WorldWideScience

Sample records for carbon fluxes resulting

  1. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  2. California's Future Carbon Flux

    Science.gov (United States)

    Xu, L.; Pyles, R. D.; Paw U, K.; Gertz, M.

    2008-12-01

    The diversity of the climate and vegetation systems in the state of California provides a unique opportunity to study carton dioxide exchange between the terrestrial biosphere and the atmosphere. In order to accurately calculate the carbon flux, this study couples the sophisticated analytical surface layer model ACASA (Advance Canopy-Atmosphere-Soil Algorithm, developed in the University of California, Davis) with the newest version of mesoscale model WRF (the Weather Research & Forecasting Model, developed by NCAR and several other agencies). As a multilayer, steady state model, ACASA incorporates higher-order representations of vertical temperature variations, CO2 concentration, radiation, wind speed, turbulent statistics, and plant physiology. The WRF-ACASA coupling is designed to identify how multiple environmental factors, in particularly climate variability, population density, and vegetation distribution, impact on future carbon cycle prediction across a wide geographical range such as in California.

  3. Chemical erosion of carbon at ITER relevant plasma fluxes: Results from the linear plasma generator Pilot-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; Westerhout, J.; Brezinsek, S.; Rapp, J.

    2011-01-01

    The chemical erosion of carbon was investigated in the linear plasma device Pilot-PSI for ITER divertor relevant hydrogen plasma flux densities 10(23) < Gamma < 10(25) m(-2) s(-1). The erosion was analyzed in situ by optical emission spectroscopy and post mortem by surface profilometry. The ex

  4. Energy, water, and carbon fluxes in a loblolly pine stand: Results from uniform and gappy canopy models with comparisons to eddy flux data

    Science.gov (United States)

    Song, Conghe; Katul, Gabriel; Oren, Ram; Band, Lawrence E.; Tague, Christina L.; Stoy, Paul C.; McCarthy, Heather R.

    2009-12-01

    This study investigates the impacts of canopy structure specification on modeling net radiation (Rn), latent heat flux (LE) and net photosynthesis (An) by coupling two contrasting radiation transfer models with a two-leaf photosynthesis model for a maturing loblolly pine stand near Durham, North Carolina, USA. The first radiation transfer model is based on a uniform canopy representation (UCR) that assumes leaves are randomly distributed within the canopy, and the second radiation transfer model is based on a gappy canopy representation (GCR) in which leaves are clumped into individual crowns, thereby forming gaps between the crowns. To isolate the effects of canopy structure on model results, we used identical model parameters taken from the literature for both models. Canopy structure has great impact on energy distribution between the canopy and the forest floor. Comparing the model results, UCR produced lower Rn, higher LE and higher An than GCR. UCR intercepted more shortwave radiation inside the canopy, thus producing less radiation absorption on the forest floor and in turn lower Rn. There is a higher degree of nonlinearity between An estimated by UCR and by GCR than for LE. Most of the difference for LE and An between UCR and GCR occurred around noon, when gaps between crowns can be seen from the direction of the incident sunbeam. Comparing with eddy-covariance measurements in the same loblolly pine stand from May to September 2001, based on several measures GCR provided more accurate estimates for Rn, LE and An than UCR. The improvements when using GCR were much clearer when comparing the daytime trend of LE and An for the growing season. Sensitivity analysis showed that UCR produces higher LE and An estimates than GCR for canopy cover ranging from 0.2 to 0.8. There is a high degree of nonlinearity in the relationship between UCR estimates for An and those of GCR, particularly when canopy cover is low, and suggests that simple scaling of UCR parameters

  5. Soil organic carbon dynamics and non-CO2 gas fluxes from agricultural soils under organic and non-organic management - results of two meta-studies

    Science.gov (United States)

    Gattinger, Andreas; Skinner, Colin; Müller, Adrian; Mäder, Paul; Niggli, Urs

    2015-04-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. Therefore, meta-studies on soil organic carbon (SOC) and soil-derived greenhouse (GHG) fluxes, respectively, were conducted to proof this assumption. Datasets from 74 studies from pair wise comparisons of organic versus non-organic farming systems were subjected to meta-analysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18±0.06 % points (mean±95% confidence interval) for SOC concentrations, 3.50±1.08 Mg C ha-1 for stocks, and 0.45±0.21 Mg C ha-1 a-1 for sequestration rates compared to non-organic management. Meta-regression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems, i.e. without nutrient inputs from outside the system, and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98±1.50 Mg C ha-1), while the difference in sequestration rates became insignificant (0.07±0.08 Mg C ha-1 a-1). The SOC dataset mainly covers top soil and temperate zones, while only few data from tropical regions and sub soil horizons exist. For the second meta-study measured soil-derived nitrous oxide and methane flux data from soils under organic and non-organic management from 19 farming system comparisons were analysed. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492±160 kg CO2 eq. ha-1 a-1 lower than from non-organically managed soils. For arable soils the difference amounts to 497±162 kg CO2 eq. ha-1 a-1. However, yield-scaled nitrous oxide emissions are higher by 41±34 kg

  6. Why different gas flux velocity parameterizations result in so similar flux results in the North Atlantic?

    Science.gov (United States)

    Piskozub, Jacek; Wróbel, Iwona

    2016-04-01

    The North Atlantic is a crucial region for both ocean circulation and the carbon cycle. Most of ocean deep waters are produced in the basin making it a large CO2 sink. The region, close to the major oceanographic centres has been well covered with cruises. This is why we have performed a study of net CO2 flux dependence upon the choice of gas transfer velocity k parameterization for this very region: the North Atlantic including European Arctic Seas. The study has been a part of a ESA funded OceanFlux GHG Evolution project and, at the same time, a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). Early results have been presented last year at EGU 2015 as a PICO presentation EGU2015-11206-1. We have used FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) to calculate the North Atlantic and global fluxes with different gas transfer velocity formulas. During the processing of the data, we have noticed that the North Atlantic results for different k formulas are more similar (in the sense of relative error) that global ones. This was true both for parameterizations using the same power of wind speed and when comparing wind squared and wind cubed parameterizations. This result was interesting because North Atlantic winds are stronger than the global average ones. Was the flux result similarity caused by the fact that the parameterizations were tuned to the North Atlantic area where many of the early cruises measuring CO2 fugacities were performed? A closer look at the parameterizations and their history showed that not all of them were based on North Atlantic data. Some of them were tuned to the South Ocean with even stronger winds while some were based on global budgets of 14C. However we have found two reasons, not reported before in the literature, for North Atlantic fluxes being more similar than global ones for different gas transfer velocity parametrizations

  7. Anthropogenic perturbation of the carbon fluxes from land to ocean

    KAUST Repository

    Regnier, Pierre

    2013-06-09

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr -1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (∼0.4 Pg C yr -1) or sequestered in sediments (∼0.5 Pg C yr -1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ∼0.1 Pg C yr -1 to the open ocean. According to our analysis, terrestrial ecosystems store ∼0.9 Pg C yr -1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr -1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets.

  8. Carbon fluxes to Antarctic top predators

    NARCIS (Netherlands)

    Franeker, van J.A.; Bathmann, U.V.; Mathot, S.

    1997-01-01

    The role of birds, seals and whales in the overall biological carbon fluxes of the Southern Ocean has been estimated based on census counts of top predator individuals in the region. Using standard routines for conversion to food consumption and respiration rates we demonstrate that at most 0.3-0.6%

  9. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  10. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  11. Carbon fluxes from an urban tropical grassland

    International Nuclear Information System (INIS)

    Turfgrass covers a large fraction of the urbanized landscape, but the carbon exchange of urban lawns is poorly understood. We used eddy covariance and flux chambers in a grassland field manipulative experiment to quantify the carbon mass balance in a Singapore tropical turfgrass. We also assessed how management and variations in environmental factors influenced CO2 respiration. Standing aboveground turfgrass biomass was 80 gC m−2, with a mean ecosystem respiration of 7.9 ± 1.1 μmol m−2 s−1. The contribution of autotrophic respiration was 49–76% of total ecosystem respiration. Both chamber and eddy covariance measurements suggest the system was in approximate carbon balance. While we did not observe a significant relationship between the respiration rates and soil temperature or moisture, daytime fluxes increased during the rainy interval, indicating strong overall moisture sensitivity. Turfgrass biomass is small, but given its abundance across the urban landscape, it significantly influences diurnal CO2 concentrations. - Highlights: • We measured urban turfgrass CO2 respiration rates and soil characteristics. • Mean observed ecosystem respiration was 7.9 ± 1.1 μmol m−2 s−1. • Soil temperature and moisture were largely insignificant drivers of observed flux. - We found a Singapore urban turfgrass to be approximately carbon neutral, with a mean ecosystem respiration of 7.9 ± 1.1 μmol m−2 s−1

  12. Carbon fluxes from an urban tropical grassland.

    Science.gov (United States)

    Ng, B J L; Hutyra, L R; Nguyen, H; Cobb, A R; Kai, F M; Harvey, C; Gandois, L

    2015-08-01

    Turfgrass covers a large fraction of the urbanized landscape, but the carbon exchange of urban lawns is poorly understood. We used eddy covariance and flux chambers in a grassland field manipulative experiment to quantify the carbon mass balance in a Singapore tropical turfgrass. We also assessed how management and variations in environmental factors influenced CO2 respiration. Standing aboveground turfgrass biomass was 80 gC m(-2), with a mean ecosystem respiration of 7.9 ± 1.1 μmol m(-2) s(-1). The contribution of autotrophic respiration was 49-76% of total ecosystem respiration. Both chamber and eddy covariance measurements suggest the system was in approximate carbon balance. While we did not observe a significant relationship between the respiration rates and soil temperature or moisture, daytime fluxes increased during the rainy interval, indicating strong overall moisture sensitivity. Turfgrass biomass is small, but given its abundance across the urban landscape, it significantly influences diurnal CO2 concentrations. PMID:24998996

  13. Water fluxes and their control on the terrestrial carbon balance: Results from a stable isotope study on the Clyde Watershed (Scotland)

    International Nuclear Information System (INIS)

    The gradients between precipitation and runoff quantities as well as their water isotopes were used to establish a water balance in the Clyde River Basin (Scotland). This study serves as an example for a European extreme with poorly vegetated land cover and high annual rainfall and presents novel water stable isotope techniques to separate evaporation, interception and transpiration with annual averages of 0.029 km3 a-1, 0.220 km3 a-1 and 0.489 km3 a-1, respectively. Transpiration was further used to determine CO2 uptake of the entire basin and yielded an annual net primary production (NPP) of 352 x 109 g C (Giga gram) or 185.2 g C m-2. Compared to other temperate areas in the world, the Clyde Basin has only half the expected NPP. This lower value likely results from the type of vegetation cover, which consists mostly of grasslands. Subtracting the annual heterotrophic soil respiration flux (Rh) of 392 Gg (206.1 g C m-2 a-1) from the NPP yielded an annual Net Ecosystem Productivity (NEP) of -40 Gg C, thus showing the Clyde Watershed as a source of CO2 to the atmosphere. Despite the unusual character of the Clyde Watershed, the study shows that areas with predominant grass and scrub vegetation still have transpirational water losses that by far exceed those of pure evaporation and interception. This infers that vegetation can influence the continental water balances on time scales of years to decades

  14. Effect of Carbon Properties on Melting Behavior of Mold Fluxes for Continuous Casting of Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance,steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.

  15. Advances in carbon flux observation and research in Asia

    Institute of Scientific and Technical Information of China (English)

    YU; Guirui; ZHANG; Leiming; SUN; Xiaomin; FU; Yuling; LI; Z

    2005-01-01

    As an important component of FLUXNET, Asia is increasingly becoming the hotspot in global carbon research for its vast territory, complex climate type and vegetation diversity. The present three regional flux observation networks in Asia (i.e. AsiaFlux, KoFlux and ChinaFLUX)have 54 flux observation sites altogether, covering tropic rainforest, evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, shrubland, grassland, alpine meadow and cropland ecosystems with a latitudinal distribution from 2°N to 63°N. Long-term and continuous fluxes of carbon dioxide, water vapor and energy between the biosphere and atmosphere are mainly measured with eddy covariance technique to (1) quantify and compare the carbon, water and energy budgets across diverse ecosystems; (2) quantify the environmental and biotic controlling mechanism on ecosystem carbon, water and energy fluxes; (3) validate the soil-vegetation-atmosphere model; and (4) serve the integrated study of terrestrial ecosystem carbon and water cycle. Over the last decades, great advancements have been made in the theory and technology of flux measurement, ecosystem flux patterns, simulation and scale conversion by Asian flux community. The establishment of ChinaFLUX has greatly filled the gap of flux observation and research in Eurasia. To further promote the flux measurement and research,accelerate data sharing and improve the data quality, it is necessary to present a methodological system of flux estimation and evaluation over complex terrain and to develop the integrated research that combines the flux measurement, stable isotope measurement, remote sensing observation and GIS technique. It also requires the establishment of the Joint Committee of Asian Flux Network in the Asia-Pacific region in order to promote the cooperation and communication of ideas and data by supporting project scientists, workshops and visiting scientists.

  16. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha-1 yr-1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  17. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes.

    OpenAIRE

    Bowling, DR; Pataki, DE; Randerson, JT

    2008-01-01

    Stable carbon isotopes are used extensively to examine physiological, ecological, and biogeochemical processes related to ecosystem, regional, and global carbon cycles and provide information at a variety of temporal and spatial scales. Much is known about the processes that regulate the carbon isotopic composition (delta(13)C) of leaf, plant, and ecosystem carbon pools and of photosynthetic and respiratory carbon dioxide (CO(2)) fluxes. In this review, systematic patterns and mechanisms unde...

  18. Carbon flux estimation by using ACTM for the period 2002-2011

    Science.gov (United States)

    Saeki, T.; Patra, P. K.; Kawa, S. R.; Collatz, G. J.

    2013-12-01

    We have estimated carbon flux by using an AGCM (atmospheric general circulation model)-based Chemistry Transport Model (ACTM) in a Bayesian synthesis inversion framework. Firstly, all efforts have been made to check the good performance of ACTM for the representation of synoptic to inter-hemispheric transport time scales using the simulations of SF6, 222Radon, CO2, CH4 and N2O concentrations and comparisons with observations. Thus we expect relatively less bias in estimated carbon fluxes by the inversion. Carbon fluxes were estimated for 84 regions (54 lands + 30 oceans) over the globe during the period of 2002-2011 with CO2 concentration from GLOBALVIEW (2012). Seasonally varying a priori fluxes for atmosphere-ocean exchange are taken from Takahashi et al. (2002, 2009). Interannually varying a priori fossil fuel fluxes (incl. cement production) are taken from EDGAR4.2. 3-hourly and monthly terrestrial biosphere fluxes are taken from the Carnegie Ames and Stanford Approach (CASA) terrestrial biosphere model at the NASA/GSFC. As a result of time-dependent inversions, differences in predicted fluxes with the 3-hourly CASA fluxes and the monthly CASA fluxes are found remarkably in North and South Americas and Australia. Estimated carbon fluxes for ocean regions are almost independent of a priori fluxes (Takahashi et al., 2002 or 2009) except for Southern Ocean. Other sensitivity tests on prior flux dependencies and site selection will be shown in the presentation.

  19. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    Science.gov (United States)

    Babel, Wolfgang; Biermann, Tobias; Falge, Eva; Ingrisch, Johannes; Leonbacher, Jürgen; Schleuss, Per; Kuzyakov, Yakov; Ma, Yaoming; Miehe, Georg; Foken, Thomas

    2014-05-01

    With an approximate cover of 450,000 km² on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to

  20. Forest carbon stocks and fluxes in physiographic zones of India

    OpenAIRE

    Sheikh Mehraj A; Kumar Munesh; Bussman Rainer W; Todaria NP

    2011-01-01

    Abstract Background Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessmen...

  1. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  2. The impact of lateral carbon fluxes on the European carbon balance

    Science.gov (United States)

    Ciais, P.; Borges, A. V.; Abril, G.; Meybeck, M.; Folberth, G.; Hauglustaine, D.; Janssens, I. A.

    2008-09-01

    To date, little is known about the impact of processes which cause lateral carbon fluxes over continents, and from continents to oceans on the CO2 and carbon budgets at local, regional and continental scales. Lateral carbon fluxes contribute to regional carbon budgets as follows: Ecosystem CO2 sink=Ecosystem carbon accumulation+Lateral carbon fluxes. We estimated the contribution of wood and food product trade, of emission and oxidation of reduced carbon species, and of river erosion and transport as lateral carbon fluxes to the carbon balance of Europe (EU-25). The analysis is completed by new estimates of the carbon fluxes of coastal seas. We estimated that lateral transport (all processes combined) is a flux of 165 Tg C yr-1 at the scale of EU-25. The magnitude of lateral transport is thus comparable to current estimates of carbon accumulation in European forests. The main process contributing to the total lateral flux out of Europe is the flux of reduced carbon compounds, corresponding to the sum of non-CO2 gaseous species (CH4, CO, hydrocarbons, ...) emitted by ecosystems and exported out of the European boundary layer by the large scale atmospheric circulation.

  3. The impact of lateral carbon fluxes on the European carbon balance

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2008-09-01

    Full Text Available To date, little is known about the impact of processes which cause lateral carbon fluxes over continents, and from continents to oceans on the CO2 – and carbon budgets at local, regional and continental scales. Lateral carbon fluxes contribute to regional carbon budgets as follows: Ecosystem CO2 sink=Ecosystem carbon accumulation+Lateral carbon fluxes. We estimated the contribution of wood and food product trade, of emission and oxidation of reduced carbon species, and of river erosion and transport as lateral carbon fluxes to the carbon balance of Europe (EU-25. The analysis is completed by new estimates of the carbon fluxes of coastal seas. We estimated that lateral transport (all processes combined is a flux of 165 Tg C yr−1 at the scale of EU-25. The magnitude of lateral transport is thus comparable to current estimates of carbon accumulation in European forests. The main process contributing to the total lateral flux out of Europe is the flux of reduced carbon compounds, corresponding to the sum of non-CO2 gaseous species (CH4, CO, hydrocarbons, ... emitted by ecosystems and exported out of the European boundary layer by the large scale atmospheric circulation.

  4. The impacts of '05.6' extreme flood event on riverine carbon fluxes in Xijiang River

    Institute of Scientific and Technical Information of China (English)

    SUN HuiGuo; HAN JingTai; ZHANG ShuRong; LU XiXi

    2007-01-01

    An extreme flood event with a frequency of nearly 200 year occurred in June of 2005 in the Xijiang River,the main trunk stream of the Zhujiang River. Samples were systematically collected during the flood event, and water quality parameters, including total suspended sediment (TSS), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were analyzed,and riverine carbon concentrations associated with its changing pattern through the flood process were discussed. These parameters reflect the changes in basin surface flow and subsurface flow during the flood. This flood event influenced annual flux estimations of POC, DOC, and DIC to great extents.Based on carbon flux estimations for the year 2005 and the flood event (June 21-28) in the Xijiang River, it was found that DIC, DOC, and POC fluxes during '05.6' flood event are 1.52x106 g.km-2.a-1,0.24x106 g.km-2.a-1, and 0.54x106 g.km-2.a-1, and account for 14.87%, 24.75% and 44.89% of the annual fluxes in 2005, respectively. The results suggested that carbon exports during extreme flood events had great contributions to the total carbon fluxes and composition of various carbon components, being important for accurate estimates of annual carbon fluxes in rivers with frequent floods.

  5. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes

    Science.gov (United States)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper

    2016-04-01

    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  6. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Gaye, B.

    .3. In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when...

  7. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  8. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders;

    2011-01-01

    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  9. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, M.B.; Ambus, P.; Michelsen, A.;

    2011-01-01

    Carbon dioxide (CO(2)) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO(2) concentration from c. 380 mu...

  10. Anthropogenic perturbation of the global carbon cycle as a result of agricultural carbon erosion and burial

    Science.gov (United States)

    Wang, Zhengang; Govers, Gerard; Kaplan, Jed; Hoffmann, Thomas; Doetterl, Sebastian; Six, Johan; Van Oost, Kristof

    2016-04-01

    Changes in terrestrial carbon storage exert a strong control over atmospheric CO2 concentrations but the underlying mechanisms are not fully constrained. Anthropogenic land cover change is considered to represent an important carbon loss mechanism, but current assessments do not consider the associated acceleration of carbon erosion and burial in sediments. We evaluated the role of anthropogenic soil erosion and the resulting carbon fluxes between land and atmosphere from the onset of agriculture to the present day. We show, here, that agricultural erosion induced a significant cumulative net uptake of 198±57 Pg carbon on terrestrial ecosystems. This erosion-induced soil carbon sink is estimated to have offset 74±21% of carbon emissions. Since 1850, erosion fluxes have increased 3-fold. As a result, the erosion and lateral transfer of organic carbon in relation to human activities is an important driver of the global carbon cycle at millennial timescales.

  11. Faunal Influences on Fracture-Induced Carbon Flux Dynamics in Dryland Soils

    Science.gov (United States)

    DeCarlo, K. F.; Caylor, K. K.

    2015-12-01

    Organismal activity, in addition to its role in ecological feedbacks, ha the potential to serve as instigators or enhancers of atmospheric and hydrologic fluxes via alterations in soil structural regimes. We investigated the effect of faunally-induced crack morphology on soil carbon dynamics in three dryland soil systems in central Kenya: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer. Results show that faunal influenes play a divergent biomechanical role in bulk soil cracking morphology and topology: macrofauna-induced bioturbation creates shallow, large, well-connected networks relative to those from megaherbivore-induced biocompaction, with the latter showing a "memory" of past drying events through a crack layering effect. These morphologies may further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively - biocompacted soils suggest a diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean carbon fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that fracture morphology induced in biocompacted soils may enhance diffusive fluxes that are typical in undisturbed soils to levels that are as high as those from macrofaunal respiration, but that particular physical conditions in fracture morphology and topology may be necessary as a prerequisite.

  12. Forest carbon fluxes: A satellite perspective

    Science.gov (United States)

    Morton, Douglas C.

    2016-04-01

    Reducing deforestation and forest degradation offers a quick win for climate mitigation. Using satellite data we are now able to better constrain pantropical estimates of forest loss, reshaping our understanding of the annual to decadal variability in land sources and sinks in the global carbon cycle.

  13. Annual variation of carbon flux and impact factors in the tropical seasonal rain forest of Xishuangbanna, SW China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil+litterfall, soil+litterfall+seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration

  14. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets

    Science.gov (United States)

    Stets, E.G.; Striegl, R.G.; Aiken, G.R.; Rosenberry, D.O.; Winter, T.C.

    2009-01-01

    Freshwater lakes are an important component of the global carbon cycle through both organic carbon (OC) sequestration and carbon dioxide (CO 2) emission. Most lakes have a net annual loss of CO2 to the atmosphere and substantial current evidence suggests that biologic mineralization of allochthonous OC maintains this flux. Because net CO 2 flux to the atmosphere implies net mineralization of OC within the lake ecosystem, it is also commonly assumed that net annual CO2 emission indicates negative net ecosystem production (NEP). We explored the relationship between atmospheric CO2 emission and NEP in two lakes known to have contrasting hydrologie characteristics and net CO2 emission. We calculated NEP for calendar year 2004 using whole-lake OC and inorganic carbon (IC) budgets, NEPoc and NEPIC, respectively, and compared the resulting values to measured annual CO 2 flux from the lakes. In both lakes, NEPIc and NEP Ic were positive, indicating net autotrophy. Therefore CO2 emission from these lakes was apparently not supported by mineralization of allochthonous organic material. In both lakes, hydrologie CO2 inputs, as well as CO2 evolved from netcalcite precipitation, could account for the net CO2 emission. NEP calculated from diel CO2 measurements was also affected by hydrologie inputs of CO2. These results indicate that CO2 emission and positive NEP may coincide in lakes, especially in carbonate terrain, and that all potential geologic, biogeochemical, and hydrologie sources of CO2 need to be accounted for when using CO2 concentrations to infer lake NEP. Copyright 2009 by the American Geophysical Union.

  15. Time dependences of atmospheric Carbon dioxide fluxes

    CERN Document Server

    DeSalvo, Riccardo

    2014-01-01

    Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

  16. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  17. Relevance of methodological choices for accounting of land use change carbon fluxes

    Science.gov (United States)

    Hansis, Eberhard; Davis, Steven J.; Pongratz, Julia

    2015-08-01

    Accounting for carbon fluxes from land use and land cover change (LULCC) generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly developed and spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions), we quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like "commitment" accounting period, using land use emissions of 2008-2012 as an example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions.

  18. Carbon monoxide fluxes over a managed mountain meadow

    Science.gov (United States)

    Hörtnagl, Lukas; Hammerle, Albin; Wohlfahrt, Georg

    2014-05-01

    Carbon monoxide (CO) is a toxic trace gas with an atmospheric lifetime of 1-3 months and an average atmospheric concentration of 100 ppb. CO mole fractions exhibit a pronounced seasonal cycle with lows in summer and highs in winter. Carbon monoxide has an indirect global warming potential by increasing the lifetime of methane (CH4), as the main sink of CO is the reaction with the hydroxyl (OH) radical, which in turn is also the main sink for CH4. Regarding the warming potential, it is estimated that 100 kg CO are equivalent to an emission of 5 kg CH4. In addition, carbon monoxide interferes with the building and destruction of ozone. Emission into and uptake from the atmosphere of CO are thus relevant for global climate and regional air quality. Sources and sinks of CO on a global scale are still highly uncertain, mainly due to general scarcity of empirical data and the lack of ecosystem-scale CO exchange measurements, i.e. CO flux data that encompass all sources and sinks within an ecosystem. Here we present eddy covariance CO fluxes over a managed temperate mountain grassland near Neustift, Austria, whereby volume mixing ratios of CO were quantified by a dual-laser mid-infrared quantum cascade laser (QCL). First analyses of fluxes captured in April 2013 showed that the QCL is well able to capture CO fluxes at the study site during springtime. During the same time period, both significant net uptake and deposition of CO were observed, with high emission and deposition fluxes on the order of +/- 5 nmol m-2 s-1, respectively. In addition, CO fluxes exhibited a clear diurnal cycle during certain time periods, indicating a continuous release or uptake of the compound with peak flux rates around noon. In this presentation, we will analyze 12 months of carbon monoxide fluxes between January and December 2013 with regard to possible abiotic and biotic drivers of CO exchange. As an additional step towards a full understanding of the greenhouse gas exchange of the meadow

  19. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    perturbations and the potential for widespread feedbacks with global consequences. In this thesis, I present and discuss the findings of an investigation of comparable drivers of the seasonality in carbon dioxide (CO2) fluxes across heterogeneous Arctic tundra ecosystems. Due to the remoteness and the harsh...

  20. Relations between Carbon Dioxide Fluxes and Environmental Factors of Kobresia humilis Meadows and Potentilla fruticosa Meadows

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; XU Shixiao; LI Yingnian; TANG Yanbong; ZHAO Xinquan; GU Song; DU Mingyuan; YU Guirui

    2007-01-01

    Carbon dioxide fluxes of Kobresia humilis and Potentillafruticosa shrub meadows,two typical ecosystems in the Qinghai-Tibet Plateau,were measured by eddy covariance technology and the data collected in August 2003 were employed to analyze the relations between carbon dioxide fluxes and environmental factors of the ecosystems.August is the time when the two ecosystems reach their peak leaf area indexes and stay stable,and also the period when the net carbon absorptions of Kobresia humilis and Potentilla photo flux densities (PPFD),the carbon dioxide-uptake rate of the Kobresia humilis meadow is higher than that of the Potentilla fruticosa shrub meadow;where the PPFD are rates of the two ecosystems declined as air temperature increased,but the carbon dioxide uptake rate of the Kobresia humilis meadow decreased more quickly (-0.086) than that of the Potentilla fruticosa shrub meadow (-0.016).Soil moistures exert influence on the soil respirations and this varies with the vegetation type.The daily carbon dioxide absorptions of the ecosystems increase with increased diurnal temperature differences and higher diurnal temperature differences result in higher carbon dioxide exchanges.There exists a negative correlation between the vegetation albedos and the carbon dioxide fluxes.

  1. Fluxes of particulate organic carbon in the East China Sea in summer

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2013-10-01

    Full Text Available To understand carbon cycling in marginal seas better, particulate organic carbon (POC concentrations, POC fluxes and primary production (PP were measured in the East China Sea (ECS in summer 2007. Higher concentrations of POC were observed in the inner shelf, and lower POC values were found in the outer shelf. Similar to POC concentrations, elevated uncorrected POC fluxes (720–7300 mg C m−2 d−1 were found in the inner shelf, and lower POC fluxes (80–150 mg C m−2 d−1 were in the outer shelf, respectively. PP values (~ 340–3380 mg C m−2 d−1 had analogous distribution patterns to POC fluxes, while some of PP values were significantly lower than POC fluxes, suggesting that contributions of resuspended particles to POC fluxes need to be appropriately corrected. A vertical mixing model was used to correct effects of bottom sediment resuspension, and the lowest and highest corrected POC fluxes were in the outer shelf (58 ± 33 mg C m−2 d−1 and the inner shelf (785 ± 438 mg C m−2 d−1, respectively. The corrected POC fluxes (486 to 785 mg C m−2 d−1 in the inner shelf could be the minimum value because we could not exactly distinguish the effect of POC flux from Changjiang influence with turbid waters. The results suggest that 27–93% of the POC flux in the ECS might be from the contribution of resuspension of bottom sediments rather than from the actual biogenic carbon sinking flux. While the vertical mixing model is not a perfect model to solve sediment resuspension because it ignores biological degradation of sinking particles, Changjiang plume (or terrestrial inputs and lateral transport, it makes significant progress in both correcting the resuspension problem and in assessing a reasonable quantitative estimate of POC flux in a marginal sea.

  2. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  3. Evaluating Surface Flux Results from CERES-FLASHFlux

    Science.gov (United States)

    Wilber, A. C.; Stackhouse, P. W.; Kratz, D. P.; Gupta, S. K.; Sawaengphokhai, P.

    2015-12-01

    The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was developed to provide a rapid release version of the Clouds and Earth's Radiant Energy System (CERES) results, which could be made available to the research and applications communities within one week of the satellite observations by exchanging some accuracy for speed of processing. TOA and surface flux products are provided for each CERES footprint (Single Scanner Footprint - SSF) and also time integrated and spatially averaged (TISA) to provide global daily averaged quantities. Despite the use of the most recently available calibration coefficients and operational inputs that are different from CERES formal climate quality data products, FLASHFlux has been found to provide results that compare very favorably with the CERES results. The TISA results from the FLASHFlux highly parameterized models are compared to the surface fluxes from CERES-EBAF, which uses a radiative transfer model, for the time period when both products are available. The FLASHFlux surface data products also have been found to give accurate surface flux results when compared to ground measurements. We present validation of both footprint-level and time-space averaged surface fluxes against ground measurements. Validation is done for both longwave (LW) and shortwave (SW) surface fluxes. The surface radiation measurements for land and island sites are collected from multiple networks, including the Baseline Surface Radiation Network (BSRN), Atmospheric Radiation Measurement (ARM). In the US, the NOAA SURFRAD network provides surface flux data products within a day of measurement and these are optimal for FLASHFlux validation. Ocean buoy measurements are from Woods Hole Oceanographic Institute (WHOI). Overall bias for the SSF downward LW flux has been found to be about 6 Wm-2. For SW the bias is about 3 Wm-2. Clear and cloudy sky conditions will be evaluated separately. Validation is also examined by surface type.

  4. Biogenic carbon fluxes from global agricultural production and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  5. Monitoring Energy and Carbon Fluxes in a Mediterranean City

    Science.gov (United States)

    Marras, S.; Sirca, C.; Bellucco, V.; Arca, A.; Ventura, A.; Duce, P.; Spano, D.

    2015-12-01

    Cities and the surrounding areas play an important role in altering and/or contributing to the natural processes of the Earth system. Specifically, cities affect the amount and partitioning of energy fluxes, as well as the carbon budget. It is recognized that increased greenhouse gases (GHG) concentration (mainly carbon dioxide) and air temperature values are typically experienced by cities, due to their structural and morphological characteristics and to human activities in urban areas (such as traffic, domestic heating/cooling, etc.). This will impact the urban climate. Reducing the impact of urbanization on climate requires the knowledge of the interactions and links between human activities and the land-atmosphere system. Each city has different characteristics and conditions, so planning strategies helping in reducing carbon emissions should take into account local features. In this contest, monitoring activities are crucial to study the exchange of energy, water, and carbon over the city, evaluate their impact on human livability, and understand the role of the city on climate. A research activity is carried out in the Mediterranean city of Sassari, in the North of Sardinia island (Italy) to monitor urban fluxes and distinguish the main sources of GHG emissions, which could help the municipality to identify possible actions for reducing them. An Eddy Covariance tower was set up in the city center to directly monitor energy and carbon exchanges at half-hourly time step. Even if the measurement period only consists of few months, the daily trend of urban fluxes clearly shows that traffic is one of the main carbon emission sources, while the contribution of vegetation in sequestering carbon is low due to the reduced amount of green areas in the measurements footprint (< 20%). In addition, differences between working days and holiday periods can be distinguished.

  6. Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks*

    OpenAIRE

    Qin, Zhong; Su, Gao-li; Yu, Qiang; Hu, Bing-min; Li, Jun

    2005-01-01

    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back...

  7. Effect of restoration on carbon fluxes in urban temperate wetlands

    Science.gov (United States)

    Schafer, K. V.; Tripathee, R.; Bohrer, G.

    2012-12-01

    Carbon sequestration as an ecosystem service, has received attraction as a climate change mitigating strategy. The restoration of wetlands has also been an integral part of US management policy, since the clean water act came into effect. How restoration impacts carbon fluxes, however, has seldom been reported. A record of over three years of net carbon exchange from a restored urban temperate wetland, shows that fluxes decreased by 50% concomitant with the management of Phragmites australis, an invasive plant species that has been eliminated by 2011, thus all aboveground biomass has been removed. Likewise, aboveground biomass decreased for Spartina alterniflora, the restored, native species over the same time period as well. The majority of the biomass resides belowground. Comparison between the managed urban wetland and an unmanaged recently restored site nearby shows that the fluxes in the unmanaged wetland in 2011 were significantly higher than those of the managed wetland. Thus, managing wetlands by removing Phragmites may cause diminishing carbon sequestration potential by these wetlands

  8. Inverse carbon dioxide flux estimates for the Netherlands

    NARCIS (Netherlands)

    Meesters, A. G. C. A.; Tolk, L. F.; Peters, W.; Hutjes, R. W. A.; Vellinga, O. S.; Elbers, J. A.; Vermeulen, A. T.; van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Dolman, A. J.

    2012-01-01

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season.

  9. Inverse carbon dioxide flux estimates for the Netherlands

    NARCIS (Netherlands)

    Meesters, A.G.C.A.; Tolk, L.F.; Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A.; Vermeulen, A.T.; Laan, van der S.; Neubert, R.; Meijer, H.A.J.; Dolman, A.J.

    2012-01-01

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season

  10. Coupling of soil water and dissolved carbon measurements to estimate the carbon flux in forest ecosystems a case study

    Science.gov (United States)

    Fink, M.; Krause, P.; Gleixner, G.

    2003-04-01

    We used the 250 year old forest of the national park Hainich, Germany, to estimate carbon storage and export to the ground water in old grown forests. The Hainich is one of the largest deciduous forest ecosystems in middle Europe and the protected area is unmanaged for at least 50 years. It is one of the flux sites of the Carboeurop cluster (www.carboeurop.de) equipped with an eddy covariance system to measure net ecosystem exchange (NEE). Surprisingly NEE of this old grown forest is about 5 t carbon/ha*a. This high amount of carbon uptake can not be explained only by biomass or litter increase. Therefore we quantified the amount of carbon lost as dissolved carbon from the upper soil layer. To determine if carbon is washed out and transported by water fluxes in form of dissolved carbon, the measurement campaign was extended by sophisticated hydrometrical instruments, like frequency domain reflectrometry (FDR) probes, high frequency rain measurement equipment and ceramic plates to take soil water samples. The FDR probes characterize the soil hydrology and quantify the amount of water percolating horizontal and vertical through the soil. In the water samples dissolved organic carbon and dissolved inorganic carbon were determined. Both the quantification of the soil hydrology and the chemical characterization of the soil water enable the calculation of the carbon export from the system. The measurement equipment and layout will be presented and results of dissolved carbon contents in the subsurface water fluxes will be presented. Preliminary estimations of the carbon loss by seepages will be presented also.

  11. Estimating carbon and energy fluxes in arctic tundra

    Science.gov (United States)

    Gokkaya, K.; Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2013-12-01

    Arctic ecosystems are undergoing a very rapid change due to climate change and their response to climate change has important implications for the global energy budget and carbon (C) cycling. Therefore, it is important to understand how (C) and energy fluxes in the Arctic will respond to climate change. However, attribution of these responses to climate is challenging because measured fluxes are the sum of multiple processes that respond differently to environmental factors. For example, net ecosystem exchange of CO2 (NEE) is the net result of gross (C) uptake by plant photosynthesis (GPP) and (C) loss by ecosystem respiration (ER) and similarly, evapotranspiration (i.e. latent energy, LE) is the sum of transpiration and evaporation. Partitioning of NEE into GPP and ER requires nighttime measurements of NEE, when photosynthesis does not take place, to be extrapolated to daytime. This is challenging in the Arctic because of the long photoperiod during the growing season and the errors involved during the extrapolation. Transpiration (energy), photosynthesis (carbon), and vegetation phenology are inherently coupled because leaf stomata are the primary regulators of gas exchange. Our objectives in this study are to i) estimate canopy resistance (Rc) based on a light use efficiency model, ii) utilize the estimated Rc to predict GPP and transpiration using a coupled C and energy model and thus improve the partitioning of NEE and LE, and iii) to test ensemble Kalman filter (EnKF) to estimate model parameters and improve model predictions. Results from one growing season showed that the model predictions can explain 75 and 71% of the variance in GPP and LE in the Arctic tundra ecosystem, respectively. When the model was embedded within the EnKF for estimating Rc, the amount of variance explained for GPP increased to 81% but there was no improvement for the prediction of LE. This suggests that the factors controlling LE are not fully integrated in the model such as the

  12. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds

    OpenAIRE

    Barrón, Cristina; Apostolaki, Eugenia T.; Duarte, Carlos M.

    2014-01-01

    Estimates of dissolved organic carbon (DOC) release by marine macrophyte communities (seagrass meadows and macroalgal beds) based on in situ benthic chambers from published and unpublished are compiled in this study. The effect of temperature and light availability on DOC release by macrophyte communities was examined. Almost 85% of the seagrass communities and all of macroalgal communities examined acted as net sources of DOC. Net DOC fluxes in seagrass communities increase positively with w...

  13. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    Science.gov (United States)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  14. Impacts of Soil Redistribution Processes on Soil Organic Carbon Stocks and Fluxes in a Small Agricultural Catchment

    OpenAIRE

    Dlugoß, Verena

    2011-01-01

    Soils play a major role in the global carbon cycle and have a huge potential for either sequestering or releasing carbon (C) to the atmosphere. Globally, large amounts of soil organic carbon (SOC) are laterally redistributed on sloped arable land by soil erosion. Besides the lateral SOC fluxes, soil erosion also indirectly alters the vertical C fluxes between terrestrial and aquatic ecosystems and the atmosphere. Whether this results in a net source or sink of atmospheric CO2 is unclear. Glob...

  15. Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    Science.gov (United States)

    Blaauw, R.; Campbell-Brown, M.; Cooke, W.; Kingery, A.; Weryk, R.; Gill, J.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established a two-station system to calculate daily automated meteor fluxes in the millimeter-size-range for both single-station and double-station meteors. The cameras each consist of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902H2 Ultimate CCD video camera, producing a 21.7x15.5 degree field of view. This configuration sees meteors down to a magnitude of +6. This paper outlines the concepts of the system, the hardware and software, and results of 3,000+ orbits from the first 18 months of operations. Video from the cameras are run through ASGARD (All Sky and Guided Automatic Real-time Detection), which performs the meteor detection/photometry, and invokes MILIG and MORB (Borovicka 1990) codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for approximate shower identification in single-station detections. The ASGARD output is used in routines to calculate the flux. Before a flux can be calculated, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting stellar magnitude is found using astrometry.net (Lang et al. 2012) to identify stars and translated to the corresponding shower and sporadic limiting meteor magnitude. It is found every 10 minutes and is able to react to quickly changing sky conditions. The extensive testing of these results on the Geminids and Eta Aquariids is shown. The flux involves dividing the number of meteors by the collecting area of the system, over the time interval for which that collecting area is valid. The flux algorithm employed here differs from others currently in use in that it does not make the gross oversimplication of choosing a single height to calculate the collection area of the system. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the

  16. The inverse problem in zero linear ablation of aluminizing carbon composites under high heat flux

    Directory of Open Access Journals (Sweden)

    Huang Haiming

    2013-01-01

    Full Text Available The concept of zero linear ablation is introduced to describe the mass ablation without shape change, and it is employed to design thermal protection materials under an extreme thermal environment. Aluminizing carbon composites are used as a sample to study numerically the heat response. As indicated in the numerical results, the shape of the composites did not change under a high heat flux because the phase transition (melt or evaporation of aluminum can absorb a lot of energy before the ablation of carbon, and the zero linear ablation depends on not only the volume fraction of aluminum, but also the heating period and the heat flux.

  17. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  18. Anthropogenic heat flux estimation from space: first results

    Science.gov (United States)

    Chrysoulakis, Nektarios; Heldens, Wieke; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Albitar, Ahmad; Gabey, Andrew; Parlow, Eberhard; Olofson, Frans

    2016-04-01

    While Earth Observation (EO) has made significant advances in the study of urban areas, there are several unanswered science and policy questions to which it could contribute. To this aim the recently launched Horizon 2020 project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of EO to retrieve anthropogenic heat flux, as a key component in the urban energy budget. The anthropogenic heat flux is the heat flux resulting from vehicular emissions, space heating and cooling of buildings, industrial processing and the metabolic heat release by people. Optical, thermal and SAR data from existing satellite sensors are used to improve the accuracy of the radiation balance spatial distribution calculation, using also in-situ reflectance measurements of urban materials are for calibration. EO-based methods are developed for estimating turbulent sensible and latent heat fluxes, as well as urban heat storage flux and anthropogenic heat flux spatial patterns at city scale and local scale by employing an energy budget closure approach. Independent methods and models are engaged to evaluate the derived products and statistical analyses provide uncertainty measures as well. Ultimate goal of the URBANFLUXES is to develop a highly automated method for estimating urban energy budget components to use with Copernicus Sentinel data, enabling its integration into applications and operational services. Thus, URBANFLUXES prepares the ground for further innovative exploitation of European space data in scientific activities (i.e. Earth system modelling and climate change studies in cities) and future and emerging applications (i.e. sustainable urban planning) by exploiting the improved data quality, coverage and revisit times of the Copernicus data. The URBANFLUXES products will therefore have the potential to support both sustainable planning strategies to improve the quality of life in cities, as well as Earth system models to

  19. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    Directory of Open Access Journals (Sweden)

    E. M. Thaysen

    2014-03-01

    Full Text Available The efflux of carbon dioxide (CO2 from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated. Carbon dioxide partial pressure in the soil gas (pCO2, alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley mesocosms. The dissolved inorganic carbon (DIC percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn emanation rates and soil air Rn concentration profiles, and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modelled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol carbon (C m−2 s−1, respectively, and largely exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m−2 s−1. Post-harvest soil respiration (Rs was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Plant biomass and soil pCO2 were high in the mesocosms as compared to a standard field situation. Our results indicate no change of the cropland C balance under elevated atmospheric CO2 in a warmer future climate, in which plant biomass and soil pCO2 are expected to increase.

  20. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    Science.gov (United States)

    Sanhueza, Eugenio; Donoso, Loreto; Scharffe, Dieter; Crutzen, Paul J.

    1994-08-01

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A columm for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nightime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4×1010 molecules cm-2 s-1) to being a net sink (-1.6×1010 molecules cm-2s-1) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that "degrading dry (dead) vegetation" produces CO under dark conditions.

  1. Cropland carbon fluxes in the United States: increasing Geospatial Resolution of Inventory-Based Carbon Accounting

    Energy Technology Data Exchange (ETDEWEB)

    West, Tristram O. [ORNL; Brandt, Craig C [ORNL; Baskaran, Latha Malar [ORNL; Hellwinckel, Chad M [ORNL; Marland, Gregg [ORNL; Nelson, Richard G [ORNL; De La Torre Ugarte, Daniel G [ORNL; Post, Wilfred M [ORNL

    2010-01-01

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary productivity were estimated and spatially distributed using land cover defined by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by the Cropland Data Layer (CDL). Spatially resolved estimates of net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB) were developed. NEE represents net on-site vertical fluxes of carbon. NECB represents all on-site and off-site carbon fluxes associated with crop production. Estimates of cropland NEE using moderate resolution (~1km2) land cover data were generated for the conterminous US and compared with higher resolution (30m) estimates of NEE and with direct measurements of CO2 flux from croplands in Illinois and Nebraska. Estimates of NEE using the CDL (30m resolution) had a higher correlation with eddy covariance flux tower estimates compared with estimates of NEE using MODIS. Estimates of NECB are primarily driven by net soil carbon change, fossil-fuel emissions associated with crop production, and CO2 emissions from the application of agricultural lime. NEE and NECB for US croplands were -274 and 7 Tg C yr-1 for 2004, respectively. Use of moderate to high resolution satellite-based land cover data enables improved estimates of cropland carbon dynamics.

  2. Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks

    Institute of Scientific and Technical Information of China (English)

    QIN Zhong; SU Gao-li; YU Qiang; HU Bing-min; LI Jun

    2005-01-01

    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.

  3. Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks.

    Science.gov (United States)

    Qin, Zhong; Su, Gao-Li; Yu, Qiang; Hu, Bing-Min; Li, Jun

    2005-05-01

    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant. PMID:15822158

  4. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting.

