points (p<0.001). Group II had significantly greater RIS and TGF-β expression than group I (p<0.01). TGF-β expression at 2 weeks correlated with epithelial atypia, mucosal ulceration, and subserosal thickening (p<0.01). At 26 weeks, TGF

  10. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    Science.gov (United States)

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.

  11. Carbon isotope fractionation during diamond growth in depleted peridotite: Counterintuitive insights from modelling water-maximum CHO fluids as multi-component systems

    Science.gov (United States)

    Stachel, T.; Chacko, T.; Luth, R. W.

    2017-09-01

    Because of the inability of depleted cratonic peridotites to effectively buffer oxygen fugacities when infiltrated by CHO or carbonatitic fluids, it has been proposed recently (Luth and Stachel, 2014) that diamond formation in peridotites typically does not occur by rock-buffered redox reactions as previously thought but by an oxygen-conserving reaction in which minor coexisting CH4 and CO2 components in a water-rich fluid react to form diamond (CO2 + CH4 = 2C + 2H2O). In such fluid-buffered systems, carbon isotope fractionation during diamond precipitation occurs in the presence of two dominant fluid carbon species. Carbon isotope modelling of diamond precipitation from mixed CH4- and CO2-bearing fluids reveals unexpected fundamental differences relative to diamond crystallization from a single carbon fluid species: (1) irrespective of which carbon fluid species (CH4 or CO2) is dominant in the initial fluid, diamond formation is invariably associated with progressive minor (diamond in 13C as crystallization proceeds. This is in contrast to diamond precipitation by rock-buffered redox processes from a fluid containing only a single carbon species, which can result in either progressive 13C enrichment (CO2 or carbonate fluids) or 13C depletion (CH4 fluids) in the diamond. (2) Fluid speciation is the key factor controlling diamond δ13 C values; as XCO2 (XCO2 = CO2/[CO2 + CH4]) in the initial fluid increases from 0.1 to 0.9 (corresponding to an increase in fO2 of 0.8 log units), the carbon isotope composition of the first-precipitated diamond decreases by 3.7‰. The tight mode in δ13C of - 5 ± 1 ‰ for diamonds worldwide places strict constraints on the dominant range of XCO2 in water-rich fluids responsible for diamond formation. Specifically, precipitation of diamonds with δ13C values in the range -4 to -6‰ from mantle-derived fluids with an average δ13C value of -5‰ (derived from evidence not related to diamonds) requires that diamond-forming fluids were

  12. Aggregate and soil organic carbon dynamics in South Chilean Andisols

    Directory of Open Access Journals (Sweden)

    D. Huygens

    2005-01-01

    Full Text Available Extreme sensitivity of soil organic carbon (SOC to climate and land use change warrants further research in different terrestrial ecosystems. The aim of this study was to investigate the link between aggregate and SOC dynamics in a chronosequence of three different land uses of a south Chilean Andisol: a second growth Nothofagus obliqua forest (SGFOR, a grassland (GRASS and a Pinus radiata plantation (PINUS. Total carbon content of the 0-10cm soil layer was higher for GRASS (6.7 kg C m-2 than for PINUS (4.3 kg C m-2, while TC content of SGFOR (5.8 kg C m-2 was not significantly different from either one. High extractable oxalate and pyrophosphate Al concentrations (varying from 20.3-24.4 g kg-1, and 3.9-11.1 g kg-1, respectively were found in all sites. In this study, SOC and aggregate dynamics were studied using size and density fractionation experiments of the SOC, δ13C and total carbon analysis of the different SOC fractions, and C mineralization experiments. The results showed that electrostatic sorption between and among amorphous Al components and clay minerals is mainly responsible for the formation of metal-humus-clay complexes and the stabilization of soil aggregates. The process of ligand exchange between SOC and Al would be of minor importance resulting in the absence of aggregate hierarchy in this soil type. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS (respectively 0.495, 0.266 and 0.196 g CO2-Cm-2d-1 for the top soil layer. In contrast, incubation experiments of isolated macro organic matter fractions gave opposite results, showing that the recalcitrance of the SOC decreased in another order: PINUS>SGFOR>GRASS. We deduced that electrostatic sorption processes and physical protection of SOC in soil aggregates were the main processes determining SOC stabilization. As a result, high aggregate carbon concentrations, varying from 148 till 48 g kg-1, were encountered for all land use

  13. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  14. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash.

    Science.gov (United States)

    Arickx, S; De Borger, V; Van Gerven, T; Vandecasteele, C

    2010-07-01

    In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  16. Determination of aromatic fragment content in phenol-containing fractions of solid fuel conversion products using nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1986-03-01

    Optimum conditions are determined for obtaining quantitative nuclear magnetic resonance /sup 13/C spectra of fragments in phenol-containing fraction of coal products. Causes are analyzed of residual signals in spectra of un-protonized carbon atoms. The tests were carried out on: low-temperature carbonization tar and phenol fraction obtained during medium-temperature coking of Cherenkhovskii coal (which contains 84.13% C; 9.68% H; 1.23% S; 4.96% O); products of tar hydrogenation with various phenol content; standard phenol mixture. It was found that quantitative determination of aromatic fraction content in coal conversion products and other phenol- and amine-containing complex mixtures, using NMR spectroscopy requires the addition of dimethylsulfide or acetone in order to suppress specific interactions of phenols (amines) with relaxants and obtain quantitative subspectra of Tertiary and Quaternary aromatic carbon atoms. 16 references.

  17. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    Science.gov (United States)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  18. Equipment for lustrous carbon determination

    Directory of Open Access Journals (Sweden)

    A. Witowski

    2008-07-01

    Full Text Available In this paper methods of determination of total pyrolytic carbon and its fraction: lustrous and amorphous carbon was shown. They are used in foundry industry as carbonaceous materials, i.e. in coal dust replacements and moulding sands. The principle of model analyser working, which uses NDIR module detection, and example results of such analysis were also presented.

  19. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  1. Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites

    International Nuclear Information System (INIS)

    Xiao Shaoping; Hou Wenyi

    2006-01-01

    In this paper, we investigate effects of vacancy defects on fracture of carbon nanotubes and carbon nanotube/aluminum composites. Our studies show that even a one-atom vacancy defect can dramatically reduce the failure stresses and strains of carbon nanotubes. Consequently, nanocomposites, in which vacancy-defected nanotubes are embedded, exhibit different characteristics from those in which pristine nanotubes are embedded. It has been found that defected nanotubes with a small volume fraction cannot reinforce but instead weaken nanocomposite materials. Although a large volume fraction of defected nanotubes can slightly increase the failure stresses of nanocomposites, the failure strains of nanocomposites are always decreased

  2. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Science.gov (United States)

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  3. [Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].

