WorldWideScience

Sample records for carbon films prepared

  1. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  2. Preparation and Thermal Characterization of Diamond-Like Carbon Films

    Institute of Scientific and Technical Information of China (English)

    BAI Su-Yuan; TANG Zhen-An; HUANG Zheng-Xing; Yu Jun; WANG Jing; LIU Gui-Chang

    2009-01-01

    Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.

  3. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    Science.gov (United States)

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  4. Preparation of thin carbon films (1963)

    International Nuclear Information System (INIS)

    Carbon deposits have been prepared on silica glass supports in order to determine more accurately than by weighing the losses liable to occur during oxidation, for example under irradiation in the presence of CO2. Several processes have been studied with a view to obtaining deposits for which the variation in optical density as a function of carbon departure shall be reproducible for each sample. Among the methods used, the most satisfactory is that in which the pyrolytic carbon deposited on a carbon filament is evaporated; however only the samples prepared simultaneously exhibit the required identical behaviour. The carbonaceous deposits have been studied by micro-electronic diffraction. An examination of the photographs shows the presence of graphite monocrystals of about (30 μ)2. (author)

  5. Preparation of carbon-nitride bulk samples in the presence of seed carbon-nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I. [Korea University of Technology and Education, Chonan (Korea, Republic of); Zorov, N. B. [Moscow State University, Moscow (Russian Federation)

    2004-05-15

    A procedure was developed for preparing bulk carbon-nitride crystals from polymeric alpha-C{sub 3}N{sub 4.2} at high pressure and high temperature in the presence of seeds of crystalline carbon-nitride films prepared by using a high-voltage discharge plasma combined with pulsed laser ablation of a graphite target. The samples were evaluated by using X-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Notably, XPS studies of the film composition before and after thermobaric treatments demonstrated that the nitrogen composition in the alpha-C{sub 3}N{sub 4.2} material, which initially contained more than 58 % nitrogen, decreased during the annealing process and reached a common, stable composition of approx 45 %. The thermobaric experiments were performed at 10 - 77 kbar and 350 - 1200 .deg. C.

  6. Preparation of self-supporting carbon thin films

    CERN Document Server

    Lommel, B; Kindler, B; Klemm, J; Steiner, J

    2002-01-01

    For heavy-ion beam experiments, self-supporting carbon thin films are needed as targets, stripper foils and as backings (Nucl. Instr. and Meth. A 334 (1993) 69) for materials which cannot be produced self-supporting. Using resistance evaporation under high vacuum, self-supporting carbon foils with a thickness of 5 mu g/cm sup 2 and a diameter of 10 mm, a thickness of 10 mu g/cm sup 2 and a diameter of 50 mm up to a thickness of 50 mu g/cm sup 2 and a diameter of 300 mm can be obtained. Due to the energy impact of the heavy-ion beam, the amorphous carbon is restructured into textured graphite, as was found already by Dollinger et al. (Nucl. Instr. and Meth. A 303 (1991) 79). The discuss the production process as well as the change of the layer structure caused by the energy deposit.

  7. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    Science.gov (United States)

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  8. Controllable preparation of fluorine-containing fullerene-like carbon film

    Science.gov (United States)

    Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan

    2016-05-01

    Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.

  9. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-01

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications. PMID:26784865

  10. Chemical Structure of Carbon Nitride Films Prepared by MW-ECR Plasma Enhanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    XU Jun; GAO Peng; DING Wan-yu; LI Xin; DENG Xin-lu; DONG Chuang

    2004-01-01

    Amorphous carbon nitride thin films were prepared by plasma-enhanced DC magnetron sputtering using twinned microwave electron cyclotron resonance plasma sources. Chemical structure of deposited films was investigated using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results indicate that the deposition rate is strongly affected by direct current bias, and the films are mainly composed of a single amorphous carbon nitride phase with N/C ratio close to C3N4, and the bonding is predominantly of C-N type.

  11. Chemical Structure of Carbon Nitride Films Prepared by MW-ECR Plasma Enhanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    XUJun,GAOPeng; DINGWan-yu; LIXin; DENGXin-lu; DONGChuang

    2004-01-01

    Amorphous carbon nitride thin films were prepared by plasma-enhanced DC magnetron sputtering using twinned microwave electron cyclotron resonance plasma sources. Chemical structure of deposited films was investigated using X-ray photoelectron spectroscopy and Fourier transtorm infrared spectroscopy. The results indicate that the deposition rate is strongly affected by direct current bias, and the films are mainly composed of a single amorphous carbon nitride phase with N/C ratio close to C3N4, and the bonding is predominantly of C-N type.

  12. Significant positive magnetoresistance of graphene/carbon composite films prepared by electrospraying and subsequent heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.Q.; Chen, J.T.; Zhang, Z.C. [Shanghai University, School of Materials Science and Engineering, Shanghai (China); Liu, X.; Wang, L.J.; Jiang, W. [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai (China); Li, J.L. [Hainan University, School of Materials Science and Chemical Engineering, Haikou (China)

    2012-03-15

    Graphene/carbon composite films were prepared by electrospraying a graphene/polyacrylonitrile composite solution on SiO{sub 2}-coated silicon substrates and subsequent heat treatment. The as-produced graphene/carbon composite films had a porous structure comprising graphene layers. With a magnetic field applied perpendicularly to the sample, an unexpectedly significant positive magnetoresistance attributed to e-e interaction and weak localization has been observed, which constantly increases with the magnetic field in the temperature range of 300-50 K from 0 to 80 kOe. (orig.)

  13. Preparation and investigation of diamond-like carbon nanocomposite thin films for nanophotonics

    Science.gov (United States)

    Panosyan, Zh.; Gharibyan, A.; Sargsyan, A.; Panosyan, H.; Hayrapetyan, D.; Yengibaryan, Y.

    2010-08-01

    Flexible Plasma Enhanced Chemical Vapor Deposition (PECVD) technology of Diamond Like Carbon (DLC) thin film preparation on the surface of Si and organic glasses has been elaborated. Modification of PECVD equipment has been implemented by integrating ion and magnetron sources. In this paper toluene (C7H8) has been used as a nanocmposite film forming hydrocarbon which decomposition yields to the multi component plasma in vacuum chamber. Nitrogen has been used as a dopand. Investigation of plasma composition influence to the optical and mechanical properties of DLC films has been observed. The presence of sp3 and sp2 hybridization states have been proven by Raman spectroscopy and their ratios have been estimated with the help of ID, IG characteristic lines for different technological conditions. High precision refractive index and thickness measurements of DLC films have been implemented by means of laser ellipsometer. Refractive indices of prepared films have been varied in the region 1.5-3.1 and thicknesses have been varied in the region 50-250 nm. Extraordinary change in refractive index has been explained with the help of formation of differently sized sp2 carbon based clusters in the sp3 matrix. Different types of carbon and hydrogen bonds have been observed in the obtained structures by means of FTIR. Obvious prospectives of DLC nanocomposite film as a promissing nanophotonic material has been discussed.

  14. Continuous Preparation of Carbon Nanotube Film and Its Applications in Fuel and Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Huang, Xin Xin; Wang, Xiao Xia; Zhong, Xin Hua; Meng, Xin Xin; Wang, Jian Nong

    2016-03-01

    So far, simultaneously realizing the continuous, controllable, and scalable preparation of carbon nanotube (CNT) film has remained a big challenge. Here, we report a scalable approach to continuously prepare CNT film with good control of film size and thickness. This is achieved through the layer-by-layer condensation and deposition of a cylindrical CNT assembly that is continuously produced from a floating catalyst CVD reactor on a paper strip. The promising applications of such a film are demonstrated by directly using it as an effective protecting layer for the Pt/C catalyst in proton exchange membrane fuel cells and as an efficient counter electrode material in quantum-dot-sensitized solar cells.

  15. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    Science.gov (United States)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  16. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications

    Institute of Scientific and Technical Information of China (English)

    FU Di; XIE Dan; ZHANG Chen-Hui; ZHANG Di; NIU Jie-Bin; QIAN He; LIU Li-Tian

    2010-01-01

    @@ We propose diamond-like carbon(DLC)as the resistance change material for nonvolatile memory applications.Nanoscale DLC films are prepared by filtered cathodic vacuum arc technique and integrated to W/DLC/W structure devices.The deposited DLC film has a thickness of about 2O nm and high sp3 fraction content.Reversible bistable resistive switching from a high resistance state to a low resistance state,and vice versa,is observed under appropriate unipolar stimulation pulses.

  17. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  18. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    International Nuclear Information System (INIS)

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  19. The investigation of carbon nitride films prepared at various arc currents by vacuum cathode arc method

    International Nuclear Information System (INIS)

    The carbon nitride films have been prepared in the arc currents range of 20-60 A at the Ar/N2 atmosphere of 50/400 sccm by the vacuum cathode arc deposition method. The properties of the films were characterized by x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and nanoindentation. The N concentration showed a maximum of 35 at% at 20 A and decreased gradually with the arc currents. The films below 40 A consisted of linear polymeric-like component and sp2 graphitic cluster. With the increasing of the arc current from 20 to 40 A, the ID/IG rose and the photoluminescence (PL) fell gradually, which resulted from the development of the sp2 graphitic phase and the decrease of the polymeric-like phase. As a result, the CC bonds increased and sp3CN and sp2CN decreased. Above 40 A, with the increasing of arc currents, ID/IG fell and the PL increased gradually, which reflected the decreasing of sp2 graphitic phase and the modification of C and N atoms in sp2 cluster. The CC bonds and sp3CN fell and the sp2CN rose. The nanohardness of films showed increasing tendency with the arc currents. The variation of the relative ratio and the average energy of N-containing species and C-containing species at the atmosphere would be responsible for the change in the properties of films. (author)

  20. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    Science.gov (United States)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  1. Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation

    Institute of Scientific and Technical Information of China (English)

    Zhi Hui Zhou; Jian Hua Yang; Li Feng Chang; Yan Zhang; Wei Guo Sun; Jin Qu Wang

    2007-01-01

    Novel NaA/carbon nanocomposite thin films were successfully prepared on a porous α-Al2O3 substrate by incorporating nanosized NaA zeolite into novolak-type phenolic resin. The prepared films were characterized by XRD, SEM and single gas permeation tests. The NaA zeolite/carbon nanocomposite thin films exhibited that the ideal separation factor of CO2/CH4 was 28.4and the carbon dioxide flux was 3.39 × 10-7 mol/(Pa m2 s) at room temperature and under a pressure difference of 100 kPa, which was two orders of magnitude higher than that of pure carbon membrane prepared at the same procedures and conditions as those of composite films. From the SEM images, the films were continuous and highly intergrown. Compared with carbon membranes, the thickness of nanocomposite films was drastically decreased, which was helpful to reduce the diffusion resistance and increase the flux of gas permeance.

  2. Study on the preparation of high barrier hydrogenated carbon film and its properties

    International Nuclear Information System (INIS)

    Hydrogenated carbon thin films were fabricated on the surface of polyethylene terephthalate (PET) by radio frequency plasma enhanced chemical vapor deposition (r.f. PECVD). The film structure properties were studied by means of atomic force microscope (AFM), x-ray photo-electron (XPS), laser Raman spectroscopy, Fourier-transform infrared spectra (FTIR), etc. The barrier property of the film was conducted on the water vapor permeation instrument. The results show that nano-hydrogenated carbon films have been deposited on PET surface and they are mainly composed of sp2 and sp3 hybridized hydrogenated carbon compounds. Plasma parameters influence the films' growth rate and structure characteristics. The film reduces the water vapor permeation ratio of the PET by 7 times at a film thickness of only 900 nm. (authors)

  3. PREPARATION AND CORROSION RESISTANCE OF NiP/TiO2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION

    Institute of Scientific and Technical Information of China (English)

    L.Z. Song; S.Z. Song; J. Zhao

    2006-01-01

    A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy)and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.

  4. Recent trends in preparation and application of carbon nanotube-graphene hybrid thin films

    Science.gov (United States)

    Thanh Dang, Van; Dung Nguyen, Duc; Thanh Cao, Thi; Le, Phuoc Huu; Tran, Dai Lam; Phan, Ngoc Minh; Chuc Nguyen, Van

    2016-09-01

    The combination of one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphene materials to generate three-dimensional (3D) carbon nanotube-graphene hybrid thin films (CNGHTFs) has attracted great attention owing to their intriguing properties via the synergistic effects of these two materials on their electrical, optical, and electrochemical properties in comparison with their individual components. This review aims to provide a brief introduction of recent trends in preparation methodologies and some outstanding applications of CNGHTFs. It contains two main scientific subjects. The first of these is the research on preparation techniques of CNGHTFs, including reduction agent-assisted mechanical blending of reduced graphene oxide (rGO) and CNTs, hybridization methods for layer-by-layer (LBL) assembly of CNTs and rGO sheets, multi-step methods using combinations of a solution and chemical vapor deposition (CVD) processing, one-step growth of CNGHTFs by the CVD method, and modified CVD methods via thermal deposition of carbon source on catalyst surfaces. The advantages and disadvantages of the preparation methods of CNGHTFs are presented and discussed in detail. The second scientific subject of the review is the research on some outstanding applications of CNGHTFs in various research fields, including transparent conductors, electron field emitters, field-effect transistors, biosensors and supercapacitors. In most cases, the CNGHTFs showed superior performances than those of the pristine GO/graphene or CNT materials. Therefore, the CNGHTFs exhibit as high-potential materials for various practical applications. Opportunites and challenges in the fields are also presented.

  5. Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films

    Science.gov (United States)

    Thanh Dang, Van; Dung Nguyen, Duc; Thanh Cao, Thi; Le, Phuoc Huu; Tran, Dai Lam; Phan, Ngoc Minh; Chuc Nguyen, Van

    2016-09-01

    The combination of one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphene materials to generate three-dimensional (3D) carbon nanotube–graphene hybrid thin films (CNGHTFs) has attracted great attention owing to their intriguing properties via the synergistic effects of these two materials on their electrical, optical, and electrochemical properties in comparison with their individual components. This review aims to provide a brief introduction of recent trends in preparation methodologies and some outstanding applications of CNGHTFs. It contains two main scientific subjects. The first of these is the research on preparation techniques of CNGHTFs, including reduction agent-assisted mechanical blending of reduced graphene oxide (rGO) and CNTs, hybridization methods for layer-by-layer (LBL) assembly of CNTs and rGO sheets, multi-step methods using combinations of a solution and chemical vapor deposition (CVD) processing, one-step growth of CNGHTFs by the CVD method, and modified CVD methods via thermal deposition of carbon source on catalyst surfaces. The advantages and disadvantages of the preparation methods of CNGHTFs are presented and discussed in detail. The second scientific subject of the review is the research on some outstanding applications of CNGHTFs in various research fields, including transparent conductors, electron field emitters, field-effect transistors, biosensors and supercapacitors. In most cases, the CNGHTFs showed superior performances than those of the pristine GO/graphene or CNT materials. Therefore, the CNGHTFs exhibit as high-potential materials for various practical applications. Opportunites and challenges in the fields are also presented.

  6. Characteristics of Nitrogen Doped Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering for Electronic Devices.

    Science.gov (United States)

    Lee, Jaehyeong; Choi, Byung Hui; Yun, Jung-Hyun; Park, Yong Seob

    2016-05-01

    Synthetic diamond-like carbon (DLC) is a carbon-based material used mainly in cutting tool coatings and as an abrasive material. The market for DLC has expanded into electronics, optics, and acoustics because of its distinct electrical and optical properties. In this work, n-doped DLC (N:DLC) films were deposited on p-type silicon substrates using an unbalanced magnetron sputtering (UBMS) method. We investigated the effect of the working pressure on the microstructure and electrical properties of n-doped DLC films. The structural properties of N:DLC films were investigated by Raman spectroscopy and SEM-EDX, and the electrical properties of films were investigated by observing the changes in the resistivity and current-voltage (I-V) properties. The N:DLC films prepared by UBMS in this study demonstrated good conducting and physical properties with n-doping. PMID:27483841

  7. Characteristics of Nitrogen Doped Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering for Electronic Devices.

    Science.gov (United States)

    Lee, Jaehyeong; Choi, Byung Hui; Yun, Jung-Hyun; Park, Yong Seob

    2016-05-01

    Synthetic diamond-like carbon (DLC) is a carbon-based material used mainly in cutting tool coatings and as an abrasive material. The market for DLC has expanded into electronics, optics, and acoustics because of its distinct electrical and optical properties. In this work, n-doped DLC (N:DLC) films were deposited on p-type silicon substrates using an unbalanced magnetron sputtering (UBMS) method. We investigated the effect of the working pressure on the microstructure and electrical properties of n-doped DLC films. The structural properties of N:DLC films were investigated by Raman spectroscopy and SEM-EDX, and the electrical properties of films were investigated by observing the changes in the resistivity and current-voltage (I-V) properties. The N:DLC films prepared by UBMS in this study demonstrated good conducting and physical properties with n-doping.

  8. Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    高明伟; 叶超; 王响英; 何一松; 郭佳敏; 杨培芳

    2016-01-01

    Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency (VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents. These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents.

  9. Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO{sub 2} gas resource

    Energy Technology Data Exchange (ETDEWEB)

    Wen, F., E-mail: fwen323@163.com [Key Lab. of Advanced Materials of Tropical Island Resources, Ministry of Education, Haikou 570228 (China); School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Zhang, C. [School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Xie, D.; Sun, H.; Leng, Y.X. [Key Lab. of Advanced Technologies of Materials, Ministry of Education, Chengdu 610031 (China)

    2013-07-15

    In this paper, carbon-doped Ti-O films were prepared on silicon wafer and stainless steel by reaction magnetron sputtering using CO{sub 2} as carbon and oxygen source. By changing the ratio of CO{sub 2}/O{sub 2}, a series of films with different composition can be obtained. X-ray photoelectron spectroscopy (XPS) was employed to analyze composition of as-prepared films. The result proved that carbon was doped into titanium successfully. Ultraviolet–visible (UV–Vis) spectrophotometer in the wavelength range of 250–900 nm was used to record the absorbance of as-prepared film samples. The photocatalytic activities of as-prepared films were evaluated by measuring the decolorization rate of methyl orange under UV light irradiation. The results showed that as-prepared carbon-doped Ti-O films have fairly photocatalysis activity, which to be hoped to become candidate materials for photocatalyst.

  10. Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO2 gas resource

    International Nuclear Information System (INIS)

    In this paper, carbon-doped Ti-O films were prepared on silicon wafer and stainless steel by reaction magnetron sputtering using CO2 as carbon and oxygen source. By changing the ratio of CO2/O2, a series of films with different composition can be obtained. X-ray photoelectron spectroscopy (XPS) was employed to analyze composition of as-prepared films. The result proved that carbon was doped into titanium successfully. Ultraviolet–visible (UV–Vis) spectrophotometer in the wavelength range of 250–900 nm was used to record the absorbance of as-prepared film samples. The photocatalytic activities of as-prepared films were evaluated by measuring the decolorization rate of methyl orange under UV light irradiation. The results showed that as-prepared carbon-doped Ti-O films have fairly photocatalysis activity, which to be hoped to become candidate materials for photocatalyst

  11. Preparation of Diamond-Like carbon Films in methane by Electron Cyclotron Resonance Microwave Plasma Source Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    李新; 唐祯安; 马国佳; 吴志猛; 邓新绿

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on Si (100) substrates by ion implantation from an electron cyclotron resonance microwave plasma source. During the implantation, 650 W microwave power was used to produce discharge plasma with methane as working gas, and -20 kV voltage pulses were applied to the substrate holder to accelerate ions in the plasma. Confocal Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared characterization indicates that the DLC films were composed of sp3 and sp2 carbonbonded hydrogen. The hardness of the films was evaluated with a Nano Indenter-XP System. The result shows that the highest hardness value was 14.6GPa. The surface rms roughness of the films was as low as 0. 104nm measured with an atomic force microscope. The friction coefficient of the films was checked using a ball-on-disk microtribometer. The average friction coefficient is approximately 0.122.

  12. STRUCTURE, MECHANICAL PROPERTIES AND THERMAL STABILITY OF DIAMOND-LIKE CARBON FILMS PREPARED BY ARC ION PLATING

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zou; J.D. Zheng; J. Gong; C. Sun; R.F. Huang; L.S. Wen

    2005-01-01

    Diamond-like Carbon (DLC) films have been prepared on Si(100) substrates by arc ion plating in conjunction with pulse bias voltage under H2 atmosphere. The deposited films have been characterized by scanning electron microscopy and atomic force microscopy. The results show that the surface of the film is smooth and dense without any cracks, and the surface roughness is low. The bonding characteristic of the films has been studied by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It shows the sp3 bond content of the film deposited at -200V is 26.7%. The hardness and elastic modulus of the film determined by nanoindentation technique are 30.8 and 250.1GPa, respectively. The tribological characteristic of the films reveals that they have low friction coefficient and good wear-resistance. After deposition, the films have been annealed in the range of 350-700℃ for 1h in vacuum to investigate the thermal stability. Raman spectra indicate that the ID/IG ratio and G peak position have few detectable changes below 500℃. Further increasing the annealing temperature, the hydrogen can be released, the structure rearranges, and the phase transition of sp3 configured carbon to sp2 configured carbon appears.

  13. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films.

    Science.gov (United States)

    Wang, Ranran; Sun, Jing; Gao, Lian; Xu, Chaohe; Zhang, Jing; Liu, Yangqiao

    2011-03-01

    SWCNT-reduced graphite oxide hybrid films were prepared by a filtration method. An efficient post-treatment procedure was designed to reduce GO and remove dispersants simultaneously. The sheet resistance decreased significantly after treatment, by a factor of 4-13 times. Films with excellent performance (95.6%, 655 Ω per square) were obtained and had great potential applications. PMID:21132173

  14. Studies of the composition, mechanical and electrical properties of N-doped carbon films prepared by DC-MFCAD

    International Nuclear Information System (INIS)

    N-doped carbon films were prepared on Si(1 0 0) and Ti-6Al-4V substrates using direct current magnetically filtered cathodic arc deposition (DC-MFCAD) at room temperature for various different N2 pressures. The structure and composition of the films were characterized by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Ball-on-disk and microhardness tests were used to characterize the mechanical properties of the films, and Hall effect tests were employed to study the electrical properties

  15. Surface properties of diamond-like carbon films prepared by CVD and PVD methods

    Institute of Scientific and Technical Information of China (English)

    Liu Dong-Ping; Liu Yan-Hong; Chen Bao-Xiang

    2006-01-01

    Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance-plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered-pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp3 hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.

  16. Preparation of diamond-like carbon and boron nitirde films by high-intensity pulsed ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Davis, H.A. [Los Alamos National Lab., NM (United States); Remnev, G.E. [Tomsk Polytechnic Univ., Tomsk (Russian Federation). Nuclear Physics Institute.] [and others

    1995-05-01

    Intense ion beams (300-keV C{sup +}, O{sup +}, and H{sup +}, 20--30 kA, 50 to 400-ns pulsewidth, up to 0.3-Hz repetition rate) were used to prepare diamond-like carbon (DLC) and boron nitride (BN) films. Deposition rates of up to 25{plus_minus}5 nm/pulse were obtained with instantaneous rates exceeding 1 mm/s. Most films were uniform, light brown, translucent, and nonporous with some micron-size particulates. Raman and parallel electron energy loss spectroscopy indicated the presence of DLC. The films possessed favorable electron field-emission characteristics desirable for cold-cathode displays. Transmission electron microscopy (TEM) and transmission electron diffraction (TED) revealed that the C films contained diamond crystals with 25 to 125-nm grain size. BN films were composed of hexagonal, cubic and wurtzite phases.

  17. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films

    Institute of Scientific and Technical Information of China (English)

    Xue-tong ZHANG; Wen-hui SONG

    2009-01-01

    Polypyirole/multiwalled carbon nanotube (MWNT) composite fihns were electrochemically depos-ited in the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), acting as both supporting electrolyte and dispersant. The effects of the surfactant and the MWNT concentrations on the structure at the resulting composite films were investigated. The electrochemical behavior of the resulting polypyrrole/MWNT composite film was investigated aS well bv cyclic voltammogram. The effect of the additional alternating electric field applied during the constant direct potential electrochemical deposition on the morphology and electrochemical behavior of the resulting composite film was also investigated in this study.

  18. Preparation and Characterization of Metal-free graphitic Carbon Nitride Film Photocathodes for Light-induced Hydrogen Evolution

    CERN Document Server

    Yang, Florent; Orthmann, Steven; Merschjann, Christoph; Tyborski, Tobias; Rusu, Marin; Kanis, Michael; Thomas, Arne; Arrigo, Rosa; Haevecker, Michael; Schedel-Niedrig, Thomas

    2012-01-01

    Very recently, it has been shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor [1]. We will present here the preparation and characterization of graphitic carbon nitride (g-C3N4) films on semiconducting substrates by thermal condensation of dicyandiamide precursor under inert gas conditions. Structural and surface morphological studies of the carbon nitride films suggest a high porosity of g-C3N4 thin film consisting of a network of nanocrystallites. Photo-electrochemical investigations show upon cathodic polarization light-induced hydrogen evolution for a wide range of proton concentrations in the aqueous electrolyte. Additionally, Synchrotron radiation based photoelectron spectroscopy has been applied to study the surface/near-surface chemical composition of the utilized g-C3N4 film photocathodes. For the first time it is shown that g-C3N4 films can be successfully applied as photoelectrochemical ma...

  19. Preparation of diamond-like carbon films in methane by electron cyclotron resonance microwave plasma source ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared on Si(100) substrates by ion implantation from an electron cyclotron resonance microwave plasma source. During the implantation, 650 W microwave power was used to produce discharge plasma with methane as working gas, and -20 kV voltage pulses were applied to the substrate holder to accelerate ions in the plasma. Confocal Raman spectra confirmed the DLC characteristics of the films. Fourier-transform infrared characterization indicates that the DLC films were composed of sp3 and sp2 carbon-bonded hydrogen. The hardness of the films was evaluated with a Nano Indenter-XP System. The result shows that the highest hardness value was 14.6 GPa. The surface rms roughness of the films was as low as 0.104 nm measured with an atomic force microscope. The friction coefficient of the films was checked using a ball-on-disk microtribometer. The average friction coefficient is approximately 0.122

  20. Influence of Bias on the Properties of Carbon Nitride Films Prepared by Vacuum Cathodic Arc Method

    Institute of Scientific and Technical Information of China (English)

    Zhimin ZHOU; Lifang XIA; Mingren SUN

    2004-01-01

    Carbon nitride films have been synthesized in a wide range of biases from 0 to -900 V by vacuum cathodic arc method. The N content was about 12.0~22.0 at. Pct. Upon increasing the biases from 0 to -100 V, the N content increased from 15.0 to 22.0 at. Pct which could be attributed to the knot-on effect. While the further increasing biases led to the gradual falling of the N content to 12.0 at. Pct at -900 V due to the enhancement of the sputtering effect. Below -200 V, with the increasing biases the sp2C fraction in the films decreased, as a result of which the I(D)/I(G) fell in the Raman spectra and the sp peaks also showed the decreasing tendency relative to the s peaks in the VBXPS (valence band X-ray photoelectron spectroscopy). While above -200 V, the sp2C fraction increased and the films became graphitinized gradually, accompanying which theI(D)/I(G) rose from -200 V to -300 V and the Raman spectra even showed the graphite characteristic above -300 V and the sp peaks rose again relative to the s peak. The carbon nitride films mainly consist of three types of bonding: CC, sp2CN and sp3CN bonds. In the first stage the sp3CN relative ratio rises and falls in the second stage, which corresponded well with the variation of the sp2C in the films. The subplantation mechanism resulting from the effect of ion energy played an important role in decidingthe variation of the microstructure of the carbon nitride films.

  1. Facile preparation of superhydrophobic surface with high adhesive forces based carbon/silica composite films

    Indian Academy of Sciences (India)

    Ruanbing Hu; Guohua Jiang; Xiaohong Wang; Xiaoguang Xi; Rijing Wang

    2013-11-01

    Glass substrates modified by carbon/silica composites are fabricated through a two-step process for the preparation of a superhydrophobic surface (water contact angle ≥ 150°). Carbon nanoparticles were first prepared through a deposition process on glass using a hydrothermal synthesis route, then the glass was modified by SiO2 using the hydrolysis reaction of tetraethylorthosilicate at room temperature. It is not only a facile method to create a superhydrophobic surface, but also helps to form a multi-functional surface with high adhesive forces.

  2. Electrochemical preparation of carbon films with a Mo2C interlayer in LiCl-NaCl-Na2CO3 melts

    Science.gov (United States)

    Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong; Zhu, Hongmin; Jiao, Shuqiang

    2015-08-01

    The electrodeposition of carbon films with a Mo2C interlayer was investigated in LiCl-NaCl-Na2CO3 melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo2C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo2C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo2C) leads to the formation and growth of Mo2C interlayer.

  3. The tribological properties of nanometre carbon films prepared by plasma-based ion implantation at various implanting voltages

    International Nuclear Information System (INIS)

    About 30 nm thick nanometre carbon films have been prepared on Si wafers by plasma-based ion implantation at various implanting voltages. The ball-on-disc sliding friction experiments show that the tribological properties of these carbon films are in good agreement with the corresponding structure characteristics which strongly depend on the implanting voltage. These structure characteristics include the film roughness, the film thickness, the C-Si transition layer between the carbon film and the Si substrate and the sp3/sp2 ratio. As the implanting voltage increases, the roughness and the thickness decrease, the C-Si transition layer thickens and the sp3/sp2 ratio first increases to the maximum value at about 30 kV and then decreases. 3 kV and below correspond to bad tribological properties owing to polymer-like carbon (PLC) film and no C-Si transition layer with poor adhesion to the Si substrate. When the implanting voltage increases to over 3 kV, a C-Si transition layer is gradually formed and thickens with increasing adhesion, and the PLC film is gradually turned into a diamond-like carbon (DLC) film, and hence the tribological properties are gradually improved and reach the best values at 30 kV. 10-50 kV correspond to two orders of increase in wear life, close to zero volume wear rate, but about 0.3 friction coefficient at 0.1 N applied load. With the increase in the applied load, the wear life and the friction coefficient decrease and the wear rate increases. For Si wafers coated with the DLC films at 30 kV, in the range of 0.5-1 N, there is an appropriate value corresponding to the wear life of above 18 000 s, friction coefficient of about 0.1 and wear rate of 10-9 mm3 N-1 m-1 level. Additionally, the wear mechanism is discussed

  4. Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuanqian; Liu, Lin; Cai, Yurong; Chen, Jianjun [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)

    2013-04-01

    Cuprous oxide (Cu{sub 2}O) nanocrystals have been successfully synthesized using copper acetate as precursors via a polyol process. The as-synthesized products were easily deposited on the surface of carbon nanofibres (CNFs) and then were characterized through XRD, FESEM, TEM and FTIR, etc. The photocatalytic performance of these composite films was evaluated using methyl orange as a model organic compound under visible light irradiation. Results showed that the shape of Cu{sub 2}O nanparticles could be changed from irregular nanoparticle to cubic, flower-like particle assembled by Cu{sub 2}O nanocubes with the change of the reaction conditions. All of these Cu{sub 2}O/CNFs composite films showed the satisfied photocatalytic activity to methyl orange even after 3 cycles of degradation experiment due to the protectable function of carbon fibre films to the Cu{sub 2}O nanocrystals. The Cu{sub 2}O/CNFs composite films may offer a feasible method for the potential application of Cu{sub 2}O nanocrystals in the treatment of organic contamination.

  5. Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films

    International Nuclear Information System (INIS)

    Cuprous oxide (Cu2O) nanocrystals have been successfully synthesized using copper acetate as precursors via a polyol process. The as-synthesized products were easily deposited on the surface of carbon nanofibres (CNFs) and then were characterized through XRD, FESEM, TEM and FTIR, etc. The photocatalytic performance of these composite films was evaluated using methyl orange as a model organic compound under visible light irradiation. Results showed that the shape of Cu2O nanparticles could be changed from irregular nanoparticle to cubic, flower-like particle assembled by Cu2O nanocubes with the change of the reaction conditions. All of these Cu2O/CNFs composite films showed the satisfied photocatalytic activity to methyl orange even after 3 cycles of degradation experiment due to the protectable function of carbon fibre films to the Cu2O nanocrystals. The Cu2O/CNFs composite films may offer a feasible method for the potential application of Cu2O nanocrystals in the treatment of organic contamination.

  6. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  7. Thermal effects on structure and photoluminescence properties of diamond-like carbon films prepared by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Da; LI Qing-shan; WANG Jing-jing; ZHENG Xue-gang

    2006-01-01

    Un-hydrogenated Diamond-like Carbon (DLC) films were prepared by pulsed laser deposition technique at different substrate temperature.The Raman spectra,the absorption and the photoluminescence spectra were measured.The dependence of structure and photoluminescence properties on deposition temperature were studied in detail.The experimental results indicate that the sp2 sites form small clusters that consist of both olefinic chains and aromatic ring groups within the sp3 matrix.With raising deposition temperature,the optical band gaps increase from 1.87 to 2.85 eV.The main band of photoluminescence centered at around 700nm shifts to short wavelength,and the intensity of this band increases.The photoluminescence can be attributed to carrier localization within an increasing sp2 clusters.It was clarified that the DLC films are ordered with increasing deposition temperature.

  8. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    Science.gov (United States)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  9. Carbon nanotubes film preparation on 3D structured silicon substrates by spray coating technique for application in solar cells

    International Nuclear Information System (INIS)

    This paper firstly reports the preparation of carbon nanotubes (CNTs) film on silicon substrate of three-dimensional (3D) inverted pyramid structure (IPS) by spray coating. The effect of different substrate temperatures, spraying times and opening sizes on CNTs sidewall covering properties were investigated. The results show that the CNTs covering ratio of sidewall is much lower than that of flat surface and gradually decrease with depth. 40μm×40μm opening obtained the best sidewall covering by CNTs suspension of 40μg/ml at 120°C after 30min spraying so that the CNTs can reach the bottom of IPS and cover about 68.9% sidewall area. At last, it is demonstrated that the output power of the CNTs film-Si solar cell can be enhanced 5.7 times by this method compared to that of the plane structure

  10. Electrochemical preparation of carbon films with a Mo{sub 2}C interlayer in LiCl-NaCl-Na{sub 2}CO{sub 3} melts

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jianbang; Wang, Shuai; Zhang, Feng; Zhang, Long; Jiao, Handong [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 (China); Zhu, Hongmin [Department of Metallurgy, Materials Science, and Materials Processing, Tohoku University, Sendai 980-8579 (Japan); Jiao, Shuqiang, E-mail: sjiao@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083 (China)

    2015-08-30

    Highlights: • The electrodeposition of carbon films with a Mo{sub 2}C interlayer. • Carbon diffusion engenders the formation of Mo{sub 2}C interlayer. • The Mo{sub 2}C interlayer has a good adhesion. - Abstract: The electrodeposition of carbon films with a Mo{sub 2}C interlayer was investigated in LiCl-NaCl-Na{sub 2}CO{sub 3} melts at 900 °C. Cyclic voltammetry was applied to study the electrochemical reaction mechanism on Mo and Pt electrodes, indicating that, two reduction reactions including carbon deposition and carbon monoxide evolution, may take place on the two electrodes simultaneously during the cathodic sweep. Carbon films with a continuous Mo{sub 2}C interlayer were prepared by constant voltage electrolysis, showing a good adhesion between Mo substrate and carbon films. The carbon films with a Mo{sub 2}C interlayer were characterized using X-ray diffraction measurement, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The results reveal that carbon materials deposited on the electrodes are mainly composed of graphite and carbon diffusion in Mo (or Mo{sub 2}C) leads to the formation and growth of Mo{sub 2}C interlayer.

  11. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  12. Preparation and Characterization of Three-dimensional Photocatalyst-TiO2 Particulate Film Immobilized on Activated Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    傅平丰; 栾勇; 戴学刚; 张建强; 张安华

    2006-01-01

    A novel three-dimensional photocatalyst, TiO2 particulate film immobilized on activated carbon fibers (TiO2/ACFs),was prepared by liquid phase deposittion. The photocatalyst was characterized by SEM, XRD, BET surface area and photodegradation of methylene blue solution. TiO2 particulate film, with a thickness of nearly 200 nm and grain sizes of 30~50 nm, was deposited on almost each carbon fiber. The inner space between adjacent fibers remained as unmodified ACFs,therefore, both UV illumination and polluted solutions were allowed to pass through the felt-form photocatalyst to form a three-dimensional environment for photocatalytic reactions. With BET surface areas of 400~600 m2/g, the TiO2/ACFs exhibited an enhanced adsorption of pollutants for photocatalysis. Comparative degradations indicated that photocatalytic activity of the TiO2/ACFs was slightly higher than that of Degussa P-25 TiO2. Two special properties, the three-dimensional structure and combined effects of ACFs' adsorption and titania's photodegradation, made contribution to high photocatalytic activity. Additionally, the TiO2/ACFs exhibited high stability and potentially application for practical usage.

  13. Characterization of carbon thin films prepared by the thermal decomposition of spin coated polyacrylonitrile layers containing metal acetates

    Energy Technology Data Exchange (ETDEWEB)

    Daranyi, Maria [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Sarusi, Istvan [Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Aradi vertanuk tere 1. (Hungary); Sapi, Andras [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Kukovecz, Akos, E-mail: kakos@chem.u-szeged.hu [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Konya, Zoltan [Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1. (Hungary); Erdohelyi, Andras [Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Aradi vertanuk tere 1. (Hungary)

    2011-10-31

    Polyacrylonitrile (PAN) layers were cast from dimethyl-formamide solutions onto quartz substrates by spin coating and subsequently annealed at up to 1000 {sup o}C in N{sub 2} atmosphere. Carbonization was catalyzed by nickel or cobalt added to the solution as acetate salts. The synthesized films were approx. 970 nm thick and were characterized by Raman and infrared spectroscopy as well as thermogravimetric and electrical conductance measurements. We discuss the effects of carbonization temperature and metal concentration on the morphology, composition and electrical properties of the formed carbon layer. Increasing the amount of catalyst and the pyrolysis temperature was beneficial for the process and resulted in carbonaceous films with a higher degree of structural order as evidenced by the decreasing Raman I{sub D}/I{sub G} ratio and the increasing electrical conductivity of the films. Cobalt is a better catalyst for PAN carbonization than nickel as far as the structure of the product film is concerned.

  14. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hatada, R., E-mail: hatada@ca.tu-darmstadt.de [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Baba, K. [Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026 (Japan); Sawase, T.; Watamoto, T. [Nagasaki University, Department of Applied Prosthodontics, Nagasaki 852-8523 (Japan); Matsutani, T. [Technische Universität Darmstadt, Department of Materials Science, 64287 Darmstadt (Germany); Kinki University, Department of Electric and Electronic Engineering, Higashi-osaka 577-2332 (Japan)

    2014-08-15

    Highlights: • Deposition of Ag-containing diamond-like carbon films inside of tubes. • Combination of plasma source ion implantation and DC sputtering. • Antibacterial effect against S. aureus bacteria. - Abstract: Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C{sub 2}H{sub 4} plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C{sub 2}H{sub 4} was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  15. Effect of applied dc bias voltage on composition, chemical bonding and mechanical properties of carbon nitride films prepared by PECVD

    Institute of Scientific and Technical Information of China (English)

    LI Hong-xuan; XU Tao; HAO Jun-ying; CHEN Jian-min; ZHOU Hui-di; XUE Qun-ji; LIU Hui-wen

    2004-01-01

    Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.

  16. Mn(OH){sub 2}/multi-walled carbon nanotube composite thin films prepared by spray coating for flexible supercapacitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiun-Shing [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Hu, Yi, E-mail: huyi@ttu.edu.tw [Department of Materials Engineering, Tatung University, 40 Zhongshan North Road, 3rd Section, Taipei 104, Taiwan, ROC (China); Chuang, Tao-Liang; Huang, Chien-Lung [Metal Industries Research and Development Centre, Kaohsiung, 1001 Kaonan Highway, Kaohsiung 81160, Taiwan, ROC (China)

    2013-10-01

    Mn(OH){sub 2}/multi-walled carbon nanotube (MWCNT) composite thin films were obtained by spray coating on flexible indium tin oxide/polyethylene terephthalate substrate. The precursors for thin film deposition were prepared by completely mixing MWCNTs and KMnO{sub 4} in deionized water. The morphological characteristics of the films were examined by field emission scanning electronic microscopy and transmission electron microscopy. Phase evolution of the thin films was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. As a result of the deposition process, Mn(OH){sub 2} did not only cover the surface of MWCNTs uniformly but also embed in MWCNTs. The capacitive properties of the thin films were investigated by electrochemical measurements and the capacitance increased as the weight ratio of KMnO{sub 4}/MWCNTs increased up to 1.6. The highest specific capacitance obtained at a scan rate of 20 mV s{sup −1} was 297.5 F/g for the composite thin film with the weight ratio of KMnO{sub 4}/MWCNTs of 1.2. - Highlights: • Mn(OH){sub 2}/carbon nanotube films on flexible substrate were obtained by spray coating. • Mn(OH){sub 2} uniformly covers on or embeds in the carbon nanotube. • The highest capacitance is 297.5 F/g with weight ratio of KMnO{sub 4}/carbon nanotube = 1.2.

  17. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate

    OpenAIRE

    Massot, Laurent; Chamelot, Pierre; Taxil, Pierre

    2006-01-01

    This article demonstrates that coatings of tantalum carbide can be obtained by electrodeposition of carbon in molten fluorides on a tantalum substrate as an alternative to the CVD process. The structural characteristics of the carbon deposited by the electrolytic route lead to a high reactivity of this element towards a tantalum cathode to produce tantalum carbide. Mutual reactivity was shown to be enhanced if tantalum plate is replaced by an electrodeposited layer of tantalum, where th...