    Science.gov (United States)

    West, Tristram O; Brandt, Craig C; Baskaran, Latha M; Hellwinckel, Chad M; Mueller, Richard; Bernacchi, Carl J; Bandaru, Varaprasad; Yang, Bai; Wilson, Bradly S; Marland, Gregg; Nelson, Richard G; De la Torre Ugarte, Daniel G; Post, Wilfred M

    2010-06-01

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary production were estimated and spatially distributed using land cover defined by NASA's moderate resolution imaging spectroradiometer (MODIS) and by the USDA National Agricultural Statistics Service (NASS) cropland data layer (CDL). Spatially resolved estimates of net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB) were developed. The purpose of generating spatial estimates of carbon fluxes, and the primary objective of this research, was to develop a method of carbon accounting that is consistent from field to national scales. NEE represents net on-site vertical fluxes of carbon. NECB represents all on-site and off-site carbon fluxes associated with crop production. Estimates of cropland NEE using moderate resolution (approximately 1 km2) land cover data were generated for the conterminous United States and compared with higher resolution (30-m) estimates of NEE and with direct measurements of CO2 flux from croplands in Illinois and Nebraska, USA. Estimates of NEE using the CDL (30-m resolution) had a higher correlation with eddy covariance flux tower estimates compared with estimates of NEE using MODIS. Estimates of NECB are primarily driven by net soil carbon change, fossil fuel emissions associated with crop production, and CO2 emissions from the application of agricultural lime. NEE and NECB for U.S. croplands were -274 and 7 Tg C/yr for 2004, respectively. Use of moderate- to high-resolution satellite-based land cover data enables improved estimates of cropland carbon dynamics. PMID:20597291

  5. Methane and Carbon Dioxide Fluxes from Stems, Soils, and Coarse Woody Debris in a Temperate Forest

    Science.gov (United States)

    Warner, D. L.; Villarreal, S.; McWilliams, K.; Inamdar, S. P.; Vargas, R.

    2015-12-01

    Quantifying the magnitude and variability of greenhouse gas fluxes from different terrestrial carbon pools is necessary for enhancing understanding of terrestrial carbon cycling. While much more is known about variability CO2 fluxes, we have little information on how CH4 fluxes vary across multiple carbon pools within terrestrial ecosystems. We measured fluxes of CH4 and CO2 from living tree stems, soils, and coarse woody debris within a temperate forested watershed during the growing season (May-November). Fluxes of both CH4 and CO2 were significantly different among carbon pools. Living tree stems were weak sources of both CH4 and CO2 with seasonal means (± 1 SD) of 0.08 ± 0.19 nmol CH4 m-2 s-1 and 1.16 ± 1.21 μmol CO2 m-2 s-1. Soils were sinks of CH4 and sources of CO2 with seasonal means (± 1 SD) of -2.00 ± 1.41 nmol CH4 m-2 s-1 and 3.07 ± 2.10 μmol CO2 m-2 s-1. Fluxes of CH4 and CO2 from coarse woody debris were largely variable relative to the other pools with seasonal means (± 1 SD) of -0.21 ± 0.76 nmol CH4 m-2 s-1 and 2.61 ± 2.50 μmol CO2m-2 s-1. Gas fluxes varied significantly (p < 0.05) between sampling sites for both living stems and coarse woody debris, but not for soils. For living stems, this variability was explained by differences in tree species, where N. sylvatica had largest seasonal mean flux of CH4 and L. tulipifera had the largest seasonal mean flux of CO2. For woody debris sites, the variability was explained wood density, with dense, fresh wood acting as CH4 sources, and less dense, decayed wood acting as CH4 sinks. Our results show homogeneity in soil CH4 and CO2 fluxes, but a large heterogeneity in fluxes from tree stems and coarse woody debris. These results provide insights on how forest management strategies could influence greenhouse gas emissions from forested watersheds.

  6. The impact of lateral carbon fluxes on the European carbon balance

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2006-09-01

    Full Text Available To date, little has been written about the important role played by processes transporting carbon laterally over continents, and from continents to oceans. These processes have an impact on the CO2 budgets and on the carbon budgets at local, regional and continental scales. We estimated the impact on the European carbon balance of the transport of carbon by the trade of wood and food products, by the emission and oxidation of reactive reduced carbon species, and by rivers and freshwater systems up to estuaries. The analysis is completed by new estimates of the carbon fluxes of coastal seas. The magnitude of the CO2 and carbon fluxes caused by lateral transport over Europe is comparable to current estimates of carbon gain by European ecosystems. At the continental level, we estimate a CO2 sink over Europe of 140 TgC yr−1 and a carbon sink of 50 TgC yr−1 being caused by lateral transport processes.

  7. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. PMID:25597686

  8. Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage.

    Science.gov (United States)

    Valtanen, Kerttu; Eissfeller, Verena; Beyer, Friderike; Hertel, Dietrich; Scheu, Stefan; Polle, Andrea

    2014-11-01

    To determine the exchange of nitrogen and carbon between ectomycorrhiza and host plant, young beech (Fagus sylvatica) trees from natural regeneration in intact soil cores were labelled for one growing season in a greenhouse with (13)CO2 and (15)NO3 (15)NH4. The specific enrichments of (15)N and (13)C were higher in ectomycorrhizas (EMs) than in any other tissue. The enrichments of (13)C and (15)N were also higher in the fine-root segments directly connected with the EM (mainly second-order roots) than that in bulk fine or coarse roots. A strict, positive correlation was found between the specific (15)N enrichment in EM and the attached second-order roots. This finding indicates that strong N accumulators provide more N to their host than low N accumulators. A significant correlation was also found for the specific (13)C enrichment in EM and the attached second-order roots. However, the specific enrichments for (15)N and (13)C in EM were unrelated showing that under long-term conditions, C and N exchange between host and EMs are uncoupled. These findings suggest that EM-mediated N flux to the plant is not the main control on carbon flux to the fungus, probably because EMs provide many different services to their hosts in addition to N provision in their natural assemblages. PMID:24756632

  9. Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea

    Science.gov (United States)

    Deuser, W.G.; Jickells, T.D.; Commeau, Judith A.

    1995-01-01

    Analyses of samples from a 14-year series of sediment-trap deployments in the deep Sargasso Sea reveal a significant trend in the ratio of the sinking fluxes of biogenic calcium carbonate and silica. Although there are pronounced seasonal cycles for both flux components, the overall opal/CaCO3 ratio changed by 50% from 1978 to 1991 (largely due to a decrease of opal flux), while total flux had no significant trend. These results suggest that plankton communities respond rapidly to subtle climate change, such as is evident in regional variations of wind speed, precipitation, wintertime ventilation and midwater temperatures. If the trends we observe in the makeup of sinking particulate matter occur on a large scale, they may in turn modify climate by modulating ocean-atmosphere CO2 exchange and albedo over the ocean.

  10. [Hydrochemical Characteristics and the Dissolved Inorganic Carbon Flux in Liuzhou Section of Liujiang Basin].

    Science.gov (United States)

    Yuan, Ya-qiong; He, Shi-yi; Yu, Shi; Sun, Ping-an; Wang, Yan-xue; Wu, Zhao-yun; Li, Xin-gui; Xie, Ming-xian; Liu, Wen; Li, Rui; Zhang, Hua-sheng

    2015-07-01

    An important aspect of the current global change research is using river chemical composition to reveal the chemical weathering process and its effect of carbon sink. In this study, water samples were collected and analyzed 2 ~3 times per month from January to December in 2013. The hydrochemistry belonged to HCO3-Ca type. Ca+ and HCO3- were the main cation and anion, which reflected that the hydrochemical characteristics of river were mainly affected by the dissolution of carbonate rock. The concentration of main ions varied with the seasons, which reflected that the crest value occurred in winter, followed by those in autumn and spring, and the lowest value was observed in summer. Due to the interaction of effect of dilution and effect of C2, the seasonal variation of Ca2+ and HCO3- showed that the highest value was in autumn and the lowest value was in summer. The seasonal variation law of other ions should be attributed to the effect of dilution or agricultural activities or combined action of them. Both carbonic acid and sulfuric acid took part in the chemical weathering of carbonate rocks as evidenced by stoichiometric analysis. Besides, the δ34S of sulfate ion of the river waters (δ34S: from 7. 65 per thousand to 8. 55 per thousand) showed that SO2- was originated mainly from oxidation of sulfide minerals in ore deposits and acid rain. Chemical mass balance method was applied to estimate the proportion of HCO- coming from carbonate weathering by sulfuric acid. The result was 28. 26% . On this basis, the total carbon flux of carbon ( by CO2 calculation) in Liuzhou section calculated month by month was about 8. 95 x 10(5) t . a-1. What's more, the carbon flux showed a positive correlation with flow, which implied that the discharge of catchment was the main influencing factor of carbon flux rather than the HCO3- concentration. PMID:26489309

  11. Carbon-carbon composite and copper-composite bond damages for high flux component controlled fusion

    International Nuclear Information System (INIS)

    Plasma facing components constitute the first wall in contact with plasma in fusion machines such as Tore Supra and ITER. These components have to sustain high heat flux and consequently elevated temperatures. They are made up of an armour material, the carbon-carbon composite, a heat sink structure material, the copper chromium zirconium, and a material, the OFHC copper, which is used as a compliant layer between the carbon-carbon composite and the copper chromium zirconium. Using different materials leads to the apparition of strong residual stresses during manufacturing, because of the thermal expansion mismatch between the materials, and compromises the lasting operation of fusion machines as damage which appeared during manufacturing may propagate. The objective of this study is to understand the damage mechanisms of the carbon-carbon composite and the composite-copper bond under solicitations that plasma facing components may suffer during their life. The mechanical behaviours of carbon-carbon composite and composite-copper bond were studied in order to define the most suitable models to describe these behaviours. With these models, thermomechanical calculations were performed on plasma facing components with the finite element code Cast3M. The manufacturing of the components induces high stresses which damage the carbon-carbon composite and the composite-copper bond. The damage propagates during the cooling down to room temperature and not under heat flux. Alternative geometries for the plasma facing components were studied to reduce damage. The relation between the damage of the carbon-carbon composite and its thermal conductivity was also demonstrated. (author)

  12. A regional high-resolution carbon flux inversion of North America for 2004

    Science.gov (United States)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America

  13. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  14. Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower

    Science.gov (United States)

    Karion, Anna; Sweeney, Colm; Miller, John B.; Andrews, Arlyn E.; Commane, Roisin; Dinardo, Steven; Henderson, John M.; Lindaas, Jacob; Lin, John C.; Luus, Kristina A.; Newberger, Tim; Tans, Pieter; Wofsy, Steven C.; Wolter, Sonja; Miller, Charles E.

    2016-04-01

    Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large ( ˜ 500-1000 km) scales, atmospheric monitoring of carbon dioxide (CO2) and methane (CH4) mole fractions in the daytime mixed layer is a promising method for detecting change in the carbon cycle throughout boreal Alaska. Here we use CO2 and CH4 measurements from a NOAA tower 17 km north of Fairbanks, AK, established as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), to investigate regional fluxes of CO2 and CH4 for 2012-2014. CARVE was designed to use aircraft and surface observations to better understand and quantify the sensitivity of Alaskan carbon fluxes to climate variability. We use high-resolution meteorological fields from the Polar Weather Research and Forecasting (WRF) model coupled with the Stochastic Time-Inverted Lagrangian Transport model (hereafter, WRF-STILT), along with the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM), to investigate fluxes of CO2 in boreal Alaska using the tower observations, which are sensitive to large areas of central Alaska. We show that simulated PolarVPRM-WRF-STILT CO2 mole fractions show remarkably good agreement with tower observations, suggesting that the WRF-STILT model represents the meteorology of the region quite well, and that the PolarVPRM flux magnitudes and spatial distribution are generally consistent with CO2 mole fractions observed at the CARVE tower. One exception to this good agreement is that during the fall of all 3 years, PolarVPRM cannot reproduce the observed CO2 respiration. Using the WRF-STILT model, we find that average CH4 fluxes in boreal Alaska are somewhat lower than flux estimates by Chang et al. (2014) over all of Alaska for May-September 2012; we also find that enhancements appear to persist during some wintertime

  15. Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower

    Directory of Open Access Journals (Sweden)

    A. Karion

    2015-12-01

    Full Text Available Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large (~ 500–1000 km scales, atmospheric monitoring of carbon dioxide (CO2 and methane (CH4 mole fractions in the daytime mixed layer is a promising method for detecting change in the carbon cycle throughout boreal Alaska. Here we use CO2 and CH4 measurements from a NOAA tower 17 km north of Fairbanks AK, established as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE, to investigate regional fluxes of CO2 and CH4 for 2012–2014. CARVE was designed to use aircraft and surface observations to better understand and quantify the sensitivity of Alaskan carbon fluxes to climate variability. We use high-resolution meteorological fields from the Polar Weather Research and Forecasting (WRF model coupled with the Stochastic Time-Inverted Lagrangian Transport model (hereafter, WRF-STILT, along with the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM, to investigate fluxes of CO2 in boreal Alaska using the tower observations, which are sensitive to large areas of central Alaska. We show that simulated PolarVPRM/WRF-STILT CO2 mole fractions show remarkably good agreement with tower observations, suggesting that the WRF-STILT model represents the meteorology of the region quite well, and that the PolarVPRM flux magnitudes and spatial distribution are consistent with CO2 mole fractions observed at the CARVE tower. CO2 signals at the tower are larger than predicted, with significant respiration occurring in the fall that is not captured by PolarVPRM. Using the WRF-STILT model, we find that average CH4 fluxes in boreal Alaska are somewhat lower than flux estimates by Chang et al. (2014 over all of Alaska for May–September 2012; we also find emissions persist during some wintertime periods

  16. Effects of Land Use History on Soil Carbon Dioxide Flux in Ecuadorian Páramo Grasslands

    Science.gov (United States)

    McKnight, J.; Harden, C. P.

    2014-12-01

    Soil carbon dioxide (CO2) respiration is a primary mechanism for soil carbon (C) loss and is intricately linked to processes that affect soil C storage. As a result, land-use changes that affect soil CO2 flux (Flux) rates can significantly influence regional C budgets. The páramo grasslands of the high altitude Ecuadorian Andes are important in regional C budgets due to large soil C stocks. Though some forms of land use history have been shown to reduce soil C and affect known drivers of Flux, such as soil moisture (MS) and soil temperature (TS), the effect of land use history on Flux and its role in páramo soil C budgets remains poorly understood. This study investigated Flux differences among sites representing four land-use histories (PA-páramo; PAB-páramo recently burned; NA-native forest; PI-planted pine forest) and assessed the role of MS and TS on Flux rates within and across sites. Flux, MS, and TS were measured over a 3-week period at the Mazar Wildlife Reserve in southern Ecuador. Flux varied significantly among site pairs, except PI and NA. Flux rates were highest in the PI (5.79 g CO2-C m-2 d-1) and NA sites (5.59 g CO2-C m-2 d-1), with Flux rates at PA and PAB of 4.84 g CO2-C m-2 d-1 and 3.76 g CO2-C m-2 d-1, respectively. MS ranged from 29% at PI to 55% at PA, with grass sites having higher MS than forested sites. On average, páramo soils were ~3°C warmer than forested soil, with PI warmer than NA. Across all sites, Flux was weakly, negatively correlated with MS. Flux and TS were positively correlated within each site except PAB; the strongest correlation (pforested areas than in páramo grasslands. To our knowledge, these are the first Flux rates reported for the Ecuadorian páramo region.

  17. Linking soil functions to carbon fluxes and stocks

    Science.gov (United States)

    Olesen, Jørgen E.

    2014-05-01

    Farming practices causing declining returns and inputs of carbon (C) to soils pose threats to sustainable soil functioning by reducing availability of organic matter for soil microbial activities and by affecting soil structure, and soil C stocks that contribute to regulating greenhouse gas emissions. Declines in soil C also affect availability and storage capacity of a range of essential plant nutrients thus affecting needs for external inputs. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by agricultural activity with intensive cultivation in arable and mixed farming system contributing to several soil threats. About 45% of European soils are estimated to have low SOM content, principally in southern Europe, but also in areas of France, UK and Germany. The European SOC stocks follow a clear north to south gradient with cooler temperatures favouring higher stocks. However, SOC stocks strongly depend on soil and land management, and there is thus a potential to both increase and lose SOC, although the potential to increase SOC strongly depends on incentives and structures for implementing improved management. Understanding the role of soil C may be better conceptualised by using a soil C flow and stocks concept to assess the impact of C management on crop productivity, soil organic C stocks and other ecosystem services. This concept distinguishes C flows and stocks, which may be hypothesized to have distinctly different effects on biological, chemical and physical soil functions. By separating the roles of carbon flows from the role of carbon stocks, it may become possible to better identify critical levels not only of soil carbon stocks, but also critical levels of carbon inputs, which directly relate to needs for crop and soil management measures. Such critical soil carbon stocks may be linked to soil mineralogy through complexed organic carbon on clay and silt surfaces. Critical levels of soil carbon

  18. Carbon fluxes in the Arabian Sea: Export versus recycling

    Science.gov (United States)

    Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani

    2016-04-01

    The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.

  19. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sarah; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-01-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002–2003 and 2010–2011. During 2010–2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002–2003 compared to 2010–2011. In 2002, the daily net ecosystem exchange reached as low as −10.6 g C m−2 d−1, which was greater than 3 times the magnitude observed in 2010 (−2.9 g C m−2 d−1). CH4 fluxes during 2010–2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m−2 d−1 in the winter to 375.9 mg C m−2 d−1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010–2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010–2011, there was a net positive GWP (675.3 g C m−2 yr−1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  20. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    Science.gov (United States)

    Anderson, Frank E.; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sara; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn Hatala; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-03-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002-2003 and 2010-2011. During 2010-2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002-2003 compared to 2010-2011. In 2002, the daily net ecosystem exchange reached as low as -10.6 g C m-2 d-1, which was greater than 3 times the magnitude observed in 2010 (-2.9 g C m-2 d-1). CH4 fluxes during 2010-2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m-2 d-1 in the winter to 375.9 mg C m-2 d-1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010-2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010-2011, there was a net positive GWP (675.3 g C m-2 yr-1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  1. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    OpenAIRE

    Huang Shengli; Crabtree Robert; Klooster Steven; Potter Christopher; Gross Peggy; Genovese Vanessa

    2011-01-01

    Abstract Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources ove...

  2. Seasonal spectral dynamics and carbon fluxes at core EOS sites using EO-1 Hyperion images

    Science.gov (United States)

    Lagomasino, D.; Campbell, P.; Price, R. M.

    2010-12-01

    phenology, as well as distinct spectral shapes for each vegetation type. Preliminary results suggest a high correlation (r=0.77-0.86) between CO2 flux and various biophysical indices that were primarily associated with the red-edge inflection point (i.e., 670-780 nm wavelength), regardless of vegetation type. Soil heat flux measurements also correlated well with the biophysical indices. These findings demonstrate the advantages of high-resolution spectral imaging for Earth observations, as well as for monitoring regional and global water and carbon fluxes to understand their affects on climate change.

  3. Proceses in the Southern Ocean carbon cycle: Dissolution of carbonate sediments and inter-annual variability of carbon fluxes

    OpenAIRE

    Hauck, Judith

    2012-01-01

    The Southern Ocean (SO) carbon cycle is and will be undergoing various changes in a high-CO2 world. This thesis analyzes two key processes: dissolution of carbonate sediments on Antarctic shelves and inter-annual variability of upper ocean carbon fluxes. In the first part of the thesis, the main question is whether dissolution of carbonate sediments from Antarctic shelves can be a negative feedback to ocean acidification. Patterns in the CaCO3 distribution are related to primary production in...

  4. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  5. Monitoring Carbon Fluxes from Shallow Surface Soils in the Critical Zone

    Science.gov (United States)

    Stielstra, C. M.; Brooks, P. D.; Chorover, J.

    2011-12-01

    The critical zone (CZ) is the earth's porous near-surface layer, characterized by the integrated processes that occur between the bedrock and the atmospheric boundary layer. Within this area water, atmosphere, ecosystems, and soils interact on a geomorphic and geologic template. We hypothesize that CZ systems organize and evolve in response to open system fluxes of energy and mass, including meteoric inputs of radiation, water, and carbon, which can be quantified at point to watershed scales. The goal of this study is to link above-ground and below-ground carbon processes by quantifying carbon pools and fluxes from near surface soils. Soil CO2 efflux and dissolved organic carbon (DOC) are monitored over a two year period across bedrock type and vegetation type at two seasonally snow covered subalpine catchments in Arizona and New Mexico. We measure the amount of DOC present in surface soils, and install ion exchange resins at the A/B soil horizon interface to capture DOC leachate mobilized during snowmelt and summer rainfall. Throughout the summer rain and spring snowmelt seasons we monitor soil respiration of CO2. Preliminary results show that rates of gaseous carbon flux are significantly higher (psoils with schist bedrock (2.5 ± 0.2 gC/m2/d )than from granite bedrock (1.3 ± 0.1 gC/m2/d), and higher from healthy mixed conifer forests (1.9 ± 0.3 gC/m2/d) than from mixed conifer forests impacted by spruce budworm (1.4 ± 0.1 gC/m2/d). DOC leached from soil samples does not vary significantly with bedrock type; however, spruce budworm impacted forests have significantly higher levels of leachable DOC in surface soils (22.8 ± 4.5 gC/m2) than are found in the soils of healthy forests (10.0 ± 1.5 gC/m2) or subalpine meadows (9.1 ± 0.5 gC/m2). The results of this study will allow us to evaluate the variability of carbon fluxes with vegetation and soil type within a shallow soil carbon pool and help constrain the contributions of soil organic carbon to net carbon

  6. Technical Note: Mesocosm approach to quantify dissolved inorganic carbon percolation fluxes

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, S.; Ambus, Per;

    2014-01-01

    Dissolved inorganic carbon (DIC) fluxes across the vadose zone are influenced by a complex interplay of biological, chemical and physical factors. A novel soil mesocosm system was evaluated as a tool for providing information on the mechanisms behind DIC percolation to the groundwater from...... unplanted soil. Carbon dioxide partial pressure (pCO(2)), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO(2) varied between 0.2 and...

  7. Growth of forest of single-walled carbon nanotubes at inhomogeneous fluxes from plasma

    International Nuclear Information System (INIS)

    The growth of forest of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a deposition model. The inhomogeneity in deposition of neutrals from plasma on the SWCNTs, which is typical for growth of the nano structures in PECVD, is accounted for. It is investigated how the growth rate and the residence time of carbon atoms on SWCNT surfaces depend on the SWCNT length and the decay length characterizing deposition of neutral fluxes on the SWCNTs. The obtained results can be used for optimizing the synthesis of related nano assembles in low-temperature plasma-assisted nano fabrication

  8. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    Directory of Open Access Journals (Sweden)

    A. Babenhauserheide

    2015-03-01

    Full Text Available Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one year of atmospheric in-situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar, for CO2 flux estimation. CarbonTracker uses an Ensemble Kalman Filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude/latitude grid. Harmonizing the input data allows analyzing the strengths and weaknesses of the two approaches by direct comparison of the modelled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as temporal and spatial correlation lengths. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the far-away surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  9. Modelling the Responses of Carbon Fluxes to Climate Change in Northeast China Forests using IBIS

    Directory of Open Access Journals (Sweden)

    Jingwei Liu

    2013-06-01

    Full Text Available Assessing the long-term exchange of carbon dioxide between terrestrial and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on fluxes of carbon over representative ecosystems. In this study, we used a modified process-based terrestrial ecosystem model (Integrated Biosphere Simulator, IBIS, which represents biogeochemical and biophysical process, coupling the carbon, nitrogen and water cycles on each specific time steps, to generalize our understanding of the temporal and spatial variability of Net Primary Productivity (NPP, Net Ecosystem Productivity (NEP and Soil Respiration (RS over northeast China to climate change for the period 1961 to 2080. The model results demonstrate a powerful approach to integrate and expand our knowledge of climate changes on northeast China forest carbon dynamics now and in the future.

  10. Quantification of Lateral Carbon Flux in a Chaparral Ecosystem in Southern California Alessandra Rossi, Walter Oechel, Patrick Murphy

    Science.gov (United States)

    Rossi, A.; Oechel, W. C.; Murphy, P.

    2013-12-01

    The lateral transport of carbon is a horizontal transfer of carbon away from the area it was withdrawn from the atmosphere (Ciais et al. 2006). Research regarding horizontal C transport has received much less attention in arid and semi-arid regions compared to other types of ecosystems. Drylands represent around 47.2% (Lal 2004) of the global terrestrial area and despite characterized by relatively low carbon flux, drylands comprise approximately 15.5% of the world's total soil organic carbon (SOC) (Eswaran et al. 2000, Schlesinger, 1991). Moreover, these dry areas contain at least as much soil inorganic carbon (SIC) as SOC (Eswaran et al. 2000). Therefore, these areas potentially have a large contribution to the global carbon budget and they deserve attention. A long-term observation of CO2 flux with the eddy covariance technique has been conducted since 1997 at Sky Oaks Field Station in Southern California, an area of Mediterranean climate at the climatic transition between semiarid area and desert. The long term record of CO2 flux showed the area has been a sink of CO2 of over -0.2 kgCm-2yr-1. In addition to evaluating vertical carbon fluxes, we initiated a project to evaluate lateral carbon transports using litter traps, sediment fences and two small weirs adjacent to the eddy covariance site. Preliminary results indicate that the lateral transfer of C in the area may offset the vertical influx to this shrub ecosystem. However, it is still necessary to develop the methodology to compare vertical carbon flux and the lateral carbon fluxes more accurately.

  11. Regional carbon dioxide and energy fluxes from airborne observations using flight-path segmentation based on landscape characteristics

    Directory of Open Access Journals (Sweden)

    O. S. Vellinga

    2009-11-01

    Full Text Available This paper presents an analysis of regional fluxes obtained with a small aircraft over heterogeneous terrain in the South West of France, during the large scale field experiment CERES'07. We use a method combining variable flight-path segmentation with basic airborne footprint analysis. The segmentation is based on topography, land use and soil type, using a.o. satellite imagery and digital maps. The segments are delineated using an average footprint length, based on all flights, and segment lengths, which are variable in space but not in time. The method results in segment averaged carbon and energy fluxes, which are shown to be representative of regional fluxes. Our analysis is focussed on the carbon dioxide, heat and evaporative fluxes around solar noon. We will show that spatial and seasonal variations in the fluxes can be linked to the underlying landscape. In addition, a comparison between the airborne data and ground flux data is made to support our results. However, due to the incompleteness of ground data for some predominant vegetation types (even in such a data dense context, upscaling of ground data to regional fluxes was not possible. Without the comparison, we are still able to demonstrate that aircraft can provide direct and meaningful estimates of regional fluxes of energy and carbon dioxide.

  12. Regional carbon dioxide and energy fluxes from airborne observations using flight-path segmentation based on landscape characteristics

    Directory of Open Access Journals (Sweden)

    O. S. Vellinga

    2010-04-01

    Full Text Available This paper presents an analysis of regional fluxes obtained with a small aircraft over heterogeneous terrain in the south-west of France, during the large scale field experiment CERES'07. We use a method combining variable flight-path segmentation with basic airborne footprint analysis. The segmentation is based on topography, land use and soil type, using a.o. satellite imagery and digital maps. The segments are delineated using an average footprint length, based on all flights, and segment lengths, which are variable in space but not in time. The method results in segment averaged carbon and energy fluxes, which are shown to be representative of regional fluxes. Our analysis is focussed on carbon dioxide, heat and evaporative fluxes around solar noon. We will show that spatial and seasonal variations in the fluxes can be linked to the underlying landscape. In addition, a comparison between the airborne data and ground flux data is made to support our results. However, due to the incompleteness of ground data for some predominant vegetation types (even in such a data dense context, upscaling of ground data to regional fluxes was not possible. Without the comparison, we are still able to demonstrate that aircraft can provide direct and meaningful estimates of regional fluxes of energy and carbon dioxide.

  13. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    Science.gov (United States)

    Felber, Raphael; Bretscher, Daniel; Münger, Andreas; Neftel, Albrecht; Ammann, Christof

    2016-05-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot -27 ± 62 and NECBpast 23 ± 76 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  14. Investigation into the flux distribution of central carbon metabolism in Corynebacterium glutamicum using principal component analysis

    Directory of Open Access Journals (Sweden)

    Shang Chuanyu

    2015-01-01

    Full Text Available Central carbon metabolism is the main source of energy required by organisms and it provides precursors for other in vivo metabolic processes. The flux flowing through the pathways involved in central carbon metabolism characterizes its biological function and genetic readout between species or environments. In recent years, using a 13C tracer technique, researchers have measured the flux of central carbon metabolism in Corynebacterium glutamicum under a variety of nutritional and environmental changes or genetic modifications. However, there is no integrated and comparative analysis of these measured flux values. In this study, the flux values of central carbon metabolism in Corynebacterium glutamicum that were obtained in other recent studies were consolidated. A preliminary examination of the distribution characteristics of flux values in each metabolic pathway was conducted and the regression relationship between different fluxes was investigated. The principal components of the flux vector were further extracted and aggregated based on the components, and the general features of flux distribution of central carbon metabolism as well as the influence of environmental and genetic factors on the flux distribution were determined. This study provides a foundation for further investigation into the flux distribution and regulation characteristics of central carbon metabolism.

  15. Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas

    Science.gov (United States)

    Kinnaman, Franklin S.; Kimball, Justine B.; Busso, Luis; Birgel, Daniel; Ding, Haibing; Hinrichs, Kai-Uwe; Valentine, David L.

    2010-06-01

    The Coal Oil Point seep field located offshore Santa Barbara, CA, consists of dozens of named seeps, including a peripheral ˜200 m2 area known as Brian Seep, located in 10 m water depth. A single comprehensive survey of gas flux at Brian Seep yielded a methane release rate of ˜450 moles of CH4 per day, originating from 68 persistent gas vents and 23 intermittent vents, with gas flux among persistent vents displaying a log normal frequency distribution. A subsequent series of 33 repeat surveys conducted over a period of 6 months tracked eight persistent vents, and revealed substantial temporal variability in gas venting, with flux from each individual vent varying by more than a factor of 4. During wintertime surveys sediment was largely absent from the site, and carbonate concretions were exposed at the seafloor. The presence of the carbonates was unexpected, as the thermogenic seep gas contains 6.7% CO2, which should act to dissolve carbonates. The average δ13C of the carbonates was -29.2 ± 2.8‰ VPDB, compared to a range of -1.0 to +7.8‰ for CO2 in the seep gas, indicating that CO2 from the seep gas is quantitatively not as important as 13C-depleted bicarbonate derived from methane oxidation. Methane, with a δ13C of approximately -43‰, is oxidized and the resulting inorganic carbon precipitates as high-magnesium calcite and other carbonate minerals. This finding is supported by 13C-depleted biomarkers typically associated with anaerobic methanotrophic archaea and their bacterial syntrophic partners in the carbonates (lipid biomarker δ13C ranged from -84 to -25‰). The inconsistency in δ13C between the carbonates and the seeping CO2 was resolved by discovering pockets of gas trapped near the base of the sediment column with δ13C-CO2 values ranging from -26.9 to -11.6‰. A mechanism of carbonate formation is proposed in which carbonates form near the sediment-bedrock interface during times of sufficient sediment coverage, in which anaerobic oxidation

  16. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    Science.gov (United States)

    Felber, R.; Bretscher, D.; Münger, A.; Neftel, A.; Ammann, C.

    2015-12-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small non-significant C loss: NECBtot - 13 ± 61 g C m-2 yr-1 and NECBpast - 17 ± 81 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal related fluxes. The associated GHG budget revealed CH4 emissions from the cows to be the major contributor, but with much lower uncertainty compared to NECB. Although only one year of data limit the representativeness of the carbon budget results, they demonstrated the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  17. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    International Nuclear Information System (INIS)

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H2O m−2 s−1. Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO2 exchange. These results agree with an emerging consensus in the literature demonstrating CO2 and H2O dynamics following

  18. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    Science.gov (United States)

    Chen, Ming; Griffis, Tim J.; Baker, John; Wood, Jeffrey D.; Xiao, Ke

    2015-02-01

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water, and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to Earth system models is relatively rare. Here we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy-simulated leaf area index (LAI), energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long-wave radiation bias. CLM4-Crop underestimated soil water content during midgrowing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics is needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.

  19. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica

    Science.gov (United States)

    Zhu, Renbin; Liu, Yashu; Xu, Hua; Huang, Tao; Sun, Jianjun; Ma, Erdeng; Sun, Liguang

    2010-01-01

    During the summertime of 2007/2008, carbon dioxide (CO 2) and methane (CH 4) fluxes across air-water interface were investigated in the littoral zones of Lake Mochou and Lake Tuanjie, east Antarctica, using a static chamber technique. The mean fluxes of CO 2 and CH 4 were -70.8 mgCO 2 m -2 h -1 and 144.6 μgCH 4 m -2 h -1, respectively, in the littoral zone of Lake Mochou; The mean fluxes were -36.9 mgCO 2 m -2 h -1 and 109.8 μgCH 4 m -2 h -1, respectively, in the littoral zone of Lake Tuanjie. Their fluxes showed large temporal and spatial dynamics. The CO 2 fluxes showed a significantly negative correlation with daily total radiation (DTR) and a weakly negative correlation with air temperature and water temperature, indicating that sunlight intensity controlled the magnitude of CO 2 fluxes from the open lakes. The CH 4 fluxes significantly correlated with local air temperature, water table and total dissolved solids (TDS), indicating that they were the predominant factors influencing CH 4 fluxes. Summertime CO 2 budgets in the littoral zones of Lake Mochou and Lake Tuanjie were estimated to be -152.9 gCO 2 m -2 and -79.7 gCO 2 m -2, respectively, and net CH 4 emissions were estimated to be 312.3 mgCH 4 m -2 and 237.2 mgCH 4 m -2, respectively. Our results show that shallow, open, alga-rich lakes might be strong summertime CO 2 absorbers and small CH 4 emitters during the open water in coastal Antarctica.

  20. Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability

    International Nuclear Information System (INIS)

    Carbon (C) and nitrogen (N) interactions contribute to uncertainty in current biogeochemical models that aim to estimate greenhouse gas (GHG, including CO2 and N2O) emissions from soil to atmosphere. In this study, we quantified CO2 and N2O flux patterns and their relationship along with increasing C additions only, N additions only, a C gradient combined with excess N, and an N gradient with excess C via laboratory incubations. Conventional trends, where labile C or N addition results in higher CO2 or N2O fluxes, were observed. However, at low levels of C availability, saturating N amendments reduced soil CO2 flux while with high C availability N amendments enhanced it. At saturating C conditions increasing N amendments first reduced and then increased CO2 fluxes. Similarly, N2O fluxes were initially reduced by adding labile C under N limited conditions, but additional C enhanced N2O fluxes by more than two orders of magnitude in the saturating N environment. Changes in C or N use efficiency could explain the altered gas flux patterns and imply a critical level in the interactions between N and C availability that regulate soil trace gas emissions and biogeochemical cycling. Compared to either N or C amendment alone, the interaction of N and C caused ∼60 and ∼5 times the total GHG emission, respectively. Our findings suggested that the response of CO2 and N2O fluxes along stoichiometric gradients in C and N availability should be accounted for interpreting or modeling the biogeochemistry of GHG emissions. (letter)

  1. Hotspots in ground and surface water carbon fluxes through a freshwater to marine (mangrove) transition zone

    Science.gov (United States)

    Larsen, J.; Welti, N.; Hayes, M.; Lockington, D. A.

    2014-12-01

    The transfer of carbon and water from coastal freshwater wetlands to intertidal and marine zones is significant for sustaining ecosystem processes, particularly within mangroves environments. Large increases in carbon and nutrient fluxes within spatially confined zones (hotspots) are significant as drivers for broader cycling. How these processes relate to the transfers between surface and groundwater systems, as well as the transition from freshwater to marine environments, remains poorly understood. We investigated the flux of carbon and water from a freshwater wetland, to a saltmarsh and then mangroves, both within the main surface channel and within a comprehensive shallow groundwater bore network. We were able to characterise the main spatial trends in water gradients and mixing (using salinity, hydraulic gradients, stable water isotopes, and temperature) over seasonal cycles. In addition, at the same time we investigated the changes in dissolved organic carbon concentration and quality (fluorescence, UV), as well as nutrients (NO3, NH4). This revealed the river and tidal channel to be a significant export pathway for organic carbon, which was generally highly aromatic and recalcitrant. However, we also found that isolated sections of the brackish groundwater mixing zone between freshwater and marine provided a consistently high DOC 'hotspot' of very high quality carbon. This hotspot has high lateral groundwater gradients and therefore likely transports this carbon to the rest of the mangrove subsurface, where it is rapidly assimilated. These results imply large spatial heterogeneity in the carbon cycling between freshwater and marine environments, and have significant implications for the processing of the organic matter, and therefore also the respiration of greenhouse gases such as CO2 and CH4.

  2. NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    Science.gov (United States)

    Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.

    2012-01-01

    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The

  3. Carbon fluxes in an acid rain impacted boreal headwater catchment

    Science.gov (United States)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m‑2 yr‑1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42‑ accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  4. Can we reconcile differences in estimates of carbon fluxes from land-use change and forestry for the 1990s?

    Science.gov (United States)

    Ito, A.; Penner, J. E.; Prather, M. J.; de Campos, C. P.; Houghton, R. A.; Kato, T.; Jain, A. K.; Yang, X.; Hurtt, G. C.; Frolking, S.; Fearon, M. G.; Chini, L. P.; Wang, A.; Price, D. T.

    2008-06-01

    The effect of Land Use Change and Forestry (LUCF) on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.

  5. Can we reconcile differences in estimates of carbon fluxes from land-use change and forestry for the 1990s?

    Directory of Open Access Journals (Sweden)

    A. Ito

    2008-06-01

    Full Text Available The effect of Land Use Change and Forestry (LUCF on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.

  6. Can we reconcile differences in estimates of carbon fluxes from land-use change and forestry for the 1990s?

    Directory of Open Access Journals (Sweden)

    A. Ito

    2008-02-01

    Full Text Available The effect of Land Use Change and Forestry (LUCF on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas and carbon fluxes are disaggregated into different LUCF activities and the biospheric response due to CO2 fertilization and climate change. We developed a consolidated estimate of the terrestrial carbon fluxes that combines book-keeping models with process-based biogeochemical models and inventory estimates and yields an estimate of the global terrestrial carbon flux that is within the uncertainty range developed in the IPCC 4th Assessment Report. We examined the USA and Brazil as case studies in order to assess the cause of differences from the UNFCCC reported carbon fluxes. Major differences in the litter and soil organic matter components are found for the USA. Differences in Brazil result from assumptions about the LUC for agricultural purposes. The effects of CO2 fertilization and climate change also vary significantly in Brazil. Our consolidated estimate shows that the small sink in Latin America is within the uncertainty range from inverse models, but that the sink in the USA is significantly smaller than the inverse models estimates. Because there are different sources of errors at the country level, there is no easy reconciliation of different estimates of carbon fluxes at the global level. Clearly, further work is required to develop data sets for historical land cover change areas and models of biogeochemical changes for an accurate representation of carbon uptake or emissions due to LUC.

  7. The evolution of future geogenic matter fluxes due Enhanced Weathering: Results from the Antwerp Experiment

    Science.gov (United States)

    Hartmann, Jens; Weiss, Andreas; Struyf, Eric; Schoelynck, Jonas; Meire, Patrick; Amann, Thorben

    2015-04-01

    Understanding the evolution of geogenic matter fluxes in soils due the application of rock products ontop of soils is relevant to evaluate alteration of soil solutions and saturation states of solutes. In the future the practice of applying rock products will continue and areas affected will likely spread (Hartmann et al., 2013). This trend will likely be fuelled by attempts to optimize carbon dioxide removal by increasing biomass production, soil organic carbon stocks, increase crop production or afforestation. All those efforts demand a certain amount of geogenic nutrients, which need to be replaced. To investigate the release patterns and the downward transport of an array of elements, and to study their fate as well as reaction processes, altered through this practice, a mesocosm experiment was established at Antwerp University. Extended results will be presented (c.f., Weiss et al., 2014) focusing on the release and transport of DIC (dissolved inorganic carbon) and Mg (magnesium) in the soil column downwards after the application of 22 kg m-2 olivine powder. Elevated DIC and Mg concentrations are detected in case of olivine is applied to mesocosms with wheat and barley, if compared to the mesocsoms without plants, and without olivine. The change patterns in concentrations and fluxes will be discussed. Hartmann, J., et al. (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Reviews of Geophysics; 51(2), 113-149. doi: 10.1002/rog.20004 Weiss, A., et al. (2014) The overlooked compartment of the critical-zone-complex, considering the evolution of future geogenic matter fluxes: Agricultural topsoils. Procedia Earth and Planetary Science, 10, 339-342. doi:10.1016/j.proeps.2014.08.032

  8. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  9. Carbon dioxide fluxes associated with synoptic weather events over a southern inland water

    Science.gov (United States)

    Liu, H.; Zhang, Q.; Gao, Z.

    2015-12-01

    Evidence indicates that inland waters play an important role in regional and global carbon budget through releasing a substantial carbon into the atmosphere. To better quantify how environmental variables affect CO2 exchange between inland waters and the atmosphere and its temporal variations, we have conducted direct, long-term measurements of CO2 fluxes across the water-atmosphere interface over a large southern open water of Ross Barnett Reservoir in central Mississippi. Our data indicate that large CO2 flux pulses occurred occasionally throughout the course of a year with the duration of a few days for each pulse. Here we analyzed and demonstrated that these CO2 flux pulses were associated with the passages of synoptic weather events. Our preliminary results indicated that these synoptic weather events (e.g., extratropical clones and cold air bursts) led to the enhanced mechanical mixing due to increasing wind speeds and the instability of the atmospheric surface layer due to the decreasing air temperature. As a consequence, in-water processes were also substantially altered accordingly. Due to the dramatic decrease in air temperature caused by the events, the temperature in the water surface layer was largely reduced, generating in-water convection conditions and thus leading to the increased depths of the mixing layer in the water, as reflected by the water temperature profiles. The enhanced mechanical mixing in the atmospheric surface layer may have further contributed to the deepened mixing layer in the water. Our suggestions suggest that high CO2 effluxes during the pulse events were largely attributed to changes in the water-side physical processes that are directly linked to rapid changes in atmospheric processes associated with synoptic weather events. Given its substantial contribution of CO2 flux pulses to carbon emission, such physical processes should be taken into account when carbon emissions from inland waters are quantified.

  10. Forest sector carbon budget of the United States: Carbon pools and flux under alternative policy options

    International Nuclear Information System (INIS)

    The document presents a model of the current and future carbon budget associated with the forest ecosystems of the contermious U.S. The focus is on effects of economic and environmental policy changes for the period of 1990-2040. In the study, the concept of forest ecosystem has been expanded to forest sector by including biomass that has been physically removed (harvested) for human use. The potential effects of climate change have not been incorporated; however, current research is directed at addressing this question. The specific objectives of the report are to: (1) Develop a methodology for quantifying the current and future forest sector carbon budget for the US, (2) Apply the methodology to quantify the current status of carbon pools and flux within the US forest sector, (3) Apply the methodology to several scenarios based on alternative policy options, and (4) Identify gaps and deficiencies in the data and in the modeling approaches that require further effort

  11. Coupling soil Carbon Fluxes, Soil Microbes, and High-Resolution Carbon Profiling in Permafrost Transitions

    Science.gov (United States)

    Anderson, C.; Stegen, J.; Bond-Lamberty, B. P.; Tfaily, M. M.; Huang, M.; Liu, Y.

    2015-12-01

    Microbial communities play a central role in the functioning of natural ecosystems by heavily influencing biogeochemical cycles. Understanding how shifts in the environment are tied to shifts in biogeochemical rates via changes in microbial communities is particularly relevant in high latitude terrestrial systems underlain by permafrost due to vast carbon stocks currently stored within thawing permafrost. There is limited understanding, however, of the interplay among soil-atmosphere CO2 fluxes, microbial communities, and SOM chemical composition. To address this knowledge gap, we leverage the distinct spatial transitions in permafrost-affected soils at the Caribou Poker Creek Research Watershed, a 104 km2 boreal watershed ~50 km north of Fairbanks, AK. We integrate a variety of data to gain new knowledge of the factors that govern observed patterns in the rates of soil CO2 fluxes associated with permafrost to non-permafrost transition zones. We show that nonlinearities in fluxes are influenced by depth to permafrost, tree stand structure, and soil C composition. Further, using 16S sequencing methods we explore microbial community assembly processes and their connection to CO2 flux across spatial scales, and suggest a path to more mechanistically link microbes to large-scale biogeochemical cycles. Lastly, we use the Community Land Model (CLM) to compare Earth System Model predictions of soil C cycling with empirical measurements. Deviations between CLM predictions and field observations of CO2 flux and soil C stocks will provide insight for how the model may be improved through inclusion of additional biotic (e.g., microbial community composition) and abiotic (e.g., organic carbon composition) features, which will be critical to improve the predictive power of climate models in permafrost-affected regions.

  12. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

    Institute of Scientific and Technical Information of China (English)

    TAO Zhen; SHEN ChengDe; GAO QuanZhou; SUN YanMin; YI WeiXi; LI YingNian

    2007-01-01

    High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12(104 kg C hm-2 to 30.75(104 kg C hm-2 in the alpine meadow ecosystems, with an average of 26.86(104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1, with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%-81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.

  13. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic car-bon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm-2 to 30.75×104 kg C hm-2 in the alpine meadow eco-systems,with an average of 26.86×104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1,with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%―81.23% of total CO2 emitted from or-ganic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming,the storage,volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed,which needs further research.

  14. The Carbon-Fluorine Additives For Welding Fluxes

    OpenAIRE

    Kryukov, R.Е.; Kozyrev, N.А.; Kozyreva, O.А.

    2016-01-01

    Is carried out the thermodynamic estimation of the probability of the flow of the processes of the removal of hydrogen from the weld with the welding in the fluorine-bearing flux in the standard states in the range of temperatures 1700 – 2200 k. In this case, as the standard states for the substances – of reagents they were selected Hg. As a result the calculations of standard energy of Gibbs and equilibrium constants of reactions it is determined, that from the reactions of the direct intera...

  15. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  16. Experimental results of angular neutron flux spectra leaking from slabs of fusion reactor candidate materials, (1)

    International Nuclear Information System (INIS)

    This report summarizes experimental data of angular neutron flux spectra measured on the slab assemblies of fusion reactor candidate materials using the neutron time-of-flight (TOF) method. These experiments have been performed for graphite (carbon), beryllium and lithium-oxide. The obtained data are very suitable for the benchmark tests to check the nuclear data and calculational code systems. For use of that purpose, the experimental conditions, definitions of key terms and results obtained are compiled in figures and numerical tables. (author)

  17. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  18. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  19. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.

    Science.gov (United States)

    Alonso, Ana P; Goffman, Fernando D; Ohlrogge, John B; Shachar-Hill, Yair

    2007-10-01

    The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. PMID:17683473

  20. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. PMID:26918275

  1. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates.