    Science.gov (United States)

    Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao

    2011-03-01

    The characteristics and differences of organic carbon forms in the sediments of the Wuliangsuhai and the Daihai Lakes with different eutrophication types were discussed in the present study. The results showed that the range of total organic carbon content (TOC) in Wuliangsuhai Lake was 4.50-22.83 g x kg(-1) with the average of 11.80 g x kg(-1). The range of heavy-fraction organic carbon content was 3.38-21.67 g x kg(-1) with the average of 10.76 g x kg(-1). The range of light-fraction organic carbon content was 0.46-1.80 g x kg(-1) with the average of 1.04 g x kg(-1); The range of ROC content was 0.62-3.64 g x kg(-1) with the average of 2.11 g x kg(-1), while the range of total organic carbon content in Daihai lake was 6.84-23.46 g x kg(-1) with the average of 14.94 g x kg(-1). The range of heavy-fraction organic carbon content was 5.27-22.23 g x kg(-1) with the average of 13.89 g x kg(-1). The range of light-fraction organic carbon content was 0.76-1.57 g x kg(-1). The range of ROC content was 1.54-7.08 g x kg(-1) with the average of 3.62 g x kg(-1). The results indicated that the heavy-fraction organic carbon was the major component of the organic carbon and plays an important role in the accumulation of organic carbon in the sediments of two Lakes. The content of light-fraction organic carbon was similar in the sediments of two lakes, whereas, the contents of total organic carbon and heavy-fraction organic carbon in the sediment of Wuliangsuhai Lake were less than those in the sediment of Daihai Lake, and the value of LFOC/TOC in the Wuliangsuhai Lake was larger than that in the Daihai Lake. The humin was the dominant component of the sediment humus, followed by fulvic acid in the two lakes. The values of HM/HS in the sediments of Wuliangsuhai lake range from 43.06% to 77.25% with the average of 62.15% and values of HM/HS in the sediments of Dahai lake range from 49.23% to 73.85% with the average of 65.30%. The tightly combined humus was the dominant form in

  4. The mental representations of fractions: adults' same–different judgments

    Science.gov (United States)

    Gabriel, Florence; Szucs, Denes; Content, Alain

    2013-01-01

    Two experiments examined whether the processing of the magnitude of fractions is global or componential. Previously, some authors concluded that adults process the numerators and denominators of fractions separately and do not access the global magnitude of fractions. Conversely, others reported evidence suggesting that the global magnitude of fractions is accessed. We hypothesized that in a fraction matching task, participants automatically extract the magnitude of the components but that the activation of the global magnitude of the whole fraction is only optional or strategic. Participants carried out same/different judgment tasks. Two different tasks were used: a physical matching task and a numerical matching task. Pairs of fractions were presented either simultaneously or sequentially. Results showed that participants only accessed the representation of the global magnitude of fractions in the numerical matching task. The mode of stimulus presentation did not affect the processing of fractions. The present study allows a deeper understanding of the conditions in which the magnitude of fractions is mentally represented by using matching tasks and two different modes of presentation. PMID:23847562

  5. How does warming affect carbon allocation, respiration and residence time in trees? An isotope tracer approach in a eucalypt

    Science.gov (United States)

    Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.

    2017-12-01

    Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.

  6. Application of chemical fractionation for monitoring some trace elements in street and industrial dust from Wadmedani, Sudan

    International Nuclear Information System (INIS)

    Mohamed, Ibtihag El hassan

    2000-09-01

    This study monitors some trace elements concentration in street and industrial dust from Wad Medani city, Gezira State in central Sudan. A total of 20 samples of dust were collected from crowded and non-crowded streets, material processing workshop and a tannery. Samples were treated by sequential chemical extraction in five fractions, which termed as exchangeable fraction, carbonate fraction, Fe-Mn oxides fraction, organic matter fraction and residual fraction. The same samples were digested by wet method. The obtained solutions were analyzed for Cr, Fe, Ni, Cu, Zn, and Pb content using Atomic Absorption Spectrometer (AAS) and for Na and K content using Flame Emission Spectrometer (FES). X-Ray Fluorescence Spectrometer (XRF) was used to determine the total content of Na, K, Cr, Fe, Ni, Cu, Zn and Pb in the bulk sample. Results of total content, which obtained by AAS, FES and XRF spectrometry, were compared with each other and with total content for the fractionated samples. Certified reference materials from IAEA were analyzed to make sure of the data obtained. The ranges of concentrations obtained are 113-3900 μg/g for Cr, 0.3-110.4 mg/g for Fe, 27-500 μg/g for Ni, 34.7-4390 μ/g for Cu, 62-1320 μg/g for Zn and 40-1250 μg/g for Pb dry weight. The obtained results were analyzed statistically using multivariate methods that include Correlation Matrices, Principal Component Analysis (PCA) and cluster analysis. The concentrations of trace elements in street and industrial dust of Wad Medani were compared with those values in literature. It has been observed that the dust from street and industrial area of wad Medani is slightly affected by anthropogenic sources.(Author)

  7. Air pollution and heart failure: Relationship with the ejection fraction

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Abreu-Afonso, Javier; Rodríguez, Sergio; Juarez-Prera, Ruben A; Arroyo-Ucar, Eduardo; Gonzalez, Yenny; Abreu-Gonzalez, Pedro; Avanzas, Pablo

    2013-01-01

    AIM: To study whether the concentrations of particulate matter in ambient air are associated with hospital admission due to heart failure in patients with heart failure with preserved ejection fraction and reduced ejection fraction. METHODS: We studied 353 consecutive patients admitted into a tertiary care hospital with a diagnosis of heart failure. Patients with ejection fraction of ≥ 45% were classified as having heart failure with preserved ejection fraction and those with an ejection fraction of < 45% were classified as having heart failure with reduced ejection fraction. We determined the average concentrations of different sizes of particulate matter (< 10, < 2.5, and < 1 μm) and the concentrations of gaseous pollutants (carbon monoxide, sulphur dioxide, nitrogen dioxide and ozone) from 1 d up to 7 d prior to admission. RESULTS: The heart failure with preserved ejection fraction population was exposed to higher nitrogen dioxide concentrations compared to the heart failure with reduced ejection fraction population (12.95 ± 8.22 μg/m3 vs 4.50 ± 2.34 μg/m3, P < 0.0001). Multivariate analysis showed that nitrogen dioxide was a significant predictor of heart failure with preserved ejection fraction (odds ratio ranging from (1.403, 95%CI: 1.003-2.007, P = 0.04) to (1.669, 95%CI: 1.043-2.671, P = 0.03). CONCLUSION: This study demonstrates that short-term nitrogen dioxide exposure is independently associated with admission in the heart failure with preserved ejection fraction population. PMID:23538391

  8. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite

    Science.gov (United States)

    John, Dina A.; Banerjee, Susanta; Bohannan, Gary W.; Biswas, Karabi

    2017-04-01

    Here, we propose the fabrication of a solid state fractional capacitor for which constant phase (CP) angles were attained in different frequency zones: 110 Hz-1.1 kHz, 10 kHz-118 kHz, and 230 kHz-20 MHz. The configuration makes use of epoxy resin as the matrix in which multi-walled carbon nanotubes (MWCNTs) are dispersed. Adhesive nature of the epoxy resin is utilized for binding the electrodes, which avoids the extra step for packaging. The fractional capacitive behavior is contributed by the distribution of time constants for the electron to travel from one electrode to the other. The distributive nature of the time constant is ensured by inserting a middle plate which is coated with a porous film of polymethyl-methacrylate in between the two electrodes. The phase angle trend for the configuration is studied in detail, and it is observed that as the % of carbon nanotubes (CNTs) loading increases, the CP angle increases from - 85 ° to - 45 ° in the frequency zones above 100 Hz. The developed device is compact and it can be easily integrated with the electronic circuits.