  18. Hydrogen-free diamond-like carbon films prepared by microwave electron cyclotron resonance plasma-enhanced direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Hydrogen-free diamond-like carbon (DLC) films were prepared by means of microwave electron cyclotron resonance plasma enhanced direct current magnetron sputtering. To study the influence of enhanced plasma on film fabrication and properties, the structures as well as mechanical and electrical properties of these films were studied as a function of applied microwave power. Results showed that higher microwave power could induce higher plasma density and electron temperature. The hardness increased from 3.5 GPa to 13 GPa with a variation of microwave power from 0 W to 1000 W. The resistivity showed a drastic increase from 4.5 x 104 Ωcm at 0 W to 1.3 x 1010 Ωcm at 1000 W. The variation of the intensity ratio I(D)/I(G) and the position of the G-peak of the DLC films with respect to changes in microwave power were also investigated by Raman spectroscopy.

  19. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    Directory of Open Access Journals (Sweden)

    Alberto eCastro-Muñiz

    2016-02-01

    Full Text Available The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH, an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5 at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  20. Improving the direct electron transfer in monolithic bioelectrodes prepared by immobilization of FDH enzyme on carbon-coated anodic aluminum oxide films

    Science.gov (United States)

    Castro-Muñiz, Alberto; Hoshikawa, Yasuto; Komiyama, Hiroshi; Nakayama, Wataru; Itoh, Tetsuji; Kyotani, Takashi

    2016-02-01

    The present work reports the preparation of binderless carbon-coated porous films and the study of their performance as monolithic bioanodes. The films were prepared by coating anodic aluminum oxide (AAO) films with a thin layer of nitrogen-doped carbon by chemical vapor deposition. The films have cylindrical straight pores with controllable diameter and length. These monolithic films were used directly as bioelectrodes by loading the films with D-fructose dehydrogenase (FDH), an oxidoreductase enzyme that catalyzes the oxidation of D-fructose to 5-keto-D-fructose. The immobilization of the enzymes was carried out by physical adsorption in liquid phase and with an electrostatic attraction method. The latter method takes advantage of the fact that FDH is negatively charged during the catalytic oxidation of fructose. Thus the immobilization was performed under the application of a positive voltage to the CAAO film in a FDH-fructose solution in McIlvaine buffer (pH 5) at 25 ºC. As a result, the FDH modified electrodes with the latter method show much better electrochemical response than that with the conventional physical adsorption method. Due to the singular porous structure of the monolithic films, which consists of an array of straight and parallel nanochannels, it is possible to rule out the effect of the diffusion of the D-fructose into the pores. Thus the improvement in the performance upon using the electrostatic attraction method can be ascribed not only to a higher uptake, but also to a more appropriate molecule orientation of the enzyme units on the surface of the electrodes.

  1. Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin

    Indian Academy of Sciences (India)

    Uling Yang; Gang Li; Meifang Hu; Lingbo Qu

    2014-07-01

    Through a facile electrochemical method, we prepared an electrochemically reduced graphene oxide (ERGO)/multi-wall carbon nanotubes (MWNTs) hybrid film modified glassy carbon electrode (GCE), and characterized it by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD) The experimental results demonstrated that ERGO-MWNTs/GCE exhibited excellent electrocatalytic activity toward rutin as evidenced by the significant enhancement of redox peak currents in comparison with a bare GCE, ERGO/GCE and MWNTs/GCE. This method has been applied for the direct determination of rutin in real samples with satisfactory results.

  2. CARBON NITRIDE FILMS PREPARED AT DIFFERENT N2/Ar RATIOS BY CLOSED FIELD UNBALANCED REACTIVE MAGNETRON SPUTTERING

    Institute of Scientific and Technical Information of China (English)

    A. Vyas; K.Y. Li; Z.F. Zhou; Y.G. Shen

    2005-01-01

    Carbon nitride (CNx) thin films have been deposited onto Si(100) (for structural and mechanical analyses) and M42 high-speed-steel (for tribological measurements) substrates at room temperature by closed-field unbalanced magnetron sputtering. The mechanical and tribological properties of these films were highly dependent on the N/C concentration ratio that was adjusted by the F(N2)/F(Ar) flow-rate ratio at fixed substrate biasing of -60V during deposition. The films were characterized by employing scanning electron microscopy (SEM), atomic force microscopy(AFM), nano-indentation measurements, X-ray photoelectron spectroscopy (XPS), Raman scattering and Fourier transform infrared (FTIR) spectroscopy, pin-on-disc tribometer, scratch tester, and Rockwell-C tester. The results showed that the N content in the films increased with the N2 pressure. However, the maximum N/C ratio obtained was 0.25. The nanohardness was measured to be in the range of 11.7-20.8GPa depending on the N/C ratios. The XPS N 1s spectra showed the existence of both N-C sp2 and N-C sp3 bonds in films. Raman and FTIR spectra exhibited that N-C bonds were fewer when compared to other N-C bonds. The friction coefficient of the film deposited onto steel substrate with N/C=0.26 was measured to be ~0.08and for film with N/C=0.22 a high critical load of 70N was obtained. The tribological data also showed that the wear rates of these films were in the range of~10-16m3/Nm, indicating excellent wear resistance for CNxfilms.

  3. Preparation of diamond-like carbon films using reactive Ar/CH4 high power impulse magnetron sputtering system with negative pulse voltage source for substrate

    Science.gov (United States)

    Kimura, Takashi; Kamata, Hikaru

    2016-04-01

    Diamond-like carbon films were prepared using a reactive Ar/CH4 high-power impulse magnetron sputtering system with a negative pulse voltage source for the substrate, changing the CH4 fraction up to 15% in the total pressure range from 0.3 to 2 Pa. The magnitude of the negative pulse voltage for the substrate was also varied up to about 500 V. The hardness of films monotonically increased with increasing magnitude of the negative pulse voltage. The films with hardnesses between 16.5 and 23 GPa were prepared at total pressures less than 0.5 Pa and CH4 fractions less than 10% by applying an appropriate negative pulse voltage of 300-400 V. In X-ray photoelectron spectroscopy, the area ratio C-C sp3/(C-C sp2 + C-C sp3) in the C 1s core level was higher than 30% at pressures less than 0.5 Pa and CH4 fractions less than 15%. On the other hand, the films with hardnesses between 5 and 10 GPa were prepared with a relatively high growth rate at the partial pressures of CH4 higher than 0.1 Pa. However, the observation of the photoluminescence background in Raman spectroscopy indicated a relatively high hydrogen content.

  4. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation

  5. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  6. Erbium-Doped Amorphous Carbon-Based Thin Films: A Photonic Material Prepared by Low-Temperature RF-PEMOCVD

    Directory of Open Access Journals (Sweden)

    Hui-Lin Hsu

    2014-02-01

    Full Text Available The integration of photonic materials into CMOS processing involves the use of new materials. A simple one-step metal-organic radio frequency plasma enhanced chemical vapor deposition system (RF-PEMOCVD was deployed to grow erbium-doped amorphous carbon thin films (a-C:(Er on Si substrates at low temperatures (<200 °C. A partially fluorinated metal-organic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5- octanedionate Erbium(+III or abbreviated Er(fod3, was incorporated in situ into a-C based host. Six-fold enhancement of Er room-temperature photoluminescence at 1.54 µm was demonstrated by deuteration of the a-C host. Furthermore, the effect of RF power and substrate temperature on the photoluminescence of a-C:D(Er films was investigated and analyzed in terms of the film structure. Photoluminescence signal increases with increasing RF power, which is the result of an increase in [O]/[Er] ratio and the respective erbium-oxygen coordination number. Moreover, photoluminescence intensity decreases with increasing substrate temperature, which is attributed to an increased desorption rate or a lower sticking coefficient of the fluorinated fragments during film growth and hence [Er] decreases. In addition, it is observed that Er concentration quenching begins at ~2.2 at% and continues to increase until 5.5 at% in the studied a-C:D(Er matrix. This technique provides the capability of doping Er in a vertically uniform profile.

  7. Pyrolyzed carbon film diodes.

    Science.gov (United States)

    Morton, Kirstin C; Tokuhisa, Hideo; Baker, Lane A

    2013-11-13

    We have previously reported pyrolyzed parylene C (PPC) as a conductive carbon electrode material for use with micropipets, atomic force microscopy probes, and planar electrodes. Advantages of carbon electrode fabrication from PPC include conformal coating of high-aspect ratio micro/nanoscale features and the benefits afforded by chemical vapor deposition of carbon polymers. In this work, we demonstrate chemical surface doping of PPC through the use of previously reported methods. Chemically treated PPC films are characterized by multiple spectroscopic and electronic measurements. Pyrolyzed parylene C and doped PPC are used to construct diodes that are examined as both p-n heterojunction and Schottky barrier diodes. Half-wave rectification is achieved with PPC diodes and demonstrates the applicability of PPC as a conductive and semiconductive material in device fabrication. PMID:24090451

  8. Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Tongfei; Pan Yongzheng; Bao Hongqian [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Li Lin, E-mail: mlli@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-03

    Highlights: {yields} Chitosan-based nanocomposites prepared from PEDOT-PSS treated MWCNTs. {yields} PEDOT-PSS served as a bridge to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. {yields} The mechanical properties of chitosan were significantly improved by PEDOT-PSS treated MWCNTs at a small loading. - Abstract: Carbon nanotube-based nanocomposites of chitosan were successfully prepared by a simple solution-evaporation method. Multiwalled carbon nanotubes (MWCNTs) were treated by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) in water before mixed with a chitosan solution to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. The morphological and mechanical properties of the prepared PEDOT-PSS/MWCNT/chitosan nanocomposites have been characterized with field emission scanning electron microscopy (FESEM) and tensile tests. MWCNTs were observed to be homogeneously dispersed throughout the chitosan matrix. As compared with the neat chitosan, the tensile strength and modulus of the nanocomposite were greatly improved by about 61% and 34%, respectively, with incorporation of only 0.5 wt.% of MWCNTs into the chitosan matrix. The comparison of mechanical properties for PEDOT-PSS/MWCNT/chitosan and pristine MWCNT/chitosan nanocomposites has been made. The hardness of the nanocomposites was also evaluated by nanoindentation.

  9. Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: → Chitosan-based nanocomposites prepared from PEDOT-PSS treated MWCNTs. → PEDOT-PSS served as a bridge to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. → The mechanical properties of chitosan were significantly improved by PEDOT-PSS treated MWCNTs at a small loading. - Abstract: Carbon nanotube-based nanocomposites of chitosan were successfully prepared by a simple solution-evaporation method. Multiwalled carbon nanotubes (MWCNTs) were treated by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) in water before mixed with a chitosan solution to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. The morphological and mechanical properties of the prepared PEDOT-PSS/MWCNT/chitosan nanocomposites have been characterized with field emission scanning electron microscopy (FESEM) and tensile tests. MWCNTs were observed to be homogeneously dispersed throughout the chitosan matrix. As compared with the neat chitosan, the tensile strength and modulus of the nanocomposite were greatly improved by about 61% and 34%, respectively, with incorporation of only 0.5 wt.% of MWCNTs into the chitosan matrix. The comparison of mechanical properties for PEDOT-PSS/MWCNT/chitosan and pristine MWCNT/chitosan nanocomposites has been made. The hardness of the nanocomposites was also evaluated by nanoindentation.

  10. Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering

    International Nuclear Information System (INIS)

    Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1 x 109 Ω · cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.

  11. Influence of Increasing Deposition Temperature on Electrical Properties of Amorphous Carbon Thin Film Prepared by Aerosol-Assisted Thermal CVD

    International Nuclear Information System (INIS)

    This paper reports on the successful deposition of p-type semiconducting amorphous carbon (paC) films fabricated onto the glass substrate by Aerosol-Assisted Thermal Chemical Vapor Deposition (CVD) using natural source of camphor oil as the precursor material. The analyze reveal that conductivity and resistivity shows some changes at different deposition temperature, that is the conductivity increase as temperature increase from 350 to 550 degree Celsius, but drop slightly at 550 degree Celsius. Other than that, optical and structural properties were also characterized by using UV-VIS-NIR system and Atomic Force Microscopy. The same trend of optical and electrical can be seen when the measurement from the Taucs plot expose a decreasing value of optical band gap as temperature increase, but slightly increase when temperature increase to 550 degree Celsius. (author)

  12. Design of a Prussian Blue Analogue/Carbon Nanotube Thin-Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application.

    Science.gov (United States)

    Husmann, Samantha; Zarbin, Aldo J G

    2016-05-01

    Multi-walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co-filled CNTs were deposited over conductive substrates through a liquid-liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants. The CNT/CoHCFe films were characterized by different spectroscopic, microscopic, and electrochemical techniques and presented high electrochemical stability in different media. The nanocomposites were applied as both an electrochemical sensor to H2 O2 and a cathode for ion batteries and showed limits of detection at approximately 3.7 nmol L(-1) and a capacity of 130 mAh g(-1) at a current density of 5 A g(-1) . PMID:27010671

  13. Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Maisarah Abdul, E-mail: nurmaisarahrashid@gmail.com [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ritikos, Richard; Othman, Maisara; Khanis, Noor Hamizah; Gani, Siti Meriam Ab. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Muhamad, Muhamad Rasat [Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Rahman, Saadah Abdul, E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2013-02-01

    Silicon carbon films were deposited using a hybrid radio frequency (r.f.) plasma enhanced chemical vapor deposition (PECVD)/sputtering deposition system at different r.f. powers. This deposition system combines the advantages of r.f. PECVD and sputtering techniques for the deposition of silicon carbon films with the added advantage of eliminating the use of highly toxic silane gas in the deposition process. Silicon (Si) atoms were sputtered from a pure amorphous silicon (a-Si) target by argon (Ar) ions and carbon (C) atoms were incorporated into the film from C based growth radicals generated through the discharge of methane (CH{sub 4}) gas. The effects of r.f. powers of 60, 80, 100, 120 and 150 W applied during the deposition process on the structural and optical properties of the films were investigated. Raman spectroscopic studies showed that the silicon carbon films contain amorphous silicon carbide (SiC) and amorphous carbon (a-C) phases. The r.f. power showed significant influence on the C incorporation in the film structure. The a-C phases became more ordered in films with high C incorporation in the film structure. These films also produced high photoluminescence emission intensity at around 600 nm wavelength as a result of quantum confinement effects from the presence of sp{sup 2} C clusters embedded in the a-SiC and a-C phases in the films. - Highlights: ► Effects of radio frequency (r.f.) power on silicon carbon (SiC) films were studied. ► Hybrid plasma enhanced chemical vapor deposition/sputtering technique was used. ► r.f. power influences C incorporation in the film structure. ► High C incorporation results in higher ordering of the amorphous C phase. ► These films produced high photoluminescence emission intensity.

  14. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  15. Deposition of carbon nitride films for space application

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Dong; Xu Chao; Wang Yi; Zhang Fu-Jia

    2006-01-01

    Carbon nitride thin films were prepared by electron-beam evaporation assisted with nitrogen ion bombardment and TiN/CNx composite films were by unbalanced dc magnetron sputtering, respectively. It was found that the sputtered films were better than the evaporated films in hardness and adhesion. The experiments of atomic oxygen action, cold welding, friction and wearing were emphasized, and the results proved that the sputtered TiN/CNx composite films were suitable for space application.

  16. Poly(lactide-co-trimethylene carbonate) and Polylactide/Polytrimethylene Carbonate Blown Films

    OpenAIRE

    Li, Hongli; Chang, Jiangping; Qin, Yuyue; Wu, Yan; Yuan, Minglong; Zhang, Yingjie

    2014-01-01

    In this work, poly(lactide-co-trimethylene carbonate) and polylactide/ polytrimethylene carbonate films are prepared using a film blowing method. The process parameters, including temperature and screw speed, are studied, and the structures and properties of the P(LA-TMC) and PLA/PTMC films are investigated. The scanning electron microscope (SEM) images show that upon improving the content of TMC and PTMC, the lamellar structures of the films are obviously changed. With increasing TMC monomer...

  17. Influence of Fe-doped on structural, electronic structural and optical properties of hydrogenated amorphous carbon films prepared by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Fe-doped hydrogenated amorphous carbon (a-C:H:Fe) films were deposited from an isobutene/ferrocene/H2 gas mixture by plasma enhanced chemical metal organic vapor deposition. Raman spectra were used to characterize the bonding structure of the a-C:H:Fe films and hydrogenated amorphous carbon (a-C:H) films. Optical properties were investigated by the UV-vis spectroscopy and the photoluminescence spectra. The number of six-numbered rings of the a-C:H films increases and sp2 clustering of the films decreases after Fe-doping. The Tauc optical gap of the a-C:H:Fe films becomes narrower by 0.15-0.23 eV relative to the value of the a-C:H films. The narrowing of the optical gap after doping is attributed primarily to the extended state around the Fe deep level in the band gap and the narrowing of the π and π* band edge states because of the increase of the number of six-numbered rings in the a-C:H films. Fe deep level defects of the a-C:H:Fe films contribute chiefly to non-radiative recombination.

  18. Spray pyrolysis process for preparing superconductive films

    International Nuclear Information System (INIS)

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  19. Enhanced Photocatalytic Activity of C-TiO2 Thin Films Prepared by Magnetron Sputtering and Post-carbon Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    LUO Shengyun; YAN Bingxi; CAO Minjian; SHEN Jie

    2015-01-01

    TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant influence on film’s micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×1017 ion/cm2, which gives rise to a 150%increased photocurrent and degradation rate.

  20. Effects of electrical conductivity of substrate materials on microstructure of diamond-like carbon films prepared by bipolar-type plasma based ion implantation

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films are prepared by a bipolar-type plasma based ion implantation, and the structural differences between DLC films deposited on different electrical conductive substrates, i.e., conductive Si wafers and insulating glass plates are examined by Raman spectroscopy and x-ray photo emission spectroscopy (XPS). In the Raman measurements, graphite (G) and disorder (D) peaks are observed for both samples. However, the additional photo luminescence is overlapped on the spectra in the case of on-glass sample. To elucidate the structural difference, the intensity ratio of D to G peak (I(D)/I(G)), G peak position and full width at half maximum (FWHM) are obtained by curve fitting using Gaussian function and linear baseline. It is found that the I(D)/I(G) is lower, G peak position is higher and FWHM of G peak is narrower for on-glass sample than for on-Si sample. According to Robertson [1], lower I(D)/I(G) seems more sp3 C-C bonding in amount for on-glass sample. In contrast, higher G peak position and narrower FWHM of G peak suggest less sp3 C-C bonding in amount for on-glass sample. The results of XPS analysis with C1s spectra reveal that sp3 ratio, i.e., the intensity ratio of sp3/(sp3+sp2) is smaller for on-glass sample than for on-Si sample. The inconsistency of the trend between I(D)/I(G) and other parameters (G peak position and FWHM of G peak) might be caused by the overlap of photo luminescence signal on Raman spectrum as to on-glass sample. From these results, it is considered that sp3 C-C bonding is reduced in amount when using insulating substrate in comparison with conductive substrate.

  1. A comparison study between atomic and ionic nitrogen doped carbon films prepared by ion beam assisted cathode arc deposition at various pulse frequencies

    International Nuclear Information System (INIS)

    A comparison study of microstructure and bonds composition of carbon nitride (CNx) films fabricated at atomic and ionic nitrogen source by pulse cathode arc method was presented. The relative fractions of CN/CC bonds, N-sp3C/N-sp2C and graphite-like/pyridine-like N bonding configurations in the CN films were evaluated by combining C1s and N1s X-ray photoelectron spectroscopy with the hardness and optical band gap measurement. The dependence of microstructure (quantity, size and disordering degree of Csp2 clusters) of CNx films on the nitrogen source and pulse frequency was determined by Raman spectroscopy. Films with high atomic ratio of nitrogen/carbon (0.17) and high hardness were produced at ionic nitrogen source and low pulse frequency. The results showed that ionic nitrogen source facilitated the formation of CN bonds and N-sp2C bonding configurations (mainly in graphite-like N form). Moreover presenting an optimum pulse frequency (∼10 Hz) leaded to the most nitrogen coordinated with sp3-C and the highest ratio of CN/CC bonds in the CNx films. An equilibrium action mechanism might exist between the quantity and energy of carbon and nitrogen ions/atoms, giving more nitrogen-incorporated carbon materials. These allow us to obtain the high content of N-Csp3 bonding and expected bonding structure by optimizing pulse frequency and nitrogen source.

  2. 碳纳米管薄膜的制备及其超疏水性研究%The Preparation of Carbon Nanotubes Films and Its Superhydrophobicity

    Institute of Scientific and Technical Information of China (English)

    李刚

    2012-01-01

    采用化学气相沉积法在平面硅基体上制备碳纳米管薄膜,并通过扫描电子显微镜、透射电子显微镜和接触角测量仪对样品进行形貌结构和浸润性质的表征.结果表明:碳纳米管的定向性主要由基体上催化剂粒子的分布控制,并遵循顶部生长生长机制;2种碳纳米管薄膜都具有较大的接触角,获得的定向碳纳米管表面具有微纳米复合结构是产生超疏水的主要原因.%Carbon nanotubes( CNTs) films were prepared on planar silicon substrates by chemical vapor deposition meth od. Scanning electron microscope( SEM) .transmission electron microscope(TEM) ,contact angle goniometer and rheometer were employed to characterize the morphologies,structures,wettabilities and rheological properties of as-prepared CNTs. It reveals that the distribution of catalyst particles determines the orientation of CNTs. The CNTs have a bamboo shaped mul tiwalled structure and grow by a tip growth mechanism. Whether CNTs arrange regularly or not,they will take on large con tact angles. The special surface structure with micro-papillae and nanoscale lotus-like papillae may be the main reason con tributing to the superhydrophobic surfaces of aligned CNTs.

  3. Preparation of carbon-free TEM microgrids by metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Janbroers, S., E-mail: stephan.janbroers@albemarle.com [Albemarle Catalysts B.V., Nieuwendammerkade 1-3, 1030 BE, Amsterdam (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruijff, T.R. de; Xu, Q. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kooyman, P.J. [DelftChemTech, Delft University of Technology, Julianalaan 136, 2628 BL, Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2009-08-15

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  4. Preparation of carbon-free TEM microgrids by metal sputtering

    International Nuclear Information System (INIS)

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775 K under vacuum conditions.

  5. Preparation of carbon-free TEM microgrids by metal sputtering.

    Science.gov (United States)

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions. PMID:19450927

  6. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2016-07-01

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10-9mm3/N m in the N2, and 0.014 and 8.4 × 10-8mm3/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequencies from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm-1 Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.

  7. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Katamune, Yūki, E-mail: yuki-katamune@kyudai.jp; Takeichi, Satoshi [Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga, Fukuoka 816-8580 (Japan); Ohmagari, Shinya [Diamond Research Group, Research Institute for Ubiquitous Energy Devices (UBIQEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Yoshitake, Tsuyoshi, E-mail: tsuyoshi-yoshitake@kyudai.jp [Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga, Fukuoka 816-8580 (Japan); Research Center for Synchrotron Light Applications, Kyushu University, 6-1 Kasuga 816-8580 (Japan); Research and Education Center for Advanced Energy, Materials, Devices, and Systems, Kyushu University, 6-1 Kasuga 816-8580 (Japan)

    2015-11-15

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bonds at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.

  8. Polylactide microcapsules and films: preparation and properties

    OpenAIRE

    Sawalha, H.I.M.

    2009-01-01

    This thesis aims at preparation of hollow polylactide (PLA) microcapsules for use as ultrasound contrast agents with controlled size, structure and mechanical and thermal properties. The microcapsules were prepared with multistage premix membrane emulsification. The mechanical and thermal properties of the microcapsules, and of films that were prepared under similar conditions, were highly dependent on the non-solvent and the liquid used as a template for the hollow core of the microcapsule. ...

  9. Studies to Enhance Superconductivity in Thin Film Carbon

    Science.gov (United States)

    Pierce, Benjamin; Brunke, Lyle; Burke, Jack; Vier, David; Steckl, Andrew; Haugan, Timothy

    2012-02-01

    With research in the area of superconductivity growing, it is no surprise that new efforts are being made to induce superconductivity or increase transition temperatures (Tc) in carbon given its many allotropic forms. Promising results have been published for boron doping in diamond films, and phosphorus doping in highly oriented pyrolytic graphite (HOPG) films show hints of superconductivity.. Following these examples in the literature, we have begun studies to explore superconductivity in thin film carbon samples doped with different elements. Carbon thin films are prepared by pulsed laser deposition (PLD) on amorphous SiO2/Si and single-crystal substrates. Doping is achieved by depositing from (C1-xMx) single-targets with M = B4C and BN, and also by ion implantation into pure-carbon films. Previous research had indicated that Boron in HOPG did not elicit superconducting properties, but we aim to explore that also in thin film carbon and see if there needs to be a higher doping in the sample if trends were able to be seen in diamond films. Higher onset temperatures, Tc , and current densities, Jc, are hoped to be achieved with doping of the thin film carbon with different elements.

  10. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  11. Green emission in carbon doped ZnO films

    Directory of Open Access Journals (Sweden)

    L. T. Tseng

    2014-06-01

    Full Text Available The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR and low temperature photoluminescence (PL measurement.

  12. Preparation of hydrogenated diamond-like carbon films using high-density pulsed plasmas of Ar/C2H2 and Ne/C2H2 mixture

    Science.gov (United States)

    Kimura, Takashi; Kamata, Hikaru

    2016-07-01

    Hydrogenated diamond-like carbon films are prepared using reactive high-density pulsed plasmas of Ar/C2H2 and Ne/C2H2 mixture in the total pressure range from 0.5 to 2 Pa. The plasmas are produced using a reactive high-power impulse magnetron sputtering (HiPIMS) system. A negative pulse voltage of ‑500 V is applied to the substrate for a period of 15 µs in the afterglow mode. The growth rate does not strongly depend on the type of ambient gas but it markedly increases to about 2.7 µm/h at a C2H2 fraction of 10% and a total pressure of 2 Pa with increasing C2H2 fraction. The marked increase in the growth rate means that the HiPIMS system can be regarded as a plasma source for the chemical vapor deposition process. The hardness of the films prepared by Ne/C2H2 plasmas is somewhat higher than that of the films prepared by Ar/C2H2 plasmas under the same operating conditions, and the difference becomes larger as the pressure increases. The hardness of the films prepared by Ne/C2H2 plasmas ranges between 11 and 18 GPa. In the Raman spectra, two very broad overlapping bands are assigned as the G (graphite) and D (disorder) bands. The peak position of the G band is roughly independent of the total pressure, whereas the FWHM of the G peak decreases with increasing total pressure as a whole.

  13. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  14. Field Emission from Nanostructured Carbon Films on Si Tips

    Institute of Scientific and Technical Information of China (English)

    王万录; 廖克俊; 胡成果; 方亮

    2001-01-01

    Nanostructured carbon thin films on Si tips were prepared by hot filament chemical vapour deposition at different substrate temperatures. The Si tips and films were obtained under various deposition conditions in the same reaction chamber. It was found that the field emission properties from graphite-like nanostructured carbon on Si tips were greatly improved, compared with those of nanodiamond films on Si tips. A turn-on field of 1.2 V. cm-1was observed for high sp2 content thin films on Si tips. The analysis showed that the field emission enhancement effect was caused by the tip geometry, tunnel effect and sp2 content in the films. However, the geometrical enhancement was greater than that of the tunnel and sp2 content effects.

  15. Optical characterization of sputtered carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Ager, J.W. III.

    1992-05-01

    Spattered carbon films are widely used as protective overcoats for thin film disk media. Raman spectroscopy is nondestructive and relatively rapid and is well suited for the characterization of carbon films. Specific features in the Raman spectra are empirically correlated with the rates of specific types of mechanical wear for both hydrogenated and unhydrogenated films. This observation is interpreted in terms of a random covalent network, in which the mechanical performance of the film is determined by the nature of the bonding that links sp{sup 2}-bonded domains.

  16. Conductive porous carbon film as a lithium metal storage medium

    International Nuclear Information System (INIS)

    Highlights: • Conductive porous carbon films were prepared by distributing amorphous carbon nanoparticles. • The porous film provides enough conductive surfaces and reduces the effective current density. • By using the film, dendritic Li growth can be effectively prevented. • The use of the porous framework can be extended for use in other 3D structured materials for efficient Li metal storage. - Abstract: The Li metal anode boasts attractive electrochemical characteristics for use in rechargeable Li batteries, such as a high theoretical capacity and a low redox potential. However, poor cycle efficiency and safety problems relating to dendritic Li growth during cycling should be addressed. Here we propose a strategy to increase the coulombic efficiency of the Li metal electrode. Conductive porous carbon films (CPCFs) were prepared by distributing amorphous carbon nanoparticles within a polymer binder. This porous structure is able to provide enough conductive surfaces for Li deposition and dissolution, which reduce the effective current density. Moreover, the pores in these films enable the electrolyte to easily penetrate into the empty space, and Li can be densely deposited between the carbon particles. As a result, dendritic Li growth can be effectively prevented. Electrochemical tests demonstrate that the coulombic efficiency of the porous electrode can be greatly improved compared to that of the pure Cu electrode. By allowing for the development of robust Li metal electrodes, this approach provides key insight into the design of high-capacity anodes for Li metal batteries, such as Li-air and Li-S systems

  17. Synthesis and Characterization of Magnetite/Carbon Nanocomposite Thin Films for Electrochemical Applications

    Institute of Scientific and Technical Information of China (English)

    Suh Cem Pang; Wai Hwa Khoh; Suk Fun Chin

    2011-01-01

    Stable colloidal suspension of magnetite/starch nanocomposite was prepared by a facile and aqueous-based chemical precipitation method, Magnetite/carbon nanocomposite thin films were subsequently formed upon carbonization of the starch component by heat treatment under controlled conditions. The initial content of native sago starch as the carbon source was found to affect the microstructure and electrochemical properties of the resulted magnetite/carbon nanocomposite thin films, A specific capacitance of 124 F/g was achieved for the magnetite/carbon nanocomposite thin films as compared to that of 82 F/g for pure magnetite thin films in Na2SO4 aqueous electrolyte.

  18. Intrinsic stress analysis of sputtered carbon film

    Institute of Scientific and Technical Information of China (English)

    Liqin Liu; Zhanshan Wang; Jingtao Zhu; Zhong Zhang; Moyan Tan; Qiushi Huang; Rui Chen; Jing Xu; Lingyan Chen

    2008-01-01

    Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated.The bombardments of energetic particles during the growth of films were considered to be the main reason for compressive intrinsic stresses.The values of intrinsic stresses were determined by measuring the radius of curvature of substrates before and after film deposition.By varying argon pressure and target-substrate distance,energies of neutral carbon atoms impinging on the growing films were optimized to control the intrinsic stresses level.The stress evolution in carbon films as a function of film thickness was investigated and a void-related stress relief mechanism was proposed to interpret this evolution.

  19. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  20. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  1. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  2. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  3. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  4. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  5. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  6. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  7. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  8. Poly(lactide-co-trimethylene carbonate) and polylactide/polytrimethylene carbonate blown films.

    Science.gov (United States)

    Li, Hongli; Chang, Jiangping; Qin, Yuyue; Wu, Yan; Yuan, Minglong; Zhang, Yingjie

    2014-01-01

    In this work, poly(lactide-co-trimethylene carbonate) and polylactide/ polytrimethylene carbonate films are prepared using a film blowing method. The process parameters, including temperature and screw speed, are studied, and the structures and properties of the P(LA-TMC) and PLA/PTMC films are investigated. The scanning electron microscope (SEM) images show that upon improving the content of TMC and PTMC, the lamellar structures of the films are obviously changed. With increasing TMC monomer or PTMC contents, the elongation at the break is improved, and the maximum is up to 525%. The water vapor permeability (WVP) results demonstrate that the WVP of the PLA/PTMC film increased with the increase in the PTMC content, whereas the WVP of the P(LA-TMC) film decreased. Thermogravimetric (TG) measurements reveal that the decomposition temperatures of the P(LA-TMC) and PLA/PTMC films decrease with increases in the TMC and PTMC contents, respectively, but the processing temperature is significantly lower than the initial decomposition temperature. P(LA-TMC) or PLA/PTMC film can extend the shelf life of apples, for instance, like commercial LDPE film used in fruit packaging in supermarkets. PMID:24534806

  9. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  10. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  11. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Simurda, M. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Nemec, P. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)]. E-mail: nemec@karlov.mff.cuni.cz; Formanek, P. [Institut fuer Strukturphysik, Technische Universitaet Dresden, Zellescher Weg 16, D-01062 Dresden (Germany); Nemec, I. [Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Nemcova, Y. [Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Maly, P. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2006-07-26

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film.

  12. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  13. PREPARATION OF IODINE-INCLUDED CARBON USING RF PLASMA CVD

    Institute of Scientific and Technical Information of China (English)

    Y. Sakamoto; M. Takaya; T. Uchiyama

    2005-01-01

    For the aim of synthesis of the carbon-iodine compound, the preparation of iodine-included carbon using RF plasma CVD was studied. Iodine-included carbon was synthesized on Si substrate using ICP type RF plasma CVD apparatus. C2H5OH and I2 dissolved C2H5OH was used as reactant gases. As a result, surface morphologies of Iodine included carbon films showed fiat surfaces for each samples. On the structure of films estimated by Raman spectroscopy, amorphous carbon was recognized. And I2 peaks were observed in XPS spectra. As a result of friction test,friction coefficient of the sample growth with C2H5OH showed about 0.45. On the other hand,that of the sample with I2-C2H5OH showed about 0.3 and decrease of friction coefficient was recognized. Iodine inclusion for carbon materials can be achieved by RF plasma CVD using an I2-C2H5OH reactant. The coefficient of iodine-included carbon showed lower than of without iodine

  14. Preparation and Evaluation of Stomatitis Film Using Xyloglucan Containing Loperamide.

    Science.gov (United States)

    Kawano, Yayoi; Sasatsu, Masanaho; Mizutani, Ayako; Hirose, Kaoru; Hanawa, Takehisa; Onishi, Hiraku

    2016-06-01

    Stomatitis induced by radiation therapy or cancer chemotherapy is a factor in sleep disorders and/or eating disorders, markedly decreasing patient quality of life. In recent years, disintegrating oral films that are easy to handle have been developed; therefore, we focused on the formulation of these films. We prepared an adhesive film for the oral cavity using xyloglucan (Xylo), which is a water-soluble macromolecule. We used loperamide, which has been reported to relieve pain caused by stomatitis effectively, as a model drug in this study. Films were prepared from Xylo solutions (3% (w/w)) and hypromellose (HPMC) solutions (1% (w/w)). Xylo and HPMC solutions were mixed at ratios of 1 : 1, 2 : 1, or 3 : 1 for each film, and films 2×2 cm weighing 3 g were prepared and dried at 37°C for 24 h. Physicochemical properties such as strength, adhesiveness, disintegration behavior, and dissolution of loperamide from films were evaluated. Films prepared from Xylo solution alone had sufficient strength and mucosal adhesion. On the other hand, films prepared from a mixture of Xylo and HPMC were inferior to those made from Xylo, but showed sufficient strength and mucosal adhesion and were flexible and easy to handle. The films prepared in this study are useful as adhesion films in the oral cavity. PMID:26960400

  15. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  16. Preparation and optical properties of sol-gel-deposited electrochromic iron oxide films

    Science.gov (United States)

    Ozer, Nilgun; Tepehan, Fatma; Tepehan, Galip

    1997-10-01

    The preparation and optical properties of sol-gel deposited iron oxide films are investigated in this study. The films are deposited on glass by spin-coating from polymeric sol-gel solutions. The coating solutions were prepared from Fe(OCH3H7)3 and isopropanol. Fe2O3 films were obtained at a firing temperature 180 degrees Celsius. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and UV-Vis spectroscopy. The electrochemical properties of the films were studied in 0.5 M LiClO4/propylene carbonate (PC) solution. The CV results showed reversibility of the Li+/e- insertion/extraction process in the Fe2O3 films up to 200 cycles. Reduction and oxidation of the amorphous films in 0.5 M LiClO4-PC solution caused noticeable changes in optical absorption. XRD of the films showed that they had an amorphous structure. Fourier transform infrared spectroscopy (FTIR) measurements showed that the composition of the film is Fe2O3. In-situ spectrophotometric measurements indicated that these films show weak electrochromism in the spectral range of 350 - 800 nm. The optical band gap is estimated to be 1.92 eV for the amorphous film. The spectroelectrochemical properties clearly indicated that cyclic stability of the iron oxide films deteriorated above 200 cycles.

  17. Electromagnetic characteristics of carbon nanotube film materials

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-08-01

    Full Text Available Carbon nanotube (CNT possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material. This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method. The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed. It is shown that CNT film exhibits anisotropic electromagnetic characteristic. Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film. For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases. The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 dB to 78 dB in X-band. Stretching process induces the alignment of CNTs. When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity. Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness. This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.

  18. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity

    Indian Academy of Sciences (India)

    Shipra Tripathi; G K Mehrotra; P K Dutta

    2011-02-01

    The chitosan–silver oxide encapsulated nanocomposite film was prepared by solution casting method. The prepared film was characterized by FTIR, scanning electron microscopy (SEM), thermal studies, and UV-Vis spectroscopy. The elemental composition of the film was studied by energy dispersive X-ray analysis (EDAX). The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an excellent antibacterial ability for food packaging applications.

  19. Preparation and characterization of RF sputtered ITO thin films

    International Nuclear Information System (INIS)

    Thin films of tin doped indium oxide have been prepared on glass substrates using RF sputtering technique. Prepared films have been characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive analysis by X-rays (EDAX). Optical absorption is analysis (UV) showed that the deposited film possessed a direct band gap value of 3.5 eV. (author)

  20. Super-hydrophobic film prepared on zinc as corrosion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wang Peng [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Zhang Dun, E-mail: Zhangdun@qdio.ac.c [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Qiu Ri [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China); Graduate School of the Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100039 (China); Hou Baorong [Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Naihai Road, Qingdao 266071 (China)

    2011-06-15

    Research highlights: {yields} Super-hydrophobic film was prepared on zinc surface. {yields} The air trapped in film can dramatically improve the anti-corrosion property. {yields} The air trapped behaves as dielectric for a pure parallel plate capacitor. {yields} The air enhances the contribution of film to the anti-corrosion property. {yields} Without the help of air, the film itself can only present feeble inhibition effect. - Abstract: Potentiostatic electrolysis was carried out to prepare super-hydrophobic film on the surface of metallic zinc. The resultant film was examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, electrochemical measurements, and contact angle test. The super-hydrophobic property of the film results from the air trapped among the sheets of zinc tetradecanoate. This air behaves as a dielectric for a pure parallel plate capacitor, thereby inhibiting electron transfer between the electrolyte and the substrate. The air can also enhance the contribution of the film itself to protection performance.

  1. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Directory of Open Access Journals (Sweden)

    Tatsuya Murakami

    2016-05-01

    Full Text Available Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  2. Structural Characterization of Carbon Nanomaterial Film In Situ Synthesized on Various Bulk Metals

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanofiber films were prepared via a simple chemical vapor deposition (CVD method on various bulk metal substrates including bulk 316 L stainless steel, pure cobalt, and pure nickel treated by surface mechanical attrition treatment (SMAT. The microstructures of the carbon nanomaterial film were studied by SEM, TEM, XRD, and Raman spectroscopy. In this paper, bulk metallic materials treated by SMAT served as substrates as well as catalysts for carbon nanomaterial film formation. The results indicate that the carbon nanofiber films are formed concerning the catalytic effects of the refined metallic particles during CVD on the surface of SMAT-treated bulk metal substrates. However, distinguished morphologies of carbon nanomaterial film are displayed in the case of the diverse bulk metal substrates.

  3. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  4. Preparation of double-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; WEI Jinquan; CI Lijie; WU Dehai

    2004-01-01

    Double-walled carbon nanotubes were prepared using the floating chemical vapor deposition with methane as carbon source and adding small amount of sulfur into the ferrocene catalyst. The optimized technological parameters are: the reaction temperature is 1200℃; the catalyst vapor temperature is 80℃; the flow rate of argon is 2000 SCCM; the flow rate of methane is 5 SCCM. The purified DWNTs under these optimized technological parameters have high purity above 90 wt%.

  5. Preparation of hollow spherical carbon nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  6. Preparation and characterization of porous carbon–titania nanocomposite films as solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B.; Wang, K.K.; Wang, K.P.; Li, M.; Jiang, W.; Cong, B.J. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Song, C.L. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province (China); Jia, S.H. [Weihai Blue Star Glass Holding Co., Ltd., Weihai 264205 (China); Han, G.R. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province (China); Liu, Y., E-mail: liuyong.mse@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province (China)

    2015-06-25

    Highlights: • The nanocomposites porous C/TiO{sub 2} film were fabricated via PIPS method. • The HRTEM reveals the size of carbon nanoparticles is about 1.1 nm. • The PVP advantages residual carbon content but suppresses its crystallization. • The film exhibits high α (0.928–0.959) with low ε (0.074–0.105) for single layer. - Abstract: Newly proposed selective solar absorbers of porous carbon–titania nanocomposite films with a well-defined interconnected macropores structure were prepared via a polymer-assisted photopolymerization-induced phase-separation method. The microstructure and optical properties of as-deposited nanocomposite films were characterized and discussed in detail. The results show that non-ionic water-soluble polymer polyvinylpyrrolidone works as a sol modifier advantaging the mean size of the interconnected macropores, residual carbon content, and films thickness, but suppresses the order degree of the carbon remained in the films. The high-resolution transmission electron microscopy demonstrated that a small amount of graphite particles with size of around 1.1 nm embedded in the cavity of the porous while the wall of the porous consists of amorphous carbon and titania composites. The single layer of as-prepared porous C/TiO{sub 2} nanocomposite films exhibits high solar absorptance (α = 0.928–0.959) with low thermal emittance (ε = 0.074–0.105), yielding an optimized photothermal conversion efficiency η = α − ε of 0.864 corresponding to a film thickness of around 338 nm, indication of such film is fair enough to serve as an excellent solar absorber.