    Science.gov (United States)

    Mystakidis, Stefanos; Davin, Edouard L; Gruber, Nicolas; Seneviratne, Sonia I

    2016-06-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2  emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change. PMID:26732346

  2. Optimal recovery of regional carbon dioxide surface fluxes by data assimilation of anthropogenic and biogenic tracers

    Science.gov (United States)

    Campbell, Elliott

    Measurements of atmospheric carbon dioxide (CO2) have led to an understanding of the past and present CO2 trends at global scales. However, many of the processes that underlie the CO 2 fluxes are highly uncertain, especially at smaller spatial scales in the terrestrial biosphere. Our abilities to forecast climate change and manage the carbon cycle are reliant on an understanding of these underlying processes. In this dissertation, new steps were taken to understand the biogenic and anthropogenic processes based on analysis with an atmospheric transport model and simultaneous measurements of CO2 and other trace gases. The biogenic processes were addressed by developing an approach for quantifying photosynthesis and respiration surface fluxes using observations of CO 2 and carbonyl sulfide (COS). There is currently no reliable method for separating the influence of these gross biosphere fluxes on atmospheric CO2 concentrations. First, the plant sink for COS was quantified as a function of the CO2 photosynthesis uptake using the STEM transport model and measurements of COS and CO2 from the INTEX-NA campaign. Next, the STEM inversion model was modified for the simultaneous optimization of fluxes using COS and CO2 measurements and using only CO 2 measurements. The CO2-only inversion was found to be process blind, while the simultaneous COS/CO2 inversion was found to provide a unique estimate of the respiration and photosynthesis component fluxes. Further validation should be pursued with independent observations. The approach presented here is the first application of COS measurements for inferring information about the carbon cycle. Anthropogenic emissions were addressed by improving the estimate of the fossil fuel component of observed CO2 by using observed carbon monoxide (CO). Recent applications of the CO approach were based on simple approximations of non-fossil fuel influences on the measured CO such as sources from oxidation of volatile organic carbon species

  3. Nucleate boiling heat transfer in nanofluids with carbon nanotubes up to critical heat fluxes

    International Nuclear Information System (INIS)

    In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 .deg. C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For the dispersion of CNTs, DISPERBYK 184 is used in distilled water. Pool boiling HTCs are taken from 10 kW/m2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 150% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat flux range and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results

  4. Effects of regional differences in the long term carbon balance on predicted net CO2 fluxes

    Science.gov (United States)

    Ziehn, Tilo; Scholze, Marko; Knorr, Wolfgang

    2010-05-01

    impact it has on the long term carbon balance. We therefore investigate the effects of regional differences in the long term carbon balance on predicted net CO2 fluxes by varying the key carbon storage parameter β according to both, the 11 land regions as defined in the Transcom Atmospheric Inversion Intercomparison Experiment and the 13 PFTs as used in BETHY. This results in an extended set of 155 control parameters. We compare these results with the base case, where we assume that β is a universal parameter with no regional differences. We find that the β parameter is sensitive to the regionalisation process. Optimised parameter values differ for both scenarios which also results in differences in the spatial flux pattern. The results using the extended set of control parameters confirms, that regional differences exist and therefore the same PFT can act as a sink or a source, depending on the region where they occur. The results also demonstrate the capability of CCDAS to combine process modelling and parameter regionalisation in one tool.

  5. Carbon and metal concentrations, size distributions and fluxes in major rivers of the Amazon basin

    Science.gov (United States)

    Benedetti, Marc F.; Mounier, Stephane; Filizola, Naziano; Benaim, Jean; Seyler, Patrick

    2003-05-01

    The chemical composition of the Amazon River results from the mixing of two water types: black water and white water. On-site fractionation by sequential tangential ultrafiltration (STUF) was used to differentiate transported organic carbon and to determine the distribution and association of major and trace elements with different size fraction of the organic carbon (OC). Several sampling campaigns (1994-1996) allow a monthly quantification of particulate (OCP, MeP), colloidal (OCC, MeC) and dissolved (OCD, MeD) organic carbon and metal ions inputs. In white rivers the OC is mainly concentrated in the low molecular weight fraction (OCD 5 kDa). For Mg, Ca and K, 50% of the total amount of each element is found in fraction MeD while 15% and 35% are found in fractions MeC and MeP, respectively. Al and Fe are in the particulate fraction at 99% of the total metal concentration for all river samples. This work emphasizes the coagulation processes and the sink for elements in the mixing zone. These physicochemical transformations of the organic matter vary seasonally. The changes happen during the transition periods: before high-level waters and before low-level waters. By way of flux measurement, a seasonal carbon loss was observed. The estimated annual organic carbon flux of the Amazon at Òbidos is 28 × 106 t. At the same time, an average of 9 × 106 t of organic carbon per year is retained in the reach between Manaus and Òbidos, probably via coagulation processes.

  6. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    Science.gov (United States)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (~2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  7. Regional carbon dioxide fluxes from mixing ratio data

    International Nuclear Information System (INIS)

    We examine the atmospheric budget of CO2 at temperate continental sites in the Northern Hemisphere. On a monthly time scale both surface exchange and atmospheric transport are important in determining the rate of change of CO2 mixing ratio at these sites. Vertical differences between the atmospheric boundary layer and free troposphere over the continent are generally greater than large-scale zonal gradients such as the difference between the free troposphere over the continent and the marine boundary layer. Therefore, as a first approximation we parametrize atmospheric transport as a vertical exchange term related to the vertical gradient of CO2 and the mean vertical velocity from the NCEP Reanalysis model. Horizontal advection is assumed to be negligible in our simple analysis. We then calculate the net surface exchange of CO2 from CO2 mixing ratio measurements at four tower sites. The results provide estimates of the surface exchange that are representative of a regional scale (i.e. 106 km2). Comparison with direct, local-scale (eddy covariance) measurements of net exchange with the ecosystems around the towers are reasonable after accounting for anthropogenic CO2 emissions within the larger area represented by the mixing ratio data. A network of tower sites and frequent aircraft vertical profiles, separated by several hundred kilometres, where CO2 is accurately measured would provide data to estimate horizontal and vertical advection and hence provide a means to derive net CO2 fluxes on a regional scale. At present CO2 mixing ratios are measured with sufficient accuracy relative to global reference gas standards at only a few continental sites. The results also confirm that flux measurements from carefully sited towers capture seasonal variations representative of large regions, and that the midday CO2 mixing ratios sampled in the atmospheric surface layer similarly capture regional and seasonal variability in the continental CO2 budget

  8. Spatial and seasonal dynamics of riverine carbon fluxes of the Brantas catchment in East Java

    Science.gov (United States)

    Aldrian, Edvin; Chen, Chen-Tung Arthur; Adi, Seno; Prihartanto, null; Sudiana, Nana; Nugroho, Sutopo Purwo

    2008-09-01

    Dissolved and particulate organic and inorganic carbon concentrations and flux were measured from July 2005 to June 2006 in the Brantas River basin, a midsized tropical mountainous river and the second largest in Java. There were large seasonal differences in carbon fluxes. Dissolved inorganic carbon (DIC) fluxes were 9.3 times greater and dissolved organic carbon (DOC) fluxes were 532 times greater in the wet season (October to April) than in the dry season. These large contrasts in concentration lead to large differences in load between dry and wet months. In the wet season between January and April, DIC and DOC fluxes are 66% and 87%, respectively, of the total annual fluxes. Most of the annual fluxes of total suspended solids (2.7 × 106 t a-1), total dissolved solids (2.3 × 106 t a-1), DIC (0.26 × 106 t a-1), and DOC (0.2 × 106 t a-1) are transported into the Madura Strait. Accordingly, the Brantas River ranks number 17 among the top 20 rivers that originate at elevations above 3000 m. The concentration of DIC is consistently high all yearlong due to carbonate weathering in the river basin, except in the middle part of the basin, whereas the concentration of DOC is highly seasonal because of variations in biological activities. The total inorganic carbon concentration substantially exceeded the total organic carbon concentration, but the differences decreased from January to April when DOC increased sharply. The carbon budget indicates that the upstream river is a carbon source, and the middle sections of the river are a carbon sink. No carbon trapping was observed by the several impoundments over the basin while sediment trapping was obvious.

  9. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.

    Science.gov (United States)

    Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li

    2013-03-01

    Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP. PMID:23504837

  10. Fluxes of nitrous oxide and carbon dioxide over four potential biofuel crops in Central Illinois

    Science.gov (United States)

    Zeri, M.; Hickman, G. C.; Bernacchi, C.

    2009-12-01

    Nitrous oxide (N2O) and carbon dioxide (CO2) are important greenhouse gases that contribute to global climate change. Agriculture is a significant source of N2O to the atmosphere due to the use of nitrogen-based fertilizers. Fluxes of N2O and CO2 are measured using the flux-gradient technique over four different crops at the Energy Farm, a University of Illinois research facility in Urbana, Illinois. Measurements started in June of 2009 and are part of a project that aims to assess the impacts of potential biofuel crops on the carbon, water and nitrogen cycles. The species chosen are Maize (Zea mays), Miscanthus (Miscanthus x giganteus), Switchgrass (Panicum virgatum) and Prairie (a mix of several native species). The choice of species was based on their potential for the production of second-generation biofuels, i.e., fuels derived from the decomposition of the cellulosic material in the plant biomass. The use of corn residue for cellulosic biofuels might impact the carbon cycle through the reduction of soil organic content. Miscanthus is a perennial grass with great potential for biomass production. However, the total water used during the growing season and its water use efficiency might impose limits on the regions where this biofuel crop can be sustainably planted on a large scale. Switchgrass and the prairie species are less productive but might be suited for being well adapted and easy to establish. This study is the first side-by-side comparison of fluxes of N2O for these agro-ecosystems. The measurements are performed at micrometeorological towers placed at the center of 4 ha plots. The air is sampled at two heights over the vegetation and is analyzed in a tunable diode laser (TDL) installed nearby. A valve system cycles the TDL measurements trough all the intakes in the plots. The fluxes are calculated using the flux-gradient method, which requires the knowledge of the scalar vertical gradient as well as of the friction velocity (u*) and the Monin

  11. Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism.

    Directory of Open Access Journals (Sweden)

    Bin Rui

    Full Text Available NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism.

  12. Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?

    Directory of Open Access Journals (Sweden)

    A. Malhotra

    2015-01-01

    Full Text Available Peatlands in discontinuous permafrost regions occur as a mosaic of wetland types, each with variable sensitivity to climate change. Permafrost thaw further increases the spatial heterogeneity in ecosystem structure and function in peatlands. Carbon (C fluxes are well characterized in end-member thaw stages such as fully intact or fully thawed permafrost but remain unconstrained for transitional stages that cover a significant area of thawing peatlands. Furthermore, changes in the environmental correlates of C fluxes, due to thaw are not well described: a requirement for modeling future changes to C storage of permafrost peatlands. We investigated C fluxes and their correlates in end-member and a number of transitional thaw stages in a sub-arctic peatland. Across peatland lumped CH4 and CO2 flux data had significant correlations with expected correlates such as water table depth, thaw depth, temperature, photosynthetically active radiation and vascular green area. Within individual thaw states, bivariate correlations as well as multiple regressions between C flux and environmental factors changed variably with increasing thaw. The variability in directions and magnitudes of correlates reflects the range of structural conditions that could be present along a thaw gradient. These structural changes correspond to changes in C flux controls, such as temperature and moisture, and their interactions. Temperature sensitivity of CH4 increased with increasing thaw in bivariate analyses, but lack of this trend in multiple regression analyses suggested cofounding effects of substrate or water limitation on the apparent temperature sensitivity. Our results emphasize the importance of incorporating transitional stages of thaw in landscape level C budgets and highlight that end-member or adjacent thaw stages do not adequately describe the variability in structure-function relationships present along a thaw gradient.

  13. Plant phenology and composition controls of carbon fluxes in a boreal peatland

    Science.gov (United States)

    Peichl, Matthias; Gažovič, Michal; Vermeij, Ilse; De Goede, Eefje; Sonnentag, Oliver; Limpens, Juul; Nilsson, Mats B.

    2016-04-01

    Vegetation drives the peatland carbon (C) cycle via the processes of photosynthesis, plant respiration and decomposition as well as by providing substrate for methane (CH4) and dissolved organic carbon production. However, due to the lack of comprehensive vegetation data, variations in the peatland C fluxes are commonly related to temperature and other more easily measured abiotic (i.e. weather and soil) variables. Due to the temporal co-linearity between plant development and abiotic variables, these relationships may describe the variations in C fluxes reasonably well, however, without representing the true mechanistic processes driving the peatland C cycle. As a consequence, current process-based models are poorly parameterized and unable to adequately predict the responses of the peatland C cycle to climate change, extreme events and anthropogenic impacts. To fill this knowledge gap, we explored vegetation phenology and composition effects on the peatland C cycle at the Degerö peatland located in northern Sweden. We used a greenness index derived from digital repeat photography to quantitatively describe plant canopy development with high temporal (i.e. daily) and spatial (plot to ecosystem) resolution. In addition, eddy covariance and static chamber measurements of carbon dioxide (CO2) and CH4 fluxes over an array of vegetation manipulation plots were conducted over multiple years. Our results suggest that vascular plant phenology controls the onset and pattern of eddy covariance-derived gross primary production (GPP) during the spring period, while abiotic conditions modify GPP during the summer period when plant canopy cover is fully developed. Inter-annual variations in the spring onset and patterns of plant canopy development were best explained by differences in the preceding growing degree day sum. We also observed strong correlations of canopy greenness with the net ecosystem CO2 exchange and ecosystem respiration. On average, vascular plant and moss

  14. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  15. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    Science.gov (United States)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum

  16. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea.

    Science.gov (United States)

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J

    2016-01-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m(-2 )d(-1) (on average ~321 μmol m(-2 )d(-1)) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 10(6 )mol y(-1)), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters. PMID:27432631

  17. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea

    Science.gov (United States)

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J.

    2016-07-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m‑2 d‑1 (on average ~321 μmol m‑2 d‑1) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 106 mol y‑1), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters.

  18. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  19. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m2 of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m2 TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  20. Towards a better understanding of microbial carbon flux in the sea

    Czech Academy of Sciences Publication Activity Database

    Gasol, J.M.; Pinhassi, J.; Alonso-Sáez, L.; Ducklow, H.; Herndl, G. J.; Koblížek, Michal; Labrenz, M.; Luo, Y.; Morán, X. A. G.; Reinthaler, T.; Simon, M.

    2008-01-01

    Roč. 53, - (2008), s. 21-38. ISSN 0948-3055 Institutional research plan: CEZ:AV0Z50200510 Keywords : carbon flux * microbioal ecology * ocean Subject RIV: EE - Microbiology, Virology Impact factor: 2.190, year: 2008

  1. Arogenate Dehydratase Isoenzymes Profoundly and Differentially Modulate Carbon Flux into Lignins*

    OpenAIRE

    Corea, Oliver R. A.; Ki, Chanyoung; Cardenas, Claudia L.; Kim, Sung-Jin; Brewer, Sarah E.; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.

    2012-01-01

    Background: The plastid-localized arogenate dehydratase (ADT) gene family is hypothesized to differentially control carbon flux for lignin deposition, with lignin being the main contributor to lignocellulosic recalcitrance.

  2. Study of water vapor, carbon dioxide and methane fluxes in mid-latitude prairie wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is for a research/management study that will provide urgently needed information on carbon dioxide, methane and energy fluxes from mid-latitude...

  3. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  4. Direct measurement of the oceanic carbon monoxide flux by eddy correlation

    OpenAIRE

    B. W. Blomquist; C. W. Fairall; Huebert, B. J.; S. T. Wilson

    2012-01-01

    This report presents results from a field trial of ship-based air–sea flux measurements of carbon monoxide (CO) by direct eddy correlation with an infrared-laser trace gas analyzer. The analyzer utilizes Off-Axis Integrated-Cavity-Output Spectroscopy (OA-ICOS) to achieve high selectivity for CO, rapid response (~2 Hz) and low noise. Over a two-day sea trial, peak daytime seawater CO concentrations were ~1.5 nM and wind speeds were consistently 10–12 m s−1. A clear diel ...

  5. Fluxes of Dissolved Organic Carbon within Soils across a Boreal Forest Ecosystem Latitudinal Transect

    Science.gov (United States)

    Bowering, K.; Edwards, K.; Billings, S. A.; Skinner, A.; Warren, J.; Ziegler, S. E.

    2013-12-01

    The movement of dissolved organic carbon (DOC) can represent a significant flux of C within soils, and may be a critical flux of C from the terrestrial into the aquatic environment. Further, these fluxes can represent an important source of C to deeper mineral horizons where stabilization mechanisms may exist. However the quantity and quality of this C flux is largely unknown, and regulating factors that are influenced by climate and land-use change are poorly understood. This movement of C is of particular interest in the boreal forest, where large soil C stocks are vulnerable to the impacts of climate change. Laboratory experiments have demonstrated that warming, in the absence of moisture limitation, can increase the rate of production of DOC in soils directly through increased decomposition rates; however, this has been difficult to test under field conditions where seasonality, intact soil, and hydrological systems influence DOC production and movement. To assess the impact of climate warming on DOC fluxes occurring through the organic soil layer of the eastern North American boreal forest, we sampled passive lysimeters installed at 3 sites along a latitudinal transect in Newfoundland and Labrador, Canada. Separated by just over 5° latitude, mean annual temperature at these sites were 4°C, 2.1°C, and -0.5°C from lowest to highest latitude. Six lysimeters were sampled from each site and collections were made at least three times annually for two consecutive years (2011-2013). Soils tend to freeze over-winter in the high-latitude site whereas they rarely freeze in the low-latitude site. The low-latitude site also experiences more variable precipitation, with a longer snow-free season and more precipitation falling during single events. Rates of DOC flux increased with decreasing latitude, indicating greater DOC transport through soils in forests experiencing a warmer climate. DOC fluxes calculated over different seasonal time periods ranged from 4.6 to 20

  6. Impacts of observation-driven trait variation on carbon fluxes in an earth system projection

    Science.gov (United States)

    Verheijen, Lieneke; van Bodegom, Peter; Aerts, Rien; Brovkin, Victor

    2014-05-01

    Climate projections are still highly uncertain and differences in predicted terrestrial global carbon budgets by earth system models (ESMs) are large, both with respect to the size and direction of change. Part of these uncertainties in the land carbon dynamics are caused by differences in the modeled functional responses of vegetation in reaction to climatic drivers. In reality, changes in vegetation responses to the environment are driven by processes like species plasticity, acclimation, (genotypic) adaptation, species turnover and shifts in species abundances. These processes can cause shifts within community mean trait values, which in turn are will affect carbon fluxes to and from the system. Because most current dynamic global vegetation models (DGVMs, the terrestrial part of ESMs) are not species based, these processes are not or poorly modeled. The recent availability of a large trait database (TRY-database), including both field measurements and experimental data, enables parameterization of the models with observational trait data. Many community mean trait values correlate with local environmental conditions. Such trait-climate relationships can be used to model variation in traits in DGVMs and allow for spatial and temporal variation in functional vegetation responses. The aim of this study was to identify the impacts of observation-driven trait variation on modeled carbon fluxes in climate projections. We determined and incorporated relationships between observational trait and climate data for each plant functional type (PFT) in the DGVM JSBACH. Within each grid cell, traits were varied every year, based on the local climatic conditions in the model. We also included CO2 acclimation of traits based on FACE-experiments, as projections concern elevated CO2 concentrations. Impacts on global carbon budgets were large; in the simulation with variable traits the high latitudes (temperate, boreal and arctic areas) were stronger carbon sinks and the tropical

  7. Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux

    Science.gov (United States)

    Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.

    2012-12-01

    Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.

  8. LAND-USE CHANGE AND CARBON FLUX BETWEEN 1970S AND 1990S IN CENTRAL HIGHLANDS OF CHIAPAS, MEXICO

    Science.gov (United States)

    We present results of a study in an intensively impacted and highly fragmented landscape in which we apply field-measured carbon (C) density values to land-use/land-cover (LU/LC) statistics to estimate the flux of C between terrestrial ecosystems and the atmosphere from the 1970s...

  9. Spatiotemporal dynamics of carbon dioxide and methane fluxes from agricultural and restored wetlands in the California Delta

    Science.gov (United States)

    Hatala, Jaclyn Anne

    The Sacramento-San Joaquin Delta in California was drained for agriculture and human settlement over a century ago, resulting in extreme rates of soil subsidence and release of CO2 to the atmosphere from peat oxidation. Because of this century-long ecosystem carbon imbalance where heterotrophic respiration exceeded net primary productivity, most of the land surface in the Delta is now up to 8 meters below sea level. To potentially reverse this trend of chronic carbon loss from Delta ecosystems, land managers have begun converting drained lands back to flooded ecosystems, but at the cost of increased production of CH4, a much more potent greenhouse gas than CO2. To evaluate the impacts of inundation on the biosphere-atmophere exchange of CO2 and CH4 in the Delta, I first measured and analyzed net fluxes of CO2 and CH4 for two continuous years with the eddy covariance technique in a drained peatland pasture and a recently re-flooded rice paddy. This analysis demonstrated that the drained pasture was a consistent large source of CO2 and small source of CH 4, whereas the rice paddy was a mild sink for CO2 and a mild source of CH4. However more importantly, this first analysis revealed nuanced complexities for measuring and interpreting patterns in CO2 and CH4 fluxes through time and space. CO2 and CH4 fluxes are inextricably linked in flooded ecosystems, as plant carbon serves as the primary substrate for the production of CH4 and wetland plants also provide the primary transport pathway of CH4 flux to the atmosphere. At the spatially homogeneous rice paddy during the summer growing season, I investigated rapid temporal coupling between CO2 and CH4 fluxes. Through wavelet Granger-causality analysis, I demonstrated that daily fluctuations in growing season gross ecosystem productivity (photosynthesis) exert a stronger control than temperature on the diurnal pattern in CH4 flux from rice. At a spatially heterogeneous restored wetland site, I analyzed the spatial coupling

  10. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    Science.gov (United States)

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  11. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.; Kolb, Thomas E.; Cook, David R.; Brunsell, Nathaniel; Baldocchi, Dennis D.; Basara, Jeffrey; Matamala, Roser; Zhou, Yuting; Bajgain, Rajen

    2015-12-01

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associated with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.

  12. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.;

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux at...... the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles and was used in conjunction with measured pCO(2) gradients...

  13. Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England

    Science.gov (United States)

    Thomas, M. V.; Malhi, Y.; Fenn, K. M.; Fisher, J. B.; Morecroft, M. D.; Lloyd, C. R.; Taylor, M. E.; McNeil, D. D.

    2011-06-01

    We present results from a study of canopy-atmosphere fluxes of carbon dioxide from 2007 to 2009 above a site in Wytham Woods, an ancient temperate broadleaved deciduous forest in southern England. Gap-filled net ecosystem exchange (NEE) data were partitioned into gross primary productivity (GPP) and ecosystem respiration (Re) and analysed on daily, monthly and annual timescales. Over the continuous 24 month study period annual GPP was estimated to be 21.1 Mg C ha-1 yr-1 and Re to be 19.8 Mg C ha-1 yr-1; net ecosystem productivity (NEP) was 1.2 Mg C ha-1 yr-1. These estimates were compared with independent bottom-up estimates derived from net primary productivity (NPP) and flux chamber measurements recorded at a plot within the flux footprint in 2008 (GPP = 26.5 ± 6.8 Mg C ha-1 yr-1, Re = 24.8 ± 6.8 Mg C ha-1 yr-1, biomass increment = ~1.7 Mg C ha-1 yr-1). Over the two years the difference in seasonal NEP was predominantly caused by changes in ecosystem respiration, whereas GPP remained similar for equivalent months in different years. Although solar radiation was the largest influence on daily values of CO2 fluxes (R2 = 0.53 for the summer months for a linear regression), variation in Re appeared to be driven by temperature. Our findings suggest that this ancient woodland site is currently a substantial sink for carbon, resulting from continued growth that is probably a legacy of past management practices abandoned over 40 years ago. Our GPP and Re values are generally higher than other broadleaved temperate deciduous woodlands and may represent the influence of the UK's maritime climate, or the particular species composition of this site. The carbon sink value of Wytham Woods supports the protection and management of temperate deciduous woodlands (including those managed for conservation rather than silvicultural objectives) as a strategy to mitigate atmospheric carbon dioxide increases.

  14. Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England

    Directory of Open Access Journals (Sweden)

    M. V. Thomas

    2011-06-01

    Full Text Available We present results from a study of canopy-atmosphere fluxes of carbon dioxide from 2007 to 2009 above a site in Wytham Woods, an ancient temperate broadleaved deciduous forest in southern England. Gap-filled net ecosystem exchange (NEE data were partitioned into gross primary productivity (GPP and ecosystem respiration (Re and analysed on daily, monthly and annual timescales. Over the continuous 24 month study period annual GPP was estimated to be 21.1 Mg C ha−1 yr−1 and Re to be 19.8 Mg C ha−1 yr−1; net ecosystem productivity (NEP was 1.2 Mg C ha−1 yr−1. These estimates were compared with independent bottom-up estimates derived from net primary productivity (NPP and flux chamber measurements recorded at a plot within the flux footprint in 2008 (GPP = 26.5 ± 6.8 Mg C ha−1 yr−1, Re = 24.8 ± 6.8 Mg C ha−1 yr−1, biomass increment = ~1.7 Mg C ha−1 yr−1. Over the two years the difference in seasonal NEP was predominantly caused by changes in ecosystem respiration, whereas GPP remained similar for equivalent months in different years. Although solar radiation was the largest influence on daily values of CO2 fluxes (R2 = 0.53 for the summer months for a linear regression, variation in Re appeared to be driven by temperature. Our findings suggest that this ancient woodland site is currently a substantial sink for carbon, resulting from continued growth that is probably a legacy of past management practices abandoned over 40 years ago. Our GPP and Re values are generally higher than other broadleaved temperate deciduous woodlands and may represent the influence of the UK's maritime climate, or the particular species composition of this site. The carbon sink value of Wytham Woods

  15. Changes in dissolved organic carbon and total dissolved nitrogen fluxes across subtropical forest ecosystems at different successional stages

    Science.gov (United States)

    Yan, Junhua; Li, Kun; Wang, Wantong; Zhang, Deqiang; Zhou, Guoyi

    2015-05-01

    Lateral transports of carbon and nitrogen are important processes linking terrestrial ecosystems and aquatic systems. Most previous studies made in temperate forests found that fluxes of carbon and nitrogen by runoff water varied in different forests, but few studies have been made in subtropical forests. This study was to investigate dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes at the catchment scale along a subtropical forest succession gradient from pine forest (pioneer) to coniferous and broadleaved mixed forest (transitional) to broadleaved forest (mature). Our results showed that DOC concentration significantly decreased (pforests, which in turn resulted in a decrease in DOC flux and an increase in TDN flux, as mean annual runoff did not vary significantly among three succession forest catchments. The mean (±standard deviation) annual DOC flux was 118.1±43.6, 88.3±16.7 and 77.2±11.7 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively; and the mean annual TDN flux was 9.9 ±2.7, 18.2±3.0 and 21.2 ±4.5 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively. The mature forest reduced DOC flux by increased soil chemical adsorption and physical protection. An increase in TDN flux from pioneer to mature forests was consistent with the previous finding that mature forest was nitrogen saturated while pioneer forest was nitrogen limited. Therefore large-scale conversion of pioneer forests to transitional or mature forests in subtropical China will reduce DOC concentration and increase TDN concentration in the down-stream water, which may have significant impact on its water quality and aquatic biological activities.

  16. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.

    Science.gov (United States)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600

  17. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    Science.gov (United States)

    2016-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  18. Seasonal and Diurnal Fluxes of Radiation, Heat, Water Vapor, and Carbon Dioxide over a Suburban Area.

    Science.gov (United States)

    Moriwaki, R.; Kanda, M.

    2004-11-01

    Based on 1 yr of field measurements, the diurnal, seasonal, and annual fluxes of energy and carbon dioxide (CO2) at a residential area of Tokyo, Japan, are described. The major findings are as follows. 1) The storage heat flux G in the daytime had little seasonal variation, irrespective of significant seasonal change of net all-wave radiation Rn. 2) The latent heat flux in the summer daytime was large despite the small areal fraction of natural coverage (trees and bare soil). The estimated local latent heat flux per unit natural coverage was 2 times the available energy (Rn - G), which indicates that the “oasis effect” was significant. 3) The CO2 flux was always upward throughout the year and the magnitude was larger in winter, mainly because of an increase of fossil fuel consumption. The annual total CO2 flux was 6 times the downward CO2 flux at a typical temperate deciduous forest.

  19. Patterns of Forest Disturbance and Recovery Dynamics on Structure and Carbon Fluxes in New England Forests

    Science.gov (United States)

    Dolan, K.; Hurtt, G. C.; Huang, C.; Dubayah, R.; Fisk, J. P.; Duncanson, L.; Masek, J. G.

    2012-12-01

    Forest disturbance and recovery strongly influence forest structure, function and services. Forest disturbance and recovery are critical mechanisms for transferring carbon between the land surface and the atmosphere, yet the role of forest disturbance within the terrestrial carbon cycle still remains uncertain and only recently have these events been accounted for within regional-scale and global carbon models. Adding ecological disturbance into biogeochemical models is noted as critical to estimating current and future carbon stocks and fluxes. This study used satellite-based observations of forest change, lidar derived structure data and a height structured ecosystem model to improve knowledge of disturbances role in carbon cycle by quantifying how forest disturbance and recovery vary at different spatial and temporal scales. Annual forest change maps from 1984-2010 were produced using the highly automated Vegetation Change Tracker (VCT) algorithm (Huang et al 2009). Mapped forest change was further broken down into land conversion (forest to non forest), severe disturbance (stand replacing), and non severe (partial clearing/ thinning). Areas of forest change were aggregated at different spatial scales and temporal scales and integrated into the Ecosystem Demography model (ED), a mechanistic model of forest ecosystem dynamics, to calculate changes in biomass and carbon fluxes. Forest structural data derived from NASA's Laser Vegetation Imaging Sensor (LVIS) was used to assess regrowth of forests and compare to ED's height and structure properties. Results in the New England Region show both spatial and temporal variation in area disturbed. The northern region encompassing Northern New Hampshire showed higher and more variable rates with an average annual rate of disturbance of approximately 0.5% (range 0.2- 08%) conversion/ non regeneration forest clearing range 0.02 -0.08%. While the southern averaged annual disturbance of 0.3% (ranged 0.2 - 0.5%) it had a much

  20. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.;

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechan...

  1. Anthropogenic perturbation of the carbon fluxes from land to ocean

    NARCIS (Netherlands)

    Regnier, P.; Friedlingstein, P.; Ciais, P.; Mackenzie, F.T.; Gruber, N.; Janssens, I.A.; Laruelle, G.G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; Arndt, S.; Arnosti, C.; Borges, A.V.; Dale, A.W.; Gallego-Sala, A.; Godderis, Y.; Goossens, N.; Hartmann, J.; Heinze, C.; Ilyina, T.; Joos, F.; LaRowe, D.E.; Leifeld, J.; Meysman, F.J.R.; Munhoven, G.; Raymond, P.A.; Spahni, R.; Suntharalingam, P.; Thullner, M.

    2013-01-01

    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation

  2. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

    International Nuclear Information System (INIS)

    The 13C/12C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in 13C and CO2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50 deg N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC/yr

  3. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area.

    Science.gov (United States)

    Decina, Stephen M; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Reinmann, Andrew B; Short Gianotti, Anne G; Templer, Pamela H

    2016-05-01

    Urban areas are the dominant source of U.S. fossil fuel carbon dioxide (FFCO2) emissions. In the absence of binding international treaties or decisive U.S. federal policy for greenhouse gas regulation, cities have also become leaders in greenhouse gas reduction efforts through climate action plans. These plans focus on anthropogenic carbon flows only, however, ignoring a potentially substantial contribution to atmospheric carbon dioxide (CO2) concentrations from biological respiration. Our aim was to measure the contribution of CO2 efflux from soil respiration to atmospheric CO2 fluxes using an automated CO2 efflux system and to use these measurements to model urban soil CO2 efflux across an urban area. We find that growing season soil respiration is dramatically enhanced in urban areas and represents levels of CO2 efflux of up to 72% of FFCO2 within greater Boston's residential areas, and that soils in urban forests, lawns, and landscaped cover types emit 2.62 ± 0.15, 4.49 ± 0.14, and 6.73 ± 0.26 μmolCO2 m(-2) s(-1), respectively, during the growing season. These rates represent up to 2.2 times greater soil respiration than rates found in nearby rural ecosystems in central Massachusetts (MA), a potential consequence of imported carbon amendments, such as mulch, within a general regime of landowner management. As the scientific community moves rapidly towards monitoring, reporting, and verification of CO2 emissions using ground based approaches and remotely-sensed observations to measure CO2 concentrations, our results show that measurement and modeling of biogenic urban CO2 fluxes will be a critical component for verification of urban climate action plans. PMID:26914093

  4. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  5. Carbon and Water Vapor Fluxes of Dedicated Bioenergy Feedstocks: Switchgrass and High Biomass Sorghum

    Science.gov (United States)

    Wagle, P.; Kakani, V. G.; Huhnke, R.

    2015-12-01

    We compared eddy covariance measurements of carbon and water vapor fluxes from co-located two major dedicated lignocellulosic feedstocks, Switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench), in Oklahoma during the 2012 and 2013 growing seasons. Monthly ensemble averaged net ecosystem CO2 exchange (NEE) reached seasonal peak values of 36-37 μmol m-2 s-1 in both ecosystems. Similar magnitudes (weekly average of daily integrated values) of NEE (10-11 g C m-2 d-1), gross primary production (GPP, 19-20 g C m-2 d-1), ecosystem respiration (ER, 10-12 g C m-2 d-1), and evapotranspiration (ET, 6.2-6.7 mm d-1) were observed in both ecosystems. Carbon and water vapor fluxes of both ecosystems had similar response to air temperature (Ta) and vapor pressure deficit (VPD). An optimum Ta was slightly over 30 °C for NEE and approximately 35 °C for ET, and an optimum VPD was approximately 3 kPa for NEE and ET in both ecosystems. The switchgrass field was a larger carbon sink, with a cumulative seasonal carbon uptake of 406-490 g C m-2 compared to 261-330 g C m-2 by the sorghum field. Despite similar water use patterns during the active growing period, seasonal cumulative ET was higher in switchgrass than in sorghum. The ratio of seasonal sums of GPP to ET yielded ecosystem water use efficiency (EWUE) of 9.41-11.32 and 8.98-9.17 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The ratio of seasonal sums of net ecosystem production (NEP) to ET was 2.75-2.81 and 2.06-2.18 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The switchgrass stand was a net carbon sink for four to five months (April/May-August), while sorghum was a net carbon sink only for three months (June-August). Our results imply that the difference in carbon sink strength and water use between two ecosystems was driven mainly by the length of the growing season.

  6. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  7. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    Science.gov (United States)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network

  8. Carbon dioxide and methane fluxes: Seasonal dynamics from inland riparian ecosystems, northeast China

    International Nuclear Information System (INIS)

    Riparian wetland ecosystems have been described as significant hotspots for carbon dioxide (CO2) and methane (CH4) fluxes, but their role in the release and sequestration of these greenhouse gases has been insufficiently assessed within China. The influences of vegetation and soil parameters on daily and seasonal variations in carbon flux in the Nenjiang basin, northeast China, were recorded using a static closed-chamber technique during the non-growing (November and January) and growing (June, July and August) seasons of 2009–2010. Seasonal differences in average CO2 flux were observed (growing season: 6.605 g·C·m−2 h−1; non-growing season: − 0.185 g·C·m−2 h−1) and these were significantly correlated with CH4 emission (r = 0.532, p = 0.011) and soil temperature at 5 cm depth below ground (r = 0.852, p = 0.000). Average diel gaseous flux showed significant variation between hours for both gases (CO2 flux one-way ANOVA F = 3.075, p 4 flux one way ANOVA F = 2.622, p 4 and CO2 fluxes and multiple vegetation and soil parameters. For example at both sites, growing season-CH4 flux was correlated with vegetation cover (r = 0.580, p 2 was significantly correlated with CH4 emission and soil temperature. ► Growing season-CH4 flux was significantly correlated with vegetation cover, total vegetation phosphorous and soil nitrogen

  9. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil

    International Nuclear Information System (INIS)

    Nitrous oxide (N2O) and carbon dioxide (CO2) fluxes were measured in a boreal forest during two growing seasons with soil gradient and chamber methods. N2O fluxes obtained by these two techniques varied from small emission to small uptake. N2O fluxes were of the same order of magnitude, however, the fluxes measured by the soil gradient method were higher and more variable than the fluxes measured with chambers. The highest soil gradient N2O fluxes were measured in the late summer and the lowest in the autumn and spring. In the autumn, litter fall induced a peak in N2O concentration in the organic O-horizon, whereas in the spring N2O was consumed in the O-horizon. Overall, the uppermost soil layer was responsible for most of the N2O production and consumption. Soil gradient and chamber methods agreed well with CO2 fluxes. Due to the very small N2O fluxes and the sensitivity of the flux to small concentration difference between the soil and the ambient air, the flux calculations from the O-horizon to the atmosphere were considered unreliable. N2O fluxes calculated between the soil A- and O-horizons agreed relatively well with the chamber measurements

  10. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    M. Itoh

    2010-09-01

    Full Text Available To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil

  11. Simulating the effects of fire disturbance and vegetation recovery on boreal ecosystem carbon fluxes

    Science.gov (United States)

    Yi, Y.; Kimball, J. S.; Jones, L. A.; Zhao, M.

    2011-12-01

    Fire related disturbance and subsequent vegetation recovery has a major influence on carbon storage and land-atmosphere CO2 fluxes in boreal ecosystems. We applied a synthetic approach combining tower eddy covariance flux measurements, satellite remote sensing and model reanalysis surface meteorology within a terrestrial carbon model framework to estimate fire disturbance and recovery effects on boreal ecosystem carbon fluxes including gross primary production (GPP), ecosystem respiration and net CO2 exchange (NEE). A disturbance index based on MODIS land surface temperature and NDVI was found to coincide with vegetation recovery status inferred from tower chronosequence sites. An empirical algorithm was developed to track ecosystem recovery status based on the disturbance index and used to nudge modeled net primary production (NPP) and surface soil organic carbon stocks from baseline steady-state conditions. The simulations were conducted using a satellite based terrestrial carbon flux model driven by MODIS NDVI and MERRA reanalysis daily surface meteorology inputs. The MODIS (MCD45) burned area product was then applied for mapping recent (post 2000) regional disturbance history, and used with the disturbance index to define vegetation disturbance and recovery status. The model was then applied to estimate regional patterns and temporal changes in terrestrial carbon fluxes across the entire northern boreal forest and tundra domain. A sensitivity analysis was conducted to assess the relative importance of fire disturbance and recovery on regional carbon fluxes relative to assumed steady-state conditions. The explicit representation of disturbance and recovery effects produces more accurate NEE predictions than the baseline steady-state simulations and reduces uncertainty regarding the purported missing carbon sink in the high latitudes.

  12. Modeling of the carbon dioxide fluxes in European Russia peat bogs

    Energy Technology Data Exchange (ETDEWEB)

    Kurbatova, J; Tatarinov, F; Varlagin, A; Shalukhina, N; Olchev, A [A N Severtsov Institute of Ecology and Evolution of RAS, Leninsky Prospekt 33, Moscow 119071 (Russian Federation); Li, C, E-mail: kurbatova.j@gmail.co [Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824 (United States)

    2009-10-15

    A process-based model (Forest-DNDC) was applied to describe the possible impacts of climate change on carbon dioxide (CO{sub 2}) fluxes from a peat bog in European Russia. In the first step, Forest-DNDC was tested against CO{sub 2} fluxes measured by the eddy covariance method on an oligotrophic bog in a representative region of the southern taiga (56 deg. N 33 deg. E). The results of model validations show that Forest-DNDC is capable of quantifying the CO{sub 2} fluxes from the bog ecosystem. In the second step, the validated model was used to estimate how the expected future changes of the air temperature and water table depth could affect the C dynamics in the bogs. It was shown that a decrease in the water table and an increase in temperature influence significantly the CO{sub 2} exchange between our bog ecosystem and the atmosphere. Under elevated temperature and deepened water table the bog ecosystems could become a significant source of atmospheric CO{sub 2}.

  13. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    Science.gov (United States)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-10-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  14. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    Directory of Open Access Journals (Sweden)

    D. Müller

    2015-10-01

    Full Text Available Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC concentrations ranged between 3222 and 6218 μmol L−1 and accounted for more than 99 % of the total organic carbon (TOC. Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  15. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    Directory of Open Access Journals (Sweden)

    D. Müller

    2015-07-01

    Full Text Available Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC concentrations ranged between 3222 and 6218 μmol L−1 and accounted for more than 99 % of the total organic carbon (TOC. Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  16. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Marcelo Zeri

    Full Text Available The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010 and a flooding year (2009. The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1 year(-1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  17. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    Science.gov (United States)

    Zeri, Marcelo; Sá, Leonardo D A; Manzi, Antônio O; Araújo, Alessandro C; Aguiar, Renata G; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L; Nobre, Carlos A

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change. PMID:24558378

  18. Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England

    Directory of Open Access Journals (Sweden)

    M. V. Thomas

    2010-05-01

    Full Text Available We present results from a study of canopy-atmosphere fluxes of carbon dioxide from 2007 to 2009 above a site in Wytham Woods, an ancient temperate broadleaved deciduous forest in southern England. Gap-filled Net Ecosystem Exchange (NEE data were partitioned into Gross Primary Productivity (GPP and ecosystem respiration (Re and analysed on daily, monthly and annual timescales. Over the continuous 24 month study period annual GPP was estimated at 21.1 Mg C ha−1 yr−1 and Re at 19.8 Mg C ha−1 yr−1; Net Ecosystem Productivity (NEP was 1.2 Mg C ha−1 yr−1. These estimates are very consistent with independent bottom-up estimates derived from Net Primary Productivity (NPP and flux chamber measurements in 2008 (GPP=20.3±1.0 Mg C ha−1 yr−1, Re=18.9±1.7 Mg C ha−1 yr−1, biomass increment =~1.4 Mg C ha−1 yr−1. Interannual variability of seasonal NEP was predominantly driven by changes in ecosystem respiration, whereas GPP remained similar for equivalent months in different years. Although solar radiation was the largest influence on daytime CO2 fluxes (R2=0.53 for the summer months, interannual variation in Re appeared to be driven by temperature. Our findings suggest that this ancient woodland site is currently a substantial sink for carbon, resulting from continued growth that is probably a legacy of past management practices abandoned over 40 years ago. Our GPP and Re values are generally higher than other broadleaved temperate deciduous woodlands and may represent the influence of the UK's maritime climate, or the particular species composition of this site. The carbon sink value of Wytham Woods supports the protection and management of temperate deciduous woodlands (including those

  19. Carbon dioxide and latent heat flux measurements in a windbreak-sheltered orchard

    International Nuclear Information System (INIS)

    An eddy correlation system for carbon dioxide and latent heat flux measurement comprising a twin-channel, closed-path infra-red gas analyzer and sonic anemometer is described. Its performance was examined by comparing latent heat fluxes measured concurrently with an open-path sensor over windbreak-sheltered kiwifruit (Actinidia deliciosia var. deliciosia). Measurements were carried out at the height of surrounding windbreaks (6 m). Excellent average agreement was found between latent heat fluxes measured by either system with no evidence of bandwidth limiting by the closed-path components. This agreement gives confidence that carbon dioxide fluxes were also correctly measured. It also provides validation of the density corrections for eddy fluxes which differ significantly for closed- and open-path sensors.Carbon dioxide fluxes were closely related to solar radiation, reaching 800 μg m−2 s−1 towards the canopy early in the afternoon. Water-use efficiency was approximately 7 mg of CO2 per g of water evaporated and showed little dependence on either radiation or water use. Night-time fluxes were erratic in low wind conditions showing infrequent large excursions which are attributed to the action of occasional gusts sweeping out high levels of carbon dioxide accumulated from canopy and under-storey respiration. During windier conditions, night-time fluxes were typically 200 μg m−2 s−1 away from the canopy. The role of windbreaks in isolating the canopy from the free airstream was evident in the large diurnal variation in ambient carbon dioxide concentrations (640–800 mg m−3) observed 3–4 m above the height of the crop

  20. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux.

    Science.gov (United States)

    Hurtt, G C; Thomas, R Q; Fisk, J P; Dubayah, R O; Sheldon, S L

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. "repeat lidar data", we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions. PMID:27093157

  1. Global CO2 flux estimation using GOSAT: An inter-comparison of inversion results

    Science.gov (United States)

    Houweling, S.; Basu, S.; Chevallier, F.; Feng, L.; Ganshin, A.; Maksyutov, S.; Palmer, P. I.; Peylin, P.; Poussi, Z.; Takagi, H.; Zhuravlev, R.

    2012-12-01

    A unique global data archive is under construction of total column CO2 measurements retrieved from the Greenhouse gas Observing SATellite, currently spanning more than three years of data. Several groups are investigating the application of these data to global atmospheric inverse modelling for studying the global carbon cycle. It is known from inverse modeling using surface measurements that the robustness of the inversion-estimated fluxes is best analyzed using a multi-model approach. So far, this has not been demonstrated for inversions using satellite data, but but some of the known sources of uncertainty are difficult to account for in a single inversion, such as transport model uncertainties and differences between retrieval methods. We have organized an inversion inter-comparison experiment to investigate whether, despite these uncertainties, robust signals of sources and sinks can be inferred from the GOSAT data. The current experiment allows full freedom in inversion set-up in order to avoid limiting the range of possible outcomes. Each participating group is free to use their preferred inversion set-up, transport model, and measurements, but is asked to report in a common format and for a common time period of one year to allow one-to-one comparison. We will present an overview of the status of the experiment, including a preliminary synthesis of large-scale CO2 fluxes from a statistical analysis of the ensemble of inversion results and verification of the performance of the inversions using independent measurements.

  2. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    Science.gov (United States)

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  3. Modelling carbon stocks and fluxes in the wood product sector: a comparative review.

    Science.gov (United States)

    Brunet-Navarro, Pau; Jochheim, Hubert; Muys, Bart

    2016-07-01

    In addition to forest ecosystems, wood products are carbon pools that can be strategically managed to mitigate climate change. Wood product models (WPMs) simulating the carbon balance of wood production, use and end of life can complement forest growth models to evaluate the mitigation potential of the forest sector as a whole. WPMs can be used to compare scenarios of product use and explore mitigation strategies. A considerable number of WPMs have been developed in the last three decades, but there is no review available analysing their functionality and performance. This study analyses and compares 41 WPMs. One surprising initial result was that we discovered the erroneous implementation of a few concepts and assumptions in some of the models. We further described and compared the models using six model characteristics (bucking allocation, industrial processes, carbon pools, product removal, recycling and substitution effects) and three model-use characteristics (system boundaries, model initialization and evaluation of results). Using a set of indicators based on the model characteristics, we classified models using a hierarchical clustering technique and differentiated them according to their increasing degrees of complexity and varying levels of user support. For purposes of simulating carbon stock in wood products, models with a simple structure may be sufficient, but to compare climate change mitigation options, complex models are needed. The number of models has increased substantially over the last ten years, introducing more diversity and accuracy. Calculation of substitution effects and recycling has also become more prominent. However, the lack of data is still an important constraint for a more realistic estimation of carbon stocks and fluxes. Therefore, if the sector wants to demonstrate the environmental quality of its products, it should make it a priority to provide reliable life cycle inventory data, particularly regarding aspects of time and

  4. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks

    Science.gov (United States)

    Keenan, Trevor; Bohrer, Gil; Dragoni, Danilo; Hollinger, David; Munger, James W.; Schmid, Hans Peter; Richardson, Andrew

    2014-05-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  5. Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-series Study site)

    Science.gov (United States)

    Signorini, Sergio R.; McClain, Charles R.; Christian, James R.