  9. Tracking ultrasonically structural changes of natural aquatic organic carbon: Chemical fractionation and spectroscopic approaches.

    Science.gov (United States)

    Al-Juboori, Raed A; Yusaf, Talal; Aravinthan, Vasantha; Bowtell, Leslie

    2016-02-01

    In this study, the structural alteration to DOC for a range of ultrasound treatments was investigated with chemical fractionation and UV-vis spectroscopic measurement. Ultrasound treatments were applied in continuous and pulsed modes at power levels of 48 and 84 W for effective treatment times of 5 and 15 min. Overall results show that the ultrasound treatments tended to degrade the hydrophobic aromatic fraction, while increasing the hydrophilic fraction to a lesser extent. The highest recorded reduction of hydrophobic DOC (17.8%) was achieved with pulse treatment of 84 W for15 min, while the highest increase in the hydrophilic DOC (10.5%) was obtained with continuous treatment at 84 W and 5 min. The optimal ultrasound treatment conditions were found to be pulse mode at high power and short treatment time, causing a minimal increase in the hydrophilic fraction of 1.3% with moderate removal of the hydrophobic fraction of 15.52%. The same treatment conditions, with longer treatment time, resulted in the highest removal of SUVA254 and SUVA280 of 17.09% and 16.93, respectively. These results indicate the potential for ultrasound treatments in DOC structural alteration. The hydrophobic fraction showed strong and significant correlations with UV absorbance at 254 and 280 nm. A254/A204 also exhibited strong and significant correlations with the hydrophobic/hydrophilic ratio. The other UV ratios (A250/A365 (E2/E3) and A254/A436) had weak and insignificant correlations with the hydrophobic/hydrophilic ratio. This confirms the applicability of UV indices as a suitable surrogate method for estimating the hydrophobic/hydrophilic structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  11. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Wada, Kei [Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692 (Japan); Daifuku, Takashi; Yoneda, Yasuko [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Fukuyama, Keiichi [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Sako, Yoshihiko, E-mail: sako@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan)

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  12. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    International Nuclear Information System (INIS)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-01-01

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys 295 and His 261 . •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His 261 , which coordinates one of the Fe atoms with Cys 295 , is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys 295 , we constructed CODH-II variants. Ala substitution for the Cys 295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys 295 indirectly and His 261 together affect Ni-coordination in the C-cluster

  13. Fractionation of gamma-emitting fission products absorbed by red kidney beans (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Mistry, K.B.

    1980-01-01

    The gamma-emitting fission product nuclides 106 Ru, 125 Sb, 137 Cs and 144 Ce that accumulated in the edible pods of bean (Phaseolus vulgaris L.) plants grown in nutrient culture were subjected to chemical fractionation. The results indicated that the largest fraction of 106 Ru, 125 Sb and 144 Ce was associated with ionic forms including salts of organic acids, phosphates, carbonates and some protein-bound forms extracted with dilute mineral acids (acid fraction). The association of these radionuclides with lipids including lipophyllic pigments, free amino acids and amino sugars (ethanol fraction) was next in significance. The association of 137 Cs was, however, greater with the ethanol fraction than with the acid fraction. Considerably reduced amounts of the fission products were present in the pectates, proteins, polysaccharides and nucleic acids. (U.K.)

  14. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  15. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?

    Directory of Open Access Journals (Sweden)

    N. Gruber

    2010-08-01

    Full Text Available The ratio of CO2 accumulating in the atmosphere to the CO2 flux into the atmosphere due to human activity, the airborne fraction AF, is central to predict changes in earth's surface temperature due to greenhouse gas induced warming. This ratio has remained remarkably constant in the past five decades, but recent studies have reported an apparent increasing trend and interpreted it as an indication for a decrease in the efficiency of the combined sinks by the ocean and terrestrial biosphere. We investigate here whether this interpretation is correct by analyzing the processes that control long-term trends and decadal-scale variations in the AF. To this end, we use simplified linear models for describing the time evolution of an atmospheric CO2 perturbation. We find firstly that the spin-up time of the system for the AF to converge to a constant value is on the order of 200–300 years and differs depending on whether exponentially increasing fossil fuel emissions only or the sum of fossil fuel and land use emissions are used. We find secondly that the primary control on the decadal time-scale variations of the AF is variations in the relative growth rate of the total anthropogenic CO2 emissions. Changes in sink efficiencies tend to leave a smaller imprint. Therefore, before interpreting trends in the AF as an indication of weakening carbon sink efficiency, it is necessary to account for trends and variations in AF stemming from anthropogenic emissions and other extrinsic forcing events, such as volcanic eruptions. Using atmospheric CO2 data and emission estimates for the period 1959 through 2006, and our simple predictive models for the AF, we find that likely omissions in the reported emissions from land use change and extrinsic forcing events are sufficient to explain the observed long-term trend in AF. Therefore, claims for a decreasing long-term trend in the carbon sink efficiency over the last few decades are currently not supported by

  16. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    Science.gov (United States)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  17. A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis

    Science.gov (United States)

    Barbanti, A.; Bothner, Michael H.

    1993-01-01

    A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20–44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18–33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms.

  18. Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction

    International Nuclear Information System (INIS)

    McElmurry, Shawn P.; Long, David T.; Voice, Thomas C.

    2010-01-01

    Trace metal cycling in natural waters is highly influenced by the amount and type of dissolved organic C (DOC). Although determining individual species of DOC is unrealistic, there has been success in classifying DOC by determining operationally defined fractions. However, current fractionation schemes do not allow for the simultaneous quantification of associated trace metals. Using operational classifications, a scheme was developed to fractionate DOC based on a set of seven solid-phase extraction (SPE) cartridges. The cartridges isolated fractions based on a range of specific mechanisms thought to be responsible for DOC aggregation in solution, as well as molecular weight. The method was evaluated to determine if it can identify differences in DOC characteristics, including differences in Cu-DOC complexation. Results are that: (1) cartridge blanks were low for both DOC and Cu, (2) differences are observed in the distribution of DOC amongst the fractions from various sources that are consistent with what is known about the DOC materials and the mechanisms operative for each cartridge, (3) when present as a free cation, Cu was not retained by non-cationic cartridges allowing the method to be used to assess Cu binding, (4) the capability of the method to provide quantitative assessment of Cu-DOC complexation was demonstrated for a variety of DOC standards, (5) Cu was found to preferentially bind with high molecular weight fractions of DOC, and (6) estimated partitioning coefficients and conditional binding constants for Cu were similar to those reported elsewhere. The method developed describes DOC characteristics based on specific bonding mechanisms (hydrogen, donor-acceptor, London dispersion, and ionic bonding) while simultaneously quantifying Cu-DOC complexation. The method provides researchers a means of describing not only the extent of DOC complexation but also how that complex will be behave in natural waters.