  7. Formation of TiO2 Modified Film on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    Laizhou SONG; Shizhe SONG; Zhiming GAO

    2004-01-01

    A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min,dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.

  8. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    OpenAIRE

    Xueping Zhang; Dong Liu; Libo Li; Tianyan You

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve ...

  9. Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors

    OpenAIRE

    Liu, Chong-yang; Bard, Allen J.; Wudl, Fred; Weitz, Iris; Heath, James R.

    1999-01-01

    Films of single-wall carbon nanotubes (SWCNTs) were cast from suspensions in several solvents on the surface of a Pt or Au electrode. Cyclic voltammetry of the films in MeCN did not show well-resolved waves (as distinct from films of C_(60) prepared in a similar manner). However, the increase in the effective capacitance of the electrode with a SWCNT film at 0.5 V vs. an AgQRE was 283 F/g, which is about twice that of carbon electrodes in nonaqueous solvents.

  10. Continuous production of flexible carbon nanotube-based transparent conductive films

    Science.gov (United States)

    Fraser, I. Stuart; Motta, Marcelo S.; Schmidt, Ron K.; Windle, Alan H.

    2010-08-01

    This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development.

  11. Preparation of surface-silvered graphene-CNTs/polyimide hybrid films: Processing, morphology and properties

    International Nuclear Information System (INIS)

    Silver nanoparticles modified graphene-carbon nanotubes/polyimide (Gr-CNTs/PI) films have been prepared by electrochemical reduction of silver nitrate on potassium hydroxide hydroxylated of Gr-CNTs/PI films surface. The as-prepared nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction analyzer and semiconductor characterization system. The lower content of Gr-CNTs (≤10 wt. %) doping in PI matrix can improve the conductivity of PI films more clearly than pure CNTs. The conductivity can be regulated by controlling Gr-CNTs content in PI matrix. These silver nanoparticles into Gr-CNTs/PI films presented here can act as deposition seeds which can initiate subsequent electroless silver or copper or electrodeposition other metal. - Graphical abstract: The sandwich lamination structure of Gr-CNTs nanocomposite was prepared in situ synthesize process, and Gr-CNTs were used as fillers to synthesize high conductivity Gr-CNTs/polyimide hybrid films. Afterward, the high conductivity surface-silvered Gr-CNTs/PI hybrid film was prepared by direct ion exchange and traditional electrochemical reduction process. Highlights: ► Graphene-carbon nanotubes (Gr-CNTs) nanocomposite has been in situ synthesized. ► The Gr-CNTs nanocomposite was used as a filler to synthesize Gr-CNTs/polyimide (PI) hybrid films. ► The conductivity of Gr-CNTs/PI can be regulated by regulating the content of Gr-CNTs in PI matrix. ► Surface-silvered Gr-CNT/PI was prepared by ion exchange and electrochemical reduction process. ► The surface-silvered Gr-CNT/PI hybrid film can improve the conductivity of this hybrid films

  12. Methods for preparation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rakov, Eduard G [D.I. Mendeleev Russian University of Chemical Technology, Moscow (Russian Federation)

    2000-01-31

    The most important methods of synthesis and purification of carbon nanotubes, a new form of material, are described. The prospects for increasing the scale of preparation processes and for more extensive application of nanotubes are evaluated. The bibliography includes 282 references.

  13. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  14. Properties of Cu film and Ti/Cu film on polyimide prepared by ion beam techniques

    International Nuclear Information System (INIS)

    Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.

  15. Composite TiO2-Carbon nano films with enhanced photocatalytic activity

    Science.gov (United States)

    Chakarov, Dinko; Sellappan, Raja

    2011-03-01

    Composite TiO2-carbon thin films prepared by physical vapor deposition techniques on fused silica substrates show enhanced photocatalytic activity, as compared to pure TiO2 films of similar thickness, towards decomposition of methanol to CO2 and water. Raman and XRD measurements confirm that annealed TiO2 films exhibit anatase structure while the carbon layer becomes graphitic. Characteristic for the composite films is an enhanced optical absorption in the visible range. The presence of the carbon film causes a shift of the TiO2 absorption edge and modifies its grain size to be smaller. The observed enhancement is attributed to synergy effects at the carbon-TiO2 interface, resulting in smaller crystallite size and anisotropic charge carrier transport, which in turn reduces their recombination probability. Supported by N-INNER through the Solar Hydrogen project (P30938-1 Solväte).

  16. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  17. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Qu Lingbo, E-mail: qulingbo@zzu.edu.c [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China); Chemistry and Chemical Engineering School, Henan University of Technology, Zhengzhou 450001 (China); College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002 (China); Yang Suling [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China); Li Gang [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455002 (China); Yang Ran; Li Jianjun; Yu Lanlan [Department of Chemistry, Zhengzhou University, Kexue Road, Zhengzhou 450001 (China)

    2011-02-28

    An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to L-cysteine oxidation was studied. The response current of L-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to L-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20-11.4 {mu}mol L{sup -1} with a low detection limit of 0.16 {mu}mol L{sup -1}. The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids.

  18. Nanoindentation and AFM studies of PECVD DLC and reactively sputtered Ti containing carbon films

    Indian Academy of Sciences (India)

    A Pauschitz; J Schalko; T Koch; C Eisenmenger-Sittner; S Kvasnica; Manish Roy

    2003-10-01

    Amorphous carbon film, also known as DLC film, is a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the composition of the films. In view of this, the objective of the present work is to compare the nanoindentation and atomic force microscopy (AFM) study of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (PECVD) with the Ti containing amorphous carbon (Ti/-C : H) film obtained by unbalanced magnetron sputter deposition (UMSD). Towards that purpose, DLC and Ti/-C : H films are deposited on silicon substrate by PECVD and UMSD processes, respectively. The microstructural features and the mechanical properties of these films are evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoindentation and by AFM. The results show that the PECVD DLC film has a higher elastic modulus, hardness and roughness than the UMSD Ti/-C : H film. It also has a lower pull off force than Ti containing amorphous carbon film.

  19. Electrochemical preparation and abnormal infrared effects of nanostructured Ni thin film

    Institute of Scientific and Technical Information of China (English)

    WANG Hanchun; ZHOU Zhiyou; TANG Wei; YAN Jiawei; SUN Shigang

    2004-01-01

    Nanometer-scale thin film of Ni supported on glassy carbon (nm-Ni/GC) was prepared by electrochemical deposition through cyclic voltammetry (CV). The properties of nm-Ni/GC were studied by electrochemical in situ FTIR reflection spectroscopy using CO adsorption as probe reaction. It has revealed that the nm-Ni/GC exhibits abnormal infrared effects (AIREs). The study has extended the investigation of the AIREs that we have discovered initially on nanostruetured film materials of platinum group metals and alloys to nanostructured film materials of iron group metals.

  20. Preparation of pyrite films by plasma-assisted sulfurization of thin iron films

    OpenAIRE

    Bausch, S.; Sailer, B.; Keppner, Herbert; Willeke, G.; Bucher, E.; Frommeyer, G.

    2008-01-01

    Pyrite films were prepared using the pure elements as source materials: thin iron films were evaporated on quartz substrates and exposed to a sulfur plasma. The process was controlled by a transmission measurement. X-ray spectroscopy was used to characterize the films and preliminary optical and electrical measurements were carried out.

  1. Superconductive niobium films coating carbon nanotube fibers

    Science.gov (United States)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  2. Superconductive niobium films coating carbon nanotube fibers

    International Nuclear Information System (INIS)

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm−2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm. (paper)

  3. Buckling instability in amorphous carbon films

    Science.gov (United States)

    Zhu, X. D.; Narumi, K.; Naramoto, H.

    2007-06-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 °C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 µm with a height of ~500 nm and a wavelength of ~8.2 µm. However, the length decreases dramatically to 70 µm as the deposition temperature is increased to 550 °C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542).

  4. Preparation of Modified Films with Protein from Grouper Fish.

    Science.gov (United States)

    Valdivia-López, M A; Tecante, A; Granados-Navarrete, S; Martínez-García, C

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  5. Preparation of Modified Films with Protein from Grouper Fish

    Science.gov (United States)

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  6. An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter.

    Science.gov (United States)

    Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Zou, Ye; Di, Chong'an; Xu, Wei; Zhu, Daoben

    2014-03-01

    Ultrathin carbon films were prepared by carbonization of a solution processed polyacrylonitrile (PAN) film in a moderate temperature range (500-700 °C). The films displayed balanced hole (0.50 cm(2) V(-1) s(-1)) and electron mobilities (0.20 cm(2) V(-1) s(-1)) under ambient conditions. Spectral characterization revealed that the electrical transport is due to the formation of sp(2) hybridized carbon during the carbonization process. A CMOS-like inverter demonstrated the potential application of this material in the area of carbon electronics, considering its processability and low-cost. PMID:24448312

  7. Preparation of YBCO superconducting films by spray pyrolysis method

    International Nuclear Information System (INIS)

    The methodology for the preparation of YBCO superconducting films on Zr2O(Y) substrates by spray pyrolysis method is reported. The transition temperature of these films is superior than the boiling temperature of liquid 2N. Other critical parameters are similar to those reported by other authors using the same technique

  8. Interposition fixing structure of TiO2 film deposited on activated carbon fibers

    Institute of Scientific and Technical Information of China (English)

    FU Ping-feng; LUAN Yong; DAI Xue-gang

    2006-01-01

    The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition fixing structure between TiO2 film and carbon fiber was investigated by means of SEM-EDX, XRD, XPS and FTIR, and a model was proposed to explain this structure. With SEM examination of carbon fiber surface after removing the deposited TiO2 film, a residual TiO2 super-thin film was found to exist still. By determining surface groups on ACFs, titanium sulfate (Ti2(SO4)3) in burnt remainders of the TiO2/ACFs was thought to be formed with an interfacial reaction between TiO2 film and carbon fibers. These provide some evidence of firm attachment of TiO2 film to carbon fiber surface. In the consideration of characteristics of the MAD, the deposition mechanism of TiO2 film on ACFs was proposed, and the interposition fixing structure was inferred to intercrossedly form between TiO2 film and ACFs' surface. This structure leaded to firm attachment and high stability of the TiO2 film.

  9. Preparation and characterization of polyimide/silica/silver composite films

    Institute of Scientific and Technical Information of China (English)

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU

    2008-01-01

    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  10. Novel transparent and flexible nanocomposite film prepared from chrysotile nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun, E-mail: kliu@csu.edu.cn [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhu, Binnan; Feng, Qiming [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083 (China); Duan, Tao [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621010 (China)

    2013-10-01

    In the present study, chrysotile nanofibres, obtained from physicochemical dispersion of natural chrysotile, were used to prepare nanofibre sheets by vacuum filtration. As-prepared sheets were then impregnated by UV-curable resin and cured by ultraviolet light to fabricate the flexible and transparent nanocomposite films. Observed from SEM, the transparent films showed a smooth surface and a typical sandwich structure in cross section, viz. nanofibre sheet filled with resin was sandwiched by two layers of resin. XRD patterns indicated the amorphous nature of cured resin and characteristic crystallographic structure of chrysotile in nanocomposite films. Though the nanofibre sheets were white in colour, and nanofibre contents in nanocomposites were as much as 43.4 wt%, the nanocomposite films displayed an excellent optical transparency with about 85% light transmittance in the visible light range. Tensile tests showed that the addition of nanofibres resulted in a great improvement in mechanical strength of the nanocomposite films; with the increase of nanofibre contents, the modulus and tensile strength of nanocomposite films increased gradually. - Graphical abstract: Photos show the experimental phenomenon. The white nanofibre sheets can be written or printed like paper, and it's very interested that the handwriting is clearly visible from the front and back of the transparent films prepared from nanofibre sheets by vacuum impregnation and UV curing. This phenomenon can be attributed to the increase of transparency of film, which results from the replacement of air interstices in nanofibre sheet by resin with higher refractive index. Visible light can pass easily through the transparent film without obvious loss, but can be apparently adsorbed and scattered by ink particles that adhered to nanofibres and embedded in resin. - Highlights: • A flexible and transparent film is prepared from chrysotile nanofibres. • The nanofibre sheet is sandwiched by two

  11. Erbium-doped yttria thin films prepared by metal organic decomposition for up-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Andriamiadamanana, Christian, E-mail: chriast@yahoo.fr [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France); IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Ibanez, Alain [Institut Néel, UPR2940, CNRS/Université Joseph Fourier, 25 rue des Martyrs, BP166, F-38042, Grenoble Cedex 9 (France); Ferrier, Alban [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France); Joudrier, Anne-Laure [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France); IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Lombez, Laurent [IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Liotaud, Marine [Institut Néel, UPR2940, CNRS/Université Joseph Fourier, 25 rue des Martyrs, BP166, F-38042, Grenoble Cedex 9 (France); Guillemoles, Jean-François [IRDEP, UMR 7174 CNRS/EDF/Chimie ParisTech, 6 Quai Watier, F-78401 Chatou (France); Pellé, Fabienne [LCMCP UMR7574 CNRS/UPMC/Chimie Paristech, 11 Rue Pierre et Marie Curie, F-75235 Paris (France)

    2013-06-30

    Er:Y{sub 2}O{sub 3} thin films have been obtained by spin coating process. Precursor solutions were prepared using nitrates as metal precursors and water as solvent. Citric, malic, and lactic acids were used as complexant. Investigations on resin compositions and on their coating parameters have been made, leading to crack-free thin films with citric and malic acids after direct deposition under standard room conditions (temperature, pressure and atmosphere). The films are homogeneous with a low root mean square roughness, less than 2.5 nm. We demonstrated that the nature of the carboxylic acid is the key point to obtain high quality thin films on silicon substrates from 20 nm up to 230 nm thick, while the film porosity is related to the number of carbon in the acid molecule. All films exhibit up-conversion luminescence in the near infrared and in the visible range, under 1.54 μm laser excitation. Furthermore, the up-conversion luminescence intensity increases with the applied annealing temperature on the films, due to an improvement of their crystallinity and to the total decomposition of organics. - Highlights: • We deposit films by spin-coating, using aqueous precursor solutions. • No special control of atmosphere is needed during all the process. • The organics are the key parameter for controlling the quality of films. • Multilayer have been obtained with all carboxylic acids we have studied. • All films exhibit an up-conversion property.

  12. Erbium-doped yttria thin films prepared by metal organic decomposition for up-conversion

    International Nuclear Information System (INIS)

    Er:Y2O3 thin films have been obtained by spin coating process. Precursor solutions were prepared using nitrates as metal precursors and water as solvent. Citric, malic, and lactic acids were used as complexant. Investigations on resin compositions and on their coating parameters have been made, leading to crack-free thin films with citric and malic acids after direct deposition under standard room conditions (temperature, pressure and atmosphere). The films are homogeneous with a low root mean square roughness, less than 2.5 nm. We demonstrated that the nature of the carboxylic acid is the key point to obtain high quality thin films on silicon substrates from 20 nm up to 230 nm thick, while the film porosity is related to the number of carbon in the acid molecule. All films exhibit up-conversion luminescence in the near infrared and in the visible range, under 1.54 μm laser excitation. Furthermore, the up-conversion luminescence intensity increases with the applied annealing temperature on the films, due to an improvement of their crystallinity and to the total decomposition of organics. - Highlights: • We deposit films by spin-coating, using aqueous precursor solutions. • No special control of atmosphere is needed during all the process. • The organics are the key parameter for controlling the quality of films. • Multilayer have been obtained with all carboxylic acids we have studied. • All films exhibit an up-conversion property

  13. Polylactide microcapsules and films: preparation and properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.

    2009-01-01

    This thesis aims at preparation of hollow polylactide (PLA) microcapsules for use as ultrasound contrast agents with controlled size, structure and mechanical and thermal properties. The microcapsules were prepared with multistage premix membrane emulsification. The mechanical and thermal properties

  14. Source Molecular Effect on Amorphous Carbon Film Deposition

    OpenAIRE

    Kawazoe, Hiroki; Inayoshi, Takanori; Shinohara, Masanori; Matsuda, Yoshinobu; Fujiyama, Hiroshi; Nitta, Yuki; Nakatani, Tatsuyuki

    2009-01-01

    We investigated deposition process of amorphous carbon films using acetylene and methane as a source molecule, by using infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS). We found that deposited film structures were different due to source molecules.

  15. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  16. Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb (II) and Cd (II)

    Institute of Scientific and Technical Information of China (English)

    Huizhu Zhou; Huanhuan Hou; Lei Dai; Yuehua Li; Jing Zhu; Ling Wang

    2016-01-01

    In this paper, dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates. The elec-trode prepared using a large applied current density showed an increased internal electroactive area and a signif-icantly improved electrochemical performance. The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb (II) and Cd (II) in the range of 5–50μg·L−1 were presented in combination with square wave stripping voltammetry in model solution. Compared with non-porous Bi film electrode, the dendrit-ic Bi film electrode exhibited higher sensitivity and lower detection limit. The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.

  17. Preparation of graphitic carbon nitride by electrodeposition

    Institute of Scientific and Technical Information of China (English)

    LI Chao; CAO Chuanbao; ZHU Hesun

    2003-01-01

    The CNx thin film was deposited on Si(100) substrate from a saturated acetone solution of cyanuric trichloride and melamine (cyanuric trichloride/melamine=1︰1.5) at room temperature. X-ray diffraction (XRD) results showed that the diffraction peaks in the pattern coincided well with those of graphite-like carbon nitride calculated in the literature. The lattice constants (a=4.79 A, c=6.90 A) for g-C3N4 matched with those of ab initio calculations (a=4.74 A, c=6.72 A) quite well. X-ray photoelectron spectroscopy (XPS) measurements indicated that the elements in the deposited films were mostly of C and N (N/C=0.75), and N (400.00 eV) bonded with C (287.72 eV) in the form of six-member C3N3 ring. The peaks at 800 cm-1, 1310 cm-1 and 1610 cm-1 in the Fourier transform infrared (FTIR) spectrum indicated that triazine ring existed in the product. These results demonstrated that crystalline g-C3N4 was obtained in the CNx film.

  18. The preparation and refractive index of BST thin films

    International Nuclear Information System (INIS)

    Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 deg. C and subsequently annealed at 700 deg. C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films' microstructure and texture

  19. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    Science.gov (United States)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  20. Preparation and Characterization of Calcium Carbonate Nanoparticles

    Science.gov (United States)

    Hassim, Aqilah; Rachmawati, Heni

    2010-10-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In this study, we prepared and characterized calcium carbonate nanoparticle to improve the solubility by using bottom-up method. The experiment was done by titrating calcium chloride with sodium carbonate with the addition of polyvinylpyrrolidone (PVP) as stabilizer, using ultra-turrax. Various concentrations of calcium chloride and sodium carbonate as well as various speed of stirring were used to prepare the calcium carbonate nanoparticles. Evaluations studied were including particle size, polydispersity index (PI) and zeta potential with particle analyzer, surface morphology with scanning electron microscope, and saturated solubility. In addition, to test the ability of PVP to prevent particles growth, short stability study was performed by storing nano CaCO3 suspension at room temperature for 2 weeks. Results show that using 8000 rpm speed of stirring, the particle size tends to be bigger with the range of 500-600 nm (PI between 0.2-0.4) whereas with stirring speed of 4000 rpm, the particle size tends to be smaller with 300-400 nm (PI between 0.2-0.4). Stirring speed of 6000 rpm produced particle size within the range of 400-500 nm (PI between 0.2-0.4). SEM photograph shows that particles are monodisperse confirming that particles were physically stable without any agglomeration within 2 weeks storage. Taken together, nano CaCO3 is successfully prepared by bottom-up method and PVP is a good stabilizer to prevent the particle growth.

  1. The Optical Property of CPD Prepared CdS Films

    Institute of Scientific and Technical Information of China (English)

    Deokjoon Cha; HUANG Ning-kang; Sunmi Kim

    2004-01-01

    CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν)2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dEex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.

  2. ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tsoutsouva, M.G. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Papadimitriou, D. [National Technical University of Athens, Department of Physics, GR-15780 Athens (Greece); Fasaki, I.; Kompitsas, M. [Theor. and Phys./Chem. Institute, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens (Greece)

    2011-04-15

    Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 deg. C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.

  3. Metal-doped diamond-like carbon films synthesized by filter-arc deposition

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp3/sp2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films

  4. ENHANCING ADHESION OF TETRAHEDRAL AMORPHOUS CARBON FILMS

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuqing; Lin Yi; Wang Xiaoyan; Wang Yanwu; Wei Xinyu

    2005-01-01

    Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.

  5. The effect of RF power on tribological properties of the diamond-like carbon films

    International Nuclear Information System (INIS)

    DLC thin films were prepared by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method on silicon substrates using methane (CH4), hydrogen (H2) and gas mixture. We have checked the influence of varying RF power on DLC film. The Raman spectroscopy shows the diamond-like carbon (DLC) amorphous structure of the films. AFM images show the surface roughness of the DLC film decrease with increasing RF power. Also, the friction coefficients were investigated by atomic force microscope (AFM) in friction force microscope (FFM) mode

  6. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  7. Actuation Behavior of Polylactic Acid Fiber Films Prepared by Electrospinning.

    Science.gov (United States)

    Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu

    2016-04-01

    A poly-DL-lactide (PLA) fiber film was prepared using the electrospinning method. This film consisted of randomly oriented PLA nanofibers. Consequently, it had sponge-like structure and was quite soft compared to PLA films prepared by spin coating. The average diameter of the fibers and the density of the film were 730 nm and 20%, respectively. By applying a voltage, the PLA film was subjected to electric-field-induced strain: expansion and compression in the thickness direction. When a voltage of -200 V was applied to the film, its thickness shrank from 13.5 µm to 10.0 µm (a 26% reduction). Electric-field-induced strain can occur via two different mechanisms: The first is electrostrictive behavior. That. is, in a highly electric field region, a change of film thickness occurs (compression only) from the electrostatic force between electrodes. The second mechanism is piezoelectric-like behavior that occurs in racemic PLA, wherein a PLA nanofiber is expanded and compressed by applying positive and negative voltage. Such piezoelectric-like behavior was not observed in spin-coated PLA films.

  8. Electrochemical preparation of polypyrrole conducting films

    OpenAIRE

    Mária Filkusová*; Renáta Oriňáková

    2010-01-01

    Cyclic voltammetry has been used to investigate the electrochemical polymerization of pyrrole on the surface of a paraffin impregnated graphite electrode (PIGE). Effect of pH and concentration of the electrolyte solution on the electrochemical deposition of polypyrrole (PPy) was studied. The structure of the deposited layers was studied using scanning electron microscope (SEM). Well–adhering black PPy films were obtained.

  9. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yung-Hsiang; Brahma, Sanjaya [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Tzeng, Y.H. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Ting, Jyh-Ming, E-mail: jting@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-10-15

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film.

  10. Properties of Diamond-Like Carbon Films Synthesized by Dual-Target Unbalanced Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Cui; LI Guo-Qing; GOU Wei; MU Zong-Xin; ZHANG Cheng-Wu

    2004-01-01

    @@ Smooth, dense and uniform diamond-like carbon films (DLC films) for industrial applications have successfully been prepared by dual-target unbalanced magnetron sputtering and the DLC characteristics of the films are confirmed by Raman spectra. It is found that the sputtering current of target plays an important role in the DLC film deposition. Deposition rate of 3.5μm/h is obtained by using the sputtering current of 30 A. The friction coefficient of the films is 0.2-0.225 measured by using a pin-on-disc microtribometer. The structure of the films tends to have a growth of sp3 bonds content at high sputtering current. The compressive residual stress in the films increases with the increasing sputtering current of the target.

  11. CVD growth and field emission properties of nanostructured carbon films

    International Nuclear Information System (INIS)

    An investigation of the growth mechanisms, electronical and structural properties, and field emissions of carbon films obtained by chemical vapour deposition showed that field emissions from films composed of spatially oriented carbon nanotubes and plate-like graphite nanocrystals exhibit non-metallic behaviour. The experimental evidence of work function local reduction for carbon film materials is reported here. A model of the emission site is proposed and the mechanism of field emission from nanostructured carbon materials is described. In agreement with the model proposed here, the electron emission in different carbon materials results from sp3-like defects in an sp2 network of their graphite-like component. (author)

  12. Preparation of lotus-like superhydrophobic fluoropolymer films

    International Nuclear Information System (INIS)

    Styrene and 2,2,3,4,4,4-hexafluorobutyl methacrylate copolymers were synthesized by bulk polymerization, and the superhydrophobic copolymer films were prepared subsequently using phase separation technique. The copolymer was dissolved in tetrahydrofuran, and then added ethanol into the solution thereafter, to induce phase separation. The microstructures of the polymer films were controlled by the degree of phase separation, which was enhanced properly by the concentration of ethanol. The surface morphology of the films, observed by environmental scanning electron microscope, is similar to that of the lotus leaf. The contact angle and sliding angle were measured as 154.3 deg. and 5.8 deg., respectively. The excellent superhydrophobic property demonstrated that the phase separation technique is useful for preparing lotus-like fluoropolymer films.

  13. Properties of nitrogen containing diamond-like carbon films

    International Nuclear Information System (INIS)

    Optical and mechanical properties of nitrogen containing diamond- like carbon (NC-DLC) films deposited by RF plasma decomposition of CH4:H2:N2 gas mixture were investigated. Nitrogen was incorporated into DLC films both during film growth and after deposition of film by implantation of nitrogen ions. It was shown that both optical and mechanical properties of the films strongly depend on nitrogen content in the films. In some cases the mechanical properties of nitrogen implanted films were improved in comparison with unimplanted samples. (author). 7 refs., 2 figs

  14. Transparent Films from CO2 -Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing.

    Science.gov (United States)

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter; Müller, Thomas E

    2016-04-25

    Transparent films were prepared by cross-linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2 , propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron-acceptor and electron-donor groups enables particularly facile UV- or redox-initiated free-radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  15. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  16. Preparation of anodic films of stabilized zirconium at ambient temperature

    International Nuclear Information System (INIS)

    It was prepared zirconium oxide films through the anodic oxidation of the zirconium at constant current density in phosphoric acid solution.The film growth is characterized, at the cronopotenciograms curves, by linear increase of the potential and region of film breakdown, with potential oscillations. The films were analysed by x-rays and SEM. It was observed the formation of zirconia films in the monoclinic phase in H3 P O4 solution. When H3 P O4 was use with Na2 [Ca(EDTA)] complex were detected the formation of zirconium oxide partiality stabilized in the tetragonal cubic form. It was also observed that varying the concentration of the complex and the applied current density it was possible to obtain different quantity of the stabilized phase. (author)

  17. Electrochromic iridium oxide films: Compatibility with propionic acid, potassium hydroxide, and lithium perchlorate in propylene carbonate

    OpenAIRE

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-01-01

    Porous thin films of It oxide were prepared by reactive dc magnetron sputtering onto unheated substrates. The crystallite size was similar to 5 nm, and a small amount of unoxidized Ir was present. The electrochromic performance was studied by optical transmittance measurements and cyclic voltammetry applied to films in aqueous and non-aqueous electrolytes, specifically being 1 M propionic acid, 1 M potassium hydroxide (KOH), and 1 M lithium perchlorate in propylene carbonate (Li-PC). Cyclic v...

  18. Preparation and superconductivity of iron selenide thin films

    OpenAIRE

    Han, Y.; Li, W. Y.; Cao, L. X.; S. Zhang; Xu, B; Zhao, B. R.

    2009-01-01

    FeSex (x = 0.80, 0.84, 0.88, 0.92) thin films were prepared on SrTiO3(001) (STO), (La,Sr)(Al,Ta)O3(001) (LSAT), and LaAlO3(001) (LAO) substrates by pulsed laser deposition method. All thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe0.88 thin films show Tc, onset of 11.8 K and Tc, 0 of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  19. Preparation and characterization of Zn Se thin films

    CERN Document Server

    Ganchev, M; Stratieva, N; Gremenok, V; Zaretskaya, E; Goncharova, O

    2003-01-01

    Chemical bath deposition technique for preparation of ZnSe thin films is presented. The influence of bath temperature and duration of deposition on film growth and quality has been studied. The effect of post-deposition annealing in different ambient is also discussed. It has been determined that heat treatment removes the oxygen-containing phase from the as-deposited films and improves crystallinity. The optical and electric properties of the deposits show their potential for an alternative buffer layer in chalcopyrite-based solar cells.

  20. Obtenção de filmes espessos de seleneto de cobre sobre carbono vítreo, ouro, titânio e cobre Obtaining copper selenide thick films on vitreous carbon, gold, titanium and copper

    Directory of Open Access Journals (Sweden)

    Adriano César Rabelo

    2007-04-01

    Full Text Available Copper selenide (berzelianite films were prepared on the title substrates using the chemical bath deposition technique (CBD. Film composition was determined by energy dispersion of x-rays. The kinetics of film growth is parabolic and film adherence limits the film thickness. On titanium, copper selenide forms islands that do not completely cover the surface, unless the substrate is prepared with a tin oxide layer; film composition also depends on the titanium oxide layer. On vitreous carbon, CBD and mechanical immobilization techniques lead to films with similar resistances for the electron transfer across the film/substrate interface. On gold, composition studies revealed that film composition is always the same if the pH is in the range from 8 to 12, in contrast to films prepared by an ion-ion combination route. On copper, a new procedure for obtaining copper selenide films as thick as 5 µm has been developed.

  1. Self-lubricated Array Film of Amorphous Carbon Nanorods on an Aluminum Substrate

    Institute of Scientific and Technical Information of China (English)

    JIANGChun-xi; TUJiang-ping; GUOShao-yi; FUMing-fu; ZHAOXin-bing

    2004-01-01

    A self-lubricated array film of amorphous carbon nanorods was prepared by chemical catalytic pyrolysis of acetylene on the anodic aluminum oxide membrane fabricated by two-step anodization of aluminum. The tribological properties of the array film of amorphous carbon nanorods in ambient air were investigated using a ball-on-disk tester at applied loads range from 245 mN to 1960 mN at a sliding velocity of 0.2 m/s. The self-lubricated array film exhibited a small value of the friction coefficient as well as good wear resistance. The friction coefficient of array film of amorphous carbon nanorods decreased gradually with increasing the applied load. The approach proposed demonstrated a new efficient route towards enhanced the friction and wear performances of aluminum.

  2. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  3. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  4. ELECTROCHEMICAL INVESTIGATION ON CARBON NANOTUBE FILM WITH DIFFERENT PRETREATMENTS

    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; Y. Ma; W. Zhu

    2003-01-01

    Wide potential windows were found at carbon nanotube film electrodes in neutral solutions after being treated with nitric acid and mixed acid. Electrochemical reversibility was investigated at carbon nanotube films with different pretreatments for ferri/ferrocyanide and quinone /hydroquinone. Carbon nanotube film electrodes presented quasi-reversible electrochemical behavior for both electrolytes. In the range of scan rate, carbon nanotube film electrodes treated with acids showed heterogeneous electron-transfer properties, which was mainly controlled by its electron state density on the surface of the film. On the whole, the carbon nanotube electrode with nitric acid treatment presented the best electrochemical behaviors, so we chose it as an analytical electrode to determine the trace compound in dilute solution. The results demonstrated that this new electrode material exhibits superior performance characteristics for the detection of azide anion.

  5. Preparation and Characterization of Chitosan—Agarose Composite Films

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2016-09-01

    Full Text Available Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS and agarose (AG in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS, elongation-at-break (EB, water vapor transmission rate (WVTR, swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film’s tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM. The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

  6. Preparation and magnetic properties of Co-P thin films

    Institute of Scientific and Technical Information of China (English)

    Haicheng Wang; Zhongmei Du; Lijin Wang; Guanghua Yu; Fengwu Zhu

    2008-01-01

    Magnetic Co-P thin films were prepared by eleetroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm, the coercivity dropped sharply from 45.36 to 22.28 kA/m. As the film thickness increased further, the coercivity varied slowly. When the thickness of the film was 300 nm, the deposited film could realize the coercivity as high as 45.36 kA/m, and the remanent magnetization as high as 800 kA/m .The Co-P films were deposited on the surface of magnetic drums of encoders, whose diameter was 40 mm, and then 512 magnetic poles were recorded, meaning that the magnetizing pitch was 0.245 mm. The testing results indicate that the output signals are perfect, the output waveforms are steady and the pulses account is integral. Compared with the γ-Fe2O3 coating, the Co-P thin film is suitable to be the magnetic recording media for the high resolution magnetic rotary encoder.

  7. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid

    Science.gov (United States)

    Giacomo Bettini, Luca; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-01

    Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  8. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector

    International Nuclear Information System (INIS)

    Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ∼0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ∼4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1). (paper)

  9. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  10. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  11. Preparation and Characterization of PZT films Fabricated on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Ying

    2006-01-01

    Lead zirconium titanate (PZT) films (Zr/Ti=45:55)with a high dielectric constant are prepared successfully on the low-resistance Si substrate in sol-gel dip-coating process with PT film used as the buffer layer.The dielectric and ferroelectric properties of the films as well as the relationship between crystallization and preparing condition are studied.It is shown that the PZT ferroelectric thin films with a (110) preferred orientation and a well-crystallized perovskite structure could be obtained after annealing at 800℃ for 15 min.The particle size of the sample is about 14-25 nm.The P-E hysteresis loops are measured by means of the Sawyer-Tower test system with a compensation resistor at room temperature.The remanent polarization (Pr) and coercive electric field (Ec) of the measured PZT thin films are 47.7 μC/cm2 and 18 kV/cm,respectively.The relative dielectric constant εr and the dissipation factor tgδ of the PZT thin films were measured with an LCR meter and were found to be 158 and 0.04-0.005,respectively.

  12. Preparation of DNA films for studies under vacuum conditions

    DEFF Research Database (Denmark)

    Smialek, M. A.; Balog, Richard; Jones, N. C.;

    2010-01-01

    to the evacuation process when films were formed from DNA samples in ultra high purity water only. A variety of bases were tested for their possible protective capabilities and sodium hydroxide solution was found to be the most effective in maintaining the supercoiled structure of plasmid DNA during the preparation...

  13. Preparation and magnetization reversal of exchange bias structured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine; McCord, Jeffrey; Moench, Ingolf; Kaltofen, Rainer; Gemming, Thomas; Schaefer, Rudolf; Schultz, Ludwig [Leibniz Institute for Solid State and Materials Research, Dresden (Germany)

    2008-07-01

    Magnetically patterned thin films of NiFe/IrMn/Ta-NiFe/IrMnO{sub x} with laterally modulated unidirectional anisotropy were prepared by local oxidation of the antiferromagnetic IrMn layer. Varying the lateral dimensions and orientation with respect to the anisotropy modulation, the films exhibit different magnetization reversal behaviors. While stripes aligned parallel to the unidirectional anisotropy direction display a spin valve-like two step hysteresis loop, perpendicular orientation lead to a single step shifted hysteresis loop. Magnetic domain observation reveals separate switching of the stripes for the parallel alignment and simultaneous reversal for the perpendicular orientation. By decreasing the lateral dimensions, quasi-domain states have been observed. The presented magnetic data of the exchange biased-patterned films show that we did succeed in creating an alternative method for the preparation of materials with new hybrid properties.

  14. Preparation and characterization of polymer-clay nanocomposite films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.

  15. Preparation and Application of Fluorescent Carbon Dots

    Directory of Open Access Journals (Sweden)

    Jun Zuo

    2015-01-01

    Full Text Available Fluorescent carbon dots (CDs are a novel type of fluorescent nanomaterials, which not only possess the specific quantum confinement effects of nanomaterials due to the small size of nanomaterials, but also have good biocompatibility and high fluorescence. Meanwhile, fluorescence CDs overcome the shortcomings of high toxicity of traditional nanomaterials. Moreover, the preparation procedure of fluorescent CDs is simple and easy. Therefore, fluorescent CDs have great potential applied in photocatalysis, biochemical sensing, bioimaging, drug delivery, and other related areas. In this paper, recent hot researches on fluorescent CDs are reviewed and some problems in the progress of fluorescent CDs are also summarized. At last, a future outlook in this direction is presented.

  16. Preparation and Self-assembly of Chitosan/Carbon Microsphere Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Yongzhen; HAN Yanxing; LIU Xuguang; XU Bingshe

    2012-01-01

    Carbon-based films were synthesized by self-assembly of chitosan-encapsulated carbon microsphere (CMS@CS) composite.First,carbon microspheres (CMSs) prepared by chemical vapor deposition were modified by HNO3 and H2O2.Second,oxidized CMSs were modified by chitosan (CS).Finally,CMS@CS was self-assembled by vertical deposition,in which suspension concentration and deposition temperature on the quality of self-assembling film were investigated.Field emission scanning electron microscopy,atomic force microscopy,X-ray diffraction,thermogravimetry,and Fourier transformation infrared spectrometry vere employed to characterize the morphology and structure of the samples.The results show that CMSs modified by CS had uniform particle size and good dispersion,CMS@CS was self-assembled into a dense film,the film thickened with increasing suspension concentration at fixed temperature,and more ordered film was obtained at l wt% of suspension concentration and 50 ℃.The ultraviolet-visible absorption spectra show that the absorbance of CMS@CS film grew steadily with increasing suspension concentration and that the CMSs with oxygen-containing groups have a good assembling performance to form composite films with CS.

  17. Bond topography and nanostructure of hydrogenated fullerene-like carbon films: A comparative study

    Science.gov (United States)

    Wang, Yongfu; Gao, Kaixiong; Shi, Jing; Zhang, Junyan

    2016-09-01

    Fullerene-like nanostructural hydrogenated amorphous carbon (FL-C:H) films were prepared by dc- and pulse- plasma enhanced chemical vapor deposition technique (PECVD). Both the films exhibit relatively stresses (0.63 GPa) in spite of their FL features and nanostructural bonding configurations, especially the pentagonal carbon rings. The creation of pentagonal rings is not fully driven by thermodynamics, but is closely related to compressive stress determined by the ion bombardment at the discharged state of the pulse- and dc- discharged plasmas methods. The dc method leads to FL's basal planes which contain less cross-linkages, and causes amorphous strongly hydrogenated structures.

  18. Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film

    Directory of Open Access Journals (Sweden)

    Lokesh R. Rane

    2014-01-01

    Full Text Available The purpose of this study is to improve the performance properties of K-carrageenan (K-CRG by utilizing nanosilica (NSI as the reinforcing agent. The composite films were prepared by solution casting method. NSI was added up to 1.5% in the K-CRG matrix. The prepared films were characterized for mechanical (tensile strength, tensile modulus, and elongation at break, thermal (differential scanning calorimetry, thermogravimetric analysis, barrier (water vapour transmission rate, morphological (scanning electron microscopy, contact angle, and crystallinity properties. Tensile strength, tensile modulus, and crystallinity were found to have increased by 13.8, 15, and 48% whereas water vapour transmission rate was found to have decreased by 48% for 0.5% NSI loaded K-CRG composite films. NSI was found to have formed aggregates for concentrations above 0.5% as confirmed by scanning electron microscopy. Melting temperature, enthalpy of melting, and degradation temperature of K-CRG increased with increase in concentration of NSI in K-CRG. Contact angle also increased with increase in concentration of NSI in K-CRG, indicating the decrease in hydrophilicity of the films improving its water resistance properties. This knowledge of the composite film could make beneficial contributions to the food and pharmaceutical packaging applications.

  19. Pulsed laser deposition of nano-glassy carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Ossi, P.M. [Dip. Ingegneria Nucleare and Centre of Excellence, NanoEngineered Materials and Surfaces (NEMAS), Politecnico di Milano, via Ponzio, 34-3, 20133 Milan (Italy)]. E-mail: paolo.ossi@polimi.it; Bottani, C.E. [Dip. Ingegneria Nucleare and Centre of Excellence, NanoEngineered Materials and Surfaces (NEMAS), Politecnico di Milano, via Ponzio, 34-3, 20133 Milan (Italy); Miotello, A. [Dip. Fisica, Universita di Trento, 38050 Povo (TN) (Italy)

    2005-07-30

    Carbon films have been deposited at room temperature on (1 0 0) Si substrates by pulsed laser ablation (PLA) from a highly oriented pyrolitic graphite source. Changing the laser power density from 8.5 to 19 MW mm{sup -2} and using various ambient atmospheres (helium, argon from 0.6 Pa to 2 kPa), nano-sized cluster-assembled films were obtained. Scanning electron microscopy shows that the film morphology, changes with increasing ambient gas pressure. We observed in the sequence: dense columns, node-like morphology, platelets (only in argon) and an open dendritic structure. By atomic force microscopy, on representative films, we evaluated the size distribution and relative abundancy of aggregates of carbon clusters, as well as film roughness. Raman spectroscopy shows that all the films are sp{sup 2} coordinated, structurally disordered and belong to the family of carbon nano-glasses. The estimated film coherence length gives an average size of about 5 nm for the agglomerated carbon clusters in the films. The average number of carbon atoms per cluster depends on ambient gas pressure, but is nearly independent of laser intensity.

  20. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).