    2001-01-01

    An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The sea-air flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso Sea by the warmest SST and lowest surface salinity of the period (1992-1998).

  6. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    CERN Document Server

    Chen, Wei; Zhang, Qiang; Fan, Zhongli; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2016-01-01

    Nanoporous carbon composite membranes, comprising a layer of porous carbon fiber structures with an average channel width of 30-60 nm grown on a porous ceramic substrate, are found to exhibit robust desalination effect with high freshwater flux. In three different membrane processes of vacuum membrane distillation, reverse osmosis and forward osmosis, the carbon composite membrane showed 100% salt rejection with 3.5 to 20 times higher freshwater flux compared to existing polymeric membranes. Thermal accounting experiments found that at least 80% of the freshwater pass through the carbon composite membrane with no phase change. Molecular dynamics simulations revealed a unique salt rejection mechanism. When seawater is interfaced with either vapor or the surface of carbon, one to three interfacial atomic layers contain no salt ions. Below the liquid entry pressure, the salt solution is stopped at the openings to the porous channels and forms a meniscus, while the surface layer of freshwater can feed the surface...

  7. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  8. Narrowband Bio-Indicator Monitoring of Temperate Forest Carbon Fluxes in Northeastern China

    Directory of Open Access Journals (Sweden)

    Quanzhou Yu

    2014-09-01

    Full Text Available Developments in hyperspectral remote sensing techniques during the last decade have enabled the use of narrowband indices to evaluate the role of forest ecosystem variables in estimating carbon (C fluxes. In this study, narrowband bio-indicators derived from EO-1 Hyperion data were investigated to determine whether they could capture the temporal variation and estimate the spatial variability of forest C fluxes derived from eddy covariance tower data. Nineteen indices were divided into four categories of optical indices: broadband, chlorophyll, red edge, and light use efficiency. Correlation tests were performed between the selected vegetation indices, gross primary production (GPP, and ecosystem respiration (Re. Among the 19 indices, five narrowband indices (Chlorophyll Index RedEdge 710, scaled photochemical reflectance index (SPRI*enhanced vegetation index (EVI, SPRI*normalized difference vegetation index (NDVI, MCARI/OSAVI[705, 750] and the Vogelmann Index, and one broad band index (EVI had R-squared values with a good fit for GPP and Re. The SPRI*NDVI has the highest significant coefficients of determination with GPP and Re (R2 = 0.86 and 0.89, p < 0.0001, respectively. SPRI*NDVI was used in atmospheric inverse modeling at regional scales for the estimation of C fluxes. We compared the GPP spatial patterns inversed from our model with corresponding results from the Vegetation Photosynthesis Model (VPM, the Boreal Ecosystems Productivity Simulator model, and MODIS MOD17A2 products. The inversed GPP spatial patterns from our model of SPRI*NDVI had good agreement with the output from the VPM model. The normalized difference nitrogen index was well correlated with measured C net ecosystem exchange. Our findings indicated that narrowband bio-indicators based on EO-1 Hyperion images could be used to predict regional C flux variations for Northeastern China’s temperate broad-leaved Korean pine forest ecosystems.

  9. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  10. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2007-04-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, 40.8 t organic carbon (OC is exported from the catchment, which represents an areal value of 107 gC m−2 a−1. POC was the most significant form of organic carbon export, accounting for ~82% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  11. Dynamical and biogeochemical control on the decadal variability of ocean carbon fluxes

    Directory of Open Access Journals (Sweden)

    R. Séférian

    2013-04-01

    Full Text Available Several recent observation-based studies suggest that ocean anthropogenic carbon uptake has slowed down due to the impact of anthropogenic forced climate change. However, it remains unclear whether detected changes over the recent time period can be attributed to anthropogenic climate change or rather to natural climate variability (internal plus naturally forced variability alone. One large uncertainty arises from the lack of knowledge on ocean carbon flux natural variability at the decadal time scales. To gain more insights into decadal time scales, we have examined the internal variability of ocean carbon fluxes in a 1000 yr long preindustrial simulation performed with the Earth System Model IPSL-CM5A-LR. Our analysis shows that ocean carbon fluxes exhibit low-frequency oscillations that emerge from their year-to-year variability in the North Atlantic, the North Pacific, and the Southern Ocean. In our model, a 20 yr mode of variability in the North Atlantic air-sea carbon flux is driven by sea surface temperature variability and accounts for ~40% of the interannual regional variance. The North Pacific and the Southern Ocean carbon fluxes are also characterised by decadal to multi-decadal modes of variability (10 to 50 yr that account for 20–40% of the interannual regional variance. These modes are driven by the vertical supply of dissolved inorganic carbon through the variability of Ekman-induced upwelling and deep-mixing events. Differences in drivers of regional modes of variability stem from the coupling between ocean dynamics variability and the ocean carbon distribution, which is set by large-scale secular ocean circulation.

  12. On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning

    Directory of Open Access Journals (Sweden)

    G. Lasslop

    2012-12-01

    Full Text Available Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP and respiratory fluxes (Reco. The increasing use of these estimates for the analysis of climate sensitivities, model evaluation and calibration demands a thorough understanding of assumptions in the analysis process and the resulting uncertainties of the partitioned fluxes. The semi-empirical models used in flux partitioning algorithms require temperature observations as input, but as respiration takes place in many parts of an ecosystem, it is unclear which temperature input – air, surface, bole, or soil at a specific depth – should be used. This choice is a source of uncertainty and potential biases. In this study, we analysed the correlation between different temperature observations and nighttime NEE (which equals nighttime respiration across FLUXNET sites to understand the potential of the different temperature observations as input for the flux partitioning model. We found that the differences in the correlation between different temperature data streams and nighttime NEE are small and depend on the selection of sites. We investigated the effects of the choice of the temperature data by running two flux partitioning algorithms with air and soil temperature. We found the time lag (phase shift between air and soil temperatures explains the differences in the GPP and Reco estimates when using either air or soil temperatures for flux partitioning. The impact of the source of temperature data on other derived ecosystem parameters was estimated, and the strongest impact was found for the temperature sensitivity. Overall, this study suggests that the

  13. Carbon dioxide and methane fluxes from arctic mudboils

    International Nuclear Information System (INIS)

    Carbon-rich ecosystems in the Arctic have large stores of soil carbon. However, small changes in climate have the potential to change the carbon (C) balance. This study examined how changes in ecosystem structure relate to differences in the exchange of greenhouse gases, notably carbon dioxide (CO2) and methane (CH4), between the atmosphere and soil. In particular, it examined low-center mudboils to determine the influence that this distinct form of patterned ground in the Arctic may have on the overall C balance of Tundra ecosystems. The net ecosystem exchange of carbon dioxide (NEE) was measured along with methane efflux along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada's Southern Arctic during the summer of 2008. Mudboil features revealed significant variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were attributed to changes in the amount of vascular vegetation, but CO2 and CH4 effluxes were similar among the two mudboil and the sedge fen sampling areas. The study showed that vegetation played a key role in limiting temporal variations in CH4 effluxes through plant mediated transport in both mudboil and sedge fen sampling areas. The negligible vascular plant colonization in one of the mudboils was likely due to more active frost heave processes. Growth and decomposition of cryptogamic organisms along with inflow of dissolved organic C and warmer soil temperatures may have been the cause of the rather high CO2 and CH4 efflux in this mudboil area.

  14. Environmental controls on carbon fluxes over three grassland ecosystems in China

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2009-08-01

    Full Text Available This study compared the CO2 fluxes over three grassland ecosystems in China, including a temperate steppe (TS in Inner Mongolia, an alpine shrub-meadow (ASM in Qinghai and an alpine meadow-steppe (AMS in Tibet. The measurements were made in 2004 and 2005 using the eddy covariance technique. Objectives were to document the different seasonality of net ecosystem exchange of CO2 (NEE and its components, gross ecosystem photosynthesis (GEP and ecosystem respiration (Reco, and to examine how environmental factors affect carbon exchange in the three grassland ecosystems. It was warmer in 2005 than in 2004, especially during the growing season (from May to September, across the three sites. The annual precipitation at TS in 2004 (364.4 mm was close the annual average (350 mm, whereas the precipitation at TS in 2005 (153.3 mm was significantly below the average. Both GEP and Reco of the temperate steppe in 2005 were significantly reduced by the extreme drought stress, resulting in net carbon release during almost the whole growing season. The magnitude of CO2 fluxes (daily and annual sums was largest for the alpine shrub-meadow and smallest for the alpine meadow-steppe. The seasonal trends of GEP, Reco and NEE of the alpine shrub-meadow tracked closely with the variation in air temperature, while the seasonality of GEP, Reco and NEE of the temperate steppe and the alpine meadow-steppe was more related to the variation in soil moisture. The alpine shrub-meadow was a local carbon sink over the two years. The temperate steppe and alpine meadow-steppe were acting as net carbon source, with more carbon loss to the atmosphere in warmer and drier year of 2005. Annual precipitation was the primary climate driver for the difference in annual GEP and NEE among the three sites and between the two years. We also found the annual GEP and NEE depended

  15. Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins.

    Science.gov (United States)

    Corea, Oliver R A; Ki, Chanyoung; Cardenas, Claudia L; Kim, Sung-Jin; Brewer, Sarah E; Patten, Ann M; Davin, Laurence B; Lewis, Norman G

    2012-03-30

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1-6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure. PMID:22311980

  16. Arogenate Dehydratase Isoenzymes Profoundly and Differentially Modulate Carbon Flux into Lignins*

    Science.gov (United States)

    Corea, Oliver R. A.; Ki, Chanyoung; Cardenas, Claudia L.; Kim, Sung-Jin; Brewer, Sarah E.; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.

    2012-01-01

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1–6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure. PMID:22311980

  17. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    Science.gov (United States)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  18. Carbon dioxide fluxes across the Sierra de Guadarrama, Spain

    OpenAIRE

    Inclán Cuartas, Rosa; Uribe Vallejos, Carla; Torre, D. de la; Sánchez Ledesma, Dolores María; Clavero Sánchez, M. Angeles; Fernández Díaz, Ana Maria; Morante Sánchez, Ramón; Cardeña Contreras, Ana; Fernández, M.; Rubio Sánchez, Agustín

    2010-01-01

    Understanding the spatial and temporal variation in soil respiration within small geographic areas is essential to accurately assess the carbon budget on a global scale. In this study, we investigated the factors controlling soil respiration in an altitudinal gradient in a southern Mediterranean mixed pine–oak forest ecosystem in the north face of the Sierra de Guadarrama in Spain. Soil respiration was measured in five Pinus sylvestris L. plots over a period of 1 year by means of a clos...

  19. Impact of grazing on carbon dioxide flux exchanges in an intensively managed grassland

    OpenAIRE

    Jerome, Elisabeth; Beckers, Yves; Bodson, Bernard; Dumortier, Pierre; Moureaux, Christine; Aubinet, Marc

    2013-01-01

    To date, there are few studies assessing the impact of specific management events, particularly grazing, on carbon (C) and carbon dioxide (CO2) fluxes in managed grasslands. Grazing effects are indeed difficult to discern. They vary with the stocking rate and the length of the grazing period. Moreover, they are often masked by environmental responses. The aim of the present study was to assess the impact of grazing on the CO2 fluxes of a grassland grazed by the Belgian Blue breed of cattle. ...

  20. Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia

    OpenAIRE

    Zeri, Marcelo; Sá, Leonardo D. A.; Antônio O. Manzi; Araújo, Alessandro C.; Aguiar, Renata G.; von Randow, Celso; Sampaio, Gilvan; Fernando L. Cardoso; Nobre, Carlos A.

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and fl...

  1. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations.

    Science.gov (United States)

    Meehan, Timothy D; Couture, John J; Bennett, Alison E; Lindroth, Richard L

    2014-10-01

    Anthropogenic changes in atmospheric carbon dioxide (CO2 ) and ozone (O3 ) are known to alter tree physiology and growth, but the cascading effects on herbivore communities and herbivore-mediated nutrient cycling are poorly understood. We sampled herbivore frass, herbivore-mediated greenfall, and leaf-litter deposition in temperate forest stands under elevated CO2 (c. 560 ppm) and O3 (c. 1.5× ambient), analyzed substrate chemical composition, and compared the quality and quantity of fluxes under multiple atmospheric treatments. Leaf-chewing herbivores fluxed 6.2 g m(-2)  yr(-1) of frass and greenfall from the canopy to the forest floor, with a carbon : nitrogen (C : N) ratio 32% lower than that of leaf litter. Herbivore fluxes of dry matter, C, condensed tannins, and N increased under elevated CO2 (35, 32, 63 and 39%, respectively), while fluxes of N decreased (18%) under elevated O3 . Herbivore-mediated dry matter inputs scaled across atmospheric treatments as a constant proportion of leaf-litter inputs. Increased fluxes under elevated CO2 were consistent with increased herbivore consumption and abundance, and with increased plant growth and soil respiration, previously reported for this experimental site. Results suggest that insect herbivory will reinforce other factors, such as photosynthetic rate and fine-root production, impacting C sequestration by forests in future environments. PMID:25078062

  2. The FRUELA cruises.. A carbon flux study in productive areas of the Antarctic Peninsula (December 1995-February 1996)

    Science.gov (United States)

    Anadón, Ricardo; Estrada, Marta

    The FRUELA (name of an 8th century king of Asturias) project, part of the Spanish contribution to the study of biogeochemical carbon fluxes in the Southern Ocean, was based on two consecutive cruises of the B.I.O.; Hespérides which took place in the Bransfield and Gerlache Straits and Belligshausen Sea between early December and early February of Austral summer 1995-1996. In addition to the cruises, data were obtained from an array of sediment traps deployed for one year in the Western Bransfield Strait Basin. The basic objectives of FRUELA were the quantification of carbon standing stocks and fluxes through the main components of the "biological pump" and the determination of carbon fluxes across different water column boundaries, including the transfer of CO 2 between the atmosphere and the ocean, the export of particulate carbon (PC) out of the euphotic zone, the vertical flux of PC in deep waters and the accumulation of carbon in sediments. The main hydrographical features found in the study region were the Southern Boundary of the Antarctic Circumpolar Currrent (SbyACC) and the Bransfield Front. Three major zones, with contrasting physico-chemical and biological characteristics were considered: Bellingshausen, including the Northwest Bellingshausen Sea and comprising the SbyACC, Bransfield, including the Western Bransfield Strait and the northeastern part of the Gerlache Strait, and Gerlache, with the rest of the Gerlache Strait. This paper summarizes the distribution of different properties and rate processes in these zones and discusses the major findings of the cruise concerning carbon fluxes. Our results indicate that, during the summer period, the studied area could be considered as a sink for atmospheric carbon. The amount of PC exported out of the photic layer was a moderate fraction of primary production and a low fraction of the suspended PC; high chlorophyll a systems dominated by microphytoplankton showed higher PC export fluxes than low

  3. Modeled Differential Muon Flux Measurements for Monitoring Geological Storage of Carbon Dioxide

    Science.gov (United States)

    Coleman, M. L.; Naudet, C. J.; Gluyas, J.

    2012-12-01

    Recently, we published the first, theoretical feasibility study of the use of muon tomography to monitor injection of supercritical carbon dioxide into a geological storage reservoir for carbon storage (Kudryavtsev et al., 2012). Our initial concept showed that attenuation of the total muon downward flux, which is controlled effectively by its path-length and the density of the material through which it passes, could quantify the replacement in a porous sandstone reservoir of relatively dense aqueous brine by less dense supercritical carbon dioxide (specific gravity, 0.75). Our model examined the change in the muon flux over periods of about one year. However, certainly, in the initial stages of carbon dioxide injection it would be valuable to examine its emplacement over much shorter periods of time. Over a year there are small fluctuations of about 2% in the flux of high energy cosmic ray muons, because of changes in pressure and temperature, and therefore density, of the upper atmosphere (Ambrosio, 1997). To improve precision, we developed the concept of differential muon monitoring. The muon flux at the bottom of the reservoir is compared with the incident flux at its top. In this paper we present the results of three simulations. In all of them, as in our previous modeling exercise, we assume a 1000 sq. m total area of muon detectors, but in this case both above and below a 300 m thick sandstone bed, with 35% porosity, capped by shale and filled initially with a dense brine (specific gravity, 1.112). We assume high sweep efficiency, since supercritical CO2 and water are miscible, and therefore that 80% of the water will be replaced over a period of injection spanning 10 years. In the first two cases the top of the reservoir is at 1200 m and the overburden is either continuous shale or a 100m shale horizon beneath a sandstone aquifer, respectively. In the third case, which is somewhat analogous to the FutureGen 2.0 site in Illinois (FutureGen Industrial

  4. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocities of macroscopic organic aggregates (marine snow

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-05-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregate of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The calculated carbon remineralization length scale due to microbial respiration and sinking velocity of mm-large marine aggregates was higher for calcite ballasted aggregates as compared to opal-ballasted aggregates. It varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size.

  5. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Science.gov (United States)

    Iversen, M. H.; Ploug, H.

    2010-09-01

    Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted), Skeletonema costatum aggregates (opal ballasted), and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted). Overall average carbon-specific respiration rate was ~0.13 d-1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study) vary between 0.08 d-1 and 0.20 d-1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m-1 and 0.0030 m-1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  6. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  7. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocities of macroscopic organic aggregates (marine snow)

    Science.gov (United States)

    Iversen, M. H.; Ploug, H.

    2010-05-01

    Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material) and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted), Skeletonema costatum aggregates (opal ballasted), and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted). Overall average carbon-specific respiration rate was ~0.13 d-1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregate of different composition and sources. Compiled carbon-specific respiration rates (including this study) vary between 0.08 d-1 and 0.20 d-1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The calculated carbon remineralization length scale due to microbial respiration and sinking velocity of mm-large marine aggregates was higher for calcite ballasted aggregates as compared to opal-ballasted aggregates. It varied between 0.0002 m-1 and 0.0030 m-1, and decreased with increasing aggregate size.

  8. Compartment Syndrome Resulting from Carbon Monoxide Poisoning.

    Science.gov (United States)

    Serbest, Sancar; Belhan, Oktay; Gürger, Murat; Tosun, Haci Bayram

    2015-12-01

    Every year, especially in the cooler Fall and Winter months, hundreds of people die because of carbon monoxide poisoning. This occurs usually as an accident. It is a significant cause of poisoning worldwide. We present a case of compartment syndrome in both lower extremities with accompanying acute renal failure and systemic capillary leakage syndrome because of carbon monoxide poisoning. PMID:26588033

  9. Cryogenic disturbance and its impact on carbon fluxes in a subarctic heathland

    Science.gov (United States)

    Becher, Marina; Olofsson, Johan; Klaminder, Jonatan

    2015-11-01

    Differential frost heave, along with the associated cryogenic disturbance that accompanies it, is an almost universal feature of arctic landscapes that potentially influences the fate of the soil carbon (C) stored in arctic soils. In this study, we quantify how gross ecosystem photosynthesis (GEP), soil respiration (Re) and the resulting net ecosystem exchange (NEE) vary in a patterned ground system (non-sorted circles) at plot-scale and whole-patterned ground scales in response to cryogenic disturbances (differential heave and soil surface disruption). We found that: (i) all studied non-sorted circles (n = 15) acted as net CO2 sources (positive NEE); (ii) GEP showed a weaker decrease than Re in response to increased cryogenic disturbance/decreased humus cover, indicating that undisturbed humus-covered sites are currently the main source of atmospheric CO2 in the studied system. Interestingly, Re fluxes normalized to C pools indicated that C is currently respired more rapidly at sites exposed to cryogenic disturbances; hence, higher NEE fluxes at less disturbed sites are likely an effect of a more slowly degrading but larger total pool that was built up in the past. Our results highlight the complex effects of cryogenic processes on the C cycle at various time scales.

  10. Coherent mesoscopic transport through a quantum-dot embedded carbon nanotube ring threaded with magnetic flux

    International Nuclear Information System (INIS)

    We have investigated the coherent mesoscopic transport through a quantum-dot (QD) embedded carbon nanotube ring (CNR) by employing the nonequilibrium Green's function (NGF) technique. The Landauer-Buettiker-like formula is presented to calculate the differential conductance and current-voltage characteristics. Due to the interference of the electrons transporting in the two paths of CNR, the resultant conductivity of electron through the system is determined by the compound concrete structure of CNR-QD system. The tunneling current appears quantum behavior obviously in the small region of source-drain bias. The conductance is adjusted by the gate voltage Vg and the magnetic flux phi. The reversal resonance has been displayed versus the gate voltage, and it is symmetric about Vg for the type I CNR, but it is asymmetric for the type II CNR. The phase inverse oscillations are also presented for the different types of CNRs

  11. Coherent mesoscopic transport through a quantum-dot embedded carbon nanotube ring threaded with magnetic flux

    Science.gov (United States)

    Zhao, Hong-Kang; Wang, Jian

    2004-03-01

    We have investigated the coherent mesoscopic transport through a quantum-dot (QD) embedded carbon nanotube ring (CNR) by employing the nonequilibrium Green's function (NGF) technique. The Landauer-Büttiker-like formula is presented to calculate the differential conductance and current-voltage characteristics. Due to the interference of the electrons transporting in the two paths of CNR, the resultant conductivity of electron through the system is determined by the compound concrete structure of CNR-QD system. The tunneling current appears quantum behavior obviously in the small region of source-drain bias. The conductance is adjusted by the gate voltage Vg and the magnetic flux φ. The reversal resonance has been displayed versus the gate voltage, and it is symmetric about Vg for the type I CNR, but it is asymmetric for the type II CNR. The phase inverse oscillations are also presented for the different types of CNRs.

  12. Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea

    Science.gov (United States)

    Haese, Ralf R.; Meile, Christof; Van Cappellen, Philippe; De Lange, Gert J.

    2003-07-01

    Despite growing concerns about potential enhancement of global warming and slope failure by methane produced by gas hydrate dissociation, much uncertainty surrounds estimates of gas hydrate reservoir sizes, as well as methane fluxes and oxidation rates at the sea floor. For cold seep sediments of the eastern Mediterranean Sea, depth-dependent methane concentrations and rates of anaerobic oxidation of methane (AOM) are constrained by modeling the measured pore-water sulfate profile. The calculated dissolved methane distribution and flux are sensitive to the advective flow velocity, which is estimated from the depth distributions of conservative pore-water constituents (Na, B). Near-complete anaerobic oxidation of the upward methane flux of ˜6.0 mol m -2 yr -1 is supported by the depth distributions of indicative biomarkers, and the carbon isotopic compositions of organic matter and dissolved inorganic carbon. Pore-water and solid-phase data are consistent with a narrow depth interval of AOM, 14-18 cm below the sediment-water interface. Based on an isotopic mass balance, the biomass of the microbial population carrying out oxidation of methane coupled to sulfate reduction at the given methane flux represents ˜20% of the total organic carbon, which is a significant pool of in situ formed organic matter. Model results indicate that the asymptotic methane concentration is reached a few meters below the sediment surface. The predicted asymptotic concentration is close to the in situ saturation value with respect to gas hydrate, suggesting that the rate of shallow gas hydrate formation is controlled by the ascending methane flux. The proposed model approach can be used to predict the formation of gas hydrate, and to quantify methane fluxes plus transformation rates in surface sediments where fluid advection is an important transport mechanism.

  13. Multi-annual fluxes of carbon dioxide from an intensively cultivated temperate peatland

    Science.gov (United States)

    Cumming, Alex; Balzter, Heiko; Evans, Chris; Kaduk, Joerg; Morrison, Ross; Page, Susan

    2016-04-01

    East Anglia contains the largest continuous area of lowland fen peatlands in the United Kingdom (UK) which store vast quantities of terrestrial carbon (C) that have accrued over millennia. These long term C stores have largely been drained and converted for agricultural land use over the last 400 years due to their high agricultural production potential. Initial drainage of these peatlands leads to surface lowering and peat wastage. Prolonged exposure of carbon dense peat soils to oxygen through continued agricultural management results in sustained losses of carbon dioxide (CO₂) to the atmosphere. An increasing population in the UK has the potential to put further stress on these productive but rapidly diminishing Grade 1 agricultural land. Improving our understanding of land management impacts on CO₂ emissions from these soils is crucial to improving their longevity as an important store of C and as an economic resource. Our measurements at an intensively cultivated lowland peatland in Norfolk, UK, are the first multi-annual record using the micrometeorological eddy covariance (EC) technique to measure CO₂ fluxes associated with the production of horticultural salad crops. Three full years of flux measurements over leek (2013), lettuce (2014) and celery (2015) cropping systems found that the site was a net annual source of CO₂ with a net ecosystem exchange (NEE) of 6.59, 7.84 and 7.71 t C-CO₂ ha-1 a-1 respectively. The leek crop, with its longer growing period, had a lower annual NEE due to its long growth period from early spring through to late autumn, whereas the shorter growing periods of lettuce and celery meant their peak growth (CO₂ uptake, Gross Primary Productivity, GPP) took place during early/mid-summer with post-harvest weeds exploiting the later growing season but exhibited lower CO₂ assimilation than the leek crop. Periods of high CO₂ emissions from the soil to the atmosphere were measured during mechanical disruptions to the soils

  14. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    Science.gov (United States)

    Thaysen, E. M.; Jacques, D.; Jessen, S.; Andersen, C. E.; Laloy, E.; Ambus, P.; Postma, D.; Jakobsen, I.

    2014-12-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechanisms. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol C m-2 s-1, respectively, and grossly exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m-2 s-1. Plant biomass was high in the mesocosms as compared to a standard field situation. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one-third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Modeling suggested that increasing soil alkalinity during plant growth was due to nutrient buffering during root nitrate uptake.

  15. Carbon and nitrogen fluxes in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Naik, H.; DeSouza, W.; Narvekar, P.V.; Paropkari, A.L.; Bange, H.W.

    of 4 (Broecker and Peng, 1982) the annual particulate inorganic carbon (CaCO 3 ) exports from the surface layer would be 23 and 21 Tg for the continental margin and open ocean, respectively. Several recent studies have shown that the Arabian Sea is a... perennial source of CO 2 to the atmosphere due to warming of cold waters derived from depth. However, the upwelled waters also have high nutrient contents that stimulate plankton growth and consequent draw-down of CO 2 . Apparently the physical effect...

  16. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    in the meltwater pool during summer, associated with changes in temperature of the inflowing Atlantic Water, is found to give rise to variations in the annual cycle of fCO2s''w. During cold years, sea ice extends south of the polar front and melts in the Atlantic sector. This results in a reduced heating and earlier stratification of the surface water during summer, with the latter triggering a rapid and strong phytoplankton bloom. As a consequence, cold years are characterized by a stronger and shorter lived fCO2s''w drawdown during summer. However, significant differences are not found between the annual mean air-sea CO2 fluxes computed for cold and warm years. In this study, fCO2''s''w was calculated by applying an empirical relationship to a 23-year time series of apparent oxygen utilization, seawater temperature, salinity, and phosphate, which have been grouped into cold and warm years. The result was combined with data of atmospheric mole fraction of CO2 and wind speed to calculate the air-sea flux of CO2. Seasonal sea ice formation and subsequent brine rejection produce high density brine-enriched Shelf Water (BSW) in Storfjorden. It is shown that sea ice formation is accompanied by a seaward flux of atmospheric CO2 (paper III). This was inferred by using inorganic carbon and auxiliary hydrographic and nutrient data collected during four cruises from 1999 to 2002. The inferred flux is 12 times higher for the part of the fjord where open water and/or thin ice conditions prevail throughout the winter. By extrapolating this result to the entire Arctic Ocean, it is estimated that sea ice formation during winter can account for an uptake of atmospheric CO2 of around 50x 10''1''2 g C yr ''-''1. Further, it is speculated that changes in the areal extent of sea ice formation in the Arctic Ocean at the end of this century may triple this uptake. The mean winter time air-sea CO2 flux in the northern North Atlantic is found to be 0.1 G ton, with an interannual

  17. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    , changes in the meltwater pool during summer, associated with changes in temperature of the inflowing Atlantic Water, is found to give rise to variations in the annual cycle of fCO2s''w. During cold years, sea ice extends south of the polar front and melts in the Atlantic sector. This results in a reduced heating and earlier stratification of the surface water during summer, with the latter triggering a rapid and strong phytoplankton bloom. As a consequence, cold years are characterized by a stronger and shorter lived fCO2{sup s}''w drawdown during summer. However, significant differences are not found between the annual mean air-sea CO2 fluxes computed for cold and warm years. In this study, fCO2''s''w was calculated by applying an empirical relationship to a 23-year time series of apparent oxygen utilization, seawater temperature, salinity, and phosphate, which have been grouped into cold and warm years. The result was combined with data of atmospheric mole fraction of CO2 and wind speed to calculate the air-sea flux of CO2. Seasonal sea ice formation and subsequent brine rejection produce high density brine-enriched Shelf Water (BSW) in Storfjorden. It is shown that sea ice formation is accompanied by a seaward flux of atmospheric CO2 (paper III). This was inferred by using inorganic carbon and auxiliary hydrographic and nutrient data collected during four cruises from 1999 to 2002. The inferred flux is 12 times higher for the part of the fjord where open water and/or thin ice conditions prevail throughout the winter. By extrapolating this result to the entire Arctic Ocean, it is estimated that sea ice formation during winter can account for an uptake of atmospheric CO2 of around 50x 10''1''2 g C yr ''-''1. Further, it is speculated that changes in the areal extent of sea ice formation in the Arctic Ocean at the end of this century may triple this uptake. The mean winter time air-sea CO2

  18. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  19. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    OpenAIRE

    Zhu, Q.; Zhuang, Q.; D. Henze; Bowman, K.; M. Chen; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; W. Oechel

    2014-01-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestri...

  20. Understanding Climate Policy Data Needs. NASA Carbon Monitoring System Briefing: Characterizing Flux Uncertainty, Washington D.C., 11 January 2012

    Science.gov (United States)

    Brown, Molly E.; Macauley, Molly

    2012-01-01

    Climate policy in the United States is currently guided by public-private partnerships and actions at the local and state levels. This mitigation strategy is made up of programs that focus on energy efficiency, renewable energy, agricultural practices and implementation of technologies to reduce greenhouse gases. How will policy makers know if these strategies are working, particularly at the scales at which they are being implemented? The NASA Carbon Monitoring System (CMS) will provide information on carbon dioxide fluxes derived from observations of earth's land, ocean and atmosphere used in state of the art models describing their interactions. This new modeling system could be used to assess the impact of specific policy interventions on CO2 reductions, enabling an iterative, results-oriented policy process. In January of 2012, the CMS team held a meeting with carbon policy and decision makers in Washington DC to describe the developing modeling system to policy makers. The NASA CMS will develop pilot studies to provide information across a range of spatial scales, consider carbon storage in biomass, and improve measures of the atmospheric distribution of carbon dioxide. The pilot involves multiple institutions (four NASA centers as well as several universities) and over 20 scientists in its work. This pilot study will generate CO2 flux maps for two years using observational constraints in NASA's state-of -the-art models. Bottom-up surface flux estimates will be computed using data-constrained land and ocean models; comparison of the different techniques will provide some knowledge of uncertainty in these estimates. Ensembles of atmospheric carbon distributions will be computed using an atmospheric general circulation model (GEOS-5), with perturbations to the surface fluxes and to transport. Top-down flux estimates will be computed from observed atmospheric CO2 distributions (ACOS/GOSAT retrievals) alongside the forward-model fields, in conjunction with an

  1. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    Science.gov (United States)

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  2. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    Science.gov (United States)

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  3. Soil carbon dioxide fluxes of a typical broad-leaved/Korean pine mixed forest in Changbai Mountain, China

    Institute of Scientific and Technical Information of China (English)

    WANGChen-rui; WUJie; LIANGZhan-bei; HUANGGuo-hong

    2004-01-01

    The forest ecosystem plays an important role in the global carbon cycling. A study was conducted to evaluate soil CO2 flux and its seasonal and diurnal variation with the air and soil temperatures by using static closed chamber technique in a typical broad-leaved/Korean pine mixed forest area on the northern slope of Changbai Mountain, Jilin Province, China. The experiment was carried out through the day and night in the growing season (from June to September) in situ and sample gas was analyzed by a gas chromatograph. Results showed that the forest floor was a large net source of carbon, and soil CO2 fluxes had an obvious law of seasonal and diel variation. The soil CO2 flux of broad-leaved/Korean pine mixed forest was in the range of 0.30-2.42μmol·m-2·s-1 with the mean value of 0.98μmol·m-2·s-1. An examination on the seasonal pattern of soil CO2 emission suggested that the variability in soil CO2 flux could be correlated with variations in soil temperature, and the maximum of mean CO2 flux occurred in July ((1.27±23%)μmol·m-2·s-1) and the minimum was in September ((0.50±28%)μmol·m-2·s-1). The fluctuations in diel soil CO2 flux were also correlated with changes in soil temperature; however, there existed a factor for a time lag. Soil CO2 flux from the forest floor was strongly related to soil temperature and had the highest correlation with temperature at 6-cm depth of soil. Q10 values based on air temperature and soil temperature of different soil depths were at the ranges of 2.09 - 3.40.

  4. Impact of climatic change on ocean carbon fluxes. Role of the decadal variability

    International Nuclear Information System (INIS)

    Since the industrial revolution, oceans have absorbed roughly one quarter of the anthropogenic emissions of CO2, slowing down climate change. The evolution of the ocean carbon sink, paralleled to the anthropogenic CO2 emissions, is ruled by the CO2 as well as climate. Influence of atmospheric CO2 in the recent evolution of the ocean carbon sink is well understood whilst this is not the case for the climate's one. Indeed, some authors claim that the recent variations of the ocean CO2 sink can be attributed to climate change, whereas some others suggest that these latter are controlled by a decadal variability, which is poorly understood. In this thesis, we address question relative to the role of the decadal variability of the ocean carbon fluxes through the mean of numerical modeling. On one hand, we have demonstrated that ocean carbon fluxes exhibit decadal fluctuations within the high latitudes oceans. These fluctuations displays modes of 10 to 50-year long which account for 20 to 40% of the year-to-year variability. Thanks to Detection and Attribution methods applied to RECCAP project's reconstructions (1960-2005), we have then assessed whether the occurrence of fluctuations at decadal time scale could hamper the detection of the climate contribution to the recent evolution of ocean carbon fluxes. We have shown that the climate contribution is indeed not detected in the high latitude oceans due to the presence of decadal mode of variability. In the low latitude oceans instead, the weaker fluctuations of ocean carbon fluxes at decadal time scale favor the detection of climate influence in the recent variations of the CO2 fluxes. (author)

  5. Dissolved and particulate organic carbon fluxes from an agricultural watershed during consecutive tropical storms

    Science.gov (United States)

    Caverly, Emma; Kaste, James M.; Hancock, Gregory S.; Chambers, Randolph M.

    2013-10-01

    Low-frequency high-magnitude hydrologic events mobilize a disproportionate amount of dissolved organic carbon (DOC) from watersheds, but few studies measure the role of extreme storms in exporting organic carbon from croplands. We use high-resolution measurements of storm runoff to quantify DOC and particulate organic carbon (POC) fluxes from an agricultural field during consecutive tropical storms that delivered 41 cm of rainfall to the Virginia Coastal Plain. Over a 2 week period, we measured exports of 22 kg DOC ha-1 and 11.3 kg POC ha-1. Ultraviolet absorbance measurements indicate that the aromatic DOC fraction systematically increased as plant-derived aliphatic carbon was depleted during the initial event. Croplands can have event-scale carbon losses that equal or exceed published estimates of annual export for perennial streams draining forested and mixed land use watersheds. We quantify aromatic DOC fractions approaching 50%, indicating that agricultural stormflow can produce a significant load of relatively photoreactive carbon.

  6. Carbon, Water and Heat Fluxes Comparison between Two Subtropical Mangroves Sites, Southeastern China

    Science.gov (United States)

    Liu, F.; Lin, G., Sr.; Lu, W.; Chen, H.

    2014-12-01

    Due to the numerous ecological services provided by mangroves and its vital ecological role, the monitor of mangrove ecosystem in China receives a growing concern. We deployed eddy covariance system and meteorological instrument to continuously monitor the exchange of CO2 flux, water vapor, heat flux and meteorological factors of mangrove ecosystem on Guangdong and Fujian province in 2012, namely GDGQ and FJYX. The major species of two sites were similar, and by 2012 were on average 2.8~3.3 m in height. Climatically, temperature, net radiation and rainfall have significant seasonal difference, all reaching peak values during the summer wet season. Based on the results available, two sites were strong carbon sink in annual scale. The cumulative NEP in GDGQ (667.92 g C m-2 year-1) was lower than that in FJYX (848.31 g C m-2 year-1), but respiration (Rd) was opposite, 1433.80 g C m-2 year-1 for GDGQ and 1345.13 g C m-2 year-1 for FJYX. Tidal inundation decreased nighttime Rd by ~0.82 μ mol m-2 s-1 in GDGQ and ~0.99 μ mol m-2 s-1 in FJYX. The diurnal patterns of sensible (Hs) and latent heat fluxes (LE) of two sites were both single peak, and peak values both occurred at 12:00~14:00. Hs of GDGQ was higher than FJYX during nighttime and lower in daytime, but LE of GDGQ was lower than FJYX during nighttime. Evapotranspiration (ET) of two sites presented similar seasonal pattern, reaching highest value in July and lowest value in January. ET of whole year were 892.66 mm and 1051.76mm for GDGQ and FJYX. Daily WUE was strong negatively correlated to salinity in in FJYX, but the pattern of GDGQ was less distinct. Due to its high salinity stress and long-time inundation, water use efficiency (WUE) of GDGQ was higher than FJYX in all months. Soil heat flux (G) was quite small when compared to other heat flux, but both had obvious diurnal pattern in two sites. G was positively correlated to air temperature and G variation range of GDGQ (-8.68 ~5.51 w m-2) was greater than

  7. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models

    Directory of Open Access Journals (Sweden)

    M. Vetter

    2008-04-01

    Full Text Available Globally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic. We address the following questions: (1 how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002 and to longer-term variations in annual fluxes (1980 to 2005, (2 which European regions exhibited the largest changes in carbon fluxes during the growing season 2003, and (3 which ecosystem processes controlled the carbon balance anomaly .

    In most models the prominence of 2003 anomaly in carbon fluxes declined with lengthening of the reference period from one year to 16 years. The 2003 anomaly for annual net carbon fluxes ranged between 0.35 and –0.63 Pg C for a reference period of one year and between 0.17 and –0.37 Pg C for a reference period of 16 years for the whole Europe.

    In Western and Central Europe, the anomaly in simulated net ecosystem productivity (NEP over the growing season in 2003 was outside the 1σ variance bound of the carbon flux anomalies for 1980–2005 in all models. The estimated anomaly in net carbon flux ranged between –42 and –158 Tg C for Western Europe and between 24 and –129 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. In contrast, lower than normal temperatures and higher air humidity decreased NEP over Northeastern Europe. While models agree on the sign of changes in

  8. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought

    Science.gov (United States)

    Bowling, David R.; Bethers-Marchetti, S.; Lunch, C.K.; Grote, E.E.; Belnap, J.

    2010-01-01

    The net exchanges of carbon dioxide, water vapor, and energy were examined in a perennial Colorado Plateau grassland for 5 years. The study began within a multiyear drought and continued as the drought ended. The grassland is located near the northern boundary of the influence of the North American monsoon, a major climatic feature bringing summer rain. Following rain, evapotranspiration peaked above 8 mm d-1 but was usually much smaller (2-4 mm d-1). Net productivity of the grassland was low compared to other ecosystems, with peak hourly net CO2 uptake in the spring of 4 (mu or u)mol m-2 s-1 and springtime carbon gain in the range of 42 + or - 11 g C m-2 (based on fluxes) to 72 + or - 55 g C m-2 (based on carbon stocks; annual carbon gain was not quantified). Drought decreased gross ecosystem productivity (GEP) and total ecosystem respiration, with a much larger GEP decrease. Monsoon rains led to respiratory pulses, lasting a few days at most, and only rarely resulted in net CO2 gain, despite the fact that C4 grasses dominated plant cover. Minor CO2 uptake was observed in fall following rain. Spring CO2 uptake was regulated by deep soil moisture, which depended on precipitation in the prior fall and winter. The lack of CO2 uptake during the monsoon and the dependence of GEP on deep soil moisture are in contrast with arid grasslands of the warm deserts. Cold desert grasslands are most likely to be impacted by future changes in winter and not summer precipitation.

  9. Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation

    Directory of Open Access Journals (Sweden)

    Y. Song

    2013-06-01

    Full Text Available Worldwide expansion of agriculture is impacting Earth's climate by altering the carbon, water and energy fluxes, but climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM. In particular, we implement crop specific phenology schemes, which account for light, water, and nutrient stresses while allocating the assimilated carbon to leaf, root, stem and grain pools; dynamic vegetation structure growth, which better simulate the LAI and canopy height; dynamic root distribution processes in the soil layers, which better simulate the root response of soil water uptake and transpiration; and litter fall due to fresh and old dead leaves to better represent the water and energy interception by both stem and brown leaves of the canopy during leaf senescence. Observational data for LAI, above and below ground biomass, and carbon, water and energy fluxes were compiled from two Ameri-Flux sites, Mead, NE and Bondville, IL, to calibrate and evaluate the model performance under corn (C4-soybean (C3 rotation system over the period 2001–2004. The calibrated model was able to capture the diurnal and seasonal patterns of carbon assimilation, water and energy fluxes under the corn-soybean rotation system at these two sites. Specifically, the calculated GPP, net radiation fluxes at the top of canopy and latent heat fluxes compared well with observations. The largest bias in model results is in sensible heat flux (H for corn and soybean at both sites. With dynamic carbon allocation and root distribution processes, model simulated GPP and latent heat flux (LH were in much better agreement with observation data than for the without dynamic case. Modeled latent heat improved by 12–27% during the growing season at both sites, leading to the improvement in

  10. Carbon Fluxes in a sub-arctic tundra undergoing permafrost degradation

    Science.gov (United States)

    Bracho, R. G.; Webb, E.; Mauritz, M.; Schuur, E. A. G.

    2014-12-01

    As an effect of climate change, temperatures in high latitude regions are increasing faster than in the rest of the world and future projections indicate it will increase between 7°C and 8°C by the end of the 21st century. Permafrost soils store around 1700 Pg of Carbon (C), which is approximately the amount of C stored in terrestrial vegetation and in the atmosphere combined. Sustained warming induces permafrost thaw, leads to a thicker seasonal active layer, and creates subsided patches in the landscape. Carbon that was previously inaccessible to decomposition is thus exposed, increasing the likelihood of positive feedback of CO2 to the atmosphere. We measured C fluxes (Net ecosystem carbon flux, NEE, and Ecosystem respiration, Re) using the eddy covariance approach in a tundra landscape (Eight Mile Lake Watershed, Alaska) undergoing permafrost degradation from the beginning of the growing season in 2008 and throughout most winters until May 2014. This interval encompassed a range of climatic variability that included a deviation of ± 50% from the long term average in growing season precipitation. Active layer depth (thaw depth at the end of the growing season) and subsidence in the footprint were used as indicators of permafrost degradation. Results indicate that annual NEE ranged from a sink of 0.76 MgC ha-1 yr-1 to a source of 0.55 MgC ha-1 yr-1. NEE during the growing seasons fluctuated from 1.1 to 1.8 MgC ha-1 season-1 in net C uptake. Annual NEE was strongly affected by winter Re, which represented between 33% and 45% of the annual value regardless of of the large drop in both air and soil temperature. Parameters from the light response curve (optimum NEE, NEEopt and quantum yield, α) showed a seasonal and interannual variability and were different between the most and least degraded sites in the footprint, which affected the magnitude of the carbon cycle and may have implications for landscape C balance in sub-arctic tundra.

  11. Decadal trends of ocean and land carbon fluxes from a regional joint ocean-atmosphere inversion

    Science.gov (United States)

    Steinkamp, K.; Gruber, N.

    2015-12-01

    From 1980 until 2010, the combined CO2 sink strengths of ocean and land increased by nearly 50% (-0.55 Pg C yr-1 decade-1), but the spatial distribution of this trend is not well known. We address this by performing a joint cyclostationary ocean-atmosphere inversion for the three decades 1980-1989, 1990-1999, and 2000-2008, using only carbon data from the ocean and atmosphere as constraints, i.e., without applying any prior information about the land fluxes. We find that in the inversion, most of the 30 year sink trend stems from the ocean (-0.44 Pg C yr-1 decade-1). The contribution of the terrestrial biosphere is commensurably smaller but has more decadal variability. First, the land sink strength intensified in the 1990s by 0.4 (±0.3) Pg C yr-1 compared to the 1980s but then weakened slightly by 0.2 (±0.4) Pg C yr-1 in the 2000s. The different land regions contributed very variedly to these global trends. While the northern extratropical land acted as an increasing carbon sink throughout the examined period primarily driven by boreal regions, the tropical land is estimated to have acted as an increasing source of CO2, with source magnitude and trend dominated by enhanced release in tropical America during the Amazon mean wet season. This pattern is largely unchanged if the oceanic inversion constraint, which is based on a stationary ocean circulation, is replaced by an estimate based on simulation results from an ocean biogeochemical general circulation model that includes year-to-year variability in the air-sea CO2 fluxes and also has a trend (-0.07 Pg C yr-1 decade-1) that is at the very low end of current estimates. However, the land/ocean partitioning of the trend contribution is adjusted accordingly. Oceanic carbon data has a major impact on carbon exchange for all tropical regions and southern Africa but also for observationally better constrained regions in North America and temperate Asia. The European trend exhibits a strong sensitivity to the choice

  12. Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion

    Science.gov (United States)

    Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation input control leaf- and ecosystem scale carbon fluxes within a pair of semiarid shrublands that had undergone woo...