  19. Bird community conservation and carbon offsets in western North America.

    Science.gov (United States)

    Schuster, Richard; Martin, Tara G; Arcese, Peter

    2014-01-01

    Conservation initiatives to protect and restore valued species and communities in human-dominated landscapes face huge challenges linked to the cost of acquiring habitat. We ask how the sale of forest carbon offsets could reduce land acquisition costs, and how the alternate goals of maximizing α or β-diversity in focal communities could affect the prioritization land parcels over a range of conservation targets. Maximizing total carbon storage and carbon sequestration potential reduced land acquisition costs by up to 48%. Maximizing β rather than α-diversity within forest and savannah bird communities reduced acquisition costs by up to 15%, and when these solutions included potential carbon credit revenues, acquisition cost reductions up to 32% were achieved. However, the total cost of conservation networks increased exponentially as area targets increased in all scenarios. Our results indicate that carbon credit sales have the potential to enhance conservation outcomes in human-dominated landscapes by reducing the net acquisition costs of land conservation in old and maturing forests essential for the persistence of old forest plant and animal communities. Maximizing β versus α-diversity may further reduce costs by reducing the total area required to meet conservation targets and enhancing landscape heterogeneity. Although the potential value of carbon credit sales declined as a fraction of total acquisition costs, even conservative scenarios using a carbon credit value of $12.5/T suggest reductions in acquisition cost of up to $235 M, indicating that carbon credit sales could substantially reduce the costs of conservation.

  20. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    Science.gov (United States)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  1. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context

    Science.gov (United States)

    Susan E. Crow; Christopher W. Swanston; Kate Lajtha; J. Renee Brooks; Heath Keirstead

    2007-01-01

    Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). Soil density fractions are often interpreted as organic matter pools with different carbon...

  2. Fractionalization and Entrepreneurial Activities

    OpenAIRE

    Awaworyi Churchill, Sefa

    2015-01-01

    The vast majority of the literature on ethnicity and entrepreneurship focuses on the construct of ethnic entrepreneurship. However, very little is known about how ethnic heterogeneity affects entrepreneurship. This study attempts to fill the gap, and thus examines the effect of ethnic heterogeneity on entrepreneurial activities in a cross-section of 90 countries. Using indices of ethnic and linguistic fractionalization, we show that ethnic heterogeneity negatively influences entrepreneurship....

  3. Carbonate system distribution south of the Canary Islands in spring 2000

    Directory of Open Access Journals (Sweden)

    Iván R. Ucha

    2010-11-01

    Full Text Available The measurement of the surface molar fraction of CO2 (atmosphere and sea water and water column pHT, total alkalinity, AT, nutrients and oxygen were carried out in spring 2000 at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC and in the area located south of the Canary Islands. The significant eddy field strongly affecting the pattern of the chemical and carbonate system variables is presented and discussed. A mixing model based on the thermohaline properties of the water masses was established. The model explained over 97% of the variability found in the distribution of the chemical variables. Intermediate waters to the south of the Canary Islands show a high contribution of Antarctic waters with about 5% of pure Antarctic Intermediate Water. Moreover, the surface structure affected the atmosphere-ocean carbon dioxide exchange, making the area act as a CO2 sink taking up 9.1 mmol m-2 week-1, corresponding to 0.03 Mt of CO2 which were taken up by the area in a week at the end of March 2000.

  4. Soil Organic Carbon Fractions Differ in Two Contrasting Tall Fescue Systems

    Science.gov (United States)

    The value of tall fescue (Festuca arundinacea Schreb.) for C sequestration in addition to forage production and soil conservation is of current interest. However, studies relating to the impacts of endophyte infected (E+) and endophyte free (E-) tall fescue on soil organic matter fractions are few....

  5. Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene.

    Science.gov (United States)

    Mancini, Silvia A; Hirschorn, Sarah K; Elsner, Martin; Lacrampe-Couloume, Georges; Sleep, Brent E; Edwards, Elizabeth A; Lollar, Barbara Sherwood

    2006-12-15

    The effects of iron concentration on carbon and hydrogen isotopic fractionation during aerobic biodegradation of toluene by Pseudomonas putida mt-2 were investigated using a low iron medium and two different high iron media. Mean carbon enrichment factors (epsilonc) determined using a Rayleigh isotopic model were smaller in culture grown under high iron conditions (epsilonc = -1.7+/-0.1%) compared to low iron conditions (epsilonc = -2.5+/-0.3%). Mean hydrogen enrichment factors (epsilonH) were also significantly smaller for culture grown under high iron conditions (epsilonH = -77 +/-4%) versus low iron conditions (EpsilonH = -159+/-11%). A mechanistic model for enzyme kinetics was used to relate differences in the magnitude of isotopic fractionation for low iron versus high iron cultures to the efficiency of the enzymatic transformation. The increase of carbon and hydrogen enrichment factors at low iron concentrations suggests a slower enzyme-catalyzed substrate conversion step (k2) relative to the enzyme-substrate binding step (k-l) at low iron concentration. While the observed differences were subtle and, hence, do not significantly impact the ability to use stable isotope analysis in the field, these results demonstrated that resolvable differences in carbon and hydrogen isotopic fractionation were related to low and high iron conditions. This novel result highlights the need to further investigate the effects of other trace elements known to be key components of biodegradative enzymes.

  6. Time rescaling and Gaussian properties of the fractional Brownian motions

    International Nuclear Information System (INIS)

    Maccone, C.

    1981-01-01

    The fractional Brownian motions are proved to be a class of Gaussian (normal) stochastic processes suitably rescaled in time. Some consequences affecting their eigenfunction expansion (Karhunen-Loeve expansion) are inferred. A known formula of Cameron and Martin is generalized. The first-passage time probability density is found. The partial differential equation of the fractional Brownian diffusion is obtained. And finally the increments of the fractional Brownian motions are proved to be independent for nonoverlapping time intervals. (author)

  7. Maximizing Tumor Immunity With Fractionated Radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-01-01

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4 + CD25 hi Foxp3 + T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  8. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  9. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from lab culturing experiment

    Science.gov (United States)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-05-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail species, Acusta despecta sieboldiana collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on previous works and on results obtained in this study, a simple but credible framework is presented for discussion of how each source and environmental parameter can affect shell carbonate δ13C values. According to this framework and some reasonable assumptions, we have estimated the contributions of different carbon sources for each snail individual: for cabbage (C3 plant) fed groups, the contributions of diet, atmospheric CO2 and ingested limestone respectively vary as 66-80%, 16-24%, and 0-13%. For corn (C4 plant) fed groups, because of the possible food stress (lower consumption ability of C4 plant), the values vary respectively as 56-64%, 18-20%, and 16-26%. Moreover, we present new evidence that snails have discrimination to choose C3 and C4 plants as food. Therefore, we suggest that food preferences must be considered adequately when applying δ13C in paleo-environment studies. Finally, we inferred that, during egg laying and hatching of our cultured snails, carbon isotope fractionation is controlled only by the isotopic exchange of the calcite-HCO3--aragonite equilibrium.

  10. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from laboratory culturing experiment

    Science.gov (United States)

    Zhang, N.; Yamada, K.; Suzuki, N.; Yoshida, N.