  1. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  2. Preparation of carbon brushes with thermosetting resin binder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon brushes with a resin binder were prepared according to an industrial process and the effects of the molding pressure, grains size and cure temperature on the properties of brush samples were discussed. The results show that the bulk density,bending strength and Rockwell hardness increase, while resistivity decreases with increasing molding pressure. Cure temperature has much more influence on the properties of brushes than molding pressure and grains size. Isothermal differential scanning calorimetry(DSC) was used to estimate the degree of cure of resin binder and a novel method of using the true density to measure the degree of cure of resin binder was presented and discussed briefly. Based on optimal process parameters carbon brushes were manufactured, durability tests for brushes were carried out on an alternate current motor and scanning electron microscope(SEM)was adopted to observe the morphology of worn surface of brushes. The results show that a luster oxide film can be formed on the surface of brushes and their service life reaches 380 h.

  3. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Science.gov (United States)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  4. Preparation and superconductivity of iron selenide thin films.

    Science.gov (United States)

    Han, Y; Li, W Y; Cao, L X; Zhang, S; Xu, B; Zhao, B R

    2009-06-10

    FeSe(x) (x = 0.80,0.84,0.88,0.92) thin films were prepared on SrTiO(3)(001)(STO), (La,Sr)(Al,Ta)O(3)(001) (LSAT), and LaAlO(3)(001) (LAO) substrates by a pulsed laser deposition method. All of the thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe(0.88) thin films show a T(c,onset) of 11.8 K and a T(c,0) of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T. PMID:21825594

  5. Preparation and superconductivity of iron selenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y; Li, W Y; Cao, L X; Zhang, S; Xu, B; Zhao, B R [National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: lxcao@aphy.iphy.ac.cn

    2009-06-10

    FeSe{sub x} (x = 0.80,0.84,0.88,0.92) thin films were prepared on SrTiO{sub 3}(001)(STO), (La,Sr)(Al,Ta)O{sub 3}(001) (LSAT), and LaAlO{sub 3}(001) (LAO) substrates by a pulsed laser deposition method. All of the thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe{sub 0.88} thin films show a T{sub c,onset} of 11.8 K and a T{sub c,0} of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  6. Anisotropic Magnetoresistance of Cobalt Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Yuttanun PANSONG

    2005-01-01

    Full Text Available Cobalt films on silicon substrates were prepared by thermal evaporation. By evaporating 0.05 g of cobalt for 80-240 s, a thickness from 21.1 to 67.7 nm was obtained with a deposition rate about 0.26-0.32 nm per second. The 29 nm-thick cobalt film exhibited magnetoresistance (MR ranging from -0.0793% (field perpendicular to the current to +0.0134% (field parallel to the current with saturation in a 220 mT magnetic field. This MR was attributed to anisotropic magnetoresistance (AMR since changing the angle between the field and the current (θ gave rise to a change in the electrical resistance (Rθ. The results agreed with the theory since the plot between Rθ and cos2θ could be linearly fitted. AMR was not observed in non-ferromagnetic gold films whose resistance was insensitive to the angle between the current and magnetic field.

  7. Piezoresistive Effect of Doped carbon Nanotube/Cellulose Films

    Institute of Scientific and Technical Information of China (English)

    王万录; 廖克俊; 李勇; 王永田

    2003-01-01

    The strain-induced resistance changes in iodine-doped and undoped carbon nanotube films were investigated by a three-point bending test. Carbon nanotubes were fabricated by hot filament chemical vapour deposition. The experimental results showed that there has a striking piezoresistive effect in carbon nanotube films. The gauge factor for I-doped and undoped carbon nanotube films under 500 microstrain was about 125 and 65 respectively at room temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in the films may be ascribed to a strain-induced change in the band gap for the doped tubes and to the intertube contact resistance for the undoped tubes.

  8. Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Iron oxide thin films were prepared by spray pyrolysis technique onto glass substrates from iron chloride solution. They were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and (UV-vis) spectroscopy. The films deposited at T s ≤ 450 deg. C were amorphous; while those produced at T sub = 500 deg. C were polycrystalline α-Fe2O3 with a preferential orientation along the (1 0 4) direction. By observing scanning electron microscopy (SEM), it was seen that iron oxide films were relatively homogeneous uniform and had a good adherence to the glass substrates. The grain size was found (by RX) between 19 and 25 nm. The composition of these films was examined by X-ray photoelectron spectroscopy and electron probe microanalysis (EPMA). These films exhibited also a transmittance value about 80% in the visible and infrared range. The cyclic voltammetry study showed that the films of Fe2O3 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate (PC) with 0.5 M LiCLO4

  9. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  10. Photoluminescence and Raman Spectroscopy Studies of Carbon Nitride Films

    OpenAIRE

    Hernández-Torres, J.; Gutierrez-Franco, A.; P. G. González; L. García-González; Hernandez-Quiroz, T.; Zamora-Peredo, L.; V.H. Méndez-García; A. Cisneros-de la Rosa

    2016-01-01

    Amorphous carbon nitride films with N/C ratios ranging from 2.24 to 3.26 were deposited by reactive sputtering at room temperature on corning glass, silicon, and quartz as substrates. The average chemical composition of the films was obtained from the semiquantitative energy dispersive spectroscopy analysis. Photoluminescence measurements were performed to determine the optical band gap of the films. The photoluminescence spectra displayed two peaks: one associated with the substrate and the ...

  11. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films

    Science.gov (United States)

    Akiyama, Morito; Morofuji, Yukari; Kamohara, Toshihiro; Nishikubo, Keiko; Tsubai, Masayoshi; Fukuda, Osamu; Ueno, Naohiro

    2006-12-01

    We have investigated the high sensitive piezoelectric response of c-axis oriented aluminum nitride (AlN) thin films prepared on polyethylene terephthalate (PET) films. The AlN films were deposited using a radio frequency magnetron sputtering method at temperatures close to room temperature. The c axes of the AlN films were perpendicularly oriented to the PET film surfaces. The sensor consisting of the AlN and PET films is flexible like PET films and the electrical charge is linearly proportional to the stress within a wide range from 0to8.5MPa. The sensor can respond to the frequencies from 0.3 to over 100Hz and measures a clear human pulse wave form by holding the sensor between thumb and middle finger. The resolution of the pulse wave form is comparable to a sphygmomanometer at stress levels of 10kPa. We think that the origin of the high performance of the sensor is the deflection effect, the thin thickness and high elastic modulus of the AlN layer, and the thin thickness and low elastic modulus of the PET film.

  12. Colloidal CZTS nanoparticles and films: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Gong, Yanmei; Xu, Jian, E-mail: xujian@nbu.edu.cn; Fang, Gang; Xu, Qingbo; Dong, Jianfeng

    2013-10-15

    Highlights: •CZTS nanoparticles (NPs) with size ∼8–16 nm were synthesized by wet-chemical process. •Crystal phase of CZTS NPs was affected by the reaction temperature in synthesis. •Densified films were prepared from colloids, with drying and sintering in vacuum. •CZTS films (∼5 μm in thickness) have the band-gap of ∼1.5–2.0 eV. •CZTS conductivity change due to illumination was measured by AC impedance method. -- Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) compound semiconductor has the advantage of good matching with solar radiation in optical band-gap, large absorption coefficient, non-toxic and especially large abundance ratios of elements, so that CZTS has been considered as a good absorber layer used for the thin-film solar cells with most industrialization promising and environment friendly. In the present work, colloidal CZTS nanocrystals (average size ∼8–16 nm) with the band gap of ∼1.5 eV were synthesized via wet-chemical processing, using oleylamine (OLA) as solvent and capping molecules. The colloids were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–Vis–NIR spectroscopy. The structure and morphology of nanocrystals were influenced with the reaction temperature. The resulting nanocrystals were kesterite-phase CZTS when the reaction temperature was lower, but were wurtzite-phase CZTS when the reaction temperature above 275 °C. The CZTS films on glass substrates were prepared by drop-casting, from the colloidal 10 wt% CZTS–toluene solution where the CZTS colloids were synthesized at 260 °C with three different recipes. The resulting films with different heat-treatments were investigated by XRD, SEM and energy dispersive spectroscopy (EDS). Densified CZTS films (∼5 μm in thickness) could be obtained by drying and sintering in vacuum. The CZTS films have the band-gap around 1.6–2.0 eV, due to Zn rich and S poor in the films

  13. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  14. Preparation and Properties of Cereal-Metal Complex Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Various kinds of biodegradable polymer materials have been researched[1]. In our previous papers,cereals such as wheat,buckwheat,glutinous rice and nonglutinous rice were polycondenced with citric acid and polysilicic acid to prepare copolymer films respectively[2,3].These copolymer fims have relatively good mechanical properties but the water proofness is not so good.Recently,some cereals such as wheat,glutinous rice,nonglutinous rice,kaoliang,millet and maize were reacted with copper chlorid...

  15. Stretchable transistors with buckled carbon nanotube films as conducting channels

    Science.gov (United States)

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  16. PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc.

  17. Graphene diamond-like carbon films heterostructure

    Science.gov (United States)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ˜25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  18. Graphene diamond-like carbon films heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology, Electronic and Electrical Engineering Department, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  19. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  20. Study on Preparation and Resistivity-strain Dependence of Carbon Nanotube/polymer Composite Thin Films%碳纳米管/聚合物复合材料薄膜制备及其压阻特性研究

    Institute of Scientific and Technical Information of China (English)

    宋晓辉; 岳鹏飞; 王孟平; 赵兰普

    2012-01-01

    A carbon nanotube/polymer conductive composite material has been fabricated by vacuum filtration and flexible transfer methods. The vacuum filtration method was utilized to obtain carbon nanotube networks with controllable density and thickness, and then the networks were transferred to polymer to form composite layers. Resistivity-strain dependence of these thin films with different initial volume of dilute suspension filtered through the membrane was measured. The results show that the thin films with thinner CNTs networks exhibit weaker resistance-strain sensitivity under the same stain and the strain sensing material shows resistance-strain sensitivity depending only on the initial CNTs suspension volume. While as the initial volume decrease to a value, the sensitivity will increase dramatically. It is indicated that the resistivity-strain sensitivity of the CNT/PDMS composite thin film is controllable, which can be used for strain sensing and conductive layers.%基于真空过滤方法获得均匀的不同厚度碳纳米管薄膜,通过与聚合物基体的润湿固化转移碳纳米管薄膜制备压阻敏感度可控的复合材料薄膜.并研究了该薄膜的压阻特性.结果表明薄膜的压阻敏感度随着初始碳纳米管悬浮液体积的减小而降低,当体积减小到一定程度时,薄膜压阻敏感度反而增加,但是线性范围减小.碳纳米管/聚合物复合材料的这种压阻特性,一方面了说明了碳纳米管与聚合物复合材料薄膜压阻效应的可控性;另一方面,也表明了通过调节压阻敏感度,该复合材料既可用作应变传感,又可以用作对变形不敏感的导电薄膜.

  1. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  2. Preparation and characterization of polyimide/silica hybrid films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-yan; ZENG Shu-jin; DONG Tie-quan; ZHOU Sheng; FAN Yong; ZHANG Xiao-hong; LEI Qing-quan

    2006-01-01

    A kind of hybrid polyimide films was prepared by synthesizing poly( amic acid ) /Silica matrix resin through sol-gel technique and then followed by positing it on a silex glass plate and drying at high temperature.The effect of silica content on the corona-resistant property of the films was studied. The miscibility between the organic and inorganic phases and its effect on the corona-resistant property were investigated with aminopropyltriethoxysilane, which served as a coupling agent, added into the polyimide composite system. The chemical structure and the surface morphology of the films were characterized by FTIR and AFM respectively. The corona-resistant property of the films was tested by a rod-plate electrode. It proved that the corona-resistant property was enhanced with silica content. It also turned ont that the improvement of the miscibility between the two phases due to the presence of covalent force as a result of the addition of the coupling agent had, to some extent,effect on the corona-resistant property of the films. Furthermore, a theory on the corona-resistant property was put forward preliminarily.

  3. Rain Erosion Behavior of Silicon Dioxide Films Prepared on Sapphire

    Institute of Scientific and Technical Information of China (English)

    Liping FENG; Zhengtang LIU; Wenting LIU

    2005-01-01

    Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to in crease both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD),respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared(FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.

  4. Microstructural characterization of Ti-C-N thin films prepared by reactive crossed beam pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Escobar-Alarcon, L., E-mail: luis.escobar@inin.gob.mx [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Medina, V.; Camps, Enrique; Romero, S. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Fernandez, M. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Solis-Casados, D. [Centro Conjunto de Investigacion en Quimica Sustentable, Facultad de Quimica UAEMex, km. 14.5 carr. Toluca-Atlacomulco (Mexico)

    2011-08-15

    In this work, Raman spectroscopy has been used to characterize Ti-C-N thin films in order to obtain information about the microstructure of the deposited materials, and in particular to study the effects due to the carbon incorporation into the TiN lattice. Ti-C-N thin films were prepared using a crossed plasma configuration in which the ablation of two different targets, titanium and carbon, in a reactive atmosphere was performed. With this configuration, the carbon content in the films was varied in an easy way from 5.0 at% to 40.0 at%. Thin film composition was determined from Non-Rutherford Backscattering Spectroscopy (NRBS) measurements. X-ray photoelectron spectroscopy and X-Ray diffraction measurements were also carried out in order to characterize the films in more detail, with this being used to give support to the interpretation of the Raman spectra. The Raman results revealed that at lower carbon concentrations a solid solution Ti(C, N) is formed, whilst at higher carbon concentrations a nanocomposite, consisting of nanocrystalline TiCN and TiC immersed in an amorphous carbon matrix is obtained.

  5. Preparation and analysis of amorphous carbon films deposited from (C{sub 6}H{sub 12})/Ar/He chemistry for application as the dry etch hard mask in the semiconductor manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungmoo [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Won, Jaihyung; Choi, Jongsik [TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Jang, Samseok [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jee, Yeonhong; Lee, Hyeondeok [TC Technology Team, Samsung Electronics Co. Ltd., Gyeounggi-Do, 446-711 (Korea, Republic of); Byun, Dongjin, E-mail: dbyun@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2011-08-01

    Amorphous carbon layers (ACL) were deposited on Si (100) wafers by plasma enhanced chemical vapor deposition (PECVD) by using 1-hexene (C{sub 6}H{sub 12}) as a carbon source for dry etch hard mask of semiconductor devices manufacturing process. The deposition characteristics and film properties were investigated by means of ellipsometry, Raman spectroscopy, X-ray photo electron spectroscopy (XPS) and stress analysis. Hardness, Young's modulus, and surface roughness of ACL deposited at 550 deg. C were investigated by using nano-indentation and AFM. The deposition rate was decreased from 5050 A/min to 2160 A/min, and dry etch rate was decreased from 2090 A/min to 1770 A/min, and extinction coefficient was increased from 0.1 to 0.5. Raman analysis revealed a higher shift of the G-peak and a lower shift of the D-peak and the increase of I(D)/I(G) ratio as the deposition temperature was increased from 350 deg. C to 550 deg. C. XPS results of ACL deposited at 550 deg. C revealed a carbon 1s binding energy of 284.4 eV. The compressive film stress was decreased from 2.95 GPa to 1.28 GPa with increasing deposition temperature. The hardness and Young's modulus of ACL deposited at 550 deg. C were 5.8 GPa and 48.7 GPa respectively. The surface roughness RMS of ACL deposited at 550 deg. C was 2.24 A, and that after cleaning in diluted HF solution (H{sub 2}O:HF = 200:1), SC1 (NH{sub 4}OH:H{sub 2}O{sub 2}:H{sub 2}O = 1:4:20) solution, and sulfuric acid solution (H{sub 2}SO{sub 4}:H{sub 2}O{sub 2} = 6:1) was 2.28 A, 2.30 A and 7.34 A, respectively. The removal amount of ACL deposited at 550 deg. C in diluted HF solution, SC1 solution and sulfuric acid solution was 6 A, 36 A and 110 A, respectively. These results demonstrated the viability of ACL deposited by PECVD from C{sub 6}H{sub 12} at 550 deg. C for application as the dry etch hard mask in fabrication of semiconductor devices.

  6. Growth processes and surface properties of diamondlike carbon films

    International Nuclear Information System (INIS)

    In this study, we compare the deposition processes and surface properties of tetrahedral amorphous carbon (ta-C) films from filtered pulsed cathodic arc discharge (PCAD) and hydrogenated amorphous carbon (a-C:H) films from electron cyclotron resonance (ECR)-plasma source ion implantation. The ion energy distributions (IEDs) of filtered-PCAD at various filter inductances and Ar gas pressures were measured using an ion energy analyzer. The IEDs of the carbon species in the absence of background gas and at low gas pressures are well fitted by shifted Maxwellian distributions. Film hardness and surface properties show a clear dependence on the IEDs. ta-C films with surface roughness at an atomic level and thin (0.3-0.9 nm) graphitelike layers at the film surfaces were deposited at various filter inductances in the highly ionized plasmas with the full width at half maximum ion energy distributions of 9-16 eV. The a-C:H films deposited at higher H/C ratios of reactive gases were covered with hydrogen and sp3 bonded carbon-enriched layers due to the simultaneous interaction of hydrocarbon species and atomic hydrogen. The effects of deposited species and ion energies on film surface properties were analyzed. Some carbon species have insufficient energies to break the delocalized π(nC) bonds at the graphitelike film surface, and they can govern film formation via surface diffusion and coalescence of nuclei. Dangling bonds created by atomic hydrogen lead to uniform chemisorption of hydrocarbon species from the ECR plasmas. The deposition processes of ta-C and a-C:H films are discussed on the basis of the experimental results

  7. The differences of electrochemical performance between the purchased lead carbonate and the prepared lead carbonate

    Institute of Scientific and Technical Information of China (English)

    包有富

    2005-01-01

    The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), constant current discharge, thermal gravimetric analysis, and scan electron microscope (SEM) etc. in the paper. It was showed that the reacting activity of the prepared lead carbonate was higher than that of the purchased lead carbonate. And several points of view were concluded as follows. (1) The prepared lead carbonate contains chemical structure water, but the purchased lead carbonate doesn't contain chemical structure water. (2) The main chemical substance in the purchased lead carbonate powder is PbCO3, while the one in the prepared lead carbonate is smaller than that of the pur-chased lead carbonate.

  8. Properties of electrophoretically deposited single wall carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A., E-mail: campb001@umn.edu

    2015-08-31

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10{sup −3} Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm{sup 3}, and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators.

  9. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  10. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  11. Preparation and characterization of hydrophilic TiO sub 2 film

    CERN Document Server

    Park, J K

    2002-01-01

    A novel titania sol for the preparation of hydrophilic TiO sub 2 films was synthesized from TiCl sub 4. TiO sub 2 films were prepared by spraying the sol on glass substrates and the hydrophilic properties of the films were investigated with illumination of UV light. The contact angle of a water drop on the films decreased to less than 7 .deg. , which indicates the excellent hydrophilicity of the TiO sub 2 films.

  12. A new method of preparing single-walled carbon nanotubes

    OpenAIRE

    Vivekchang, SRC; Govindaraj, A.

    2003-01-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized single-walled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spect...

  13. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    S R C Vivekchand; A Govindaraj

    2003-10-01

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled carbon nanotubes. The purified single-walled carbon nanotubes have been characterised by low-angle X-ray diffraction, electron microscopy, thermo-gravimetric analysis and Raman spectroscopy.

  14. Preparation of activated carbon by chemical activation under vacuum.

    Science.gov (United States)

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  15. Luminescence Properties of Nanostructure ZnO-Covered Carbon Fibers Prepared by Thermal Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZENG Jun; WANG Sen; TAO Peng; HUA Wei; XU Jin-Cheng

    2009-01-01

    We report on ZnO nanosheets and nanorods synthesized by thermal oxidation of zinc films deposited on carbon fiber surfaces. The structure and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectrum. An orange-red emission around 683 nm is found in the PL spectrum when the sample prepars at 400℃ for four hours in air. With annealing temperature increasing from 400℃ to 500℃, the blue shift is observed.

  16. Preparation of organic thin-film field effect transistor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic thin-film field effect transistor was prepared through vacuum deposition by using teflon as di-electric material. Indium-tin-oxide acted as the source and drain electrodes. Copper phthalocyanine and teflon were used as the semiconductor layer and dielectric layer, respectively. The gate electrode was made of Ag. The channel length between the source and drain was 50 μm. After preparing the source and drain electrodes by lithography, the copper phthalocyanine layer, teflon layer and Ag layerwere prepared by vacuum deposition sequentially. The field effect electron mobility of the device reached 1.1×10ˉ6 cm2/(V@s), and the on/off current ratio reached 500.

  17. Field Emission Properties of Nitrogen-doped Amorphous Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nitrogen-doped amorphous carbon thin films are deposited on the ceramic substrates coated with Ti film by using direct current magnetron sputtering technique at N2 and Ar gas mixture atmosphere during deposition. The field emission properties of the deposited films have been investigated. The threshold field as low as 5.93V/μm is obtained and the maximum current density increases from 4μA/cm2 to 20.67μA/cm2 at 10.67V/μm comparing with undoped amorphous film. The results show that nitrogen doping plays an important role in field emission of amorphous carbon thin films.

  18. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation

    Science.gov (United States)

    Flege, S.; Hatada, R.; Hoefling, M.; Hanauer, A.; Abel, A.; Baba, K.; Ensinger, W.

    2015-12-01

    The addition of nitrogen to diamond-like carbon films affects properties such as the inner stress of the film, the conductivity, biocompatibility and wettability. The nitrogen content is limited, though, and the maximum concentration depends on the preparation method. Here, plasma immersion ion implantation was used for the deposition of the films, without the use of a separate plasma source, i.e. the plasma was generated by a high voltage applied to the samples. The plasma gas consisted of a mixture of C2H4 and N2, the substrates were silicon and glass. By changing the experimental parameters (high voltage, pulse length and repetition rate and gas flow ratio) layers with different N content were prepared. Additionally, some samples were prepared using a DC voltage. The nitrogen content and bonding was investigated with SIMS, AES, XPS, FTIR and Raman spectroscopy. Their influence on the electrical resistivity of the films was investigated. Depending on the preparation conditions different nitrogen contents were realized with maximum contents around 11 at.%. Those values were compared with the nitrogen concentration that can be achieved by implantation of nitrogen into a DLC film.

  19. A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bao-Yu; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Zhu, Jiadeng; Zhang, Xiangwu [Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-01-12

    The photoacoustic effect has been broadly applied to generate high frequency and broadband acoustic waves using lasers. However, the efficient conversion from laser energy to acoustic power is required to generate acoustic waves with high intensity acoustic pressure (>10 MPa). In this study, we demonstrated laser generated high intensity acoustic waves using carbon nanofibers–polydimethylsiloxane (CNFs-PDMS) thin films. The average diameter of the CNFs is 132.7 ± 11.2 nm. The thickness of the CNFs film and the CNFs-PDMS composite film is 24.4 ± 1.43 μm and 57.9 ± 2.80 μm, respectively. The maximum acoustic pressure is 12.15 ± 1.35 MPa using a 4.2 mJ, 532 nm Nd:YAG pulsed laser. The maximum acoustic pressure using the CNFs-PDMS composite was found to be 7.6-fold (17.62 dB) higher than using carbon black PDMS films. Furthermore, the calculated optoacoustic energy conversion efficiency K of the prepared CNFs-PDMS composite thin films is 15.6 × 10{sup −3 }Pa/(W/m{sup 2}), which is significantly higher than carbon black-PDMS thin films and other reported carbon nanomaterials, carbon nanostructures, and metal thin films. The demonstrated laser generated high intensity ultrasound source can be useful in ultrasound imaging and therapy.

  20. Improved adhesion of photoresist to III-V substrates using PECVD carbon films

    Science.gov (United States)

    Mancini, David P.; Smith, Steven M.; Hooper, Andrew F.; Talin, A.; Chang, Daniel; Resnick, Douglas J.; Voight, Steven A.

    2002-07-01

    Amorphous PECVD carbon films have been investigated as a means to prepare III-V compound semiconductor substrates for improved photoresist adhesion. Results show that significant improvements in adhesive durability of patterned photoresist occurred for carbon primed GaAs and InGaAs wafers used in conjunction with both i-line and DUV lithography processes. These carbon layers, were 50-100 Angstrom in thickness, and varied in composition and morphology from a nitrogen-doped, diamond-like material (DLC), to a more hydrogen rich, polymer-like material (PLC). Adhesion durability tests performed in baths of ammonium hydroxide (NH4OH) and hydrochloric acid (HCl) in general showed superior performance compared to non-primed substrates. The sole exception was a failure of PLC priming on GaAs wafers used with a DUV anti-reflective coating. This same system, however, was shown to work extremely well when a DLC coating was substituted. Characterization of PLC and DLC films included use of AES, XPS, FTIR, AFM, and contact angle analysis. Results indicate that carbon films passivate III-V oxides, creating a stable, hydrophobic surface. This factor is proposed as a key reason for the improved resistance to aggressive aqueous environments. AFM results show that carbon films are extremely smooth and actually decrease surface roughness, indicating that mechanical adhesion is unlikely.

  1. Characterisation of hydrophobic carbon nanofiber-silica composite film electrodes for redox liquid immobilisation

    International Nuclear Information System (INIS)

    Carbon (50-150 nm diameter) nanofibers were embedded into easy to prepare thin films of a hydrophobic sol-gel material and cast onto tin-doped indium oxide substrate electrodes. They promote electron transport and allow efficient electrochemical reactions at solid|liquid and at liquid|liquid interfaces. In order to prevent aggregation of carbon nanofibers silica nanoparticles of 7 nm diameter were added into the sol-gel mixture as a 'surfactant' and homogeneous high surface area films were obtained. Scanning electron microscopy reveals the presence of carbon nanofibers at the electrode surface. The results of voltammetric experiments performed in redox probe-ferrocenedimethanol solution in aqueous electrolyte solution indicate that in the absence of organic phase, incomplete wetting within the hydrophobic film of carbon nanofibers can cause hemispherical diffusion regime typical for ultramicroelectrode like behaviour. The hydrophobic film electrode was modified with two types of redox liquids: pure tert-butylferrocene or dissolved in 2-nitrophenyloctylether as a water-insoluble solvent and immersed in aqueous electrolyte solution. With a nanomole deposit of pure redox liquid, stable voltammetric responses are obtained. The presence of carbon nanofibers embedded in the mesoporous matrix substantially increases the efficiency of the electrode process and stability under voltammetric conditions. Also well-defined response for diluted redox liquids is obtained. From measurements in a range of different aqueous electrolyte media a gradual transition from anion transfer dominated to cation transfer dominated processes is inferred depending on the hydrophilicity of the transferring anion or cation

  2. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  3. On-chip and freestanding elastic carbon films for micro-supercapacitors.

    Science.gov (United States)

    Huang, P; Lethien, C; Pinaud, S; Brousse, K; Laloo, R; Turq, V; Respaud, M; Demortière, A; Daffos, B; Taberna, P L; Chaudret, B; Gogotsi, Y; Simon, P

    2016-02-12

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young's modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. These materials are interesting for applications in structural energy storage, tribology, and gas separation.

  4. On-chip and freestanding elastic carbon films for micro-supercapacitors

    Science.gov (United States)

    Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P. L.; Chaudret, B.; Gogotsi, Y.; Simon, P.

    2016-02-01

    Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. These materials are interesting for applications in structural energy storage, tribology, and gas separation.

  5. Nanocrystalline silicon films prepared by laser-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    傅广生; 于威; 李社强; 侯海虹; 彭英才; 韩理

    2003-01-01

    The excimer laser-induced crystallization technique has been used to investigate the preparation of nanocrystalline silicon (nc-Si) from amorphous silicon (α-Si) thin films on silicon or glass substrates. The α-Si films without hydrogen grown by pulsed-laser deposition are chosen as precursor to avoid the problem of hydrogen effluence during annealing.Analyses have been performed by scanning electron microscopy, atomic force microscopy, Raman scattering spectroscopy and high-resolution transmission-electron microscopy. Experimental results show that silicon nanocrystals can be formed through laser annealing. The growth characters of nc-Si are strongly dependent on the laser energy density. It is shown that the volume of the molten silicon predominates essentially the grain size of nc-Si, and the surface tension of the crystallized silicon is responsible for the mechanism of nc-Si growth.

  6. Thin nanocrystalline zirconia films prepared by pulsed laser deposition

    Science.gov (United States)

    Dikovska, A. Og; Atanasova, G. B.; Avdeev, G. V.; Strijkova, V. Y.

    2016-03-01

    In the present work, thin zirconia films were prepared by pulsed laser deposition at different substrate temperatures and oxygen partial pressures. The substrate temperature was varied from 400 °C to 600 °C, and the oxygen pressure, from 0.01 to 0.05 mbar. The effect was investigated of the substrate temperature and oxygen pressure on the formation of m-zirconia and t-zirconia phases.The formation of a cubic phase of ZrO2 by using targets doped with 3 and 8 mol % content Y2O3 was also investigated. The variation in the optical properties was studied and discussed in relation with the zirconia films' microstructure.

  7. Preparation of Magnesium Carbonate Whisker from Magnesite Tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N; Chen, M [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Ni, H W, E-mail: chenm@smm.neu.edu.cn [Wuhan University of Science and Technology, Wuhan 430081 (China)

    2011-10-29

    Magnesium carbonate whisker was prepared by thermal decomposition of Mg(HCO{sub 3}){sub 2} solution that was prepared through hydration and carbonation of light burnt magnesia derived from magnesite tailings. The effects of thermal decomposition conditions on the morphology of magnesium carbonate crystal were investigated. The results showed that thermal decomposition product was MgCO{sub 3{center_dot}}3H{sub 2}O, and its crystal morphology was appreciably influenced by the additives added to Mg(HCO{sub 3}){sub 2} solution. Magnesium carbonate whiskers were successfully prepared when a kind of soluble magnesium salt was added, and magnesium carbonate whiskers with the length of 20 to 60{mu}m and aspect ratio of 10{approx}20 were obtained under the condition of 50deg. C thermal decomposition temperature and 200 rpm stirring intensity.

  8. Nanostructure Study of TiO2 Films Prepared by Dip Coating Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM).The films were prepared by dip coating process. The optical properties of the films were explained on the basis ofthe microstructure of the films.

  9. Fabrication of Carbon Nanotube Thin Films by Evaporation-Induced Self-Assembly

    OpenAIRE

    Li, Han

    2015-01-01

    In summary, we have prepared single-wall carbon nanotube (SWNT) thin films by the method of evaporation-induced self-assembly (EISA). Using the scalable two-plate or lens setups, sorts of different film types or patterns of SWNTs has been successfully fabricated directly from the evaporation of solvents and could be precisely controlled by the concentrations of SWNT in ambient conditions. The special geometry of meniscus as the capillary bridge has not only given rise to a much higher efficie...

  10. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  11. Preparation of U-Shape Carbon Stripper Foil

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Rong; FAN; Qi-wen; DU; Ying-hui

    2012-01-01

    <正>In an experiment for the Beijing Radioactive Ion-beam Facility, the self-supportting U-shape carbon foils are strongly required to serve as the stripper foils. The preparation procedures are as following. First, the carbon foils with thickness of about 60 μg/cm2 were deposited by the CAA (Controlled AC Arc-discharge) method onto the glass slides coated with betaine-saccharose as releasing agent. The parameters in preparation are listed in Table 1.

  12. Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films

    International Nuclear Information System (INIS)

    Highlights: ► Carbon coated Fe nanoparticle–PVC composite films were prepared by solution casting method. ► A low electrical percolation threshold of 2.2 was achieved. ► The low temperature electrical conductivity follows variable range hopping type conduction. ► An EMI shielding of 18 dB was achieved in 200 micron thick film. -- Abstract: In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ∼18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.

  13. Dependence of Structure and Haemocompatibility of Amorphous Carbon Films on Substrate Bias Voltage

    Institute of Scientific and Technical Information of China (English)

    GUO Yang-Ming; MO Dang; LI Zhe-Yi; LIU Yi; HE Zhen-Hui; CHEN Di-Hu

    2004-01-01

    @@ Tetrahedral amorphous hydrogenated carbon (ta-C:H) films on Si(100) substrates were prepared by using a magnetic-field-filter plasma stream deposition system. Samples with different ratios of spa-bond to sp2-bond were obtained by changing the bias voltage applied to the substrates. The ellipsometric spectra of various carbon films in the photon energy range of 1.9-5.4eV were measured. The refractive index n and the relative sp3 C ratio of these films were obtained by simulating their ellipsometric spectra using the Forouhi-Bloomer model and by using the Bruggeman effective medium approximation, respectively. The haemocompatibility of these ta-C:H films was analysed by observation of platelet adhesion and measurement of kinetic clotting time. The results show that the sp3 C fraction is dependent on the substrate bias voltage, and the haemocompatibility is dependent on the ratio of sp3-bond to sp2-bond. A good haemocompatibility material of ta-C:H films with a suitable sp3 C fraction can be prepared by changing the substrate bias voltage.

  14. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  15. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    Directory of Open Access Journals (Sweden)

    Ji Eun Cha

    2016-10-01

    Full Text Available To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties.

  16. Preparation of array of long carbon nanotubes and fibers therefrom

    Science.gov (United States)

    Arendt, Paul N.; DePaula, Ramond F.; Zhu, Yuntian T.; Usov, Igor O.

    2015-11-19

    An array of carbon nanotubes is prepared by exposing a catalyst structure to a carbon nanotube precursor. Embodiment catalyst structures include one or more trenches, channels, or a combination of trenches and channels. A system for preparing the array includes a heated surface for heating the catalyst structure and a cooling portion that cools gas above the catalyst structure. The system heats the catalyst structure so that the interaction between the precursor and the catalyst structure results in the formation of an array of carbon nanotubes on the catalyst structure, and cools the gas near the catalyst structure and also cools any carbon nanotubes that form on the catalyst structure to prevent or at least minimize the formation of amorphous carbon. Arrays thus formed may be used for spinning fibers of carbon nanotubes.

  17. Preparation of Lead-free Thick-film Resistor Pastes

    Institute of Scientific and Technical Information of China (English)

    LUO Hui; LI Shihong; LIU Jisong; CHEN Liqiao; YING Xingang; WANG Ke

    2012-01-01

    The preparation of lead-free thick-film resistors are reported:using RuO2 and ruthenates as conductive particles,glass powders composed of B2O3,SiO2,CaO and Al2O3 as insulating phase,adding organic matter which mainly consists of ethyl cellulose and terpineol to form printable pastes.Resistors were fabricated and sintered by conventional screen-printing on 96%Al2O3 substrates,and then sintering in a belt furnace.X-ray diffraction (XRD) and electron scanning microscopy (SEM) have been used to characterize the conductive particles.The resistors exhibit good retiring stability and low temperature coefficient of resistance.Sheet resistance spans from about 80 Ω/□ to 600 Ω/□.The resistors prepared are qualified for common use.

  18. Rice paper-derived 3D-porous carbon films for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: ► Carbonization of a rice paper (RP) results in a highly porous free-standing hard carbon film composed of carbon fibers. ► Free-standing LiFePO4@C laminate is prepared through a one-step co-sintering process. ► A RP-based full cell with reversible cycling characteristic is fabricated. -- Abstract: Rice paper (RP) is thermally carbonized in nitrogen to prepare three-dimensionally porous carbon films, which are used for the first time as both a free-standing active anode material and a current collector of a cathode (LiFePO4 here) for lithium-ion batteries. The latter is fabricated through a one-step co-sintering of a Li–Fe–P–O precursor top layer supported on the rice paper. The rate and cycling performances of both these electrodes are found to be rather good or even better than the traditional electrodes due to the three-dimensionally porous structure of the RP-derived carbon. We also design and fabricate an RP-based full cell constructed with the above mentioned anode and cathode together with an RP membrane as the separator. Without using traditional metallic current collectors and separator membranes, such a cell exhibits reversible cycling performance

  19. Method for the preparation of ferrous low carbon porous material

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  20. Diamond-like carbon film on 20 CrNiMo steel prepared by hollow-cathode glow discharge%20CrNiMo钢表面空心阴极辉光放电制备类金刚石膜

    Institute of Scientific and Technical Information of China (English)

    陈飞; 陈家庆; 周海; 张跃飞

    2011-01-01

    在真空炉内以石墨为电极,利用空心阴极辉光放电在20CrNiMo上成功地沉积了类金刚石(Diamond-like carbon,DLC)薄膜.利用激光拉曼(Baman)光谱分析了所制备DLC薄膜的结构;利用原子力显微镜(AFM)分析了DLC薄膜的表面形貌;利用划痕仪测量了DLC薄膜与基体的结合力并用扫描电子显微镜(SEM)观察了划痕形貌;利用球-盘摩擦磨损实验仪对DLC薄膜的耐磨性能进行了研究.结果表明:在本实验工艺条件下沉积的类金刚石薄膜厚度约为0.6μm,薄膜均匀且致密,表面粗糙度Ra为7~8 nm.类金刚石薄膜与基体结合较紧密,临界载荷达到52 N.DLC薄膜具有优良的减摩性,20CrNiMo表面沉积DLC薄膜后摩擦系数为0.15,较20CrNiMo基体的摩擦系数0.50明显减小,耐磨性能得到提高.%Diamond-like carbon (DLC) thin film was deposited on the sudace of 20CrNiMo ahoy by hollow cathode glow discharge technique. High purity graphite was selected as the cathode and Ar as working gas. The structure of the DLC thin film was analyzed by laser Raman spectroscopy. Surface morphology of the film was observed by atomic force microscope ( AFM ). The adhesion between the DLC thin film and the substrate was investigated with scratch testing. The morphology of the scratch was observed by scanning electron microscopy(SEM). Friction and wear behavior of the DLC thin film under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results show that it is feasible to prepare a DLC thin film of 0. 6 μm thick by this experimental process. The surface roughness Ra of the film is 7-8 nm. The DLC thin film has a good adhesion with critical load of 52 N by scratch testing. Excellent friction and wear-resistant behavior of the film is observed. Friction coefficient of the 20CrNiMo substrate is about 0.50 under dry sliding against steel, while the DLC thin film exhibited much lower friction coefficient of 0. 15 under the same testing condition.

  1. Preparation and properties of PSA for protective film of fluorine carbon aluminum-alloy profile%氟碳铝型材保护膜用压敏胶的制备与性能

    Institute of Scientific and Technical Information of China (English)

    何伟; 高明华; 姜云刚; 武鹏

    2013-01-01

    以丙烯酸丁酯(BA)和丙烯酸异辛酯(2-EHA)为软单体、甲基丙烯酸甲酯(MMA)为硬单体、丙烯酸(AA)和丙烯酸羟丙酯(HPA)为功能单体,采用降低PSA(压敏胶)的Tg(玻璃化转变温度)和预乳化半连续乳液聚合法合成了丙烯酸酯PSA乳液.研究结果表明:当m(软单体)∶m(硬单体)∶m(功能单体)=90∶5∶5、m(BA)∶m(2-EHA)=1∶2、w(AA)=1.0%、w(HPA)=5%、w(缓冲剂)=0.25%、w(引发剂)=w(复合乳化剂)=0.6%且m(阴离子型乳化剂)∶m(非离子型乳化剂)=1∶1时,PSA乳液的综合性能相对最好,用该PSA制成的保护膜对氟碳铝型材具有良好的附着力,并且其耐湿热老化性能和耐热老化性能俱佳.%With butyl acrylate(BA) and 2-ethylhexyl acrylate(2-EHA) as soft monomers,methyl melhacrylate (MMA) as hard monomer,acrylic acid(AA) and hydroxypropyl acrylate(HPA) as functional monomers,an acrylate PSA(pressure sensitive adhesive) emulsion was synthesized by reducing Tg(glass transition temperature) of PSA and pre-emulsifying semi-continuous emulsion polymerization. The research results showed that the PSA emulsion had the relatively best combination property because the adhesion between the protective film made by PSA and the fluorine carbon aluminum-alloy profiles was good,and the protective film had good wet-heat aging-resistance and heat aging-resistance when mass ratios of m(soft monomers):m(hard monomer):m(functional monomers) and m(BA):m(2-EHA) were 90:5:5 and 1:2 respectively,mass fractions of AA,HPA, buffering agent,initiator and composite emulsifier were 1.0%,5%,0.25%,0.6% and 0.6% respectively,and mass ratio of m(anionic emulsifier):m(non-ionic emulsifier) was 1:1.

  2. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  3. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    OpenAIRE

    Marcelo Marques Tusi; Michele Brandalise; Olandir Vercino Correa; Almir Oliveira Neto; Marcelo Linardi; Estevam Vitorio Spinacé

    2007-01-01

    PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent...

  4. Computational and experimental studies of strain sensitive carbon nanotube films

    OpenAIRE

    Bu, Lei

    2014-01-01

    The excellent electrical and mechanical properties of carbon nanotubes (CNTs) provide interesting opportunities to realize new types of strain gauges. However, there are still challenges for the further development of CNT film strain gauges, for instance the lack of design rules, the homogeneity, stability and reproducibility of CNT films. This thesis aims to address these issues from two sides: simulation and experiment. Monte Carlo simulations show that both the sheet resistance and gauge f...

  5. Characterization of amorphous hydrogenated carbon films deposited by MFPUMST at different ratios of mixed gases

    Indian Academy of Sciences (India)

    Haiyang Dai; Changyong Zhan; Hui Jiang; Ningkang Huang

    2012-12-01

    Amorphous hydrogenated carbon films (-C:H) on -type (100) silicon wafers were prepared with a middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different ratios of methane–argon gases. The band characteristics, mechanical properties as well as refractive index were measured by Raman spectra, X-ray photoelectron spectroscopy (XPS), nano-indentation tests and spectroscopic ellipsometry. It is found that the 3 fraction increases with increasing Ar concentration in the range of 17–50%, and then decreases when Ar concentration exceeds 50%. The nano-indentation tests reveal that nano-hardness and elastic modulus of the films increase with increasing Ar concentration in the range of 17–50%, while decreases with increasing Ar concentration from 50% to 86%. The variations in the nano-hardness and the elastic modulus could be interpreted due to different 3 fractions in the prepared -C:H films. The variation of refractive index with wavelength have the same tendency for the -C:H films prepared at different Ar concentrations, they decrease with increasing wavelength from 600 to 1700 nm. For certain wavelengths within 600–1700 nm, refractive index has the highest value at the Ar concentration of 50%, and it is smaller at the Ar concentration of 86% than at 17%. The results given above indicate that ratio of mixed gases has a strong influence on bonding configuration and properties of -C:H films during deposition. The related mechanism is discussed in this paper.