  13. Recycling and fluxes of carbon gases in a stratified boreal lake following experimental carbon addition

    Directory of Open Access Journals (Sweden)

    H. Nykänen

    2014-11-01

    Full Text Available Partly anoxic stratified humic lakes are important sources of methane (CH4 and carbon dioxide (CO2 to the atmosphere. We followed the fate of CH4 and CO2 in a small boreal stratified lake, Alinen Mustajärvi, during 2007–2009. In 2008 and 2009 the lake received additions of dissolved organic carbon (DOC with stable carbon isotope ratio (δ13C around 16‰ higher than that of local allochthonous DOC. Carbon transformations in the water column were studied by measurements of δ13C of CH4 and of the dissolved inorganic carbon (DIC. Furthermore, CH4 and CO2 production, consumption and emissions were estimated. Methane oxidation was estimated by a diffusion gradient method. The amount, location and δ13C of CH4-derived biomass and CO2 in the water column were estimated from the CH4 oxidation pattern and from measured δ13C of CH4. Release of CH4 and CO2 to the atmosphere increased during the study. Methane production and almost total consumption of CH4 mostly in the anoxic water layers, was equivalent to the input from primary production (PP. δ13C of CH4 and DIC showed that hydrogenotrophic methanogenesis was the main source of CH4 to the water column, and methanogenic processes in general were the reasons for the 13C-enriched DIC at the lake bottom. CH4 and DIC became further 13C-enriched in the anoxic layer of the water column during the years of DOC addition. Even gradient diffusion measurements showed active CH4 oxidation in the anoxic portion of the water column; there was no clear 13C-enrichment of CH4 as generally used to estimate CH4 oxidation strength. Increase in δ13C-CH4 was clear between the metalimnion and epilimnion where the concentration of dissolved CH4 and the oxidation of CH4 were small. Thus, 13C-enrichment of CH4 does not reveal the main location of methanotrophy in a lake having simultaneous anaerobic and aerobic oxidation of CH4. Overall the results show that organic carbon is processed efficiently to CH4 and CO2 and

  14. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    Science.gov (United States)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application

  15. Integrating flux, satellite, and proximal optical data for an improved understanding of ecosystem carbon uptake

    Science.gov (United States)

    Gamon, J. A.; Huemmrich, K. F.; Garrity, S. R.

    2015-12-01

    The different scales and methods of satellite observations and flux measurements present challenges for data integration that can be partly addressed by the addition of scale-appropriate optical sampling. Proximal optical measurement facilitates experimental approaches that can inform upscaling, satellite validation, and lead to better understanding of controls on carbon fluxes and other ecosystem processes. Using the framework of the light-use efficiency model, this presentation will review efforts to explore the controls on ecosystem-atmosphere carbon fluxes using a variety of novel optical sensors and platforms. Topics of appropriate sampling methodology, scaling and data aggregation will also be considered, with examples of how information content and interpretation of optical data can be scale-dependent. Key challenges include informatics solutions that handle large, multi-dimensional data volumes and contextual information, including information about sampling protocols and scale. Key opportunities include the assessment of vegetation functional diversity with optical sensors.

  16. Improving SWAT for simulating water and carbon fluxes of forest ecosystems.

    Science.gov (United States)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. PMID:27401278

  17. High heat flux actively cooled plasma facing components development, realisation and first results in Tore Supra

    International Nuclear Information System (INIS)

    The development, design, manufacture and testing of actively cooled high heat flux (HHF) plasma facing components (PFCs) has been an essential part of the Tore Supra programme towards long powerful tokamak operation. The Tore Supra PFC programme has culminated in the installation and operation of a toroidal pump limiter, since 2002, which already allowed to reach new world records in steady state operation (1 GJ injected in a 6 min discharge). The HHF PFCs development and manufacturing was achieved through a long lead development and industrialisation programme (about 10 years) marked out with a number of challenges. The major technical topics cope with bonding technology analysis involving an adequate material selection and procurement, repair processes development and implementation, development of destructive and non-destructive testing methods, and more generally industrialisation assessment. All these lessons are relevant to the ITER divertor PFCs manufacturing, although the technical solution adopted for Tore Supra (flat tiles concept) is different from the one proposed for the ITER divertor (monoblock concept). The routine operation of the actively cooled toroidal pumped limiter (TPL), capable to sustain up to 10 MW m-2 of nominal convected heat flux, is described. Up to now, the limiter fulfills its objectives in terms of heat exhaust. However, the thermographic monitoring exhibits unexpected behavior of the surface temperature. Particle exhaust control displays a complex pattern, due to the high fraction of the injected deuterium, which remains in the wall. The first experimental results with a full actively cooled wall gives access to ITER relevant information on wall conditioning, hydrogen plasma density and vacuum vessel inventory control, carbon erosion and redeposition and capability of in situ monitoring in a completely actively cooled environment

  18. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  19. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL

    Science.gov (United States)

    Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.

    2008-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.

  20. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  1. Evaluating the potential of large scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network

    Directory of Open Access Journals (Sweden)

    M. Balzarolo

    2013-07-01

    Full Text Available Understanding and simulating land biosphere processes happening at the interface between plants and atmosphere are important research activities with operational applications for monitoring and predicting seasonal and inter-annual variability of terrestrial carbon fluxes in connection to a changing climate. This paper reports a comparison between three different Land Surface Models (LSMs, ORCHIDEE, ISBA-A-gs and CTESSEL used in the Copernicus-Land project precursor, forced with the same meteorological data, and compared with the carbon fluxes measured at 32 Eddy Covariance (EC flux tower sites in Europe. The results show that the three models have the best performance for forest sites and the poorest performance for cropland and grassland sites. In addition, the three models have difficulties capturing the seasonality of Mediterranean and Sub-tropical biomes, characterized by dry summers. This reduced simulation performance is also reflected in deficiencies in diagnosed Light Use Efficiency (LUE and Vapour Pressure Deficit (VPD dependencies compared to observations. Shortcomings in the forcing data may also play a role. These results indicate that more research is needed on the LUE and VPD functions for Mediterranean and Sub-tropical biomes. Finally, this study highlights the importance well representing phenology (i.e. Leaf Area evolution and management (i.e. rotation/irrigation for cropland, and grazing/harvesting for grassland to simulate the carbon dynamics of European ecosystems and the importance of ecosystem level observation in models development and validation.

  2. The effect of typhoon on particulate organic carbon flux in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2010-10-01

    Full Text Available Severe tropical storms play an important role in triggering phytoplankton blooms, but the extent to which such storms influence biogenic carbon flux from the euphotic zone is unclear. In 2008, typhoon Fengwong provided a unique opportunity to study the in situ biological responses including phytoplankton blooms and particulate organic carbon fluxes associated with a severe storm in the southern East China Sea (SECS. After passage of the typhoon, the sea surface temperature (SST in the SECS was markedly cooler (∼25 to 26 °C than before typhoon passage (∼28 to 29 °C. The POC flux 5 days after passage of the typhoon was 265 ± 14 mg C m−2 d−1, which was ∼1.7-fold that (140–180 mg C m−2 d−1 recorded during a period (June–August, 2007 when no typhoons occurred. A somewhat smaller but nevertheless significant increase in POC flux (224–225 mg C m−2 d−1 was detected following typhoon Sinlaku which occurred approximately 1 month after typhoon Fengwong, indicating that typhoon events can increase biogenic carbon flux efficiency in the SECS. Remarkably, phytoplankton uptake accounted for only about 5% of the nitrate injected into the euphotic zone by typhoon Fengwong. It is likely that phytoplankton population growth was constrained by a combination of light limitation and grazing pressure. Modeled estimates of new/export production were remarkably consistent with the average of new and export production following typhoon Fengwong. The same model suggested that during non-typhoon conditions approximately half of the export of organic carbon occurs via convective mixing of dissolved organic carbon, a conclusion consistent with earlier work at comparable latitudes in the open ocean.

  3. The effect of typhoon on particulate organic carbon flux in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Hung

    2010-05-01

    Full Text Available Severe tropical storms play an important role in triggering phytoplankton blooms, but the extent to which such storms influence carbon flux from the euphotic zone is unclear. In 2008, typhoon Fengwong provided a unique opportunity to study the in situ biological responses including phytoplankton blooms and particulate organic carbon fluxes associated with a severe storm in the southern East China Sea (SECS. After passage of the typhoon, the sea surface temperature (SST in the SECS was markedly cooler (~25 to 26 °C than before typhoon passage (~28 to 29 °C. The POC flux 5 days after passage of the typhoon was 265 ± 14 mg-C m−2 d−1, which was ~1.7-fold that (140–180 mg-C m−2 d−1 recorded during a period (June–August, 2007 when no typhoons occurred. A somewhat smaller but nevertheless significant increase in POC flux (224–265 mg-C m−2 d−1 was detected following typhoon Sinlaku which occurred approximately 1 month after typhoon Fengwong, indicating that typhoon events can increase biogenic carbon flux efficiency in the SECS. Remarkably, phytoplankton uptake accounted for only about 5% of the nitrate injected into the euphotic zone by typhoon Fengwong and it is likely that phytoplankton population growth was presumably constrained by a combination of light limitation and grazing pressure. Modeled estimates of new/export production were remarkably consistent with the average of new and export production following typhoon Fengwong. The same model suggested that during non-typhoon conditions approximately half of the export of organic carbon occurs via convective mixing of dissolved organic carbon, a conclusion consistent with earlier work at comparable latitudes in the open ocean.

  4. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm

    Energy Technology Data Exchange (ETDEWEB)

    Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Trumbore, Susan E. [University of California, Irvine; Swanston, Christopher W. [USFS; Todd Jr, Donald E [ORNL

    2009-01-01

    The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms were placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.

  5. A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, H G; In, J; Kim, S; Fornasiero, F; Holt, J K; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-14

    We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material, as well as high permeability attributed to embedded carbon nanotubes. These membranes have a potential for applications that may require high flux, flexibility and durability.

  6. Carbon Fluxes Between the Atmosphere, Terrestrial, and River Systems Across a Glacier-Dominated Landscape in Southcentral Alaska

    Science.gov (United States)

    Zulueta, R. C.; Welker, J. M.; Tomco, P. L.

    2011-12-01

    The coastal Gulf of Alaska region is experiencing rapid and accelerating changes due to local and regional warming. Predicted high latitude warming may result in rapid recession of glaciers with subsequent changes in river discharge, nutrient fluxes into the rivers, shifts in landscape vegetation cover, and altered CO2 fluxes affecting the regional carbon balance. As glaciers recede an increase in glacier-dominated river discharge and a change in seasonality of the river discharge are expected. Recently deglaciated landscapes will, over time, be occupied by a succession of vegetation cover that are likely to alter the fluxes of carbon both between the atmosphere and terrestrial ecosystems, and between terrestrial ecosystems and stream and river systems. As the landscape evolves from deglaciated forelands it is expected that there is low to no CO2 fluxes between the atmosphere and the recently deglaciated landscape, as well as dissolved organic and inorganic carbon inputs into rivers and streams. These recently deglaciated landscapes will transition to early successional plant species and on towards mature spruce forests. Each transitional terrestrial ecosystem will have different carbon cycling between the atmosphere, terrestrial, and aquatic systems until the mature spruce forests which is expected to have high carbon uptake and sequestration as well as increased inputs of dissolved organic and inorganic carbon into the rivers and streams. A new research project was initiated in the summer of 2011 focusing on glacier-dominated landscapes within the Wrangell-St. Elias National Park and Preserve in southcentral Alaska with the objective to quantify how the transition from deglaciated forelands to mature spruce forests (a successional sequence) alters the patterns and magnitudes of CO2 exchange, the dissolved carbon inputs from terrestrial to aquatic systems and the extent to which these are manifested due to changes in glacier coverage. We seek to examine present

  7. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Cropley, Ford;

    2015-01-01

    The main aim of this paper is to study land-atmosphere exchange of carbon dioxide (CO2) for semi-arid savanna ecosystems of the Sahel region and its response to climatic and environmental change. A subsidiary aim is to study and quantify the seasonal dynamics in light use efficiency (ε) being a key...... variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature...... (C) MJ-1 for the dry season and 2.27gCMJ-1 for the peak of the rainy season, and its seasonal dynamics was governed by vegetation phenology, photosynthetically active radiation, soil moisture and vapor pressure deficit (VPD). The CO2 exchange fluxes were very high in comparison to other semi...

  8. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    Science.gov (United States)

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. PMID:26668087

  9. Sediment-water column fluxes of carbon, oxygen and nutrients in Bedford Basin, Nova Scotia, inferred from 224Ra measurements

    Directory of Open Access Journals (Sweden)

    E. Horne

    2013-01-01

    Full Text Available Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ, based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC, nutrients and oxygen (O2, across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.

  10. Food webs and carbon flux in the Barents Sea

    Science.gov (United States)

    Wassmann, Paul; Reigstad, Marit; Haug, Tore; Rudels, Bert; Carroll, Michael L.; Hop, Haakon; Gabrielsen, Geir Wing; Falk-Petersen, Stig; Denisenko, Stanislav G.; Arashkevich, Elena; Slagstad, Dag; Pavlova, Olga

    2006-10-01

    Within the framework of the physical forcing, we describe and quantify the key ecosystem components and basic food web structure of the Barents Sea. Emphasis is given to the energy flow through the ecosystem from an end-to-end perspective, i.e. from bacteria, through phytoplankton and zooplankton to fish, mammals and birds. Primary production in the Barents is on average 93 g C m -2 y -1, but interannually highly variable (±19%), responding to climate variability and change (e.g. variations in Atlantic Water inflow, the position of the ice edge and low-pressure pathways). The traditional focus upon large phytoplankton cells in polar regions seems less adequate in the Barents, as the cell carbon in the pelagic is most often dominated by small cells that are entangled in an efficient microbial loop that appears to be well coupled to the grazing food web. Primary production in the ice-covered waters of the Barents is clearly dominated by planktonic algae and the supply of ice biota by local production or advection is small. The pelagic-benthic coupling is strong, in particular in the marginal ice zone. In total 80% of the harvestable production is channelled through the deep-water communities and benthos. 19% of the harvestable production is grazed by the dominating copepods Calanus finmarchicus and C. glacialis in Atlantic or Arctic Water, respectively. These two species, in addition to capelin ( Mallotus villosus) and herring ( Clupea harengus), are the keystone organisms in the Barents that create the basis for the rich assemblage of higher trophic level organisms, facilitating one of the worlds largest fisheries (capelin, cod, shrimps, seals and whales). Less than 1% of the harvestable production is channelled through the most dominating higher trophic levels such as cod, harp seals, minke whales and sea birds. Atlantic cod, seals, whales, birds and man compete for harvestable energy with similar shares. Climate variability and change, differences in recruitment

  11. Particle flux and temperature dependence of carbon impurity production from an inertially-cooled limiter in tore supra

    International Nuclear Information System (INIS)

    A visible endoscope system and an infrared camera system have been used to study the flux of carbon from an inertially-cooled graphite limiter in Tore Supra. From the variation in the carbon flux with plasma parameters new data have been obtained describing the dependence of radiation enhanced sublimation (RES) and chemical sputtering on incident ion flux. Other characteristics of RES under plasma operation conditions have also been studied. The dependence of RES on incident deuterium particle flux density is found to be in reasonable agreement with the expected particle flux scaling over a range of particle fluxes varying by a factor ∼ 25, extending the present scaling to higher flux density values. Chemical sputtering has been observed, but only in regions of the limiter with low incident deuterium fluxes. Values inferred for the chemical sputtering yield are similar to those measured with a temperature controlled test limiter in Textor. (author)

  12. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  13. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    Science.gov (United States)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.

    2016-05-01

    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  14. CO2 and CH4 fluxes and carbon balance in the atmospheric interaction of boreal peatlands

    International Nuclear Information System (INIS)

    Release of CO2 from peat was studied using IR analyzer in a range of boreal peatlands under varying nutrient status and moisture conditions. Root associated CO2 efflux was separated from the total release by experiments both in the field and in a greenhouse. Emissions of CO2 and CH4 (the latter by gas chromatography) were measured during the snow-covered period and their contribution to the annual fluxes of these gases was inspected. Ecosystem exchange of CO2 under varying irradiation, temperature and moisture conditions was measured at different microsites at two peatland sites with different nutrient ecology. One site represented minerotrophic conditions during a wet growing season and the other site ombrotrophic conditions during an exceptionally dry growing season. Annual carbon balances were compiled for the two sites, and the role of the microsites in the annual carbon balance and CH4 release was studied. The Holocene history of CO2 sequestration and CH4 emission dynamics in a raised mire were simulated using lateral and vertical growth rates derived from radiocarbon ages of peat samples from mire bottom and vertical cores. The model was formulated for a geographic information system (GIS). Artificial or natural lowering of water table increased CO2 release from peat. A drought lasting from late May to July caused a 90 g C m2 net loss in the annual C balance of a natural ombrotrophic bog. In drained forested sites the increase in peat CO2 release could be even 100 %, but the development of the tree layer at least partially compensated for these losses. Wet conditions induced a net accumulation of 67 g C m-2a-1 in the minerotrophic fen site, while the long term average accumulation rate is estimated to be only 15 g C m-2a-1 for Finnish fens. Carbon balance in boreal peatlands is thus extremely sensitive to year-to-year climatic variations. Root activity of vascular plants contributed to the total peat CO2 efflux by 10-40 % as root respiration and root

  15. Metabolic Fluxes in Corynebacterium glutamicum during Lysine Production with Sucrose as Carbon Source

    OpenAIRE

    Wittmann, Christoph; Kiefer, Patrick; Zelder, Oskar

    2004-01-01

    Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively hig...

  16. Regional Mapping of Coupled Fluxes of Carbon and Water Using Multi-Sensor Fusion Techniques

    Science.gov (United States)

    Schull, M. A.; Anderson, M. C.; Semmens, K. A.; Yang, Y.; Gao, F.; Hain, C.; Houborg, R.

    2014-12-01

    In an ever-changing climate there is an increasing need to measure the fluxes of water, energy and carbon for decision makers to implement policies that will help mitigate the effects of climate change. In an effort to improve drought monitoring, water resource management and agriculture assessment capabilities, a multi-scale and multi-sensor framework for routine mapping of land-surface fluxes of water and energy at field to regional scales has been established. The framework uses the ALEXI (Atmosphere Land Exchange Inverse)/DisALEXI (Disaggregated ALEXI) suite of land-surface models forced by remotely sensed data from Landsat, MODIS (MODerate resolution Imaging Spectroradiometer), and GOES (Geostationary Operational Environmental Satellite). Land-surface temperature (LST) can be an effective substitute for in-situ surface moisture observations and a valuable metric for constraining land-surface fluxes at sub-field scales. The adopted multi-scale thermal-based land surface modeling framework facilitates regional to local downscaling of water and energy fluxes by using a combination of shortwave reflective and thermal infrared (TIR) imagery from GOES (4-10 km; hourly), MODIS (1 km; daily), and Landsat (30-100 m; bi-weekly). In this research the ALEXI/DisALEXI modeling suite is modified to incorporate carbon fluxes using a stomatal resistance module, which replaces the Priestley-Taylor latent heat approximation. In the module, canopy level nominal light-use-efficiency (βn) is the parameter that modulates the flux of water and carbon in and out of the canopy. Leaf chlorophyll (Chl) is a key parameter for quantifying variability in photosynthetic efficiency to facilitate the spatial distribution of coupled carbon and water retrievals. Spatial distribution of Chl are retrieved from Landsat (30 m) using a surface reflectance dataset as input to the REGularized canopy reFLECtance (REGFLEC) tool. The modified ALEXI/DisALEXI suite is applied to regions of rain fed and

  17. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera

    OpenAIRE

    Ruiz-Halpern, Sergio; Vaquer-Sunyer, Raquel; Duarte, Carlos M.

    2014-01-01

    Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport, and fate of organic carbon (OC) is relevant to gain a better understanding on the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated OC fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the OC pool and associated fluxes in this ecosyst...

  18. [Net CO2 exchange and carbon isotope flux in Acacia mangium plantation].

    Science.gov (United States)

    Zou, Lu-Liu; Sun, Gu-Chou; Zhao, Ping; Cai, Xi-An; Zeng, Xiao-Ping; Wang, Quan

    2009-11-01

    By using stable carbon isotope technique, the leaf-level 13C discrimination was integrated to canopy-scale photosynthetic discrimination (Deltacanopy) through weighted the net CO2 assimilation (Anet) of sunlit and shaded leaves and the stand leaf area index (L) in an A. mangium plantation, and the carbon isotope fluxes from photosynthesis and respiration as well as their net exchange flux were obtained. There was an obvious diurnal variation in Deltacanopy, being lower at dawn and at noon time (18.47 per thousand and 19.87 per thousand, respectively) and the highest (21.21 per thousand) at dusk. From the end of November to next May, the Deltacanopy had an increasing trend, with an annual average of (20.37 +/- 0.29) per thousand. The carbon isotope ratios of CO2 from autotrophic respiration (excluding daytime foliar respiration) and heterotrophic respiration were respectively (- 28.70 +/- 0.75) per thousand and (- 26.75 +/- 1.3) per thousand in average. The delta13 C of nighttime ecosystem-respired CO2 in May was the lowest (-30.14 per thousand), while that in November was the highest (-28.01 per thousand). The carbon isotope flux of CO2 between A. mangium forest and atmosphere showed a midday peak of 178.5 and 217 micromol x m(-2) x s(-1) x per thousand in May and July, with the daily average of 638.4 and 873.2 micromol x m(-2) x s(-1) x per thousand, respectively. The carbon isotope flux of CO2 absorbed by canopy leaves was 1.6-2.5 times higher than that of CO2 emitted from respiration, suggesting that a large sum of CO2 was absorbed by A. mangium, which decreased the atmospheric CO2 concentration and improved the environment. PMID:20135988

  19. Carbon Flux of Down Woody Materials in Forests of the North Central United States

    International Nuclear Information System (INIS)

    Across large scales, the carbon (C) flux of down woody material (DWM) detrital pools has largely been simulated based on forest stand attributes (e.g., stand age and forest type). The annual change in forest DWM C stocks and other attributes (e.g., size and decay class changes) was assessed using a forest inventory in the north central United States to provide an empirical assessment of strategic-scale DWM C flux. Using DWM inventory data from the USDA Forest Service's Forest Inventory and Analysis program, DWM C stocks were found to be relatively static across the study region with an annual flux rate not statistically different from zero. Mean C flux rates across the study area were -0.25, -0.12, -0.01, and -0.04 (Mg/ha/yr) for standing live trees, standing dead trees, coarse woody debris, and fine woody debris, respectively. Flux rates varied in their both magnitude and status (emission/sequestration) by forest types, latitude, and DWM component size. Given the complex dynamics of DWM C flux, early implementation of inventory re measurement, and relatively low sample size, numerous future research directions are suggested.

  20. The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

    Directory of Open Access Journals (Sweden)

    X. Xu

    2002-01-01

    Full Text Available Turbulent fluxes of carbonyl sulfide (COS and carbon disulfide (CS2 were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are  -93 ± 11.7 pmol m-2 s-1 and  -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol m mol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1.

  1. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000

    International Nuclear Information System (INIS)

    Recent analyses of land-use change in the US and China, together with the latest estimates of tropical deforestation and afforestation from the FAO, were used to calculate a portion of the annual flux of carbon between terrestrial ecosystems and the atmosphere. The calculated flux includes only that portion of the flux resulting from direct human activity. In most regions, activities included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel) and the establishment of tree plantations. In the US, woody encroachment and woodland thickening as a result of fire suppression were also included. The calculated flux of carbon does not include increases or decreases in carbon storage as a result of environmental changes (e.g.; increasing concentrations of CO2, N deposition, climatic change or pollution). Globally, the long-term (1850-2000) flux of carbon from changes in land use and management released 156 PgC to the atmosphere, about 60% of it from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 PgC/yr, respectively, dominated by releases of carbon from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC/yr during the 1980s to a sink of 0.02 PgC/yr during the 1990s. According to the analyses summarized here, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions. The revisions were as large as 0.3 PgC/yr in individual regions but were largely offsetting, so that the global estimate for the 1980s was changed little from an earlier estimate. Uncertainties and recent improvements in the data used to calculate the flux of carbon from land-use change are reviewed, and the results are compared to other estimates of flux to evaluate the extent to which processes other than land-use change and

  2. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    Science.gov (United States)

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; Ciais, Philippe; Ichii, Kazuhito; Tian, Hanqin; Kondo, Masayuki; Piao, Shilong; Arneth, Almut; Harper, Anna B.; Ito, Akihiko; Kato, Etsushi; Koven, Charlie; Sitch, Stephen; Stocker, Benjamin D.; Vivoy, Nicolas; Wiltshire, Andy; Zaehle, Sönke; Poulter, Benjamin

    2016-07-01

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the ‘Houghton’ bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and South Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr‑1, whereas EDGARv4.3 suggested a net carbon sink of ‑0.17 Pg C yr‑1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.

  3. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.

    Science.gov (United States)

    Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan

    2004-10-01

    In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse

  4. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    Science.gov (United States)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  5. Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation

    Science.gov (United States)

    Song, Y.; Jain, A. K.; McIsaac, G. F.

    2013-12-01

    Worldwide expansion of agriculture is impacting the earth's climate by altering carbon, water, and energy fluxes, but the climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water, and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM). In particular, we implemented crop-specific phenology schemes and dynamic carbon allocation schemes. These schemes account for light, water, and nutrient stresses while allocating the assimilated carbon to leaf, root, stem, and grain pools. The dynamic vegetation structure simulation better captured the seasonal variability in leaf area index (LAI), canopy height, and root depth. We further implemented dynamic root distribution processes in soil layers, which better simulated the root response of soil water uptake and transpiration. Observational data for LAI, above- and belowground biomass, and carbon, water, and energy fluxes were compiled from two AmeriFlux sites, Mead, NE, and Bondville, IL, USA, to calibrate and evaluate the model performance. For the purposes of calibration and evaluation, we use a corn-soybean (C4-C3) rotation system over the period 2001-2004. The calibrated model was able to capture the diurnal and seasonal patterns of carbon assimilation and water and energy fluxes for the corn-soybean rotation system at these two sites. Specifically, the calculated gross primary production (GPP), net radiation fluxes at the top of the canopy, and latent heat fluxes compared well with observations. The largest bias in model results was in sensible heat flux (SH) for corn and soybean at both sites. The dynamic crop growth simulation better captured the seasonal variability in carbon and energy fluxes relative to the static simulation implemented in the original version of ISAM. Especially, with dynamic carbon allocation and root distribution processes, the model

  6. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn

    DEFF Research Database (Denmark)

    Wu, Chaoyang; Chen, Xi Jing; Black, T. Andrew;

    2013-01-01

    To investigate the importance of autumn phenology in controlling interannual variability of forest net ecosystem productivity (NEP) and to derive new phenological metrics to explain the interannual variability of NEP. North America and Europe. Flux data from nine deciduous broadleaf forests (DBF...... uptake period, the spring lag (time interval between the onset of growing season and carbon uptake period) and the autumn lag (time interval between the end of the carbon uptake period and the growing season). Meteorological variables, including global shortwave radiation, air temperature, soil...

  7. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink

    Directory of Open Access Journals (Sweden)

    A. Lohila

    2011-11-01

    Full Text Available Drainage for forestry purposes increases the depth of the oxic peat layer and leads to increased growth of shrubs and trees. Concurrently, the production and uptake of the greenhouse gases carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O change: due to the accelerated decomposition of peat in the presence of oxygen, drained peatlands are generally considered to lose peat carbon (C. We measured CO2 exchange with the eddy covariance (EC method above a drained nutrient-poor peatland forest in southern Finland for 16 months in 2004–2005. The site, classified as a dwarf-shrub pine bog, had been ditched about 35 years earlier. CH4 and N2O fluxes were measured at 2–5-week intervals with the chamber technique. Drainage had resulted in a relatively little change in the water table level, being on average 40 cm below the ground in 2005. The annual net ecosystem exchange was −870 ± 100 g CO2 m−2 yr−1 in the calendar year 2005, indicating net CO2 uptake from the atmosphere. The site was a small sink of CH4 (−0.12 g CH4 m−2 yr−1 and a small source of N2O (0.10 g N2O m−2 yr−1. Photosynthesis was detected throughout the year when the air temperature exceeded −3 °C. As the annual accumulation of C in the above and below ground tree biomass (175 ± 35 g C m−2 was significantly lower than the accumulation observed by the flux measurement (240 ± 30 g C m−2, about 65 g C m−2 yr−1 was likely to have accumulated as organic matter into the peat soil. This is a higher average accumulation rate than previously reported for natural northern peatlands, and the first time C accumulation has been shown by EC measurements to occur in a forestry-drained peatland. Our results suggest that forestry

  8. The carbon cycle in Mexico: past, present and future of C stocks and fluxes

    Directory of Open Access Journals (Sweden)

    G. Murray-Tortarolo

    2015-08-01

    Full Text Available We modelled the carbon (C cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000–2005, the past century (1901–2000 and the remainder of this century (2010–2100. Our estimate of the gross primary productivity (GPP for the country was 2137 ± 1023 Tg C yr−1 and a total C stock of 34 506 ± 7483 Tg C, with 20 347 ± 4622 Pg C in vegetation and 14 159 ± 3861 in the soil. Contrary to other current estimates for recent decades, our results showed that Mexico was a C sink over the period 1990–2009 (+31 Tg C yr−1 and that C accumulation over the last century amounted to 1210 ± 1040 Tg C. We attributed this sink to the CO2 fertilization effect on GPP, which led to an increase of 3408 ± 1060 Tg C, while both climate and land use reduced the country C stocks by −458 ± 1001 and −1740 ± 878 Tg C, respectively. Under different future scenarios the C sink will likely continue over 21st century, with decreasing C uptake as the climate forcing becomes more extreme. Our work provides valuable insights on relevant driving processes of the C-cycle such as the role of drought in marginal lands (e.g. grasslands and shrublands and the impact of climate change on the mean residence time of C in tropical ecosystems.

  9. The carbon cycle in Mexico: past, present and future of C stocks and fluxes

    Science.gov (United States)

    Murray-Tortarolo, G.; Friedlingstein, P.; Sitch, S.; Jaramillo, V. J.; Murguía-Flores, F.; Anav, A.; Liu, Y.; Arneth, A.; Arvanitis, A.; Harper, A.; Jain, A.; Kato, E.; Koven, C.; Poulter, B.; Stocker, B. D.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2016-01-01

    We modeled the carbon (C) cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers) to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000-2005), the past century (1901-2000) and the remainder of this century (2010-2100). Our estimate of the gross primary productivity (GPP) for the country was 2137 ± 1023 TgC yr-1 and a total C stock of 34 506 ± 7483 TgC, with 20 347 ± 4622 TgC in vegetation and 14 159 ± 3861 in the soil.Contrary to other current estimates for recent decades, our results showed that Mexico was a C sink over the period 1990-2009 (+31 TgC yr-1) and that C accumulation over the last century amounted to 1210 ± 1040 TgC. We attributed this sink to the CO2 fertilization effect on GPP, which led to an increase of 3408 ± 1060 TgC, while both climate and land use reduced the country C stocks by -458 ± 1001 and -1740 ± 878 TgC, respectively. Under different future scenarios, the C sink will likely continue over the 21st century, with decreasing C uptake as the climate forcing becomes more extreme. Our work provides valuable insights on relevant driving processes of the C cycle such as the role of drought in drylands (e.g., grasslands and shrublands) and the impact of climate change on the mean residence time of soil C in tropical ecosystems.

  10. Fossil fuel burning in Taylor Valley, southern Victoria Land, Antarctica: Estimating the role of scientific activities on carbon and nitrogen reservoirs and fluxes

    International Nuclear Information System (INIS)

    Particulate organic and elemental carbon and nitrogen as well as NOx fluxes from scientific activities have been computed for Taylor Valley, Antarctica (∼78degree S). These authropogenic fluxes have been compared to both the natural fluxes and landscape reservoirs as determined from Long-Term Ecological Research (LTER) investigations in the valley. The anthropogenic, nongaseous carbon fluxes are minor compared to the natural fluxes, while the anthropogenic NOx flux may be potentially important over decadal time scales

  11. Carbon and water vapor fluxes over four forests in two contrasting climatic zones

    OpenAIRE

    Pita, Gabriel; Gielen, Bert; Zona, Donatella; Rodrigues, Abel; Rambal, Serge; Janssens, Ivan A; Ceulemans, Reinhart

    2013-01-01

    Abstract: The inter- and seasonal patterns of water vapor and canopy carbon fluxes were compared for four forest ecosystems in two contrasting climatic zones in Europe. The eddy covariance and ancillary data were taken from the Carboeurope and FLUXNET databases and a linear modeling statistical analysis was made. The four sites were a high-density poplar (Populus spp.) short rotation coppice plantation (in Lochristi, Belgium) and a mature Scots pine (Pinus sylvestris) forest (in Brasschaat, B...

  12. Comparing carbon fluxes between different stages of secondary succession of a karst grassland

    OpenAIRE

    Ferlan, M.; Batič, F.; G. Alberti; Eler, K.; Batič, F.; A. Peressotti; Miglietta, F.; A. Zaldei; Simončič, P.; Simončič, P.; Vodnik, D.

    2011-01-01

    Abstract Abandonment of marginal agricultural areas with subsequent secondary succession is a widespread type of land use change in Mediterranean and mountain areas of Europe, leading to important environmental consequences such as change in the water balance, carbon cycling, and regional climate. Paired eddy flux measurement design with grassland site and tree/shrub encroached site has been set-up in the Slovenian Karst (submediterranean climate region) to investigate the effects of secon...

  13. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    Science.gov (United States)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  14. Soil Carbon Accumulation and CO2 Flux in Experimental Restoration Plots, Southern Iceland: Comparing Soil Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Lawrence H. Tanner

    2015-01-01

    Full Text Available Experimental plots were established on severely eroded land surfaces in Iceland in 1999 to study the rates and limits of soil carbon sequestration during restoration and succession. The carbon content in the upper 10 cm of soils increased substantially during the initial eight years in all plots for which the treatments included both fertilizer and seeding with grasses, concomitant with the increase in vegetative cover. In the following five years, however, the soil carbon accumulation rates declined to negligible for most treatments and the carbon content in soils mainly remained relatively constant. We suggest that burial of vegetated surfaces by aeolian drift and nutrient limitation inhibited productivity and carbon sequestration in most plots. Only plots seeded with lupine demonstrated continued long-term soil carbon accumulation and soil CO2 flux rates significantly higher than background levels. This demonstrates that lupine was the sole treatment that resulted in vegetation capable of sustained growth independent of nutrient availability and resistant to disruption by aeolian processes.

  15. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  16. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change.

    Science.gov (United States)

    Fleischer, Elisa; Khashimov, Ilhom; Hölzel, Norbert; Klemm, Otto

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. PMID:26748007

  17. Comparison of carbon-stock changes, eddy-covariance carbon fluxes and model estimates in coastal Douglas-fir stands in British Columbia

    Institute of Scientific and Technical Information of China (English)

    Colin JFerster; JA TonYTrofymow; Nicholas C Coops; Baozhang Chen; Thomas AndreWBlack

    2015-01-01

    Background:The global network of eddy-covariance (EC) flux-towers has improved the understanding of the terrestrial carbon (C) cycle, however, the network has a relatively limited spatial extent compared to forest inventory data and plots. Developing methods to use inventory-based and EC flux measurements together with modeling approaches is necessary evaluate forest C dynamics across broad spatial extents. Methods:Changes in C stock change (ΔC) were computed based on repeated measurements of forest inventory plots and compared with separate measurements of cumulative net ecosystem productivity (ΣNEP) over four years (2003–2006) for Douglas-fir (Pseudotsuga menziesi var menziesi ) dominated regeneration (HDF00), juvenile (HDF88 and HDF90) and near-rotation (DF49) aged stands (6, 18, 20, 57 years old in 2006, respectively) in coastal British Columbia.ΔC was determined from forest inventory plot data alone, and in a hybrid approach using inventory data along with litter fall data and published decay equations to determine the change in detrital pools. TheseΔC-based estimates were then compared withΣNEP measured at an eddy-covariance flux-tower (EC-flux) and modelled by the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3) using historic forest inventory and forest disturbance data. Footprint analysis was used with remote sensing, soils and topography data to evaluate how well the inventory plots represented the range of stand conditions within the area of the flux-tower footprint and to spatial y scale the plot data to the area of the EC-flux and model based estimates. Results:The closest convergence among methods was for the juvenile stands while the largest divergences were for the regenerating clearcut, followed by the near-rotation stand. At the regenerating clearcut, footprint weighting of CBM-CFS3ΣNEP increased convergence with EC fluxΣNEP, but not forΔC. While spatial scaling and footprint weighting did not increase convergence forΔC, they did

  18. Quantification of Carbon Fluxes in Tropical Deciduous Forests Using Satellite Data

    Science.gov (United States)

    Prasad, V. Krishna; Rajagopal, T.; Kant, Yogesh; Badarinath, K. V. S.

    Biomass burning in tropics is causing drastic changes in physical, chemical and biological properties of earth's atmosphere. Biomass burning associated with slash and burn agriculture is one of the major cause of Green House Gas emissions. In the present study, study area covering tropical deciduous forests having slash and burn agriculture practice, has been considered for studying carbon dynamics. Satellite data pertaining to IRS-1C LISS III satellite data has been used for stratification of vegetation into different communities. Second order texture measures Semivariograms, Angular Second Moment (ASM) and Inverse Difference Moment (IDM) and NDVI textural algorithm have been used to capture spatial information from forest stands. Biomass estimations have been done through regression equations by using girth measurements obtained through field studies. Satellite data has been used to quantify the amount of biomass burnt in respective vegetation types. Results of the study through textural measures suggest high heterogeneity in canopy diversity for mixed dry deciduous forests. ASM and IDM are found to be high for pure stands of dry deciduous forests. NDVI textural algorithm detected a low spatial variability with respect to mixed dry deciduous forests suggesting homogeneity in plant biomass spatial variability. The average mean carbon storage has been found to be 64.34 t ha-1 C for dry deciduous forests, 129.0 t ha-1 C for mixed dry deciduous forests and 0.02 t ha-1 C for mixed scrub forests. Potential Net primary productivity for the forests ranged from 26.07 to 11.73 t ha-1 yr-1, when compared to actual productivity of 0.1 t ha-1 yr-1 to 4.6 t ha-1 yr-1. Mean carbon storage for plantations, above ground, below ground and total carbon has been found to be 16.84, 3.36 and 20.2 t ha-1 C respectively. Dry matter burnt in gms (M) obtained from satellite derived areal estimates has been found to be 1.344 × 1012 gms. Area weighted carbon release for the total study

  19. Seasonal Variations of Carbon Dioxide, Water Vapor and Energy Fluxes in Tropical Indian Mangroves

    Directory of Open Access Journals (Sweden)

    Suraj Reddy Rodda

    2016-02-01

    Full Text Available We present annual estimates of the net ecosystem exchange (NEE of carbon dioxide (CO2 accumulated over one annual cycle (April 2012 to March 2013 in the world’s largest mangrove ecosystem, Sundarbans (India, using the eddy covariance method. An eddy covariance flux tower was established in April 2012 to study the seasonal variations of carbon dioxide fluxes due to soil and vegetation-atmosphere interactions. The half-hourly maximum of the net ecosystem exchange (NEE varied from −6 µmol·m−2·s−1 during the summer (April to June 2012 to −10 µmol·m−2·s−1 during the winter (October to December 2012, whereas the half-hourly maximum of H2O flux varied from 5.5 to 2.5 mmol·m−2·s−1 during October 2013 and July 2013, respectively. During the study period, the study area was a carbon dioxide sink with an annual net ecosystem productivity (NEP = −NEE of 249 ± 20 g·C m−2·year−1. The mean annual evapotranspiration (ET was estimated to be 1.96 ± 0.33 mm·day−1. The gap-filled NEE was also partitioned into Gross Primary Productivity (GPP and Ecosystem Respiration (Re. The total GPP and Re over the study area for the annual cycle were estimated to be1271 g C m−2·year−1 and 1022 g C m−2·year−1, respectively. The closure of the surface energy balance accounted for of about 78% of the available energy during the study period. Our findings suggest that the Sundarbans mangroves are currently a substantial carbon sink, indicating that the protection and management of these forests would lead as a strategy towards reduction in carbon dioxide emissions.

  20. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm

    Science.gov (United States)

    Smith, David C.; Steward, Grieg F.; Long, Richard A.; Azam, Farooq

    Bacteria-diatom interactions were studied during a diatom bloom produced in a mesocosm, in the absence of metazoan grazers, in order to examine the significance of bacterial hydrolytic ectoenzymes in mediating carbon fluxes and influencing diatom aggregation. The abundances of bacteria and protozoa, the production rates and hydrolytic ectoenzyme activities (protease, α and β glucosidase and chitobiase) of attached and free bacteria, were followed as well as the dynamics of the dissolved organic carbon (DOC) pool. An intense diatom bloom occurred with chlorophyll a (chl a) concentrations reaching 132 μg liter 1 prior to aggregation. The diatoms were colonized by bacteria early on in the bloom and remained colonized throughout the bloom, yet they grew rapidly (>1 day -1). Attached bacteria were numerically a small fraction of the total, but they also grew very rapidly (μ = 4-16 day -1) and were generally responsible for the majority of bacterial carbon demand, BCD, (46-92%) and hydrolytic enzyme activities (41-99%). BCD accounted for an estimated 40-60% of the total carbon fixed during the bloom; thus, roughly onehalf of the primary production was channeled, via the DOC pool, into bacteria. The high ectohydrolase activities of bacteria attached to the surface of diatoms suggests that the hydrolysis of diatom surface mucus could be responsible for a major flux into the DOC pool making it a significant, but previously unrecognized, mechanism of DOM production. Enzymatic hydrolysis of surface mucus may also have inhibited diatom aggregation. Addition of purified glucosidase and protease to samples from the mesocosm inhibited diatom aggregation in experiments designed to induce aggregation. It is hypothesized that the action of bacterial ectoenzyme on diatom surfaces inhibited diatom aggregation by reducing stickiness, thus prolonging the bloom and allowing the accumulation of extremely high chl a levels prior to aggregation. Future studies should consider bacterial

  1. Carbon Monitoring System Flux Estimation and Attribution: Impact of ACOS-GOSAT X(CO2) Sampling on the Inference of Terrestrial Biospheric Sources and Sinks

    Science.gov (United States)

    Liu, Junjie; Bowman, Kevin W.; Lee, Memong; Henze, David K.; Bousserez, Nicolas; Brix, Holger; Collatz, G. James; Menemenlis, Dimitris; Ott, Lesley; Pawson, Steven; Jones, Dylan; Nassar, Ray

    2014-01-01

    Using an Observing System Simulation Experiment (OSSE), we investigate the impact of JAXA Greenhouse gases Observing SATellite 'IBUKI' (GOSAT) sampling on the estimation of terrestrial biospheric flux with the NASA Carbon Monitoring System Flux (CMS-Flux) estimation and attribution strategy. The simulated observations in the OSSE use the actual column carbon dioxide (X(CO2)) b2.9 retrieval sensitivity and quality control for the year 2010 processed through the Atmospheric CO2 Observations from Space algorithm. CMS-Flux is a variational inversion system that uses the GEOS-Chem forward and adjoint model forced by a suite of observationally constrained fluxes from ocean, land and anthropogenic models. We investigate the impact of GOSAT sampling on flux estimation in two aspects: 1) random error uncertainty reduction and 2) the global and regional bias in posterior flux resulted from the spatiotemporally biased GOSAT sampling. Based on Monte Carlo calculations, we find that global average flux uncertainty reduction ranges from 25% in September to 60% in July. When aggregated to the 11 land regions designated by the phase 3 of the Atmospheric Tracer Transport Model Intercomparison Project, the annual mean uncertainty reduction ranges from 10% over North American boreal to 38% over South American temperate, which is driven by observational coverage and the magnitude of prior flux uncertainty. The uncertainty reduction over the South American tropical region is 30%, even with sparse observation coverage. We show that this reduction results from the large prior flux uncertainty and the impact of non-local observations. Given the assumed prior error statistics, the degree of freedom for signal is approx.1132 for 1-yr of the 74 055 GOSAT X(CO2) observations, which indicates that GOSAT provides approx.1132 independent pieces of information about surface fluxes. We quantify the impact of GOSAT's spatiotemporally sampling on the posterior flux, and find that a 0.7 gigatons of

  2. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural network

    DEFF Research Database (Denmark)

    Papale, D.; Black, T Andrew; Carvalhais, Nuno; Cescatti, Alessandro; Chen, Jiquan; Jung, Martin; Kiely, Gerard; Lasslop, Gitta; Mahecha, Miguel D.; Margolis, Hank; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy; Olesen, Jørgen Eivind; Reichstein, Markus; Tramontana, Gianluca; van Gorsel, Eva; Wohlfart, Georg; Raduly, Botond

    2015-01-01

    prediction uncertainty in both, regional GPP and LE budgets and their interannual variability. Results obtained show that for ANN upscaling for continents with relatively small networks of sites, the error due to the sampling can be large and needs to be considered and quantified. The analysis of the spatial......-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion of...

  3. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse-Gas Fluxes in Ecosystems of the United States Under Present Conditions and Future Scenarios

    Science.gov (United States)

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Rob; Wein, Anne; Zhu, Zhi-Liang

    2010-01-01

    storyline to enhance carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct realistic and meaningful scenarios. The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and in-situ (for example, forest inventory data) to capture and characterize landscape-change events. For future potential LULC and ecosystem disturbances, key drivers such as socioeconomic, policy, and climate assumptions will be used in addition to biophysical data. The product of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the current and projected future conditions will be assessed using the LULC and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as elevation, vegetation characteristics, and soil attributes). For aquatic ecosystems, carbon burial in sediments and GHG fluxes are functions of the current and projected future stream flow and sediment transports, and therefore will be assessed using empirical modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results. The U.S. Environmental Protection Agency's Level II ecoregions map (which delineates 24 ecoregions for the Nation) will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion will be the reporting unit of the assessment because the mitigation scenarios, assessment results, validation, and uncertainty analysis will be

  4. Pteropods, eddies, carbon flux, and climate variability in the Alaska Gyre

    Science.gov (United States)

    Tsurumi, M.; Mackas, D. L.; Whitney, F. A.; DiBacco, C.; Galbraith, M. D.; Wong, C. S.