    2014-10-01

    The carbon isotopic composition (δ13C) of land snail shell carbonate derives from three potential sources: diet, atmospheric CO2, and ingested carbonate (limestone). However, their relative contributions remain unclear. Under various environmental conditions, we cultured one land snail subspecies, Acusta despecta sieboldiana, collected from Yokohama, Japan, and confirmed that all of these sources affect shell carbonate δ13C values. Herein, we consider the influences of metabolic rates and temperature on the carbon isotopic composition of the shell carbonate. Based on results obtained from previous works and this study, a simple but credible framework is presented to illustrate how each source and environmental parameter affects shell carbonate δ13C values. According to this framework and some reasonable assumptions, we estimated the contributions of different carbon sources for each snail individual: for cabbage-fed (C3 plant) groups, the contributions of diet, atmospheric CO2, and ingested limestone vary in the ranges of 66-80, 16-24, and 0-13%, respectively. For corn-fed (C4 plant) groups, because of the possible food stress (less ability to consume C4 plants), the values vary in the ranges of 56-64, 18-20, and 16-26%, respectively. Moreover, according to the literature and our observations, the subspecies we cultured in this study show preferences towards different plant species for food. Therefore, we suggest that the potential food preference should be considered adequately for some species in paleoenvironment studies. Finally, we inferred that only the isotopic exchange of the calcite-HCO3--aragonite equilibrium during egg laying and hatching of our cultured snails controls carbon isotope fractionation.

  11. Carbon and its isotopes in mid-oceanic basaltic glasses

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO 2 is about 3.8per mille enriched in 13 C, relative to dissolved carbon. Despite this fractionation, delta 13 Csub(PDB) values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the delta 13 Csub(PDB) of mantle carbon likely lies between -5 and -7. The carbon abundances and delta 13 Csub(PDB) values of Kilauea East Rift glasses apparently are influences by the differentiation and movement of magma within that Hawaiian volcano. Using 3 He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 x 10 13 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. (orig.)

  12. Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary.

    Science.gov (United States)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Xu, Fei; Guo, Lijia; Shen, Zhenyao

    2017-11-15

    The temporal and spatial distributions of mercury in different fractions and its potential ecological risk were investigated in sediments from the Yangtze River estuary (YRE) by analyzing data collected from the study area. The results showed that mercury in the organic and residual fractions had dominant proportions, from 15.2% to 48.52% and from 45.96% to 81.59%, respectively. The fractions were more susceptible to seasonal changes than other fractions. Higher proportions of mercury in organic fraction were found in wet seasons; the opposite was true for mercury in residual fraction. With respect to the spatial distribution, the concentration mercury in exchangeable, carbonate and Fe-Mn oxide fractions showed a decreasing trend from the inner estuary to the outer estuary, but no obvious trends were found in the distributions of mercury in the organic and residual fractions. The risk assessment code (RAC) was used to evaluate the potential ecological risk in the study area based on the proportions of exchangeable and carbonate fractions. The average RAC values during the four periods were 6.00%, 2.20%, 2.83%, and 0.61%. Although these values show that the risk in the study area is generally low, the distribution of RAC values indicates that the inner estuary has a medium risk, with a value up to 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    NARCIS (Netherlands)

    Cole, J.; Prairie, Y.T.; Caraco, N.; McDowell, W.H.; Tranvil, L.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking

  14. Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth

    Science.gov (United States)

    Richard E. Dickson; Patricia T. Tomlinson; J. G. Isebrands

    2000-01-01

    The episodic or flushing growth habit of northern red oak (Quercus rubra L.,) has a significant influence on carbon fixation, carbon transport from source leaves, and carbon allocation within the plant; however, the impact of episodic growth on carbon parciprioning among chemical fractions is unknown. Median-flush leaves of the first and second flush...

  15. Delta /sup 13/C fractionation in Tarbela dam fish

    International Nuclear Information System (INIS)

    Latif, Z.; Sajjad, M.I.; Bilal, R.; Tasneem, M.A.; Khan, I.H.; Ali, M.

    1998-01-01

    The paper focuses on the study of naturally occurring /sup 13/C fractionation in Tarbela dam fish. Craig noted that gamma /sup 13/C values for animal tissues fall in the range as their food supply. DeNiro and Epstein demonstrated clearly that the carbon isotope composition of an animal greatly depends on its diet. The above mentioned statements were observed while studying the isotopic composition of carbon in different parts of the fish. Living fish was purchased from the Haripur side of the Tarbela lake. Different portions were separated and fish diet was collected from the fish stomach. Samples were dried in the oven at 40-50 deg. C for five days. Ground, homogenized and ignited with research grade oxygen at 900-1000 deg. C. CO and CO /sub 2/ were produced and CO was converted to CO/sub 2/ by circulation over CuO gauge furnace at 900 deg. C. CO/sub 2/ was purified using 70 deg. C slush and analyzed on Varian Mat (GD-150) mass spectrometer for gamma /sup 13/C measurements. The results show that fish flesh sup/13 C value is nearly similar to fish diet gamma /sup 13/C. gamma /sup 13/C values to different parts of the fish departed from that of the diet in the sequence: fish swim bladder (-22.04) >ribs (2-22.26)>skin (122.91)>diet (123.22)>flesh (-23.40)> vertebral column (-24.07). It is concluded that diet is easily metabolized in the fish flesh and skin tissues through blood streams without causing any pronounced fractionation. Fractionation was observed in the fish endo skeleton system due to which fish ribs become enriched in gamma /sup 13/C than vertebral column. Fractionation was also detected in visceral muscles (swim bladder) of the fish as comparison with somatic axial trunk muscle (fish flesh). (author)

  16. Heating and reduction affect the reaction with tannins of wine protein fractions differing in hydrophobicity.

    Science.gov (United States)

    Marangon, Matteo; Vincenzi, Simone; Lucchetta, Marco; Curioni, Andrea

    2010-02-15

    During the storage, bottled white wines can manifest haziness due to the insolubilisation of the grape proteins that may 'survive' in the fermentation process. Although the exact mechanism of this occurrence is not fully understood, proteins and tannins are considered two of the key factors involved in wine hazing, since their aggregation leads to the formation of insoluble particles. To better understand this complex interaction, proteins and tannins from the same unfined Pinot grigio wine were separated. Wine proteins were then fractionated by hydrophobic interaction chromatography (HIC). A significant correlation between hydrophobicity of the wine protein fractions and the haze formed after reacting with wine tannins was found, with the most reactive fractions revealing (by SDS-PAGE and RP-HPLC analyses) the predominant presence of thaumatin-like proteins. Moreover, the effects of both protein heating and disulfide bonds reduction (with dithiotreithol) on haze formation in the presence of tannins were assessed. These treatments generally resulted in an improved reactivity with tannins, and this phenomenon was related to both the surface hydrophobicity and composition of the protein fractions. Therefore, haze formation in wines seems to be related to hydrophobic interactions occurring among proteins and tannins. These interactions should occur on hydrophobic tannin-binding sites, whose exposition on the proteins can depend on both protein heating and reduction. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Excellent Aesthetic and Functional Outcome After Fractionated Carbon Dioxide Laser Skin Graft Revision Surgery: Case Report and Review of Laser Skin Graft Revision Techniques.