  6. High conductivity a-C:N thin films prepared by electron gun evaporation

    International Nuclear Information System (INIS)

    By employing electron beam evaporation, amorphous carbon nitride (a-C:N) thin films, with a low nitrogen content (∼ 1%), were prepared on Si(110) and glass substrates at about 150 deg. C. The source was a graphite target and an ambient of N2 was introduced into the growing chamber. The source-substrate distance (SSD) was the main parameter that was intentionally varied. Electron dispersion spectroscopy measurements indicate the nitrogen concentration in the layer as ∼ 1%. The dark electrical conductivity (σ) of layers was very sensitive to SSD variation, changing up to six orders of magnitude when this parameter was varied from 10.5 to 23.5 cm. A maximum value of σ = 1 x 103 Ω-1 cm-1 at room temperature was obtained when the SSD was equal to 15.5 cm. We have deduced that, in accordance with the Ferrari-Robertson model (FRM), our samples are localized in the second stage of the amorphization trajectory of FRM. When the SSD increases the C atoms have more probability to collide with N2 molecules, and the content of nitrogen in the a-C film increases. The amorphization trajectory followed by the films with an SSD increase is from nanocrystalline graphite to amorphous carbon. The changes in the amorphization are due to the nitrogen content in the layers

  7. Influence of duration time of CVD process on emissive properties of carbon nanotubes films

    Directory of Open Access Journals (Sweden)

    Stępinska Izabela

    2015-03-01

    Full Text Available In this paper various types of films made of carbon nanotubes (CNTs are presented. These films were prepared on different substrates (Al2O3, Si n-type by the two-step method. The two-step method consists of physical vapor deposition step, followed by chemical vapor deposition step (PVD/CVD. Parameters of PVD process were the same for all initial films, while the duration times of the second step - the CVD process, were different (15, 30 min.. Prepared films were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM and field emission (FE measurements. The I-E and F-N characteristics of electron emission were discussed in terms of various forms of CNT films. The value of threshold electric field ranged from few V/μm (for CNT dispersed rarely on the surface of the film deposited on Si up to ~20 V/μm (for Al2O3 substrate.

  8. Preparation of arrays of long carbon nanotubes using catalyst structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuntian T.; Arendt, Paul; Li, Qingwen; Zhang, Xiefie

    2016-03-22

    A structure for preparing an substantially aligned array of carbon nanotubes include a substrate having a first side and a second side, a buffer layer on the first side of the substrate, a catalyst on the buffer layer, and a plurality of channels through the structure for allowing a gaseous carbon source to enter the substrate at the second side and flow through the structure to the catalyst. After preparing the array, a fiber of carbon nanotubes may be spun from the array. Prior to spinning, the array can be immersed in a polymer solution. After spinning, the polymer can be cured.

  9. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  10. Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, S.M.A.; Khawaja, E.E. [Laser Research Section, Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Box 1831, 31261 Dhahran (Saudi Arabia); Salim, M.A.; Al-Kuhaili, M.F.; Al-Shukri, A.M. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia)

    2002-02-15

    Thin films of tungsten oxide have been prepared by thermal evaporation. The effect of preparation conditions (heating of substrates and oxygen environment) on the optical constants (n and k) of the films has been studied. Satisfactory derivation of n and k from the measured normal incidence transmittance of the films was achieved. It was found that (a) both n and k have larger values for films deposited on heated substrates than for those deposited on unheated substrates, and at a given substrate temperature, (b) both n and k have smaller values for films deposited in the oxygen atmosphere than those deposited without an introduction of oxygen in the chamber.Thermochromic colouration of the films was carried out by annealing the films in vacuum. The annealing of the films produced significant loss in the oxygen content (measured by X-ray photoelectron spectroscopy) and modulation of the transmittance for the films deposited on unheated substrates with or without the oxygen environment and films deposited on heated substrates with the oxygen. The loss in the oxygen content and the modulation of transmittance, however, were very small for films deposited on heated substrates without the oxygen. For annealed films, satisfactory derivation of n and k was achieved for films deposited on unheated substrates, while for films deposited on heated substrates this was not possible. This study revealed that upon annealing the optical properties of the films prepared in the oxygen environment were mainly absorptance-modulated, and those of the films without the oxygen were reflectance-modulated.

  11. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  12. Assembly and Applications of Carbon Nanotube Thin Films

    Institute of Scientific and Technical Information of China (English)

    Hongwei ZHU; Bingqing WEI

    2008-01-01

    The ultimate goal of current research on carbon nanotubes (CNTs) is to make breakthroughs that advance nanotechnological applications of bulk CNT materials. Especially, there has been growing interest in CNT thin films because of their unique and usually enhanced properties and tremendous potential as components for use in nano-electronic and nano-mechanical device applications or as structural elements in various devices. If a synthetic or a post processing method can produce high yield of nanotube thin films, these structures will provide tremendous potential for fundamental research on these devices. This review will address the synthesis, the post processing and the device applications of self-assembled nanotube thin films.

  13. Removal of Ozone by Carbon Nanotubes/Quartz Fiber Film.

    Science.gov (United States)

    Yang, Shen; Nie, Jingqi; Wei, Fei; Yang, Xudong

    2016-09-01

    Ozone is recognized as a harmful gaseous pollutant, which can lead to severe human health problems. In this study, carbon nanotubes (CNTs) were tested as a new approach for ozone removal. The CNTs/quartz fiber film was fabricated through growth of CNTs upon pure quartz fiber using chemical vapor deposition method. Ozone conversion efficiency of the CNTs/quartz fiber film was tested for 10 h and compared with that of quartz film, activated carbon (AC), and a potassium iodide (KI) solution under the same conditions. The pressure resistance of these materials under different airflow rates was also measured. The results showed that the CNTs/quartz fiber film had better ozone conversion efficiency but also higher pressure resistance than AC and the KI solution of the same weight. The ozone removal performance of the CNTs/quartz fiber film was comparable with AC at 20 times more weight. The CNTs played a dominant role in ozone removal by the CNTs/quartz fiber film. Its high ozone conversion efficiency, lightweight and free-standing properties make the CNTs/quartz fiber film applicable to ozone removal. Further investigation should be focused on reducing pressure resistance and studying the CNT mechanism for removing ozone.

  14. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.

    Science.gov (United States)

    Umeki, Nobuo; Sato, Takayuki; Harada, Masahiro; Takeda, Junko; Saito, Shuji; Iwao, Yasunori; Itai, Shigeru

    2011-02-14

    To achieve sustained release of 3-ethyl-4-(4-methylisoxazol-5-yl)-5-(methylthio) thiophene-2-carboxamide (BFB0261), a new potent osteogenic compound for treating bone disorders, we prepared film formulations containing BFB0261 and the following newly synthesized biodegradable polymers by a solvent casting technique: poly(D,L-lactic acid) (PLA), poly(D,L-lactic acid-co-glycolic acid) (PLGA), poly(D,L-lactic acid)-block-poly(ethylene glycol) (PLA-PEG), and poly(D,L-lactic acid-co-trimethylene carbonate) (PLA-TMC) polymers or copolymers. Powder X-ray diffractometry (PXRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and tensile testing were performed to examine the physicochemical properties of these films. Almost all the films exhibited a smooth and homogeneous surface, as observed by SEM. In addition, PXRD and DTA revealed that BFB0261 existed in an amorphous state in the films. The in vitro release of BFB0261 from PLA100 (M(w): 251 kDa), PLAPEG9604H (PLA/PEG ratio: 96:4; M(w): 181 kDa), PLAPEG8515H (PLA/PEG ratio: 85:15; M(w): 51.5 kDa), or PLAPEG8020 (PLA/PEG ratio: 80:20; M(w): 33.7 kDa) films followed zero-order kinetics with slow release up to 12 weeks following incubation. Although release of BFB0261 from PLA-TMC films followed first-order kinetics, sustained release of BFB0261 for 12 weeks was still observed for PLATMC8416 (PLA/TMC ratio: 84:16; M(w): 170 kDa) films. Furthermore, when the BFB0261-loaded films constructed from various polymers were implanted subcutaneously on rat backs, the PLAPEG8515H and PLATMC8416 films were capable of achieving sustained release of BFB0261 at the administrated site for 12 weeks. Therefore, the present data indicate that films constructed from PLAPEG8515H or PLATMC8416 may be applicable to bone or tissue engineering. PMID:21047548

  15. Preparation of films of a highly aligned lipid cubic phase.

    Science.gov (United States)

    Squires, Adam M; Hallett, James E; Beddoes, Charlotte M; Plivelic, Tomás S; Seddon, Annela M

    2013-02-12

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (Q(II)(D)) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L(3) phase) in the presence of butanediol, we can obtain a film of the Q(II)(D) phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that found in the oriented bulk material that we have reported previously; therefore, we can now reproducibly form Q(II)(D) samples oriented with either the [110] or the [100] axis aligned in the flow direction depending on the method of preparation. The deposition of MO as a film, via a moving fluid-air interface that leaves a coating of MO in the L(3) phase on the capillary wall, leads to a sample in the [110] orientation. This contrasts with the bulk material that we have previously demonstrated to be oriented in the [100] direction, arising from flow producing an oriented bulk slug of material within the capillary tube. The bulk sample contains significant amounts of residual butanediol, which can be estimated from the lattice parameter of the Q(II)(D) phase obtained. The sample orientation and lattice parameters are determined from synchrotron small-angle X-ray scattering patterns and confirmed by simulations. This has potential applications in the production of template materials and the growth of protein crystals for crystallography as well as deepening our understanding of the mechanisms underlying the behavior of lyotropic liquid-crystal phases. PMID:23347289

  16. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors

    International Nuclear Information System (INIS)

    Steam purified, carboxylic and ester functionalized single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) films with homogeneous distribution and flexible control of thickness and area were fabricated on polymeric and metallic substrates using a modified spray deposition technique. By employing a pre-sprayed polyelectrolyte, the adhesion of the carbon nanotube (CNT) films to the substrates was significantly enhanced by electrostatic interaction. Carboxylic and ester functionalization improved electrochemical performance when immersed in 0.1 M H2SO4 and the specific capacitance reached 155 and 77 F g-1 for carboxylic functionalized SWNT and MWNT films respectively. Compared with existing techniques such as hot pressing, vacuum filtration and dip coating, the ambient pressure spray deposition technique is suggested as particularly well suited for preparing CNT films at large scale for applications including providing electrodes for electrochemical supercapacitors and paper batteries.

  17. Friction of diamond-like carbon films in different atmospheres

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films constitute a class of new materials with a wide range of compositions, properties, and performance. In particular, the tribological properties of these films are rather intriguing and can be strongly influenced by the test conditions and environment. In this paper, we performed a series of model experiments in high vacuum and with various added gases to elucidate the influence of different test environments on the tribological behavior of three DLC films. Specifically, we studied the behavior of a hydrogen-free film produced by a cathodic arc process and two highly hydrogenated films produced by plasma-enhanced chemical-vapor deposition. Flats and balls used in our experiments were coated with DLC and tested in a pin-on-disc machine under a load of 1 N and at constant rotational frequency. With a low background pressure, in the 10(sup -6) Pa range, the highly hydrogenated films exhibited a friction coefficient of less than 0.01, whereas the hydrogen-free film gave a friction coefficient of approximately 0.6. Adding oxygen or hydrogen to the experimental environment changed the friction to some extent. However, admission of water vapor into the test chamber caused large changes: the friction coefficient decreased drastically for the hydrogen-free DLC film whereas it increased a bit for one of the highly hydrogenated films. These results indicate that water molecules play a prominent role in the frictional behavior of DLC films-most notably for hydrogen-free films but also for highly hydrogenated films

  18. Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Pei-Zeng; Li Rui-Shan; Pan Xiao-Jun; Xie Er-Qing

    2013-01-01

    ZnO nanoparticles-embedded hydrogenated diamond-like carbon (ZnO-DLC) films have been prepared by electrochemical deposition in ambient conditions.The morphology,composition,and microstructure of the films have been investigated.The results show that the resultant films are hydrogenated diamond-like carbon films embedded with ZnO nanoparticles in wurtzite structure,and the content and size of the ZnO nanoparticles increase with increasing deposition voltage,which are confirmed by X-ray photoelectron spectroscopy (XPS),Raman,and transmission electron microscope (TEM).Furthermore,a possible mechanism used to describe the growth process of ZnO-DLC films by electrochemical deposition is also discussed.

  19. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    Science.gov (United States)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  20. Effect of ZnO Addition on Structural Properties of ZnO-PANi/ Carbon Black Thin Films

    International Nuclear Information System (INIS)

    The aim of this project was to investigate the effect of ZnO addition on the structural properties of ZnO-PANi/ carbon black thin films. The sol gel method was employed for the preparation of ZnO sol. The sol was dried for 24 h at 100 degree Celsius and then annealed at 600 degree Celsius for 5 h. XRD characterization of the ZnO powder showed the formation of wurtzite type ZnO crystals. The ZnO powder were mixed into PANi/ carbon black solution which was dissolved into M-Pyrol, N-Methyl-2-Pyrrolidinone (NMP) to produce a composite solution of ZnO-PANi/ carbon black. The weight ratio of ZnO were 4 wt %, 6 wt % and 8 wt %. The composite solutions were deposited onto glass substrates using a spin-coating technique to fabricate ZnO-PANi/ carbon black thin films. AFM characterization showed the decreasing of average roughness from 7.98 nm to 2.23 nm with the increment of ZnO addition in PANi/ carbon black films. The thickness of the films also decreased from 59.5 nm to 28.3 nm. FESEM image revealed that ZnO-PANi/ carbon black thin films have changed into agglomerated surface morphology resulting in the increment of porosity of the films. (author)

  1. Synthesis and tribological behaviors of diamond-like carbon films by electrodeposition from solution of acetonitrile and water

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed

  2. Preparation and characterization of thick BSCCO 2223 films

    International Nuclear Information System (INIS)

    Among the most widespread applications for critical high-temperature ceramic superconductors are for silver veined tapes, with the superconductor in the middle. These tapes are prepared by the powder- in - tube method. To attain high densities of critical current, the ceramic material must have a certain texture, with the grains oriented with the c axis perpendicular to the direction in which the current circulates. In the system that was studied, the degree of orientation increases as the distance to the vein decreases, with the maximum being in the silver-ceramic inter-phase. Superconductor tapes become inconvenient when defining the ceramic, especially because of the orientation of their plates as a function of the distance to the silver. Although the silver can be dissolved by a chemical attack in order to uncover the ceramic, greater precaution is needed while manipulating the superconductor and obtaining representative data. The behavior of thick films of the compound BSCCO 2223, deposited on silver sheets, forming silver-ceramic composites, was studied. These sheets simulate the silver-ceramic inter-phase and the distribution of the grains towards the center in a thick tape. After the samples were prepared, the phases that were present were characterized by x-ray diffraction and the resulting microstructure was analyzed with a SEM (Scanning Electron Microscope). Its mechanical properties were evaluated, following the formation and propagation of cracks in real time using four point flexion microassays inside the SEM chamber, as well as generating tension-deformation curves. The method of preparation of the thick films is discussed and its influence on the results obtained with the different characterizations (cw)

  3. Mössbauer and Electrochemical Investigations of Carbon-Rich Fe1-xCx Films

    International Nuclear Information System (INIS)

    A thin film binary library of carbon-rich Fe1-xCx (0.47 ≤ x ≤ 0.97) alloys was prepared by combinatorial sputtering of carbon and iron. The sputtered library was characterized by X-ray diffraction and room temperature 57Fe Mössbauer effect spectroscopy to determine its microstructure. X-ray diffraction results show that the Fe1-xCx film is amorphous in the whole composition range of the library. For 0.52 ≤ x ≤ 0.59, a hyperfine field distribution and a quadrupole splitting distribution as obtained from Mössbauer spectra indicate the presence of a ferromagnetic phase and a paramagnetic phase in this regime. With increasing of carbon content, for 0.61 ≤ x ≤ 0.97, the sextet disappears and two paramagnetic doublets splitting appear suggesting two different Fe sites. The electrochemical performance of the Fe1-xCx film was investigated in lithium cells and the presence of Fe was found to increase the reversible capacity per mass of carbon over that of a pure carbon electrode

  4. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    International Nuclear Information System (INIS)

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  5. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yuki; Choi, Junho, E-mail: choi@mech.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  6. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Chen, Di; Wang, Xuemei [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States); Bykova, Julia S.; Zakhidov, Anvar A. [The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.

  7. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    OpenAIRE

    Marc in het Panhuis; Holly Warren; Higgins, Thomas M.

    2011-01-01

    The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that ...

  8. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  9. Controllable preparation of nanosized TiO2 thin film and relationship between structure of film and its photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    WEI; Gang; (魏刚); ZHANG; Yuanjing; (张元晶); XIONG; Rongchun; (熊蓉春)

    2003-01-01

    TiO2 nano-crystalline film and fixed bed photocatalytic reactor were prepared by the sol-gel process using tetrabutylorthotitanate as a precursor and glass tube as the substrate. XRD, AFM, SEM and thickness analysis results indicate that the preparation of nano-crystalline film can be controlled by optimizing experiment process. Under the optimized process, the phase of TiO2 in film is anatase, and the grain size is 3-4 nm. The size of particles, which is about 20-80 nm, can be controlled. The thickness of monolayer film is in nanometer grade. The thickness and particles size in films growing on nanometer film can also be controlled in nanometer grade. As a result, the crack of film can be effectively avoided. Rhodamine B degradation results using UV-Vis spectrophotometer show that the activity of nano-crystalline film in the photocatalytic reactor has a good relation with the diameter of TiO2 particles, that is, the film shows high activity when the size is 20-30 nm and greatly reduced when the size is above 60 nm. The activity of film does not decrease with the increase of film thickness, and this result indicates that nano-crystalline film has no ill influence on the transmissivity of ultraviolet light.

  10. [FTIR spectroscopic studies of inner stress on boron carbon nitride thin films].

    Science.gov (United States)

    Wang, Yu-Xin; Zheng, Ya-Ru; Song, Zhe; Feng, Ke-Cheng; Zhao, Yong-Nian

    2008-07-01

    Boron carbon nitride thin films were deposited by radio frequency (RF) magnetron sputtering technique using a 50 mm-diameter composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The composite target was composed of two semi disks: one of h-BN and the other one of graphite. The distance between the target and the substrate was kept at 50 mm. The chamber base pressure was below 5 x 10(-4) Pa. During the deposition, the mixture of Ar (80%) and N2 (20%) was injected into the vacuum chamber and the total pressure was 1.3 Pa. The films were grown on silicon substrates at different deposition parameters, including sputtering power of 80-130 W, deposition temperature of 300-500 degrees C and deposition time of 1-4 h. The chemical bonding state of the samples was characterized by Fourier transform infrared absorption spectroscopy (FTIR). The results suggested that all of the films deposited at these deposition parameters are atomic-level hybrids composed of B, C and N atoms. Besides BN and carbons bonds, the boron carbide and carbon nitride bonds were formed in the BCN thin films. And the deposition parameters have important influences on the growth and inner stress of BCN thin films. That is the higher the sputtering power, the larger the inner stress; the higher or lower the deposition temperature, the larger the inner stress; the longer the deposition time, the larger the inner stress. So changing deposition parameters properly is a feasible method to relax the inner stress between the films and substrate. In the conditions of changing one parameter each time, the optimum deposition parameters to prepare BCN thin films with lower inner stress were obtained: sputtering power of 80 W, deposition temperature of 400 degrees C and deposition time of 2 h.

  11. Transparent Films from CO2‐Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing

    Science.gov (United States)

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter

    2016-01-01

    Abstract Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  12. Preparation of microporous activated carbons based on carbonized apricot shells

    Directory of Open Access Journals (Sweden)

    Vladimir Pavlenko

    2014-10-01

    Full Text Available Results of applying the method of thermo-oxidative modification of fiber, based on the shell of apricot along with producing on its base microporous activated carbons that have high specific surface area and a significant amount of micropores were presented. The paper contains analysis and interpretation data of changes in the structure and composition of samples, which occurring as a result of thermal degradation of lignocellulosic materials. Morphological features of the surface of produced activated carbons were studied by using SEM microscopy; the pore structure and specific surface area were investigated using the method of low-temperature nitrogen adsorption.

  13. Reactive Bonding Film for Bonding Carbon Foam Through Metal Extrusion

    CERN Document Server

    Chertok, Maxwell; Irving, Michael; Neher, Christian; Tripathi, Mani; Wang, Ruby; Zheng, Gayle

    2016-01-01

    Future tracking detectors, such as those under development for the High Luminosity LHC, will require mechanical structures employing novel materials to reduce mass while providing excellent strength, thermal conductivity, and radiation tolerance. Adhesion methods for such materials are under study at present. This paper demonstrates the use of reactive bonding film as an adhesion method for bonding carbon foam.

  14. Plasma-enhanced Deposition of Nano-Structured Carbon Films

    Institute of Scientific and Technical Information of China (English)

    Yang Qiaoqin (杨巧勤); Xiao Chijin (肖持进); A. Hirose

    2005-01-01

    By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD).Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310 ℃~550 ℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260 ℃.

  15. Scattering of terahertz radiation from oriented carbon nanotube films

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Jepsen, Peter Uhd; Schroeder, Nicholas;

    2009-01-01

    Session title: IThC-THz Interactions with Condensed Matter. We report on the use of terahertz time-domain spectroscopy to measure scattering from multi-walled carbon nanotubes aligned normal to the film plane. Measurements indicate scattering from the nanotubes is significantly stronger than...

  16. Tribological behavior and film formation mechanisms of carbon nanopearls

    Science.gov (United States)

    Hunter, Chad Nicholas

    Carbon nanopearls (CNPs) are amorphous carbon spheres that contain concentrically-oriented nanometer-sized graphitic flakes. Because of their spherical shape, size (˜150 nm), and structure consisting of concentrically oriented nano-sized sp2 flakes, CNPs are of interest for tribological applications, in particular for use in solid lubricant coatings. These studies were focused on investigating mechanisms of CNP lubrication, development of methods to deposit CNP onto substrates, synthesizing CNP-gold hybrid films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) and magnetron sputtering, and studying plasmas and other species present during film deposition using an Electrostatic Quadrupole Plasma (EQP) analyzer. CNPs deposited onto silicon using drop casting with methanol showed good lubricating properties in sliding contacts under dry conditions, where a transfer film was created in which morphology changed from nano-sized spheres to micron-sized agglomerates consisting of many highly deformed CNPs in which the nano-sized graphene flakes are sheared from the wrapped layer structure of the CNPs. The morphology of carbon nanopearl films deposited using a MAPLE system equipped with a 248 nm KrF excimer laser source was found to be influenced by multiple factors, including composition of the matrix solvent, laser energy and repetition rate, background pressure, and substrate temperature. The best parameters for depositing CNP films that are disperse, droplet-free and have the maximum amount of material deposited are as follows: toluene matrix, 700 mJ, 1 Hz, 100°C substrate temperature, and unregulated vacuum pressure. During depositions using MAPLE and sputtering in argon, electron ionization of toluene vapor generated from the MAPLE target and charge exchange reactions between toluene vapor and the argon plasma generated by the magnetron caused carbon to be deposited onto the gold sputter target. Thin films deposited under these conditions contained high

  17. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    McCann, R. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Roy, S.S. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)]. E-mail: s.sinha-roy@ulster.ac.uk; Papakonstantinou, P. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Bain, M.F. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); Gamble, H.S. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); McLaughlin, J.A. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)

    2005-06-22

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN {sub x}), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN {sub x} containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three {pi}* resonance peaks at the {sup '}N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains.

  18. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    Science.gov (United States)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  19. Preparation and Characterization of InAs/Si Composite Film

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; LI Guang-Hai; ZHENG Mao-Jun; ZHANG Li-De

    2000-01-01

    Composite thin films consisting of nanosized InAs particles embedded in amorphous Si matrices were prepared by radio frequency co-sputtering of InAs and Si. X-ray diffraction spectra show that the particle size of InAs increases with the increasing annealing temperature, while the particle sizes of In and As reach their maximum values at the temperature of 200℃, and decrease with the further increase of the annealing temperature. In and As can not exist in the 500℃ sample due to the sublimation of In and As and the reaction In+As→InAs. The composition of the film in different levels was analyzed. We found that only in the deep level, the mole contents of As and In conform to the stoichiometric ratio and the oxidation occurs only a few nanometers from the surface. We believe that the scarcity of In and As near the surface is due to the sublimation of In and the oxide of As.

  20. Preparation of PtRu/carbon hybrids by hydrothermal carbonization process

    Directory of Open Access Journals (Sweden)

    Marcelo Marques Tusi

    2007-06-01

    Full Text Available PtRu/Carbon hybrids were prepared by hydrothermal carbonization process using glucose or starch as carbon sources and reducing agents and platinum and ruthenium salts as catalysts of carbonization process and metals source. The obtained PtRu/Carbon materials were characterized by SEM/EDX, TGA, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique aiming fuel cell application. The catalytic activity was dependent of carbon source and time used in the synthesis.

  1. CRYSTALLINE CARBON NITRIDE THIN FILMS DEPOSITED BY MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong-ping; Gu You-song; Chang Xiang-rong; Tian Zhong-zhuo; Shi Dong-xia; Zhang Xiu-fang; Yuan lei

    2000-01-01

    The crystalline carbon nitride thin films have beenprepared on Si (100) substrates using microwave plasma chemical vapordeposition technique. The experimental X-ray diffractionpattern of the films prepared contain all the strongpeaks of -C3N4 and -C3N4, but most of thepeaks are overlapped.The films are composed of -C3N4 and -C3N4.The N/C atomic ratio isclose to the stoichiometric value 1.33. X-ray photoelectronspectroscopic analysis indicated that thebinding energies of C 1s and N 1s are 286.43eV and 399.08 eV respectively.The shifts are attributed to the polarization of C-N bond. Bothobserved Raman and Fourier transform infrared spectra werecompared with the theoretical calculations. The results support theexistence of C-N covalent bond in - and -C3N4 mixture.

  2. Transparent conducting film: Effect of mechanical stretching to optical and electrical properties of carbon nanotube mat

    Indian Academy of Sciences (India)

    Tsuyoshi Saotome; Hansang Kim; David Lashmore; H Thomas Hahn

    2011-07-01

    We describe in this paper a transparent conducting film (TCF). It is a fibrous layer of multiwalled carbon nanotubes (MWNTs), labeled a dilute CNT mat, that was prepared and unidirectionally stretched to improve both the optical and electrical properties. After stretching by 80% strain, transmittance at 550 nm wavelength was improved by 37% and sheet resistance was reduced to 71% of the original value. The improvement of the transmittance can be explained by increased area of the CNT mat after stretch, and the reduced sheet resistance can be explained by increased density of the CNT alignment in lateral direction due to contraction. Based on the microscopic observation before and after stretch, models to describe the phenomena are proposed. By further expanding on this method, it may be possible to obtain a transparent conducting carbon nanotube film which is crack-resistant for solar cell applications.

  3. Special Polymer/Carbon Composite Films for Detecting SO2

    Science.gov (United States)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  4. Structure and photoluminescence of films composed of carbon nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi@cqut.edu.cn [College of Mechanical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054, P R China (China); Li, Lin [College of Chemistry, Chongqing Normal University, Chongqing 401331, P R China (China); Cheng, Qijin [School of Energy Research, Xiamen University, Xiamen 361005, P R China (China); He, Chunlin [Liaoning Provincial Key Laboratory of Advanced Materials, Shenyang University, Shenyang 110044, P R China (China)

    2015-05-15

    Carbon nanoflake films (CNFFs) were directly synthesized by plasma-enhanced hot filament chemical vapor deposition. The results of field emission scanning electron microscope, transmission electron microscope, micro-Raman spectroscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope indicate that the CNFFs are composed of bending carbon nanoflakes with the hydrocarbon and hydroxyl functional groups, and the carbon nanoflakes become thin in a long deposition time. The structural change of carbon nanoflakes is related to the formation of structural units and the aggregation of hydrocarbon radicals near the carbon nanoflakes. Moreover, the photoluminescence (PL) properties of CNFFs were studied in a Ramalog system and a PL spectroscope. The PL results indicate that the PL intensity of CNFFs is lowered with the increase of thickness of CNFFs. The lowering of PL intensity for the thick CNFFs originates from the effect of more dangling bonds in the CNFFs. In addition, we studied the structural difference of carbon nanoflakes grown by different CVD systems and the PL difference of carbon nanoflakes in different measurement systems. The results achieved here are important to control the growth and structure of graphene-based materials and fabricate the optoelectronic devices related to carbon-based materials. - Highlights: • Carbon nanoflake films (CNFFs) were synthesized by PEHFCVD. • The structure of CNFFs is related to the aggregation of carbon hydrocarbon radicals. • The PL intensity of CNFFs is lowered with the thickness increase of CNFFs. • The change of PL intensity of CNFFs is due to the dangling bonds in CNFFs. • The widening of PL bands of CNFFs results from the diversity of carbon nanofalkes.

  5. Optical and interfacial electronic properties of diamond-like carbon films

    Science.gov (United States)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  6. Hydorgen sputtering of carbon thin films deposited on platinum

    International Nuclear Information System (INIS)

    Carbon has been suggested as a suitable low Z element for the lining of the first walls of controlled thermonuclear reactors in order to reduce radiative plasma losses due to sputtering. In this paper the measurement of sputtering of carbon thin films by protons in the energy range 0.6-10.0 keV, is described. H2+ or H3+ ions were used as bombarding ions to obtain equivalent H+ sputtering yields at energies below that at which the ion source provides sufficient proton current. The sputter yield was found to range from 7x10-3-1.5x10-2 atoms/proton with a broad maximum in the 2.0 keV region with the carbon film kept near ambient temperature. (B.D.)

  7. Carbon Nanotubes for Thin Film Transistor: Fabrication, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Yucui Wu

    2013-01-01

    Full Text Available We review the present status of single-walled carbon nanotubes (SWCNTs for their production and purification technologies, as well as the fabrication and properties of single-walled carbon nanotube thin film transistors (SWCNT-TFTs. The most popular SWCNT growth method is chemical vapor deposition (CVD, including plasma-enhanced chemical vapor deposition (PECVD, floating catalyst chemical vapor deposition (FCCVD, and thermal CVD. Carbon nanotubes (CNTs used to fabricate thin film transistors are sorted by electrical breakdown, density gradient ultracentrifugation, or gel-based separation. The technologies of applying CNT random networks to work as the channels of SWCNT-TFTs are also reviewed. Excellent work from global researchers has been benchmarked and analyzed. The unique properties of SWCNT-TFTs have been reviewed. Besides, the promising applications of SWCNT-TFTs have been explored. Finally, the key issues to be solved in future have been summarized.

  8. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    Science.gov (United States)

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  9. Structure and Magnetic Properties of Fe-N Films Prepared by Dual Ion Beam Sputtering

    Institute of Scientific and Technical Information of China (English)

    诸葛兰剑; 吴雪梅; 汤乃云; 叶春兰; 姚伟国

    2001-01-01

    Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).``

  10. Nanotribological performance of fullerene-like carbon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico); Chiñas-Castillo, Fernando, E-mail: fernandochinas@gmail.com [Department of Mechanical Engineering, Instituto Tecnológico de Oaxaca, Oaxaca, Oax. Calz. Tecnológico No. 125, CP. 68030, Oaxaca, Oax. (Mexico); Espinoza-Beltrán, Francisco Javier [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico)

    2014-09-30

    Highlights: • Fullerene-like CNx samples show an elastic recovery of 92.5% and 94.5% while amorphous CNx samples had only 75% elastic recovery. • Fullerene-like CNx films show an increment of 34.86% and 50.57% in fractions of C 1s and N 1s. • Fullerene-like CNx samples show a lower friction coefficient compared to amorphous CNx samples. • Friction reduction characteristics of fullerene-like CNx films are strongly related to the increase of sp{sup 3} CN bonds. - Abstract: Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009–0.022) that is lower than amorphous CNx films (CoF ∼ 0.028–0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp{sup 3} CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  11. Endo- and exohedral carbon nanotube hybrids: Preparation and spectroscopic characterisation

    Science.gov (United States)

    Cambre, Sofie

    One of the most fascinating properties of carbon nanotubes (CNTs) is that their external surface as well as their inner hollow space can be used to adsorb or encapsulate various molecules, thereby creating so-called exo- and endohedral nanohybrids that combine the properties of the individual components with new functionalities which originate from the interaction between both materials. In this thesis, different endo- and exohedral CNT-hybrids are investigated by means of a range of spectroscopic techniques, in particular UV/Vis absorption, steady-state and time-resolved fluorescence, resonant Raman scattering (RRS) and electron paramagnetic resonance (EPR). The solubilisation of the CNTs with bile salt surfactants, yielding highly concentrated solutions of individually isolated CNTs in water, is investigated with spin-probe EPR. The spin-probe is incorporated inside the micellar layer wrapping the CNTs and the dynamics and orientation of this spin-probe is studied by EPR. In this thesis it is demonstrated that the encapsulation of water in pre-opened CNTs can be probed by resonant Raman scattering of the radial breathing modes of the CNTs. The frequencies of these modes, as well as the electronic resonances of the CNTs are shifted upon water-filling. Therefore it was possible to set up a technique to quantitatively monitor the opening/closing and water-filling of CNTs after different chemical and mechanical treatments. Exohedral porphyrin/CNT hybrids were prepared and investigated by EPR. It was found that metallic CNTs are stronger pi-acceptors than semiconducting CNTs. After solubilising the nanohybrids using bile salts, we obtained, for the first time, the isolated nanohybrids in solution in the pure form. The absorption spectrum of these porphyrins in the nanohybrids is strongly red shifted compared to the free porphyrin absorption. In addition also a quasi-complete quenching of the porphyrin fluorescence is observed. Finally endohedral CNT hybrids, using

  12. Microstructural studies of nanocomposite thin films of Ni/CrN prepared by reactive magnetron sputtering.

    Science.gov (United States)

    Kuppusami, P; Thirumurugesan, R; Divakar, R; Kataria, S; Ramaseshan, R; Mohandas, E

    2009-09-01

    Synthesis and characterization of nanocomposites of Ni/CrN thin films prepared by DC magnetron sputtering from a target of 50 wt.%Ni-50 wt.%Cr is investigated. The films prepared as a function of nitrogen flow rate and substrate temperature showed that the films contained Ni and CrN phases with crystallite sizes in the nanometer range. Measurement of nanomechanical properties of the composite films exhibited a significant decrease in the values of hardness and Young's modulus than those of pure CrN films. PMID:19928270

  13. Preparation of microporous activated carbons based on carbonized apricot shells

    OpenAIRE

    Vladimir Pavlenko; Sergey Anurov; Zulkhair Mansurov; Bijsenbaev Makhmut; Tatyana Konkova; Seithan Azat; Sandugash Tanirbergenova; Nurzhamal Zhylybaeva

    2014-01-01

    Results of applying the method of thermo-oxidative modification of fiber, based on the shell of apricot along with producing on its base microporous activated carbons that have high specific surface area and a significant amount of micropores were presented. The paper contains analysis and interpretation data of changes in the structure and composition of samples, which occurring as a result of thermal degradation of lignocellulosic materials. Morphological features of the surface of produced...

  14. Lithium storage properties of multiwall carbon nanotubes prepared by CVD

    International Nuclear Information System (INIS)

    Full text: Multiwall carbon nanotubes (MWCNTs) were synthesised by chemical vapour deposition (CVD) method using acetylene gas. The XRD pattern of as prepared carbon nanotubes showed that the d002 value is 3.44 Angstroms. The morphology and microstructure of carbon nanotubes were characterized by HRTEM. Most of carbon nanotubes are entangled together to form bundles or ropes. The diameter of the carbon nanotubes is in the range of 10 ∼ 20 nm. There is a small amount of amorphous carbon particles presented in the sample. However, the yield of carbon nanotubes is more than 95%. Electrochemical properties of carbon nanotubes were characterised via a variety of electrochemical testing techniques. The result of CV test showed that the Li insertion potential is quite low, which is very close to O V versus Li+/Li reference electrode, whereas the potential for Li de-intercalation is in the range of 0.2-0.4 V. There exists a slight voltage hysteresis between Li intercalation and Li de-intercalation, which is similar to the other carbonaceous materials. The intensity of redox peaks of carbon nanotubes decrease with scanning cycle, indicating that the reversible Li insertion capacity gradually decreases. The carbon nanotubes electrode demonstrated a reversible lithium storage capacity of 340 mAh/g with good cyclability at moderate current density. Further improvement of Li storage capacity is possible by opening the end of carbon nanotubes to allow lithium insertion into inner graphene sheet of carbon nanotubes. The kinetic properties of lithium insertion in carbon nanotube electrodes were characterised by a.c. impedance measurements. It was found that the lithium diffusion coefficient dLi decreases with an increase of Li ion concentration in carbon nanotube host

  15. Characterization of hafnium oxide thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M F [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Durrani, S M A [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khawaja, E E [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2004-04-21

    Thin films of hafnium oxide were deposited by electron beam evaporation. The effects of the substrate temperature and the oxygen partial pressure on the refractive index and carbon monoxide sensing properties of the films were studied. The films were characterized using x-ray diffraction and x-ray photoelectron spectroscopy techniques. Films deposited on unheated substrates were amorphous, whereas those deposited on heated substrates showed a mixture of amorphous and polycrystalline structure. All the films were found to be optically inhomogeneous. The inhomogeneity of the films was taken into account in the determination of their refractive indices. It was found that the porosity (as reflected by the refractive indices) of the films was the main factor that affected the sensitivity of the films in relation to their detection of carbon monoxide.

  16. Characterization of hafnium oxide thin films prepared by electron beam evaporation

    International Nuclear Information System (INIS)

    Thin films of hafnium oxide were deposited by electron beam evaporation. The effects of the substrate temperature and the oxygen partial pressure on the refractive index and carbon monoxide sensing properties of the films were studied. The films were characterized using x-ray diffraction and x-ray photoelectron spectroscopy techniques. Films deposited on unheated substrates were amorphous, whereas those deposited on heated substrates showed a mixture of amorphous and polycrystalline structure. All the films were found to be optically inhomogeneous. The inhomogeneity of the films was taken into account in the determination of their refractive indices. It was found that the porosity (as reflected by the refractive indices) of the films was the main factor that affected the sensitivity of the films in relation to their detection of carbon monoxide

  17. Preparation and characterization of Cu-In-S thin films by electrodeposition

    International Nuclear Information System (INIS)

    In this paper, we report the preparation and characterization of Cu-In-S thin films on stainless steel prepared by electrodeposition technique. The electrolytic bath used for preparation of the thin films consists of metal salts dissolved in a buffer solution. This buffer solution can control the formation and composition of thin films. In order to get adequate crystalline of CuInS2 thin films, the as deposited films were annealed in N2-atmosphere. Samples were characterized using X-ray diffraction (XRD), electron probe micro-analysis (EPMA), and scanning electron microscopy (SEM). The band-gap value of the material was estimated using optical transmittance and reflectance data on thin films deposited on commercial glass/indium tin oxide (ITO) substrates. It was found that the band-gap of the films is close to 1.5 eV

  18. Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film.

    Science.gov (United States)

    Xu, Qing Chi; Wellia, Diana V; Amal, Rose; Liao, Dai Wei; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2010-07-01

    A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti precursors and organic solvents. The N-doped titania films were prepared from heating aqueous peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure glass substrates were superhydrophilic after being heated at 500 degrees C for 1 h. Nitrogen concentrations in the titania films were adjusted by changing the amount of ammonia solution. The optimal photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial self-cleaning glass under the same visible light illumination. The current reported preparative technique is generally applicable for the preparation of other thin films.

  19. 二氧化钛/碳纤维多孔薄膜的制备及其催化性能%Preparation and photocatalytic performances of TiO2/carbon fiber porous film

    Institute of Scientific and Technical Information of China (English)

    朱曜峰; 王艳; 傅雅琴

    2011-01-01

    以聚乙二醇(PEG)为制孔剂,通过溶胶凝胶浸渍涂覆法和烧结法将二氧化钛(TiO2)负载于经表面修饰的碳纤维(CF)上,制备多孔TiO2/CF光催化材料.采用场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)表征材料的形貌和晶型结构,研究TiO2/CF光催化材料对甲基橙溶液的吸附性能,并以质量浓度为80 mg/L的甲基橙溶液为目标降解物,测试材料在紫外光照下的催化性能.结果表明:PEG制孔剂对得到的TiO2/CF光催化材料表面形态和TiO2晶型结构有明显的影响;多孔TiO2/CF光催化材料对偶氮类甲基橙染料的吸附符合准二级动力学方程,且吸附量随PEG分子质量的增大而增加;PEG分子质量为2000时,可得到具有良好催化效果的多孔TiO/CF材料.%Porous titanium dioxide/carbon fiber (TiO2/CF) photocatalytic material was prepared by loading titanium dioxide on the surface of carbon fiber through the sol-gel dip-coating technology and sinter method using polyethylene glycol (PEG) as a pore-foaming agent. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were utilized to characterize the morphology and crystal structure of the material. The adsorption of methyl orange on TiO2/CF was studied, and its photocatalytic property under UV irradiation was tested with methyl orange (MO, 80 mg/L ) as a degradation object. It was revealed that the morphology and crystal structure of TiO2/CF were remarkably influenced by the PEG pore-foaming agent. The adsorption kinetic process of TiO2/CF to methyl orange solution fitted very well with the pseudo-second-order kinetic equation, and the adsorption capacity of TiO2/CF increased with the increase of PEG molecules. The porous TiO2/CF obtained using PEG 2000displayed excellent catalytic performance.