    2005-04-01

    Pteropod abundances in net tows and sediment traps are used to evaluate the link between episodic pteropod carbon flux in the North Pacific Ocean and Haida eddies and climate variability. Large deposition events of Clio pyramidata (a subtropical species of pteropod) at 3800 m sediment traps at Ocean Station Papa (OSP, 50°N, 145°W; 1983-2000) lag large El Niño events, represented by the Northern Oscillation Index (NOI), in the North Pacific by 1-2 years during observations from 1983 to 2000. Strong ENSO events may inject C. pyramidata source populations into the subarctic from southern regions because of greater northward transport of water along the continental margin and in some cases, because of a northward shifting of the subarctic boundary in deeper waters. Subsequently, conditions in the North Pacific following large negative NOI events may allow C. pyramidata to build and sustain high populations in the Alaska Gyre. Several very negative NOI years coincided with strong eddy intensity. Eddies are capable of concentrating high densities of pteropods ( C. pyramidata and Limacina helicina) and so may further intensify climate-driven pteropod-based carbon inputs in the North Pacific. Pteropods contribute organic (tissue) and inorganic (CaCO 3=aragonite) carbon to the deep ocean, yet they are not usually included in mass flux sediment trap studies because it is difficult to distinguish "swimmers" (live at the time of capture) from "sinkers" (dead at the time of capture). At 2.5 g m -2 yr -1, CaCO 3 flux due to C. pyramidata at OSP is comparable to existing pelagic estimates for all open-ocean calcifiers including coccolithophorids, foraminfera, and all pteropods. Particulate inorganic carbon (PIC) from C. pyramidata in OSP sediment traps is ˜17% of values measured in other studies that do not include pteropods in their totals. Average yearly flux of organic particulates at OSP due to C. pyramidata is 1.6 g m -2 yr -1 and is about 49% more than the annual

  5. Interactive state-parameter estimation of a crop carbon mass balance model through the assimilation of observed winter wheat carbon flux and stock data

    Science.gov (United States)

    Sus, O.; Williams, M. D.; Gruenwald, T.

    2010-12-01

    the other hand increased model error (by ~1-5%, up to ~13% when root dry mass assimilated), but is helpful in constraining above- and belowground biomass. We further find that cumulative NEE at harvest is considerably underestimated after flux data assimilation (-198.1 observed, -212.7 no assimilation, -301.0 NEE assimilated). This underestimation can partly be compensated for when NEE and stock data are assimilated simultaneously. We find that assimilated NEE data is helpful in reducing overestimation of carbon assimilation in the early growing season. Moreover, the timing of crop senescence is clearly improved through NEE flux data assimilation. For the, statistically speaking, “best” model run (NEE only assimilated), we find an increase in the parameter leaf carbon per leaf area (resulting in the growth of thicker leaves as the crop matures), and a clear reduction of the fraction of autotrophic respiration through time (from initially 0.43 to 0.36 at maturity). The time evolution of phenological parameters leads to an extension (a reduction) of the length of the vegetative (reproductive) phase.

  6. Comparison of Numerical Model Estimates of Carbon Fluxes Across Northern Eurasia

    Science.gov (United States)

    Rawlins, M. A.; Lettenmaier, D. P.; McDonald, K. C.

    2012-12-01

    Northern Eurasia is characterized by large carbon stocks and fluxes, both of which participate in a feedback to warming through the release of carbon dioxide and methane from permafrost soils and thermokarst lakes. Relative to North America, the carbon cycle of the Eurasian pan-Arctic is poorly understood. Accurate spatial estimates of quantities such as gross primary productivity (GPP) are difficult to derive given the sparsity of in situ measurements across the region. Models also tend to overpredict GPP under cold conditions. We use data from a set of numerical models to estimate regional GPP and net ecosystem exchange (NEE) across the North Eurasian Earth Science Partnership Initiative (NEESPI) region. The model set includes a modified version of the Soil Thermal Model-Terrestrial Ecosystem Model; the FAREAST model which simulates forest demographics and dynamics as a function of climate and nutrient availability; and a model which leverages remotely sensed leaf area and surface meteorology from reanalysis. Drawing from the gridded simulated estimates we examine the distributions of annual GPP and NEE, their spatial patterns, and interannual variability. The models show small differences in regional mean GPP; differences arise largely at the lower and upper ends of the distribution. Data characterizing the extent of fire is used to examine interannual variations and differences between the model estimates. Through analysis of available numerical model data we advance understanding of the magnitude, variability, and associated uncertainties in northern Eurasia's carbon stocks and fluxes.

  7. Evaluating of simulated carbon flux phenology over a cropland ecosystem in a semiarid area of China with SiBcrop

    Science.gov (United States)

    Du, Qun; Liu, Huizhi; Xu, Lujun

    2016-07-01

    The cropland ecosystem in semiarid areas is sensitive to climate change. The accurate representation of crop phenology is important for predicting the carbon and water exchange process. The performance of a newly developed phenological model (SiBcrop) for simulations of carbon flux phenology in a semiarid area ecosystem was evaluated. The results showed that the SiBcrop improved the prediction for daily maximum gross primary production (GPP), and the days GPP reached the maximum value were closer to the observation, compared to SiB3. SiBcrop had a better prediction for both monthly total net ecosystem exchange (NEE) in the growing season than in the dormant season in semiarid areas. The day when the cumulative NEE predicted with SiBcrop became positive was closer to the observation. The observed start date of carbon uptake (CUstart) had a larger annual variation than did the end date of carbon uptake (CUend). SiBcrop had a better prediction for CUstart but poor for CUend, compared to SiB3. There was a longer carbon uptake period (CUP) predicted with SiBcrop than the observed results.

  8. Carbon Flux Estimation in Southeast Asia using a Eulerian-Lagrangian Coupled Inversion System and Observational Data from Multiple Platforms

    Science.gov (United States)

    Ishizawa, M.; Shirai, T.; Terao, Y.; Mukai, H.; Nomura, S.; Mohamad, M.; Jahaya, M. F.; Inoue, M.; Morino, I.; Yoshida, Y.; Uchino, O.; Zhuravlev, R.; Ganshin, A.; Maksyutov, S. S.

    2015-12-01

    Southeast Asia is rich in tropical forest and biodiversity. Previous inversion studies show large inter-annual variability in the biosphere-atmosphere carbon exchange attributable to climate anomalies. However, the magnitudes of estimated fluxes are significantly different among the inversions. On the other hand, land-use change has been accelerating the anthropogenic emissions. For the sustainable development in Southeast Asia under the on-going climate change, it is important to understand the biosphere-atmosphere carbon exchange and access the regional emissions. One of the reasons for the large uncertainty in flux estimate is a limited coverage of atmospheric observation against the large variety of ecosystems and the geographical complexity. Recently, the number of measurements has been increasing, including ground-based and satellite-based measurements. We estimated the regional CO2fluxes using a Eulerian-Lagrangian inverse modeling system and examined the characteristics of observational constraints and their impacts on the flux estimate in Southeast Asia. The results show that the temporal variations and source/sink strength of estimated regional fluxes are sensitive to the observational constraints. As a control run, we used the Observational Package (ObsPack) data product since 2001 as a global dataset of atmospheric CO2 measurement. In the addition to Bukit, Sumatra Island (BKT) in ObsPack, we included a stationary CO2 data at Danum Valley in Borneo Island (DMV) since late 2009. Compared to BKT, DMV shows a clear seasonal cycle. The inversion including DMV tends to increase the regional carbon sink in the second half of year. Remotely the aircraft measurements over Rarotonga (RTA) in the tropical Pacific Ocean see the signals from Southeast Asia through an atmospheric convection. The sensitivity test shows RTA impacts on the inter-annual variations of estimated flux, which might be associated with ENSO events. Since June 2009, Greenhouse gases Observing

  9. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    Science.gov (United States)

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  10. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; Saino, T.

    in primary produc- tion are found to be reflected by sinking fluxes at ~500 m above the bottom within a few days in the Arabian Sea (Honjo et al. 1999; Lee et al. 1998). This suggests a tight coupling between primary production and sinking organic carbon...–13.3 mg m –2 d –1 ; Haake et al. 1993; Lee et al. 1998; Honjo et al. 1999; Ittekkot et al. 1991) compared to other regions in the World Oceans (Table 2). Sinking POC fluxes are found in the North Pacific to be (between 12C176S and 50C176N) 0.43–5.2 mg m –2...

  11. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    Science.gov (United States)

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. PMID:27203178

  12. Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland

    Directory of Open Access Journals (Sweden)

    T. J. Bohn

    2013-10-01

    Full Text Available We used a process-based model to examine the role of spatial heterogeneity of surface and sub-surface water on the carbon budget of the wetlands of the West Siberian Lowland over the period 1948–2010. We found that, while surface heterogeneity (fractional saturated area had little overall effect on estimates of the region's carbon fluxes, sub-surface heterogeneity (spatial variations in water table depth played an important role in both the overall magnitude and spatial distribution of estimates of the region's carbon fluxes. In particular, to reproduce the spatial pattern of CH4 emissions recorded by intensive in situ observations across the domain, in which very little CH4 is emitted north of 60° N, it was necessary to (a account for CH4 emissions from unsaturated wetlands and (b use spatially varying methane model parameters that reduced estimated CH4 emissions in the northern (permafrost half of the domain (and/or account for lower CH4 emissions under inundated conditions. Our results suggest that previous estimates of the response of these wetlands to thawing permafrost may have overestimated future increases in methane emissions in the permafrost zone.

  13. A Comparative Study on the Critical Heat Flux Characteristics of Oxidized Multi-Walled Carbon Nanotube and Graphene Nanofluids

    International Nuclear Information System (INIS)

    Boiling heat transfer is one of the most important processes in the various industries such as power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. The critical heat flux (CHF) phenomenon is signified the thermal limit during a boiling heat transfer. The heat transfer coefficient before the CHF is high enough to attain a high heat flux at a relatively low surface heat. However, the heat transfer coefficient remarkably decreases after the CHF occurs therefore the heating surface temperature of heat-transfer apparatus should be greatly increased. This induces risk of physical failure of heat transfer apparatus. Therefore, enhancement of CHF is essential for safety and economic efficiency of heat transfer system. In this study, the CHF characteristics of oxidized carbon nanotube and graphene nanofluids under the pool boiling state were comparative analysis. The pool boiling CHF experiments of oxidized carbon nanotube and graphene nanofluids carried out by the various concentrations. All of the two types of nanofluids showed higher CHF than the pure water. The result shows that the CHF of oxidized graphene nanofluids is higher than the oxidized carbon nanotube nanfluids

  14. A Comparative Study on the Critical Heat Flux Characteristics of Oxidized Multi-Walled Carbon Nanotube and Graphene Nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hun; Park, Sung Seek; Kim, Woo Joong; Kim, Nam Jin [Jeju National University, Jeju (Korea, Republic of)

    2015-05-15

    Boiling heat transfer is one of the most important processes in the various industries such as power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. The critical heat flux (CHF) phenomenon is signified the thermal limit during a boiling heat transfer. The heat transfer coefficient before the CHF is high enough to attain a high heat flux at a relatively low surface heat. However, the heat transfer coefficient remarkably decreases after the CHF occurs therefore the heating surface temperature of heat-transfer apparatus should be greatly increased. This induces risk of physical failure of heat transfer apparatus. Therefore, enhancement of CHF is essential for safety and economic efficiency of heat transfer system. In this study, the CHF characteristics of oxidized carbon nanotube and graphene nanofluids under the pool boiling state were comparative analysis. The pool boiling CHF experiments of oxidized carbon nanotube and graphene nanofluids carried out by the various concentrations. All of the two types of nanofluids showed higher CHF than the pure water. The result shows that the CHF of oxidized graphene nanofluids is higher than the oxidized carbon nanotube nanfluids.

  15. A paired flux approach to study the carbon balance of a corn/soybean rotation

    Science.gov (United States)

    Baker, J.; Griffis, T.

    2003-04-01

    There is intense interest in finding ways to damp projected increases in atmospheric CO_2 by adopting strategies that alter local rates of surface/atmosphere carbon exchange in ways that favor increased surface storage. It is generally accepted that row crop agriculture has historically been a contributor to the debit side of the terrestrial carbon ledger. However, changes in farming practice, primarily reduction of tillage, appear to have arrested this decline. The very fact that so much soil carbon was lost is now viewed positively, in the sense that it may represent a reservoir that can be refilled through the adoption of appropriate farming practices, but verification of carbon gain is a difficult problem. Soil sampling is the accepted standard, but it has a low signal to noise ratio and poor temporal resolution so it offers little insight into causes and effects or underlying processes. Micrometeorological methods address these shortcomings, replacing them with a new set of problems. Temporal resolution is superb, but determination of net carbon gain or loss requires integration of short-term (e.g. half-hourly) flux measurements over at least one full cycle of the system under test -- typically a year or more. Unfortunately, data are missed due to instrument failures and power outages, and other data must be discarded because theoretical assumptions of turbulent transport are not met. As a consequence, the end sum of net carbon exchange from these sites depends substantially on the gap-filling strategies that are used. Nonetheless, valuable information can be obtained by measuring differentially, i.e. making simultaneous flux measurements in two adjacent fields that are subjected to the same weather conditions, but with specific differences in farming practice. Insights into the differences in carbon balance between the systems, even in the face of the inevitable data gaps, can be obtained by considering only those time periods in which both fields are

  16. Lateral transport of soil carbon and land‑atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land‑atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy‑1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy‑1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm‑2ṡy‑1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  17. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  18. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  19. Understanding ecosystems' sub-daily water and carbon flux changes during dry-down events

    Science.gov (United States)

    Nelson, Jacob; Jung, Martin; Carvalhais, Nuno; Migliavacca, Mirco; Reichstein, Markus

    2016-04-01

    Sub-daily water and carbon flux patterns give important and sometimes overlooked information about ecosystem processes and land-atmosphere feedbacks. While models often perform well down to daily timescales, they can be uncertain with respect to the diurnal courses, especially during dry-down events where the fraction of T to ET is shifting. We analyzed events from multiple locations for unique pattern changes that were robust across sites. Of particular interest were the divergence of water and carbon fluxes during high radiation periods, which indicates changes in water use efficiency as drought conditions intensified. The validity of attributing the signatures to ecosystem transitions such as changes in phenology, switches in soil evaporation vs transpiration dominance, and physiological stress were evaluated by comparing to site specific sap flow, soil moisture, and remote sensing data. Going forward, these findings can be used to further understand ecosystem physiology under drought conditions, and can also be used to partition of water fluxes and better constrain future models.

  20. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    Science.gov (United States)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at

  1. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  2. Impacts of rewetting on hydrological functioning and dissolved organic carbon flux in a degraded peatland (La Guette, France)

    Science.gov (United States)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Lemoing, Franck; Zocatelli, Renata; Jozja, Nevila; Défarge, Christian; Laggoun-Défarge, Fatima

    2016-04-01

    In Sphagnum-dominated peatlands, dissolved organic carbon (DOC) fluxes are mainly controlled by peat water saturation state corresponding to the equilibrium between recharge/drainage fluxes and to the peat storage capacity. Rewetting is a wide spread method that has been used for restoring the global hydrological behavior of degraded peatland ecosystems. Therefore, there is a need to assess the impact of rewetting on peatland hydrology but also on the modification of dynamics and DOC fluxes that significantly impact on carbon sink function of these ecosystems. To investigate this question, meteorology, hydrological data, DOC concentrations and dissolved organic matter (DOM) quality (aromaticity and fluorescence) were monthly monitored at the watershed scales and in two piezometer transects since 2010 in a hydrologically disturbed peatland, La Guette, which experienced a rewetting action on February 2014. One piezometer transect (called downstream plots) was supposedly influenced by the hydrological restoration while the other (called upstream plots) was considered as a control. Collected data allowed studying the impact of the restoration on hydrology and dynamics and DOC fluxes in the peatland. Preliminary results indicate that water table level became more stable after the rewetting in the area affected by the restoration. This seems to have an impact on DOC quantity and quality since concentrations became higher in the same area with also a higher aromaticity degree and a larger proportion of low-weight molecules compared to upstream area. This could indicate that in the downstream area, more anaerobic conditions inhibit microorganism activity responsible for the mineralization of peat organic matter.

  3. Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers

    Science.gov (United States)

    Shen, W.; Jenerette, G. D.; Hui, D.; Scott, R. L.

    2016-01-01

    The precipitation legacy effect, defined as the impact of historical precipitation (PPT) on extant ecosystem dynamics, has been recognized as an important driver in shaping the temporal variability of dryland aboveground net primary production (ANPP) and soil respiration. How the PPT legacy influences whole ecosystem-level carbon (C) fluxes has rarely been quantitatively assessed, particularly at longer temporal scales. We parameterized a process-based ecosystem model to a semiarid savanna ecosystem in the southwestern USA, calibrated and evaluated the model performance based on 7 years of eddy-covariance measurements, and conducted two sets of simulation experiments to assess interdecadal and interannual PPT legacy effects over a 30-year simulation period. The results showed that decreasing the previous period/year PPT (dry legacy) always increased subsequent net ecosystem production (NEP) whereas increasing the previous period/year PPT (wet legacy) decreased NEP. The simulated dry-legacy impacts mostly increased subsequent gross ecosystem production (GEP) and reduced ecosystem respiration (Re), but the wet legacy mostly reduced GEP and increased Re. Although the direction and magnitude of GEP and Re responses to the simulated dry and wet legacies were influenced by both the previous and current PPT conditions, the NEP responses were predominantly determined by the previous PPT characteristics including rainfall amount, seasonality and event size distribution. Larger PPT difference between periods/years resulted in larger legacy impacts, with dry legacies fostering more C sequestration and wet legacies more C release. The carryover of soil N between periods/years was mainly responsible for the GEP responses, while the carryovers of plant biomass, litter and soil organic matter were mainly responsible for the Re responses. These simulation results suggest that previous PPT conditions can exert substantial legacy impacts on current ecosystem C balance, which should

  4. Cropland Carbon Fluxes in the United States: Increasing Geospatial Resolution of Inventory-based Carbon Accounting

    Science.gov (United States)

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary productivity were estimated and spatially distributed using land cover defined by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by the Cropland Data Layer (CDL). Spatially resolved...

  5. Carbon fluxes in soil:long-term sequestration in deeper soil horizons

    Institute of Scientific and Technical Information of China (English)

    JohnF.MCCARTHY

    2005-01-01

    Terrestrial ecosystems represent the second largest carbon reservoir, and the C balance in terrestrial ecosystems can be directly impacted by human activities such as agricultural management practices and land-use changes. This paper focuses on the C-sequestration in soil. Although many studies showed that the concentration of SOC is much higher in the shallow soils (0-30 cm), the deeper horizons represent a much greater mass of soil and represent a huge C-storage pool. The process of preferential retention of more strongly adsorbing components, along with competitive displacement of weakly binding components are the key processes that enhance the movement of organic carbon to deeper soil horizons. DOC represents the most dynamic part of organic carbon in soils, and thus can be used as a timely indicator of the short-term change of C-sequestration.Long-term experiments have demonstrated that higher SOC levels in shallow soils would lead to increased fluxes of DOC to deeper horizons, but more data on a wider range of soils and treatment strategies are needed to fully evaluate the linkages between changes in SOC in shallow soil, vertical fluxes of DOC to deeper soil horizons, and enhanced C-inventories in deeper, slow-turnover SOC pools.

  6. Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest

    Science.gov (United States)

    Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Carrer, D.; Verbeeck, H.; De Weirdt, M.; Bonal, D.

    2015-06-01

    We evaluate the ISBACC (Interaction Soil Biosphere Atmosphere Carbon Cycle) land surface model (LSM) over the Amazon forest, and propose a revised parameterization of photosynthesis, including new soil water stress and autotrophic respiration (RA) functions. The revised version allows the model to better capture the energy, water and carbon fluxes when compared to five Amazonian flux towers. The performance of ISBACC is slightly site dependent although similar to the widely evaluated LSM ORCHIDEE (Organizing Carbon and Hydrology In Dynamic Ecosystems - version 1187), which is based on different assumptions. Changes made to the autotrophic respiration functions, including a vertical profile of leaf respiration, lead to yearly simulated carbon use efficiency (CUE) and carbon stocks which is consistent with an ecophysiological meta-analysis conducted on three Amazonian sites. Despite these major improvements, ISBACC struggles to capture the apparent seasonality of the carbon fluxes derived from the flux tower estimations. However, there is still no consensus on the seasonality of carbon fluxes over the Amazon, stressing a need for more observations as well as a better understanding of the main drivers of autotrophic respiration.

  7. On the results of USSR participation in the international comparision of neutron flux density standards

    International Nuclear Information System (INIS)

    Results of the USSR participation in the international comparisons of density standards for 2.5 and 14.8 MeV fast monoenergetic neutron flux performed for comparing methods and means of reproduction of neutron flux density unit are given. 20 cm dia polyethylene sphere with a miniature boron counter placed in its center was used as an instrument of comparisons for 25 MeV neutrons. For 14.8 MeV neutrons used were two detector kinds: a fission chamber and iron activation threshold detectors. Analysis of comparison results has shown that deviation of obtained in the USSR evaluations of flux density determination error from an international weighted mean constitutes about -0.3% for 2.5 MeV energy, during measurements by the fission chamber - -1.4% for 14 MeV energy, and during measurements with iron activation foils - +0.3%. The comparison results obtained confirm correctness of reproduction of the neutron flux density unit in the USSR at energy values of 2.5 and 14.8 MeV

  8. Diffusive component of the vertical flux of particulate organic carbon in the north polar Atlantic

    Directory of Open Access Journals (Sweden)

    Małgorzata Stramska

    2006-12-01

    Full Text Available The diffusive component of the vertical flux of particulate organiccarbon (POC from the surface ocean layer has been estimatedusing a combination of the mixed layer model and ocean colordata from the SeaWiFS satellite. The calculations were carriedout for an example location in the north polar Atlantic centeredat 75°N and 0°E for the time period of 1998-2004.The satellite estimates of surface POC derived using a regional ocean coloralgorithm were applied as an input to the model driven by localsurface heat and momentum fluxes. For each year of the examinedperiod, the diffusive POC flux was estimated at 200-m depth fromApril through December. The highest flux is generally observedin the late fall as a result of increased heat loss and convectionalmixing of surface waters. A relatively high diffusive POC fluxis also observed in early spring, when surface waters are weaklystratified. In addition, the model results demonstrate significantinterannual variability. The highest diffusive POC flux occurredin 1999 (about 4500 mg m-2 over the 9-month period. In 1998 and 2002 the estimated flux was about two orders of magnitudelower. The interannual variability of the diffusive POC fluxis associated with mixed layer dynamics and underscores the importanceof atmospheric forcing for POC export from the surface layerto the ocean's interior.

  9. Changes of composition and microstructure of joint interface of tungsten coated carbon by high heat flux

    International Nuclear Information System (INIS)

    Tungsten coatings of 0.5 and 1 mm thickness were successfully deposited by the vacuum plasma spraying (VPS) technique on carbon/carbon fiber composite (CFC), CX-2002U and isotropic fine grained graphite, IG-430U. High heat flux experiments by irradiation of electron beam with uniform profile were performed on the coated samples in order to prove the suitability and load limit of such coating materials. The cross-sectional composition and structure of the interface of VPS-W and carbon material samples were investigated. Compositional analyses showed that the Re/W multi-layer acts as diffusion barrier for carbon and suppresses tungsten carbide formation in the VPS-W layer at high temperature about 1300 deg. C. Microstructure of the joint interface of the sample changed in the case of a peak temperature of about 2800 deg. C. The multi-layer structure completely disappeared and compositional distribution was almost uniform in the interface of the sample after melting and resolidification. The diffusion barrier for carbon is not expected to act in this stage

  10. Modeling the Impact of Hydraulic Redistribution on Carbon Cycles Using CLM4.5 at Eight AmeriFlux Sites

    Science.gov (United States)

    Fu, C.; Wang, G.; Cardon, Z. G.

    2014-12-01

    Hydraulic redistribution (HR) has significant impacts on the terrestrial hydrological, biogeochemical, and ecological processes. Accurate modeling of HR and its impact on vegetation growth and ecosystem carbon dynamics is important for accurate simulation of regional and global carbon cycles. However, how HR influences plant, soil carbon and nitrogen dynamics remains poorly understood. In this study, we incorporate a simple HR scheme into the Community Land Model Version 4.5 (CLM4.5) including the biogeochemical model BGC. We use the modified CLM4.5-BGC model to investigate the impact of HR on the terrestrial carbon cycle at eight AmeriFlux sites where HR was detected from soil moisture measurements: a Douglas-fir site (US-Wrc) in Washington State with a Mediterranean climate, a savanna site (US-SRM) in Arizona with a semi-arid climate, and six sites along the Southern California Climate Gradient with a Mediterranean climate, with coverage of coastal sage (US-SCs), grassland (US-SCg), oak/pine forest (US-SCf), pinyon and juniper woodland (US-SCw), desert chaparral (US-SCc), and desert perennials and annuals (US-SCd). Monitored net ecosystem exchange of carbon (NEE) at the US-Wrc, US-SRM, and US-SCf sites, is used in model calibration and HR sensitivity analysis. Preliminary results from the model indicate that HR tends to increase net primary production (NPP) during dry periods and increase leaf area index (LAI) throughout the year at the US-Wrc site, while HR increased NPP and LAI during growing season and reduced NPP and LAI during dry periods at the US-SCs and US-SCg sites, with corresponding modifications to carbon storage in soil layers and in plant leaf, stem, and root carbon pools. The biogeochemical processes leading to these effects will be analyzed and presented.

  11. The micrometeoroid mass flux into the upper atmosphere: Arecibo results and a comparison with prior estimates

    Science.gov (United States)

    Mathews, J. D.; Janches, D.; Meisel, D. D.; Zhou, Q.-H.

    Radar micrometeor observations at Arecibo Observatory have enabled direct estimates of the meteoroid mass flux into the upper atmosphere. We report mass flux determinations from November 1997/1998 observations that are based on the observed number of meteor events per day in the 300-m diameter Arecibo beam and on particle mass determinations from that fraction of all particles for which deceleration is measured. The average mass of the Arecibo micrometeoroids that manifest observable deceleration is ˜0.32/0.76 µgm/particle with a resultant annual whole-Earth mass flux of 1.6 × 106/2.7 × 106 kg/yr over the ˜10-5-10² µgm mass range for 1997/1998, respectively. The annual whole-earth mass flux per decade of particle mass is calculated and compared with that of Ceplecha et al. [1998] (3.7 × 106 kg/yr) and with that derived by Love and Brownlee [1993] (LB) from small particle impact craters on the orbital Long Duration Exposure Facility (LDEF). We also give the LDEF results as significantly modified using the Arecibo-determined average particle velocity of ˜50 km/sec—much larger than the effective value of 12 km/sec used by LB. This modification results in a net LDEF mass flux of 1.8×106 kg/yr—7% of the value we determined from reanalysis of the LB data using their original 12 km/sec mean impact speed. These results may provoke some debate.

  12. Impact of 40 years poplar cultivation on soil carbon stocks and greenhouse gas fluxes

    Directory of Open Access Journals (Sweden)

    C. Ferré

    2005-08-01

    Full Text Available Within the JRC Kyoto Experiment in the Regional Park and UN-Biosphere Reserve "Parco Ticino" (North-Italy, near Pavia, the soil carbon stocks and fluxes of CO2, N2O, and CH4 were measured in a poplar plantation in comparison with a natural mesohygrophilous deciduous forest nearby, which represents the pristine land cover of the area. Soil fluxes were measured using the static and dynamic closed chamber techniques for CH4 N2O, and CO2, respectively. We made further a pedological study to relate the spatial variability found with soil parameters.

    Annual emission fluxes of N2O and CO2 and deposition fluxes of CH4 were calculated for the year 2003 for the poplar plantation and compared to those measured at the natural forest site. N2O emissions at the poplar plantation were 0.15$plusmn;0.1 g N2O m-2 y-1 and the difference to the emissions at the natural forest of 0.07±0.06 g N2O m-2 y-1 are partly due to a period of high emissions after the flooding of the site at the end of 2002. CH4 consumption at the natural forest was twice as large as at the poplar plantation. In comparison to the relict forest, carbon stocks in the soil under the poplar plantation were depleted by 61% of surface (10 cm carbon and by 25% down the profile under tillage (45 cm. Soil respiration rates were not significant different at both sites with 1608±1053 and 2200±791 g CO2 m-2 y-1 at the poplar plantation and natural forest, respectively, indicating that soil organic carbon is much more stable in the natural forest. In terms of the greenhouse gas budget, the non-CO2 gases contributed minor to the overall soil balance with only 0.9% (N2O and -0.3% (CH4 of CO2-eq emissions in the

  13. An Ecosystem Assessment of Carbon Storage and Fluxes Over Space and Time in the Conterminous United States

    Science.gov (United States)

    Zhu, Z.; Bergamaschi, B. A.; Hawbaker, T.; Liu, S.; Reed, B.; Sleeter, B. M.; Sohl, T.; Stackpoole, S. M.

    2013-12-01

    Ecosystem carbon stock, sequestration, and greenhouse gasl (GHG) flux were estimated for the conterminous United States (CONUS) in two time periods: baseline (annual average of 2001-2005) and future projection (annual average of 2006-2050). Major input data for baseline estimates included national resource inventories (such as forest and agricultural inventories and data from a national stream gage network), land use and land cover (LULC) map and soil carbon from national soil databases. The assessment covered 7,88 million km2 in land and water areas. Major input data for projected carbon estimates included future LULC scenarios developed in a framework consistent with the Intergovernmental Panel on Climate Change's future climate projections, and the future climate projection data. Estimated carbon stock and net ecosystem carbon balance for all major pools (live biomass, dead biomass, and soil organic matter) and terrestrial ecosystems (forests, agrcilture, wetlands, and grasslands) were produced using ecosystem models (Table 1). Emission from wildfires of the CONUS was evaluated based on remote sensing methods and fire behavior modeling. Emission fom inland water bodies (including rivers, lakes, and reservoirs), carbon transport by riverine systems, and carbon burial in sediments of lakes and reservoirs in the CONUS were estimated using input data from available aquatic measurements in a national water information system, water areas, and empirial methods (Table 2). Details of the methods used, and effects of drivers (both natural and anthropogenic processes) will be presented in the poster. Uncertainties from the assessment remained high as indicated by the major results shown above. Sources of uncertainties included scarcity of input data, structure differences of methods and models used, and parameterization and assumptions made in the modeling process.Table 1. Estimated carbon stock and net ecosystem carbon balance (NECB) of the major ecosystems by two time

  14. Diurnal and monthly variations of carbon dioxide flux in an alpine shrub on the Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    XU Shixiao; ZHAO Xinquan; LI Yingnian; ZHAO Liang; YU Guirui; SUN Xiaomin; CAO Guangmin

    2005-01-01

    Continuous CO2 flux observation with eddy covariance method conducted in the alpine shrub on the Qinghai-Tibet Plateau indicates that there are distinct diurnal and monthly variations for CO2 fluxes in the alpine shrub on the plateau. As for diurnal variation, with net CO2 influx from 08:00 to 19:00 and net CO2 efflux from 20:00 to 07:00, peak CO2 flux during warm season (July) appears around 12:00 (-1.19 g CO2·m-2·h-1); there is no obvious horary fluctuation for CO2 flux during cold season (January), and horary CO2 flux during most hours in a day is close to zero except for a small amount of net efflux (about 0.11 g CO2·m-2·h-1) from 11:00-17:00. As for monthly variation, with net CO2 influx from June to September and net CO2 efflux from January to May and October to December, the peak monthly CO2 influx and CO2 efflux appear in August and April, respectively. The total net CO2 influx from June to September and total net CO2 efflux from February to May and October to December in the alpine shrub on the Qinghai-Tibet Plateau are estimated to be 673 and 446 g CO2·m-2. Results show that the alpine shrub on the Qinghai-Tibet Plateau is remarkable carbon dioxide sink under no grazing conditions and the total yearly CO2 influx is estimated to be 227 g CO2·m-2.

  15. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management.

    Science.gov (United States)

    Kooch, Yahya; Moghimian, Negar; Bayranvand, Mohammad; Alberti, Giorgio

    2016-06-01

    Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m(-2) day(-1) and 0.11 mg CH4 m(-2) day(-1), respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m(-2) day(-1)) and deforested areas (0.17 mg N2O m(-2) day(-1)) than at agriculture site (0.05 mg N2O m(-2) day(-1)) and Taxodium plantation (0.03 mg N2O m(-2) day(-1)). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models. PMID:27173683

  16. Carbon Fluxes And Yield Of Bioenergy Sorghum In An Extreme Desert Production Environment

    Science.gov (United States)

    Grantz, D. A.; Oikawa, P. Y.; Jenerette, D.

    2012-12-01

    Carbon accumulation and agronomic yield of tropical C4 grasses are high under irrigated conditions in low desert, western U.S. production areas. These are candidate production systems for purpose-grown biofuel feedstocks. Here we report fluxes of carbon at leaf and canopy scales, along with above-ground biomass yield, in an irrigated, fertilized field (5.26 ha) in the low desert (Imperial Valley) of California. This is an uncommonly productive but environmentally extreme growth environment with typical Tsoil > 55 C and Tair > 42 C during the growing season. We monitored a single field under fallow conditions, followed by planting, growth, harvest, and re-growth from stubble of Sorghum bicolor. Carbon accumulation is one aspect of our developing sustainability metric that characterizes land use conversion to biofuel production. Following 96 days of growth from seed, the canopy was harvested by cutting at 15 cm above the soil surface, yielding 33.8 ± 2.4 dry ton/ha. Over the growth period this represents 35 g m-2 day-1 of average dry matter accumulation, including the cool early season. A second and third cutting are anticipated during the production year suggesting annualized yields more typical of tropical than temperate environments. Tower fluxes of C obtained by eddy covariance suggest maximal rates of C accumulation increased with temperature and canopy development from -17 μmol m-2 s-1 in March to -57 μmol m-2 s-1 in July. Leaf level C assimilation in July exceeded 40 μmol m-2 s-1 in sunlit leaves. Neither EC nor leaf level photosynthetic measurements indicated inhibition of carbon assimilation by the prevailing high temperatures, although it is anticipated that low temperatures will terminate the season. As with unmanaged systems in this environment, fluxes are highly sensitive to pulsed water availability, in this case through irrigation. These data will be used to constrain process models of canopy response to these unusual environmental conditions, in

  17. Development of an Airborne System for Direct Validation of Regional Carbon Flux Estimates

    Science.gov (United States)

    Wolfe, G.; Kawa, S. R.; Hanisco, T. F.; Newman, P. A.

    2015-12-01

    Global distributions of greenhouse gas (GHG) sources and sinks, principally CO2 and CH4, and characterization of the processes that control them, comprise a key uncertainty in projections of future climate. A broad spectrum of tools is currently used to characterize these processes. Top-down inversions of orbital GHG column observations (e.g. ACOS/GOSAT and OCO-2) provide a global perspective, but little information is available to validate these estimates. Indirect (boundary-layer budget) or direct (tower-based eddy covariance) surface flux measurements can provide bottom-up constraints, but the former is typically focused on large point and area emission sources while the latter relies on sparse networks with limited spatial coverage. Aircraft are an ideal platform to bridge the flux representation scale from kilometers (as measured from towers) to the tens or hundreds of kilometers relevant to satellite observations and global models. In light of current measurement gaps and the emerging need for direct validation of GHG surface flux estimates, NASA is developing a sophisticated facility for airborne eddy covariance observations of carbon dioxide, methane, water vapor and other trace gases. Three components comprise the core measurement system: i) the NASA Wallops Sherpa, which is ideal for airborne eddy covariance due to its substantial payload and the ability to fly low and slow, ii) commercial GHG sensors optimized for airborne flux measurements, and iii) a custom gust-probe system for high-fidelity measurements of vertical wind velocity. These systems will be discussed in detail, along with future plans for deployment and application of measurements to improving GHG flux estimates on local, regional and global scales.

  18. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information

    International Nuclear Information System (INIS)

    Spatial and temporal variations of atmospheric CO2 concentrations contain information about surface sources and sinks, which can be quantitatively interpreted through tracer transport inversion. Previous CO2 inversion calculations obtained differing results due to different data, methods and transport models used. To isolate the sources of uncertainty, we have conducted a set of annual mean inversion experiments in which 17 different transport models or model variants were used to calculate regional carbon sources and sinks from the same data with a standardized method. Simulated transport is a significant source of uncertainty in these calculations, particularly in the response to prescribed 'background' fluxes due to fossil fuel combustion, a balanced terrestrial biosphere, and air-sea gas exchange. Individual model-estimated fluxes are often a direct reflection of their response to these background fluxes. Models that generate strong surface maxima near background exchange locations tend to require larger uptake near those locations. Models with weak surface maxima tend to have less uptake in those same regions but may infer small sources downwind. In some cases, individual model flux estimates cannot be analyzed through simple relationships to background flux responses but are likely due to local transport differences or particular responses at individual CO2 observing locations. The response to the background biosphere exchange generates the greatest variation in the estimated fluxes, particularly over land in the Northern Hemisphere. More observational data in the tropical regions may help in both lowering the uncertain tropical land flux uncertainties and constraining the northern land estimates because of compensation between these two broad regions in the inversion. More optimistically, examination of the model-mean retrieved fluxes indicates a general insensitivity to the prior fluxes and the prior flux uncertainties. Less uptake in the Southern Ocean

  19. Modelling the decadal trend of ecosystem carbon fluxes demonstrates the important role of functional changes in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; Jansson, P.E.; van der Linden, Leon; Pilegaard, Kim; Beier, Claus; Ibrom, Andreas

    2013-01-01

    Temperate forests are globally important carbon sinks and stocks. Trends in net ecosystem exchange have been observed in a Danish beech forest and this trend cannot be entirely attributed to changing climatic drivers. This study sought to clarify the mechanisms responsible for the observed trend...... latent and sensible heat fluxes and the CO2 fluxes decreased the parameter uncertainty considerably compared to using CO2 fluxes as validation data alone. The fitted model was able to simulate the observed carbon fluxes well (R2=0.8, mean error=0.1gCm−2d−1) but did not reproduce the decadal (1997......–2009) trend in carbon uptake when global parameter estimates were used. Annual parameter estimates were able to reproduce the decadal scale trend; the yearly fitted posterior parameters (e.g. the light use efficiency) indicated a role for changes in the ecosystem functional properties. A possible role for...

  20. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  1. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modelling analysis

    Science.gov (United States)

    Wu, Y.; Blodau, C.; Moore, T. R.; Bubier, J.; Juutinen, S.; Larmola, T.

    2015-01-01

    Nitrogen (N) pollution of peatlands alters their carbon (C) balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to explore impacts of long-term nitrogen (N) fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem exchange (NEE) were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behaviour. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to factors that can be related to differences in vegetation distribution (e.g. shrubs vs. graminoid vegetation) and to high tolerance of vascular plants to N deposition in the model. Model performance regarding the 8-year response of GEP and NEE to N input was improved by introducing an N content threshold shifting the response of photosynthetic capacity (GEPmax) to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum-dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m-2 yr-1, whereas this was not the case when it became graminoid-dominated. The modelling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.

  2. Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modeling analysis

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2014-07-01

    Full Text Available Nitrogen (N pollution of peatlands alters their carbon (C balances, yet long-term effects and controls are poorly understood. We applied the model PEATBOG to analyze impacts of long-term nitrogen (N fertilization on C cycling in an ombrotrophic bog. Simulations of summer gross ecosystem production (GEP, ecosystem respiration (ER and net ecosystem exchange (NEE were evaluated against 8 years of observations and extrapolated for 80 years to identify potential effects of N fertilization and factors influencing model behavior. The model successfully simulated moss decline and raised GEP, ER and NEE on fertilized plots. GEP was systematically overestimated in the model compared to the field data due to high tolerance of Sphagnum to N deposition in the model. Model performance regarding the 8 year response of GEP and NEE to N was improved by introducing an N content threshold shifting the response of photosynthesis capacity to N content in shrubs and graminoids from positive to negative at high N contents. Such changes also eliminated the competitive advantages of vascular species and led to resilience of mosses in the long-term. Regardless of the large changes of C fluxes over the short-term, the simulated GEP, ER and NEE after 80 years depended on whether a graminoid- or shrub-dominated system evolved. When the peatland remained shrub-Sphagnum dominated, it shifted to a C source after only 10 years of fertilization at 6.4 g N m−2 yr−1, whereas this was not the case when it became graminoid-dominated. The modeling results thus highlight the importance of ecosystem adaptation and reaction of plant functional types to N deposition, when predicting the future C balance of N-polluted cool temperate bogs.

  3. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change

    Directory of Open Access Journals (Sweden)

    V. Krumins

    2013-01-01

    Full Text Available We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC and alkalinity (AT from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation, while the reactions included are the redox pathways of organic carbon oxidation, re-oxidation of reduced nitrogen, iron and sulfur compounds, pore water acid-base equilibria, and dissolution of particulate inorganic carbon (calcite, aragonite, and Mg-calcite. The coastal zone is divided into four environmental units with different particulate inorganic carbon (PIC and particulate organic carbon (POC fluxes: reefs, banks and bays, carbonate shelves and non-carbonate shelves. Model results are analyzed separately for each environment and then scaled up to the whole coastal ocean. The model-derived estimate for the present-day global coastal benthic DIC efflux is 126 Tmol yr−1, based on a global coastal reactive POC depositional flux of 117 Tmol yr−1. The POC decomposition leads to a carbonate dissolution from shallow marine sediments of 7 Tmol yr−1 (on the order of 0.1 Pg C yr−1. Assuming complete re-oxidation of aqueous sulfide released from sediments, the effective net flux of alkalinity to the water column is 29 Teq. yr−1, primarily from PIC dissolution (46% and ammonification (33%. Because our POC depositional flux falls in the high range of global values given in the literature, the reported DIC and alkalinity fluxes should be viewed as upper-bound estimates. Increasing coastal seawater DIC to what might be expected in year 2100 due to the uptake of anthropogenic CO2 increases PIC dissolution by 2.3 Tmol yr−1and alkalinity efflux by 4.8 Teq. yr−1. Our reactive transport modeling approach not only yields global estimates of benthic DIC

  4. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change

    Directory of Open Access Journals (Sweden)

    V. Krumins

    2012-07-01

    Full Text Available We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC and alkalinity (AT from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation, while the reactions included are the redox pathways of organic carbon oxidation, re-oxidation of reduced nitrogen, iron and sulfur compounds, pore water acid-base equilibria, and dissolution of particulate inorganic carbon (calcite, aragonite, and Mg-calcite. The coastal zone is divided into four environmental units with different particulate inorganic carbon (PIC and particulate organic carbon (POC fluxes: reefs, banks and bays, carbonate shelves and non-carbonate shelves. Model results are analyzed separately for each environment and then scaled up to the whole coastal ocean. The model-derived estimate for the present-day global coastal benthic DIC efflux is 126 Tmol yr−1, based on a global coastal reactive POC depositional flux of 117 Tmol yr−1. The POC decomposition leads to a~carbonate dissolution from shallow marine sediments of 7 Tmol yr−1 (on the order of 0.1 Pg C yr−1. Assuming complete re-oxidation of aqueous sulfide released from sediments, the effective net flux of alkalinity to the water column is 29 Teq yr−1, primarily from PIC dissolution (46% and ammonification (33%. Because our POC depositional flux falls in the high range of global values given in the literature, the reported DIC and alkalinity fluxes should be viewed as upper-bound estimates. Increasing coastal seawater DIC to what might be expected in year 2100 due to the uptake of anthropogenic CO2 increases PIC dissolution by 2.3 Tmol yr−1 and alkalinity efflux by 4.8 Teq yr−1. Our reactive transport modeling approach not only yields global estimates of benthic DIC, alkalinity

  5. Climate determined differences in carbon dioxide fluxes dynamics between two comparable agroecosystems of Central Russia

    Science.gov (United States)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya; Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Creation of Russian part of Fluxnet - Rusfluxnet, aims to fill the carbon dioxide fluxes data shortage. Because the Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. For the first time eddy covariance (EC) GHG study has been conducted at two representative agroecosystems of Central Russia belonging to different climate zones (climate and soils), but both with the same land use: the both fields were under barley. The study was carried out in 2013 and supported by RF Government grant No. 11.G34.31.0079. The first agricultural field located at Precision Farming Experimental Field of the Timiryazev Agricultural University situated in Moscow. It's arable Albeluvisols Umbric have around 1% of SOC, 5.4 pH(KCl) and NPK medium-enhanced contents in sandy loam topsoil. The field was used for barley planting (Hordeum vulgare L., breeding line Mihailovsky). Sowing was in early May 2013 and harvest was in August, 14. The second agricultural field near the Pristen placed at Kursk region of Russia. It's arable Chernozems have around 4% of SOC, 6.5 pH(KCl) and NPK high-enhanced contents in sandy loam topsoil. The field was used for barley planting (Hordeum vulgare L., breeding line Xanadu). Sowing was 25-27 of April and harvest was 14-19 of August. Instrumental equipments (mainly LI-COR) were the same for both stations. Both towers height was 1.4m. Footprints were considered by fields edges, and were about 55m for Moscow and about 150m for Pristen. Canopy growth and snow melting were taking into account in the model. Surface roughness was neglected. Calculations were done using EddyPro software. Since Pristen field is 600 km to the South than the Moscow one, higher PAR values were observed for Pristen field. Modal PAR values were 600 and 400 umol m-2 s-1 for Pristen and Moscow fields respectively. Nevertheless temporal pattern of PAR was similar for both

  6. Modeling the diversion of primary carbon flux into secondary metabolism under variable nitrate and light/dark conditions.

    Science.gov (United States)

    Larbat, Romain; Robin, Christophe; Lillo, Cathrine; Drengstig, Tormod; Ruoff, Peter

    2016-08-01

    In plants, the partitioning of carbon resources between growth and defense is detrimental for their development. From a metabolic viewpoint, growth is mainly related to primary metabolism including protein, amino acid and lipid synthesis, whereas defense is based notably on the biosynthesis of a myriad of secondary metabolites. Environmental factors, such as nitrate fertilization, impact the partitioning of carbon resources between growth and defense. Indeed, experimental data showed that a shortage in the nitrate fertilization resulted in a reduction of the plant growth, whereas some secondary metabolites involved in plant defense, such as phenolic compounds, accumulated. Interestingly, sucrose, a key molecule involved in the transport and partitioning of carbon resources, appeared to be under homeostatic control. Based on the inflow/outflow properties of sucrose homeostatic regulation we propose a global model on how the diversion of the primary carbon flux into the secondary phenolic pathways occurs at low nitrate concentrations. The model can account for the accumulation of starch during the light phase and the sucrose remobilization by starch degradation during the night. Day-length sensing mechanisms for variable light-dark regimes are discussed, showing that growth is proportional to the length of the light phase. The model can describe the complete starch consumption during the night for plants adapted to a certain light/dark regime when grown on sufficient nitrate and can account for an increased accumulation of starch observed under nitrate limitation. PMID:27164436

  7. An argument for the use of two-layer SVAT schemes to simulate terrestrial carbon dioxide fluxes

    Directory of Open Access Journals (Sweden)

    C. Huntingford

    1998-01-01

    Full Text Available An order-of-magnitude argument shows that the different surface temperatures of soil and sparse vegetation affect carbon assimilation and soil respiration significantly. However, regulation of assimilation through associated modulation of in-canopy carbon dioxide levels is weak. It is shown that for many vegetation types, the use of a two-layer representation of vegetation is essential to predict, accurately, terrestrial carbon fluxes, primarily through allowing different surface energy balances.