    Science.gov (United States)

    Ho, Derek; Jagdeo, Jared

    2015-11-01

    Skin grafts are utilized in dermatology to reconstruct a defect secondary to surgery or trauma of the skin. Common indications for skin grafts include surgical removal of cutaneous malignancies, replacement of tissue after burns or lacerations, and hair transplantation in alopecia. Skin grafts may be cosmetically displeasing, functionally limiting, and significantly impact patient's quality-of-life. There is limited published data regarding skin graft revision to enhance aesthetics and function. Here, we present a case demonstrating excellent aesthetic and functional outcome after fractionated carbon dioxide (CO2) laser skin graft revision surgery and review of the medical literature on laser skin graft revision techniques.

  18. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  19. Silica fractionation and reactivity in soils

    Science.gov (United States)

    Unzué Belmonte, Dácil; Barão, Lúcia; Vandevenne, Floor; Schoelynck, Jonas; Struyf, Eric; Meire, Patrick

    2014-05-01

    The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). A good characterization of the different fractions of reactive silica is crucial to move forward knowledge on ecosystem Si cycling, which has been recognized in the last decade as crucial for terrestrial Si fluxes. A new method to analyze the different fractions of silica in soils has been described by Koning et al. (2002) and adapted by our research team (Barão et al. 2013). Using a continuous extraction of Si and aluminum in 0.5M NaOH, biogenic and non-biogenic reactive fractions are separated based on their Si/Al ratios and their reactivity in NaOH. Applying this new method I will investigate three emerging ideas on how humans can affect directly terrestrial Si fluxes. -Land use. I expect strong silica fractionation and reactivity differences in different land uses. These effects due to agricultural and forestry management have already been shown earlier in temperate soils (Vandevenne et al. 2012). Now we will test this hypothesis in recently deforested soils, in the south of Brazil. 'Pristine' forest, managed forest and tobacco field soils (with and without rotation crops) will be studied. This research belongs to an interdisciplinary project on soils and global change. -Fire. According to the IPCC report, extreme events such as fires (number and intensity) would increase due to climate change. We analyzed litter from spruce forest, beech forest and peat soils at two burning levels, after 350°C and

  20. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  1. Quantities and qualities of physical and chemical fractions of soil organic matter under a rye cover crop

    Science.gov (United States)

    To detect the effects of a rye cover crop on labile soil carbon, the light fraction, large particulate organic matter (POM), small POM, and two NaOH-extractable humic fractions were extracted from three depths of a corn soil in central Iowa having an overwinter rye cover crop treatment and a contro...

  2. Fractional vector calculus for fractional advection dispersion

    Science.gov (United States)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  3. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  4. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    Science.gov (United States)

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Treatment of acne scars and wrinkles in asian patients using carbon-dioxide fractional laser resurfacing: its effects on skin biophysical profiles.

    Science.gov (United States)

    Hwang, Young Ji; Lee, Yu Na; Lee, Yang Won; Choe, Yong Beom; Ahn, Kyu Joong

    2013-11-01

    Although ablative fractional resurfacing is known to be effective against photoaging and acne scars, studies on its efficacy, safety and changes in the skin characteristics of Asians are limited. The aim of this study is to assess the efficacy and safety of carbon dioxide fractional laser (CO2FL) in Koreans treated for wrinkles and acne scars, and to define the changes in skin characteristics during recovery period. We administered one session of CO2FL on 10 acne scar patients and 14 wrinkles patients with skin types IV and V. The surveillance of efficacy and side effects along with the measurement of biophysical properties was carried out before 1 day, 1 week, 1 month and 3 months after treatment. Using a non-invasive method, skin barrier damage, erythema and bronzing of skin during the recovery period were assessed, and all of the items eventually returned to the pre-treatment level. Skin elasticity was measured in the wrinkle group, and the statistically significant effect was sustained throughout the next three months. The outcome of treatment was found to be better than 'moderate improvement' in both the acne scar and wrinkle groups. Further, there were no serious side effects three months post-procedure. CO2 FL is thought to be an effective and safe method for treating moderate to severe acne scars and wrinkles in Asians.

  6. Efficacy of desensitizing products containing 8% arginine and calcium carbonate for hypersensitivity relief in MIH-affected molars: an 8-week clinical study.

    Science.gov (United States)

    Bekes, Katrin; Heinzelmann, Karolin; Lettner, Stefan; Schaller, Hans-Günter

    2017-09-01

    The objective of this study was to compare the efficacy in reducing hypersensitivity in molar incisor hypomineralization (MIH)-affected molars immediately and over 8 weeks combining a single in-office application and a homed-based program with desensitizing products containing 8% arginine and calcium carbonate. Nineteen children with at least one MIH-affected molar with hypersensitivity were included. Hypersensitivity was assessed with an evaporative (air) stimulus and a tactile stimulus. Each child received a single in-office treatment with a desensitizing paste containing 8% arginine and calcium carbonate (elmex Sensitive Professional desensitizing paste), followed by 8 weeks of brushing twice daily with a desensitizing toothpaste containing 8% arginine, calcium carbonate with 1450 ppm fluoride (elmex Sensitive Professional toothpaste), using the elmex Sensitive Professional toothbrush. Additionally, the corresponding mouthwash (elmex Sensitive Professional mouthwash) was used. Clinical assessments were made at baseline, immediately after the in-office treatment and after 1, 2, 4 and 8 weeks of brushing twice daily. Fifty-six molars with an air blast hypersensitivity score of 2 or 3 (Schiff Cold Air Sensitivity Scale) were included. Application of the desensitizing paste decreased hypersensitivity significantly immediately and throughout the 8 weeks recalls (p MIH. This is the first study evaluating the desensitizing effect of a desensitizing paste containing 8% arginine and calcium carbonate in patients with MIH.

  7. Transient heat conduction in a pebble fuel applying fractional model

    International Nuclear Information System (INIS)

    Gomez A, R.; Espinosa P, G.

    2009-10-01

    In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)

  8. Evaluation of the effect of platelet-rich plasma on recovery after ablative fractional photothermolysis.

    Science.gov (United States)

    Kim, Haena; Gallo, Julio

    2015-01-01

    Despite the advantages and reduced recovery time of ablative fractional photothermolysis, patients still seek adjuvant treatments to reduce healing time and facilitate their return to normal social and work activity. Platelet-rich plasma (PRP) has been used for many applications in various surgical fields for its ability to improve wound healing, hemostasis, and graft survival. To determine whether PRP will be an effective adjunctive treatment to fractional carbon dioxide resurfacing and reduce healing time and duration of adverse effects. Prospective blinded study of male and female patients 18 years or older and with Fitzpatrick skin types I to IV performed at Miami Institute for Age Management and Intervention. Using a fractional carbon dioxide laser (60 mJ at 150 Hz), a 1-cm2 area was treated on each forearm of every patient. Immediately after the laser treatment, patients were randomized to receive PRP in the right or left forearm and saline in the other forearm. Pictures of each forearm were taken immediately after injection of PRP and then on a daily basis until reepithelialization (eschar formation) occurred. Posttreatment erythema, edema, and reepithelialization. Significant improvement in posttreatment erythema was observed in PRP-treated arms across 94 comparisons in 15 patients. Improvement was defined as the erythema rating of the untreated arm minus the erythema rating of the PRP-treated arm. The mean (standard error of the mean) improvement in grade was 0.26 (0.092; t statistic, 2.83; P = .003). A mean (standard error of the mean) improvement in edema grade of 0.13 (0.059) was also significant across 94 comparisons (t statistic, 2.20; P = .02). Our preliminary results suggest that PRP can objectively reduce erythema and edema following carbon dioxide fractional laser treatment. Most importantly, patients themselves have noticed a reduction in the common posttreatment effects: erythema, edema, pruritus, and discomfort. We anticipate that PRP