  20. Friction force microscopy study of annealed diamond-like carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Seok; Joung, Yeun-Ho [School of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Heo, Jinhee [Materials Safety Evaluation Group, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Hong, Byungyou, E-mail: byhong@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  1. Preparation and Characterization of a Calcium Carbonate Aerogel

    Directory of Open Access Journals (Sweden)

    Johann Plank

    2009-01-01

    Full Text Available We report on a facile method for the preparation of a calcium carbonate aerogel consisting of aggregated secondary vaterite particles with an approximate average diameter of 50 nm. It was synthesized via a sol-gel process by reacting calcium oxide with carbon dioxide in methanol and subsequent supercritical drying of the alcogel with carbon dioxide. The resulting monolith was opaque, brittle and had overall dimensions of 6×2×1 cm. It was characterized by X-ray powder diffraction, nitrogen adsorption method (BET, and scanning electron microscopy.

  2. Thickness Effects of TiC Interlayer on Tribological Properties of Diamond-Like Carbon Prepared by Unbalanced Magnetron Sputtering Method.

    Science.gov (United States)

    Park, Chulmin; Lee, Jaehyeong; Park, Yong Seob

    2015-11-01

    We investigated the tribological properties of diamond-like carbon (DLC) films prepared with TiC interlayer of various thicknesses as the adhesive layer. DLC and TiC thin films were prepared using unbalanced magnetron (UBM) sputtering method using graphite and titanium as targets. TiC films as the interlayer were deposited under DLC films and various physical, tribological, and structural properties of the films fabricated with various TiC interlayer thicknesses were investigated. With various TiC interlayer thicknesses under DLC films, the tribological properties of films were improved with increasing thickness and the DLC/TiC layer fabricated by unbalanced magnetron sputtering method are exhibited maximum high hardness over 27 GPa and high elastic modulus over 242 GPa, and a smooth surface below 0.09 nm.

  3. Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes

    Science.gov (United States)

    Brousse, K.; Huang, P.; Pinaud, S.; Respaud, M.; Daffos, B.; Chaudret, B.; Lethien, C.; Taberna, P. L.; Simon, P.

    2016-10-01

    Carbide derived carbons (CDCs) are promising materials for preparing integrated micro-supercapacitors, as on-chip CDC films are prepared via a process fully compatible with current silicon-based device technology. These films show good adherence on the substrate and high capacitance thanks to their unique nanoporous structure which can be fine-tuned by adjusting the synthesis parameters during chlorination of the metallic carbide precursor. The carbon porosity is mostly related to the synthesis temperature whereas the thickness of the films depends on the chlorination duration. Increasing the pore size allows the adsorption of large solvated ions from organic electrolytes and leads to higher energy densities. Here, we investigated the electrochemical behavior and performance of on-chip TiC-CDC in ionic liquid solvent mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) diluted in either acetonitrile or propylene carbonate via cyclic voltammetry and electrochemical impedance spectroscopy. Thin CDC films exhibited typical capacitive signature and achieved 169 F cm-3 in both electrolytes; 65% of the capacitance was still delivered at 1 V s-1. While increasing the thickness of the films, EMI+ transport limitation was observed in more viscous PC-based electrolyte. Nevertheless, the energy density reached 90 μW h cm-2 in 2M EMIBF4/ACN, confirming the interest of these CDC films for micro-supercapacitors applications.

  4. Preparation Of Transparent Conducting Zinc Oxide Films By RF Reactive Sputtering

    Science.gov (United States)

    Vasanelli, L.; Valentini, A.; Losacco, A.

    1986-09-01

    Transparent conducting zinc oxide films have been prepared by reactive sputtering in an Ar/H2 mixture. The optical and electrical properties of the films are presented and discussed. The effects of some post-deposition thermal treatment have been also investigated. ZnO/CdTe heterojunctions have .been prepared by sputtering ZnO films on CdTe single crystals. The photovoltaic conversion efficiencies of the obtained solar cells was 6.8%.

  5. Carbide-Derived Carbon Films for Integrated Electrochemical Energy Storage

    Science.gov (United States)

    Heon, Min

    Active RFID tags, which can communicate over tens or even hundreds of meters, MEMS devices of several microns in size, which are designed for the medical and pharmaceutical purposes, and sensors working in wireless monitoring systems, require microscale power sources that are able to provide enough energy and to satisfy the peak power demands in those applications. Supercapacitors have not been an attractive candidate for micro-scale energy storage, since most nanoporous carbon electrode materials are not compatible with micro-fabrication techniques and have failed to meet the requirements of high volumetric energy density and small form factor for power supplies for integrated circuits or microelectronic devices or sensors. However, supercapacitors can provide high power density, because of fast charging/discharging, which can enable self-sustaining micro-modules when combined with energy-harvesting devices, such as solar cell, piezoelectric or thermoelectric micro-generators. In this study, carbide-derived carbon (CDC) films were synthesized via vacuum decomposition of carbide substrates and gas etching of sputtered carbide thin films. This approach allowed manufacturing of porous carbon films on SiC and silicon substrates. CDC films were studied for micro-supercapacitor electrodes, and showed good double layer capacitance. Since the gas etching technique is compatible with conventional micro-device fabrication processes, it can be implemented to manufacture integrated on-chip supercapacitors on silicon wafers.

  6. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    International Nuclear Information System (INIS)

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes of the bias voltage. Raman measurements show a similar bonding regardless of the voltages used. A columnar growth and a tile-like microstructure of the DLC films were identified by scanning electron microscopy. Patch sizes can be correlated with the deposition conditions. The coefficient of friction (CoF) of DLC film coated HNBR was found to be much lower than that of the unprotected rubber, and more reduced for the DLC films with smaller patch sizes, which is explained by a better flexibility and conformity of the film during testing. In one of the samples, unexpected low CoF was observed, which was attributed to a modification of the mechanical properties of the rubber during the plasma treatment at high voltage. This issue was confirmed by X-ray photoelectron spectroscopy, which indicated a modification of the cross linking in the rubber. - Highlights: ► Bias voltage does not vary the chemical bonding and surface morphology of films. ► Film structure is patched, whose size depends on the etching and deposition voltages. ► The frictional behavior can be correlated with the patch size of the films. ► Surface analysis showed that rubber x-linking is modified by etching at high voltage. ► Modification of rubber x-linking leads to a different frictional behavior.

  7. Effect of humidity on microstructure and properties of YBCO films prepared by Electron Beam Coevaporation

    Institute of Scientific and Technical Information of China (English)

    WANG LianHong; SHU YongHua; FAN Jing

    2012-01-01

    YBCO superconducting films were prepared by Electron Beam Coevaporation method.All the YBCO films were annealed at 760℃ in humidity range of 2.3%-9.5%.Microstructure of the YBCO thin films was analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM).Superconducting properties of the YBCO films were measured by electromagnetic induction method.XRD results showed that c-axis-oriented grains existed in the YBCO films.Morphologies of the YBCO films showed that all the films had a smooth and crack-free surface.YBCO films prepared at 7.3% humidity condition showed Jc value of 4.6 MA cm-2 at 77 K in self-field.

  8. Preparation and Properties of Non-Crosslinked and Ionically Crosslinked Chitosan/Agar Blended Hydrogel Films

    OpenAIRE

    Mahmoud Nasef, Mohamed; Esam A. El-hefian; Saalah, Sariah; Yahaya, Adul Hamid

    2011-01-01

    Hydrogel films of chitosan (Cs) and agar blends of various proportions were prepared using physical solution blending. Some of the obtained films were ionically cross-linked by treatment with calcium chloride solution. The obtained films were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry analysis (TGA), differential scanning calorimetery (DSC) and universal mechanical tester. The non-crosslinked Cs/agar blended films showed lower water swelling, melting tem...

  9. Method and apparatus for making diamond-like carbon films

    Science.gov (United States)

    Pern, Fu-Jann; Touryan, Kenell J.; Panosyan, Zhozef Retevos; Gippius, Aleksey Alekseyevich

    2008-12-02

    Ion-assisted plasma enhanced deposition of diamond-like carbon (DLC) films on the surface of photovoltaic solar cells is accomplished with a method and apparatus for controlling ion energy. The quality of DLC layers is fine-tuned by a properly biased system of special electrodes and by exact control of the feed gas mixture compositions. Uniform (with degree of non-uniformity of optical parameters less than 5%) large area (more than 110 cm.sup.2) DLC films with optical parameters varied within the given range and with stability against harmful effects of the environment are achieved.

  10. PREPARING Ni–W ALLOY FILMS WITH LOW INTERNAL STRESS AND HIGH HARDNESS BY HEAT TREATING

    OpenAIRE

    RUI LIU; HONG WANG; JIN-YUAN YAO; XUE-PING LI; GUI-FU DING

    2007-01-01

    In this paper, the internal stress and hardness of Ni–W alloy films with W contents in the range of 0–59 wt% were investigated. The amorphous Ni–W alloy films were electrodeposited with 59 wt% W content and the structure of crystalline alloy films was formed after heat treating. The experimental results showed that heat treating could prepare Ni–W alloy films with lower internal stress compared with low W content alloy films, and the heat treated alloy films still have high hardness. The inte...

  11. Structural and biological properties of carbon nanotube composite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu; Berry, C.J. [Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808 (United States); Brigmon, R.L. [Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2005-11-20

    Carbon nanotube composite films have been developed that exhibit unusual structural and biological properties. These novel materials have been created by pulsed laser ablation of graphite and bombardment of nitrogen ions at temperatures between 600 and 700 deg. C. High-resolution transmission electron microscopy and radial distribution function analysis demonstrate that this material consists of sp{sup 2}-bonded concentric ribbons that are wrapped approximately 15 deg. normal to the silicon substrate. The interlayer order in this material extends to approximately 15-30 A. X-ray photoelectron spectroscopy and Raman spectroscopy data suggest that this material is predominantly trigonally coordinated. The carbon nanotube composite structure results from the use of energetic ions, which allow for non-equilibrium growth of graphitic planes. In vitro testing has revealed significant antimicrobial activity of carbon nanotube composite films against Staphylococcus aureus and Staphylococcus warneri colonization. Carbon nanotube composite films may be useful for inhibiting microorganism attachment and biofilm formation in hemodialysis catheters and other medical devices.

  12. The preparation of calcium carbonate in an emulsified liquid membrane

    Science.gov (United States)

    Davey, R. J.; Hirai, T.

    1997-01-01

    A method for preparing 1 μm calcite rhombs in a double emulsion is described. This is the first report of the use of such a system for precipitation of a carbonate and may find application in a range of industrially important materials such as fillers and catalysts.

  13. The irradiation studies on diamond-like carbon films

    CERN Document Server

    LiuGuIang; Xie Er Qin

    2002-01-01

    Diamond-like carbon (DLC) films have been deposited on glass substrates using radio-frequency (r.f.) plasma deposition method. gamma-ray, ultraviolet (UV) ray and neutron beam were used to irradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were used to characterize the changing characteristics of SP sup 3 C-H bond and hydrogen content in the films due to the irradiations. It showed that, the damage degrees of the gamma-ray, UV ray and neutron beam on the SP sup 3 C-H bonds are different. Among them, the damage of gamma-ray on the SP sup 3 C-H bond is the weakest. When the irradiation dose of gamma-ray reaches 10x10 sup 4 Gy, the SP sup 3 C-H bond reduces about 50% in number. The square resistance of the films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of the films. Compared with that of the as-deposited one, the IR transmittance of the films irradiated by both gamma-ray and neutron beam is increased to some extent. By using the results on optical...

  14. Magnetism of carbon doped Mn5Si3 and Mn5Ge3 films

    Indian Academy of Sciences (India)

    C Sürgers; K Potzger; G Fischer

    2009-03-01

    The magnetic properties of Mn5Si3C and Mn5Ge3C films prepared by magnetron cosputtering or C+-ion implantation are studied. The carbon-doped films exhibit ferromagnetic properties with Curie temperatures C well above room temperature and metallic conductivity, making them possible candidates for future magnetic semiconductor-based devices. In Mn5Si3C, the carbon gives rise to a lattice expansion and a concomitant change of the magnetic order from antiferromagnetic Mn5Si3 to ferromagnetic Mn5Si3C0.8 with C = 350 K. Likewise, C of ferromagnetic Mn5Ge3 is strongly enhanced in Mn5Ge3C0.8. However, in this case the lattice is slightly compressed by carbon. This demonstrates that the effect of carbon on the magnetic behaviour in these compounds is not simply due to a change of the various interatomic distances by carbon but also due to a modification of the electronic band structure.

  15. Preparation and Characterization of Keratin Blended Films using Biopolymers for Drug Controlled Release Application

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    2016-08-01

    Full Text Available Keratin solution was separately blended with collagen, gelatin, sericin and starch for films preparation. All the blended films had smooth surfaces without phase separation, except the keratin/starch blend film. The native keratin film showed small particles embedded in all the film surfaces that resulted in them being rough. The structure of the native keratin film changed from beta-sheet to random coil at high blend ratio of other substances. This result increased the dissolution of the films especially the keratin/starch blend. The results relate directly to the decreased thermal stability of this film. However, the changes in structure did not affect the chlorhexidine release pattern. It is possible that the interaction between the drug and blending substances, and the substances to water molecules are the main factor influencing the drug release pattern from the films.

  16. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-07-13

    Ultrathin (< 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in{sup 2}. These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested.

  17. Optical Response in Amorphous GaAs Thin Films Prepared by Pulsed Laser Deposition

    Science.gov (United States)

    Kiwa, Toshihiko; Kawashima, Ichiro; Nashima, Shigeki; Hangyo, Masanori; Tonouchi, Masayoshi

    2000-11-01

    Femtosecond optical response in GaAs thin films has been studied. We prepared GaAs thin films on MgO substrates and on YBa2Cu3O7-δ (YBCO) thin films using pulsed laser deposition (PLD) at temperatures below 250^\\circC@. A photocarrier lifetime of less than 1 ps is measured for the prepared GaAs thin films using femtosecond time-domain reflectivity change measurements. Pulsed electromagnetic wave [terahertz (THz) radiaiton] containing a frequency component of up to 1 THz is emitted from fabricated photoconductive switches using the prepared thin films. We also evaluated the THz radiation properties emitted from the photoswitches on the YBCO thin films.

  18. Study of hard-soft magnetic ferrite films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Soft magnetic Mg0.1Ni0.3Zn0.6Fe2O4 and hard magnetic BaFe12O19 bulk nanocrystalline ferrites were synthesized using the sol-gel auto-combustion method, and were used as targets to deposit soft-hard thin films by the pulsed laser deposition (PLD) method. Various soft-hard thin films with different preparation conditions were deposited on Si (100) substrate, which can be effectively utilized to get better magnetic properties. The prepared films were characterized by the X-ray diffraction (XRD), atomic force microscopy (AFM) and magnetic measurements. XRD confirms the presence of soft and hard phases in the thin films. Coercivity of the prepared films ranges from 1.67 to 2.66 kA/m. AFM images show clustering of grains at the film surface with a characteristic columnar growth.

  19. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes.

    Science.gov (United States)

    He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M; Hároz, Erik H; Doorn, Stephen K; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M; Adams, W Wade; Hauge, Robert H; Kono, Junichiro

    2016-07-01

    The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm(2)) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 10(6) nanotubes in a cross-sectional area of 1 μm(2). The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios. PMID:27043199

  20. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes

    Science.gov (United States)

    He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M.; Hároz, Erik H.; Doorn, Stephen K.; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, Junichiro

    2016-07-01

    The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.

  1. Synthesis and growth kinetics of carbon nanocoils using Sn-Fe-O xerogel film catalyst

    International Nuclear Information System (INIS)

    Carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol–gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using one-dimensional tip growth kinetic model. The kinetic model consists of three steps: (1) dissociative chemisorption of acetylene and formation of encapsulating carbon on a leading face of the catalyst, (2) diffusion and reduction of Sn-Fe-O catalyst in bulk structure, and (3) carbon cluster nucleation on a tailing face of the catalyst. (paper)

  2. Optical Properties of Pyrolytic Carbon Films Versus Graphite and Graphene.

    Science.gov (United States)

    Dovbeshko, Galyna I; Romanyuk, Volodymyr R; Pidgirnyi, Denys V; Cherepanov, Vsevolod V; Andreev, Eugene O; Levin, Vadim M; Kuzhir, Polina P; Kaplas, Tommi; Svirko, Yuri P

    2015-12-01

    We report a comparative study of optical properties of 5-20 nm thick pyrolytic carbon (PyC) films, graphite, and graphene. The complex dielectric permittivity of PyC is obtained by measuring polarization-sensitive reflectance and transmittance spectra of the PyC films deposited on silica substrate. The Lorentz-Drude model describes well the general features of the optical properties of PyC from 360 to 1100 nm. By comparing the obtained results with literature data for graphene and highly ordered pyrolytic graphite, we found that in the visible spectral range, the effective dielectric permittivity of the ultrathin PyC films are comparable with those of graphite and graphene.

  3. A sol–gel dip/spin coating method to prepare titanium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong; Shi, Fang; Gao, Xiaoxia [Key Laboratory of Coal Science and Technology of the Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Huang, Wei, E-mail: huangwei@tyut.edu.cn [Key Laboratory of Coal Science and Technology of the Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xianshe [Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2013-12-02

    A dip/spin coating method for the preparation of titanium oxide films was proposed. Instead of placing an oxide sol on top of a substrate surface, the dip/spin coating was accomplished on the lower surface of the substrate where gravitational force exerted on the colloidal particles during spreading under a centrifugal force. The resulting TiO{sub 2} films were compared to those prepared using the conventional spin-coating and dip-coating methods. All the films were found to be composed primarily of anatase with a small amount of brookite. Compared to the films prepared using the conventional spin-coating and dip-coating methods, the TiO{sub 2} films fabricated using the dip/spin method had small and uniform grains with a unique structure, resulting in an increased photocatalytic activity when tested for degradation of methyl orange under UV irradiation. - Highlights: • A dip/spin coating method to prepare titanium oxide films was proposed. • The films were prepared by the lower side of the support contacting the sol. • The crystal grains in the films were tiny and uniform with a unique structure. • The films demonstrated excellent photocatalytic activity.

  4. Photon-drag in single-walled carbon nanotube and silver-palladium films: the effect of polarization

    Science.gov (United States)

    Mikheev, Konstantin G.; Saushin, Aleksandr S.; Zonov, Ruslan G.; Nasibulin, Albert G.; Mikheev, Gennady M.

    2016-03-01

    Polarization influence on the photovoltaic current raised due to the photon-drag effect in the single-walled carbon nanotube (SWNT) films and nanostructured silver-palladium (Ag/Pd) resistive films is examined at the wavelengths of 532 and 1064 nm of nanosecond laser pulses. The SWNT films were synthesized by the aerosol chemical vapor deposition technique. Ag/Pd films, consisting of AgPd alloy and palladium oxide (PdO), were prepared by burning a special paste on a ceramic substrate. The films obtained were characterized by Raman spectroscopy. It is shown that the Ag/Pd films Raman spectra consist of PdO peak that moves from 650 cm-1 to 628 cm-1 as the excitation He-Ne laser power increases. The photocurrent was measured at the oblique incidence of the laser beam on the film in the direction perpendicular to the plane of incidence. It is found that the transverse photocurrent in the SWNT films at circular polarization is absent and does not depend on the direction of the electric field vector rotation (the sign of the circular polarization) of the incident irradiation. The photocurrent in the Ag/Pd films at circular polarized irradiation is significant and depends on the circular polarization sign. The results obtained demonstrate the potential applications of the Ag/Pd resistive films as a sensor of the circular polarization sign of the incident light pulse in a wide wavelength range.

  5. Ion beam deposition of amorphous carbon films with diamond like properties

    Science.gov (United States)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  6. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Marc in het Panhuis

    2011-04-01

    Full Text Available The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

  7. Carbon Nanotube Film-Based Speaker Developed in Tsinghua University

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A research group from Tsinghua University led by Prof.Fan Shoushan,Member of the Chinese Academy of Sciences,and Jiang Kaili,associate professor of Physics,found that carbon nanotube thin film could act as a speaker once fed by audio frequency electric currents.These carbon nanotube loudspeakers are only tens of a nanometer thick,transparent,flexible and stretchable,which can be further tailored into any shape and size.These results have been published in the journal Nano Letter.

  8. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  9. Magnetic and electric properties of C-Co thin films prepared by vaccum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Tembre, A.; Clin, M.; Picot, J.-C. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Dellis, J.-L., E-mail: jean-luc.dellis@u-picardie.fr [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Henocque, J. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Bouzerar, R. [Laboratoire de Physique des Systemes Complexes, Universite de Picardie Jules Verne, 33 rue Saint leu, 80039 Amiens (France); Djellab, K. [Plate-forme de Microscopie Electronique, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France)

    2011-09-15

    Highlights: > Cobalt doped carbon thin films have been deposited by pulsed anodic electric arc technique. > The films are composed of well-crystallized cobalt layers and complex graphitic microstructure. > An insulating to a metallic state transition at 60 K is observed. > The magnetic susceptibility measurements show anomalous behaviour around 60 K. - Abstract: Cobalt doped carbon thin films have been deposited by a pulsed anodic electric arc technique. The films were characterized by high resolution transmission electron microscopy, electric measurements under dc magnetic fields, and ac magnetic susceptibility measurements within a temperature range 15-300 K. An insulating to a metallic state transition at a critical temperature around 60 K was observed.

  10. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    Science.gov (United States)

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. PMID:27561494

  11. Gas Sensitivity of Poly (3, 4-ethylene dioxythiophene) Prepared by a Modified LB Film Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; JIANG Yadong; XU Jianhua; YANG Yajie

    2011-01-01

    An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3,4-ethylene dioxythiophene) (PEDOT) muitilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature,deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOT- PRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.

  12. The Comparison of Biocompatibility Properties between Ti Alloys and Fluorinated Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Chavin Jongwannasiri

    2012-01-01

    Full Text Available Titanium and titanium alloys have found several applications in the biomedical field due to their unique biocompatibility. However, there are problems associated with these materials in applications in which there is direct contact with blood, for instance, thrombogenesis and protein adsorption. Surface modification is one of the effective methods used to improve the performance of Ti and Ti alloys in these circumstances. In this study, fluorinated diamond-like carbon (F-DLC films are chosen to take into account the biocompatible properties compared with Ti alloys. F-DLC films were prepared on NiTi substrates by a plasma-based ion implantation (PBII technique using acetylene (C2H2 and tetrafluoromethane (CF4 as plasma sources. The structure of the films was characterized by Raman spectroscopy. The contact angle and surface energy were also measured. Protein adsorption was performed by treating the films with bovine serum albumin and fibrinogen. The electrochemical corrosion behavior was investigated in Hanks’ solution by means of a potentiodynamic polarization technique. Cytotoxicity tests were performed using MTT assay and dyed fluorescence. The results indicate that F-DLC films present their hydrophobic surfaces due to a high contact angle and low surface energy. These films can support the higher albumin-to-fibrinogen ratio as compared to Ti alloys. They tend to suppress the platelet adhesion. Furthermore, F-DLC films exhibit better corrosion resistance and less cytotoxicity on their surfaces. It can be concluded that F-DLC films can improve the biocompatibility properties of Ti alloys.

  13. Structural and Optoelectrical Properties of ZnTe Thin Films Prepared by E-Beam Evaporation

    Science.gov (United States)

    Zia, Rehana; Saleemi, Farhat; Riaz, Madeeha; Nassem, Shahzad

    2016-10-01

    ZnTe thin films have been prepared by an electron-beam evaporation technique on glass substrates, changing the accelerating voltage and the substrate temperature at accelerating voltage of 2 kV. Structural analysis showed that all the films had cubic structure with preferential orientation along (111) direction, though (220) and (311) orientations were also present. The (111) peak intensity increased with increasing film thickness. The crystallite size increased with increasing film thickness. Conductivity measurements showed that the films were p-type. Films prepared at accelerating voltage of 2 kV exhibited minimum resistivity. Optical characterization indicated that both absorbing and transparent thin films can be achieved by using different deposition conditions. The optical bandgap value was found to vary with substrate temperature.

  14. Nano crystal SnO2:F films prepared by spray pyrolysis method

    International Nuclear Information System (INIS)

    Nano crystal thin films of fluorine doped tin oxide were prepared on glass substrates by the spray pyrolysis method. From X-ray diffraction patterns of the films, the structure and grain size of 9 nm and 14 nm were determined at temperatures of 390 oC and 420 oC, respectively. The transmission of the films has an average value of about 85% in the range of visible light, and the film thickness of 650 nm was estimated from the interference fingers. The optical band gap for direct allowed transitions is in the range from 4.0 eV to 4.17 eV, depending on the temperature of the substrates during films deposition. As prepared films show the sheet resistance of 15 Ω/cm2. The surface morphologies of the films were studied with SEM. (Author)

  15. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.

    Science.gov (United States)

    Wei, Lu; Nitta, Naoki; Yushin, Gleb

    2013-08-27

    Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors. PMID:23815346

  16. Synthesis and characterization of carbon nanotube reinforced copper thin films

    OpenAIRE

    Otto, Cornelia

    2006-01-01

    Two model composites of copper and carbon nanotubes were fabricated by very different deposition methods. Copper electrodeposition in a plating bath containing nanotubes created a 3D matrix of randomly oriented CNTs within a thick, 20 micron Cu film. In contrast, sandwiching a layer of well-separated nanotubes between two sub-micron sputtered Cu layers produced a 2D-composite with nanotubes lying parallel to the substrate surface. These composites, which were mechanically tested using var...

  17. Photoluminescence and Raman Spectroscopy Studies of Carbon Nitride Films

    Directory of Open Access Journals (Sweden)

    J. Hernández-Torres

    2016-01-01

    Full Text Available Amorphous carbon nitride films with N/C ratios ranging from 2.24 to 3.26 were deposited by reactive sputtering at room temperature on corning glass, silicon, and quartz as substrates. The average chemical composition of the films was obtained from the semiquantitative energy dispersive spectroscopy analysis. Photoluminescence measurements were performed to determine the optical band gap of the films. The photoluminescence spectra displayed two peaks: one associated with the substrate and the other associated with CNx films located at ≈2.13±0.02 eV. Results show an increase in the optical band gap from 2.11 to 2.15 eV associated with the increase in the N/C ratio. Raman spectroscopy measurements showed a dominant D band. ID/IG ratio reaches a maximum value for N/C ≈ 3.03 when the optical band gap is 2.12 eV. Features observed by the photoluminescence and Raman studies have been associated with the increase in the carbon sp2/sp3 ratio due to presence of high nitrogen content.

  18. Low refractive index SiOF thin films prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garcia, F.J.; Gil-Rostra, J.; Terriza, A.; González, J.C.; Cotrino, J. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain); Frutos, F. [Departamento de Física Aplicada, E.T.S. Ingeniería Informática, University of Seville, Avd. Reina Mercedes s/n, E-41012 Seville (Spain); Ferrer, F.J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Junta Andalucia, Thomas A. Edison 7, E-41092 Sevilla (Spain); González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain); Yubero, F., E-mail: yubero@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain)

    2013-09-02

    We have studied low refractive index fluorine doped silica thin films prepared by reactive magnetron sputtering. Two experimental parameters were varied to increase the porosity of the films, the geometry of the deposition process (i.e., the use of glancing angle deposition) and the presence of chemical etching agents (fluorine species) at the plasma discharge during film growth. The microstructure, chemistry, optical properties, and porosity of the films have been characterized by scanning electron and atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis, and spectroscopic ellipsometry. It is found that either the deposition at glancing angles or the incorporation of CF{sub x} species in the plasma discharge during film growth produces a decrease in the refractive index of the deposited films. The combined effect of the two experimental approaches further enhances the porosity of the films. Finally, the films prepared in a glancing geometry exhibit negative uniaxial birefringence. - Highlights: • SiOF thin films with controlled porosity prepared by reactive magnetron sputtering • Incorporation of CF{sub x} precursors in the plasma discharge enhances film porosity. • Deposition at glancing geometries further increases void fraction within the films.

  19. Preparation and characterization of carbon pillared clay material

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon pillared clay material was prepared from montmorillonite modified by C19H42BrN and C10H16ClN. SEM, FT-IR, XRD, N2 adsorption-desorption, thermal-gravimetric analysis and differential scanning calorimetry were employed to characterize the pore structure and test the effect of surfactant. The results show that organic modifier combines with montmorillonite particles by covalent bond and ion embedded. The microstructure of carbon pillared material looks like needle slice. The most probable pore size distribution is about 1.7 nm. The clay material slice mainly consists of two-dimensional aperture supported by a carbonization pillar. The high-temperature stability of carbon pillared clay is im- proved.

  20. Preparation and characterization of carbon pillared clay material

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZengZhi; YANG ChunWei; NIU JunJie

    2009-01-01

    Carbon pillared clay material was prepared from montmorillonite modified by C19H42BrN and C10H16CIN.SEM, FT-IR, XRD, N2 adsorption-desorption, thermal-gravimetric analysis and differential scanning calorimetry were employed to characterize the pore structure and test the effect of surfactant. The re-sults show that organic modifier combines with montmorillonite particles by covalent bond and ion embedded. The microstructure of carbon pillared material looks like needle slice. The most probable pore size distribution is about 1.7 nm, The clay material slice mainly consists of two-dimensional ap-erture supported by a carbonization pillar. The high-temperature stability of carbon pillared clay is im-proved.

  1. Preparation of anti-oxidative carbon fiber at high temperature

    Science.gov (United States)

    Kim, Bo-Hye; Kim, Su Yeun; Kim, Chang Hyo; Yang, Kap Seung; Lee, Young-Jun

    2010-11-01

    In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.

  2. Preparation of Titanium Oxide-containing Organic Film by Dipping Ti(OR)4 and Cold Plasma oxidizing on PET

    International Nuclear Information System (INIS)

    Low temperature process to prepare titanium oxide film on the surface of PET was investigated in this study. The substrates were pre-treated by oxygen plasma activated procedure, and then spin coating of Ti(OR)4 precursor solution was carried out to prepare Ti-containing organic films. Finally, O2 plasma was employed to decompose organic compounds and oxidize Ti to form oxides. Oxygen plasma post treatment can oxidize the organic compounds to form titanium oxide carbon subsequently. From the IR and ESCA analysis could be observed that -CH bond decreases and Ti-O, C-O bonds increase after O2 plasma treatment. Their surface hydrophilicity was enhanced by UV-irradiation, the degree of water contact angle decreased from 60 deg. to 10 deg.

  3. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    Science.gov (United States)

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  4. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; WANG Tao; WANG Ling

    2007-01-01

    Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate.The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.

  5. In vitro Cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method

    Institute of Scientific and Technical Information of China (English)

    Krishnasamy NAVANEETHA PANDIYARAJ; Jan HEEG; Andreas LAMPKA; Fabian JUNGE; Torsten BARFELS; Marion WIENECKE; Young Ha RHEE; Hyoung Woo KIM

    2012-01-01

    In recent years, diamond-like carbon films (DLC) have been given more attention in research in the biomedical industry due to their potential application as surface coating on biomedical materials such as metals and polymer substrates. There are many ways to prepare metal containing DLC films deposited on polymeric film substrates, such as coatings from car- bonaceous precursors and some means that incorporate other elements. In this study, we in- vestigated both the surface and biocompatible properties of titanium containing DLC (Ti-DLC) films. The Ti-DLC films were prepared on the surface of poly (ethylene terephthalate) (PET) film as a function of the deposition power level using reactive sputtering technique. The films' hydrophilicity was studied by contact angle and surface energy tests. Their surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental chemical composition was analyzed using energy dispersive X-spectra (EDX) and X-ray photoelectron spectroscopy (XPS). Their blood and cell compatibility was studied by in vitro tests, including tests on platelet adhesion, thrombus formation, whole blood clotting time and osteoblast cell compatibility. Significant changes in the morphological and chemical composition of the Ti-DLC films were observed and found to be a function of the deposition level. These morphological and chemical changes reduced the interfacial tension between Ti-DLC and blood proteins as well as resisted the adhesion and activation of platelets on the surface of the Ti-DLC films. The cell compatibility results exhibited significant growth of osteoblast cells on the surface of Ti incorporated DLC film compared with that of DLC film surface.

  6. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry

    Science.gov (United States)

    He, Qiong; Xu, Xiangdong; Gu, Yu; Wang, Meng; Yao, Jie; Jiang, Yadong; Sun, Minghui; Ao, Tianhong; Lian, Yuxiang; Wang, Fu; Li, Xinrong

    2016-10-01

    Spectroscopic ellipsometry (SE) is utilized to characterize the vanadium oxide (VO x )-single walled carbon nanotube (SWCNT) composite films prepared by sol-gel. Five Tauc-Lorentz oscillators model is employed to describe the dispersions in the optical responses of VO x and VO x -SWCNT thin films. Results reveal that if the SWCNT concentration in the composite film is increased, the refractive index is decreased, while the extinction coefficient is increased. Moreover, higher SWCNT content leads to lower optical band gap (E g) but larger localized state (E e). Interestingly, both E g and E e values reach saturated at a SWCNT content of ~8 wt%. Particularly, the peak transition energies of the 5 Tauc-Lorentz oscillators have been assigned to the specific transitions according to the band structures of VO x . This work reveals the feasibility of investigating the optical properties and microstructures of VO x -SWCNT composite films by SE. These experimental results will be helpful for better understanding the VO x -SWCNT composite films, and promoting future characterizations of other SWCNT-based composites by SE.

  7. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.

    Science.gov (United States)

    Liu, Peng; Fan, Zeng; Mikhalchan, Anastasiia; Tran, Thang Q; Jewell, Daniel; Duong, Hai M; Marconnet, Amy M

    2016-07-13

    The production of continuous carbon nanotube (CNT) fibers and films has paved the way to leverage the superior properties of individual carbon nanotubes for novel macroscale applications such as electronic cables and multifunctional composites. In this manuscript, we synthesize fibers and films from CNT aerogels that are continuously grown by floating catalyst chemical vapor deposition (FCCVD) and measure thermal conductivity and natural convective heat transfer coefficient from the fiber and film. To probe the mechanisms of heat transfer, we develop a new, robust, steady-state thermal characterization technique that enables measurement of the intrinsic fiber thermal conductivity and the convective heat transfer coefficient from the fiber to the surrounding air. The thermal conductivity of the as-prepared fiber ranges from 4.7 ± 0.3 to 28.0 ± 2.4 W m(-1) K(-1) and depends on fiber volume fraction and diameter. A simple nitric acid treatment increases the thermal conductivity by as much as a factor of ∼3 for the fibers and ∼6.7 for the thin films. These acid-treated CNT materials demonstrate specific thermal conductivities significantly higher than common metals with the same absolute thermal conductivity, which means they are comparatively lightweight, thermally conductive fibers and films. Beyond thermal conductivity, the acid treatment enhances electrical conductivity by a factor of ∼2.3. Further, the measured convective heat transfer coefficients range from 25 to 200 W m(-2) K(-1) for all fibers, which is higher than expected for macroscale materials and demonstrates the impact of the nanoscale CNT features on convective heat losses from the fibers. The measured thermal and electrical performance demonstrates the promise for using these fibers and films in macroscale applications requiring effective heat dissipation. PMID:27322344

  8. Preparation of silica thin films by novel wet process and study of their optical properties.

    Science.gov (United States)

    Im, Sang-Hyeok; Kim, Nam-Jin; Kim, Dong-Hwan; Hwang, Cha-Won; Yoon, Duck-Ki; Ryu, Bong-Ki

    2012-02-01

    Silicon dioxide (SiO2) thin films have gained considerable attention because of their various industrial applications. For example, SiO2 thin films are used in superhydrophilic self-cleaning surface glass, UV protection films, anti-reflection coatings, and insulating materials. Recently, many processes such as vacuum evaporation, sputtering, chemical vapor deposition, and spin coating have been widely applied to prepare thin films of functionally graded materials. However, these processes suffer from several engineering problems. For example, a special apparatus is required for the deposition of films, and conventional wet processes are not suitable for coating the surfaces of substrates with a large surface area and complex morphology. In this study, we investigated the film morphology and optical properties of SiO2 films prepared by a novel technique, namely, liquid phase deposition (LPD). Images of the SiO2 films were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to study the surface morphology of these films: these images indicate that films deposited with different reaction times were uniform and dense and were composed of pure silica. Optical properties such as refractive index and transmittance were estimated by UV-vis spectroscopy and ellipsometry. SiO2 films with porous structures at the nanometer scale (100-250 nm) were successfully produced by LPD. The deposited film had excellent transmittance in the visible wavelength region.

  9. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8570 (Japan)

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO){sub 20}(PO){sub 70}(EO){sub 20}) or F127 ((EO){sub 106}(PO){sub 70}(EO){sub 106}), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films.

  10. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  11. Preparation of activated carbons from Chinese coal and hydrolysis lignin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.; Han, B.X. [Tuskegee University, Tuskegee, AL (USA). School of Engineering, Dept. of Chemical Engineering

    2001-07-01

    Activated carbons from Chinese coal and Chinese hydrolysis lignin have been prepared by chemical activation with potassium hydroxide. The following aspects of these activated materials have been analyzed: raw material; pre-treatment of raw material; activation agent, activation temperature and time, acid the activation agent/raw material ratio. Activated carbons with BET specific surface areas of the order of 2400-2600 m{sup 2}/g which exhibited substantial microporosity, a total pore volume of over 1.30 cm{sup 3}/g and a Methylene Blue adsorption capacity of over 440 mg/g were obtained.

  12. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m2/g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  13. Attempts to prepare an all-carbon indigoid system

    OpenAIRE

    Şeref Yildizhan; Henning Hopf; Jones, Peter G

    2015-01-01

    First attempts are described to prepare a precursor for an all-carbon analog of indigo, the tetracyclic triene 4. Starting from indan-2-one (9) the α-methylene ketone 13 was prepared. Upon subjecting this compound to a McMurry coupling reaction, it dimerized to the bis-indene derivative 17, rather than providing the tetramethyl derivative of 4, the hydrocarbon 14. In a second approach, indan-1-one (18) was dimerized to the conjugated enedione 21 through the bis-1-indene dimer 19. All attempts...

  14. Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

    Directory of Open Access Journals (Sweden)

    H. Somashekarappa

    2013-01-01

    Full Text Available The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC and Polyvinylpyrrolidone (PVP blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.

  15. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Li Qizheng; Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-04-15

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO{sub 3}){sub 2} solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  16. Electroplated Fe-Pt thick films prepared in plating baths with various pH values

    OpenAIRE

    Yanai, T; Furutani, K.; Masaki, T; T. Ohgai; Nakano, M; Fukunaga, H

    2016-01-01

    Fe-Pt thick-films were electroplated on a Ta substrate using a direct current, and the effect of the pH value of the plating bath on the magnetic properties of the films was evaluated. For the films prepared from the baths with the same bath composition, the Fe composition and the thickness increased with increasing the pH value. In order to remove the effect of the change in the film composition on the magnetic properties, we controlled the film composition at approximately Fe50Pt50 or Fe60P...

  17. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    Science.gov (United States)

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials. PMID:25967812

  18. Preparation and Photocatalytic Property of Porous TiO2 Film with Net-like Framework

    Institute of Scientific and Technical Information of China (English)

    XU Rong-guo; YAO Jian-xi; LAI Xiao-yong; MAO Dan; XING Chao-jian; WANG Dan

    2009-01-01

    By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characte-rization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.

  19. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  20. Effect of humidity on microstructure and properties of YBCO film prepared by TFA-MOD method

    Institute of Scientific and Technical Information of China (English)

    WANG Lianhong; LI Tao; GU Hongwei

    2009-01-01

    Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3. (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was ana-lyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed Jc value of 3.3 MA/cm2 at 77 K in self-field.

  1. Carbon on Quartz Grain Boundaries: Continuous Films versus Isolated Plates

    Science.gov (United States)

    Price, J. D.; Watson, E. B.; Wark, D. A.