  8. Carbon and oxygen fluxes in the Barents and Norwegian Seas : production, air-sea exchange and budget calculations

    OpenAIRE

    Kivimäe, Caroline

    2007-01-01

    This thesis focus on the carbon and oxygen fluxes in the Barents and Norwegian Seas and presents four studies where the main topics are variability of biological production, air-sea exchange and budget calculations. The world ocean is the largest short term reservoir of carbon on Earth, consequently it has the potential to control the atmospheric concentrations of carbon dioxide (CO2) and has already taken up ~50 % of the antropogenically emitted CO2. It is thus important to...

  9. Can we reconcile differences in estimates of carbon fluxes from land-use change and forestry for the 1990s?

    OpenAIRE

    Ito, A; Penner, J. E.; Prather, M. J.; De Campos, C. P.; Houghton, R. A.; Kato, T.; A. K. Jain; X. Yang; Hurtt, G. C.; Frolking, S; Fearon, M. G.; Chini, L. P.; Wang, A.; Price, D. T.

    2008-01-01

    The effect of Land Use Change and Forestry (LUCF) on terrestrial carbon fluxes can be regarded as a carbon credit or debit under the UNFCCC, but scientific uncertainty in the estimates for LUCF remains large. Here, we assess the LUCF estimates by examining a variety of models of different types with different land cover change maps in the 1990s. Annual carbon pools and their changes are separated into different components for separate geographical regions, while annual land cover change areas...

  10. Evaluating the potential of Southampton Carbon flux (SCARF) model to predict terrestrial gross primary productivity over Africa.

    Science.gov (United States)

    Dash, Jadunandan; Chiwara, Phibion; Milton, Edward; Ardo, Jonas; Saunders, Matthew; Nicolini, Giacomo

    The amount of carbon uptake by vegetation is an important component to understand the functioning of ecosystem processes and their response/feedback to climate. Recently a new diagnostic model called the Southampton Carbon flux (SCARF) model was develop to predict terrestrial gross primary productivity at regional to global scale using satellite data. The model based on the quantum yield of vegetation improves on the previous diagnostic model by (i) using the fraction of photosynthetic active radiation absorbed by the photosynthetic pigment (FAPAR _{ps}) and (ii) using direct quantum yield by classifying the vegetation into C3 or C4 classes. Initial results suggest a very good agreement with expected results for ecosystems where the growth is controlled by temperature (e.g. Northern higher latitude). In this paper we calibrated and validated the model for a range of vegetation types across Africa, in order to test the performance of vegetation over a water limiting ecosystem. The vapour pressure deficit term (VPD) was modified to quantify the water loss and in turn reduced carbon assimilation through Evapotranspiration. The performance of the model was evaluated with GPP measured at eight eddy covariance flux tower data across Africa. Overall, the modelled GPP values show good agreement with observed GPP at most sites (except tropical rainforest site) in terms of their seasonality and absolute values. Mean daily GPP across the investigated period varied significantly across sites depending on the vegetation types from a minimum of 0.64 gC m (2) day (-1) for the dry savannah grassland at Demokeya to a maximum of 7.83 gC m (2) day (-1) for tropical rain forest at Ankasa. The model results have modest to very strong positive agreement with observed GPP at most sites (r (2) values ranging from 0.58 for Kruger and 0.84 for Mongu). Generally, strong correlation is observed in woodlands and grasslands where vegetation follows a prescribed seasonal cycle as determined by

  11. Using Tree Rings, CO2 Fluxes, and Long-Term Measurements to Understand Carbon Dynamics in an Alaskan Boreal Forest

    Science.gov (United States)

    Bond-Lamberty, B. P.; Anderson, C.; Crump, A.; Stegen, J.

    2015-12-01

    Decadal and centennial processes are usually poorly constrained by data, but many opportunities exist to combine disparate data sources such as tree rings, greenhouse gas fluxes from the soil to atmosphere, and long-term tree inventories. At high northern latitudes, permafrost (and its current degradation across large scales) is presumed to exert a strong control on long-term ecosystem carbon uptake and storage. We integrate a variety of data from both Canada and Alaska, focusing on two years of observations across a permafrost gradient in a black spruce Alaskan watershed (the Caribou/Poker Creek Research Watershed ~50 km northeast of Fairbanks, AK, USA). Permafrost depth changes were strongly associated with changes in vegetation and leaf morphology, as well as soil greenhouse fluxes (0.1-2.0 μmol/m2/s, with strong spatial dependencies) and aboveground net primary production (60-550 gC/m2/yr). We use tree-ring data covering the last century to examine how tree response to climate variability changes with elevation and permafrost depth, both along small-scale transects and across the entire 104 km2 watershed. A weakness is that these results are from a single site and point in successional time; we quantify potential variability in this area using 16 years of observations from a Canadian boreal chronosequence. We emphasize that both short and long term observations and experiments, using multiple approaches, are necessary to constrain ecosystem carbon uptake and storage.

  12. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    Science.gov (United States)

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (Psoil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013. PMID:27396103

  13. High Resolution Modeling of Anthropogenic and Biogenic Carbon Dioxide Fluxes From the Portland Oregon Metropolitan Area

    Science.gov (United States)

    Butenhoff, C. L.; Powell, J.; Tran, D.; Rice, A. L.

    2013-12-01

    The future of the North American carbon cycle is heavily dependent on urban ecosystems and their development. Around 75-80% of the current U.S. population is urbanized and this percentage is likely to increase in the future. Despite the lack of national climate policy, cities nationwide are developing their own plans to reduce carbon dioxide (CO2) emissions. The city of Portland OR for example (along with Multnomah County) has in place an ambitious goal of reducing CO2 emissions by 80% by the year 2050. Monitoring and verifying emission reductions will be integral to the successful operation of this and other mitigation policies. To do so requires both the modeling and measurement of CO2 at high spatial and temporal resolution. To this effort we developed gridded inventories of anthropogenic and biogenic fluxes of CO2 from Portland and the surrounding metropolitan region at 1-km resolution and at hourly time steps. Mobile emissions were estimated using traffic count data, a land-use regression model, and the EPA MOVES model. Biogenic fluxes of CO2 were calculated using high resolution remote sensing vegetation maps and the Vegetation Photosynthesis and Respiration Model coupled to the Weather Research and Forecasting Model (WRF-VPRM). This is part of an on-going effort to constrain emission estimates using measurements of CO2 from throughout the region. Here we compare simulated concentrations of CO2 with data available from three sites, representing upwind, downwind, and city center conditions.

  14. Carbon flux to the deep in three open sites of the Southern European Seas (SES)

    Science.gov (United States)

    Gogou, Alexandra; Sanchez-Vidal, Anna; Durrieu de Madron, Xavier; Stavrakakis, Spyros; Calafat, Antoni M.; Stabholz, Marion; Psarra, Stella; Canals, Miquel; Heussner, Serge; Stavrakaki, Ioanna; Papathanassiou, Evangelos

    2014-01-01

    In this study, we investigate the strength and efficiency of carbon sequestration in the Southern European Seas (SES), by analyzing the export of POC at three deep sites located in the Western Mediterranean Sea (WMED), the Eastern Mediterranean Sea (EMED) and the Black Sea (BS). We combine estimations of satellite and algorithm-generated primary production data, calculated POC fluxes out of the euphotic layer and POC fluxes measured by sediment traps at the mesopelagic and bathypelagic layers during a one year period, with an ultimate goal to obtain a better understanding of the functioning of the biological pump in the SES. Annual particulate primary production based on satellite estimations (SeaWiFS) at the three sites, averages 205, 145 and 225 gC m- 2 y- 1 at the WMED, EMED and BS, respectively. According to our findings, the fraction of primary production that is exported out of the euphotic zone in the SES ranges between 4.2% and 11.4%, while the fraction reaching the mesopelagic layer (1000-1400 m depth) ranges between 0.6% and 1.8%. Finally, the fraction of primary production exported at the bathypelagic layer (2000-2800 m depth) is found to be 0.6%, 0.3% and 1.4% in the WMED, EMED and BS, respectively. The role of various processes responsible for the replenishment of surface waters with nutrients, giving rise to productivity episodes and organic carbon export to depth at the three SES sites is considered.

  15. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  16. Magnetic Reconnection resulting from Flux Emergence: Implications for Jet Formation in the lower solar atmosphere?

    OpenAIRE

    Ding, J. Y.; Madjarska, M. S.; Doyle, J. G.; Lu, Q. M.; Vanninathan, K.; Huang, Z

    2011-01-01

    We aim at investigating the formation of jet-like features in the lower solar atmosphere, e.g. chromosphere and transition region, as a result of magnetic reconnection. Magnetic reconnection as occurring at chromospheric and transition regions densities and triggered by magnetic flux emergence is studied using a 2.5D MHD code. The initial atmosphere is static and isothermal, with a temperature of 20,000 K. The initial magnetic field is uniform and vertical. Two physical environments with diff...

  17. Eddy Covariance Measured Methane and Carbon Dioxide Fluxes for a Restored Wetland, Sacramento - San Joaquin Delta, California, USA

    Science.gov (United States)

    Anderson, F.; Detto, M.; Verfaillie, J. G.; Hatala, J.; Baldocchi, D. D.; Bergamaschi, B. A.; Fujii, R.

    2010-12-01

    There is an increase in investment to protect and restore natural wetlands due to environmental benefits such as soil carbon storage, atmospheric carbon sequestration, and in the case of the Sacramento-San Joaquin Delta (SSJ-Delta), subsidence reversal. Although these ecosystems can actively increase stored carbon or limit oxidation of existing soil organic carbon (e.g. peat), anaerobic conditions created by permanent and semi-permanent flooding can result in the release of methane (CH4), a more potent greenhouse gas. In the summer of 2010, continuous eddy covariance measurements of CH4 and carbon dioxide (CO2) were collected from a restored wetland marsh on Twitchell Island in the SSJ-Delta. The eddy covariance instrumentation includes a CSAT3 sonic anemometer(Campbell Scientific, Logan, UT USA) , an open-path CO2/H2O infrared gas analyzer (LI-7500, LI-COR Biogeosciences, Lincoln NE USA) and closed-path tunable diode laser fast methane sensor (FMA or FGGA, Los Gatos Research). From June 22-30, an open-path methane analyzer (LI-7700, LI-COR Biogeosciences) was installed for 2-3 weeks to compare with the closed-path method. Initial results over the growing season, show the wetland’s potential to be a sink for CO2, as maximum daily values are around -10 µmol m-2 s-1. However, CH4 emissions may offset this potential as average CH4 emissions from the open and closed path comparison study were close to 200 nmol m-2 s-1, with peak rates as high as 400 nmol m-2 s-1. Here we present results showing diurnal and seasonal trends of CH4 and CO2 fluxes, which are dependent upon air, leaf, and water temperatures, differences in humidity, and plant stomatal controls, all driven by changes in daily and seasonal variations in solar radiation.

  18. Contribution of Oxygenic Photosynthesis to Palaeo-Oceanic Organic Carbon Sink Fluxes in Early Cambrian Upper Yangtze Shallow Sea:Evidence from Black Shale Record

    Institute of Scientific and Technical Information of China (English)

    Kunyu Wu; Tingshan Zhang; Yang Yang; Yuchuan Sun; Daoxian Yuan

    2016-01-01

    ABSTRACT:The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth’s surface was studied to estimate the contribution of oxygenic photosyn-thesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Or-ganic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary envi-ronment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18%to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×103 kg/km2·yr-1, especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×103 kg/km2·yr-1, with an average of~6.03×103 kg/km2·yr-1, which is much high-er than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×103 kg/km2·yr-1 net oxygen emitted into the Early Cambrian ocean and atmos-phere, this emitted oxygen may have significantly promoted the oxygen level of the Earth’s surface and diversification of metazoans.

  19. Variations of Carbon Dioxide within an Urban Area: Comparison of Fluxes and Concentrations between Commercial and Residential Locations

    Science.gov (United States)

    Buckley, S. M.; Mitchell, M. J.; McHale, P.

    2011-12-01

    Urban areas have been identified as major contributors of carbon dioxide (CO2) emissions to the atmosphere. Until recently, few studies have explored the fluxes of CO2 within urban areas, with fewer still collecting simultaneous readings from multiple locations within the same city. In order to further examine the relationship of CO2 levels and surrounding land use within urban environments, this study compares CO2 fluxes and concentrations at two sites of different composition within Syracuse, N.Y.: one within the commercial downtown district and the other in a residential neighborhood approximately 3.5 km apart. Both sites have collected CO2 flux and concentration data from open path eddy covariance systems between June 2010 and May 2011. Preliminary results show a strong diurnal cycle at both locations in different directions, suggesting local influences of traffic and vegetation. The downtown location has two rush hour peaks (maximum winter averages of ~36 μmol m-2 s-1 at 08:00 EST and ~39 μmol m-2 s-1 at 16:00 EST) visible in diurnal averages while the residential location has a midday dip in fluxes during the summer and fall months, with a minimum summer average value of ~11 μmol m-2 s-1 around 12:00 EST. Further examination shows variations at the downtown site between weekend and weekdays, suggesting a greater traffic influence compared to the residential site. The results of this study, in conjunction with traffic count measurements at the downtown site and high resolution land use cover maps, will give insight to the impact of traffic and land use within cities.

  20. Carbonated hydrocarbons for improved gas well fracturing results

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N. G.; Anderson, H. A.

    1996-10-01

    A process for hydraulic fracturing gas reservoirs has been developed which used the reservoir gas as a drive mechanism and a specially designed fluid slug to achieve miscible recovery of the treating fluid. The slug combines carbon dioxide with certain hydrocarbons, causing the hydrocarbons to achieve high viscosity, which in turn results in low friction and good sand carrying capability. The carbon dioxide in solution creates a miscible bank of enriched carbon dioxide between the fracturing fluid and the reservoir gas, which then permits recovery of virtually all of the fracturing fluid. The resulting high permeability leads to improved well productivity. Field results to verify the applicability of this process were presented. It was found that miscibility between the reservoir fluid, the enriched carbon dioxide bank, and the fracturing fluid must be present to achieve optimum recovery. 30 refs., 5 tabs., 14 figs.

  1. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    International Nuclear Information System (INIS)

    Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), 'air' (i.e. N2 + O2 + Ar, 1-5%) and CO2 (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (4 content (>90%) with low CO2 (1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, 4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.

  2. Measurement of 5-eV atomic oxygen using carbon-based films: preliminary results

    OpenAIRE

    White, C de B; Roberts, G. T.; Chambers, A.R.

    2005-01-01

    Carbon-based sensors have been developed to measure the atmospheric neutral atomic oxygen (AO) flux experienced by spacecraft in low Earth orbit. Thin- and thick-film carbon sensor elements were deposited onto an alumina substrate between thick-film gold tracks and silver palladium solder pads. AO flux is deduced by measuring resistance changes as the carbon film erodes and applying a simple theory. A wide range of responses were observed that are dependent on the deposition process and post ...

  3. Assessments of carbon and water cycling in multiple agricultural ecosystems in the Inland Pacific Northwest using eddy covariance flux measurements and integrated basin-crop model simulation

    Science.gov (United States)

    Chi, J.; Maureira, F.; Waldo, S.; O'Keeffe, P.; Pressley, S. N.; Stockle, C. O.; Lamb, B. K.

    2014-12-01

    Local meteorology, crop management practices and site characteristics have important impacts on carbon and water cycling in agricultural ecosystems. This study focuses on carbon and water fluxes measured using eddy covariance (EC) methods and crop simulation models in the Inland Pacific Northwest (IPNW), in association with the Regional Approaches to Climate Change (REACCH) program. The agricultural ecosystem is currently challenged by higher pressure on water resources as a consequence of population growth and increasing exposure to impacts associated with different types of crop managements. In addition, future climate projections for this region show a likely increase in temperature and significant reductions in precipitation that will affect carbon and water dynamics. This new scenario requires an understanding of crop management by assessing efficient ways to face the impacts of climate change at the micrometeorological level, especially in regards to carbon and water flow. We focus on three different crop management sites. One site (LIND) under crop-fallow is situated in a low-rainfall area. The other two sites, one no-till site (CAF-NT) and one conventional tillage site (CAF-CT), are located in an area of high-rainfall with continuous cropping. In this study, we used CropSyst micro-basin model to simulate the responses in carbon and water budgets at each site. Based on the EC processed results for net ecosystem exchange (NEE) of CO2, the CAF-NT site was a carbon sink during 2013 when spring garbanzo was planted; while the paired CAF-CT site, under similar crop rotation and meteorological conditions, was a carbon source during the same period. The LIND site was also a carbon sink where winter wheat was growing during 2013. Model results for CAF-NT showed good agreement with the EC carbon and water flux measurements during 2013. Through comparisons between measurements and modeling results, both short and long term processes that influence carbon and water

  4. Productivity and carbon dioxide exchange of the leguminous crops: Estimates from flux tower measurements

    Science.gov (United States)

    Net CO2 exchange data on legume crops at 17 flux tower sites in North America and 3 sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration using a light-response function method, resulting in new estimates of ecosystem-scale ec...

  5. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.

    Science.gov (United States)

    Zhang, Xuesong; Izaurralde, R César; Arnold, Jeffrey G; Williams, Jimmy R; Srinivasan, Raghavan

    2013-10-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gasses (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)-residue and simulate land-atmosphere carbon exchange. We test this new SWAT-C model with daily eddy covariance (EC) observations of net ecosystem exchange (NEE) and evapotranspiration (ET) and annual crop yield at six sites across the U.S. Midwest. Results show that SWAT-C simulates well multi-year average NEE and ET across the spatially distributed sites and capture the majority of temporal variation of these two variables at a daily time scale at each site. Our analyses also reveal that performance of SWAT-C is influenced by multiple factors, such as crop management practices (irrigated vs. rainfed), completeness and accuracy of input data, crop species, and initialization of state variables. Overall, the new SWAT-C demonstrates favorable performance for simulating land-atmosphere carbon exchange across agricultural sites with different soils, climate, and management practices. SWAT-C is expected to serve as a useful tool for including carbon flux into consideration in sustainable watershed management under a changing climate. We also note that extensive assessment of SWAT-C with field observations is required for further improving the model and understanding potential uncertainties of applying it across large regions with complex landscapes. PMID:23859899

  6. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks (Invited)

    Science.gov (United States)

    Keenan, T. F.; Hollinger, D. Y.; Bohrer, G.; Dragoni, D.; Munger, J. W.; Schmid, H. E.; Richardson, A. D.

    2013-12-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  7. Temporal variation and fluxes of dissolved and particulate organic carbon in the Apure, Caura and Orinoco rivers, Venezuela

    Science.gov (United States)

    Mora, Abrahan; Laraque, Alain; Moreira-Turcq, Patricia; Alfonso, Juan A.

    2014-10-01

    The concentrations of total suspended sediments (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC) were measured in water samples taken monthly in the Apure, Caura and Orinoco rivers during a hydrological cycle (between Sept. 2007 and Aug. 2008). The DOC concentration values ranged between 1.5 and 6.8 mgC l-1 in the Apure River; 2.07 and 4.9 mgC l-1 in the Caura River and 1.66 and 5.35 mgC l-1 in the Orinoco River. The mean concentration of DOC was 3.9 mgC l-1 in the Apure River, 3.24 mgC l-1 in the Caura River and 2.92 mgC l-1 in the Orinoco River at Puerto Ordaz. The three rivers showed a similar temporal pattern in the concentrations of DOC, with higher DOC values during the increasing branch of the hydrograph due to wash-out processes of the organic material stored in soils. The mean concentration values of POC were 1.33 mgC l-1; 0.77 mgC l-1 and 0.91 mgC l-1 in the Apure, Caura and Orinoco rivers, respectively. The inverse relationship found between the percentage in weight of the POC and the concentrations of TSS in the three rivers fits a logarithmic model, as it has been previously reported for other worldwide rivers. The POC concentrations in the Orinoco River showed a positive relationship with the TSS, suggesting that the POC in the Orinoco is the result of terrestrially organic matter. Although the fluxes of organic carbon (OC) in the three studied rivers are dependent on the values of water discharge, the fluxes of DOC during the increasing branch of the hydrograph are higher than those found during the decreasing stage, due to the yield of organic material accumulated in soils during the preceding dry season. The mean annual flux of total organic carbon (TOC) of the Orinoco River at Puerto Ordaz was about 4.27 × 106 TonC yr-1. Of this, 3.28 × 106 TonC yr-1 (77%) represents the flux of DOC and about 0.99 TonC yr-1 (23%) represents the flux of POC. The mean annual input of TOC from the Apure River to the Orinoco River was about

  8. Utilizing the CreA Gene to Better Understand Carbon Flux in Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Annecharico, Matthew D.; Baker, Scott E.

    2005-01-01

    Carbon catabolite repression (CCR) is a system which represses the synthesis of enzymes required for certain carbon sources when more favored carbon sources are present. Fungal enzymes are useful in various industrial applications such as the degradation of bi-product biomass produced in many areas of manufacturing and production. For example, the basidiomycete, Phanerochaete chrysosporium, a filamentous fungus, produces a number of lignin peroxidases (LiPs) such as an extra-cellular lignin-modifying protein and manganese-dependent peroxidase (MnPs). The LiPs secreted by P. chrysosporium are able to break down lignin, one of the main substances of wood, while leaving the cellulose behind. These enzymes are capable of degrading toxic waste as well as biomass waste. Through polysaccharide hydrolysis and lignin utilization, biobased products and biofuels can be processed from biomass instead of petroleum, which is more environmentally sound than current fuel options. Previous research in the fungal phylum, Ascomyces has shown that the creA gene is an important gene that controls various enzymes which have key roles in controlling carbon utilization by fungi. We hypothesize that there are similarities across all fungi in the mechanism by which carbon flux is controlled and that orthologs of the creA gene exist in all fungal phyla. A COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP) polymerase chain reaction (PCR) strategy was used to isolate genomic fragments of the creA gene from a variety of fungi with the objective to design and utilize a method for isolation of the creA gene from a wide range of fungi.

  9. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. PMID:24784732

  10. Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers

    Directory of Open Access Journals (Sweden)

    W. Shen

    2015-07-01

    Full Text Available The precipitation legacy effect, defined as the impact of historical precipitation (PPT on extant ecosystem dynamics, has been recognized as an important driver in shaping the temporal variability of dryland aboveground primary production (ANPP and soil respiration. How the PPT legacy influences whole ecosystem-level carbon (C fluxes has rarely been quantitatively assessed, particularly at longer temporal scales. We parameterized a process-based ecosystem model to a semiarid savanna ecosystem in southwestern US, calibrated and evaluated the model performance based on 7 years of eddy covariance measurements, and conducted two sets of simulation experiments to assess interdecadal and interannual scale PPT legacy effects over a 30 year simulation period. The results showed that decreasing the previous period/year PPT (dry legacy always imposed positive impacts on net ecosystem production (NEP whereas increasing the previous period/year PPT (wet legacy had negative impacts on NEP. The simulated dry legacy impacts were mostly positive on gross ecosystem production (GEP and negative on ecosystem respiration (Re but the wet legacy impacts were mostly negative on GEP and positive on Re. Although the direction and magnitude of GEP and Re responses to the simulated dry and wet legacies were influenced by both the previous and current PPT conditions, the NEP responses were predominantly determined by the previous PPT characteristics including rainfall amount, seasonality and event size distribution. Larger PPT difference between periods/years resulted in larger legacy impacts, with dry legacies fostering more C sequestration and wet legacies more C release. By analyzing the resource pool (C, N, and H2O responses to the simulated dry and wet legacies, we found that the carryover of soil N between periods/years was mainly responsible for the GEP responses while the carryovers of plant biomass, litter and soil organic matter were mainly responsible for the Re

  11. The Joint UK Land Environment Simulator (JULES, model description – Part 2: Carbon fluxes and vegetation dynamics

    Directory of Open Access Journals (Sweden)

    D. B. Clark

    2011-09-01

    Full Text Available The Joint UK Land Environment Simulator (JULES is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change.

    This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model.

    The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  12. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090-2099

    Science.gov (United States)

    Veira, A.; Lasslop, G.; Kloster, S.

    2016-04-01

    Global warming is expected to considerably impact wildfire activity and aerosol emission release in the future. Due to their complexity, the future interactions between climate change, wildfire activity, emission release, and atmospheric aerosol processes are still uncertain. Here we use the process-based fire model SPITFIRE within the global vegetation model JSBACH to simulate wildfire activity for present-day climate conditions and future Representative Concentration Pathways (RCPs). The modeled fire emission fluxes and fire radiative power serve as input for the aerosol-climate model ECHAM6-HAM2, which has been extended by a semiempirical plume height parametrization. Our results indicate a general increase in extratropical and a decrease in tropical wildfire activity at the end of the 21st century. Changes in emission fluxes are most pronounced for the strongest warming scenario RCP8.5 (+49% in the extratropics, -37% in the tropics). Tropospheric black carbon (BC) concentrations are similarly affected by changes in emission fluxes and changes in climate conditions with regional variations of up to -50% to +100%. In the Northern Hemispheric extratropics, we attribute a mean increase in aerosol optical thickness of +0.031±0.002 to changes in wildfire emissions. Due to the compensating effects of fire intensification and more stable atmospheric conditions, global mean emission heights change by at most 0.3 km with only minor influence on BC long-range transport. The changes in wildfire emission fluxes for the RCP8.5 scenario, however, may largely compensate the projected reduction in anthropogenic BC emissions by the end of the 21st century.

  13. Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-min; SAIGUSA Nobuko; ZU Yuan-gang; WANG Wen-jie; YAMAMOTO Susumu; KONDO Hiroaki

    2008-01-01

    The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g·m-2·month-1 in June 2004 (simplified expression of g (carbon) ·m-2·month-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g·m-2·a-1 (simplified expression of g (carbon)·m-2·a-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD < 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD > 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol·m-2·s-1·kPa-1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol·m-2·s-1·kPa-1. Under humid conditions (VPD < 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.

  14. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique

    Science.gov (United States)

    Jha, Chandra Shekhar; Thumaty, Kiran Chand; Rodda, Suraj Reddy; Sonakia, Ajit; Dadhwal, Vinay Kumar

    2013-10-01

    In the present study, we report initial results on analysis of carbon dioxide (CO2), water vapour (H2O), and energy fluxes (sensible and latent heat flux) over teak mixed deciduous forests of Madhya Pradesh, central India, during winter (November 2011 and January 2012) and summer (February-May 2012) seasons using eddy covariance flux tower datasets. During the study period, continuous fast response measurements of CO2, H2O and heat fluxes above the canopy were carried out at 10 Hz and averaged for 30 minutes. Concurrently, slow response measurements of meteorological parameters are also being carried out. Diurnal and seasonal variations of CO2, H2O and heat fluxes were analysed and correlated with the meteorological variables. The study showed strong influence of leaf off and on scenario on the CO2, H2O and energy fluxes due to prevalence of deciduous vegetation type in the study area. Maximum amount of CO2 was sequestered for photosynthesis during winter (monthly mean of mol/m2/s) compared to summer (monthly mean of mol/m2/s). Energy flux analysis (weekly mean) showed more energy being portioned into latent heat during winter (668 W/m2) and sensible heat during summer (718 W/m2).

  15. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique

    Indian Academy of Sciences (India)

    Chandra Shekhar Jha; Kiran Chand Thumaty; Suraj Reddy Rodda; Ajit Sonakia; Vinay Kumar Dadhwal

    2013-10-01

    In the present study, we report initial results on analysis of carbon dioxide (CO2), water vapour (H2O), and energy fluxes (sensible and latent heat flux) over teak mixed deciduous forests of Madhya Pradesh, central India, during winter (November 2011 and January 2012) and summer (February–May 2012) seasons using eddy covariance flux tower datasets. During the study period, continuous fast response measurements of CO2, H2O and heat fluxes above the canopy were carried out at 10 Hz and averaged for 30 minutes. Concurrently, slow response measurements of meteorological parameters are also being carried out. Diurnal and seasonal variations of CO2, H2O and heat fluxes were analysed and correlated with the meteorological variables. The study showed strong influence of leaf off and on scenario on the CO2, H2O and energy fluxes due to prevalence of deciduous vegetation type in the study area. Maximum amount of CO2 was sequestered for photosynthesis during winter (monthly mean of −25 mol/m2/s) compared to summer (monthly mean of −2 mol/m2/s). Energy flux analysis (weekly mean) showed more energy being portioned into latent heat during winter (668 W/m2) and sensible heat during summer (718 W/m2).

  16. Year-round observations of carbon biomass and flux variability in the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, James K.B.; Wood, Todd

    2009-02-01

    Three Carbon Explorer (CE) floats profiling to kilometer depths in the Southern Ocean tracked dawn-dusk variations of mixing/stratification, particulate organic carbon (POC), and light scattering and sedimentation at 100, 250, and 800 m continuously from January 2002 to April 2003. Data were analyzed in conjunction with contemporaneous satellite winds and chlorophyll and derived subsurface light fields. The CE deployed at 66{sup o}S 172{sup o}W operated in the ice edge zone in absence of light. Two CEs deployed at 55{sup o}S 172{sup o}W recorded wintertime mixing to {approx}400 m, yet observed very different bloom dynamics and sedimentation the following spring. Four hypotheses are explored. The strongest is that shallow transient stratification of the deep winter mixed layer to shallower than photosynthetic critical depth occurred more frequently in the non-bloom/higher sedimentation case. The lower particle export to 800 m under the bloom was hypothesized to be due to higher interception of sinking carbon by a relatively starved over wintering zooplankton population. In the Southern Ocean surface phytoplankton biomass may counter indicate particle flux at kilometer depths.

  17. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  18. Burial fluxes and sources of organic carbon in sediments of the central Yellow Sea mud area over the past 200 years

    Institute of Scientific and Technical Information of China (English)

    YANG Shu; YANG Qian; LIU Sai; CAI Deling; QU Keming; SUN Yao

    2015-01-01

    Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, similarity analysis is employed to confirm that the carbon burial features resulted from two collected cores are typical in the central Yellow Sea mud area where YSWC (Yellow Sea Warm Current) is prevalent. On this basis, the burial flux of TOC here was considered to be 235.5–488.4 μmol/(cm2∙a) since the first industrial revolution, accounting for about 70%–90% among burial fluxes of TC (total carbon) in the sediments. Compared TOC/TC ratio in the two cores with that in other marine sediments worldwide, we suggest that the growth of calcareous/non-calcareous organisms and dissolution of IC (inorganic carbon) are important factors controlling the TOC/TC ratio in sediment. Results of two-end mixed model based onδ13C data indicate that marine-derived organic carbon (OCa) is the main part among total burial organic carbon which accounts for a ratio over 85%. Due to the high TOC/TC ratio in the two cores, TC in the sediments also mainly exists as OCa, and the proportion of OCa is about 60%–80%. Away from the shore and relatively high primary production in upper waters are the main reasons that OCa is predominant among all burial OC in sediments of the central Yellow Sea mud area. Burial of OC in this mud area is probably mainly influenced by the human activities. Although the economic development during the late 19th century caused by the first industrial revolution in China did not obviously increase the TOC burial fluxes in the sediments, the rise of industry and agriculture after the founding of new China has clearly increased the TOC burial flux since 1950s. Otherwise, we also realize that among TC burial fluxes, TIC account for about 10%–30% in sediments of the central Yellow Sea mud area, so its burial could not be simply ignored here

  19. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  20. Thermal response and material degradation of tungsten-coated carbon divertor mock-ups by high heat flux

    International Nuclear Information System (INIS)

    Carbon/carbon composite (CX-2002U) and isotropic grain graphite (IG-430U) coated by VSP-W (Vacuum Plasma Splay-tungsten) were developed as a lightweight high-Z plasma-facing material. After brazing them on OFHC (Oxygen Free High Conductivity) blocks using a titanium foil and silver based materials, their thermal response and thermal fatigue properties were examined. The targets were actively cooled under steady state high heat flux. Heat load resistance of the VPS-W coated CX-2002U/OFHC was much better than that of the VSP-W coated IG-430U/OFHC due to the high thermal conductivity of CX-2002U (350 W/mK). Neither cracks nor exfoliation were observed on the W surface and the braze interface even after 160 cycles of heat load for 20 s at 10 MW/m2 in the case of Ti brazing. This result indicates that the Ti-brazing is a promising alternative to Ag-brazing for joining carbon to Cu and it is a potential candidate for a high heat resistance armor material on plasma facing components. (author)

  1. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    Science.gov (United States)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  2. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux

    Science.gov (United States)

    Maher, D. T.; Eyre, B. D.

    2012-03-01

    Estuaries are `hot spots' in the global carbon cycle, yet data on carbon dynamics, in particular air-sea CO2 fluxes, from autotrophic systems are rare. Estuarine carbon budgets were constructed for three geomorphically distinct warm temperate Australian estuaries over an annual cycle. All three estuaries were net autotrophic, with annual net ecosystem metabolism (NEM) ranging from 8 ± 13.4 molC m-2 yr-1 to 10 ± 14 molC m-2 yr-1. There was a net flux of CO2 from the atmosphere to the estuaries of between 0.4 ± 0.6 molC m-2 yr-1 and 2 ± 0.9 molC m-2 yr-1. Loading of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) to the estuaries varied markedly within and between the estuaries, and was directly related to freshwater inflow. While NEM was similar in all three estuaries, the ratio of benthic versus pelagic contributions to NEM differed, with NEM dominated by pelagic production in the river dominated system, benthic production dominating in the intermediate estuary, and equal contributions of benthic and pelagic production in the marine dominated lagoon. All three estuaries exported more organic carbon than was imported, fueled by additional organic carbon supplied by NEM. The estuaries essentially acted as bioreactors, transforming DIC to organic carbon. Burial of organic carbon ranged from 1.2 ± 0.3 molC m-2 yr-1 to 4.4 ± 1.2 molC m-2 yr-1 and represented up to half of NEM. The annual net uptake of atmospheric CO2 in these systems, along with previous estimates of the global estuarine CO2flux being based predominantly on heterotrophic, large river dominated estuarine systems, indicates that the global estimate of the estuarine air-water CO2flux may be over-estimated due to the lack of studies from autotrophic marine dominated estuaries.

  3. Comparison of carbon-stock changes, eddy-covariance carbon fluxes and model estimates in coastal Douglas-fir stands in British Columbia

    OpenAIRE

    Colin J. Ferster; JA (Tony) Trofymow; Nicholas C Coops; Baozhang Chen; Thomas Andrew Black

    2015-01-01

    Background The global network of eddy-covariance (EC) flux-towers has improved the understanding of the terrestrial carbon (C) cycle, however, the network has a relatively limited spatial extent compared to forest inventory data and plots. Developing methods to use inventory-based and EC flux measurements together with modeling approaches is necessary evaluate forest C dynamics across broad spatial extents. Methods Changes in C stock change (ΔC) were computed based on repeated meas...

  4. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    KAUST Repository

    Schull, M. A.

    2015-03-11

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  5. Thermal-based modeling of coupled carbon, water and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    Directory of Open Access Journals (Sweden)

    M. A. Schull

    2014-10-01

    Full Text Available Recent studies have shown that estimates of leaf chlorophyll content (Chl, defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light-use-efficiency (LUE. Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of Absorbed Photosynthetically Active Radiation (APAR and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote sensing-based Two-Source Energy Balance (TSEB model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn, which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is non-linearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in-situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  6. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    Science.gov (United States)

    Schull, M. A.; Anderson, M. C.; Houborg, R.; Gitelson, A.; Kustas, W. P.

    2015-03-01

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  7. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink

    Directory of Open Access Journals (Sweden)

    A. Lohila

    2011-06-01

    Full Text Available Drainage for forestry purposes changes the conditions in the peat and leads to increased growth of shrubs and trees. Concurrently, the production and uptake of the greenhouse gases carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O are likely to change: due to the accelerated decomposition of oxic peat, drained peatlands are generally considered to loose peat carbon (C. We measured CO2 exchange with the eddy covariance (EC method above a drained nutrient-poor peatland forest in Southern Finland for 16 months in 2004–2005. The site, classified as a dwarf-shrub pine bog, had been ditched about 35 years earlier. CH4 and N2O fluxes were measured at 2–5 week intervals with the chamber technique. Drainage had resulted in a relatively little change in the water table level, being on average 40 cm below the ground in 2005. The annual net ecosystem exchange was −870 g CO2 m−2 yr−1 in the calendar year 2005, varying from −810 to −900 g CO2 m−2 yr−1 during the 16 month period under investigation. The site was a small sink of CH4 (−0.12 g CH4 m−2 yr−1 and a small source of N2O (0.10 g N2O m−2 yr−1. Photosynthesis was detected throughout the year when the air temperature exceeded −3 °C. As the annual accumulation of C in the above and below ground tree biomass (550 g CO2 m−2 was significantly less than the net exchange of CO2, about 300 g CO2 m−2 yr−1 (~80 g C m−2 was likely to have accumulated as organic matter into the peat soil. This is a higher average accumulation rate than previously reported for natural northern peatlands, and the first time C accumulation has been shown, by EC measurements, to occur in a drained

  8. Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation.

    Science.gov (United States)

    Jílková, Veronika; Picek, Tomáš; Šestauberová, Martina; Krištůfek, Václav; Cajthaml, Tomáš; Frouz, Jan

    2016-10-01

    We compared methane (CH4) and carbon dioxide (CO2) fluxes in samples collected from the aboveground parts of wood ant nests and in the organic and mineral layer of the surrounding forest floor. Gas fluxes were measured during a laboratory incubation, and microbial properties (abundance of fungi, bacteria and methanotrophic bacteria) and nutrient contents (total and available carbon and nitrogen) were also determined. Both CO2 and CH4 were produced from ant nest samples, indicating that the aboveground parts of wood ant nests act as sources of both gases; in comparison, the forest floor produced about four times less CO2 and consumed rather than produced CH4 Fluxes of CH4 and CO2 were positively correlated with contents of available carbon and nitrogen. The methanotrophic community was represented by type II methanotrophic bacteria, but their abundance did not explain CH4 flux. Fungal abundance was greater in ant nest samples than in forest floor samples, but bacterial abundance was similar in both kinds of samples, suggesting that the organic materials in the nests may have been too recalcitrant for bacteria to decompose. The results indicate that the aboveground parts of wood ant nests are hot spots of CO2 and CH4 production in the forest floor. PMID:27353658

  9. Seasonal variations in heat and carbon dioxide fluxes observed over a reed wetland in northeast China

    Science.gov (United States)

    Li, Xiaolan; Jia, Qingyu; Liu, Jingmiao

    2016-02-01

    Seasonal variations in sensible heat flux (Hs), latent heat flux (LE), and CO2 flux (Fc) during 2006 over a reed wetland ecosystem in Northeast China, as well as their relationships with environmental factors, were investigated based on micrometeorological observations and turbulence data, measured using the eddy covariance technique. The results showed that the LE values were significantly larger (>400 W m-2) in summer (June, July, and August) than those in other seasons because of the summertime abundant precipitation and strong evapotranspiration, whereas the Hs values were smaller (300 W m-2) and autumn (>200 W m-2). The cumulative evapotranspiration in 2006 was 577.1 mm that was mostly controlled by radiation at surface throughout the whole year but also limited by water supply during the non-growing season. Most of the Fc values ranged between -1.0 mg m-2 s-1 (sometimes close to -2.0 mg m-2 s-1) during daytime and 0.3 mg m-2 s-1 at night during the growing season (May to September) but varied around zero in the non-growing season, and the CO2 mass concentration was in the range of 600-800 mg m-3. Monthly cumulative CO2 flux for the growing season was negatively largest in July (-520 mg m-2 month-1) and smallest in May (-65 mg m-2 month-1), making this reed wetland a net CO2 sink in 2006. The daytime CO2 flux in the growing season was positively correlated with atmospheric stability |z/L| under unstable condition, photosynthetically active radiation (PAR), and wind speed, but depended less on air temperature, relative humidity and soil water content on a several-day time scale. However, over a longer time scale, a comparison of March-April conditions during 2005 and 2006 suggested that cooler conditions can result in reduced CO2 production before the growing season.

  10. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland

    International Nuclear Information System (INIS)

    Since the European summer heat wave of 2003, considerable attention has been paid to the impacts of exceptional weather events on terrestrial ecosystems. While our understanding of the effects of summer drought on ecosystem carbon and water vapour fluxes has recently advanced, the effects of spring drought remain unclear. In Switzerland, spring 2011 (March–May) was the warmest and among the driest since the beginning of meteorological measurements. This study synthesizes Swiss FluxNet data from three grassland and two forest ecosystems to investigate the effects of this spring drought. Across all sites, spring phenological development was 11 days earlier in 2011 compared to the mean of 2000–2011. Soil moisture related reductions of gross primary productivity (GPP) were found at the lowland grassland sites, where productivity did not recover following grass cuts. In contrast, spring GPP was enhanced at the montane grassland and both forests (mixed deciduous and evergreen). Evapotranspiration (ET) was reduced in forests, which also substantially increased their water-use efficiency (WUE) during spring drought, but not in grasslands. These contrasting responses to spring drought of grasslands compared to forests reflect different adaptive strategies between vegetation types, highly relevant to biosphere–atmosphere feedbacks in the climate system. (letter)

  11. Measured and modelled carbon and water fluxes in hybrid willows grown for biofuel production

    Science.gov (United States)

    Wertin, T. M.; LeBauer, D.; Volk, T.; Long, S.; Leakey, A. D.

    2014-12-01

    Biofuels have the potential to meet future energy needs. Worldwide, up to 75% of biofuels produced are derived from woody sources. Coppiced hybrid willow is among the most promising woody biofuel sources due to its ability to rapidly regenerate after cutting, high biomass yields, low nutrient requirements and ability to be grown on marginal land, abandoned land and land easily erodible under annual cultivation. However, models used to assess the potential viability and sustainability of commercial biomass production by willow in the northeastern, northern and northwestern USA remain unsophisticated and lack key parameterization data. Most significantly, models do not explicitly represent the coppiced growth form. This study tests the ability of a canopy model to predict carbon and water fluxes in two highly productive, but structurally distinct hybrid willows (Salix miyabeana and Salix purpurea) grown in central NY. S. miyaneana has only a few, large diameter stems per stool prior to harvest, while S. purpurea maintains numerous, small diameter stems until harvest. Canopy structure also varies substantially within a growing season. For example, in S. miyabeana stem number decreased by 40% while total basal area increased by 50% within year 2 of the third coppice cycle. Model predictions of water use are compared with stand transpiration measured by sap flow. Model predictions of biomass production are compared to destructive harvest data. Sensitivity of predicted fluxes to variation between genotypes in key physiological parameters is also tested.

  12. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    Science.gov (United States)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  13. Global air-sea surface carbon dioxide transfer velocity and flux estimated using 17 a altimeter data and a new algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Tan; HE Yijun; YAN Xiaohai

    2013-01-01

    The global distributions of the air-sea CO2 transfer velocity and flux are retrieved from TOPEX/Poseidon and Jason altimeter data from October 1992 to December 2009 using a combined algorithm. The 17 a average global, area-weighted, Schmidt number-corrected mean gas transfer velocity is 21.26 cm/h, and the full exploration of the uncertainty of this estimate awaits further data. The average total CO2 flux (calculated by carbon) from atmosphere to ocean during the 17 a was 2.58 Pg/a. The highest transfer velocity is in the circumpolar current area, because of constant high wind speeds and currents there. This results in strong CO2 fluxes. CO2 fluxes are strong but opposite direction in the equatorial east Pacific Ocean, because the air-sea CO2 partial pressure difference is the largest in the global oceans. The results differ from the previous studies calculated using the wind speed. It is demonstrated that the air-sea transfer velocity is very important for estimating air-sea CO2 flux. It is critical to have an accurate estimation for improving calculation of CO2 flux within climate change studies.

  14. Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics

    International Nuclear Information System (INIS)

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments have mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, has been given to the assessment of direct land surface–atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. Here, following IPCC climate metrics, we assess bioenergy systems in light of two important dynamic land use climate factors, namely, the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes, and temporary perturbations to surface reflectivity (albedo). Existing radiative forcing-based metrics can be adapted to include such dynamic mechanisms, but high spatial and temporal modeling resolution is required. Results show the importance of specifically addressing the climate forcings from biogenic CO2 fluxes and changes in albedo, especially when biomass is sourced from forested areas affected by seasonal snow cover. The climate performance of bioenergy systems is highly dependent on biomass species, local climate variables, time horizons, and the climate metric considered. Bioenergy climate impact studies and accounting mechanisms should rapidly adapt to cover both biogeochemical and biogeophysical impacts, so that policy makers can rely on scientifically robust analyses and promote the most effective global climate mitigation options. (letter)

  15. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    Science.gov (United States)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  16. Emission Flux of Soil Carbon Dioxide in Hydrothermal Area of the Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Wen, H.; Yang, T. F.; Lan, T. F.; Lee, H.

    2009-12-01

    Tatun Volcano Group (TVG) is located at north of Taiwan and considered as a potential active volcano. Hydrothermal activity occurs actively along the Chinshan Fault in this area. Based on the numbers of active fumarole/venting in the area, we can classify TVG into three major groups: (I) active hydrothermal area with major fumaroles (e.g., Da-you-keng, DYK), (II) active hydrothermal area without major fumaroles (e.g., Geng-tze-ping, GTP and Liu-huang-ku, LHK), and (III) non-active hydrothermal area (e.g., Tatun Natural Park, TNP). In this study we measure the soil CO2 flux in the representative areas of TVG by closed-chamber method. Soil CO2 flux can be obtained ca. 537 g m-2 day-1 at GTP, ca. 122 g m-2 day-1 at DYK, and ca. 25 g m-2 day-1 at TNP, respectively. We can compare these values with previous measured data of soil CO2 flux at LHK, 659 g m-2 day-1, which is close to the value of GTP but much higher than that of DYK. The results show that the emission flux of soil CO2 at group-I area (DYK) is much lower than the value of group-II area (GTP and LHK). It could be explained that most CO2 gas can release to the surface through the highly permeable conduit/pathway (fumaroles) at group-I area and hence, less emission flux of soil CO2 can be observed. Furthermore, the total amount of 111 t day-1 of soil CO2 in the hydrothermal area of TVG can be estimated. It is close to the values from other active hydrothermal areas in the world.