  9. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  10. Natural fractionation of uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Noordmann, Janine

    2015-01-24

    The topic of this thesis was the investigation of U (n({sup 238}U) / n({sup 235}U)) isotope variations in nature with a focus on samples (1) that represent the continental crust and its weathering products (i.e. granites, shales and river water) (2) that represent products of hydrothermal alteration on mid-ocean ridges (i.e. altered basalts, carbonate veins and hydrothermal water) and (3) from restricted euxinic basins (i.e. from the water column and respective sediments). The overall goal was to explore the environmental conditions and unravel the mechanisms that fractionate the two most abundant U isotopes, n({sup 238}U) and n({sup 235}U), on Earth.

  11. Natural fractionation of uranium isotopes

    International Nuclear Information System (INIS)

    Noordmann, Janine

    2015-01-01

    The topic of this thesis was the investigation of U (n( 238 U) / n( 235 U)) isotope variations in nature with a focus on samples (1) that represent the continental crust and its weathering products (i.e. granites, shales and river water) (2) that represent products of hydrothermal alteration on mid-ocean ridges (i.e. altered basalts, carbonate veins and hydrothermal water) and (3) from restricted euxinic basins (i.e. from the water column and respective sediments). The overall goal was to explore the environmental conditions and unravel the mechanisms that fractionate the two most abundant U isotopes, n( 238 U) and n( 235 U), on Earth.

  12. Maximizing Tumor Immunity With Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  13. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea

    OpenAIRE

    Harvey, E. Therese; Kratzer, Susanne; Andersson, Agneta

    2015-01-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with ...

  14. Metal fractionation in sludge from sewage UASB treatment.

    Science.gov (United States)

    Braga, A F M; Zaiat, M; Silva, G H R; Fermoso, F G

    2017-05-15

    This study evaluates the trace metal composition and fractionation in sludge samples from anaerobic sewage treatment plants from six cities in Brazil. Ten metals were evaluated: Ni, Mn, Se, Co, Fe, Zn, K, Cu, Pb and Cr. Specific methanogenic activity of the sludge was also evaluated using acetic acid as the substrate. Among the essential trace metals for anaerobic digestion, Se, Zn, Ni and Fe were found at a high percentage in the organic matter/sulfide fraction in all sludge samples analyzed. These metals are less available for microorganisms than other metals, i.e., Co and K, which were present in significant amounts in the exchangeable and carbonate fractions. Cu is not typically reported as an essential metal but as a possible inhibitor. One of the samples showed a total Cu concentration close to the maximal amount allowed for reuse as fertilizer. Among the non-essential trace metals, Pb was present in all sludge samples at similar low concentrations and was primarily present in the residual fraction, demonstrating very low availability. Cr was found at low concentrations in all sludge samples, except for the sludge from STP5; interestingly, this sludge presented the lowest specific methanogenic activity, indicating possible Cr toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1997-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  16. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  17. Fractional vector calculus and fractional Maxwell's equations

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2008-01-01

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered

  18. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    Science.gov (United States)

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small

  19. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    OpenAIRE

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the pesticides Dursban and Endosulfan to exclude soil fauna or left untreated. Sub-treatments consisted of surface-placed maize straw ( C/N ratio= 58), Andropogon straw ( C/N ratio= 153), cattle dung ...

  20. Fractional Number Operator and Associated Fractional Diffusion Equations

    Science.gov (United States)

    Rguigui, Hafedh

    2018-03-01

    In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.

  1. Organic matter fractions in areas Oxisol under different management systems in Cerrado the State of Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Roni Fernandes Guareschi

    2013-12-01

    Full Text Available The objective of this study was to evaluate the physical and chemical fractions of soil organic matter (SOM, as well as perform the spectroscopic analysis in ultraviolet-visible humic acid in a Oxisol under no-tillage system (NTS with different years of implementation, and compare them to areas of native cerrado and pasture. Was evaluated five areas namely: native cerrado (CE, planted pasture (PA with Brachiaria decumbens; NTS with 3 (NTS 3 years of implementation; NTS with 15 years (NTS 15 of implementation and NTS with more than 20 (NTS 20 years of implementation. The levels and total carbon stocks and humic fractions of SOM, increased with deployment time the NTS at all depths analyzed, with the humic fractions presented the following order: fraction fulvic acid > fraction humic acid > humin fraction. The results showed that depending on the time of implementation of the NTS was observed an increase of more stable fractions of humic substances and physical fractions of SOM, providing greater stability of this system. There is increasing the E4/E6 ratio of humic acids according on the time of implementation of the NTS, demonstrating an increase of aliphatic structures. The area evaluated PA had the lowest concentrations and inventories of humic fractions, carbon associated with minerals (CAM and E4/E6 ratio, demonstrating to be in an advanced stage of degradation relative to the other areas assessed.

  2. Site-specific and multielement approach to the determination of liquid-vapor isotope fractionation parameters. The case of alcohols

    International Nuclear Information System (INIS)

    Moussa, I.; Naulet, N.; Martin, M.L.; Martin, G.J.

    1990-01-01

    Isotope fractionation phenomena occurring at the natural abundance level in the course of liquid-vapor transformation have been investigated by using the SNIF-NMR method (site-specific natural isotope fractionation studied by NMR) which has a unique capability of providing simultaneous access to fractionation parameters associated with different molecular isotopomers. This new approach has been combined with the determination of overall carbon and hydrogen fractionation effects by isotope ratio mass spectrometry (IRMS). The results of distillation and evaporation experiments of alcohols performed in technical conditions of practical interest have been analyzed according to the Rayleigh-type model. In order to check the performance of the column, unit fractionation factors were measured beforehand for water and for the hydroxylic sites of methanol and ethanol for which liquid-vapor equilibrium constants were already known. Inverse isotope effects are determined in distillation experiments for the overall carbon isotope ratio and for the site-specific hydrogen isotope ratios associated with the methyl and methylene sites of methanol and ethanol. In contrast, normal isotope effects are produced by distillation for the hydroxylic sites and by evaporation for all the isotopic ratios

  3. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    CERN Document Server

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  4. Evaluation of protective effect of deposits formed by naphthenic corrosion and sulfidation on carbon steel and steel 5Cr-0.5Mo exposed in atmospheric distillation fractions

    Directory of Open Access Journals (Sweden)