    2003-12-01

    Piston-cylinder experiments on quartzites containing a small amount of carbon were conducted at 1.0-1.4 GPa and 850-1500° C in order to assess the microstructure of graphite along grain boundaries in deep crustal materials. In one series of experiments, polished 3mm diameter single-crystal quartz discs were coated with ˜50 to 150 nm of evaporated carbon or 500 to 1000 nm of alcohol-based carbon paint. Stacks of these were subjected to high P-T conditions for durations ranging from 5 minutes to 10 days. Observations from our earlier experiments suggested that the coatings become discontinuous with time at high temperature. However, more recent observations show that coated disc boundaries contain a dark, interconnected material: those subjected to lower temperatures and shorter durations exhibited continuous films; those run at higher temperatures for longer durations contained thicker, yet still interconnected dendrite and plate structures. In contrast, relatively fine-grained synthetic quartzites produced at similar conditions typically do not contain continuous films. Quartz powder with an initial grain size between 75-150 μ m, coated with 30-50 nm of evaporated carbon, was subjected to 850-1300° C for durations ranging from 1 hour to 6 days. Only very short runs at low temperatures contained irregular boundaries still darkened by a connected film; longer duration and higher temperature quartzites exhibited texturally-equilibrated quartz grains accompanied by isolated small opaque carbon plates located along grain corners, edges, and grain boundaries. Identical features are seen in additional quartzite materials constructed in graphite cylinders using uncoated powdered silica glass or smaller quartz crystals (<22 μ m) taken to 1000° C and 1.4 GPa for 14 days. The results suggest that carbon may remain as a connected surface, at least metastably, on silicate mineral boundaries in the absence of grain boundary movement. With grain growth, carbon diffuses

  2. PREPARATION AND CHARACTERIZATION OF POLYMER-BASED SPHERICAL ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    Zhao-lian Zhu; Ai-min Li; Ming-fang Xia; Jin-nan Wan; Quan-xing Zhang

    2008-01-01

    A series of spherical activated carbons(SACs)with different pore structures were prepared from chloromethylated polydivinylbenzene by ZnCl2 activation.The effects of activation temperature and retention time on the yield and textural properties of the resulting SACs were studied.All the SACs are generated with high yield of above 65% and exhibit relatively high mesopore fraction(me%) of 35.7%-43.6% compared with conventional activated carbons.The sample zlc28 prepared at 800℃ for 2 h has the largest BET surface area of 891m2g-1 and pore volume of 0.489 cm3g-1,SEM and XRD analyses of zlc28 verify the presence of developed porous structure composed of disordered micrographite stacking with large amounts of interspaces in the order of nanometers.

  3. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    Science.gov (United States)

    Chu,Benjamin; Hsiao, Benjamin S.

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  4. Preparation and Investigation of Diamond-like Carbon Stripper Foils

    Institute of Scientific and Technical Information of China (English)

    FAN; Qi-wen; DU; Ying-hui; ZHANG; Rong; XU; Guo-ji

    2013-01-01

    1 Preparation of DLC stripper foils For DLC stripper foils of about 5μg/cm2 thickness,the following methods were used.The DLC foils of about 4μg/cm2 thicknesses were produced by FCVA onto glass slides coated with betaine-saccharose as releasing agent,which was previously covered with the evaporated carbon layers of about 1μg/cm2

  5. Preparation of very long and open aligned carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    潘正伟; 常保和; 孙连峰; 钱露茜; 刘祖琴; 唐东升; 王刚; 解思深

    2000-01-01

    Very long and open aligned carbon nanotubes that reach about 2 mm long, an order of magnitude longer than previously reached, have been prepared by chemical vapor deposition over silica dioxide substrates on the surface, where iron/silica nano-composite particles are evenly positioned. The nanotubes are naturally opened at the bottom ends. The growth mechanism of the very long and open-ended nanotubes is also discussed.

  6. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    OpenAIRE

    Mirjalili Mohammad; Karimi Loghman

    2015-01-01

    Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs) by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide), type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl...

  7. Effects of preparation conditions on the optical properties of thin films of tellurium oxide

    International Nuclear Information System (INIS)

    Thin films of tellurium oxide were prepared by thermal evaporation. The effects of preparation conditions and post-deposition vacuum annealing on the optical constants of the thin films were studied. Substantial changes in the optical constants, density, structure and stoichiometry were observed following changes in the preparation conditions and annealing. The majority of the films were found to be deficient in oxygen. The presence of metallic Te was detected in films deposited on heated substrates and in all the films that were annealed. All the samples showed some degree of absorption at photon energies below the band gap. One explanation for this absorption could be oxygen deficiency and the presence of metallic Te. (author)

  8. Effects of preparation conditions on the optical properties of thin films of tellurium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kuhaili, M.F. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Durrani, S.M.A.; Khawaja, E.E [Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Shirokoff, J. [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NF (Canada)

    2002-05-07

    Thin films of tellurium oxide were prepared by thermal evaporation. The effects of preparation conditions and post-deposition vacuum annealing on the optical constants of the thin films were studied. Substantial changes in the optical constants, density, structure and stoichiometry were observed following changes in the preparation conditions and annealing. The majority of the films were found to be deficient in oxygen. The presence of metallic Te was detected in films deposited on heated substrates and in all the films that were annealed. All the samples showed some degree of absorption at photon energies below the band gap. One explanation for this absorption could be oxygen deficiency and the presence of metallic Te. (author)

  9. Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography.

    Science.gov (United States)

    Schüller-Ravoo, Sigrid; Feijen, Jan; Grijpma, Dirk W

    2011-12-01

    3D porous and non-porous structures are designed and prepared by stereolithography using resins based on PTMC macromers. Tough, flexible network films prepared in this manner show E moduli of ≈3.8 MPa and high elongations at break >900%; tensile strengths are ≈4.2 MPa. These values increase with increasing PTMC macromer molecular weight. To reach suitable viscosities for processing, up to 45 wt% propylene carbonate is added as non-reactive diluent. The solid specimens have compression moduli of 3.1-4.2 MPa, similar to the values determined in tensile testing. The built porous structures show porosities of 53-66% and average pore sizes of 309-407 µm. The compression moduli of the porous structures are significantly lower than those of the solid structures.

  10. Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires

    International Nuclear Information System (INIS)

    Polyurethane-based nanocomposite films were prepared by incorporating carbon-coated SiC nanowires (SiC-C) into the polymer matrix. Electric field-induced strain measurements revealed that a loading of 0.5 wt% SiC-C increased the strain level by a factor of 1.7 at a moderate field strength (6.5 V μm-1). Current-electric field characteristics and the film thickness dependence of strain demonstrated that the improvement of the electromechanical response was linked to a more pronounced space charge effect in the nanocomposite than in the polymer host. DSC measurements revealed that the level of phase mixing in the PU matrix remained unchanged after SiC-C filling; hence, the nano-objects themselves acted as charge traps.

  11. Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires

    Science.gov (United States)

    Guiffard, B.; Guyomar, D.; Seveyrat, L.; Chowanek, Y.; Bechelany, M.; Cornu, D.; Miele, P.

    2009-03-01

    Polyurethane-based nanocomposite films were prepared by incorporating carbon-coated SiC nanowires (SiC@C) into the polymer matrix. Electric field-induced strain measurements revealed that a loading of 0.5 wt% SiC@C increased the strain level by a factor of 1.7 at a moderate field strength (6.5 V µm-1). Current-electric field characteristics and the film thickness dependence of strain demonstrated that the improvement of the electromechanical response was linked to a more pronounced space charge effect in the nanocomposite than in the polymer host. DSC measurements revealed that the level of phase mixing in the PU matrix remained unchanged after SiC@C filling; hence, the nano-objects themselves acted as charge traps.

  12. Preparation and characterization of silk fibroin/HPMC blend film

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College Hiriadka, Udupi - 576113 (India); Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India)

    2015-06-24

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  13. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn2+ solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm2 of 0.5 mol% Cu-doped ZnO thin film are 15.92 μM h-1 and 0.049 μM-1, respectively.

  14. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jongnavakit, P. [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Amornpitoksuk, P., E-mail: ampongsa@yahoo.com [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); NANOTEC Center of Excellence at Prince of Songkla University (CENE), Hat Yai, Songkhla 90112 (Thailand); Suwanboon, S. [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); NANOTEC Center of Excellence at Prince of Songkla University (CENE), Hat Yai, Songkhla 90112 (Thailand); Ndiege, N. [Nanoscience and Nanotechnology Institute, W181 Chemistry Building, University of Iowa, Iowa City 52242, IA (United States)

    2012-08-01

    Cu-doped ZnO thin films were fabricated on glass substrates by the sol-gel dip-coating method. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The grain size and film thickness of the Cu-doped ZnO thin film decreased as a function of the Cu concentrations. All prepared films showed a very high transmittance above 89% in the visible region (400-800 nm). Two oxidation states of Cu in +1 and +2 were identified in the ZnO thin film by X-ray photoelectron spectroscopy (XPS). Their photocatalytic activities were investigated by the degradation of methylene blue (MB) dye under blacklight fluorescent tubes. The film prepared from the Zn{sup 2+} solution containing 0.5 mol% of copper ions had the highest photocatalytic activity. The photocatalytic degradation of methylene blue solution as a function of the initial concentrations was evaluated according to the Langmuir-Hinshelwood model. The reaction rate (k) and adsorption equilibrium constant (K) over 1 cm{sup 2} of 0.5 mol% Cu-doped ZnO thin film are 15.92 {mu}M h{sup -1} and 0.049 {mu}M{sup -1}, respectively.

  15. Nanocrystalline CdS thin films prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Vasantha, S. [Coimbatore Institute of Technology (India). Dept. of Physics; Velauthapillai, Dhayalan [Univ. College of Bergen (Norway). Dept. of Engineering; Murugan, N. [Coimbatore Institute of Technology (India). Dept. of Mechanical Engineering; Balasundaraprabhu, R. [PSG College of Technology, Coimbatore (India). Dept. of Physics

    2011-05-15

    Nanocrystalline CdS thin films have been prepared using cadmium nitrate and thiourea as precursors using the solgel spin coating method. The structural studies carried out on the prepared films using X-ray diffraction and high resolution transmission electron microscopy revealed that the CdS films exhibit hexagonal structure and the grain size was observed to be 10 and 14 nm for the films annealed at 250 C and 450 C. The surface topography of the films was studied using atomic force microscopy and the roughness was found to be 32 nm. The optical absorbance studies showed a strong blue shift due to the quantum confinement effect present in the CdS films. The grain size calculated using the band gap energy and quantum confinement effect was found to be in agreement with the results obtained from structural studies. (orig.)

  16. Preparation and Corrosion Resistance of Rare Earth Ceramic Film on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Guo Yuandong; Li Yingjie

    2004-01-01

    With the purpose of improving corrosion resistance and solving environmental pollution caused by traditional protective technique, rare earth ceramic film on AZ91 magnesium alloy was prepared by dip coating process, and technical parameters of preparation were defmed. Microstructure and composition of the film were studied and corrosion resistance was evaluated as well. The results show that rare earth ceramic film is uniform,dense, with strong cohesion and intact coverage. The film is mainly made up of CeO2 and MgCeO3. The results of corrosion experiments approve that the film acts as a barrier to isolate the contact of the substrate with corrosion media and decreas corrosion rate. Polarization curve of the coated sample shiftes to positive potential obvito 2.7 × 104 Ω. These facts indicate that rare earth ceramic film could effectively improve corrosion resistance of AZ91 magnesium alloy.

  17. Ultraflat indium tin oxide films prepared by ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Han Younggun; Kim, Donghwan; Cho, Jun-Sik; Koh, Seok-Keun

    2005-02-14

    Indium tin oxide (ITO) films with a smooth surface (root-mean-square roughness; R{sub rms}=0.40 nm) were made using a combination of the deposition conditions in the ion beam-sputtering method. Sheet resistance was 13.8 {omega}/sq for a 150-nm-thick film grown at 150 deg. C. Oxygen was fed into the growth chamber during film growth up to 15 nm, after which, the oxygen was turned off throughout the rest of the deposition. The surface of the films became smooth with the addition of ambient oxygen but electrical resistance increased. In films grown at 150 deg. C with no oxygen present, a rough surface (R{sub rms}=2.1 nm) and low sheet resistance (14.4 {omega}/sq) were observed. A flat surface (R{sub rms}=0.5 nm) with high sheet resistance (41 {omega}/sq) was obtained in the films grown with ambient oxygen throughout the film growth. Surface morphology and microstructure of the films were determined by the deposition conditions at the beginning of the growth. Therefore, fabrication of ITO films with a smooth surface and high electrical conductivity was possible by combining experimental conditions.

  18. Network films of conducting polymer-linked polyoxometalate-modified gold nanoparticles: Preparation and electrochemical characterization

    International Nuclear Information System (INIS)

    The ability of Keggin-type phosphododecamolybdate (PMo12O403-, PMo12) to undergo chemisorption on solid surfaces (including gold) is explored here to convert (by ligand place-exchange and phase transfer to aqueous solution) the alkanothiolate-modified Au nanoparticles of controlled size (prepared in toluene) into a stable colloidal solution of PMo12-protected gold nanoparticles, PMo12-AuNPs, the sizes of which are ca. 4-5 nm as determined by transmission electron microscopy. By dip-coating, PMo12-AuNPs were assembled on carbon electrode substrates. The step-by-step assembly, by which alternate exposures to the solutions of PMo12-AuNPs and either anilinium cations or pyrrole monomers, was utilized to grow in controlled manner hybrid network films in which the negatively charged PMo12-AuNP deposits were linked, or electrostatically attracted, by ultra-thin, positively charged conducting polymer (polyaniline or polypyrrole) structures. The three-dimensionally distributed PMo12-AuNPs immobilized within the polypyrrole-based composite film exhibited some electrocatalytic reactivity towards reduction of hydrogen peroxide

  19. Synthesis and Structure of PEDOT Prepared through a Modified LB Film Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hua-Jing; JIANG Ya-Dong; XU Jian-Hua; YANG Ya-Jie

    2011-01-01

    Adopting LB film method, an arachidic acid (AA)/PEDOT multilayer LB film and polymerized EDOT monomers in hydrophilic group of LB were chosen to prepare the arachidic acid (AA)/PEDOT multilayer LB film. UV-Vis, FT-IR and XPS analyses implied that EDOT was effectively polymerized in film, and thus PEDOT conducting polymer was produced. Analyses of XRR and SIMS indicated that the film had a well-arranged lamella structure, and further research showed that polymerization of EDOT in AA film destroyed the orderliness of the original LB film. This phenomenon could be related to the destructive effect of polymerization on the layered structure. We used four-point probe and semiconductor instrument to study the conductivity property of the film, and observed that the conductivity of AA/PEDOT film had sudden changes with the changes of processing time in an effective conduction network, which was caused by "permeability" in conducting channel of multilayer film. The test results also indicated that the conductivity of AA/PEDOT film was obviously better than that of spin-coating PEDOT/PSS or ODA-SA/PEDOT-PSS film due to the higher π structure of PEDOT structure and ordered film structure.

  20. Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode

    Institute of Scientific and Technical Information of China (English)

    Xin Zhuang; Yingjia Liu; Jian Chen; Hao Chen; Baolian Yi

    2014-01-01

    Ordered porous cabon with a 2-D hexagonal structure, high specific surface area and large pore volume was synthesized through a two-step heating method using tri-block copolymer as template and phenolic resin as carbon precursor. The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon. Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area. Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1. The improved capacity retention was obtained during the cell cycling as well.

  1. Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells

    International Nuclear Information System (INIS)

    The semiconductor tungsten disulfide (WS2) exhibits van der Waals bonding, crystallizes in a layer-type structure and is of interest as an absorber layer for thin-film solar cells. In this review article different preparation routes for WS2 thin films, based on magnetron sputtering, are reviewed. Films prepared by direct magnetron sputtering, though exhibiting quite a good structural quality, are not or only poorly photoactive. This can be attributed to the generation of recombination centers, especially sulfur vacancies, during the ion bombardment of the films, due to the low defect-formation energy of tungsten disulfide, an intrinsic property of transition metal dichalcogenides. A promising preparation route, which leads to photoactive WS2 films, is a two-step process, where, in a first step, a sulfur-rich, X-ray amorphous tungsten sulfide is deposited at low substrate temperatures onto a thin metal film (Ni, Co). This film sandwich is after wards annealed in an ampoule in a sulfur atmosphere or in flowing gas with a sufficient H2S partial pressure. From in-situ transmission electron microscopy and energy-dispersive X-ray diffraction, it was found that the WS2 film crystallization with a pronounced (001) texture is closely related to the formation of the liquid (eutectic) metal-sulfur phase. Based on these in-situ investigations the growth of the 2-dimensional WS2 nanosheets from an amorphous WS3+x precursor can be described as an amorphous solid-liquid-crystalline solid process (SLS), somewhat similar to the well-known vapor-liquid-solid (VLS) process for the growth of whiskers or nanorods and nanotubes. Research opportunities, to overcome current limitations for a broad use of WS2 (and MoS2) as thin-film solar cell absorbers are given. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Novel preparation of carbon-TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde-González, María P., E-mail: maria.elizalde.uap.mx@gmail.com; García-Díaz, Esmeralda; Sabinas-Hernández, Sergio A.

    2013-12-15

    Highlights: • Glycerol and TiOSO{sub 4}·xH{sub 2}O produced a carbon-anatase precursor in a one-step sol–gel reaction. • Ultrasound irradiation led to the formation of crystalline TiO{sub 2} prior to thermal treatment. • Carbon and TiO{sub 2} nanocrystals developed larger specific surface in composites. • Large band gap (3.6 eV) in TiO{sub 2} was obtained. • Benzenesulfonic acid identified by LC–MS among decomposition reaction intermediates of the dye Acid Orange 7. -- Abstract: Carbon-TiO{sub 2} sulfated composites were obtained from TiOSO{sub 4}·xH{sub 2}O and glycerol as the TiO{sub 2} and carbon sources, respectively. The precursor xerogels were prepared in a one-step ultrasonic-assisted sol–gel reaction, followed by thermal treatment at 400 °C under a nitrogen atmosphere to produce carbon-TiO{sub 2} sulfated composites. XRD, micro-Raman, SEM, and TEM studies showed that the composites consisted of nanocrystalline clusters of TiO{sub 2} and carbon. Ultrasonication in glycerol promoted the crystallinity of the xerogel precursors prior to thermal treatment. X-ray powder diffraction and Raman spectroscopy studies confirmed that glycerol also facilitated the formation of small crystallites. The band gaps of carbon-TiO{sub 2} composites with two different carbon loadings were found to be 3.06 eV and 2.69 eV. By contrast, the band gap of TiO{sub 2} prepared by our method was 3.53 eV. Calcination of the precursors led to an unusual increase in the specific surface and porosity of the composites compared to TiO{sub 2}. The photocatalytic activities of the prepared composites were tested in a decomposition assay of Acid Orange 7. The reaction was monitored by UV–vis spectrophotometry and by LC-ESI-(Qq)-TOF-MS-DAD. Some intermediate species were identified by LC-ESI-QTOF-MS.

  3. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS

    Science.gov (United States)

    Gunay, H. Burak; Ghods, Pouria; Isgor, O. Burkan; Carpenter, Graham J. C.; Wu, Xiaohua

    2013-06-01

    The atomic structure of oxide films formed on carbon steel that are exposed to highly alkaline simulated concrete pore solutions was investigated using Electron Energy Loss Spectroscopy (EELS). In particular, the effect of chloride exposure on film structure was studied in two types of simulated pore solutions: saturated calcium hydroxide (CH) and a solution prepared to represent typical concrete pore solutions (CP). It was shown that the films that form on carbon steel in simulated concrete pore solutions contained three indistinct layers. The inner oxide film had a structure similar to that of FeIIO, which is known to be unstable in the presence of chlorides. The outer oxide film mainly resembled Fe3O4 (FeIIO·Fe2IIIO3) in the CH solution and α-Fe2IIIO3/Fe3O4 in the CP solution. The composition of the transition layer between the inner and outer layers of the oxide film was mainly composed of Fe3O4 (FeIIO·Fe2IIIO3). In the presence of chloride, the relative amount of the FeIII/FeII increased, confirming that chlorides induce valence state transformation of oxides from FeII to FeIII, and the difference between the atomic structures of oxide film layers diminished.

  4. Preparation and characterization of ZnS thin films by the chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashita, Taisuke [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Ando, Shizutoshi, E-mail: ando_shi@rs.kagu.tus.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Research Institute for Science and Technology, Advanced Device Laboratories (ADL), Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan); Research Institute for Science and Technology, Photovoltaic Science and Technology Research Division, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2012-10-01

    ZnS thin films prepared on quartz substrates by the chemical bath deposition (CBD) method with three type temperature profile processes have been investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray analysis and light transmission. One is a 1-step growth process, and the other is 2-steps growth and self-catalyst growth processes. The surface morphology of CBD-ZnS thin films prepared by the CBD method with the self-catalyst growth process is flat and smooth compared with that prepared by the 1-step and 2-steps growth processes. The self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement in crystallinity of ZnS thin films prepared by CBD. ZnS thin films prepared by CBD method with self-catalyst growth process can be expected for improvement in the conversion efficiency of Cu(InGa)Se{sub 2}-based thin film solar cells by using it for the buffer layer. - Highlights: Black-Right-Pointing-Pointer ZnS thin films were prepared by chemical bath deposition (CBD) method. Black-Right-Pointing-Pointer The crystallization of CBD-ZnS films was further improved. Black-Right-Pointing-Pointer The crystallinity of CBD-ZnS thin films is dependent on the zinc source material. Black-Right-Pointing-Pointer Self-catalyst growth process is useful for the growth of thin films by CBD method. Black-Right-Pointing-Pointer It is expected to improve the conversion efficiency of CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells.

  5. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    OpenAIRE

    Elhefian, Esam. A.; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component) in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA). It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan...

  6. Preparation and Characterization of Chitosan/Agar Blended Films: Part 1. Chemical Structure and Morphology

    OpenAIRE

    Esam A. El-Hefian; Mohamed Mahmoud NASEF; Yahaya, Abdul Hamid

    2012-01-01

    Chitosan/agar (CS/AG) films were prepared by blending different proportions of chitosan and agar (considering chitosan as the main component) in solution forms. The chemical structure and the morphology of the obtained blended films were investigated using Fourier transform infrared (FTIR) and field emission scanning electron microscope (FESEM). It was revealed that chitosan and agar form a highly compatible blend and their films displayed homogenous and smooth surface properties compared to ...

  7. Preparation of high quality superconducting thin MgB2 films for electronics

    International Nuclear Information System (INIS)

    In this work we report the growth of high-Tc MgB2 smooth films which are prepared in a two-step process: 1) deposition of the precursor films and 2) their annealing in Mg vapor with a specially designed, reusable reactor. Our method opens perspectives for the use of MgB2 films in microelectronics, especially for high-frequency applications. (authors)

  8. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  9. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A. [Alfred Univ., NY (United States); Tuttle, B.A.; Potter, B.G. [Sandia National Labs., Albuquerque, NM (United States)

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  10. Preparation of conductive polypyrrole (PPy) composites under supercritical carbon dioxide conditions

    Institute of Scientific and Technical Information of China (English)

    LI Gang; LIAO Xia; SUN Xinghua; YU Jian; HE Jiasong

    2007-01-01

    Electrically conductive composites were prepared via the chemical oxidative polymerization of the pyrrole monomer in polystyrene (PS) and zinc neutralized sulfonated polystyrene (Zn-SPS) films under supercritical carbon dioxide (SC-CO2) conditions.The strong swelling effect of SCCO2 made polypyrrole (PPy) particles not only form on the surface,but also become incorporated into the film,resulting in a homogeneous structure with a relatively higher conductivity.By comparison,the composite prepared in aqueous solutions shows a skin-core structure and a conductivity of 3 to 4 orders of magnitude lower than that of the former due to the diffusion-controlled process of the pyrrole monomer.The percolation thresholds of PS/PPy and Zn-SPS/PPy composites were 6.2% and 2.7% of the volume fraction of PPy,respectively,much lower than the theoretically predicted value of 16%.Moreover,the conductive composites prepared under SC-CO2 conditions showed higher thermal stability,especially in the high-temperature region.

  11. Wettability of oxide thin films prepared by pulsed laser deposition: New insights

    Science.gov (United States)

    Prakash, Saurav

    The objective of the thesis is to investigate the wettability of good quality oxide thin films prepared by pulsed laser deposition (PLD). In this work, many shortfalls in the water contact angle measurement of thin films of oxides, responsible for the wide scatter in the values reported in literature, have been addressed. (Abstract shortened by UMI.).

  12. Preparation and properties of thin films used in activity determinations with a 4 π counter

    International Nuclear Information System (INIS)

    Comparative study of various methods of preparing thin films, for use as source holders in the 4 π counter, and of measuring their thickness. Comparative study of various properties: mechanical resistance; heat resistance; ageing; resistance of rhodopas, polystyrene, formvar and cellulose acetate films to the action of various chemical agents. (author)

  13. Preparation and Haemocompatibility of Regular Array Microporous PLGA Films on Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Regular array microporous films from poly ( L-lactic-co-glycolic acid) ( PLGA ) were prepared on stainless steel substrates utilizing the condensation of water droplets on polymer solutions. The size of the pores and regularity can be controlled by atmospheric humidity and concentration of polymer solution. The microporons films have strong hydrophobicity and good haemocompatibility.

  14. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization.

    Science.gov (United States)

    Qi, Guijin; Huang, Liyan; Wang, Huiliang

    2012-08-25

    Highly conductive free standing polypyrrole (PPy) films were prepared by a novel freezing interfacial polymerization method. The films exhibit metallic luster and electrical conductivity up to 2000 S cm(-1). By characterizing with SEM, FTIR, Raman and XRD, the high conductivity is attributed to the smooth surface, higher conjugation length and more ordered molecular structure of PPy.

  15. Electronic Power System Application of Diamond-Like Carbon Films

    Science.gov (United States)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  16. Preparation of Photoelectric Material--Pyrite(FeS2) Thin Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The preparation methods of simultaneous electro-deposition for pyrite (FeS2) thin film are introduced from aqueous solution of FeSO4 and Na2S2O3. Electrical process is studied in detail in the paper. From the experiment result, the best way of drying the sample is to dry it in vacuum. Electro-deposition method for the preparation of pyrite thin film is a safe, simple and low-cost method.

  17. Measurement of 5-eV atomic oxygen using carbon-based films: preliminary results

    OpenAIRE

    White, C de B; Roberts, G. T.; Chambers, A.R.

    2005-01-01

    Carbon-based sensors have been developed to measure the atmospheric neutral atomic oxygen (AO) flux experienced by spacecraft in low Earth orbit. Thin- and thick-film carbon sensor elements were deposited onto an alumina substrate between thick-film gold tracks and silver palladium solder pads. AO flux is deduced by measuring resistance changes as the carbon film erodes and applying a simple theory. A wide range of responses were observed that are dependent on the deposition process and post ...

  18. Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Gu Guang-Rui; Wu Bao-Jia; Jin Zhe; Ito Toshimichi

    2008-01-01

    This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture.The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy,respectively.The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm2 and a current density of 3.2mA/cm2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%.The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.

  19. Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition

    Science.gov (United States)

    Gu, Guang-Rui; Wu, Bao-Jia; Jin, Zhe; Ito, Toshimichi

    2008-02-01

    This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm2 and a current density of 3.2mA/cm2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.

  20. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment

  1. Preparation and characterization of bionanocomposite films reinforced with nano kaolin.

    Science.gov (United States)

    Jafarzadeh, Shima; Alias, Abd Karim; Ariffin, Fazilah; Mahmud, Shahrom; Najafi, Ali

    2016-02-01

    Effects of nano-kaolin incorporation into semolina films on the physical, mechanical, thermal, barrier and antimicrobial properties of the resulting bio-nanocomposite films were investigated. The properties included crystal structure (by X-ray diffraction), mechanical resistance, color, Fourier transform infrared spectra, decomposition temperature, water-vapor permeability (WVP), oxygen permeability (OP), and antimicrobial activity against Staphylococcus aureus and Escherichia coli. Kaolin was incorporated into biofilms at various amounts (1, 2, 3, 4, and 5 %, w/w total solid). All films were plasticized with 50 % (w/w total solid) combination of sorbitol/glycerol at 3:1 ratio. The incorporation of nanokaolin into semolina films decreased OP and WVP. The moisture content and water solubility of the films were found to decrease by nanokaolin reinforcement, and mechanical properties of films were improved by increasing nanokaolin concentration. Tensile strength and Young's modulus increased from 3.41 to 5.44 MPa and from 63.12 to 136.18, respectively, and elongation-at-break decreased. The films did not exhibit UV absorption. In conclusion, nanokaolin incorporation enhanced the barrier and mechanical properties of semolina films, indicating the potential application of these bio-nanocomposites in food-product packaging. PMID:27162391

  2. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

    Indian Academy of Sciences (India)

    K S Shamala; L C S Murthy; K Narasimha Rao

    2004-06-01

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10-2 -cm to 3.57 × 10-3 -cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10-1 to 1.69 × 10-2 -cm in the temperature range 250–370°C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10-4 -cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300–370°C were polycrystalline. The morphology of tin oxide films was studied using SEM.

  3. Optical properties of rubrene thin film prepared by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    陈亮; 邓金祥; 孔乐; 崔敏; 陈仁刚; 张紫佳

    2015-01-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo-ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm–1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.

  4. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  5. Workshop on diamond and diamond-like-carbon films for the transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F.A.; Moores, D.K. [eds.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  6. Advantages of the Biomimetic Nanostructured Films as an Immobilization Method vs. the Carbon Paste Classical Method

    Directory of Open Access Journals (Sweden)

    Maria Luz Rodríguez-Méndez

    2012-11-01

    Full Text Available Tyrosinase-based biosensors containing a phthalocyanine as electron mediator have been prepared by two different methods. In the first approach, the enzyme and the electron mediator have been immobilized in carbon paste electrodes. In the second method, they have been introduced in an arachidic acid Langmuir-Blodgett nanostructured film that provides a biomimetic environment. The sensing properties of non-nanostructured and nanostructured biosensors towards catechol, catechin and phenol have been analyzed and compared. The enzyme retains the biocatalytic properties in both matrixes. However, the nanostructured biomimetic films show higher values of maximum reaction rates and lowest apparent Michaelis-Menten constants. In both types of sensors, the sensitivity follows the decreasing order catechol > catechin > phenol. The detection limits observed are in the range of 1.8–5.4 μM for Langmuir-Blodgett biosensors and 8.19–8.57 μM for carbon paste biosensors. In summary, it has been demonstrated that the Langmuir-Blodgett films provide a biomimetic environment and nanostructured biosensors show better performances in terms of kinetic, detection limit and stability.

  7. Monolithic carbide-derived carbon films for micro-supercapacitors.

    Science.gov (United States)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-23

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  8. Electromechanical Behavior of Carbon Nanotubes-Conducting Polymer Films

    Science.gov (United States)

    Kim, Cheol; Liu, Xinyun

    A relationship between strain and applied potential is derived for composite films consisting of single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). When it is derived, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the film actuator. This relationship can give us a direct understanding of actuation of the nanoactuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. Optimizations of SWNTs-CPs composite actuator may be achieved by using well-aligned nanotubes as well as choosing suitable electrolyte and an input voltage range.

  9. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    KAUST Repository

    Kaempgen, Martti

    2009-05-13

    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.

  10. Preparation and Characterization of Self-Assembled Manganese Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2011-01-01

    Full Text Available Thin films of manganese dioxide (MnO2 were prepared by self-assembly of MnO2 nanoparticles directly unto nickel-coated poly(ethylene terephthalate flexible films using the newly developed horizontal submersion process. The thickness of deposited thin films was controllable by the deposition duration. This horizontal submersion deposition process for thin-film deposition is relatively easy, simple, and cost effective. Effects of deposition duration and calcination temperatures on the microstructure and electrochemical properties of self-assembled MnO2 thin films were investigated. Optimized MnO2 thin films exhibited high charge capacity, good cycling reversibility, and stability in a mild aqueous electrolyte and are thus promising electrode materials for the fabrication of thin-film electrochemical capacitors.

  11. Facile approach to prepare drug-loading film from hemicelluloses and chitosan.

    Science.gov (United States)

    Guan, Ying; Qi, Xian-Ming; Chen, Ge-Gu; Peng, Feng; Sun, Run-Cang

    2016-11-20

    This study introduces a facile and green route to fabricate film from bio-based polymers. The film has been prepared by the cross-linking reaction of quaternized hemicelluloses (QH) and chitosan (CHO) with epichlorohydrin (ECH) as crosslinker. It exhibits an excellently mechanical performance as a result of its high tensile strength (up to 37MPa). Importantly, the roughness of film was 2-5nm in the area of 400nm, and smooth surface with pores were presented on the film based on the results of scanning electron microscope (SEM) and atomic force microscope (AFM). Ciprofloxacin was utilized as a mode compound to investigate the loading behavior of the film, and the highest loading concentration was about 18%. The drug release was about 20% in film1 in comparison to only 15% in film3 within 48h. Furthermore, the results of a 293T cell viability assay indicated its good biocompatibility and non-toxicity. PMID:27561527

  12. Preparation of Biodegradable Silk Fibroin/Alginate Blend Films for Controlled Release of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Yaowalak Srisuwan

    2013-01-01

    Full Text Available Silk fibroin (SF/alginate blend films have been prepared for controlled release of tetracycline hydrochloride, an antimicrobial model drug. The blend films were analysed by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and UV-vis spectroscopy. The functional groups of the SF/alginate blends were monitored from their FTIR spectra. The homogeneity of the blend films was observed from SEM images. The dissolution and film transparency of the blend films depended on the SF/alginate blend ratio. The in vitro drug release profile of the blend films was determined by plotting the cumulative drug release versus time. It was found that the drug release significantly decreased as the SF/alginate blend ratio increased. The results demonstrated that the SF/alginate blend films should be a useful controlled-release delivery system for water-soluble drugs.

  13. Properties of TiO2 Thin Films Prepared by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.

  14. Surface and Electrical Properties of NiCr Thin Films Prepared by DC Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jicheng; TIAN Li; YAN Jianwu

    2008-01-01

    Several batches of NiCr alloy thin films with different thickness were prepared in a multi-targets magnetron sputtering apparatus by changing sputtering time while keeping sputtering target power of Ni and Cr fixed. Then the as-deposited films were characterized by energy-dispersive X-Ray spectrometer (EDX),Atomic Force Microscope (AFM) and four-point probe (FPP) to measure surface grain size, roughness and sheet resistance. The film thickness was measured by Alpha-Step IQ Profilers. The thickness dependence of surface roughness, lateral grain size and resistivity was also studied. The experimental results show that the grain size increases with film thickness and the surface roughness reaches the order of nanometer at all film thickness. The as-deposited film resistivity decreases with film thickness.

  15. Facile approach to prepare drug-loading film from hemicelluloses and chitosan.

    Science.gov (United States)

    Guan, Ying; Qi, Xian-Ming; Chen, Ge-Gu; Peng, Feng; Sun, Run-Cang

    2016-11-20

    This study introduces a facile and green route to fabricate film from bio-based polymers. The film has been prepared by the cross-linking reaction of quaternized hemicelluloses (QH) and chitosan (CHO) with epichlorohydrin (ECH) as crosslinker. It exhibits an excellently mechanical performance as a result of its high tensile strength (up to 37MPa). Importantly, the roughness of film was 2-5nm in the area of 400nm, and smooth surface with pores were presented on the film based on the results of scanning electron microscope (SEM) and atomic force microscope (AFM). Ciprofloxacin was utilized as a mode compound to investigate the loading behavior of the film, and the highest loading concentration was about 18%. The drug release was about 20% in film1 in comparison to only 15% in film3 within 48h. Furthermore, the results of a 293T cell viability assay indicated its good biocompatibility and non-toxicity.

  16. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    Science.gov (United States)

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.

  17. Preparation of PANI/PSF conductive composite films and their characteristic

    Institute of Scientific and Technical Information of China (English)

    Yang Yuying; Shang Xiuli; Kong Chao; Zhao Hongxiao; Hu Zhong'ai

    2006-01-01

    Polyaniline (PANI)/polysulfone (PSF) composite films are successfully prepared by phase separation and one-step in-situ polymerization.It is found that the head-on face (in contact with solution) of the films is green while the back face is white.The chemical component and the surface morphology of both surfaces of the films are characterized by FT-IR spectra and SEM,respectively.The effect of the polymerization temperature,time and concentration of the reactants on the electrical properties of the films are discussed in details.The thermo-oxidative degradation of the films is studied by thermogravimetric analysis (TGA).The results indicate that the thermal stability of the PANI/PSF films is higher than that of the pure PSF film.

  18. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  19. Preparation of transparent TiO2 nanocrystalline film for UV sensor

    Institute of Scientific and Technical Information of China (English)

    FU Yao; GAO Wanghe

    2006-01-01

    The nanocrystalline TiO2 film electrodes were prepared by sol-gel method at different calcining temperatures, which had characteristics of different film thickness, uniform transparency, as well as high photoelectric and mechanical stability. Photoelectric measurements show that calcining temperature and film thickness could remarkably influence the photoelectric properties of the electrodes. The film calcined at 450℃ is anatase phase with high crystallinity and strong photoelectric activity, and shows the largest photocurrent. When the temperature is lower than 450℃, the film has weaker crystallinity because of a large number of defects in the film,and this is not favorable for the transport of the photogenerated carriers. And at a temperature higher than 450℃, the photocurrent of the electrode is decreased due to anatase-rutile phase transition in the film. The increase in film thickness is favorable to the enhancement of ultraviolet light (UV) absorption amount, which would improve the photoelectric activity of the film. But, excessive thickness will increase the recombination rate of the electron-hole pairs, and result in a reduction in electrode's photoelectric activity. In addition, the response sensitivity and stability of the photocurrent produced in the electrode are related to bias potential. At a potential of 0.4 V, the electrode shows a saturated photocurrent of 30.8 μA and a response time of ~1 s, suggesting that the prepared TiO2 film electrode can be used for making UV sensors.

  20. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material

    International Nuclear Information System (INIS)

    We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT–G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT–G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT–G structure and p–n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT–G hybrids with the present technique could provide an efficient, novel route to device fabrication. (paper)

  1. Gas desorption during friction of amorphous carbon films

    Science.gov (United States)

    Rusanov, A.; Fontaine, J.; Martin, J.-M.; Mogne, T. L.; Nevshupa, R.

    2008-03-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H2 and CH4. During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it was

  2. Transparent conducting film: Effect of vacuum filtration of carbon nanotube suspended in oleum

    Indian Academy of Sciences (India)

    Tsuyoshi Saotome; Hansang Kim; Zhe Wang; David Lashmore; H Thomas Hahn

    2011-07-01

    Vacuum filtration process to fabricate a transparent conducting carbon nanotube (CNT) film is reported. A CNT mat, which is a fibrous sheet of long multi-walled carbon nanotubes (MWNT), was prepared and dispersed in oleum by solution-sonication. The suspension was then vacuum filtered to obtain a thin MWNT layer with improved dispersion. Sheet resistance of the obtained MWNT layer was increased despite the improved dispersion. SEM micrographs and energy dispersive spectroscopy results indicated that the increase of the sheet resistance could be attributed to degradation and oxidation of the MWNT bundles. Though the chemical approach in this study did not improve the electrical property of the CNT mat, a mechanical approach proposed in our recent work was deemed suitable to enhance optical and electrical properties of the CNT mat.

  3. Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films

    Science.gov (United States)

    Makarova, T. L.; Zakharchuk, I.; Geydt, P.; Lahderanta, E.; Komlev, A. A.; Zyrianova, A. A.; Kanygin, M. A.; Sedelnikova, O. V.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2016-10-01

    Polystyrene/iron-filled multi-wall carbon nanotube composite films were prepared by solution processing, forge-rolling and stretching methods. Elongated iron carbide nanoparticles formed because of catalytic growth are situated inside the hollow cavity of the nanotubes. Magnetic susceptibility measurements as well as records of isothermal hysteresis loops performed in three perpendicular directions of magnetic field confirmed that the nanotubes have a preferential alignment in the matrix. Strong diamagnetic anisotropy in the composites emerges not only from the MWCNTs but also from the polystyrene matrix. The polymer sticks to the honeycomb lattice through the interaction of the π-orbitals of the phenyl ring and those of the carbon nanotube, contributing to anisotropic diamagnetic response. The contribution of iron nanoparticles to overall magnetic response strongly depends on nanotube concentration in the composite as well as on matrix-filler non-covalent stacking, which influences magnetic interparticle interactions.

  4. Raman spectroscopy of chalcogenide thin films prepared by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Erazu, M.; Rocca, J. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Fontana, M., E-mail: merazu@fi.uba.a [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Urena, A.; Arcondo, B. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, 1063 Buenos Aires (Argentina); Pradel, A. [ICG, UMR 5253 CNRS UM 2 ENSCM UM1 equipe PMDP CC3, Universite Montpellier 2, 34095 Montpellier Cedex 5 (France)

    2010-04-16

    Chalcogenide glasses have many technological applications as a result of their particular optical and electrical properties. Ge-Se and Ag-Ge-Se systems were recently studied and tested as new materials for building non-volatile memories. Following these ideas, thin films of Ge-Se and Ag-Ge-Se were deposited using pulsed laser deposition (PLD). Ag was sputtered over binary films (for a composition between 0.05 and 0.25 Ag atomic fraction) and photo-diffused afterwards. Thus, three kinds of samples were analyzed by means of Raman spectroscopy, in order to provide information on the short- and medium-range order: PLD binary films before Ag doping, after Ag doping and PLD ternary films. Before Ag doping, binary films exhibited Ge-Se corner-sharing tetrahedra modes at 190 cm{sup -1}, low scattering from edge-sharing tetrahedra at 210 cm{sup -1}, and Se chains at 260 cm{sup -1} (stretching mode). However, after the diffusion process was complete, we observed an intensity reduction of bands centered at 210 cm{sup -1} and 260 cm{sup -1}. The spectra of the photo-diffused films were similar to those of films deposited using a ternary target. Relaxation effects in binary glasses were also analyzed. Results were compared with those of other authors.