  17. Response to high heat fluxes and metallurgical examination of a brazed carbon-fiber-composite/refractory-metal divertor mock-up

    International Nuclear Information System (INIS)

    As a feasibility-study an actively cooled divertor mock-up has been subjected to high heat flux loading in electron beam simulation. The divertor design concept is based on a carbon-fiber-composite material (Aerolor 05) brazed onto a TZM/Mo41Re heat sink. The plasma facing carbon armor is divided in seven tiles to allow variable loading parameters - and repeated destructive tests. The mock-up has survived high heat flux loading up to about 12 MW/m2 surface heat flux in steady-state conditions. One armor tile showed no change in the thermal response even after 500 s at ∝14 MW/m2. To estimate the general thermal response of the mock-up design, numerical methods were applied. The predicted behavior was confirmed by the experimental results. The loading experiments were followed by a detailed metallurgical investigation of the loaded sample regions and the braze joints. The typical damages after high heat flux testing and cycling were failure (i.e. detachment) in the Zr brazed carbon/TZM joint, and failure in the CuPd bonded TZM/TZM joint due to an excess of the melting temperature of the brazes. The microstructural changes in the braze regions and the recrystallization behavior of the refractory alloys are discussed. Only in one case the loaded surface of the carbon armor shows considerable erosion, caused by a partial detachment along a braze joint and thus loss of the good thermal contact during the last applied loading shots. The thermal analyses and high heat flux performance of the Aerolor-05 armored mock-up are compared to the thermal response of a previously tested mock-up of corresponding geometry with armor tiles of isotropic graphite. (orig.)

  18. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  19. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  20. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng [ORNL; Zhuang, Qianlai [Purdue University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Law, Beverly E. [Oregon State University; Richardson, Andrew D [ORNL; Chen, Jiquan [University of Toledo, Toledo, OH; Oren, Ram [ORNL

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration s (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale.We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000 2004 and 2005 2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  1. Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera.

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-12-01

    Full Text Available Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport and fate of organic carbon is relevant to gain a better understanding of the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated organic carbon fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the organic carbon pool and associated fluxes in this ecosystem. The Bay of Portocolom was in net metabolic balance on a yearly basis, but heterotrophic during the summer months. Community respiration (CR was positively correlated to C. prolifera biomass, while net community production (NCP had a negative correlation. The benthic compartment represented, on average, 72.6 ± 5.2 % of CR and 86.8 ± 4.5 % of gross primary production (GPP. Dissolved organic carbon (DOC production peaked in summer and was always positive, with the incubations performed in the dark almost doubling the flux of those performed in the light. Exchangeable dissolved organic carbon (EDOC, however, oscillated between production and uptake, being completely recycled within the system and representing around 14% of the DOC flux. The pools of bottom and surface DOC were high for an oligotrophic environment, and were positively correlated to the pool of EDOC. Thus, despite being in metabolic balance, this ecosystem acted as a conduit for organic carbon (OC, as it is able to export OC to adjacent areas derived from allochtonous inputs during heterotrophic conditions. These inputs likely come from groundwater discharge, human activity in the watershed, delivered to the sediments through the high capacity of C. prolifera to remove particles from the water column, and from the air-water exchange of EDOC, demonstrating that these communities are a major contributor to the cycling of OC in coastal embayments.

  2. Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost

    Science.gov (United States)

    Euskirchen, Eugenie S; Edgar, C.W.; Turetsky, M.R.; Waldrop, Mark P.; Harden, Jennifer W.

    2016-01-01

    Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2), water, and energy fluxes, associated environmental variables, and methane (CH4) fluxes at the collapse scar bog. The ecosystems all acted as net sinks of CO2 in 2011 and 2012, when air temperature and precipitation remained near long-term means. In 2013, under a late snowmelt and late leaf out followed by a hot, dry summer, the permafrost forest and collapse scar bog were sources of CO2. In this same year, CO2 uptake in the fen increased, largely because summer inundation from groundwater inputs suppressed ecosystem respiration. CO2 exchange in the permafrost forest and collapse scar bog was sensitive to warm air temperatures, with 0.5 g C m−2 lost each day when maximum air temperature was very warm (≥29°C). The bog lost 4981 ± 300 mg CH4 m−2 between April and September 2013, indicating that this ecosystem acted as a significant source of both CO2 and CH4 to the atmosphere in 2013. These results suggest that boreal peatland responses to warming and drying, both of which are expected to occur in a changing climate, will depend on permafrost regime.

  3. A Data-Centered Collaboration Portal to Support Global Carbon-Flux Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Humphrey, Marty [Univ. of Virginia, Charlottesville, VA (United States); Beekwilder, Norm [Univ. of Virginia, Charlottesville, VA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Goode, Monte [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); van Ingen, Catharine [Microsoft. San Francisco, CA (United States)

    2009-04-07

    Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use is hard. Also, moving scientists from an informal collaboration structure to one mediated by technology often exposes inconsistencies in the understanding of the rules of engagement between collaborators. We have developed a scientific collaboration portal, called fluxdata.org, which serves the community of scientists providing and analyzing the global FLUXNET carbon-flux synthesis dataset. Key things we learned or re-learned during our portal development include: minimize the barrier to entry, provide features on a just-in-time basis, development of requirements is an on-going process, provide incentives to change leaders and leverage the opportunity they represent, automate as much as possible, and you can only learn how to make it better if people depend on it enough to give you feedback. In addition, we also learned that splitting the portal roles between scientists and computer scientists improved user adoption and trust. The fluxdata.org portal has now been in operation for ~;;1.5 years and has become central to the FLUXNET synthesis efforts.

  4. Consistent space-based retrievals of chlorophyll fluorescence and atmospheric CO2 and CH4 for improved estimates of carbon fluxes

    OpenAIRE

    Hahne, Philipp

    2015-01-01

    Understanding the natural carbon cycle and its feedback to climate change requires atmospheric carbon observations to constrain carbon surface fluxes. The retrieval method RemoTeC uses satellite measurements to retrieve atmospheric CO2 and CH4. This work improves the retrieval such that it accounts for chlorophyll fluorescence. Furthermore, this work shows that the CO2 retrieval accounting for chlorophyll fluorescence provides observational constraints on carbon surface flux estimates.

  5. Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest

    Science.gov (United States)

    Hempel, L. A.; Schade, G. W.; Pfohl, A.

    2011-12-01

    A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at

  6. Carbon and water fluxes above a cacao plantation in Sulawesi, Indonesia

    Science.gov (United States)

    Falk, U.; Ibrom, A.

    2003-04-01

    and June 2002 until now eddy-covariance measurements have been performed above a Cacao plantation in Nopu measuring time series of water vapour, CO2, air temperature, three-dimensional wind vector, photosyntetic active radiation and the surface temperature of the Cacao canopy at 10 Hz. Additionally, net radiation balance and soil heat fluxes have been measured. In order to assess the carbon input caused by the humans living in the ecosystem, a mapping of the site area has been carried out, including investigations of consumption of fire wood and use of machines, like generators for example. In order to obtain the energy balance equation of the canopy surface, also the radiation balance and the heat flux into the canopy have to be evaluated.

  7. The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes.

    Directory of Open Access Journals (Sweden)

    Valentina Baldazzi

    2010-06-01

    Full Text Available Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment.

  8. Trends in long-term carbon and water fluxes - a case study from a temperate Norway spruce site

    Science.gov (United States)

    Babel, Wolfgang; Lüers, Johannes; Hübner, Jörg; Serafimovich, Andrei; Thomas, Christoph; Foken, Thomas

    2016-04-01

    In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein-Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross ecosystem uptake GEE and ecosystem respiration Reco, and gap-filling. The annual NEE shows a positive trend, which is related to a strong increase in GEE, while Reco enhances slightly. Annual evapotranspiration increases as well, while atmospheric demand, i.e. potential evapotranspiration, shows inter-annual variability, but no trend. Comparisons with studies from other warm temperate needle-leaved forests show, that NEE is at the upper range of the distribution, and evapotranspiration in Budyko space is in a similar range, but with a large inter-annual variability. While this trends are generally in agreement with findings from other locations and expectations to climate change, the specific history at this site clearly has a large impact on the results: The forest was in the first years very much affected due to forest decline and convalesced after a liming. In the last ten years the site was much affected by beetles and windthrow. Thus the more recent positive trends may be related to increased heterogeneity at the site. As FLUXNET stations, built 10-20 years ago, often started with "ideal forest sites", increasing heterogeneity might be a more general problem for trend analysis of long-term data sets.

  9. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: Model development and initial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuesong; Izaurralde, R. César [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park, MD 20740 (United States); Arnold, Jeffrey G. [Grassland, Soil and Water Research Laboratory USDA-ARS, Temple, TX 76502 (United States); Williams, Jimmy R. [Blackland Research and Extension Center, AgriLIFE Research, 720 E. Blackland Road, Temple, TX 76502 (United States); Srinivasan, Raghavan [Spatial Sciences Laboratory in the Department of Ecosystem Science and Management, Texas A and M University, College Stations, TX 77845 (United States)

    2013-10-01

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO{sub 2} emission, one important source of greenhouse gasses (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)-residue and simulate land–atmosphere carbon exchange. We test this new SWAT-C model with daily eddy covariance (EC) observations of net ecosystem exchange (NEE) and evapotranspiration (ET) and annual crop yield at six sites across the U.S. Midwest. Results show that SWAT-C simulates well multi-year average NEE and ET across the spatially distributed sites and capture the majority of temporal variation of these two variables at a daily time scale at each site. Our analyses also reveal that performance of SWAT-C is influenced by multiple factors, such as crop management practices (irrigated vs. rainfed), completeness and accuracy of input data, crop species, and initialization of state variables. Overall, the new SWAT-C demonstrates favorable performance for simulating land–atmosphere carbon exchange across agricultural sites with different soils, climate, and management practices. SWAT-C is expected to serve as a useful tool for including carbon flux into consideration in sustainable watershed management under a changing climate. We also note that extensive assessment of SWAT-C with field observations is required for further improving the model and understanding potential uncertainties of applying it across large regions with complex landscapes. - Highlights: • Expanding the

  10. Carbon fluxes of surfaces vs. ecosystems. Advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems

    Czech Academy of Sciences Publication Activity Database

    Nagy, Z.; Pintér, K.; Pavelka, Marian; Dařenová, Eva; Balogh, J.

    2011-01-01

    Roč. 8, č. 9 (2011), s. 2523-2534. ISSN 1726-4170 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * ecosystems * grassland ecoystems * measuring eddy covariance * soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.859, year: 2011

  11. Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances

    International Nuclear Information System (INIS)

    Projected warming is expected to alter the Arctic permafrost regime with potential impacts on hydrological fluxes of particulate organic carbon (POC) and sediment. Previous work has focused on large Arctic basins and revealed the important contribution of old carbon in river POC, but little is known about POC fluxes from smaller coastal watersheds, particularly where widespread postglacial raised marine sediments represent a potential source of old soil carbon that could be mobilized by permafrost disturbance. To evaluate these processes, the characteristics of POC, particulate nitrogen (PN) and suspended sediment transport from paired small coastal Arctic watersheds subject to recent permafrost disturbance were investigated at the Cape Bounty Arctic Watershed Observatory (CBAWO) in the Canadian High Arctic. Approximately 2% of the total suspended sediment load from both watersheds was composed of POC and the majority of the sediment and POC fluxes occurred during the spring snowmelt period. Radiocarbon analysis of POC indicates recent permafrost disturbances deliver substantially older POC to the aquatic system. Localized permafrost slope disturbances have a measurable influence on downstream POC age and dominate (estimated up to 78% of POC) sediment fluxes during summer baseflow. The elevation of disturbances and Holocene emergence data show limited age sensitivity of POC to the location of disturbance and suggest slope failures are likely to deliver carbon with a relatively similar age range to the aquatic system, regardless of landscape location. (paper)

  12. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon

    NARCIS (Netherlands)

    Kupryianchyk, D.; Noori, A.; Rakowska, M.I.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2013-01-01

    Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we repor

  13. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings

    Science.gov (United States)

    Cacao (Theobroma cacao) is a shade plant, native to the under-story of the evergreen rain forest of the Amazon basin and adapted to low levels of photosynthetic photon flux density (PPFD). The influence of PPFD, leaf to air water vapor pressure deficit (VPD) and external carbon dioxide concentration...

  14. Application of a Teflon TM dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil

    International Nuclear Information System (INIS)

    Forest ecosystems are a sink of atmospheric mercury, trapping the metal in the canopy, and storing it in the forest floor after litter fall. Fire liberates a portion of this mercury; however, little is known about the long-term release of mercury post deforestation. We conducted two large-scale experiments to study this phenomenon. In upstate New York, gaseous mercury emissions from soil were monitored continually using a Teflon dynamic surface flux chamber for two-weeks before and after cutting of the canopy on the edge of a deciduous forest. In Brazil, gaseous mercury emissions from soil were monitored in an intact Ombrophilous Open forest and an adjacent field site both before and after the field site was cleared by burning. In the intact forest, gaseous mercury emissions from soil averaged −0.73 ± 1.84 ng m−2 h−1 (24-h monitoring) at the New York site, and 0.33 ± 0.09 ng m−2 h−1 (daytime-only) at the Brazil site. After deforestation, gaseous mercury emissions from soil averaged 9.13 ± 2.08 ng m−2 h−1 in New York and 21.2 ± 0.35 ng m−2 h−1 at the Brazil site prior to burning. Gaseous mercury emissions averaged 74.9 ± 0.73 ng m−2 h−1 after burning of the cut forest in Brazil. Extrapolating our data, measured over several weeks to months, to a full year period, deforested soil is estimated to release an additional 2.30 g ha−1 yr−1 of gaseous mercury to the atmosphere in the Brazilian experiment and 0.41 g ha−1 yr−1 in the New York experiment. In Brazil, this represents an additional 50% of the mercury load released during the fire itself. (author)

  15. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  16. High energy flux thermo-mechanical test of 1D-carbon-carbon fibre composite prototypes for the SPIDER diagnostic calorimeter.

    Science.gov (United States)

    De Muri, M; Cavallin, T; Pasqualotto, R; Dalla Palma, M; Cervaro, V; Fasolo, D; Franchin, L; Tollin, M; Greuner, H; Böswirth, B; Serianni, G

    2014-02-01

    Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution gives an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given. PMID:24593452

  17. High energy flux thermo-mechanical test of 1D-carbon-carbon fibre composite prototypes for the SPIDER diagnostic calorimeter

    International Nuclear Information System (INIS)

    Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution gives an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given

  18. Scientific feedback from high heat flux actively cooled PFCs development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    The implementation of actively cooled high heat flux plasma facing components (PFCs) are one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m-2 of nominal convected heat flux. A technical feedback is given from the whole development up to the industrialization and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about the injected gas during long discharges. (authors)

  19. Forward Modeling of Atmospheric Carbon Dioxide in GEOS-5: Uncertainties Related to Surface Fluxes and Sub-Grid Transport

    Science.gov (United States)

    Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris; Menemenlis, DImiris; Potter, Christopher S.; Gunson, Michael R.; Jucks, Kenneth W.

    2011-01-01

    Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"

  20. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    Science.gov (United States)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump

  1. Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data

    Science.gov (United States)

    Chirici, Gherardo; Chiesi, Marta; Corona, Piermaria; Salvati, Riccardo; Papale, Dario; Fibbi, Luca; Sirca, Costantino; Spano, Donatella; Duce, Pierpaolo; Marras, Serena; Matteucci, Giorgio; Cescatti, Alessandro; Maselli, Fabio

    2016-02-01

    Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).

  2. Quantifying thermal constraints on carbon and water fluxes in a mixed-conifer sky island ecosystem

    Science.gov (United States)

    Braun, Z.; Minor, R. L.; Potts, D. L.; Barron-Gafford, G. A.

    2012-12-01

    Western North American forests represent a potential, yet uncertain, sink for atmospheric carbon. Revealing how predicted climatic conditions of warmer temperatures and longer inter-storm periods of moisture stress might influence the carbon status of these forests requires a fuller understanding of plant functional responses to abiotic stress. While data related to snow dominated montane ecosystems has become more readily available to parameterize ecosystem function models, there is a paucity of data available for Madrean sky island mixed-conifer forests, which receive about one third of their precipitation from the North American Monsoon. Thus, we quantified ecophysiological responses to moisture and temperature stress in a Madrean mixed-conifer forest near Tucson, Arizona, within the footprint of the Mt. Bigelow Eddy Covariance Tower. In measuring a series of key parameters indicative of carbon and water fluxes within the dominant species across pre-monsoon and monsoon conditions, we were able to develop a broader understanding of what abiotic drivers are most restrictive to plant performance in this ecosystem. Within Pinus ponderosa (Ponderosa Pine), Pseudotsuga menziesii (Douglas Fir), and Pinus strobiformis (Southwestern White Pine) we quantified: (i) the optimal temperature (Topt) for maximum photosynthesis (Amax), (ii) the range of temperatures over which photosynthesis was at least 50% of Amax (Ω50), and (iii) each conifer's water use efficiency (WUE) to relate to the balance between carbon uptake and water loss in this high elevation semiarid ecosystem. Our findings support the prediction that photosynthesis decreases under high temperatures (>30°C) among the three species we measured, regardless of soil moisture status. However, monsoon moisture reduced sensitivity to temperature extremes and fluctuations (Ω50), which substantially magnified total photosynthetic productivity. In particular, wet conditions enhanced Amax the most dramatically for P

  3. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  4. Effects of Irrigation on Nitrous Oxide,Methane and Carbon Dioxide Fluxes in an Inner Mongolian Steppe

    Institute of Scientific and Technical Information of China (English)

    LIU Chunyan; Jirko HOLST; Nicolas BR(U)GGEMANN; Klaus BUTTERBACH-BAHL; YAO Zhisheng; HAN Shenghui; HAN Xingguo; ZHENG Xunhua

    2008-01-01

    Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia.The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases.Therefore,we set up an irrigation experiment with one watered(W) and one unwatered plot(UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment,Inner Mongolia. UW only received the natural precipitation of 2005(129 mm),whereas W was additionally watered after the precipitation data of 1998(in total 427 mm).In the 3-hour resolution,we determined nitrous oxide(N20),methane(CH4) and carbon dioxide (C02) fluxes at both plots between May and September 2005,using a fully automated,chamber-based measuring system.N2O fluxes in the steppe were very low,with mean emissions(±s.e.)of 0.9±0.5 and 0.7±0.5 μg N m-2 h-1 at W and uw,respectively.The steppe soil always served as a CH4 sink,with mean fluxes of-24.1±3.9 and-31.1±5.3μg Cm-2h-1 at W and UW. Nighttime mean C02 emissions were 82.6±8.7 and 26.3±1.7 mg C m-2 h-1 at W and UW.respectively, coinciding with an almost doubled aboveground plant biomass at W.0ur results indicate that the ecosystem C02 respiration responded sensitively to increased water input during the vegetation period,whereas the effects on CH4 and N20 fluxes were weak,most likely due to the high evapotranspiration and the lack of substrate for N20 producing processes.Based on our results,we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia,ecosystem C02 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.

  5. New results on solar neutrino fluxes from 192 days of Borexino data

    CERN Document Server

    Arpesella, C; Balata, M; Bellini, G; Benziger, J; Bonetti, S; Brigatti, A; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cecchet, G; Chavarria, A; Chen, M; Dalnoki-Veress, F; D'Angelo, D; De Bari, A; De Bellefon, A; De Kerret, H; Derbin, A; Deutsch, M; di Credico, A; Di Pietro, G; Eisenstein, R; Elisei, F; Etenko, A; Fernholz, R; Fomenko, K; Ford, R; Franco, D; Freudiger, B; Galbiati, C; Gatti, F; Gazzana, S; Giammarchi, M; Giugni, D; Goeger-Neff, M; Goldbrunner, T; Goretti, A; Grieb, C; Hagner, C; Hampel, W; Harding, E; Hardy, S; Hartman, F X; Hertrich, T; Heusser, G; Ianni, Aldo; Ianni, Andrea; Joyce, M; Kiko, J; Kirsten, T; Kobychev, V; Korga, G; Korschinek, G; Kryn, D; Lagomarsino, V; Lamarche, P; Laubenstein, M; Lendvai, C; Leung, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, P; Ludhova, L; Machulin, I; Malvezzi, S; Manecki, S; Maneira, J; Maneschg, W; Manno, I; Manuzio, D; Manuzio, G; Martemianov, A; Masetti, F; Mazzucato, U; McCarty, K; McKinsey, D; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Monzani, M E; Muratova, V; Musico, P; Neder, H; Nelson, A; Niedermeier, L; Oberauer, L; Obolensky, M; Orsini, M; Ortica, F; Pallavicini, M; Papp, L; Parmeggiano, S; Perasso, L; Pocar, A; Raghavan, R S; Ranucci, G; Rau, W; Razeto, A; Resconi, E; Risso, P; Romani, A; Rountree, D; Sabelnikov, A; Saldanha, R; Salvo, C; Schimizzi, D; Schönert, S; Shutt, T; Simgen, H; Skorokhvatov, M; Smirnov, O; Sonnenschein, A; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vitale, S; Vogelaar, R B; Von Feilitzsch, F; Von Hentig, R; von Hentig, T; Wójcik, M; Wurm, M; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2008-01-01

    We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos.

  6. Contaminant fluxes through site containment barriers: Performance assessment and illustrative results

    International Nuclear Information System (INIS)

    Contaminant mass flux by advective and diffusive transport is predicted for five containment barriers that use one or more clay liners, flexible membrane liners (FMLs), or liquid collection and removal systems (LCRS)s. Barriers are engineered systems intended to contain and isolate site contaminants from the environment. Barriers include liners, caps, and cutoff walls. Barriers may be used in contaminated-site cleanups (including CERCLA and RCRA), RCRA landfills, or other RCRA TSDFs. Concepts are provided for barrier performance assessment, including analysis and optimization, for meeting performance requirements and controlling risk at minimum cost. Concepts and results can help in planning, designing, or evaluating and communicating, the use or effectiveness of proposed or existing barriers for site cleanups or waste containment. 15 refs., 6 figs., 5 tabs

  7. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    Science.gov (United States)

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-01-01

    This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (delta(13)C(POC)) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. delta(13)C(POC) showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C(4) plants with enhanced soil erosion. The specific flux of the total organic carbon (2.30 t km(-)(2) year(-1)) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle. PMID:19004473

  8. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China

    International Nuclear Information System (INIS)

    This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (δ13CPOC) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. δ13CPOC showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C4 plants with enhanced soil erosion. The specific flux of the total organic carbon (2.30 t km-2 year-1) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle

  9. Quantifying the vulnerability of carbon stocks and fluxes in six semi-arid biomes in the Southwestern US to the severe 2011-2013 drought (Invited)

    Science.gov (United States)

    Litvak, M. E.; Krofcheck, D.; Hilton, T. W.; Fox, A. M.

    2013-12-01

    The magnitude of carbon fluxes through arid and semi-arid ecosystems is considered modest, but integrated over the ~40% of the global land surface covered by these ecosystems, the total carbon stored is almost twice that in temperate forest ecosystems. Climatic extremes are typical in the Southwestern U.S, and the frequency of extreme temperature and precipitation events (both drought and large storms) in this region is predicted to increase in the next century. Understanding how resilient carbon pools and fluxes in these biomes are to climate extremes constitutes a large uncertainty in our ability to understand regional carbon balance. We use a 7 year record (2007-2013) of continuous measurements of net ecosystem exchange of carbon (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (Re) made over the New Mexico Elevation Gradient (NMEG) network of flux tower sites (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine and subalpine mixed conifer) to test hypotheses about the biome-specific sensitivity of carbon cycling to both drought and temperature extremes. In particular, we focus on the functional responses in these biomes to the extended drought in this region from 2011-2013, which has triggered extensive mortality in many biomes. We used time series of climatic variables, radiation absorbed by vegetation, sap flux, soil moisture storage, and remotely sensed structural and functional data, including rates of mortality, to compare the biome-specific mechanisms behind these responses. We also produce biome-specific functional response surfaces of productivity and respiration to VPD, temperature and soil water availability. Decreases in annual NEP from the relatively wet year of 2010 to the severe drought year 2011 ranged from 60-165 g C m-2 y-1 across the gradient, due more to decreases in GPP than Re. We observed the greatest sensitivity to both temperature and precipitation extremes in

  10. Computing Carbon Dioxide and Water Vapor Fluxes Everywhere, All of the Time

    Science.gov (United States)

    Baldocchi, D. D.; Ryu, Y.; Kobayashi, H.

    2011-12-01

    We examine a hierarchy of biophysical models which aim to produce information on the 'breathing of the biosphere' that is 'everywhere, all of the time'. The computational demands of this problem are daunting because the science must transcend fourteen orders of magnitude in time and space as one evaluates a panoply of non-linear biophysical processes from the dimension of the chloroplast of leaves to the globe. At the canopy to landscape scales, one must simulate the micro-habitat conditions of thousands of leaves, as they are displayed on groups of plants with a variety of angle orientations. Then one must apply the micro-habitat information (e.g. sunlight, temperature, humidity, CO2 concentration) to sets of coupled non-linear equations that simulate photosynthesis, respiration and the energy balance of the leaves to add up this information. In sparse canopies three-dimensional radiative transfer models are needed. At the regional to global scales, it is pertinent to apply lessons learned at the canopy scale and drive a system of biophysical equations, called the Breathing-Earth Science Simulator (BESS), with multiple layers of remote sensing datasets at high resolution (1 km) and frequent intervals (daily) to predict carbon dioxide and water vapor exchange. And parameterize these models with emerging ecological rules that can be assessed with remote sensing. With BESS, the global data products of ecosystem photosynthesis and transpiration compare well with direct flux measurements, and produce complex spatial and temporal patterns that will prove to be valuable for environmental modelers and scientists studying climate change and carbon and water cycles from local to global scales.

  11. Beam test results of the dependence of signal size on incident particle flux in diamond pixel and pad detectors

    International Nuclear Information System (INIS)

    We present results of beam tests of charged particle detectors based on single-crystal and poly-crystalline Chemical Vapor Deposition (CVD) diamond. We measured the signal pulse height dependence on the particle flux. The detectors were tested over a range of particle fluxes from 2 kHz/cm2 to 20 MHz/cm2. The pulse height of the sensors was measured with pad and pixel readout electronics. The pulse height of the non-irradiated single-crystal CVD diamond pad sensors was stable with respect to flux, while the pulse height of irradiated single-crystal CVD diamond pad sensors decreased with increasing particle flux. The pulse height of the non-irradiated single-crystal CVD diamond pixel detectors decreased slightly with increasing particle flux while the pulse height of the irradiated single-crystal CVD diamond pixel detectors decreased significantly with increasing particle flux. The observed sensitivity to flux is similar in both the diamond pad sensors constructed using diamonds from the Pixel Luminosity Telescope (PLT) irradiated during its pilot run in the Compact Muon Solenoid (CMS) detector and in neutron irradiated diamond pad sensors from the same manufacturer irradiated to the same fluence of neutrons. The pulse height for irradiated poly-crystalline CVD diamond pad sensors proved to be stable with respect to particle flux

  12. Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Hung-Chun [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); You, Chen-Feng, E-mail: cfy20@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China)] [Earth Dynamic System Research Center, National Cheng Kung University, Tainan, Taiwan (China); Sun, Chih-Hsien [Exploration and Production Research Institute, Chinese Petroleum Corporation, Taiwan (China)

    2010-03-15

    Mud volcanoes are important pathways for CH{sub 4} emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH{sub 4} were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH{sub 4} (>90%), 'air' (i.e. N{sub 2} + O{sub 2} + Ar, 1-5%) and CO{sub 2} (1-5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH{sub 4} concentration (CH{sub 4} > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO{sub 2} up to 85%, and much lower CH{sub 4} content (<37%). High CH{sub 4} content (>90%) with low CO{sub 2} (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C{sub 1} (methane)/C{sub 2} (ethane) + C{sub 3} (propane) and {delta}{sup 13}C{sub CH4} results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH{sub 4} concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH{sub 4} emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH{sub 4} could contribute up to 10% of total natural CH{sub 4} emissions in Taiwan.

  13. Erosion-Induced Carbon Fluxes from Semiarid Rangelands: Implications of Vegetation Cover and Enrichment Dynamics for Carbon Inputs to Aquatic Systems

    Science.gov (United States)

    Cunliffe, Andrew; Puttock, Alan; Turnbull, Laura; Wainwright, John; Brazier, Richard

    2016-04-01

    Dryland ecosystems are a globally significant of the global carbon cycle. They cover ca. 40% of the land surface, and dominate both the long-term trend and interannual variability in the terrestrial carbon sink. Therefore, developing process-based understanding of carbon dynamics in drylands is essential for understanding terrestrial carbon dynamics globally. This study focuses on the amounts of organic carbon (OC) eroded from semiarid hillslopes. Dryland ecosystems are characteristically susceptible to change. One example of this is the encroachment of woody shrubs into former grasslands, substantially altering the structure and function of these landscapes. We established four, 30 x 10 m runoff plots across an ecotone from grass- to shrub dominated landscapes, which we monitored during natural rainstorm events over four monsoon seasons. The OC fluxes associated with the eroded sediment were analysed, yielding detailed information on the lateral efflux of OC from these hillslopes. Previous monitoring by our group has demonstrated that production of dissolved OC from these dryland soils is very low. Erosion-induced effluxes of OC were found to systematically increase across the grass-shrub ecotone, resulting in six-fold increases in event-average OC fluxes. The increases were caused by to changes in both erosion rates (three and a half-fold increase) and OC enrichment (almost two-fold increase). Eroded sediments were enriched in OC by up to an order of magnitude, and OC enrichment was a persistent phenomenon. Systematic differences in OC enrichment between different plant functional types in unmanaged ecosystems have not been examined closely in previous work. Together, these findings suggest that (i) failing to consider OC enrichment risks substantially underestimating the input of OC to aquatic systems, and (ii) given the magnitude of systematic differences observed between different plant functional types, attempting to represent OC enrichment via a single

  14. Soil-atmosphere and vadose zone water fluxes at the Wagna - lysimeter: Workflow, models, and results

    Science.gov (United States)

    Fank, Johann

    2014-05-01

    lysimeter mass data set, (b) correction of the seepage mass data set, (c) definition of periods with congruent analyzable data sets, (d) computing upper boundary fluxes, (e) filtering of seepage mass, (f) filtering of upper boundary fluxes, (g) definition of the time step for data evaluation (e. g. hourly values, daily values). For every time step in the analyzable periods the data evaluation workflow follows the scheme: (1) computing change of stored water volume S from lysimeter weight, (2) computing rainfall and/or irrigation R from increasing upper boundary fluxes, (3) computing capillary rise C from decreasing seepage mass, (4) calculation of percolation water P from mass change of seepage + C, (5) calculation of evapotranspiration ET using the water balance equation (ET = R - P + C - S). Based on the "Wagna" data set the accuracy of modern lysimeter measurements is shown as an effect of rime precipitation and rime evaporation on a cold winter day. Results are compared to the Penman-Monteith model for computing grass reference evapotranspiration. For January 27th 2010 rime precipitation was measured to 0.23 mm, evaporation was estimated to 0.33 mm. The estimation of ET was in a very good agreement with the Penman-Monteith computation of 0.34 mm. Results of lysimeter data evaluation (R, ET, P) using different time steps for the year 2010 are discussed. Estimation of R (1013.8 mm) is compared to measured precipitation using a tipping bucket (1013.6 mm) and a precipitation scale (900.4 mm) nearby the lysimeter. Peters, A., Nehls, T., Schonsky, H., and Wessolek, G.: Separating precipitation and evapotranspiration from noise - a new filter routine for high resolution lysimeter data, Hydrol. Earth Syst. Sci. Discuss., 10, 14645-14674, doi:10.5194/hessd-10-14645-2013, 2013.

  15. Comparison of observed divertor heat flux and modeling results at LHD

    International Nuclear Information System (INIS)

    The divertor strike line pattern on the helical divertor of LHD was observed with an infra red camera. The derived heat flux pattern show multiple distinct strike lines depending on the equilibrium magnetic configuration. Predictions of such divertor heat loads thus require a modeling of the magnetic configuration and the heat transport in the magnetic edge. Equilibrium magnetic topologies were analyzed with HINT2, while the plasma fluid model code EMC3 was used to simulate the energy transport in the edge. The measured multi peak structure of the divertor heat flux is correlated to the intersection points of elongated loop shaped flux tubes of long LC field lines. But the fluid model could not recreate the total energy load and the multiple heat flux peaks on the divertor. A Variation in the plasma density ne as a transport parameter in order to fit the simulated heat flux to the measured one shows a contradicting tendency. (author)

  16. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  17. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.

    Science.gov (United States)

    Ducker, Gregory S; Chen, Li; Morscher, Raphael J; Ghergurovich, Jonathan M; Esposito, Mark; Teng, Xin; Kang, Yibin; Rabinowitz, Joshua D

    2016-06-14

    One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions. PMID:27211901

  18. Stream restoration and sanitary infrastructure alter sources and fluxes of water, carbon, and nutrients in urban watersheds

    Directory of Open Access Journals (Sweden)

    M. J. Pennino

    2015-12-01

    Full Text Available An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C, nitrogen (N, and phosphorus (P shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d−1 compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d−1 draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d−1. Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha−1 yr−1, total nitrogen (4.5 ± 0.3 kg ha−1 yr−1, and total phosphorus (161 ± 15 g ha−1 yr−1 were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05 and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow, similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped

  19. Oxygen permeation flux through La1-ySryFeO3 limited by carbon monoxide oxidation rate

    OpenAIRE

    Hassel, van, D.; Elshof, ten, J.E.; Bouwmeester, H.J.M.

    1995-01-01

    The oxygen permeation flux through La1-ySryFeO3-δ (y = 0.1, 0.2) in a large oxygen partial pressure gradient (air/CO, CO2 mixture) was found to be limited by the carbon monoxide oxidation rate at the low oxygen partial pressure side of the membrane. The oxygen permeation flux through the membrane was almost independent of its thickness (1 versus 2 mm) and strontium dopant concentration. The deposition of a 50 nm thin porous platinum layer at the low oxygen pressure side of the membrane increa...

  20. Modelling heat, water and carbon fluxes in mown grassland under multi-objective and multi-criteria constraints

    OpenAIRE

    Senapati, Nimai; Jansson, Per-Erik; Smith, Pete; Chabbi, Abad

    2016-01-01

    A Monte Carlo-based calibration and uncertainty assessment was performed for heat, water and carbon (C) fluxes, simulated by a soil-plant-atmosphere system model (CoupModel), in mown grassland. Impact of different multi-objective and multi-criteria constraints was investigated on model performance and parameter behaviour. Good agreements between hourly modelled and measurement data were obtained for latent and sensible heat fluxes (R-2 = 0.61, ME = 0.48 MJ m(-2) day(-1)), soil water contents ...

  1. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    OpenAIRE

    Torn, Margaret S.; Sebastien C. Biraud; Still, Christopher J.; Riley, William J; Berry, Joe A.

    2011-01-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002–2009, we measured atmospheric CO2 concentration and δ13C–CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses....

  2. FACTORS ON VISCOSITY STABILITY OF MOLD FLUXES

    Institute of Scientific and Technical Information of China (English)

    C.Y.Zhu; C.J.Liu; M.F.Jiang; Z.D.Yang

    2004-01-01

    Viscosity stability indexes of mold flux at high temperature and low temperature have been introduced,and the effects of flux compositions on viscosity stability indexes have been studied.Two mold fluxes have been developed by analyzing the effects of flux viscosity stability on the process and the condition of continuous casting slab of medium carbon steel.The results show that the fluxes are suitable for the process.

  3. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    OpenAIRE

    Menviel, L.; F. Joos

    2012-01-01

    [1] The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotempo...

  4. Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation

    OpenAIRE

    Song, Y.; A. K. Jain; McIsaac, G. F.

    2013-01-01

    Worldwide expansion of agriculture is impacting the earth's climate by altering carbon, water, and energy fluxes, but the climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water, and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM). In particular, we implemented crop-specific phenology schemes and dynamic carbon all...

  5. On the evolution of a magnetic flux rope: Two-dimensional MHD simulation results

    Science.gov (United States)

    Teh, W.-L.; Nakamura, T. K. M.; Nakamura, R.; Baumjohann, W.; Abdullah, M.

    2015-10-01

    We use the time-dependent, two-dimensional (2-D), ideal MHD equations to simulate and investigate the evolution of magnetic field and plasma profiles of the typical (T) and crater (C) magnetic flux ropes (FRs). The T-FR has a magnetic pressure peak at the center of the flux rope, while the C-FR has a local dip instead. The simulation starts with a 2-D magnetic flux rope in magnetohydrostatic equilibrium, where pressure gradient forces are balanced by Lorentz forces. The magnetic field and plasma pressure profiles for the initial flux rope are derived from the analytical solutions by Zhang et al. (2010). The initial flux rope starts to evolve when the force balance is broken by imposing pressure or magnetic field perturbations onto the equilibrium system. The pressure perturbations are produced by increasing/decreasing the internal plasma pressure of the flux rope, while the magnetic field perturbations are produced by increasing/decreasing the transverse magnetic fields across the flux rope. We conclude that a T-FR can be evolved into a C-FR and vice versa, if the perturbation strength is sufficient, and that the plasma pressure and density in the new equilibrium state could be either increased or decreased for the evolution of C-FR to T-FR and also for the evolution of T-FR to C-FR.

  6. Understanding the Effects of Climate and Water Management on Carbon and Energy Fluxes for Restored Wetlands in the Sacramento - San Joaquin Delta, California, USA

    Science.gov (United States)

    Anderson, F.; Bergamaschi, B. A.; Von Dessonneck, T.; Keating, K.; Verfaillie, J. G.; Hatala, J.; Baldocchi, D. D.; Byrd, K. B.; Windham-Myers, L.; Detto, M.; Fujii, R.

    2011-12-01

    Our research efforts focus on the differences in carbon and energy fluxes due to the effects of water management on two 3.5-hectare restored wetlands on Twitchell Island in the Sacramento-San Joaquin Delta (Delta). These flux measurements are part of an ongoing, long-term study investigating management techniques to mitigate subsidence through atmospheric carbon sequestration and soil carbon storage. Wetlands were established in 1997, with the western wetland managed at a water depth of 25cm and the eastern wetland managed at a depth of 55cm. Over the past 14 years, the western pond has developed into a dense canopy of emergent marsh species with some floating vegetation. The eastern wetland is a combination of the same emergent marsh species and floating vegetation as the western wetland, but it also includes areas of open water, submerged vegetation, and algae. Carbon and energy flux measurements are collected using the eddy covariance method, comprised of a CSAT3 sonic anemometer, an open-path CO2/H2O infrared gas analyzer, and a closed-path tunable diode laser fast methane sensor. The Delta is a unique place as the temperate climate and clear summer skies are conducive for maximum daily CO2 uptake rates to be on the order of 30 μmol m-2 s-1 or higher. These elevated rates of CO2 uptake were measured in the eastern wetland during 2002 through 2004. However, in 2010, maximum CO2 uptake rates were only about 10 μmol m-2 s-1. We hypothesize that large mats of accumulating senescent material have slowed or stopped the growth of the emergent marsh species, which were not present during the measurements taken in 2002 through 2004. Additionally, we added CH4 flux measurements in 2010, and the anaerobic conditions created by permanent flooding resulted in rates of 250 nmol m-2 s-1 or higher. CH4 values are some of the highest observed compared to other Delta flux studies (rice, pasture, and natural wetlands), which yield measurements ranging from 10 - 100 nmol m-2 s-1

  7. Coherent mesoscopic transport through a quantum-dot embedded carbon nanotube ring threaded with magnetic flux

    OpenAIRE

    Zhao, HK; Wang, J.

    2004-01-01

    We have investigated the coherent mesoscopic transport through a quantum-dot (QD) embedded carbon nanotube ring (CNR) by employing the nonequilibrium Green's function (NGF) technique. The Landauer–Büttiker-like formula is presented to calculate the differential conductance and current–voltage characteristics. Due to the interference of the electrons transporting in the two paths of CNR, the resultant conductivity of electron through the system is determined by the compound concrete structure ...

  8. The influence of carbon exchange of a large lake on regional tracer-transport inversions: results from Lake Superior

    International Nuclear Information System (INIS)

    Large lakes may constitute a significant component of regional surface-atmosphere fluxes, but few efforts have been made to quantify these fluxes. Tracer-transport inverse models that infer the CO2 flux from the atmospheric concentration typically assume that the influence from large lakes is negligible. CO2 observations from a tall tower in Wisconsin segregated by wind direction suggested a CO2 signature from Lake Superior. To further investigate this difference, source-receptor influence functions derived using a mesoscale transport model were applied and results revealed that air masses sampled by the tower have a transit time over the lake, primarily in winter when the total lake influence on the tower can exceed 20% of the total influence of the regional domain. When the influence functions were convolved with air-lake fluxes estimated from a physical-biogeochemical lake model, the overall total contribution of lake fluxes to the tall tower CO2 were mostly negligible, but potentially detectable in certain periods of fall and winter when lake carbon exchange can be strong and land carbon efflux weak. These findings suggest that large oligotrophic lakes would not significantly influence inverse models that incorporate tall tower CO2.

  9. Survey results for oblique field magnetic flux leakage survey in comparison to axial field

    Energy Technology Data Exchange (ETDEWEB)

    Simek, James [T.D. Williamson, Inc., Tulsa, OK (United States)

    2012-07-01

    Pipeline operators worldwide have implemented integrity management programs in an effort to improve operation and maintenance efficiency along with continued safe operation of pipeline systems. Several types of monitoring and data collection activities are incorporated into these programs, with in line inspection (ILI) tools providing data for detection and quantification of features that may impact the integrity of the pipeline system. Magnetic flux leakage (MFL) ILI tools are among the most widely used in pipeline systems. Primarily used for metal loss detection and quantification, these tools are extremely robust, performing successfully in the harsh environments found in operating pipelines, with the majority of MFL tools in service today relying upon axially oriented magnetic fields. For feature classes whose principal axis is aligned parallel to the pipe axis, the use of an axially applied magnetic field may quite often result in decreased performance due to difficulties in detection and sizing. Through the use of fields applied either perpendicular or in an oblique direction to the principal axis, the magnetic leakage levels generated at feature locations are increased, providing usable signal levels. When used concurrently with an axially oriented magnetizer, an obliquely applied magnetic field may provide the ability to detect, quantify, or otherwise aid in discrimination of volumetric versus non-volumetric features. Providing the ability to collect both of these data sets in a single survey would allow operators to minimize the number of surveys required to address all categories of metal loss features that may be present within pipeline systems. This paper will discuss some of the variables that affect detection and sizing of metal loss zones with respect to the applied field direction, including graphs and tables to quantify the effects of angular displacement for specific feature shapes. Several classes of features have been chosen for evaluation

  10. Inter-comparisons of thermodynamic sea-ice modeling results using various parameterizations of radiative flux

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Radiative fluxes are of primary importance in the energy and mass balance of the sea-ice cover. Various parameterizations of the radiative fluxes are studied in a thermodynamic sea-ice model. Model outputs of the surface radiative and heat fluxes and mass balance are compared with observations. The contribution of short-wave radiation is limited to a long part of winter. Therefore, simple schemes are often sufficient. Errors in estimations of the short-wave radiation are due mainly to cloud effects and occasionally to multi-reflection between surface and ice crystals in the air. The long-wave radiation plays an important role in the ice surface heat and mass balance during most part of a winter. The effect of clouds on the accuracy of the simple radiative schemes is critical, which needs further attention. In general, the accuracy of an ice model depends on that of the radiative fluxes.

  11. Carbon and Water Fluxes of Crops Exposed to the Sequence of Naturally Occurring Heat Stress, Drought and Freezing

    Science.gov (United States)

    Joo, E.; Miller, J. N.; Bernacchi, C.

    2015-12-01

    As a consequence of global climate change the occurrence of extreme weather events (heat waves, cold spells, drought, etc) are predicted to become more frequent and/or intense, which will likely have a large impact on crop production. In the winter of 2013/2014 several polar vortexes were experienced in Illinois, US, resulting in periods of extreme low temperatures between -20°C and -35°C. Prior to the extreme cold winter of 2013/2014 the region experienced drought over a hot summer in 2012. Four established fields of three perennial biofuel crops (Miscanthus x giganteus, Panicum virgatum L., and a mixture of native prairie species) and Zea mays/Glycine max agroecosystem have been studied since 2009 in order to investigate the effect of climate change and land-use change on carbon and water fluxes using the eddy covariance technique, as well as biomass production of these species. The combined effect of the heat and drought stress in 2012 resulted in severe water deficit of all species (up to -360 mm for miscanthus), which resulted in reduced net ecosystem exchange (NEE) during the drought for all species other than miscanthus. In the following year, during the recovery of these species from drought, miscanthus showed decreased NEE but the other species did not appear to be negatively influenced. As a consequence of the environmental stresses (heat and drought stress followed by extreme freezing), the water and carbon exchanges (such as ET, NEE, GPP, Reco) as well as growth parameters (LAI, biomass production) are shown to vary based on the stress tolerance of these species.

  12. Fluxes of radionuclides in agricultural environments: main results and still unsolved problems

    International Nuclear Information System (INIS)

    Agricultural products originating from the areas subjected to high radioactive deposit after the Chernobyl accident are a main contributor to the radiological dose to local populations. The transfer fluxes of radionuclides through agricultural food chains, to food products consumed by humans, depend on the characteristics of t = = = = = = 37Cs fluxes in the main agricultural ecosystems of the Chernobyl accident zone are quantitatively determined and the main topics, where further investigation is needed, are identified

  13. Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic

    Directory of Open Access Journals (Sweden)

    K. H. Salmon

    2014-08-01

    Full Text Available Oligotrophic regions represent up to 75% of Earth's open-ocean environments, and are typically characterized by nutrient-limited upper-ocean mixed layers. They are thus areas of major importance in understanding the plankton community dynamics and biogeochemical fluxes. Here we present fluxes of total planktonic foraminifera and eleven planktonic foraminifer species from a bi-weekly sediment trap time series in the oligotrophic Sargasso Sea, subtropical western North Atlantic Ocean at 1500 m water depth, over two ∼2.5 year intervals, 1998–2000 and 2007–2010. Foraminifera flux was closely correlated with total mass flux and with carbonate and organic carbon fluxes. We show that the planktonic foraminifera flux increases approximately five-fold during the winter–spring, contributing up to ∼40% of the total carbonate flux, driven primarily by increased fluxes of deeper dwelling ("globorotaliid" species. Interannual variability in total foraminifera flux, and in particular fluxes of the deep dwelling Globorotalia truncatulinoides, Globorotalia hirsuta, Globorotalia inflata, were related to differences in seasonal mixed layer dynamics affecting the strength of the spring phytoplankton bloom and export flux, and by the passage of mesoscale eddies. The heavily calcified, dense carbonate tests of deeper dwelling species (3 times denser than surface dwellers can contribute up to 90% of the foraminiferal-derived carbonate in this region during late winter-early spring, implying a high seasonality of the biological carbonate pump in oligotrophic oceanic regions. Our data suggest that climate cycles, such as the North Atlantic Oscillation, that modulate the depth