    Gloria Duarte

    2017-05-01

    Full Text Available Refining of so-called opportunity crude oils with a high level of naphthenic acids and sulfur compounds has been increasing interest due to limited availability of light crude oils, however, considerable corrosive effects in the processing to high temperature on pipes and distillation towers mainly by the attack of naphthenic acids and sulfur compounds; sulfur compounds could be corrosive or can reduce the attack of naphthenic acids due to the formation of sulfides layers on the metal surface. In this work was evaluated the performance of deposits formed on the surface of carbon steel AISI SAE 1020 and 5% Cr-0.5% Mo steel exposed in crude oil fractions obtained from atmospheric distillation tower. For this, gravimetric tests were performed in dynamic autoclave using metal samples pre-treated in a crude oil fraction obtained from the atmospheric distillation tower of the Crude Distillation Unit (CDU # 1 in order to form layers of sulfides on the surface of the two materials and subsequently to expose pre-treated and non-pretreated samples in two different crude oil fractions obtained from atmospheric distillation tower of Crude Distillation Unit (CDU # 2. The evaluation showed that the samples pretreated decreased tendency to corrosion by naphthenic acids and sulfidation compared to untreated samples.

  5. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    Science.gov (United States)

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  6. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  7. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

    Science.gov (United States)

    Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

    2017-10-01

    As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by

  8. Precautionary measures in determining volatile matter in natural coke washability fractions

    Energy Technology Data Exchange (ETDEWEB)

    Ashok K. Singh; N.K. Shukla; S.K. Srivastava; D.D. Haldar; B.N. Roy; Mamta Sharma [Central Institute of Mining and Fuel Research, Dhanbad (India)

    2009-01-15

    Industrial utilization of heat-altered coal, especially natural coke derived from coking coal, has become a challenge. As such approximately 3,500 million tones (Mt) reserves of baked coals are available in different coalfields of India. In the present investigation, a natural coke sample (03 tone) was collected from a huge dump of seam XIV of Burragarh colliery under leasehold of Bharat Coking Coal Ltd., a subsidiary of Coal India Ltd., situated in Dhanbad district of Jharkhand state. It was observed that the volatile matter in the washability fractions of different size ranges (50 to 0.5 mm) at specific gravity 1.40 to 1.80 showed erratic distribution with respect to ash. To check the abnormality, the subsamples were subjected to microscopic (petrographic) study and chemical analysis including CO{sub 2} determination. The high concentration of CO{sub 2} is related to high concentration of carbonate minerals generated due to igneous intrusions in coal seams. Based on above observations, it was concluded that the volatile matter can be corrected through determined CO{sub 2} content in each fraction. Since efforts are being made to use natural coke in different industries such as steel, power, cement, carbon artifacts, etc., a careful investigation of volatile matter distribution in natural coke washability fractions would be of immense help in planning its bulk use.

  9. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  10. The composition of readily available carbon sources produced by fermentation of fish faeces is affected by dietary protein:energy ratios

    DEFF Research Database (Denmark)

    Letelier-Gordo, Carlos Octavio; Larsen, Bodil Katrine; Dalsgaard, Johanne

    2017-01-01

    , 17, 19, 21 and 23 g/MJ) to rainbow trout (Oncorhynchus mykiss) on the production of volatile fatty acids (VFAs) and ethanol during 7 days fermentation of the produced fish faeces. The total yields of VFAs and ethanol obtained (expressed as chemical oxygen demand (COD)) ranged between 0.21–0.24 g...... of acetic and valeric acid. Changing the diet composition thus affects the composition of readily available carbon that can be derived from the faeces. This can be applied to enhance on-farm single sludge denitrification and reduce the need for adding external carbon sources such as e.g. methanol....

  11. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...

  12. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  13. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  14. Peat growth and carbon accumulation rates during the holocene in boreal mires

    International Nuclear Information System (INIS)

    Klarqvist, M.

    2001-01-01

    This thesis is based on accumulation processes in northern mires. In the first study, problems concerning carbon 14 dating of peat were examined by fractionation of bulk peat samples and 14 C AMS dating of the separate fractions. In the following studies, peat cores from twelve Swedish mire sites were investigated. Macrofossil analysis was performed on the sampled cores to describe and classify the plant communities during mire development. Between 6 to 18 14 C AMS datings were performed on one core from each mire in order to estimate the peat growth and carbon accumulation rates for the identified plant communities. Different fractions within single peat bulk samples gave considerably differing 14 C ages. The range in age differed between mire types and depth. For accurate 14 C dating, moss-stems, preferably of Sphagnum spp. are recommended. Both autogenic and allogenic factors, e.g. climate and developmental stage, respectively, were identified as important influences on carbon accumulation. Both peat growth and carbon accumulation rates differed between plant communities. The major factors explaining the variations in accumulation rates of the different plant communities were the amount of Carex and Sphagnum remains and the geographical position of the mire. Carbon accumulation rates decrease along with development in most mires. The results indicate that some mires may have alternated between being carbon sinks and sources, at least over the last several hundred years. The inter-annual variation in carbon accumulation is probably explained by climatic variations

  15. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  16. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  17. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  18. Carbon-14 as an hydrology tool

    International Nuclear Information System (INIS)

    Garcia y G, E.; Albarran B, R.

    1977-01-01

    Carbon-14 and tritium results from the action of cosmic radiation and of nuclear tests also. In general carbon-14 resulting from nuclear arms tests is of no interest from the hydrological point-of view, as tritium is a more efficient marker of juvenile waters through having a much shorter disintegration period. Radioactive carbon oxidizes and forms carbon dioxide which mixes with atmospheric carbon dioxide and enters the global carbon cycle. Use of carbon-14 in the dating of subterranean waters is based on the fact that the carbon dioxide found in the soil zone is of biologic origin arising from the respiration and decomposition of plant roots. Therefore it contains carbon-14 taken from the atmosphere by the plants. This carbon dioxide of biogenic origin is dissolved in infiltrating water and is borne along towards the water bearing strata. Its carbon-14 content decrease through radioactive loss and the fractional remainder of the original contents indicates the time which has passed since it left the supply zone in the soil, that is, the time passed since it filtrated the water. (author)

  19. Carbon Goes To…

    Science.gov (United States)

    Savasci, Funda

    2014-01-01

    The purposes of this activity are to help middle school students understand the carbon cycle and realize how human activities affect the carbon cycle. This activity consists of two parts. The first part of the activity focuses on the carbon cycle, especially before the Industrial Revolution, while the second part of the activity focuses on how…

  20. Towards spatial assessment of carbon sequestration in peatlands: spectroscopy based estimation of fractional cover of three plant functional types

    Directory of Open Access Journals (Sweden)

    G. Schaepman-Strub

    2009-02-01

    Full Text Available Peatlands accumulated large carbon (C stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in C sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (PFTs; Sphagnum mosses, graminoids, and ericoid shrubs in peatlands, using field spectroscopy reflectance measurements (400–2400 nm on 25 plots differing in PFT cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnumcovered by vascular plants (shrubs and graminoids is feasible with an R2 of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids revealed lower correlations of R2 of 0.54 and 0.57, respectively. This study was based on a dataset where the reflectance of all main PFTs and their pure components within the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.