  5. Preparation of iron cobaltite thin films by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Le Trong, H. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); Ho Chi Minh City University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Q 5, 750000 Ho Chi Minh City (Viet Nam); Bui, T.M.A. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Presmanes, L., E-mail: presmane@chimie.ups-tlse.fr [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France); Barnabé, A.; Pasquet, I.; Bonningue, C.; Tailhades, Ph. [Université de Toulouse, UPS, INPT, Institut Carnot CIRIMAT, 118, Route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, Institut Carnot Cirimat, F-31062 Toulouse (France)

    2015-08-31

    Iron cobaltite thin films with spinel structure have been elaborated by radio-frequency (RF) magnetron sputtering from a Co{sub 1.75}Fe{sub 1.25}O{sub 4} target. Influence of argon pressure on structure, microstructure and physical properties of films has been examined. Iron–cobalt oxide thin films essentially consist of one spinel phase when deposited at low pressure (0.5 and 1.0 Pa). At high pressure (2.0 Pa), the global stoichiometry of the film is changed which results in the precipitation of a mixed monoxide of cobalt and iron beside the spinel phase. This in-situ reduction due to an oxygen loss occurring mainly at high deposition pressure has been revealed by X-ray diffraction and Raman spectroscopy. Microstructural evolution of thin film with argon pressure has been shown by microscopic observations (AFM and SEM). The evolution of magnetic and electrical properties, versus argon pressure, has been also studied by SQUID and 4 point probe measurements. - Highlights: • Co{sub 1.75}Fe{sub 1.25}O{sub 4} phase is obtained at room temperature without any annealing. • This phase is a ferrimagnetic semiconductor with a coercive field of 32 kOe at 5 K. • Oxygen content of the thin film is related to the argon pressure during sputtering. • Monoxide phase grows into the film at high argon pressure. • Magnetic coupling effect reveals nanoscale impurities at low argon pressure.

  6. Preparation of highly textured surface ZnO thin films

    International Nuclear Information System (INIS)

    In order to investigate the influence of the deposition technique upon the surface morphology of ZnO thin films we have employed two methods, which are the spray pyrolysis and magnetron sputtering. The surface morphology of ZnO thin films is a crucial parameter for controlling the reflection losses reduction when the coating is used as a transparent front layer in solar cells. The morphology of the surface was characterized by optical microscopy and profilometry. The results indicate that spray technique enables the elaboration of films with a highly rough surface, however sputtering technique yields to smoother films. This difference originates from the different deposition processes involved in both techniques. A vertical r.m.s. (root mean square) roughness in the order of 200 nm was measured in sprayed film; however only 40 nm r.m.s. vertical roughness is reported in sputtered one. The surface morphology in sprayed films causes the incident light diffraction; consequently the reflection is reduced up to zero. Therefore we show that ZnO thin films deposited with spray method is a potential candidate for use as a front transparent layer in solar cells

  7. Fatigue Properties and Fracture Mechanism of Steel Coated with Diamond-Like Carbon Films

    Science.gov (United States)

    Akebono, Hiroyuki; Kato, Masahiko; Sugeta, Atsushi

    Diamond-like carbon (DLC) films have attracted much attention in many industrial fields because of their excellent tribological properties, high hardness, chemical inertness and biocompatibility. In order to examine the fatigue properties and to clear the fracture mechanism of DLC coated materials, AISI4140 steel coated with DLC films by using unbalanced magnetron sputtering method was prepared and two types of fatigue test were carried out by using a tension and compression testing machine with stress ratio -1 and a bending testing machine with stress ratio -1 with a focused on the fatigue crack behavior in detail. The fracture origin changed from the slip deformation to micro defects at surface whose size didn't affect the fatigue crack initiation behavior in the case of Virgin series because the hard coating like DLC films make the defect sensitivity of coated material higher. However, DLC series indicated higher fatigue strengths in finite life region and fatigue limit compared with Virgin series. From the continuously observation by using a plastic replicas technique, it is clear that there are no noticeable differences on fatigue crack propagation rate between the Virgin and DLC series, however the fatigue crack initiation of DLC series was delayed significantly by existence of DLC films compared with Virgin series.

  8. Preparation and characterization of sponge film made from feathers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yuan; Wu, Xiaoqian [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Cao, Zhangjun [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhao, Xiaoxiang; Zhou, Meihua [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Gao, Pin, E-mail: gaopin@mail.dhu.edu.cn [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM{sub 10} was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology.

  9. High growth rate of a-SiC:H films using ethane carbon source by HW-CVD method

    Indian Academy of Sciences (India)

    Mahesh M Kamble; Vaishali S Waman; Sanjay S Ghosh; Azam Mayabadi; Vasant G Sathe; T Shripathi; Habib M Pathan; Sandesh R Jadkar

    2013-12-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared using pure silane (SiH4) and ethane (C2H6), a novel carbon source, without hydrogen dilution using hot wire chemical vapour deposition (HW-CVD) method at low substrate temperature (200 °C) and at reasonably higher deposition rate (19.5 Å/s < d < 35.2 Å/s). Formation of a-SiC:H films has been confirmed from FTIR, Raman and XPS analysis. Influence of deposition pressure on compositional, structural, optical and electrical properties has been investigated. FTIR spectroscopy analysis revealed that there is decrease in C–H and Si–H bond densities while, Si–C bond density increases with increase in deposition pressure. Total hydrogen content drops from 22.6 to 14.4 at.% when deposition pressure is increased. Raman spectra show increase in structural disorder with increase in deposition pressure. It also confirms the formation of nearly stoichiometric a-SiC:H films. Bandgap calculated using both Tauc’s formulation and absorption at 104 cm-1 shows decreasing trend with increase in deposition pressure. Decrease in refractive index and increase in Urbach energy suggests increase in structural disorder and microvoid density in the films. Finally, it has been concluded that C2H6 can be used as an effective carbon source in HW-CVD method to prepare stoichiometric a-SiC:H films.

  10. Preparation of films of a highly aligned lipid cubic phase

    OpenAIRE

    Squires, Adam; Hallett, J.E.; Beddoes, C. M.; Plivelic, T. S.; Seddon, A. M.

    2013-01-01

    We demonstrate a method by which we can produce an oriented film of an inverse bicontinuous cubic phase (QII D) formed by the lipid monoolein (MO). By starting with the lipid as a disordered precursor (the L3 phase) in the presence of butanediol, we can obtain a film of the QII D phase showing a high degree of in-plane orientation by controlled dilution of the sample under shear within a linear flow cell. We demonstrate that the direction of orientation of the film is different from that foun...

  11. Studies of preparing method of nano grain metal-insulator film Cu:CaF2

    International Nuclear Information System (INIS)

    A machine to prepare nano grain metal-insulator films, for example Cu:CaF2 film, by means of magnetron sputtering generating clusters and at the same time evaporating insulator medium, is introduced. This machine is suitable for almost all solid metal and semiconductor clusters. And with it, many kinds of function film series can be prepared. The size of cluster embedded in insulator is from 10 to 70 nm. The Cu cluster and medium CaF2 are both polycrystalline structure

  12. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.

  13. Preparation and characterization of perfluorosulfonic resin/titania hybrid transparent films

    Institute of Scientific and Technical Information of China (English)

    LI JianMei; XUE MinZhao; ZHANG YongMing; LIU YanGang

    2007-01-01

    Preparation and characterization of perfluoroaulfonic resin/titaniaorganic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanata and perfluorosulfonic resin with the help of acetylacetone. The charactarization was carried out by SEM, XRD, FT-IR, UV-Vis and TGA. The results showed that the perfiuorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter decreased with increasing weight ratio of titania to perfluorosulfonic resin.

  14. Thickness distribution of thin amorphous chalcogenide films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pavlista, Martin; Hrdlicka, Martin; Prikryl, Jan [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); Nemec, Petr; Frumar, Miloslav [University of Pardubice, Research Centre Advanced Inorganic Materials, Faculty of Chemical Technology, Pardubice (Czech Republic); University of Pardubice, Department of General and Inorganic Chemistry, Faculty of Chemical Technology, Pardubice (Czech Republic)

    2008-11-15

    Amorphous chalcogenide thin films were prepared from As{sub 2}Se{sub 3}, As{sub 3}Se{sub 2} and InSe bulk glasses by pulsed laser deposition using a KrF excimer laser. Thickness profiles of the films were determined using variable angle spectroscopic ellipsometry. The influence of the laser beam scanning process during the deposition on the thickness distribution of the prepared thin films was evaluated and the corresponding equations suggested. The results were compared with experimental data. (orig.)

  15. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  16. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    Directory of Open Access Journals (Sweden)

    H Afrasiabi Garekani

    2011-05-01

    Full Text Available Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1 containing 0, 10 or 20% (based on polymer weight of PEG 400 or Triethyl Citrate (TEC as plasticizer using casting method. Samples of films were stored in oven at 60ºC for 24 hrs (Cured. The stress-strain curve was obtained for each film using material testing machine and tensile strength, elastic modulus, %elongation and work of failure were calculated. Results and major conclusion: The films with no plasticizer showed different mechanical properties depending on the vehicle used. Addition of 10% or 20% of plasticizer decreased the tensile strength and elastic modulus and increased %elongation and work of failure for all films. The effect of PEG400 on mechanical properties of Eudragit RL films was more pronounced. The differences in mechanical properties of the films due to vehicle decreased by addition of plasticizer and increase in its concentration. Curing process weakened the mechanical properties of the films with no plasticizer and for films with 10% plasticizer no considerable difference in mechanical properties was observed before and after curing. For those with 20% plasticizer only films prepared from aqueous dispersion showed remarkable difference in mechanical properties before and after curing. Results of this study suggest that the mechanical properties of the Eudragit RL films were affected by the vehicle, type of plasticizer and its concentration in the coating liquid.

  17. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil.

    Science.gov (United States)

    Liu, Dong; Li, Hongli; Jiang, Lin; Chuan, Yongming; Yuan, Minglong; Chen, Haiyun

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05). The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends. PMID:27240336

  18. Characterization of Active Packaging Films Made from Poly(Lactic Acid/Poly(Trimethylene Carbonate Incorporated with Oregano Essential Oil

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2016-05-01

    Full Text Available Antimicromial and antioxidant bioactive films based on poly(lactic acid/poly(trimenthylene carbonate films incorporated with different concentrations of oregano essential oil (OEO were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05. The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.

  19. Nitrogen doping in camphoric carbon films and its application to photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Mominuzzaman, Sharif M. [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Rusop, Mohamad; Soga, Tetsuo; Jimbo, Takashi [Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Umeno, Masayoshi [Department of Electronic Engineering, Chubu University, Kasugai 487-8501 (Japan)

    2006-11-23

    Carbon films have been deposited on quartz and single-crystal silicon substrates by pulsed laser deposition technique. The soot for the target was obtained from burning camphor, a natural source. The effect of nitrogen (N) incorporation in camphoric carbon film is investigated. Optical gap for the undoped film is about 0.95eV. The optical gap remains unchanged for low N content and decreases to about 0.7eV. With higher N content the optical gap increases. The resistivity of the carbon film is increased with N content initially and decreases with higher N content till the film is deposited at 30mTorr. The results indicate successful doping for the film deposited at low nitrogen content. The J-V characteristics of N-incorporated carbon/silicon photovoltaic cell under illumination are observed to improve upon N-incorporation in carbon layer. (author)

  20. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  1. Tungsten trioxide thin films prepared by electrostatic spray deposition technique

    International Nuclear Information System (INIS)

    Tungsten trioxide (WO3) thin films deposited on a Pt-coated alumina substrate using the electrostatic spray deposition (ESD) technique is reported in this paper. As precursor solution, tungsten (VI) ethoxide in ethanol was used. The morphology and the microstructure of the films were studied using scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Dense to porous morphologies were obtained by tuning the deposition temperature. Impedance spectroscopy and current-voltage measurements were used to study the electrical behaviour of the films in air, in temperature range 300-500 deg. C. The activation energy was estimated from Arrhenius plots. Considering the obtained results, the ESD technique proved to be an effective technique for the fabrication of porous tungsten trioxide thin films

  2. Preparing and internal friction of VOx/TiOx/Ti multilayer thin films

    Science.gov (United States)

    Li, H. Q.; He, X. X.; Fang, G. Z.; Shao, L. F.

    2009-11-01

    VOx/TiOx/Ti multilayer thin films were deposited on glass and molybdenum substrates by magnetron reactive sputtering. The structure and properties of thin films were measured with X-ray diffraction (XRD), QJ31 Wheatstone Bridge and the internal friction instrument. Preparing process and internal friction of VOx/TiOx/Ti multilayer thin films were studied respectively. On the basis of measurement analysis from crystal structure, the curves of resistance vs temperature, and Young's modulus vs temperature, the phase transformation of VOx multilayer thin film occurs at 66°C and its temperature coefficient of resistance is - 4.35%/°C.

  3. Electrochemical preparation of La-Co-Fe alloy films in dimethylsulfoxide (DMSO)

    Institute of Scientific and Technical Information of China (English)

    袁定胜; 黄开胜; 刘冠昆; 童叶翔; 沙励嫦

    2001-01-01

    Potentiostatic and pulse electrolysis techniques were used to prepare La-Co-Fe alloy films using ethylenediamine (EN) as complexant. Surfaces of alloy films obtained by these two techniques are smooth, adhesive, compact and metallic luster. The contents of La in alloy films obtained by potentiostatic electrolysis technique are in the range of 13.23%~47.67%. The contents of La in alloy films deposited by pulse electrolysis technique are in the range of 10.67%~16.29%.

  4. Preparation of self-sustained film by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    曹冰; 朱从善

    1999-01-01

    Large size self-sustained film with considerable thickness ranging from 30 to 500 μm was prepared with sol-gel method by using dimethyldiethoxysilane/tetraethoxysilane composite alkoxide as precursor. The film exhibits good plasticity as well. Various factors that may influence the film properties were investigated. IR and AFM techniques were adopted to study the film structure and surface morphology. Gas chromatogram/mass spectrum technique was also adopted to characterize the network structure of the material through identification of different polymers formed during hydrolysis and condensation course.

  5. Preparation of Nanoporous Polymer Films for Real-Time Viability Monitoring of Cells

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2011-01-01

    Full Text Available We have demonstrated an alternative way to monitor the viability of cells adhered on a nanoporous polymer film in real time. The nanoporous polymer films were prepared by laser interference pattering. During exposure of holographic patterning, the dissolved solvents were phase separated with photocured polymer and the nanopores were created as the solvents evaporated. The diffracted spectra from the nanoporous polymer film responded to each activity of the cell cycle, from initial cell seeding, through growth, and eventual cell death. This cell-based biosensor uses a nanoporous polymer film to noninvasively monitor cell viability and may prove useful for biotechnological applications.

  6. Screen printed barium titanate thick films prepared from mechanically activated powders

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, B.D. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Quimica; Belgrade Univ. (Yugoslavia). Center for Multidisciplinary Studies; Foschini, C.R.; Varela, J.A. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Quimica; Pejovic, V.Z. [IRITEL, Belgrade (Yugoslavia); Pavlovic, V.B. [Faculty for Agriculture, Dept. of Physics, UB (Yugoslavia); Pavlovic, V.P. [Faculty for Mechanical Engineering, Dept. of Physics, UB (Yugoslavia)

    2002-07-01

    Barium titanate thick films were prepared from mechanically activated powders based on BaCO{sub 3} and TiO{sub 2}. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850 C for 1 hour. The thickness was 30-75 {mu}m depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported. (orig.)

  7. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition

    Indian Academy of Sciences (India)

    Benny Joseph; P K Manoj; V K Vaidyan

    2005-08-01

    The preparation of indium doped zinc oxide films is discussed. Variation of structural, electrical and optical properties of the films with zinc acetate concentration and indium concentration in the solution are investigated. XRD studies have shown a change in preferential orientation from (002) to (101) crystal plane with increase in indium dopant concentration. Films deposited at optimum conditions have a low resistivity of 1.33 × 10-4 m with 94% transmittance at 550 nm. SEM studies have shown smooth polycrystalline morphology of the films. Figure of merit is evaluated from electrical resistivity and transmittance data.

  8. Preparation and characterization of highly transparent epoxy/inorganic nanoparticle hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Rao, Yu-Cyuan [Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2013-11-01

    This paper presents the preparation of epoxy/inorganic-nanoparticle hybrid materials synthesized from diglycidyl ether of bisphenol A and colloidal titania (TiO{sub 2}) with coupling agent, 3-isocyanatopropyltriethoxysilane, and curing agent, hexahydro-4-methylphthalic anhydride, by using a thermal polymerization. The precursor was spin-coated and thermal-cured to form hybrid films. The experimental results showed that the refractive index of hybrid films can be tuned by adding various solid contents of TiO{sub 2} to hybrid films. The refractive index at 633 nm increased from 1.450 to 1.639 as the TiO{sub 2} content increased from 0 to 50 wt.%. UV–vis analysis showed that the transparency of hybrid films was over 90%. L.a.b. color analysis indicated that the luminance of films was above 95%, and no yellowing was observed. In addition, the hybrid materials exhibited a low hydroscopic property under a high-humidity environment. - Highlights: • Epoxy/titania films were prepared from colloidal titania. • Refractive index of films could be tuned by titania content. • All the prepared films had the transparency over 90%. • Luminance was above 95% and no yellowing was found. • Hydroscopic property is low at high-humidity environment.

  9. XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge

    International Nuclear Information System (INIS)

    Highlights: ► We prepare three TiNxOy films by vacuum arc discharge technique with different temperatures. ► Increasing the temperature will improve titanium nitride components. ► Temperature plays a major role in the thickness of films. ► Crystalline and texture developments of the films depend on the temperature. - Abstract: Three titanium oxynitride films have been prepared by vacuum arc discharge technique at different chamber temperatures (50 °C, 150 °C and 300 °C). X-ray photoelectron spectroscopy was used to reveal the elemental and chemical compositions by analyzing high resolution spectra of Ti 2p3/2, N 1s and O 1s. Higher temperatures were found to promote the nitride components and to produce nitrogen-rich films. Homogeneity and thickness of the films have been estimated by means of Rutherford Back Scattering technique, which showed that the film thickness increased with the increasing of temperature. A significant improvement in the crystalline quality and texture when increasing the temperature was found by X-ray diffraction technique. Electrical resistivity of the films was measured at room temperature and was found to decrease from 46.6 μΩ cm down to 26.3 μΩ cm for the samples prepared at 50 °C and 300 °C, respectively.

  10. Structure and phase composition of deposited tantalum-carbon films

    Science.gov (United States)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Zhakanbaev, E. A.; Alimzhan, B.

    2016-08-01

    Ion plasma sputtering and the subsequent codeposition of ultrafine tantalum and carbon particles were used to prepare coatings with 4.6-71.5 at % C. Structural studies of the coatings showed the existence of carbon solid solutions in β Ta at carbon contents to 4.6 at %, carbon solid solutions in α Ta at carbon contents of 4.6-10.3 at %, and direct synthesis of TaC at carbon contents of 44.7-71.5 at %. During heat treatments to 700°C, the substantial concentration widening of regions of the existence of Ta2C and TaC was found. The lattice parameters of hexagonal Ta2C and fcc TaC carbides were determined for composition ranges of the existence of phases during heating to 700°C. Upon heating above 600°C, the progressive transition of quasiamorphous Ta2C carbide into the crystalline Ta2C carbide was found to take place. The possibility of applying the direct synthesis of TaC carbide in engineering was noted.

  11. Preparation of BiFeO3 thin films by pulsed laser deposition method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guan-jun; CHENG Jin-rong; CHEN Rui; YU Sheng-wen; MENG Zhong-yan

    2006-01-01

    BiFeO3 (BFO) thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the pulsed-laser deposition (PLD) technique at a low temperature of 450℃. The XRD results indicate that the BFO thin films are of perovskite structure with the presence of small amount of second phases. The oxygen pressures have great effect on the crystalline structures and dielectric properties of BFO thin films. The dielectric constant of the BFO thin films decreases with increasing oxygen pressures,achieving 186,171 and 160 at the frequency of 104 Hz for the oxygen pressures of 0.666,1.333 and 13.332 Pa,respectively. The BFO thin films prepared at the oxygen pressure of 0.666 Pa reveal a saturated hysteresis loop with the remanent polarization of 7.5 μC/cm2 and the coercive field of 176 kV/cm.

  12. A New Method for Preparing Superconducting MgB2 Films from Diborane

    Institute of Scientific and Technical Information of China (English)

    王殿生; 傅兴华; 张正平; 杨健

    2002-01-01

    We report on a new preparation method for magnesium diboride (MgB2) films by chemical vapour deposition(CVD) from diborane (B2H6). It is a two-step ex situ approach, with the precursor boron films grown by CVD from B2H6 at 460°C, followed by a post-annealing process in magnesium (Mg) vapour at 830°C. The prepared MgB2 thin films on Al2O3 polycrystalline substrates have an onset transition temperature of 35K and a zeroresistance temperature of about 24K. Well-crystallized MgB2 grains have clearly been observed in the SEM images and confirmed by x-ray diffraction analysis. The advantages of the proposed method are the feasibility to prepare large-area superconducting films and the compatibility with semiconductor technology.

  13. Methods for preparing colloidal nanocrystal-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  14. Enhancement of the thermo-mechanical properties and efficacy of mixing technique in the preparation of graphene/PVC nanocomposites compared to carbon nanotubes/PVC

    Institute of Scientific and Technical Information of China (English)

    Mudassir Hasan; Moonyong Lee

    2014-01-01

    Thin films of poly vinyl chloride (PVC)/multiwalled carbon nanotubes (MWCNT) and PVC/graphene (GN) nanocomposites were prepared by mixing in the presence of different quantities of nanoparticles. Film casting was performed using tetrahydrofuran as a solvent. The as-prepared PVC/MWCNT and PVC/GN nanocomposites were characterized by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and diffused reflectance spectroscopy. Only the PVC/GN nanocomposite films were evaluated further for detailed mechanical analysis because of the poor dispersion of MWCNTs in PVC. The PVC/GN nanocomposite films were thermo-mechanically more stable than the PVC films. These nanocomposites have potential as a replacement material for PVC and PVC/MWCNT owing to their better dispersion and high stability.

  15. Preparation and thermochromic properties of Ce-doped VO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Song, Linwei [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Zhang, Yubo [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Sichuan Engineering Technical College, Deyang 618000 (China); Huang, Wanxia, E-mail: huangwanxiascu@yahoo.com.cn [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Shi, Qiwu; Li, Danxia; Zhang, Yang; Xu, Yuanjie [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2013-06-01

    Graphical abstract: This effect of doping concentration on the phase transition temperature of VO{sub 2} films demonstrates that the phase transition temperature is decreasing along with the increase of the Ce dopant concentrations. After doping Ce, the transition temperature of VO{sub 2} film changes appreciably. Highlights: ► Ce-doped VO{sub 2} films were prepared on muscovite substrate by inorganic sol–gel method for the first time. ► The cerium existing in the VO{sub 2} films in the form of Ce{sup 4+} and Ce{sup 3+} was substituted for part of V atoms in the lattice. ► Ce doping could remarkably reduce the particle size of the Ce-doped films compared with undoped films. ► The phase transition temperature of Ce-doped VO{sub 2} films decreased appreciably with maintaining high-quality phase transition. - Abstract: Mixture of cerium (III) nitrate hexahydrate and vanadium pentaoxide powder were used as precursor to prepare Ce-doped VO{sub 2} films on the muscovite substrate by inorganic sol–gel method. SEM, XRD and XPS were used to investigate the morphologies and structures of VO{sub 2} films. The results show that the VO{sub 2} films grow on the muscovite substrate with preferred orientated (0 1 1) plane and the Ce exists in the form of Ce{sup 4+} and Ce{sup 3+} replacing part of V atoms in the lattice. The infrared transmittance change was measured from room temperature to the temperature above the metal–insulator transition. The films have excellent thermochromic performance. The metal–insulator transition temperature of VO{sub 2} films changes appreciably with Ce doped, which decreases by 4.5 °C per 1 at.% doping. Furthermore, Ce doping could remarkably reduce the particle size of VO{sub 2} films.

  16. Study of relationship between structure and transmittance of diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    LIN; Song-sheng; HOU; Hui-jun; ZHU; Xia-gao; YUAN; Zhen-hai; DAI; Da-huang; LI; Hong-wu

    2005-01-01

    In this paper, the transparent hard diamond-like carbon (DLC) films were deposited on glass substrate by magnetic confined radio-frequency plasma chemical vapor deposition. The structure of films was studied by Raman spectra and X-ray photoelectron spectra (XPS), the transmittance of films by Spectrophotometer. The mechanism of the influence of films structure on transmittance of the films was discussed. The results show that the thickness of films was lower than 100nm, and the transmittance was over 90% in 380-780 nm region. Discussion in theory on the influence of film structure on transmittance was correspondence to experiment results.

  17. Preparation and characterisation of fluconazole vaginal films for the treatment of vaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    L Kumar

    2013-01-01

    Full Text Available Objective of the present study was to develop and evaluate vaginal films with essential in vitro studies. Films were developed using hydroxypropyl methylcellulose as a polymer and formulations were coded. The developed films were evaluated with Fourier transform infrared spectroscopy, drug content, viscosity, surface pH, thickness, mechanical characterisation and in vitro drug release study. Fourier transform infrared spectroscopy results confirmed that there is no chemical interaction between drug and stabilisers/excipients. The batch variation was not more than 5% for average thickness and weight of the films. The drug content for the prepared formulation was in the range of 72.32±0.18% to 94.48±0.54%. Viscosity of the formulations increased with the increase in concentration of polymer. Mechanical characterisation revealed that tensile strength and percentage elongation of the films improved as there is increase in degree of substitution of the polymer, but the values of modulus decreased which confirmed that all the prepared films are soft in nature. The in vitro study indicated that 1 and 2% concentrations of polymer are the least concentrations to control the release of drug whereas the 4% concentration of polymer is a good and more effective concentration to control the release. Only one prepared formulation released the drug by following anomalous transport whereas other film formulations released the fluconazole by following Fickian diffusion mechanism. Prepared vaginal films may be an important alternative for the treatment of vaginal candidiasis, because these prepared films suggest the benefits of controlled release of fluconazole at the site of absorption.

  18. Y-Ba-Cu-O thick film preparation using multistep KrF excimer laser deposition

    International Nuclear Information System (INIS)

    Thick films of high-temperature superconductors (HTSC) have attracted much attention to a number of current-carrying applications such as current leads, interconnects, current limiters and cryotron-type switches. As the film thickness of HTSC films is increased using the conventional method of pulsed laser deposition, the surface morphology is degraded during the film deposition. This structural transition results in decreasing the critical current density with the film thickness. Here, a multistep deposition technique in the KrF excimer laser ablation is used to prepare Y-Ba-Cu-O thick films. The high-quality Y-Ba-Cu-O superconducting films of thickness of a few mm were formed by optimizing the processing conditions from the bottom to the surface of the film. The initial ultrathin layer of a few nm was prepared at the low repetition rate of 1 Hz at laser fluence 3 J cm-2. Then, various repetition rates at the fluence 2 J cm-2 were chosen for deposition of the intermediate layer and the surface layer, both with thicknesses of about 1 μm. It is shown that surface morphology and vertical growth are significantly dominated by the initial layer structure and the following deposition conditions. The thick films with high Tc(zero) 89 K were obtained when the surface layer was prepared at a lower repetition rate under lower process temperature. The three step procedure prepared the superconducting thick films with the critical current density of 1.2 x 106 A cm-2 (at 5 K). (orig.)

  19. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Science.gov (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  20. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  1. Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-M. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)]. E-mail: smchen78@ms15.hinet.net; Liao, C.-J. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)

    2004-11-15

    Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films' electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os{sup 3+} and Fe(CN){sub 6}{sup 3-} ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included 'electron transfer' and 'proton transfer' with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S{sub 2}O{sub 3}{sup 2-}, and SO{sub 5}{sup 2-} by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.

  2. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  3. Adsorption of Reactive Dyes by Palm Kernel Shell Activated Carbon: Application of Film Surface and Film Pore Diffusion Models

    OpenAIRE

    2009-01-01

    The rate of adsorption of two reactive dyes, Reactive Black 5 and Reactive Red E onto palm kernel shell-based activated carbon was studied. The experiment was carried out to investigate three models: film diffusion model, film-surface and film-pore diffusion models. The results showed that the external coefficients of mass transfer decreased with increasing of initial adsorbate concentration. In addition, it was found that the adsorption process was better described by using the two resistanc...

  4. Inkjet printed transparent conductive films using water-dispersible single-walled carbon nanotubes treated by UV/ozone irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-In; Kim, Seil [Department of Fusion Chemical Engineering/Bionanotechnology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Kun-Jae [Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin 449-863 (Korea, Republic of); Myung, Nosang V. [Department of Chemical and Environmental Engineering and Center for Nanoscale Science and Engineering, University of California-Riverside, Riverside, CA 92521 (United States); Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr [Department of Fusion Chemical Engineering/Bionanotechnology, Hanyang University, Ansan 426-791 (Korea, Republic of)

    2013-06-01

    Water-based single-walled carbon nanotube (SWCNT) inks with excellent dispersibility for inkjet printed transparent conductive films were prepared by a simple and versatile UV/ozone treatment. The dispersion stability of the SWCNTs was enhanced by the increased oxygen-containing groups on the SWCNT surfaces which were created by the UV/ozone treatment. After inkjet printing of the ink to obtain transparent conductive patterns, circular rings in which most of the SWCNTs are concentrated at the rim were formed by coffee ring effect. The transparent conducting films were achieved by connecting and stacking the rings; the final films inkjet printed in 40 layers have a sheet resistance of 870 Ω sq{sup −1} at 80% optical transmittance in the wavelength of 550 nm. - Highlights: • Single-walled carbon nanotube (SWCNT) surfaces were modified by UV/ozone treatment. • The surface properties of the SWCNTs were systematically investigated. • The transparent conductive films were fabricated by an inkjet printing. • The film with 40 layers had the sheet resistance of 0.87 kΩ sq{sup −1}. • The transmittance of the film is 80% in the visible range.

  5. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  6. Process for preparing tapes from thermoplastic polymers and carbon fibers

    Science.gov (United States)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  7. Durable transparent carbon nanotube films for flexible device components

    International Nuclear Information System (INIS)

    This paper describes a durable carbon nanotube (CNT) film for flexible devices and its mechanical properties. Films as thin as 10 nm thick have properties approaching those of existing electrodes based on indium tin oxide (ITO) but with significantly improved mechanical properties. In uniaxial tension, strains as high as 25% are required for permanent damage and at lower strains resistance changes are slight and consistent with elastic deformation of the individual CNTs. A simple model confirms that changes in electrical resistance are described by a Poisson's ratio of 0.22. These films are also durable to cyclic loading, and even at peak strains of 10% no significant damage occurs after 250 cycles. The scratch resistance is also high as measured by nanoscratch, and for a 50 μm tip a load of 140 mN is required to cause initial failure. This is more than 5 times higher than is required to cause cracking in ITO. The robustness of the transparent conductive coating leads to significant improvement in device performance. In touch screen devices fabricated using CNT no failure occurs after a million actuations while for devices based on ITO electrodes 400,000 cycles are needed to cause failure. These durable electrodes hold the key to developing robust, large-area, lightweight, optoelectronic devices such as lighting, displays, electronic-paper, and printable solar cells. Such devices could hold the key to producing inexpensive green energy, providing reliable solid-state lighting, and significantly reducing our dependence on paper.

  8. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    Science.gov (United States)

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  9. Preparation and properties of gluten/calcium carbonate composites

    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  10. Preparation of carbon monoliths from orange peel for NOx retention

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-12-01

    Full Text Available A series of monoliths are prepared from orange peels and chemically activated with H3PO4, KOH, ZnCl2, and water vapor without a binder. The monoliths were characterized by N2 adsorption-desorption isotherms at 77 K, Boehm titrations and XPS. Thereafter, monoliths were tested for their ability to establish NOx retention. The results show that the retention capacities of NOx were a function of the textural properties and chemistries. The carbons synthesized with ZnCl2 and KOH retained similar amounts of NOx.

  11. Thermal conductivity of hard carbon prepared from C 60 fulleren

    Science.gov (United States)

    Smontara, A.; Biljaković, K.; Starešinić, D.; Pajić, D.; Kozlov, M. E.; Hirabayashi, M.; Tokumoto, M.; Ihara, H.

    1996-02-01

    We report measurements of thermal conductivity in 30-350 K range of hard fullerene-based carbon. The material has been prepared from C 60 fullerene under pressure and has an unusual combination of large hardness and relatively high electrical conductivity. Its thermal conductivity is about 5.5 W/mk at room temperature and decreases almost linearly in the investigated temperature range. The data obtained bear resemblance to the thermal properties of amorphous materials. It is consistent with the structural investigation that allows one to suggest the existence of short-range crystalline order in this transformed substance.

  12. Preparation, characterization and electrochemical properties of a graphene-like carbon nano-fragment material

    International Nuclear Information System (INIS)

    Highlights: • The spent graphite material is utilized to prepare carbon nano-fragments (CNFs). • The preparation procedure is based on chemical oxidation and ultrasonic crushing. • The as-prepared graphene-like CNFs are systemically characterized. • The CNFs exhibit high electrocatalytic and electrochemical energy-storage properties. - Abstract: A graphene-like nanomaterial, carbon nano-fragments (CNFs), is obtained using the graphite anodes of spent lithium-ion batteries (LIBs) as carbon source, and its morphology, structure, functional groups, and reactivity are characterized to evaluate the properties and potential applications. The interlayer space increase, layer distortion, and remnant lithium of the waste lithium-intercalated graphite are utilized to prepare the oxidized CNFs (ox-CNFs) through a chemical oxidation and ultrasonic crushing process. These ox-CNFs exhibit a size distribution of 15 nm to 2 μm and excellent hydrophilicity, and disperse well in an aqueous suspension. Under the hydrothermal condition at 180 °C for 12 h, the ox-CNFs are converted into a suspension of reduced CNFs (re-CNFs), or a cylindrical aggregate when the concentration exceeds 2 mg·mL−1. The spectroscopic results demonstrate that there are abundant edges, defects, and functional groups existing on the CNFs, which affect their reactive, electronic, and electrochemical properties. Thereinto, the vacuum-dried ox-CNFs film can be converted from an insulator to a conductor after a chemical reduction by hydroiodic acid. And the re-CNFs modified glass carbon electrode (re-CNFs/GCE) exhibits enhanced electrocatalytic activity of about 8 times than the GCE to the oxidation reaction of dopamine. Furthermore, with the addition of the carboxylic ox-CNFs in aniline, the CNFs/polyaniline composite discharges a capacitance of 356.4 F·g−1 at 2 mV·s−1, an increase of 80.5% compared to the polyaniline. This preparation entails not only novel carbon nanomaterials but also an

  13. Deposition and characterization of carbon nanotubes (CNTS) based films for sensing applications

    Science.gov (United States)

    Dissanayake, Amila C.

    The advent of carbon nanotubes (CNTs) has opened up lot of novel applications because of their unique electrical and mechanical properties. CNTs are well known material for its exceptional electrical, mechanical, optical, thermal and chemical properties. A single-wall nanotube (SWNT) can be either semiconducting, metallic or semi-metallic, based on its chirality and diameter. SWNTs can be used in transistor device as active channels due to high electron mobility (~10000 cm2/(V s), electrical interconnects, nano-scale circuits, field-emission displays, light-emitting devices and thermal heat sinks due to low resistivity, high current density (~109A cm-2 ) and high thermal conductivity (~3500 W m-1). Further, their high Young's modulus and fracture stress is suitable for various sensing applications such as strain/pressure and use in chemical/biological sensors. This work mainly involves the deposition of CNT-based films following two different methods via a conventional microwave chemical vapor deposition (MWCVD) and spinning CNT-composites, and explored the possibility of using CNT-based films in strain gauge applications. Deposited films are characterized and analyzed for their structure, microstructure, composition and electrical properties. Rutherford Backscattering Spectrometry (RBS), X-ray Reflectivity (XRR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and electrical impedance measurement techniques are used to characterize the films prepared by both the above mentioned methods. The synthesis/deposition process is improved based on the observed films properties. A carbon nanotube forest grown on the Si (100) substrate with Ni as a catalyst using CVD system shows an amorphous nature due to loss of catalytic activity of Ni nano-islands. XPS and RBS data show Ni nano-particles diffused into the Si substrate and surface layer of Ni particles turns out to nickel silicide. The

  14. Preparation and characterization of nanostructured CuO thin films for photoelectrochemical splitting of water

    Indian Academy of Sciences (India)

    Diwakar Chauhan; V R Satsangi; Sahab Dass; Rohit Shrivastav

    2006-12-01

    Nanostructured copper oxide thin films (CuO) were prepared on conducting glass support (SnO2: F overlayer) via sol–gel starting from colloidal solution of copper (II) acetate in ethanol. Films were obtained by dip coating under room conditions (temperature, 25–32°C) and were subsequently sintered in air at different temperatures (400–650°C). The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Average particle size, resistivity and band gap energy were also determined. Photoelectrochemical properties of thin films and their suitability for splitting of water were investigated. Study suggests that thin films of CuO sintered at lower temperatures (≈ 400°C) are better for photoconversion than thick films or the films sintered at much higher temperatures. Plausible explanations have been provided.

  15. Preparation and Characterization of Polyvinylidene Fluoride/Graphene Superhydrophobic Fibrous Films

    Directory of Open Access Journals (Sweden)

    Rasoul Moradi

    2015-08-01

    Full Text Available A new strategy to induce superhydrophobicity via introducing hierarchical structure into the polyvinylidene fluoride (PVDF film was explored in this study. For this purpose nanofibrous composite films were prepared by electrospinning of PVDF and PVDF/graphene blend solution as the main precursors to produce a net-like structure. Various spectroscopy and microscopy methods in combination with crystallographic and wettability tests were used to evaluate the characteristics of the synthesized films. Mechanical properties have been studied using a universal stress-strain test. The results show that the properties of the PVDF nanofibrous film are improved by compositing with graphene. The incorporation of graphene flakes into the fibrous polymer matrix changes the morphology, enhances the surface roughness, and improves the hydrophobicity by inducing a morphological hierarchy. Superhydrophobicity with the water contact angle of about 160° can be achieved for the PVDF/graphene electrospun nanocomposite film in comparison to PVDF pristine film.

  16. Preparation of TiO2 Thin Film and Its Antibacterial Activity

    Institute of Scientific and Technical Information of China (English)

    XU Wei-guo; CHEN An-min; ZHANG Qiang

    2004-01-01

    TiO2 nanometer thin films with photocatalytic antibacterial activity were prepared by the sol-gelmethod on fused quartz and soda lime glass precoated with a SiO2 layer. The thin films were characterized by X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM), and X- ray diffraction ( XRD ). Theresults show that sodium and calcium diffusion into nascent TiO2 film is effectively retarded by the SiO2 layer pre-coated on the soda lime glass. The antibacterial activity of the films was determined. The crystalline of TiO2 nano-meter thin film has important effects on the antibacterial activity of the film.

  17. Preparation and characterization of biodegradable active PLA film for food packaging

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Avallone, E.; Galdi, M. R.; Incarnato, L.

    2014-05-01

    In this work we report on the preparation and characterization of a biodegradable active PLA film (aPLA), intended for food packaging applications. The film was obtained by cast extrusion blending a commercial PLA matrix with an active system, developed in our laboratory and based on PLA microparticles containing a-tocopherol (aTCP) as natural antioxidant agent. In order to optimize the film composition and processing, the active microparticles were preliminarily characterized with the aim to evaluate their morphology (size and shape), thermal resistance and a-tocopherol content. The aPLA film, produced with a 5wt% of aTCP, was characterized in terms of performance and activity. The experimental results demonstrated that the aPLA film has mechanical, thermal, barrier and optical properties adequate for packaging applications and shows oxygen scavenging activity and prolonged exhaustion lag time, compared to pure PLA films.

  18. Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, L.D.; Patil, P.S. [Thin film physics laboratory, Department of Physics, Shivaji University, - 416 004 Kolhapur (India)

    2001-11-01

    Electrochromic nickel oxide thin films were prepared by using a simple and inexpensive spray pyrolysis technique (SPT) onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel chloride solution. Transparent NiO-thin films were obtained at a substrate temperature 350C. The films were cubic NiO with preferred orientation in the (111) direction. Infrared spectroscopy results show presence of free hydroxyl ion and water in nickel oxide thin films. The electrochromic properties of the thin films were studied in an aqueous alkaline electrolyte (0.1M KOH) using cyclic voltammetry (CV), chronoamperometry (CA) and spectrophotometry. The films exhibit anodic electrochromism, changing colour from transparent to black. The colouration efficiency at 630nm was calculated to be 37cm{sup 2}/C.

  19. Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes

    Science.gov (United States)

    Bavarsad, Neda; Kouchak, Maryam; Mohamadipour, Pardis; Sadeghi-Nejad, Batool

    2016-01-01

    Griseofulvin is an antifungal drug and is available as oral dosage forms. Development of topical treatment could be advantageous for superficial fungal infections of the skin. In this study, films prepared from the incorporation of griseofulvin-loaded liposomes in chitosan film for topical drug delivery in superficial fungal infections. The properties of the films were characterized regarding mechanical properties, swelling, ability to transmit vapor, drug release, thermal behavior, and antifungal efficacy against Microsporum gypseum and Epidermophyton floccosum. The presence of liposomes led to decreased mechanical properties but lower swelling ratio. Higher amount of drug permeation and rate of flux were obtained by liposomes incorporated in films compared to liposomal formulations. Antifungal efficacy of formulations was confirmed against two species of dermatophytes in vitro. Therefore, two concepts of using vesicular carrier systems and biopolymeric films have been combined and this topical novel composite film has the potential for griseofulvin delivery to superficial fungal infections. PMID:27429928

  20. Optical properties of rubrene thin film prepared by thermal evaporation

    Science.gov (United States)

    Chen, Liang; Deng, Jin-Xiang; Kong, Le; Cui, Min; Chen, Ren-Gang; Zhang, Zi-Jia

    2015-04-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evaporation technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence. Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008), the Natural Science Foundation of Beijing City, China (Grant No. 4102014), and the Graduate Science Fund of the Beijing University of Technology, China (Grant No. ykj-2013-9835).